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AN ANALYSTS OF TWO-PERSON GAME SITUATIONS IN
TERMS OF STATISTICAL LEARNING THEORYE/

by

RICHARD C. ATKTINSON AND PATRICK SUFPPES
-APPLIED MATHEMATICS AND STATTSTICS LABORATORY
STANFORD UNIVERSITY

This study représents an extension of statisticel learning theory to &
class of two-person, zero-sum game situations. Because the theory has been
mainly developed iﬁ connection with experiments dealing with individual learn-
ing problemé, its predictive success in an experimental area involving inter-
action between individuals provides an additional measure oflthe scope of its
validity. It sh;uld be emphasized that the study reported -here was not con-
celved as providing an'empirical test of the adequacy of learning theory as
opposed to game theory, for although we ugse the language of game fheory to
. deseribe the study the.game characteristics of the situation were not
apparent to £s. This point is amplified below.

For the purposes of this experiment a play of a game'is a trialq_ On a
given trisl each of the two players independently mekes a choice between one

of two alternatives, that is, he mskes one of two possible responses. After

the players have indicated their choices, the outcome of the trial is announced
to each player.

On all trials, the game is described by the following payoff matrix.
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The players are designated A and B. The responses available to player A

are .Al gnd AE;

and BE' If player A selects Al and player B selects Bl then there

similarly, the responses avallable to player B are _Bl

is & probability a, that player A is "correct™ and player B is "incor-

1

rect," and a probability 1l-a. +that player A is "incorrect" and player

1

B is "eorrect." The outcomes of the other three response pairs are
identically specified in terms of By a3 and 8y, -

The interaction of the players is limited by two factors: (i) neither
player is shown the payoff matrix, (ii) neither player is directly informed
of ‘the responses of the other player. Thus, from the standpoint of the
general theory of rational behavior (%), g should not regard himself as
Playing a 2x2 game with known payoff matrix but should view the situation

as a multi-stage decision problem against an unknown opponent. However,

selection of an optimal strategy in this multi-stage decision problem, is

far from a trivial task mathematically, and it is scarcely to be expected

that eny S would use such a strategy. The virtue of statistical learning
theory is that it yields a gquantitative prediction of how orgenisms actually

do.-behave. in.guch_situstions.

Our theoretical analysis of the behavior of S in the situation
described is based on two distinct but closely related models. Since a
detailed mathematicel analysis of these models is presented elsewhere (1h),
we shall confine ourselves to the most salient facts and omit mathematical

proofs.

Linear model .-~ The first model is an extension of a linear model

developed by Estes and Burke. Experimental tesgts of this formulation for
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one'person.iéarning situations are reported in (g,g,&&)o_ The basic assumption
of the model is that response probability on a given trial is a linear fuﬁctian
of the probabllity on the preceding trial. .When a response is reinfofced its
probability increases; the reinforcement of any other response decreases its
‘probabilityo |

In our situation, where two responses are available to each S, we say
that if a response occurs and is designated aS‘“correct;" then the response is
reinforced; if a response occurs and is designated as "incorrect" then the
alternative response is reinforced. More specifically, let an be the pro-

bability of response Al on trial n. .The rules of change are:

(i) ir Al is reinforced on trial n then
an+l = (l_eA)an * eA
(ii) if A, 1is reinforced on trial n then

an+l = (l“eA)an

where 0 < QA < 1. Identical rules are specified for ﬁn’ the probability of

The following pair of recursive equations can then ke derived for the mean
‘probabilities ah and Eﬁ, where ?n is the mean probability of the joint event

that on trial n player A will meke response A

1 and player B response ;Bl.

a£+l = (lFBQA-+ 8,8, + QAah)aﬁ + QA(ah-as)Eﬁ + GA(l—ah)_

+ eA(al+a3 - aQ_ah)7n




Boyp = (1-853; - 05808, + Spla s Ja + 6pay

+ eB(a3+ah - al—ae)yn,

It may be shown that @, B and 7y, the asymptotic probabilities in the sense
of Cesaro (ii) 2/, exist and are independent of fhe initial probabilities O,
ﬁo, 7o However, in general these asymptotic quantities depend on GA and eB,
and no simple results are obtainable for the guantities individually. On the

other hand, an interesting linear reiation between o and E which is inde-

and ©_ can be derived, namely:

pendgpt of ;,-QA B

(1) [(a3+ah ; gl-a2) + (ala2 - a3ah)]a.= (ala3 - azah)g + %(a3+a4 - al-ag)
B ah(aa~a3).

We have labeled the line determined by this equation the intefaction line since

the exact point on the line specifying the esymptotic probabvilities o and

B is a function of both QA and GB. It is interesting to observe that in

the corresponding one-person learning situastion the interaction line degen-

~merate5mt0“aynoint,mwhileminwthe~three-persou-situation"we~obt&in~anmihteraetionmum-m~~f

aurface.

Finite Markof modelnu— In this model we describe an ofganism as being

in one of two states. If in state 1, he will make response 1; and if in state
.2,_response 2. Thus in our situaﬁion, on any trial n, the two players sare
described in terms of the following four states: < 1,1 >, <1,2>, <2,1>,

and < 2,2 > where the first member of a couﬁle indicates the state of player A

and the second, the state of player B. For example < 2,1 > means that player A



1 We postulate

- will make response _A2 ~and player B will meke response B
that the change'of states from one trial to the next is Markovian, and use

the following analysis to derive the transition matrix (10,11) of the process.
When one of players A's responses is reinforced on trial n there 1is

(i) a probabiltity 8, that the organism is affected by the reinforcing event

so that on trial n+l he will make the response reinforced on trial n and

(ii) a probability 1—9A that the organism is not affected by the reinforcing

event and consequently repeats, on trisl =n+l, the response made on triel n.

Identical rules describe the process for player B in terms of BB.

For this set of assumptions and the payoff probabilities &1s 857 a3 and

au, the transition matrix describing the learning process can be derived and

is as follows:

<1,1> <1,2> < 2,1 > <2,2 >
< 1,1l > al(eA-eB) ' 8,8, (l—al)eA 0

+ (l—eA)
e s o) 0 (1808

+ (l-QA)
< 2,1 > (1.-513)9A | 0 - a_S(eA-eB) | aaeB
+ (1-8,)
<2,2> | O (l-—ah)eA &, 0y ah(eA_gB)
+ (1-9A)

Rows designate the state on trial n and columns the state on trisl n+l.




Thus (lua )8 --the: entry 1n Tow 3, column l, 1s the condltlonal probability
of belng in state' < 1 1> on- trlal n+l glven that the palr of Ss was

in state < 2 1 > “on trlal n, for we have:

._(.lz_%).eA - %%(%_%) + '?A(l__ejs)(l_-as) + (1-8,)8.00 + (1-6,)(1-8,)-0.

:. From these.one stage tran51t1en probabillties we obtaln an eXpllClt solu-
.tlon for the Ceearo asymptotlc probablllties of an A and Bl regponse; as
1n the case of the llnear model we denote these quantltles a and B regpec-
.'-tively The general equatlons for‘ a -and B are. £00 lengthy to reproduce
'here but certain results are noteworthy It can be shown.that o and B
_:-are related by the 1dentical interactlon llne determlned by Equatlon (1) of
3the llnear model -For'the"Markov model, however, we can in addition prove

: that the polnt on the 1nteraet10n line descrlblng a particular pair of Ss

'asymptotlc.behav;ors_ls unlquely determined by the ratio of QA to ©_.

B
| - Further,teVen ﬁithout_a knowledge of QA and eB (i.e., for any combination
of QA and GB)'Wé ean speeify a fairly narrow interval on the interaction

line wiﬁhin’ Which @ and B must fall.

Particular cases of the theoretical analysis may be illustrated by~

examznlng predlctions for the parameter values employed in this experdiment.

Three.sete-qf véi“ values were uged corrvesponding to three classical cases

,of'.EEc2' gemesfin the_theory of zero-sum, two person games (12).
._Théffiret,ceeeeie labeled the Mixed Group, since both players have

rmixedfﬁinimax st;etegies. - The a; ~values are given by the payoff matrix



1 2
A /3 1
A, 1/2 1/6

The minimax strategy for player A 1is to choose Al with probability 1/3,
and the minimax strategy for B is to choose Bl ‘with probability 5/6. In

the Markov model

.600

QI
h

(2)

35(8,/85) + 22

(3) - 50(8,/6,) + 40

|
i

Note that « is independent of BA/SB. From (3) we obtain as bounds on 8:
() 550 < B < .T00.

If we assume 6, = ©, then B = .633. For this case the interaction line

is the line satisfying (2).

The gecond case is labelled the Pure Group, sinece both players have m”mm“”_”mwmmm1

pure minimax strategies. The particular values are given by ﬁhe matrix

By B
A 1/2 i
A, 1/2 1/4

Here a, = 1/2 is a saddle point of the matrix and from the standpoint of

game thepry.theigptimal.strategy for player A 1is to play Al with
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with probability 1. In the Markov

probability.l;ggd for B +to play Bl

- model
(5) | a = .667

6(QA/eB) +5

(©) vl

‘As in the previous case, 0 is independent of eA/eB and the interaction line

is the line satisfying (5). From (6) we obtain as bounds on B:
|

(7) 555 < B < .667.

It we assume that QA = GB then B = .611.

The tﬁird case 1s labelled the Sure Group since Dboth pPlayers have sure-
thing strategies {(i.e., given the payoff matrix one of the two responses
avallable to each player is at least aé good or better than the other response

regardless -of what his opponent does). The parameter values are given by

the matrix -

Bimw By
Al 1/2
| A, |14 3k

The sure}thihg strategles for players A and B are Al and Bl respec-

tively. 1In the Markov model
_ (8, /eg) + 15
7(6,765) + 23

(8) : | 5
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| | 5(8/8) + 36
2 P = T8, /6, 7 23

and as bounds we have:
(10) : 652 <o < LT711

(1) - . 696 <E < .7l

If we essume thet ©, = 8, ‘then O = .667 and B = .700. For this case the

interaction line is determined by the equation:

(12) R 3a =108 - 5.
Method
Subjects.-~ The Ss were 120 undergraduates obtained from introductory

courses in psychology and philosophy at Stanford University. They were

randomly assigned to the Mixed, Pure, and Sure Groups with the restriction

that there were 20 pairs of Ss 1n each group.

Apparatuso—— The §8Ss, run in pairs, sat at opposite ends of an 8ft. by
'3ft. table. Mounted vertically on the table top facing each 5 was a 50in;
_Wide by 30in. high black panel placed 22in. from the end of the table. The
E sat between the two panels and wag not visible to elther 8. The apparatus,
as viewed from the §'s gide, consgisted of two silent operating keys mounted

: 8in. apart on the table top and 12in. from the end of the table; upon the
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panel, three milk-glass panel lights were mounted. One of these lights, which
served as‘the signal for § to respond, was centered between the keys at a
height of 17in. from the table top. Fach of the two remaining lights, the
reinforeing signals, was at a height of l1lin. directly above one of the keys.

The presentation and duration of the lights were automatically controlled.

Procedure.-- S8 were read the following instructions: "We always run
§s in pairs because this is the way the equipment has been designed and also
because it is the most economical procedure. Actually, however, you are both
working on two completely different.and independent problems.

“The-expeximent for each of you consists of a series of trials. The top
center lamp on your panel will light for about two seconds to indicate the
start of each trial. Shortly thereafter one or the other of the two lower
-lamps will 1ight up - Your Jjob is to predict on each trial which one of the
two lower lamps will light and indicate your prediction by pressing the proper
key. That is, if you expect the left lamé to light press the left key, if

you expect the right lamp to light press the right key. On each trial press

one or the other of the two keys but never both. If you are not sure which

~

key to press then guess.

"Be sure to indicate your choice Yy pressing the proper key immediately
after‘the onset of the signal lightn That is, when the signal light goes on
presg one or the other key down and release it. Then wait until one of the
lower‘lights goes on. If the light above the key you pressed goes on your'
prediction was correct, if the light above the key opposite from the one you
pressed goes on you were incorrect,rana should have pressed the other key. At

times you may feel frustrated or irritated if you camnot understand what the

)
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_expefiment_is-éll about. HNevertheless, continue trying to make the very best
predictién jou.déﬁ oﬁ eéch trisl."

For each pair of §$s, one person was randomly selected as piayer A and
the other player B. Further, for each § one of the two response keys was
fandomly désignated.response 1 snd the bther-response 2 with the restriction
that'the.foliowiﬁg possible combinations occurred equally often In each of the

three experimental groups: (a) A, and B, on the right, (b) Al on the

1

right and B, on the left, {(c) A, on the left and B, on the right, and

1
(d)_Al and B, on the left.

-Following the instructions, 200 trials were run in continuous.sequence.
For each pair of 8Ss sequences Of reinforcing lights were generated in
aceordance with assigned values of a; and observed responses.

On all trials the signal light was lighted for 3.5 sec; the time between
successivé signal exposures was 10 sec. The reinforecing light followed the
cessation of the signal light by 1.5 sec. and remained on for 2 sec.

At the end of the segsion each S was asked to describe what he thought

wag involved in the experiment. Only one § indicated that he believed the

reinforeing events depended in any way on s relationship between his responses
and the bther players' responses. His record and that of his partner were

eliminated from the analysis and replaced by another pair.

Results and Discussion

Mean learning curves and asymptotic results.-- PFigure 1 provides a .
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descriptionlof behavior over all trisls of the experiment. In this figure

the mean proportions of Al and B. responses in succesive blocks of 40

1

trials are given for the sequence of 200 trials. An inspection of ‘this

figure indicsastes that responses are fairly stable over the last 100 trials

except possibly for B, responses in the Pure Group. Tb check the stability

1
of response behavior for individual data, % s for paired measures were
computed between regponse proporiions for the first and last hélves of the

final bloek of 60 trials. In all cases the obtained values of t fall

short of significance at the .05 level.

Tt appears reasonable to assume that a constant level of responding
has been reached; consequently the proportions computed over the last 60
trials were used as an estimate of @ and pB. Table 1 presents the

cbserved mean proportions of Al and B, responses in the lagt 60 trial

1

block and the standard deviations associated with these means. Hach entry
is based on N = 20. The values predicted by the Markov model for GA-z SB
are also preseﬁted. -

Inspection ¢f Table 1 indicates that predicted and observed results

are extremely close for the Mixed and Pure Qroups; t tests of the

difference between these values do not approach significance at the .05
level. For the Sure Group the difference between player B's obgerved
and theoretical values is also not significant; but for player A, the
difference is significant. Specifically, the cbserved proportion of

A responséé for the Sure Group is less than predicted. the, however,

o1

that we may relinguish the assumption that SA = GB and, given the

- boundary conditions specified by Equations (10) and (11), determine for




‘Table 1.
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Predicted and Observed Mean Proportions of Al and

Bl Responses over the Last Block of 60 Trials

Ay B
Predicted Observed 8 Predicfed Observed 5
Mixed .600 605 Noyien .633 649 L0874
Pure 1667 670 .0832 .611 .602 063k
Sure 667 606 .1005 ~.700 731 0760
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the Sure Group the point on the interaction line (see Equation 12) which is
nearest the observed point. This nearest point is & = .652 and P = .696.
For this point the difference between observed and theoretical wvalues is

not significant at the .05 level for either Al or B, responses.

1

Game theory comparisons.-- It is of ‘interest to compare observed values

ﬁith the game-theofetic optimal strategles discussed earlier, for it can be
reasonably maintained that even though Ss do not know the pay-off matrix,
after a large number of ftrials they have learned enough about fhe gituation
to approach an optimal game strategy. Concerning such a éonjecture_the
results Tor the Pure and Sure Groups seem decisive: +the optimal game
strategies of.responding 'Al or B

1

or B respectively; is not even crudely approximated by the observed

with probability 1, for player A

means. Moreover, the'maximum individual value in each group of 20 8s
does not approach 1l; for the Pure Group max a 1Is .80 and mex R is
.71, ﬁhile for the Sure Group mex « is .77 and max B is .8h.

The results for the Mixed Group also fail to support the hypothesis

that 8s, in the long run, will approach an optimal game strategy. The

observed —G Of 605 -and B of 649 both differ-significantly from
their respective minimax s;;ggéé{;g of 1/3 snd 5/6 at beyond the
001 level.:

Several questions are suggested by tﬁese comparisons with game theory
that are pertinent.to a theory of small groups. First, wﬁuld the learning
theory predictions be less applicable and the optimal game strategles more

closely approximated if 8s are explicitly told that they are competing

with each other? Subsequent experimental work (3) indicates that the
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-“éﬁéwérffé?tﬂig€Q§é§£ionﬁis probably negative. Second, would optimal game
strategies be.moré qlosely approximated if $Ss were run for a very large
number<of‘triéls over a period of several days? What evidence there is on
this question from individual learning situations (1, 8, 9) tends to support
the hypothesis that the long run mean probabilities would stay c¢lose to the
learning theory predictions. However, detailed experimental investigation
would be worthwhile. Third, would the present experiméntal results be
affected if ‘Ss were pald for correct responses and penalized monetarily for
incorrec% regponses? The models formulated in the first part of this paper

are not rich enough in conceptual content to express formally possible effects

of different types of reinforcing events. Fourth, will the cobvious generaliza-

tion of the two models to the interaction of more than two Ss be experi-
mentally substantiated, and how will observed response probabilities compare

with various proposed "solutions” of n-person games?
prop P g

Adeguacy of Markov model .-~ Becauge of the relatively simple mathemati-

cal character of stationary Markov processes with a2 finite number of states,

it is possible to ask certain detailed questions about our data from the

Stanapdiﬁﬁ'éf*ﬂﬁfkgﬁﬁﬁﬁdélélmm?fdbably the most direct question is: how

.do the éggregate transition matrices for each of the three experimental
.groﬁps ¢oﬁ§§re,§ifh:the theoretical transition matrix derived in the firét

l:pért of the pépér? .Table 2 presents the obsefved matrices computed over
‘the last 100 £rials=- Since each group contained 20 pairs of Ss each matrix
"is based on 2000 ob'_séi'va:'bions° No statistical test is needed to see that

the observed matirices differ significantly from the theoretical matrix. Tt

1s sufficiént to observe that in the theoretical matrix (for all sets of



Observed'Transitiou,Matriéés Corresponding -to the

‘Table 2.
T_het_ire'tical Transition Matrix Specified by the Markov

Model. Computed over the Last 100 Trials.

:ﬁixéd Pﬁre. - Sure
< 1,1> % i,e > -<:2,1 > .< 2,2> <1,1> % 1,2 > <l2,1 >|<2,2>] <1,1>» <‘;,2:> < 2;1 >l < 2,2 >
% i,l > ,3f .22 .30 A1 38 .27 2k | .11 13 .18 | ;29 .10
< l,2> .5k 25 .15 .06 .50 ,3i a1 .08 .52 .19 .22 .07
<2,1> .35 16 .30 .19 .30 .20 .29 2L 7 a2 .31 .10 %;
®
< 2,2 > .28 .3k A7 .21 .31 .36 .16 A7 .27 A7 .37 419 ‘
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parameter values ai) the antidiagonal is identically zero, but in the observed

natrices every entry on the antidiagonals is markedly different from zero.

a matter of fact it would be surprising to find a very close agreement between

the theoretical and observed matrices, for the theoretical matrix was derived

from exceedingly simple assumptlons. From a psychological stendpoint our

Markov model can be interpreted, for a given player, as s one-element stimulus

model, where the stimulus is sampled with probability 1 on every trial and
conditioned to the reinforced response class with probsbility €. It seems
unlikely that the detailed pattern of Ss responses could be accounted for
by & single stimulus element.

ﬁor éxpefimental situations involving more than one organism even the
extension.to_a_two-element stimilus model is not trivial from the standpoint
of computing the simplest guantities desired, namely, asymptotic response
probabilitiés. ‘For example, 1f in the one-element model we ldentified the
stimulus.elémenﬁ'as the signal light, one natural two-element model is %o
identify two successive signals as the two stimuli. The Markov.process
derived from this assumption has, for our experiment, sixteen states.

Fortunately, without examining a specific two-stage Markov model we

.can ask one highiy relevant guestion about our data: can the data be more
“adequately accounfed for by a two-gtage model which employs information
abouf the organism on the previous two trials as compared with a one-stage
model which employs information sbout only one preceding trial? .For this
.purpose we use the X°-test deseribed in (1). The null hypothesis is that

s = P for i=l,...,% where Py 18 the probability of state k

-~

given successively states 1 and J on the two previous trials and pjk
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is the probability of state k_.simply given state j on the preceding trial.

To test this;hypothesis the following sum was computed for aggregate group

'data:
2 F A A DA
o= ny(By g - Ba) g
i,5,k
- where nijf= E ' nijk' If the null hypothesis is true, ¥~ has the usual
- - k. -

limiting;diétfibutign with h(h;l)e = 36 degrees of freedom.
:The;oﬁtéiﬁédivalues of X? "were 81.8 for the Mixed.Group, 50.5 for

the Pure Gr@ﬁﬁ and 52.9 for the Sure Group. For the Pure and Sure Groups

‘the value‘of' k?' is not significant at the .05 ievel, for the Mixed Group

it is.. Indépén@ent of any specific model these results indicate that for

tﬁo of the three gfoups the learning process is fairly well approximated by

a one-stage Markdv'processa Moreover, it is tc be noted that the‘significant

xe for the aggregated data of the Mixed Group does not entail that individual

pairs of Ss were not éne—stage Markovian in thelr responses, fof the sum

(in'the sense pertinent here) of several Markov processes is not necessarily

a Markov process. The small number of observations for a given pair of 8s

ruled out a separate X2-tést for each pair.

If, on the other hand, we accept the approximate one-stage Markovian
charaétér of the learning process studied in this experiment, and ask if
this proceés is stationary in the sense that the observed transition proba-
5ilities aré.constant over all triéls, the answer is decisively negative. In
a xe analysié (1) of the aggregate observed transition metrix for the first

100 trialSJQOEPared with the last 100 trials, the difference was significant
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at the .Ol*_level;for all three groups. : These results suggest that non-
stationary, single element models need %o be explored in addition to an

analysis of stationary multi-stimulus element models.

Observed and predicted variances in the linear model.-- The. close agree-

. ment between prédicted énd observed mean asymptotic responses suggests a check
.of the linear'moael'against snother measure of behavior. Specifically, we
were interested.in checking the variance predicted by the model against the
experimental résults on variability presented in ﬁable 1. The observed .
standard deviafions in this table relate to the proportions of Al and Bl
responses in Elocks of 60 trials, comparable theoretical quantities will be
designated U(Al) and G(Bl) respectively.

Unfortunstely direct analytical computation of U(Al) and U(Bl) seems
impossible. Consequently it was necessary to resort to "Monte Caflo methods"
(2). ‘The basic idea of the approach is to construct a system which follows
the rules specified by the theory and then make observations on the behavior

of the system. By taking a large number of such observations one obtains

precise estimstes of theoretical quantities. In our case, what might be

considered a hypbthetical orééﬁism was built by programming an I.B.M. type
650 digital computor so that its sequence of commsnds corresponded to the
operations specified by the linear model.

Employing this procedure, estimates of U(Al) and G(Bl) were obtained
for various'values of 8, and 6, Results from other experiments (2, 9,
i;, ;2) suggested that © values for the present study would undoubtedly be

bounded between - .C1 and .50. Hence combinations of .01, .10, and .30

were used in the computation; a finer gradation of values would have been
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'desirébietﬁﬁf'fhé_cosﬁ of eomputbr time made this.prchibitive. The results
of the Monte Carlo runs are présented in Table 3.

A comparisén of Tables 1 and -3 indiéates that, for all cases, the cbeerved
variability ‘iﬁ_ 'g.i‘eater than predicted by the model. Even the most favorable
compariSong'ﬁeﬁﬁeen observed and predicted values prove to be significantly
 aifferent at“th_é'_. .05 level when & XF-test of variances is employed. The
finding that the liﬁear model tends to underéstimate observed varisbility is
- not surprising in view of similar results from other éxperiments employing

linear operator models to account for individual learning data.

Y
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Teble 3. Monte Carlo Estimates of G(Al) and. U(Bl)

for Various Vaiues of 8 and ©

A B’
Mixed Pure Sure.

8 |8 :

o(a) | o(B)) o(4,) |a(B)) o(a,)  |o(B))
,bl .01 .030 .031 .033 024 024 .021
01 | .10 .021 .O4e .03k .051 .021 Ok
.01 | .50 .027 .061 026 .053 .030 NolrS
A0 | .01 .09 .031 .058 .022 051 .021
.10 | .10 .050 .052 059 .036 .050 .035
.10 | .50 060 337 .060 .043 .065 .-@B
.50 .01 ,655 .0k 076 .018 .071 021
.50 | .10 | .062 .037 .06k .051 049 045
50 [ .50 4066. 045 .07 LOk6 074 .036
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Summary

The study deals with an analysis of a zero-sum, two-person game situation -
in terms of statistiéal learning theory and game fheory.

Ss were run in pairs for 200 trials. A single play of the game is treated
as a trial. Oﬁ a trial each player makes a choice between one of two alterna-
tive responsés; after the players have made their response, the outcome of the
trial is announced. The responses available to player A are designated Al
and AE; gimilarly the responses available to player B are Bl and BE' It

player A selects Al and player B selects Bl’ then there is a probability

a  that pleyer A isg "correct” and player B is "incorrect” and a proba-
1

1

outcome of the other three.response pairs is identically specified in terms of

bility 1l-a, that player B is "correct"” and player A is "incorrect". The
. o ¥

g, a
ok

3

Three groups were run, each employing a different set of ai values. The

, and ah. Ss were instructed to maximize the number of correct responses.

selection of these values was determined by game-theoretic considerations; that
is, a group had available either a sure-thing strategy, a pure minimax strategy

or a mixed minimax strategy.

Analysis of the data was in terms of two different but related stochastic
models for learning and game theory. Specifically the following detailed com-
parisons of data and theory were made: (a) mean asymptotic response proba-
bilities, (b) one and two stage transition probabilities, and (c) variances

5

associated with asymptotic response probabilities.
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Footnotes

This research was supported by the Behavioral Sciences Division of the
Ford Foundation and by the Group Psychclogy Brauch of the 0ffice of
Naval Research. The authors are indebted to W. K. Estes for several

stimnlating discugsions of the ideas on which this experiment is basged.

To be explicit, for any k

and similarly, for E and ;.
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