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AN ANALYSIS OF TWO-PERSON GAME: SITUATIONS IN

TEEMS OF STATISTICAL LEARNING THEORY;!..!

by

RICHARD Co ATKINSON AND PATRICK SUPPES
APPLIED MATHEMATICS AND STATISTICS LABORATORY

STANFORD UNIVERSITY

This stpdy represents an extension of statistical learning theory to a

class of two-person, zero-sum game sitpations. Becapse the theory has been

mainly developed in connection with experiments dealing with individpal learn-

ing problems, its predictive success in an experimental area involving inter-

action between individuals provides an additional measure of the scope of its

validity. It should be emphasized that the study reported here was not con-

ceived as providing an empirical test of the adequacy of learning theory as

opposed to game theory, for although we use the language of game theory to

describe the study the game characteristics of the situation were not

apparent to Ss. This point is amplified below.

For the purposes of this experiment a play of a game is a trial. On a

given trial each of the two players ,independently makes a choice between one

of two alternatives, that is, he makes one of two possible responses. After

the players have indicated their 'choices, the optcome of the trial is

to each player.

On all trials, the game is described by the following payoff matrixo
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The players are designated A and B. The responses available to player A

are Al and A2; similarly, the responses available to player Bare Bl

and B
2

• If player A selects A
l

and player B selects Bl then there

is a probability a
l

that player A is "correct" and player B is "incor,-

rect," and a probability l-a
1

that player A is "incorrect" and player

B is "correct." The outcomes of the other three response pairs are

identically specified in terms of and

The interaction of the players is limited by two factors: (i) neither

player is shown the payoff matrix, (ii) neither player is directly informed

of the responses of the other player. Thus, from the standpoint of the

general theory of rational behavior (~), £ should not regard himself as

playing a 2x2 game with known paYoff matrix but should view the situation

as a multi-stage decision problem againqt an unknown opponent. However,

~election of an optimal strategy in this multi-stage decision problem, is

far from a trivial task mathematically, and it is scarcely to be expected

that any S would use such a strategy. The virtue of statistical learning

theory is that it yields a quantitative prediction of how organisms actually

Our theoretical analysis of the behavior of Ss in the situation

described is based on two distinct but closely related models. Since a

detailed mathematical analysis of these models is presented elsewhere (14),

we shall confine ourselves to the most salient facts and omit mathematical

proofs.

Linear model.-- The first model is an extension of a linear model

developed by Estes and Burke. Experimental tests of this formulation for
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one person learning situations are reported in (g,2,l3). The basic assumption

of the model is that response probability on a given trial is a linear function

of the probability on the preceding trial. When a response is reinforced its

probability increases; the reinforcement of any other response decreases its

probability.

In· our situation, where two responses are available to each ~, we say

that if a response occurs and is designated as "correct," then the response is

reinforced; if a response occurs and is designated as "incorrect" then the

alternative response is reinforced. More specifically, let ex be the pro­
n

bability of response A
l

on trial n. The rules of change are:

(i) if Al is reinforced on trial n then

(ii) if A2 is reinforced on trial n then

where Identical rules are specified for ~ , the probability of
n

The following pair of recursive equations can then be derived for the mean

probabilities and A where"'n' is the mean probability of the joint event

that on trial n player A will make response A
l

and player B response B
l

,
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I3n+l ~ (1-6B
a
3

- 6Ba4 )]3n + 6B(a2-a4)Cln + 6Ba4

+ eB(a3+a4 - al -a2 )Yn·

It may be shown that a, 13 and r, the asymptotic probabilities in the sense

of Cesaro (11) g/, exist and are independent of the initial probabilities a ,
o

13
0

, roo However, in general these asymptotic quantities depend on eA and 6
B

,

and no simple results are obtainable for the quantities individually. On the

other ha~d, an interesting linear relation between a and 13 which is inde-

pendent of "y, 6
A

and e
B

can be derived, namely:

We have labeled the line determined by this equation the interaction~ since

the exact point on the line specifying the asymptotic probabilities a and

13 is a function of both e
A

and 6ll . It is interesting to observe that in

the corresponding one-person learning situation the interaction line degen-

erates to a point, while in the three-person situation we obtain an interaction

surface.

Finite Markov model.-- In this model we describe an organism as being

in one of two states. If in state 1, he will make response 1; and if in state

2, response 2. Thus in our situation, on any trial n, the two players are

described in terms of the following four states: < 1,1 >, < 1,2 >, < 2,1 >,

and < 2,2 > where the first member of a couple indicates the state of player A

and the second, the state of player ll. For example < 2,1> means that player A
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will make response A2 and player B will make response B
l

• We postulate

that the change of states from one trial to the next is Markovian, and use

the following analysis to derive the transition matrix (10,11) of the process.

When one of players A's responses is reinforced on trial n there is

(i) a probability 6
A

that the organism is affected by the reinforcing event

so that on trial n+l he will make the response reinforced on trial nand

(ii) a probability 1-6
A

that the organism is not affected by the reinforcing

event and consequently repeats, on trial n+l, the response made on trial n.

Identical rules describe the process for player B in terms of 8
B

•

For this set of assumptions and the payoff probabilities and

a4, the transition matrix describing the learning process can be derived and

is as follows:

< 1,1 > < 1,2 > < 2,1 > <2,2 >

< 1,1 > al (8
A

-8
B

) a
1

6
B (1-al )6A 0

+ (1-8A)

< 1,2 > a
2

8
B a2(8A-8

B
) 0 (1-a2 )6A

+

< 2,1 > (1-a
3

)6A 0 a
3

(6A-6B) a
3
8
B

+ (1-6A)

< 2,2 > 0 (1-a4)6A
a46

B
a4(6A-6

B
)

+ (1-6A)

Rows designate the state on trial n and columns the state on trial n+l.
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Thus (1-a3)~A:,theen101'Y i11 row 3,co1U1DI1 1, is the c011ditio11a1 probability

of bei11g i11 state < 1,1 > 011 trial 11+1 give11 that the pair of Ss was

in state < 2,1> 011 trial 11, for we have:

Fro~ these on~ stage transition probabilities we obtain an explicit solu­

tion for the Cesaro asymptotic probabilities of an A
1

and B
1

response; as

in the case of the linear ~ode1 we denote these quantities a and ~ respec­

tive1Y' The general "equations for 0: and ~ are too lengthy to reproduce

here but certai11 results are 11oteworthy. It can be showp- that ex and ~

are related by the identical i11teractio11 line deter~11ea by Equation (1) of

the linear ~oae1. For the Markov ~ode1, however, we can in addition prove

that the point on the interaction line describing a particular pair of Ss'

asymptotic behaviors is uniquely determined by the ratio of e
A

to 6
B

.

Further, even without. a knowledge of eA and 6B (i. e., for any combi11ation

of eA and eBl we can specify a fairly narrow interval on the i11teraction

line within which ex and ~ must fall.

Particular cases of the· theoretical analysis· may be illustrated by

examiningpreq.ictions for the parameter values employed in this experime11t.

Three sets of a i values were used corresponding to three classical cases

of 2x2 games i11 the theory of zero-sum, two person games (12),

The first case is labeled the Mixed Group, since both players have

mixed minimax strategies. The values are given by the payoff matrix
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1

1/6

The minimax strategy for player A is to choose Al with probability 1/3,

and the minimax strategy for B is to choose B
l

with probability 5/6. In

the Markov model

(2) ex = .600

Note that ex is independent of eA/e
B

• From (3) we obtain as bounds on ~:

(4 ) .550 < ~ < .700.

If we assume 6
A

= 6
B

then ~ = .633. For this case the interaction line

is the line satisfying (2).

The second case is labelled the Pure 'nIL'''' both have

pure minimax strategies. The particular values are given by the matrix

B
l

B
2

Al 1/2 1

A2 1/2 1/4

Here al = 1/2 is a saddle point of the matrix and from the standpoint of

game theory the optimal strategy for player A is to play Al with
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probability 1 ,¥,<l for B to play Bl with probability 1. In the Markov

model

ex = .667

(6)

As in the previous case, ex is independent of 6
A

/6
B

and the interaction line

is the line satisfying (5). From (6) we obtain as bounds on ~:

(7) .555<~<.667·

If we assume that 6
A

= 6
B

then ~ = .611.

The third case is labelled the Sure Group since both players have sure­

thing strategies (i.e., given the payoff matrix one of the two responses

available to each player is at least as good or better than the other response

regardless of what his opponent does). The parameter values are given by

the matrix

The sure-thing strategies for players A and Bare A
l

and B
l

respec­

tively. In the Markov model

(8)
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and as bounds we have:

(10)

(11)

If we assume that eA = e
B

.652 < ex < .711

.696 < ~ < .711.

then ex = .667 and ~ = .700. For this case the

interaction line is determined by the equation:

(12) 30; = 10 ~ - 5·

Method

Subjects.-- The Ss were 120 undergraduates obtained from introductory

courses in psychology and philosophy at Stanford University. They were

randomly assigned to the Mixed, Pure, and Sure Groups with the restriction

that there were 20 pairs of Ss in each group.

Apparatus. - - The §.s, run in pairs, sat at opposite ends of an 8ft. by

3ft. table. Mounted vertically on the table top facing each S was a 50in.

wide by 30in. high black panel placed 22in. from the end of the table. The

E sat between the two panels and was not visible to either S. The apparatus,

as viewed from the S's side, consisted of two silent operating keys mounted

8in. apart on the table top and 12in. from the end of the table; upon the
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panel, three milk-glass panel lights were mounted. One of these lights, which

served as the signal for S to respond, was centered between the keys at a

height of 17in. from the table top. Each of the two remaining lights, the

reinforcing signals, was at a height of llin. directly above one of the keys.

The presentation and duration of the lights were automatically controlled.

Procedure.-- Ss were read the following instructions: "We always run

Ss in pairs because this is the way the equipment has been designed and also

because it is the most economical procedure. Actually, however, you are both

working on two completely different and independent problems.

"The experiment for each of you consists of a series of trials. The top

center lamp on your panel will light for about two seconds to indicate the

start of each trial. Shortly thereafter one or the other of the two lower

lamps will light up. Your job is td predict on each trial which one of the

two lower lamps will light and indicate your prediction by pressing the proper

key. That is, if you expect the left lamp to light press the left key, if

you expect the right lamp to light press the right key. On each trial press

one or the other of the two keys but never both. If you are not sure which

key to press then guess.

"Be sure to indicate your choice b.r pressing the proper key immediately

after the onset of the signal light. That is, when the signal light goes on

press one or the other key down and release it. Then wait until one of the

lower lights goes on. If the light above the key you pressed goes on your

prediction was correct, if the light above the key opposite from the one you

pressed goes on you were incorrect, and should have pressed the other key. At

times you may feel frustrated or irritated if you cannot understand what the
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experiment is all about, Nevertlleless, continue trying to make tile very best

prediction you can on eacll trial,"

For eacll pair of ~s, one person was randomly selected as player A and

tile otller player B, Furtller, for eacll S one of tile two response keys was

randomly designated response 1 and the other response 2 witll tile restriction

that tile following possible combinations occurred equally often in each of tile

tllree experimental groups: (a) Al and Bl
on tile right, (b) A

l
on the

rigllt and Bl on tile left, (c) Al on tile left and Bl on tile rigllt, and

(d) Al and Bl
on tile left,

Following tile instructions, 200 trials were run in continuous sequence,

For each pair of Ss sequences of reinforcing ligllts were generated in

accordance witll assigned values of a
i

and observed responses,

On all trials the signal ligllt -\'Tas ligllted for 3,5 sec; tile time between

successive signal exposures was 10 sec, The reinforcing ligllt followed tile

cessation of tile signal l.igllt by 1,5 sec, and remained on for 2 sec,

At tile end of tile session eacll S was asked to describe wllat Ile tllougllt

was involved in tile experiment, Only one S indicated tllat Ile believed tile

re:ln:f'Ql'Cillgeyentsdepen<l,e<l, in any way Qll a relatiQllsllip between Ilis l'eSPQllSeS

and the other players' responses, His record and that of his partner were

eliminated from the analysis and replaced by another pair,

Results and Discussion

Mean learning curves and asymptotic results,-- Figure 1 provides a
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description of behavior over all trials of the experiment. In this figure

the mean proportions of Al and Bl responses in succesive blocks of 40

trials are given for the sequence of 200 trials. An inspection of this

figure indicates that responses are fairly stable over the last 100 trials

except possibly for Bl responses in the Pure Group. To check the stability

of response behavior for individual data, t s for paired measures were

computed between response proportions for the first and last halves of the

final block of 60 trials. In all cases the obtained values of t fall

short of significance at the .05 level.

It appears reasonable to assume that a constant level of responding

has been reached; consequently the proportions computed over the last 60

trials were used as an estimate of 0: and ~. Table 1 presents the

observed mean proportions of Al and Bl responses in the last 60 trial

block and the standard deviations associated with these means. Each entry

is based On N = 20. The values predicted by the Markov model for 6
A

= 6
B

are also presented.

Inspection of Table 1 indicates that predicted and observed results

are close for the Mixed and Pure t tests of the

difference between these values do not approach significance at the .05

level. For the Sure Group the difference between player B's observed

and theoretical values is also not significant; but for player A, the

difference is significant. Specifically, the observed proportion of

Al responses for the Sure Group is less than predicted. Note, however,

that we may relinquish the assumption that 6
A

= 6
B

and, given the

boundary conditions specified by Equations (10) and (11), determine for
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Table 1. Predicted and Observed Mean P1'oportions of' Al and

Bl Responses over the Last Block of' 60 Trials

Al Bl

Predicted Observed s Predicted Observed s
.

Mixed .600 .605 .0794 .633 .649 .0874
,

Pure .667 .670 .0832 .611 .602 .0634

Sure .667 .606 .1005 ·700 .731 ·°760
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the Sure Group the point on the interaction line (see Equation 12) which is

nearest the observed point. This nearest point is a = .652 and ~ = .696.

For this point the difference between observed and theoretical values is

not significant at the .05 level for either Al or Bl responses.

Game theory comparisons.-- It is of interest to compare observed values

with the game-theoretic optimal strategies discussed earlier, for it can be

reasonably maintained that even though Ss do not know the pay-off matrix,

after a large number of trials they have learned enough about the situation

to approach an optimal game strategy. Concerning such a conjecture the

results for the Pure and Sure Groups seem decisive: the optimal game

strategies of responding A
l

or B
l

with probability 1, for player A

or B respectively, is not even crudely approximated by the observed

means. Moreover, the maximum individual value in each group of 20 Ss

does not approach 1; for the Pure Group max a is .80 and max ~ is

.71, while for the Sure Group max a is .77 and max ~ is .84.

The results for the Mixed Group also fail to support the hypothesis

that ~s, in the long run, will approach an optimal game strategy. The

observed-a--of~.6Q:J and ~ of .649 both differ significantly from
--- ,--,,--

their respective minimax strategies of 1/3 and 5/6 at beyond the

.00l level..

Several questions are suggested by these comparisons with game theory

that are pertinent to a theory of small groups. First, would the learning

theory predictions be less applicable and the optimal game strategies more

closely approximated if Ss are explicitly told that they are Competing

with each other7 Subsequent experimental work (1) indicates that the
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answer this question is probably negative. Second, would optimal game

strategies be more closely approximated if Ss were run for a very large

number ·of trials over a period of several days? What evidence there is on

this question from individual learning situations (1, Q, 2) tends to support

the hypothesis that the long run mean probabilities would stay close to the

learning theory predictions. However, detailed experimental investigation

would be worthwhile. Third, would the present experimental results be

affected if Ss were paid for correct responses and penalized monetarily for

incorrect responses? The models formulated in the first part of this paper

are not rich enough in conceptual content to express formally possible effects

of different types of reinforcing events. Fourth, will the obvious generaliza­

tion of the two models to the interaction of more than two Ss be experi­

mentally substantiated, and how will observed response probabilities compare

with various proposed "solutions" of n-person games?

Adequacy of Markov model. -- Because of the relatively simple mathemati­

cal character of stationary Markov processes with a finite number of states,

it is possible to ask certain detailed questions about our data from the

.staiid.p6iiit6fj.1arkov models. Probably the most d.:i.rect question is: how

do the aggregate transition matrices for each of the three experimental

groups compare with the theoretical transition matrix derived in the first

part of the paper? Table 2 presents the observed matrices computed over

the last 100 trials. Since each group contained 20 pairs of Ss each matrix

is based on 2000 observations. No statistical test is needed to see that

the observed matrices differ significantly from the theoretical matrix. It

is sufficient to observe that in the theoretical matrix (for all sets of



Table 12. Observed Transition Matrices Corresponding to the

Theoretical Transition. Matrix Specified by the Markov

Model. Computed over the Last 100 Trials.

I

~
P>
I

>

-

Mixed Pure Sure

< 1,1 > < 1,2 > <2,1 > 11< 2,2 > <1,1 > < 1,2 > < 2,1 > < 2,2 > < 1,1 > <1,2> < 2,1 > < 2,2 :

< 1,1 > ·37 .22 .30 .n .38 .27 .24 .n .43 .18 .29 .10

< 1,2 > .54 .25 .15 .06 .50 ·31 .n .08 .;J2 .19 .22 .07

< 2,1 > ·35 .16 ·30 .19 .30 .20 .29 .21 .47 .J2 ·31 .10

< 2,2 > .28 ·34 .17 .21 ·31 .36 .16 .17 .27 .11 ·37 .19
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parameter values ail the antidiagonal is identically zero, but in the observed

matrices every entry on the antidiagonals is markedly different from zero. As

a matter of fact it would be surprising to find a very close agreement between

the theoretical and observed matrices, for the theoretical matrix was derived

from exceedingly simple assumptions. From a psychological standpoint our

Markov model can be interpreted, for a given player, as a one-element stimulus

model, where the stimulus is sampled with probability 1 on every trial and

conditioned to the reinforced response class with probability e. It seems

unlikely that the detailed pattern of Ss responses could be accounted for

by a single stimulus element.

For experimental situations involving more than one organism even the

extension to a two-element stimulus model is not trivial from the standpoint

of computing the simplest quantities desired, namely, asymptotic response

probabilities. For example, if in the one-element model we identified the

stimulus element as the signal light, one natural two-element model is to

identify two successive signals as the two stimuli. The Markov process

derived from this assumption has, for our experiment, sixteen states.

Fortunately, without examining a specific two-stage Markov model we

can ask one highly relevant question about our data: can the data be more

adequately accounted for by a two-stage model which employs information

about the organism On the previous two trials as compared with a one-stage

The null hypothesis is that

model which employs information about only one preceding trial? .For this

2
X -test described in (~).purpose we use the

for i=1, ••. ,4 where is the probability of state k

given successively states i and j on the two previous trials and Pjk
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is the probability of state k simply given state j on the preceding trial.

To test this hypothesis the following sum was computed for aggregate group

data:

C
i, j,k

where 2If the null hypothesis is true, X has the usual

limiting distribution with 4(4_1)2 = 36 degrees of freedom.

The obtained values of i were 81.8 for the Mixed Group, 50·5 for

the Pure Group and 52.9 for the Sure Group. For the Pure and Sure Groups

the value of l is not significant at the .05 level, for the Mixed Group

it is. Independent of any specific model these results indicate that for

two of the three groups the learning process is fairly well approximated by

a one-stage Markov process. Moreover,. it is to be noted that the significant

X
2

for the aggregated data of the Mixed Group does not entail that individual

pairs of Ss were not one-stage Markovian in their responses, for the sum

(in the sense pertinent here) of several Markov processes is not necessarily

a Markov nr·ocess. The small number of observations for a pair of Ss

ruled out a separate x2-test for each pair.

If, on the other hand, we accept the approximate one-stage Markovian

character of the learning process studied in this experiment, and ask if

this process is stationary in the sense that the observed transition proba-

bilities are constant over all trials, the answer is decisively negative. In

a analysis (~) of the aggregate observed transition matrix for the first

100 trials compared with the last 100 trials, the difference was significant
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at the .01 level for all three groups. These results suggest that non­

stationary, single element models need to be explored in addition to an

analysis of stationary multi-stimulus element models.

Observed and predicted variances in the linear model.-- The close agree­

ment between predicted and observed mean asymptotic responses suggests a check

of the linear model against another measure of behavior. Specifically, we

were interested in checking the variance predicted by the model against the

experimental results on variability presented in Table 1. The observed

standard deviations in this table relate to the proportions of Al and Bl

responses in blocks of 60 trials, comparable theoretical quantities will be

designated a(Al ) and a(B
l

) respectively.

Unfortunately direct analytical computation of a(Al ) and a(Bl ) seems

impossible. Consequently it was necessary to resort to "Monte Carlo methods"

(2)' The basic idea of the approach is to construct a system which follows

the rules specified by the theory and then make observations on the behavior

of the system. By taking a large number of such observations one obtains

precise estimates of theoretical quantities. In our case, what might be

considered a organism was built by programming an I.B.M. type

650 digital computor so that its sequence of commands corresponded to the

operations specified by the linear model,

Employing this procedure, estimates of a(Al ) and a(B
l

) were obtained

for various values of SA and 8B, Results from other experiments (~, 2,

13, 15) suggested that e values for the present study would undoubtedly be

bounded between .01 and .50. Hence combinations of .01, ,10, and .50

were used in the computation; a finer gradation of values would have been
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desirable but the cost of computor time made this prohibitive. The results

of the Monte Carlo runs are presented in Table 3.

A comparison of Tables 1 and 3 indicates that, for all cases, the observed

variability is greater than predicted by the model. Even the most favorable

comparisons between observed and predicted values prove to be significantly

different at the .05 level when a x2_test of variances is employed. The

finding that the linear model tends to underestimate observed variability is

not surprising in view of similar results from other experiments employing

linear operator models to account for individual learning data.
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Table 3. Monte Carlo Estimates of cr(A1) and cr(B1 )

for Various Values of 6A and 6B•

Mixed Pure Sure

6A 6B cr(A1) cr(B1 ) cr(A1 ) cr(B1 ) cr(A1 ) cr(B1)

.01 .01 .030 .031 .033 .024 .024 .021

.01 .10 .021 .042 .034 .051 .021 .047

.01 ·50 .027 .061 .026 .053 .030 .046

.10 .01 .049 .031 .058 .022 .051 .021

.10 .10 .050 .052 .059 .036 .050 .035

.10 ·50 .060 .057 .060 .043 .065 .053

·50 .01 .055 .024 .076 .018 .071 .021

·50 .10 .062 .037 .064 .051 .049 .045

·50 ·50 .066 .045 .071 .046 .074 .036
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Summary

The study deals with an analysis of a zero-sum, two-person game situation

in terms of statistical learning theory and game theory.

Ss were run in pairs for 200 trials. A single play of the game is treated

as a trial. On a trial each player makes a choice between one of two alterna-

tive responses; after the players have made their response, the outcome of the

trial is announced. The responses available to player A are designated A
l

and A2; similarly the responses available to player Bare B
l

and B
2

. If

player A selects A
l

and player B selects B
l

, then there is a probability

a that player A is "correct" and player B is "incorrect" and a proba-
1

bility l-al that player B is "correct" and player A is "incorrect". The

outcome of the other three response pairs is identically specified in terms of

a2 , a
3

, and a4 . Ss were instructed to maximize the number of correct responses.

Three groups were run, each employing a different set of a
i

values. The

selection of these values was determined by game-theoretic considerations; that

is, a group had available either a sure-thing strategy, a pure minimax strategy

or a mixed minimax strategy.

Analysis of the data was in terms of two different but related stochastic

models for learning and game theory. Specifically the following detailed com-

parisons of data and theory were made: (a) mean asymptotic response proba­

bilities, (b) one and two stage transition probabilities, and (c) variances

associated with asymptotic response probabilities.
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Footnotes
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Ford Foundation and by the Group Psychology Branch of the Office of
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stimulating discussions of the ideas on which this experiment is based.

?/ To be explicit, for any k

a = lim
n->oo

and similarly, for ~ and y_

1
n

n

La.
i=k :L
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