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ABSTRACT: Compared to ground-state electronic structure
optimizations, accurate simulations of molecular real-time electron
dynamics are usually much more difficult to perform. To simulate
electron dynamics, the time-dependent density matrix renormaliza-
tion group (TDDMRG) has been shown to offer an attractive
compromise between accuracy and cost. However, many simulation
parameters significantly affect the quality and efficiency of a
TDDMRG simulation. So far, it is unclear whether common
wisdom from ground-state DMRG carries over to the TDDMRG,
and a guideline on how to choose these parameters is missing.
Here, in order to establish such a guideline, we investigate the
convergence behavior of the main TDDMRG simulation
parameters, such as time integrator, the choice of orbitals, and
the choice of matrix-product-state representation for complex-valued nonsinglet states. In addition, we propose a method to select
orbitals that are tailored to optimize the dynamics. Lastly, we showcase the TDDMRG by applying it to charge migration ionization
dynamics in furfural, where we reveal a rapid conversion from an ionized state with a σ character to one with a π character within less
than a femtosecond.

1. INTRODUCTION
The study of electron dynamics in molecules has become an
active research field for the past three decades.1−7 This trend
has been driven by the development of intense ultrashort
pulsed laser systems with wavelengths ranging from as short as
those in the X-ray regime up to the infrared.8−10 Among
others, electron dynamics enables the control of chemical
reactions or even real-time control of the properties of
matter11−14 and a deeper understanding of biomole-
cules.3,5,15−17 Alongside the fast progress of experimental
methods for ultrafast electron dynamics, accurate theoretical
methods that help to interpret experimental observations
would be much desirable. In fact, to tackle ultrafast real-time
molecular electron dynamics, progress has been made to
extend and apply concepts from traditional quantum
chemistry. This results in a number of time-dependent
extensions of several quantum mechanical methods such as
density functional theory (DFT),18−23 algebraic diagrammatic
construction (ADC),24−26 (multireference) configuration
interaction (CI),27−37 multiconfiguration self-consistent field
(MCSCF)38−42 (also known as multiconfiguration time-
dependent Hartree-Fock, MCTDHF43−51) coupled clus-
ter,52−55 density matrix (DM) embedding theory,56 and the
density matrix renormalization group (DMRG),57−66 to name
a few.

The prevailing challenge common to many of these methods
is the well-known exponential growth of the computational

load as the system size increases. Among these methods, the
Kohn-Sham real-t ime time-dependent DFT (RT-
TDDFT)20,22,23 can be considered to be the most attractive
in terms of computational speed, owing to its underlying
assumption in the form of a single electronic configuration.
Numerous works employed RT-TDDFT to study the ultrafast
electronic motion in molecules that would have been too
prohibitive for wave function-based methods. RT-TDDFT
studies have been able to uncover interesting observa-
tions.6,67−75 The main drawbacks of RT-TDDFT, however,
are its approximate nature and the difficulty of systematically
improving it. This makes it difficult to predict the accuracy of
RT-TDDFT results, in particular, when the dynamics drives
the system far from the ground state.7,76−80

In contrast to RT-TDDFT, the accuracy of wave function-
based methods is largely predictable in the physical regime
they are based on (single-reference vs multireference
scenarios) and often they are systematically improvable. The
price to pay, however, is the high computational cost, making
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their applicability, limited to molecules consisting of only a few
atoms or having only a few tens of orbitals. Some examples of
systems that have been studied using time-dependent wave
function-based methods include uracil (58 electrons and 272
orbitals) using single-reference time-dependent ADC(3),17

explicit charge exchange and ionization dynamics of BC2+ with
9 electrons in 90 determinants and resonant high-harmonic
generation in Mo using a CAS(14e, 10o) and MCTDHF/time-
dependent complete active space self-consistent field
(CASSCF),50,81 and decacene using a CAS(12e,12o) and
time-dependent complete active space configuration inter-
action (TD-CASCI).82

Time-dependent extensions of the DMRG83−91

(TDDMRGa)57−66 offer an attractive compromise�they are
based on first-principles and allow for increasing the number of
orbitals up to a region that would be off-limit for many
multireference wave function-based methods. A few studies
that demonstrate the capabilities of the DMRG to simulate
molecular electron dynamics have been published; among
others, these include ionization dynamics, linear response
properties,92 and charge migration.64,65 These works included
up to 36 orbitals.

Due to its efficiency, in particular, for multireference
scenarios common in nonequilibrium electron dynamics, we
believe that the TDDMRG will gain more attention and
interest as a method for studying ultrafast electron dynamics in
the near future. However, while ground-state DMRG for
quantum chemistry by now is established and can (almost) be
used in a black-box way,88,90,93,94 time-dependent versions of
the DMRG are more complicated. Notably, even the way to
solve the time-dependent Schrödinger equation using DMRG-
like procedures is done differently in different works.57,61,63−65

Next to the many variants of the TDDMRG, it is unclear how
to best choose simulation parameters and whether concepts
that work well for the ground-state DMRG also apply to the
TDDMRG. As standard DMRG approaches are based on the
complete active space (CAS) concept, selecting the appro-
priate set of orbitals to simulate dynamics is another major
issue that so far has not been fully addressed.

Here, we make an attempt toward a better understanding of
many of the required ingredients of time-dependent DMRG
simulations for molecular electron dynamics. Our goal is 2-
fold: (1) benchmarking and understanding TDDMRG
simulation parameters and (2) extending procedures from
ground-state DMRG and CAS-based methods for selecting the
most suitable orbitals for the active space to dynamics.

Since the interplay of all of the algorithms and choices that
make up an accurate and efficient DMRG simulation is very
complex, this work clearly needs to be limited. In particular, we
limit ourselves to only two related TDDMRG variants, namely,
the time step targeting (TST) method and a projector splitting
approximation of the time-dependent variational principle
(TDVP).

Furthermore, we have limited the scope of this paper by only
studying the dynamics of one particular physical effects,
namely, charge migration, which plays a key role in the
photofragmentation of peptides95−101 and has the potential to
enable the control of chemical reactions.26,102−104 Charge
migration is initiated through ionization, where a positively
charged region, called hole, migrates across the molecule.
Notably, this effect happens on an ultrafast scale of attoseconds
to a few femtoseconds3,4,105 and is mainly driven by
correlation.1,2,106,107 Thus, its simulation may serve as a

measure of how accurate a method is in describing electronic
correlation. Several existing time-dependent methods have
been used to simulate ultrafast charge migration; these include
ADC,2,17,24,26,106,107 RT-TDDFT,70,71,73 time-dependent CI
methods,34,108−110 and TDDMRG.64,65

The outline of the remainder of this paper is as follows:
Section 2 gives a brief overview of DMRG ingredients. Section
3 benchmarks various aspects of the TDDMRG, and Section 4
introduces and benchmarks two approaches on how to choose
orbitals that are adapted to the actual dynamics of interest. In
Section 5, we apply our findings through an application of
charge migration in furfural. We conclude in Section 6.

2. THEORY
Here, we give a concise overview of some necessary ingredients
of TDDMRG simulations. For more details, we refer to the
references cited in the following sections. In Section 2.1, we
briefly discuss time-dependent multiconfiguration-based meth-
ods, in Section 2.2, we review matrix product states, and in
Section 2.3, we review the DMRG for computing ground
states. We discuss two ways of propagating a matrix product
state (MPS) in Sections 2.4 and 2.5, respectively. This is
followed by an overview of how to deal with symmetries in an
MPS in Section 2.6 and two ways to describe a complex-valued
state by an MPS in Section 2.7. Lastly, we discuss two ways to
make DMRG simulations more efficient, namely, the orbital
ordering in Section 2.8 and general orbital rotations in Section
2.9.
2.1. Time-Dependent Multiconfiguration Methods. In

general, time-dependent multiconfiguration methods are based
on a linear expansion of the time-dependent state |Ψ(t)⟩ in a
basis of configurations |Φi⟩ as111

| = |t C t C( ) ( ) ,
i

i i i
(1)

Multiconfigurational methods differ in the choice of the
configurations being used. For example, in the TD-CASCI
method, all possible configurations within an active orbital
space are included and do not vary with time.29,36,82 As the
exponential scaling of the number of possible configurations
with respect to the number of active orbitals limits CASCI to
∼20 orbitals without additional approximations, TD-CASCI
mostly captures static electronic correlation. To capture
dynamic correlation, in time-dependent multireference config-
uration interaction (TD-MRCI), configurations with electronic
excitations out of the active space are added to the expansion.
To increase the flexibility of eq 1 and hence to decrease the
number of required configurations, these configurations can be
made time-dependent by solving Dirac-Frenkel’s time-depend-
ent variational principle112 for both the orbitals and the
coefficients Ci(t).

47,49,51,113 For TD-CASCI, this leads to the
MCTDHF method,43−51 and for TD-MRCI, this leads to the
time-dependent restricted active space self-consistent field
(TD-RASSCF) method,39,40,50 among others. While
MCTDHF and related methods require much smaller orbital
spaces, compared to TD-CASCI, the implementation is more
complicated and the method can be numerically challeng-
ing.114,115

2.2. Matrix Product States. MPSs approximate the
CASCI coefficients Ci in eq 1 as products of matrices Mσi
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where K is the number of spatial orbitals, each of which resides
on an MPS site (hence, there are K sites). The physical basis
states {|σi⟩} consist of all possible spin occupancies of the ith
spatial orbital |ϕi⟩, that is, |σi⟩ ∈ {|vac⟩, |ϕi

α⟩, |ϕi
β⟩, |ϕi

αβ⟩}. For
simplicity, here we have assumed no spin adaptation (cf.
Section 2.6). The matrices Mσi are of size Di−1 × Di, save for
the first and last ones, which are row and column vectors,
respectively. The bond dimension is then defined as D = maxi
Di. The larger D is, the more accurate the MPS approximation
will be. Since σi has four possible values, Mσi can be viewed as a
slice of a three-dimensional tensor M[i] of size 4 × Di−1 × Di.
Depending on the context, in the following, we will use the
same symbol M[i] also to denote a vectorized tensor.

The matrices appearing in eq 2 are not unique since one can
insert an identity matrix I = X−1X in between any pair of
matrices without changing |Ψ⟩. This gauge freedom can be
exploited to impose an orthonormality condition on Mσi. If it
satisfies ∑σ di

(Mσi)†Mσi = I, Mσi → Lσi and is called left-
orthogonalized. If it satisfies ∑σ di

Mσi(Mσi)† = I, Mσi → Rσi and
is called right-orthogonalized. Using I − 1 left-orthogonalized
sites, matrices MσI at site I, and K − I − 1 right-orthogonalized
sites leads to
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Then, the norm of the vectorized tensor M[I] is identical to
that of the whole MPS. For the form in eq 3, the site i = I is
called the orthogonality center. Introducing the so-called
renormalized states |lαdI

⟩ and |rαdI
⟩ of a subsystem formed by the

first I sites and the last K − I − 1 sites, respectively, simplifies
eq 3 to

| = |l rM I
I I I

I I
I

I I

1

1 1
(4)

In any given MPS, the orthogonality center can be shifted to
the previous or next site by performing a QR decomposition
on either (M[I])T or M[I], e.g.

=[ ] [ ] [ ]M L CI I I (5)

where the matrix C[I] is then absorbed in R[I+1] to obtain the
new orthogonality center M[I+1] = C[I]R[I+1].
2.3. Density Matrix Renormalization Group. To solve

the time-independent Schrödinger equation, in the DMRG
algorithm, the MPS is variationally optimized by freezing all
but the orthogonality center. This then leads to an eigenvalue
problem for an effective Hamiltonian matrix H[I] that is
represented in the renormalized and physical basis shown in eq
4

=[ ] [ ] [ ]EH M MI I I (6)

The ground-state vector of H[I] thus leads to an improved
tensor M[I]. Based on this, the orthogonalization center is
successively changed from the first to the last site, and at each
site I, the effective Hamiltonian is diagonalized and M[I] is
updated. This procedure is called sweep. Repeating this for
multiple sweeps leads to a fully optimized ground-state MPS.
Note that typically, the orbitals are not optimized, so the

standard DMRG only optimizes the MPS that approximates
the CASCI coefficients. DMRG optimization together with
orbital optimization, as done in CASSCF, is possible as an
extension and called here DMRGSCF.116,117

The sweep procedure outlined in the previous paragraph
amounts to the so-called one-site DMRG, which is known to
be prone to getting stuck at local minima. To overcome this
limitation, in two-site DMRG, a “two-site tensor” M[I,I+1] =
M[I]R[I+1] is constructed and the effective Hamiltonian of the
corresponding renormalized basis is solved as in the one-site
DMRG. After M[I,I+1] is replaced with the ground state of the
effective Hamiltonian, to again obtain two sites M[I] and R[I+1],
a singular value decomposition or similar type of decom-
position of M[I,I+1] is performed. The remaining steps are
analogous to the one-site version.
2.4. Time-Dependent Variational Principle. A DMRG

type of approximation of the time-dependent variational
principle (TDVP) leads to an algorithm that is very similar
to the DMRG.60,61 Note that here we will not consider orbital
optimization, i.e., we approximate TD-CASCI using the
DMRG and use time-independent orbitals. In the TDVP
variant of the TDDMRG, the diagonalization of the effective
Hamiltonian H[I] in DMRG is replaced by a propagation by a
time step Δt/2

+ = [ ][ ] [ ] [ ]t t i t tM H M( /2) exp /(2 ) ( )I I I (7)

To move the orthogonalization center, the QR decomposition
from eq 5 is performed, giving M[I](t + Δt/2) = L[I](t + Δt/2)
C[I](t + Δt/2). Before C[I](t + Δt/2) can be absorbed into
R[I+1](t) to obtain the new orthogonalization center M[I](t),
the two propagation times of the tensors need to be aligned.
This is achieved by backward-propagating C[I](t + Δt/2) to
time t using eq 7 but with a negative time step. This backward
propagation is the only part of the TDVP version of the
TDDMRG that does not have a counterpart in the DMRG.
Note that the renormalized basis used for backward-
propagating C[I](t + Δt/2) is different from that used for
forward-propagating M[I](t). This is one of the error sources in
TDVP, which can be minimized by decreasing the time step.
Performing this sequence of forward and backward prop-
agations for sites 1 to K and then backward for sites K to 1
propagates the total MPS from time t to t + Δt with an error of

t( )3 . As in the DMRG, a two-site version can be introduced
as well. Since this algorithm is based on the TDVP, it is often
dubbed TDVP-DMRG. It is also known as the projector
splitting integrator in the multilayer MCTDH community,
where this algorithm is used to propagate tree tensor network
states, an extension of MPSs.59,60,66,118−120 For more details,
we refer to refs 60,61,63,66. As with many other propagation
methods, eigenstates can be obtained by propagating in
imaginary time. Indeed, in the limit of Δt → − i∞, the DMRG
algorithm for eigenstates is recovered from the TDVP
algorithm.61

Since the time step is a convergence parameter, how can we
estimate a reasonable time step? An estimate based on the
time-energy uncertainty relation frequently provides a
reasonable guess121

=t
E E EE

max min (8)
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where Emin (Emax) are the ground-state (highest) energy of the
Hamiltonian. Using the DMRG, Emax can be computed by
solving for the ground state of −Ĥ.
2.5. Time Step Targeting. In time step targeting (TST),57

the central idea for solving the time-dependent Schrödinger
equation is to optimize a renormalized basis at each time step
Δt that describes the evolution from |Ψ(t)⟩ to |Ψ(t + Δt)⟩. In
practice, this is done by a sweep algorithm and a fourth-order
Runge-Kutta propagator, albeit other propagators are possible
as well.63,122 In the sweep algorithm, at each site, four Runge-
Kutta vectors are generated through four matrix−vector
products with the effective Hamiltonian. From these four
vectors, a new renormalized basis is created in a state-average
fashion. This can be repeated for a predefined number of
sweeps. Since the state-averaged (SA) intermediate state
requires a larger bond dimension than |Ψ(t)⟩ alone, sweeping
optimizes the state-averaged renormalized basis. In a final
sweep, the wave function at time t + Δt is updated using the
renormalized basis created through the previous sweeps. Note
that TST is nonunitary even in the one-site variant. While
TDVP can be regarded as more rigorous than TST,63 TST is
still used in daily research.123−125

Next to TST and TDVP, many other MPS propagation
methods exist.63,126 While most of them such as time-evolving
block decimation are more targeted to systems with short-
range interactions and not fully suitable for molecules, some
other methods can also be used for molecular electron
dynamics. In particular, the global Lanczos method has been
used previously for charge migration.64 Therein, the short
iterative Lanczos (SIL) propagator127,128 is used for the
calculation of the action of a matrix exponential on a vector,
which here is given by the MPS. The necessary applications of
the Hamiltonian onto the global MPS as well as MPS linear
combinations increase the bond dimension at every step of the
SIL algorithm. Thus, additional MPS compressions are
required and lead to nonunitary dynamics.
2.6. Exploiting Symmetries. For the field-free dynamics

considered here, electron number, spin, and molecular point
group symmetries are conserved. To impose Abelian symmetry
such as electron number, z-component of the total spin, and
point group symmetry, one enforces symmetry conditions on
the coefficient tensor M[I] in eq 4 such that the quantum
numbers of the combined left renormalized basis {|lαdi

⟩} and
physical basis {|σi⟩} match those of the right renormalized
basis {|rαdi

⟩}.129 Imposing this condition across the entire MPS
leads to a block-sparse structure of the MPS tensors M[i].

The imposition of the non-Abelian total spin symmetry is
more involved than Abelian symmetries, as more than one pair
of total spins of the renormalized bases can yield the same
global spin. The global spin symmetry can be imposed by
decomposing each site tensor into two tensors, the first one
containing the Clebsch−Gordan coefficients and the second
one containing the rotation coefficients that form the
renormalized states for that site.87,130 Alternatively, one can
also use projectors to implement Abelian and non-Abelian
symmetries, resulting in a simpler albeit less efficient
implementation.131,132

Spin-adapted MPSs for nonsinglet states are more involved
than singlet states, as many more spin couplings are possible.
To avoid this, singlet embedding (SE) can be used.130,133

Therein, one adds noninteracting auxiliary orbitals at the end
of the MPS. These orbitals couple to the physical orbitals such

that the total spin is zero. Since they do not interact with the
Hamiltonian, the smaller target MPS is well-represented.
2.7. Representation of Complex-Valued Matrix Prod-

uct States. For solving the time-dependent Schrödinger
equation, complex-valued MPSs are needed, and to represent
them, there are three main ways. In the first way, dubbed here
full-complex MPS, all MPS tensors M[i] are complex-valued.
This is the most straightforward way but increases memory
requirements by up to a factor of 4.

In the second way,62 | t( ( ) ) and | t( ( ) ) are
interpreted as two different states and an SA representation
is used to describe both real and imaginary parts by one single
MPS, where only the tensor belonging to the orthogonalization
center is complex-valued. Consequently, the movement of the
orthogonality center of an MPS in a complex SA format has to
be adapted, as a renormalized basis needs to be constructed
that describes both the real and imaginary parts of the previous
orthogonalization center, before moving to the new center. In
practice, this can be done by either diagonalizing a state-
averaged density matrix constructed from the real-valued
density matrices of [ ]M( )I and [ ]M( )I ,62 or through singular
value decomposition.134 This modified orthogonalization is
only exact when the bond dimension is allowed to increase. In
practice, however, the bond dimension is truncated, which
renders the orthogonalization of an SA MPS inaccurate.
Hence, while the SA complex format leads to greatly reduced
computational and memory requirements, it also introduces an
additional truncation error and leads to nonunitary dynamics
even for the one-site TDVP. Nevertheless, this format is used
in practice,123−125 and it is particularly useful for codes that
only support real-valued algebra.

The third way to deal with complex-valued MPSs is to
describe the real and the imaginary parts of the state separately
by two distinct MPSs. This way, however, imposes a severe
restriction on the used propagation method and thus is rarely
used in practice.
2.8. Orbital Ordering. Due to the linear nature of the

MPS, a small perturbation at an orbital/the corresponding site
at one end of the MPS needs to “propagate” through the entire
MPS before the orbital/site at the other end of the MPS can
“respond”. Thus, the MPS is a variant under orbital
permutations. To achieve optimal performance, the orbitals
should be arranged such that those that correlate largely with
each other are placed close together. Several orbital ordering
methods exist, such as the symmetric reverse Cuthill-McKee
ordering,135 approximate best prefactor ordering using
simulated annealing,136 Fiedler ordering,137 and using a genetic
algorithm to find a close candidate to the global mini-
mum.88,138 They are based on minimizing auxiliary quantities
such as the bandwidth of the exchange integral matrix.
Localized orbitals (see Section 2.9) of molecules with simple
geometries such as the linear ones can also be ordered based
on the orbitals’ centers.
2.9. Orbital Shape. The DMRG is variant under unitary

rotations of the orbitals as long as the bond dimension is not
converged. Hence, similar to the ordering of the orbitals,
optimizing the orbital shape is important to reduce the
entanglement between the orbitals.88,116,139 For ground-state
DMRG simulations of small molecules, natural orbitals are
often used, as they decrease the bandwidth of the Hamiltonian
and thus allow for “energy localization”.88,94,140 For larger
molecules, however, compared to natural orbitals, split
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localization in coordinate space (localizing occupied and
virtual spaces separately) significantly reduces the overlap
between orbitals and thus also the entanglement and the
required bond dimension.88−91,141 Compared to a global
orbital localization of all orbitals, split localization ensures that
low-energy configurations are still well-described by a small-D
MPS. Based on a good initial guess, one can also variationally
optimize the orbitals during the DMRG optimization.116,117,139

3. BENCHMARKING TDDMRG
In the following, we study the convergence behavior of
TDDMRG with respect to various parameters to establish a
robust simulation framework. We start with a discussion of the
system setup in Section 3.1 and of the used observables to
measure convergence in Section 3.2. Then, in Section 3.3, we
compare the convergence behavior of the TDVP and TST
methods. We benchmark complex MPS representations in
Section 3.4 and singlet embedding in Section 3.5. We finish the
benchmark with a comparison of natural orbitals and localized
orbitals in Section 3.6.

All our simulations are performed using custom scripts that
utilize the DMRG program package and library BLOCK2,124,142

together with PYSCF for the remaining quantum chemical
computations.143−145 We compute molecular integrals using
LIBCINT.146,147

3.1. Setup. We choose chloroacetylene and furan as test
beds. Chloroacetylene displays charge migration similar to the
well-studied iodoacetylene4 and is linear and small enough to
allow for the inclusion of all available noncore orbitals of a
double-ζ basis in converged TDDMRG simulations without
too large values for the bond dimension. Compared to
chloroacetylene, furan is a (slightly) larger prototypical
heterocyclic molecule with more complicated charge migra-
tion.109 For furan, we use the 6-31G basis set,148,149 resulting
in a frozen-core cation full configuration interaction (FCI)
space of 48 and 25 electrons, while for chloroacetylene, we use
the def2-SV(P) basis set,150 resulting in a frozen-core cation
FCI space of 41 orbitals and 15 electrons. Since our
simulations do not target core ionization, we use the frozen-
core approximation, thus freezing seven (five) orbitals in
chloroacetylene (furan). The used geometries are given in
Section S1 of the Supporting Information (SI). Note that here,
we limit the convergence studies to a particular Gaussian basis
size, as our objective is the convergence of TDDMRG and not
that of the basis set.

To prepare the initial state for the charge migration
dynamics, we emulate the state produced by a sudden
ionization, where we apply a linear combination of annihilation
operators aî on the ground state of the neutral molecule |ΨGS⟩
as

| = = |t c a( 0)
i

i i GS
(9)

where |Ψ(t = 0)⟩ is the initial cationic state for the TDDMRG
simulation. The linear combination of annihilation operators
allows us to describe the ionization process out of a specifically
constructed orbital |ψ⟩. The coefficients ci are then calculated
as the overlap with the molecular orbitals {|ϕi⟩}i that are used
for representing the MPS

= |ci i (10)

followed by normalization if |ψ⟩ is not fully spanned by {|ϕi⟩}i.
This way, not only can we control the shape of the ionized
orbitals but also use orbitals that are optimal for the MPS
representation (see Section 3.6). The sudden ionization
approximation can be improved by using specialized methods
to calculate ionization rates in many-electron systems,151,152

which, however, is not necessary for the purpose of our
benchmark.

For our chloroacetylene simulations, we choose |ψ⟩ to be an
in-phase 50/50 superposition of the Hartree-Fock highest
occupied molecular orbital (HOMO) and HOMO − 1. Each
of these orbitals is a π orbital belonging to a b1 irrep of the C2v
point group. The resulting orbital |ψ⟩ is a p-like atomic orbital
localized at the Cl atom. For our furan simulations, |ψ⟩ is an
intrinsic bond orbital (IBO)153 with a p-like symmetry
localized at the O atom. All of the initial states described
above transform according to a particular irrep of the point
group of the molecule, and, since the dynamics is field-free, the
time evolution conserves the irrep of the initial state. Hence,
we make use of the point group symmetry. For chloroacety-
lene, we use the C2v point group, and for furan, we use Cs.

Our simulations assume frozen nuclei. Since, in reality, after
a few femtoseconds, the nuclear motion will start to influence
the dynamics, we run all simulations presented here for 80 au
≈2 fs only. As will be shown in Section 3.2, this time window
already captures important dynamics of the evolving electronic
density.

The simulations for chloroacetylene use a CAS with 30
orbitals that are based on the hole-DM adaption procedure
described in Section 4 and benchmarked in Section 4.2. For
results other than those shown in Section 3.6, all simulations
are based on the split-localized orbitals described in Section
3.6. The simulations for furan in Section 3.6 employ a CAS
with 30 orbitals obtained from the first 30 noncore second-
order Møller-Plesset theory (MP2) natural orbitals. Through-
out, the initial state has the same bond dimension as that used
for the dynamics, except for D = 1200 in chloroacetylene,
where the initial state has a bond dimension of D = 1000, as its
energy is already converged to 0.07 mEH.

For all simulations shown below, we use the TDVP method
with a time step of Δt = 0.968 as, and singlet embedding,
unless stated otherwise. For the TDVP time propagation in eq
7, we use the SIL method,127,128 as implemented in BLOCK2.
The implementation is based on EXPOKIT.154 This propagator is
based on an adaptive time step with a relative convergence
tolerance set to 5 × 10−6. A convergence study of this tolerance
parameter is shown in Figure S3 in the SI. All simulations use
the two-site TDDMRG variant. Since two-site simulations are
not norm-conserving, we calculate the expectation value of any
operator Ô as ⟨Ψ|Ô|Ψ⟩/⟨Ψ|Ψ⟩.
3.2. Convergence Measures. As numerical methods

converge differently for different observables, as possible
convergence criteria, here we consider three quantities. They
are the hole density, the autocorrelation function, and the
Löwdin partial charge. We will choose the most sensitive one
for most of our comparisons. The hole density h(r, t) is
defined as1

=h t tr r r( , ) ( ) ( , )0 (11)

where ρ0(r) and ρ(r, t) are the one-particle reduced densities
of the ground-state neutral molecule and that of the evolving
cation, respectively. The autocorrelation function is defined as
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= |A t t( ) (0) ( ) (12)

The Löwdin partial charge QA around nucleus A is defined
as155

=Q Z e PA A
i A

ii
(13)

where ZA is the charge of nucleus A and Pii is the diagonal
matrix elements of the spin-summed reduced density matrix
represented by Löwdin-orthogonalized atomic orbitals.156

Examples of these three time-dependent observables�hole
density, autocorrelation function, and Löwdin partial charge�
are shown in Figure 1 for charge migration in chloroacetylene.
The time-dependent hole densities shown as slices in Figure 1a
are very useful for capturing the main features of the charge
migration dynamics and typically converge quickly. The
autocorrelation function shown in Figure 1b tracks the
contribution of the initial state component in the evolving
state and, for this particular dynamics, displays large revivals
and a relatively simple structure. The apparent revival period of
∼1.29 fs is due to the creation of the initial state, which is
dominated by a superposition of the ground and the excited
states of the cation. These eigenstates are ∼3.2 eV apart in
energy, thus resulting in the observed revival period. Due to
electronic correlation and non-Koopman relaxation effects, the
actual autocorrelation function is modulated and more
structured. Compared to hole densities and the autocorrelation
function, however, time-dependent partial charges shown in
Figure 1c contain many frequency components and reveal
much more detailed information about the dynamics.
Consequently, compared to the other two observables, it is
the most sensitive quantity with respect to the parameters of
the TDDMRG simulations. We therefore use partial charges in

most of the studies below to judge when convergence is
reached by visually inspecting the partial charge plots.

For the chloroacetylene benchmark, we use the partial
charge of the carbon atom neighboring the chlorine atom as a
measure of convergence, whereas for furan, we use the partial
charge at one of the carbon atoms on the opposite side of the
oxygen atom.
3.3. Time Propagation Methods. In the following, we

will benchmark the TST and TDVP time propagation
algorithms. Using a converged time step, we first inspect the
convergence with respect to the bond dimension in Section
3.3.1. Then, using a converged bond dimension, we inspect the
convergence with respect to the time step in Section 3.3.2.

3.3.1. Convergence of TST and TDVP with Respect to
Bond Dimension. Figure 2 shows the bond dimension
convergence behavior in chloroacetylene for the TDVP and
the TST methods. Here, both TDVP and TST converge
around D ∼ 1000. However, TDVP converges smoother and
leads to smaller errors for less-converged bond dimensions
than TST. For instance, the D = 500 TDVP curve in Figure 2a
is far closer to the converged curve than the D = 500 TST
curve in Figure 2b. Since, for typical simulations, the required
bond dimension increases with time, both for TDVP and TST,
the deviations to the converged result increase with time. As
the evolution progresses, simulations with smaller bond
dimensions deviate before those with larger bond dimensions.
For example, using TST, the D = 200 curve starts to deviate at
about 0.15 fs, while for D = 500, the deviation occurs at 0.3 fs.
Compared to TDVP, for a given bond dimension, the point of
deviation in the TST dynamics appears earlier. Remarkably,
the D = 200 TST curve displays a large error and qualitatively
different behavior for times larger than ∼0.5 fs, whereas the D
= 200 TDVP curve is still qualitatively correct throughout the
dynamics, save for some dephasing. A bond dimension

Figure 1. Example of TDDMRG simulations of chloroacetylene. (a) Slices of the hole density h(r, t) sampled at nine time points. The slices are in-
plane with the molecule and are parallel to the lobes of the initial hole, as can be confirmed from the shape of the region of h(r, t) in the leftmost
panel. (b) The absolute value of the autocorrelation function as a function of time. (c) QC3(t), the partial charge at C3 [the carbon atom adjacent
to Cl; see the molecule in panel (a)] as a function of time. The vertical lines in panels (b) and (c) mark the times at which the hole densities in
panel (a) are evaluated. For this simulation, the bond dimension is 1000.
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convergence scan for another molecule, acetylene, can be
found in Figure S1 in the SI, where the better convergence of
TDVP, compared to TST, is retained.

The slower bond dimension convergence of TST, compared
to TDVP, might be due to the state-average-like procedure of
the Runge-Kutta vectors, next to other errors not shared with
TDVP such as the Runge-Kutta approximation. The number of
subsweeps in each time step in our TST simulations is two,
except for the first time step in which it is four to allow for a
better adjustment of the renormalized states. Results obtained
using more subsweeps are shown in Figure S4a of the SI,
which, however, do not show improvement in the TST bond
dimension convergence. A different version of TST, where the
number of states to average over is decreased by using
independent renormalized bases for |Ψ(t)⟩ and |Ψ(t + Δt)⟩62
could decrease the error for small bond dimensions, but that
version also requires twice as many resources as the normal
TST version.

3.3.2. Behavior of TDVP and TST with Respect to Time
Step. Next, we study the convergence of TDVP and TST with
respect to the time step. Figure 3 displays the time step
convergence in chloroacetylene simulated using TDVP (panel
a) and TST (panel b), respectively. The time step convergence
of TDVP is smooth, and convergence is attained at Δt = 0.968
as. This is close to the time step estimate from eq 8, which
gives ΔtE = 0.656 as.

The time step convergence in TST, however, is not
monotonic. At Δt = 1.45 as, the partial charge curve has a
good agreement with the converged TDVP curve. However, as
the time step is reduced, the TST curves diverge (see curves
for Δt = 1.09, 0.968, and 0.847 as in Figure 3b) before they
again approach convergence at Δt = 0.484 as. Note that a
smaller time step decreases the Runge-Kutta propagation error
in TST but also increases the number of required
compressions for the full simulation, resulting in a complex

error behavior.62,63 Increasing the number of subsweeps per
time step (two are used here) often reduces the compression
error, but doing so does not improve convergence in this case
(see Figure S4b in the SI). Hence, in this case, TDVP is much
more stable against the total time discretization error than
TST. Like the bond dimension convergence, TDVP curves
with larger time steps tend to start to deviate at earlier
propagation times than those with smaller time steps, but the
convergence is typically smooth. As a side note, for time steps
larger than those shown here, we observed jaggedness in the
observables as a function of time when using TDVP.

We note that for simulations of other molecules (e.g.,
acetylene shown in Figure S2 in the SI), we observed smooth
convergence also for TST, albeit TDVP typically converged
faster than TST. Reflecting on the better overall performance
of TDVP compared to that of TST as shown here and in
Section 3.3.1, we choose to use TDVP for the remainder of this
paper.
3.4. Complex MPS Type. As explained in Section 2.7, a

complex-valued MPS can be approximated by a state-averaged
version where only the orthogonality center is complex-valued
or as a proper complex MPS with all tensors being complex-
valued. For these two types of complex representation, Figure
4a shows the time-dependent partial charge at C3 of
chloroacetylene for several bond dimensions. The full-complex
MPS (solid curves) converges with bond dimension noticeably
faster than the SA complex MPS (dot-dashed curves). For
example, the D = 200 full-complex MPS curve is much closer
to the reference (D = 1200) than the SA complex MPS, which
displays significant deviations.

In agreement with the convergence of the partial charge,
observing the norm as a function of time in Figure 4b, it
becomes evident that the SA complex type (solid curves) leads

Figure 2. Convergence of partial charge with respect to bond
dimension for two-time propagation methods in chloroacetylene. (a)
QC3(t) obtained using TDVP and (b) using TST. The time step is
0.484 as, and the MPS is of full-complex type.

Figure 3. Convergence of partial charge with respect to time step for
two-time propagation methods in chloroacetylene. (a) QC3(t)
obtained using TDVP and (b) using TST. To aid in the comparison
between TST and TDVP, the curve of Δt = 0.484 as from panel (a) is
also shown in panel (b). The bond dimension is 1000 and the MPS is
of full-complex type.
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to a much faster decay of the norm, compared to the full-
complex MPS (dot-dashed curves) by about an order of
magnitude. Even for D = 200, the SA complex MPS has a norm
of only 0.83 at the end of the propagation, whereas the full-
complex MPS has a norm of 0.98. (The full-complex MPS is
not fully norm-conserving as a two-site TDDMRG is used.)
Thus, for the SA complex MPS type, the eigenvector
truncation of the state-averaged density matrix discussed in
Section 2.7 required for orthogonalizing to the next MPS site
gives a larger error.

While the TDDMRG with full-complex MPS converges
faster with bond dimension, it also has higher computational
and memory demands than TDDMRG with the SA complex
MPS. To address this, Table 1 lists the average computational
times per time step for the two types of complex MPS as well
as total spin representations (singlet and nonsinglet embed-
ding; see Section 3.5). All of these timing data are extracted
from shared-memory-parallelized simulations that used the
same two Intel 28-Core Xeon Gold 6330 2.0 GHz CPUs. For

the same type of total spin representation�e.g., for singlet
embedding, compare the second and fourth columns�the
simulations with the SA complex MPS are roughly a factor of
1.4 faster than those with full-complex MPS. Compared to the
SA complex MPS type, the full-complex MPS type leads to
complex-valued renormalized operators, which increases the
computational cost by up to a factor of 2. The actual value
depends on whether the computation is memory-bandwidth-
limited or not, and on the implementation, as complex matrix
multiplication can be implemented by multiplying three
instead of four real-valued matrices,157 which is exploited in
BLOCK2.

Despite the larger computational effort of the full-complex
MPS compared to that of the SA complex MPS, taking into
account both the bond dimension convergence (Figure 4a)
and the computational cost, overall, we find that the full-
complex MPS offers the best ratio of accuracy over runtime.
For instance, using a full-complex MPS, the dynamics at D =
500 can be considered converged (Figure 4a, red dot-dashed
curve), and the cost per time step for this simulation is 35.2 s
with singlet embedding, whereas using an SA complex MPS,
even D = 1200 is not fully converged and requires 145 s per
time step. Despite the overall better performance of full-
complex MPS over SA complex MPS, for computational
reasons, we also employ the latter type in some of our results
below. Since both representations converge to the exact
dynamics for a given time step in the large bond dimension
limit, the choice of MPS representation should not affect the
comparison of other simulation ingredients such as the used
orbitals. To demonstrate this, some additional comparisons are
shown in the SI in Section S6.
3.5. Singlet Embedding (SE). To study the effect of

singlet embedding, compared to “proper” nonsinglet spin-
adapted MPSs (see Section 2.6), Figure 5 displays a bond

dimension convergence scan for the two ways to construct
open-shell spin-adapted MPSs. Compared to the simulations
using a proper spin type (dot-dashed curves), the ones with
singlet-embedded MPSs (solid curves) converge slightly faster
with respect to bond dimension. This is consistent with
ground-state DMRG.130 In addition, as shown in Table 1,
compared to the proper nonsinglet MPS, TDDMRG
propagation using the MPS with singlet embedding leads to
a much faster runtime. For the converged bond dimension of

Figure 4. Bond dimension convergence in chloroacetylene for two
complex MPS representations. QC3(t) (a) and time-dependent norms
(b) obtained using a complex MPS in state-averaged (solid lines) and
in full-complex (dot-dashed lines) representations.

Table 1. Average Wall Times per TDVP Propagation Time
Step (Δt = 0.968 as) in Seconds for Simulations in
Chloroacetylene for Several Bond Dimensions Using Two
Different Complex-Valued MPS Types (State Averaging, SA,
vs. Full) and Two Ways of Dealing with Nonsinglet Spin
States (Singlet Embedding, SE, or no SE)

SA full

D SE no SE SE no SE

200 10.7 13.5 14.2 12.3
500 26.8 38.8 35.2 50.1
800 60.8 110 86.3 144

1000 101 173 136 234
1200 145 250 198 356

Figure 5. Effect of nonsinglet spin representation in bond dimension
convergence in chloroacetylene. QC3(t) for an SU(2)-adapted MPS is
shown where the total spin is represented using either singlet
embedding (solid lines) or using a proper nonzero spin quantum
number (dot-dashed lines). The MPS is of SA complex type.
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D = 1200, singlet embedding is almost twice as fast as
nonsinglet embedding.
3.6. Orbital Localization: Energy or Coordinate

Space? As discussed in Section 2.9, split localization in
coordinate space typically decreases the required bond
dimension for larger molecules in ground-state DMRG,
whereas natural orbitals (energy localization) work best for
small molecules such as diatomics. Does this also hold for
TDDMRG? To answer this, we first benchmark localization for
chloroacetylene, whose linear structure makes it well-suited for
localization. Here, we compare three different types of orbitals
that are based on the previously used cationic CAS(30o, 15e):
(1) quasi-natural energy-localized orbitals, (2) split-localized
orbitals, and (3) globally localized orbitals. These orbitals are
based on the hole-DM adaptation procedure described later in
Section 4.2. In short, the quasi-natural orbitals in chloroace-
tylene are based on eight natural “base” orbitals obtained from
DMRG optimization of the neutral ground state and 22
additional quasi-natural charge orbitals that are based on an
averaged hole density matrix. The base orbitals (quasi-natural
charge orbitals) also define the occupied (unoccupied) space
used for the split localization. As the molecule has linear
symmetry, we localize the orbitals within each irrep sector of
the C2v point group without jeopardizing orbital locality using
the Pipek−Mezey algorithm.158 The localized orbitals are
ordered by aligning them on the molecular axis, whereas the
quasi-natural energy-localized orbitals are ordered using a
genetic algorithm and the default parameters in BLOCK2.

Figure 6a shows the bond dimension convergence for the
partial charges at C3 when using split-localized orbitals (solid
lines) and quasi-natural orbitals (dot-dashed lines). As
expected from a larger linear molecule,88,91 there is a slight
improvement of the convergence rate with bond dimension

when split-localized orbitals are used. For instance, the D =
1200 nonlocalized curve has a larger error than the D = 1000
split-localized curve. In contrast, ignoring the occupied orbital
space and globally localizing all orbitals simultaneously
significantly decreases the convergence rate and bond
dimensions much larger than 1000 are required for
convergence (cf. Figure 6b). Localizing all orbitals simulta-
neously deteriorates “energy locality”, as low-energy config-
urations are not well-described by globally localized orbitals,
thus the poor performance of those orbitals. This is in
agreement with ground-state DMRG results.88

The different convergence behaviors for energy-localized,
split-localized, and globally localized orbitals are also apparent
in the norm conservation (not shown here). For a given bond
dimension, globally localized orbitals lead to the fastest norm
decay, followed by natural orbitals, and then the split-localized
orbitals.

From the benchmark in chloroacetylene, it seems that the
advantage of using split-localized orbitals to improve bond
dimension convergence in ground-state simulations does carry
over to time-dependent dynamics. This, however, turns out to
be system-dependent, as we will show now in the case of furan.
Here, our CAS is based on the first 30 noncore symmetric
MP2 natural orbitals from the neutral molecule sorted by
natural occupation. Note that these orbitals are not the most
optimal ones to describe the actual dynamics of the system, but
they suffice to describe the effect of orbital localization (cf.
Section 4.2). As for chloroacetylene, split localization is done
within each irrep of the Cs point group. The split localization is
based on 13 occupied and 17 unoccupied orbitals. We order
the orbitals based on the genetic algorithm.

Figure 7 compares the bond dimension convergence for
charge migration in furan using natural orbitals (panel a) and
split-localized orbitals (panel b). While convergence is attained
very quickly in both cases, surprisingly, the dynamics using
natural orbitals (panel a) converges faster with bond
dimension than that using localized orbitals (panel b). Both
orbital types lead to slightly different partial charge curves even
for D = 700. Thus, for this dynamics, energy localization is
more important than spatial localization. This is in contrast to
the ground-state energy convergence of the same system
(shown in Figure 8), where split-localized orbitals clearly
converge faster with respect to bond dimension. We have
found a similar behavior for dynamics in acetylene (see SI
Figure S5), although in this case, localized orbitals also do not
improve ground-state energy convergence (SI Figure S6). Our
results on these three systems (chloroacetylene, acetylene, and
furan) indicate that not all empirical findings from ground-
state DMRG simulations can be directly used for dynamics,
but rather additional benchmarks need to be performed in
order to generate the most optimal setup for TDDMRG
simulations.

For furan, natural orbitals converge faster with bond
dimension and lead to the fastest simulations if the C2v point
group is used. However, if the same point group Cs is used for
both sets of orbitals, from the viewpoint of resource
requirement, using localized orbitals here leads to a substantial
resource reduction. Compared to using natural orbitals with
the Cs point group, using localized orbitals and the same point
group requires almost a factor of 3 less memory and the
runtime is reduced by a factor of 2 for D = 700. This is
important for molecules that are less symmetric than furan,
e.g., furfural in Sections 5 and S5 in the SI. Notably, this is not

Figure 6. Effect of orbital localization in bond dimension convergence
in chloroacetylene. (a) QC3(t) using split-localized (solid lines) vs
quasi-natural orbitals (dot-dashed lines). (b) QC3(t) using split-
localized (solid lines) vs globally localized orbitals (dot-dashed lines).
The MPS is of SA complex type.
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due to integral sparsity, as here the natural orbitals have twice
as many vanishing integrals, because the C2v point group is
retained for natural orbitals, in contrast to the Cs-symmetric
localized orbitals. Instead, the reason for the reduced resources
is that, compared to natural orbitals, the spin- and point-group-
symmetrized MPS with localized orbitals have around twice as
many active blocks of the symmetrized site tensors M[i], and
each of the blocks is significantly smaller than that of the MPS
with natural orbitals. In other words, here localized orbitals
lead to MPS tensors that are more block-sparse, compared to
natural orbitals. This may also explain the different
convergence behaviors with D seen in Figure 7, as a larger
amount of block sparsity means that the sizes of each block
need to be optimized, which is difficult and often leads to the

MPS being “trapped” in a local minimum.88 The nature of the
block sparsity is affected by both the shape and the order of the
orbitals; thus, an in-depth explanation of the different block
sparsities is out of the scope of this work. However, we
speculate that the MPS that is represented by natural orbitals
only needs a few important orbitals to form dominant
configurations through orbital rotations, which results in
fewer important symmetry sectors, whereas the localized
orbitals do require many different orbitals and thus also more
symmetry sectors.

4. ORBITAL SELECTION
Since our simulations are based on TD-CASCI and thus the
orbitals are not optimized variationally at each time, selecting
the most appropriate orbitals for describing the MPS for all
times is crucial. Since there is no orbital optimization, this
problem is even more severe than that of finding initial guesses
for CASSCF or DMRGSCF, where by now many orbital
selection procedures exist (see, e.g., refs 140,159−167).
Notably, the active space required for intricate dynamics
simulations is typically larger than those that are adequate for
ground states.32,33,48,50 So far, not many procedures to select
the orbital space for time-dependent simulations have been
considered (see refs 29,33,82,168 for a few exceptions for some
special cases).
4.1. Dynamics-Adapted Orbitals. Here, we explore two

approaches to select orbitals. Both of them are based on
natural orbitals of an averaged density matrix; thus, they are
easy to use and systematically improvable. Similar to some
other methods,165,167,169 both are based on a preliminary
TDDMRG simulation that employs all or a large enough
subset of the available orbitals but uses a small bond dimension
so that the final orbitals can be obtained quickly. From this
preliminary TDDMRG simulation, we average over the real
part of the one-electron density matrix ρ at each time step i (in
atomic orbital representation)

= =
=N

t i t
1

( )
i

N

averaged
timesteps 1

timesteps

(14)

We use the real part of ρ(t = iΔt) to avoid dealing with
complex-valued orbitals; nevertheless, the real part still
captures the main dynamics.106 In the first of the two
approaches, dubbed here density matrix (DM)-adapted
orbitals, we use the natural orbitals of ρaveraged with the largest
occupancies for the TD-CASCI simulations. While straightfor-
ward to use, eq 14 focuses on the total average of the dynamics
and thus may not easily capture subtle changes in the
dynamics. To improve this, in the second approach, dubbed
here hole-DM-adapted orbitals, we do not diagonalize ρaveraged
but rather diagonalize the averaged hole density matrix, haveraged
= ρ0 − ρaveraged, where ρ0 is the density matrix of the neutral
molecule (cf. eq 11). Diagonalizing haveraged leads to averaged
natural charge orbitals and their corresponding eigenvalues, the
hole occupations.106 These orbitals thus describe the evolving
hole in charge migration and thus naturally are important
ingredients of the orbital space. As the trace of haveraged is 1,
only a few orbitals can be selected from haveraged. We select
them based on the largest absolute value of the hole
occupations, which can be negative. The remaining orbitals,
dubbed here base orbitals, are chosen based on the natural
orbitals of the neutral ground state with occupancies close to
two. Since the natural charge orbitals are not orthogonal to the

Figure 7. QC2(t) (with C2 being the carbon atom indicated in panel
a) in furan obtained using (a) MP2 natural orbitals and (b) split
localization of orbitals in panel (a). All results used the Cs point group
except for the D = 1000 result in panel a, which used the C2v point
group. This result is also plotted in panel b for comparison. These
simulations were performed with an active space of CAS(30o, 25e),
and the MPS is of full-complex type.

Figure 8. Ground-state energy of the furan cation as a function of
bond dimension obtained using either MP2 natural orbitals (points)
or split-localized orbitals (squares). These are the same orbitals used
in Figure 7. The energies are shifted up by 228 EH.
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base orbitals, we symmetrically orthogonalize155,156 those
against the base orbitals and remove linear dependencies, if
necessary. Typically, linear dependencies only become an issue
once the used orbital space becomes very large, compared to
the used atomic orbital space.

Both procedures described above allow the active space to
be systematically increased. Note that these procedures can be
easily extended to other types of dynamics that are not based
on ionization. In that case, instead of subtracting the density
matrix of the neutral molecule to form the averaged hole
density matrix, one could, e.g., subtract the density matrix of
the initial state. Likewise, other established ways such as those
based on localized orbitals163 could be used to obtain the base
orbitals. The DM adaption procedure could be improved by
using concepts other than natural orbitals, e.g., from quantum
information theory.65,161,167,169 This, however, is beyond the
scope of this work.
4.2. Validation. To test the two dynamics-adapted orbital

approaches, here we compare two sets of simulations using the
DM-adapted and hole-DM-adapted orbitals and vary the size
of the active space both for furan and for chloroacetylene (see
Section 3.1 for the main setup). For both molecules, we use D
= 200 for the preliminary TDDMRG simulation to obtain the
averaged hole density. Despite the small bond dimension, the
simulation captures the rough qualitative behavior of the
dynamics, compared to a simulation with D = 1000 that is used
here as a reference (see SI Figure S7).

For the hole-DM-adapted orbitals of chloroacetylene, we use
eight base orbitals from the natural orbitals of an RDM
obtained from a frozen-core FCI DMRG neutral ground-state
calculation with D = 200. We use split localization (cf. Section
3.6) to optimize the orbital shape. Split localization of the hole-
DM-adapted orbitals is done using the base orbitals as
occupied space and the remaining orbitals as valence space.
For the DM-adapted orbitals, split localization is based on the
quasi-natural orbitals of the averaged RDM in eq 14 using a
natural occupation threshold of 0.5.

Figure 9 displays the results for chloroacetylene. The DM-
adapted orbitals (Figure 9a) capture many suboscillations of
the charge even if the active spaces are relatively small, such as
only 14 orbitals. The overall shapes of the curves for all CASs
shown are very similar, up to some horizontal shifts. On the
contrary, the hole-DM-adapted orbitals (Figure 9b) produce
dynamics that varies greatly as the active space size is
increased. Convergence is attained only when reaching ∼27
orbitals out of 41 in total. Importantly, however, a comparison
of the partial charges of the simulations using either DM-
adapted orbitals or hole-DM-adapted orbitals with the FCI
TDDMRG reference (dubbed MPS-FCI) (Figure 9c) reveals
that when including 30 orbitals in the space, the hole-DM-
adapted orbitals lead to dynamics that is actually closer to
MPS-FCI than the DM-adapted orbitals, despite the former’s
poor performance when the active space is small.

Next to the two DM-adapted procedures, we have tested
three other ways of selecting orbitals for the active space: (1)
DMRGSCF orbitals of the neutral molecule, (2) DMRGSCF
orbitals of the cation, and (3) state-averaged DMRGSCF
orbitals of the cation. In all three procedures, the initial
DMRGSCF guess is based on split-localized MP2 natural
orbitals. These simulations are shown in the SI (Figure S8) and
confirm that, for chloroacetylene, the CAS created by hole-
DM-adapted orbitals leads to the fastest convergence.

The results for the same type of comparison for furan are
shown in Figure 10. For the hole-DM-adapted orbitals, we use
13 base orbitals computed in the same way as for
chloroacetylene, except for the DMRG neutral ground-state
computation, which uses D = 1000. Since for furan, energy-
localized orbitals lead to a faster convergence with respect to
bond dimension (see Section 3.6), we use the quasi-natural
orbitals from the DM adaption procedures directly and order
them using a genetic algorithm. Here, the DM-adapted orbitals
(Figure 10a) converge slower than the hole-DM-adapted
orbitals (Figure 10b) with respect to active space size, which is
in contrast to our observation in chloroacetylene. However, as
in chloroacetylene, the hole-DM-adapted orbitals yield a better
agreement with MPS-FCI than the DM-adapted orbitals,
suggesting that a faster convergence with active space may be
realized by using hole-DM-adapted orbitals.

Overall, thus we find that hole-DM-adapted orbitals are
preferred over DM-adapted orbitals, which is in agreement
with our discussion in Section 4.1. Based on the results for
chloroacetylene, which do not display smooth convergence,
the hole-DM adaptation is not a full black-box method. As the
orbitals are not time-dependent, it is expected that erratic
results can be obtained if not all important orbitals are

Figure 9. QC3(t) in chloroacetylene obtained using several active
spaces composed of (a) DM-adapted orbitals and (b) hole-DM-
adapted orbitals. The simulations with the largest CAS(30o, 15e) are
compared to the MPS-FCI result, a CAS(41o, 15e), in panel (c). The
bond dimension is 1000, and the MPS is of SA complex type.
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included in space. Nevertheless, e.g., the use of concepts from
quantum information theory, as mentioned in Section 4.1,
would allow for additional improvements.

5. APPLICATIONS�DYNAMICS RESULTING FROM σ
AND π ORBITAL IONIZATION IN FURFURAL

In this section, we will apply the knowledge about the
numerical behavior of TDDMRG learned from Section 3 to
furfural to observe charge migration from the formyl group
into the five-membered ring. We use the 6-31G basis set, giving
71 basis functions for furfural with seven core orbitals kept
frozen. The used geometry is given in Section S1 of the SI.

We study two scenarios, where either a π-bonding or a σ-
bonding IBO of the formyl group is ionized. We will call these
two scenarios π dynamics and σ dynamics, respectively. The π
(σ) dynamics corresponds to the outer (inner) valence
ionization. Based on the previous findings, we use hole-DM-
adapted orbitals and found a CAS(40o, 35e) and D = 700 for a
complex MPS to be sufficiently converged for both scenarios
and for the observables of interest (see below). The time steps
used for the π and σ dynamics are 0.968 as and 0.484 as,

respectively. The preliminary TDDMRG simulations to obtain
the two sets of orbitals use a bond dimension of 200. A
convergence analysis for the dynamics is available in Section
S5.1 of the SI; in particular, see Figures S9−S11.

Here, we are interested in the general dynamics and not in
particular benchmarks. Thus, we study two observables
different from those in Section 3, namely, the time-dependent
dipole moments and the hole density. The dipole moments are
calculated along the principal axes of inertia. The observables,
the used coordinates, and the initial states are shown in Figure
11, next to the two IBOs used for the ionization scenarios

(panel a). Despite the different shapes and symmetries of the
initial hole densities (panel b), at first sight, the initial
dynamics of the resulting charge migration is surprisingly
similar. However, a closer look reveals more subtle differences.
In particular, the σ dynamics leads to a reduced migration with
larger parts of the density staying in the formyl group, whereas
for the π dynamics, a larger portion of the initial hole migrates
into the ring.

This is confirmed by inspecting the dipole moments (panel
c). In the x direction, the dipole changes from positive to
negative values (the initial migration into the ring) and then
oscillates around a negative mean value. Like the apparent
similarities of the time-dependent hole densities, the oscillation

Figure 10. QC2(t) in furan obtained using several active spaces
composed of (a) DM-adapted orbitals and (b) hole-DM-adapted
orbitals. (c) A comparison of the CAS(40o, 25e) results from panels
(a) and (b) with the MPS-FCI result for this molecule, whose active
space is CAS(48o, 25e). See Figure 7 for details on QC2(t). The bond
dimension is 500, and the MPS is of full-complex type.

Figure 11. Charge migration in furfural based on ionization from
either a π or a σ orbital. (a) Left panel: geometry with the reference
frame used for calculating the dipole moments (principal axes of
inertia). Right panels: isosurface of the orbitals from where the
electron is ionized at |ψ(r)| = 0.06. (b) Hole density isosurfaces
evaluated at h(r, t) = ±0.006. The green (violet) surfaces show
positive (negative) values. (c) Total dipole moments in x and y as a
function of time for the two scenarios. Solid (dot-dashed) lines show
ionization from the π (σ) orbital. Due to symmetry, the z-component
of the dipole vanishes. The vertical lines mark the times at which the
hole densities in panel (b) are evaluated.
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periods of the x dipole components of the σ and π dynamics
during the first 0.8 fs are almost equal, even though the energy
of the initial state of the σ dynamics is 18 eV higher than that
of the π dynamics. However, both σ and π dynamics show
these oscillations with a noticeably smaller initial shift of the
dipole moment for the σ dynamics from 2.80 ea0 to −1.53 ea0,
compared to that from 2.84 ea0 to −2.57 ea0 for the π
dynamics. At later times, each of the two dynamics shows a
different behavior; e.g., at 1.45 fs, the dipole in the x direction
of the σ dynamics is around a minimum, whereas that of the π
dynamics approaches a maximum. As the direction of the
initial charge migration in the molecule can only occur from
the formyl group into the ring, the y component of the dipole
is less affected by the dynamics and approximately is zero
throughout.

The observed effects might be explained by a similar, albeit
reduced overlap between the hole orbital and the restricted
open-shell Hartree-Fock (ROHF) cationic orbitals in the ring:
the initial π hole is mostly similar to one π ROHF orbital of the
furfural cation, whereas the initial σ hole has large overlaps to
many ROHF orbitals, both in the inner valence and outer
valence regions. The initial σ hole state thus has not only a
much higher energy but also a much larger energy bandwidth.
The dominant configurations of the σ dynamics then relax to
configurations that are also dominant in the π dynamics after a
short time interval following the start of the evolution. Note
that orbitals of different symmetries are coupled through
excited configurations; thus, e.g., ππ* excitations can appear
during charge migrations of initial σ holes. A similar effect has
been observed previously for a simpler scenario (see, e.g., ref
106).

In agreement with the above explanation, an analysis of the
natural charge orbitals (see SI Figures S12−S14) at t = 0.484 fs
reveals that π orbitals are active components not only in the π
dynamics but also in the σ dynamics. As the dynamics advance,
the charge orbitals become less similar: at 0.968 fs, both
dynamics have a dominant π-type charge orbital localized at
the formyl group, whereas at 1.45 fs, the same type of orbital
remains important only for the σ dynamics. This decreasing
similarity between the two dynamics as time advances is in
agreement with the hole densities and dipoles from Figure 11.

6. CONCLUSIONS
Time-dependent extensions of the density matrix renormaliza-
tion group (TDDMRG) are promising candidates for efficient
simulations of complicated molecular electron real-time
dynamics. However, so far, only a few TDDMRG applications
exist and, due to a workflow that is more complicated than
ground-state optimizations, so far there are only a few
guidelines for choosing optimal simulation parameters. Here,
we have aimed for establishing a robust and general TDDMRG
simulation framework. Through simulations of charge
migration in different molecules, we have performed a series
of extensive studies of the properties of various simulation
parameters in TDDMRG and investigated ways to determine
compact orbital spaces for electron dynamics.

We have found that the time-dependent variational-
principle-based projector splitting integrator converges faster
and more smoothly than the time step targeting method with
both bond dimension and time step. Using a fully complex-
valued matrix product state (MPS) is more elaborate than a
state-averaged-based complex-valued representation, but the
fully complex-valued MPS converges faster with bond

dimension and converges the norm of the state well, even if
the two-site version of the DMRG is used.

One of the questions we have aimed to address was whether
common wisdom from ground-state DMRG carries over to
TDDMRG. Indeed, we have found that some ground-state-
based findings do carry over to TDDMRG, namely, orbital
ordering, and the use of singlet embedding for nonsinglet
states. However, surprisingly, we found that split-localized
orbitals do not necessarily speed up bond dimension
convergence for larger molecules, compared to natural orbitals.
This is in contrast to the convergence behavior of ground-state
DMRG.

Next to the benchmark, we have tested several procedures to
obtain a good set of active orbitals. This is more difficult than
in time-independent DMRG as the orbitals need to describe
the dynamics well for all propagation times. We found that
orbital spaces consisting of a combination of occupied ground-
state natural orbitals and orbitals that diagonalize a reduced
density matrix (RDM) consisting of the difference between an
averaged time-dependent RDM and a ground-state RDM lead
to reasonably fast convergence. This procedure offers a
semiautomated way to converge the active space.

Lastly, we have made use of our findings in the simulations
of charge migration in furfural, where we compared the
dynamics of π- and σ-hole-initiated charge migrations. We
found a rapid conversion of the initial σ hole to π hole states.
These simulations employ 35 electrons and 40 active orbitals,
and the dynamics displays nontrivial behavior, rendering them
significantly more challenging than previous molecular
electronic TDDMRG applications. Given the efficiency of
TDDMRG to simulate multireference situations, we believe
that it will be more widely used to study more intricate
dynamics, such as when an external field is present, or to
interpret experimental observations.
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(41) Sato, T.; Ishikawa, K. L.; Brězinová, I.; Lackner, F.; Nagele, S.;

Burgdörfer, J. Time-dependent complete-active-space self-consistent-
field method for atoms: Application to high-order harmonic
generation. Phys. Rev. A 2016, 94, No. 023405.
(42) Wahyutama, I. S.; Sato, T.; Ishikawa, K. L. Time-dependent

multiconfiguration self-consistent-field study on resonantly enhanced
high-order harmonic generation from transition-metal elements. Phys.
Rev. A 2019, 99, No. 063420.
(43) Zanghellini, J.; Kitzler, M.; Fabian, C.; Brabec, T.; Scrinzi, A.

An MCTDHF Approach to Multielectron Dynamics in Laser Fields.
Laser Phys. 2002, 13, 1064−1068.
(44) Kato, T.; Kono, H. Time-dependent multiconfiguration theory

for electronic dynamics of molecules in an intense laser field. Chem.
Phys. Lett. 2004, 392, 533−540.
(45) Caillat, J.; Zanghellini, J.; Kitzler, M.; Koch, O.; Kreuzer, W.;

Scrinzi, A. Correlated multielectron systems in strong laser fields: A
multiconfiguration time-dependent Hartree-Fock approach. Phys. Rev.
A 2005, 71, No. 012712.
(46) Nest, M.; Klamroth, T.; Saalfrank, P. The multiconfiguration

time-dependent Hartree-Fock method for quantum chemical
calculations. J. Chem. Phys. 2005, 122, No. 124102.
(47) Meyer, H.-D.; Gatti, F.; Worth, G. A. Multidimensional
Quantum Dynamics: MCTDH Theory and Applications; John Wiley
& Sons, 2009.
(48) Hochstuhl, D.; Bonitz, M. Two-photon ionization of helium

studied with the multiconfigurational time-dependent Hartree-Fock
method. J. Chem. Phys. 2011, 134, No. 084106.
(49) Hochstuhl, D.; Hinz, C. M.; Bonitz, M. Time-dependent

multiconfiguration methods for the numerical simulation of photo-
ionization processes of many-electron atoms. Eur. Phys. J.: Spec. Top.
2014, 223, 177−336.
(50) Haxton, D. J.; McCurdy, C. W. Two methods for restricted

configuration spaces within the multiconfiguration time-dependent
Hartree-Fock method. Phys. Rev. A 2015, 91, No. 012509.
(51) Lode, A. U. J.; Léveq̂ue, C.; Madsen, L. B.; Streltsov, A. I.; Alon,

O. E. Colloquium: Multiconfigurational time-dependent Hartree
approaches for indistinguishable particles. Rev. Mod. Phys. 2020, 92,
No. 011001.
(52) Sato, T.; Pathak, H.; Orimo, Y.; Ishikawa, K. L.

Communication: Time-dependent optimized coupled-cluster method
for multielectron dynamics. J. Chem. Phys. 2018, 148, No. 051101.
(53) Pathak, H.; Sato, T.; Ishikawa, K. L. Time-dependent optimized

coupled-cluster method for multielectron dynamics. II. A coupled
electron-pair approximation. J. Chem. Phys. 2020, 152, No. 124115.
(54) Pathak, H.; Sato, T.; Ishikawa, K. L. Time-dependent optimized

coupled-cluster method for multielectron dynamics. IV. Approximate

consideration of the triple excitation amplitudes. J. Chem. Phys. 2021,
154, No. 234104.
(55) Sverdrup Ofstad, B.; Aurbakken, E.; Sigmundson Schøyen, O.;

Kristiansen, H. E.; Kvaal, S.; Pedersen, T. B. Time-dependent
coupled-cluster theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2023,
13, No. e1666.
(56) Kretchmer, J. S.; Chan, G. K.-L. A real-time extension of

density matrix embedding theory for non-equilibrium electron
dynamics. J. Chem. Phys. 2018, 148, No. 054108.
(57) Feiguin, A. E.; White, S. R. Time-step targeting methods for

real-time dynamics using the density matrix renormalization group.
Phys. Rev. B 2005, 72, No. 020404.
(58) Haegeman, J.; Cirac, J. I.; Osborne, T. J.; Pizǒrn, I.; Verschelde,
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