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Highlights

●	 We present a simulation-based method to delimit 
areas that have been accessible for species during 
relevant periods of time (M) and that represent 
appropriate calibration areas in ecological niche 
modeling and species distribution modeling.

●	 We explored implications of using calibration areas, 
created with common methods and simulations, on 
performance of models and on their predictions.

●	 Our results show that simulated M areas differ in 
geographic pattern and extent from those created 
with other methods.

●	 Although M areas derived from simulations are still 
hypotheses, they are closer to the regions that could 
have been explored by a species; comparisons of 
model outputs showed that these differences have 
effects in model prediction and interpretation.

Abstract
Ecological niche models and species distribution models 
(ENM and SDM, respectively) are tools that have seen 
massive use and considerable improvement during the 
last twenty years. The choice of calibration areas for such 
models has strong effects on model outcomes and model 
interpretation, as well as on model transfer to distinct 
environmental settings. However, approaches to selecting 
these areas remain simple and/or unlinked to biological 
concepts. Such models should be calibrated within areas 
that the species of interest has explored throughout its 
recent history, the accessible area (M). In this paper, we 
provide a simulation approach for estimating a species’ 
M considering processes of dispersal, colonization, 
and extinction in constant current climate or glacial-
interglacial climate change frameworks, implemented 
within a new R package we developed called grinnell. 
Using the avian genus Aphelocoma, we explored different 
parameterizations of our simulation, and compared 
them to current approaches for M selection, in terms of 
model performance and risk of extrapolation using the 
algorithm Maxent and mobility-oriented parity analyses. 
Model calibration exercises from all approaches resulted 
in at least one model meeting optimal performance 
criteria for each species; however, we noted high 
variability among taxa and M selection methods. 
More importantly, M hypotheses derived directly from 
simulations of key biological processes, rather than being 
based on simple proxies of those processes, and as such 
are better suited to erecting biologically appropriate 
contrasts in model calibration, and to characterizing 
the potential for model extrapolation more rigorously. 
Major factors in our simulations were environmental 
layer resolution, dispersal kernel characteristics, and the 
inclusion of a changing framework of climatic conditions. 
This contribution represents the first simulation-based 
method for selecting calibration areas for ENM and 
SDM, offering a quantitative approach to estimate the 
accessible area of a species while considering its dispersal 
ability, along with patterns of change in environmental 
suitability across space and time.
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Introduction
Ecological niche models (ENM) and species 

distribution models (SDM) have become a popular 
technique in the emerging area of distributional 
ecology (Araújo et al. 2019), with publications based on 
these tools in evolutionary biology (e.g. Warren et al. 
2008, Varela et al. 2011, Saupe et al. 2018), ecology 
(e.g. Anderson 2017, Zurell 2017, Osorio‐Olvera et al. 
2020), conservation biology (e.g. Guisan et al. 2013, 
Freeman et al. 2018), and public health (e.g. Peterson 
2014, Quiner and Nakazawa 2017). Many aspects 
of this methodology have seen intensive analysis, 
including algorithm selection (Qiao  et  al. 2015), 
design of model transfers (Werkowska et al. 2017, 
Yates et al. 2018), model calibration (Muscarella et al. 
2014, Cobos  et  al. 2019a), and model complexity 
and assembly (Warren and Seifert 2011, Zhang et al. 
2015, Galante et al. 2018). However, approaches for 
selection of areas across which models are calibrated 
have remained at least partially neglected.

The size of the calibration area and the environmental 
space it contains (i.e., the background data used for 
calibration) have been acknowledged to influence ENM 
and SDM results (Giovanelli et al. 2010, Acevedo et al. 
2017, Cooper and Soberón 2018). Anderson and 
Raza (2010) pointed out that choice of calibration 
area makes a considerable difference in modeling 
outcomes, and indicated that a smaller area closer to 
known occurrence points yielded better distributional 
predictions. Barve et al. (2011) demonstrated that 
calibration area choice matters, and linked a biological 
concept (i.e., the set of sites that has been accessible 
to the species over relevant time periods) and the area 
over which models should be calibrated. Barve et al. 
(2011) also outlined a method by which such an 
accessible area could be simulated; however, they 
presented only a simple sketch of that method, which 
until now has not been implemented fully. ENM and 
SDM inevitably involve some level of model transfer 
from areas and conditions that were actually sampled 
to broader areas and sets of conditions (Yates et al. 
2018), even when models are interpreted across the 
model calibration area only. Therefore, obtaining more 
realistic calibration areas is critical to achieve better 
interpretations of models in regions where results 
solely derive from extrapolation.

Introduction to concepts
Soberón and Peterson (2005) provided a heuristic 

framework for distributional ecology, the BAM diagram, 
in which the occupied distribution of a species (GO) 
is the intersection of the area presenting habitable 
abiotic conditions (A), the area suitable in terms of 
biotic conditions (B), and the area accessible to the 
species over relevant time periods (M). Crucially, M is 
the set of sites (i.e., cells in a raster data layer) that the 
species has “explored” over its history, and as such, M 
represents the area formed by sites, with suitable or 
unsuitable environmental conditions, across which the 
species’ responses to environments can be estimated.

On the basis of the definition of M, Barve et al. 
(2011) argued that the set of environments manifested 

across the region, termed η(M), is the range of 
environments that the species has explored and 
tested. Thus, in effect, the algorithms that are used 
for niche modeling or distribution modeling compare 
and contrast the subsets of η(M) that the species is 
known to occupy [termed η(G+)] and the full breadth 
of η(M). It follows also that the accessible area (i.e., 
M) is the geographic area across which these contrasts 
should be developed.

Purpose
The accessible area should include all sites to which 

the species has had access through dispersal, a subset 
of which would be the sites that are appropriate for 
the species in terms of abiotic and biotic environments. 
However, Barve  et  al. (2011) showed that this 
accessible area is often broader than simply the sites 
presently accessible to the species via dispersal, in 
view of climate changes deeper in history that made 
other, more distant sites accessible to the species. This 
point is demonstrated by the well-known phenomenon 
of “sky islands,” in which species have presently 
isolated populations at sites well south of the main 
distributional area that were colonized by the species 
during glacial periods (Heald 1951, Mayr and Phelps 
1967, Masta 2000, Sekar and Karanth 2013). Therefore, 
when estimating accessible areas, one should consider 
how different barriers have facilitated or constrained 
the dispersal of species into novel regions.

The purpose of this contribution is to provide a 
simulation-based methodology for estimating the 
accessible area of a species under biologically realistic 
assumptions, offering the possibility of incorporating 
relevant climate changes into this estimation. That is, 
we take the concept of the fundamental ecological 
niche of a species (NF) and the area A that it defines, 
along with the known sites where the species occurs 
(G+) as a starting point (Peterson and Soberón 2012). 
We then simulate processes of dispersal, colonization, 
and extinction of four species of Aphelocoma jays in 
the face of Holocene-Pleistocene climate change, 
and thereby simulate their past range dynamics. 
Crucially for estimating M, we keep track of the full 
set of sites (i.e., cells) that the species are simulated 
to have explored and accessed—this set of cells is a 
reasonable hypothesis of the accessible area, a region 
of likely dispersal during relevant periods of history. 
We compare metrics and outputs of ENM derived from 
simulated Ms against models in which Ms are drawn 
from current methods, to explore implications of using 
different calibration area hypotheses. We developed 
scripts to create these simulations in a new R package 
(i.e., grinnell; Machado-Stredel  et  al. 2020), and 
offer this methodology as a means of identifying and 
delimiting calibration areas for ENM and SDM.

Materials and Methods

Description of simulation
The method presented is an extension of the one 

outlined by Barve et al. (2011), which was based on a 
cellular automata simulation where dispersers move 
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based on fixed rules (e.g. movement is allowed only to 
neighboring cells; Gardner 1970, Wolfram 1984). Here 
we take a probabilistic view of dispersal incorporating 
dispersal kernels, and simulate colonization and 
extinction events in a cell grid that has suitable 
conditions drawn from a preliminary estimate of the 
fundamental ecological niche. These processes are 
simulated several times in replicates that generate 
a summary of accessed cells. The inputs needed for 
the simulations are occurrence data for the species 
and raster layers of environmental conditions (Fig. 1).

In each simulation replicate, a subset of occurrences 
is selected to set occupied cells in the grid as “starting” 
populations, from which dispersers will start moving 
and accessing new cells. These cells, of course, are 
not the actual populations from where the species 
begun to spread in the past, but instead represent 
potential populations from which an area of potential 
dispersal can be simulated during recent history. After 
a disperser moves to a new cell, the cell is considered 
accessed and is saved in memory (i.e., the result of 
the dispersal, not the individual, is stored). Cells are 
colonized by dispersers if the environmental conditions 
for maintaining populations are suitable (i.e., inside 
NF), with new dispersers moving from old and newly 
colonized cells in subsequent dispersal events. Thus, 

cells can be accessed regardless of their conditions, 
but the environment constrains the colonization 
of cells. Additionally, users can choose between a 
stable (i.e., current conditions are kept constant) or 
a changing framework of climatic conditions. In a 
changing framework, interpolations between two 
sets of climatic variables, one for current and one for 
past conditions, are generated to characterize several 
climatic scenarios. Ultimately, simulation replicates 
are summarized in an estimate of M that houses the 
most frequently accessed cells.

Fundamental ecological niche estimation
To define the places to which the species can 

disperse and colonize, as well as those where it may 
reach but not establish sustainable populations, 
suitable and unsuitable areas need to be defined. 
An initial estimate of the fundamental ecological niche 
(NF) of the species is constructed with an ellipsoid 
envelope model (Green 1974, Soberón and Peterson 
2020) using occurrence data and principal components 
that represent the current climate (Fig. 1). The ellipsoid 
is defined by the centroid and the covariance matrix. 
The limits of what is suitable and unsuitable are found 
using a chi-squared cumulative probability distribution 
on the Mahalanobis distance from the ellipsoid’s 

Figure 1. Initial data preparation and analysis for simulations. Solid margin blocks and arrows show the required steps 
for simulations in a stable framework of climatic conditions: 1A) Obtaining current principal components (PCA), 2) NF 
envelope modeling, and 3A) Geographic projection of suitability matrix S for the current climatic scenario. Dashed margin 
blocks and arrows refer to additional steps needed for simulations in a changing framework of climatic conditions: 1B) 
LGM variable transformation with current PCA loadings, 1C) Interpolations for transitional scenarios, and 3B) Geographic 
projections of suitability matrices (S1–ST) for all T climatic scenarios. In the interpolation step a simplified graph of mean 
temperature versus time is included, showing a glacial-interglacial cycle with four periods (interpolations are shown as 
vertical red dashed lines).
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centroid (i.e., MD; Etherington 2019), and imposing a 
suitability threshold (equivalent to E in Peterson et al. 
2008; see also Nuñez-Penichet et al. 2021) to exclude 
extreme data (95% as default, Table 1). For each cell, 
MDij defines the suitability Sij as in a multivariate 
normal distribution:

( )0.5ij ijS exp MD= − ×

The S matrix is calculated for the present or, if 
needed, ST matrices are obtained for past and current 
climatic scenarios, being projected on the geographic 
domain of interest G (Fig. 1). It is worth noting that use 
of envelope models for approximating fundamental 
ecological niches is somewhat perilous if the data 

include erroneous points, as they may create overly 
broad ellipsoid envelopes, which places a premium 
on careful quality control and error assessment of the 
occurrence data prior to fitting ellipsoids.

Preparation of climatic scenarios
First, the dimensionality of the current abiotic 

variables over G, which likely contains M, is reduced 
with a principal component analysis (PCA) to improve 
transferability, and the first three PCs are used to obtain 
an ellipsoid for NF that is assumed to be conserved 
(Fig. 1; Peterson et al. 1999, Peterson 2011). Climate 
scenarios are defined as time intervals during which 
the grid has specific and constant climatic conditions 
that correspond to an associated suitability matrix. 
If the framework of climatic conditions is stable, the 

Table 1. Description and default values of parameters to be defined for the simulation of accessible areas.
Parameter Description Default value

Suitability threshold Percentage of occurrence data to be left out of ellipsoids 
representing ecological niches.

5

Dispersal kernel A probability density function describing the probability 
of movement of dispersers (in number of cells) to any 

position relative to the place of origin.

Normal

Kernel standard deviation (SD) A value that determines the spread of the dispersal 
kernel. Higher values allow movements to farther places 

(distant cells).

1

Number of dispersal events (t) Number of iterations in which dispersal movements 
happen from all colonized cells during the 

simulation (if a stable framework is considered), 
or during the scenario span of each T scenario 

(if a changing framework is considered).

20

Maximum number of 
dispersers (NdMax)

Numbers of dispersers that move from each colonized 
cell (per dispersal event) according to its suitability. The 
suitability range (0–1) is divided in a number of intervals 

equal to NdMax.

4

Number of replicates (N) Number of times the simulation is repeated with 
different subsets of “starting” populations.

10

Time of transition period from 
past to glacial conditionsa

Thousands of years for the period of transition from 
past (current-like) to glacial (LGM) conditions.

5

Time of glacial perioda Thousands of years in which glacial (LGM) conditions are 
maintained.

10

Time of transition period from 
glacial to current conditionsa

Thousands of years for the period of transition from 
glacial (LGM) to current conditions.

5

Time of current-like perioda Thousands of years in which current-like conditions are 
maintained.

10

Total simulation perioda Thousands of years for the whole simulation. 30
Scenario spana Thousands of years of each scenario T in which climatic 

conditions (ST) are maintained.
1

Accessibility threshold Lower tail (percentage) of the frequency distribution of 
D  to be discarded when selecting the subset of most 

frequently accessed cells.

5

a Parameters used only in a changing framework of climatic conditions.
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simulation occurs in one current climatic scenario 
that lasts the amount of dispersal events (t) set by 
the user (Table 1, Supplementary Fig. S1), and during 
which only one suitability matrix S is used (Fig. 1). As 
mentioned before, the S matrix shows which cells are 
outside the NF estimate (i.e., Sij = 0), that is, any cell 
which MDij is beyond the ellipsoid’s limit defined by 
the suitability threshold.

In a changing framework of climatic conditions, 
principal components for the LGM are obtained by 
transforming LGM variables using the current PCA 
loadings (Fig. 1). Then, a simple algorithm generates 
interpolations for transitional scenarios, incorporating 
them in a sequence of glacial-interglacial scenarios 
(i.e., a cycle; Fig. 1, Supplementary Fig. S1). Climatic 
scenarios for transitions between glacial and 
interglacial climates are obtained using a simple 
method in which each interpolation (Ii) consists of a 
weighted mean of conditions of the two scenarios, 
calculated as:

( ) ( )1

2
i i

i
Current WD LGM WD

I
 × + × − =

The weight (WDi) is given by the relative distance 
in time (ranging 0–1) from the closest glacial scenario 
to the transitional scenario of interest (Supplementary 
Fig. S1). In the simulations, a cycle starts in a period 
of transition between current-like (“interglacial”) and 
glacial scenarios, passes a glacial period, continues 
with a transition between glacial and interglacial, 
and ends in a current period (i.e., a cycle has four 
periods, Fig. 1, Supplementary Fig. S1). The number 
of T scenarios is defined by the parameters “total 
simulation period” and “scenario span”, as well 
as the selected times for each of the four periods 
within a cycle: (1) transition from past current-like 
conditions to glacial conditions; (2) glacial conditions; 
(3) transition from glacial to current conditions; and 
(4) current conditions (Table 1, Fig. 1, Supplementary 
Fig. S1). In this framework, ST suitability matrices are 
created for each T climatic scenario. For instance, 
using default parameters in a changing framework, 
the simulation will be run in 30 suitability matrices, 
corresponding to 30 climatic scenarios, given that the 
scenario span is 1 ka and the total simulation period 
is 30 ka (i.e., 5 scenarios in each transition, 10 glacial 
and 10 interglacial scenarios; Table 1).

Simulation design
At the start of each simulation, two empty 

matrices are created with the same extent as G and 
S. The first of these matrices (C) will contain the 
frequency of cells that are colonized during a climatic 
scenario, with dispersal starting from a set of initial 
populations (Fig. 2A). A dispersal movement consists 
of a disperser moving from a colonized cell in C to a 
cell saved in the second matrix D, which accumulates 
the frequency of cells that are accessed by dispersal 
(Fig. 2). Before the first dispersal event (i.e., t = 0) the 
set of occurrences inside NF is randomly subsampled 

(without replacement) to obtain N different occurrence 
subsets of 50%, which are used as initial populations 
in the matrices C and D of each replicate (Table 1). 
Cells containing initial populations are considered to 
have been both colonized in C(t=0) and accessed in D(t=0) 
(Fig. 2). Having an appropriate number of N replicates 
ensures that most occurrences inside NF are considered 
as potential initial populations at least in one of the 
50% subsets (Supplementary Table S1).

Movements of dispersers are set in polar 
coordinates, where the radial distance (d) is drawn from 
two possible dispersal kernels, normal or log-normal 
(fat tailed), and the angle (δ) is drawn from a random 
distribution (Fig. 2A). The dispersal kernel mean is set 
at zero (i.e., average dispersers stay in a cell or move 
to neighboring ones), and the standard deviation is 
defined by the user depending on the resolution of G 
and the dispersal ability of the species. Given d and 
δ, the rounded coordinates of the cell that will be 
accessed are given by sine and cosine expressions as 
number of cells to move (Fig. 2A).

At the beginning of the simulation, the first dispersal 
event (t = 1) starts from colonized cells Cij(t=0) and the 
result of the movements is recorded in cells of D(t=1). 
If the accessed cells are suitable, they are colonized and 
recorded in C(t=1) (Fig. 2B). Users can indicate if more 
than one disperser moves from each cell per dispersal 
event by changing the maximum number of dispersers 
(NdMax), a parameter that splits the suitability range 
into a number of intervals (e.g. NdMax = 2 gives two 
intervals: [0.0–0.5] and [0.5–1.0]). From each colonized 
cell Cij, dispersers move in each dispersal event based 
on the suitability Sij of that cell (e.g. given NdMax = 
2, two dispersers move from Cij if Sij > 0.5, and one 
disperser moves if Sij ≤ 0.5; Fig. 2B). This feature is based 
on evidence that suggests that species abundances are 
inversely correlated with distance to the fundamental 
niche centroid (Martínez-Meyer et al. 2013, Osorio‐
Olvera et al. 2019, Osorio‐Olvera et al. 2020), hence, 
more dispersers might move from cells with more 
individuals. As mentioned before, an accessed cell 
Dij is only colonized if suitable (i.e., Sij > 0, inside NF), 
and the colonization is recorded in C before the next 
dispersal event (Cij(t+1) = Cij(t) + 1; Fig. 2B).

In a changing framework of climatic conditions, 
several suitability matrices ST are obtained for each 
of the T climatic scenarios (Fig. 1). At the beginning 
of the framework, the initial populations experience 
a transitional suitability matrix (S1), facing extinction 
immediately if the cells’ conditions are unsuitable 
in that scenario, or in subsequent ones, which 
eliminates populations from inhabitable cells in the 
past (Fig. 1, Fig. 3, Supplementary Fig. S1). Colonization 
and dispersal occur as in the stable framework during 
t dispersal events, after which the simulation passes 
to the next scenario (i.e., T+1). In the new scenario, 
the colonization matrix C is updated according to the 
conditions on the new suitability matrix (ST+1), and the 
dispersal matrix D is stored in memory (Fig. 3). Cells 
colonized in a previous scenario (CijT) are kept if 
their new suitability values (SijT+1) are greater than 
zero. As before, if the new conditions are outside NF 



Machado-Stredel et al. Simulations for selecting ENM and SDM calibration areas

Frontiers of Biogeography 2021, 13.4, e48814 © the authors, CC-BY 4.0 license  6

(i.e., SijT = 0), populations in those cells face extinction 
(i.e., local extirpation; Fig. 3). These steps generate the 
initial matrix of colonized cells for the next scenario 
(C(t=0)T+1; Fig. 3). Since the D matrix is cumulative, the 
initial matrix of accessed cells for the new scenario 
(D(t=0)T+1) matches the final matrix from the previous 
scenario (D(t)T).

In both frameworks of climatic conditions, final C 
and D constitute absolute frequency matrices, and after 
all t dispersal events occur along the defined number 
of climatic scenarios in each replicate, the mean of the 
D matrices from all replicates is calculated (i.e., D ). 
The upper 95% distribution of accessed cells is selected 
from D  to exclude cells with low access frequencies 

Figure 2. Simulation setting and workflow for the estimation of the accessible area M. A) Initial setting for one replicate 
before dispersal starts. Initial populations (black dots) are shown in the suitability (S) and colonization (C) matrices. 
Colonized cells in C and accessed cells in D are shown in gray and blue, respectively. The dispersal angle (𝛿) and distance 
(d) determine the position of a cell that will be accessed (dashed blue cell). B) Simulation workflow for a stable framework 
of climatic conditions in which dispersal starts from each colonized cell in C(t) (Step 1), the result of the movement is 
recorded in D(t+1) (Step 2), and cells with suitable conditions are colonized in C(t+1) (Step 3; unsuitable cells are shown as 
X’s). The dashed margin block comprises all simulated processes for each replicate within one climatic scenario (current 
conditions). In step 1, cells with Sij > 0.5 send two dispersers and cells with Sij ≤ 0.5 send one disperser in each dispersal 
event, given NdMax = 2 (arrows in Step 2 show the result of the movements). Darker cells in C and D reflect larger absolute 
frequencies. After the last dispersal event t, a final D matrix is obtained in each replicate (Step 4), a mean matrix D  is 
calculated (Step 5), and the upper 95% distribution of D  is made binary to obtain M (Step 6).
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(see accessibility threshold; Table 1). Finally, a binary 
version of this upper 95% subset of D  is selected as 
an estimate of M (Fig. 2B, 3).

Case example: Aphelocoma jays
The genus Aphelocoma was, until relatively recently, 

conceived as comprising three species, each relatively 
broadly distributed across North and Middle America: 
A. coerulescens in temperate oak and pinyon scrub, 
A. ultramarina in sub-tropical pine-oak forest, and 
A. unicolor in cloud forest (Pitelka 1951). However, 

with more in-depth, molecular genetic studies, it was 
determined that the genus comprised more distinct 
lineages, such that a present-day ‘best’ concept for 
the genus would comprise as many as 14 species 
(McCormack et al. 2011). Here, we use a selection of 
four representative taxa from this genus, A. californica, 
A. coerulescens, A. ultramarina, and A. unicolor, with 
distributions that vary in range size and latitudinal 
position (Fig. 4), to illustrate effects of distinct patterns 
of distribution and environmental conditions on 
simulations of accessible areas.

Figure 3. Simulation workflow for the estimation of the accessible area M in a changing framework of climatic conditions. 
Steps within dashed margin blocks are done as in the stable framework (Fig. 2B). The first suitability matrix (S1) is used in the 
first scenario (T=1) to start simulations. After the last dispersal event t happens at the end of scenario T (Steps 1–3), the new 
scenario starts (T+1) with the corresponding suitability matrix (Step 4). The colonization matrix C is updated based on ST+1, 
and cells in new unsuitable conditions experience extinction (shown as X’s; Step 5). The D matrix from scenario T is stored 
and used at the start of scenario T+1 (D(t)T = D(t=0)T+1; Step 6), and a new set of t dispersal events begins. After all T scenarios, 
the final three steps are executed as in the stable framework (i.e., Steps 7–9 are equivalent to Steps 4–6 in Fig. 2B).
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Data preparation
We gathered occurrence data for the 4 taxa from 

the eBird database (Sullivan et al. 2009). Duplicates, 
records lacking coordinates, and records from 
ambiguous localities were removed to avoid problems 
in analyses (Cobos et al. 2018). We also performed a 
spatial thinning of occurrences using a 10 km distance 
filter to reduce problems derived from autocorrelation 
(Anderson 2012). The distance used for thinning the 
records was selected considering the resolution of 
environmental variables (see below) and based on a 
visual inspection of the localities in the area of interest, 
given knowledge of the genus’ natural history and 
experience with its populations rangewide by one of 
us (ATP). Data cleaning and thinning were done in R (R 
Core Team 2019), using basic functionalities and the 
package ellipsenm (Cobos et al. 2020). Occurrences 
used for the four Aphelocoma species are included as 
part of Appendix S1.

As current environmental variables, we used the 
bioclimatic variables from the WorldClim database 
v1.4 (resolution = 2.5’; Hijmans  et  al. 2005). 
To represent Last Glacial Maximum conditions, we used 
past bioclimatic variables developed under the general 
circulation model CCSM4, at the same resolution 
(variables available at https://www.worldclim.org/
data/v1.4/worldclim14.html). We excluded four 
variables that combine temperature and precipitation 
information because they are known to present spatial 
artifacts (i.e., BIO8–9, BIO18–19; see Escobar et al. 
2014). Current and LGM variables were cropped to 

relevant geographic extents (Gs) that include areas that 
are suitable for the species, but also other surrounding 
places with unsuitable conditions to permit and 
support interpretation (Fig. 4; extents and sizes of 
all Gs can be found in Supplementary Tables S2–3).

Simulations of M
We performed simulations under two frameworks, 

one of stable conditions (current), and another one of 
changing glacial and interglacial conditions (see above, 
Preparation of climatic scenarios). For simulations 
performed under the stable framework, we varied 
dispersal kernel (“normal” and “log-normal”), kernel 
standard deviation (SD = 1, 2, 5), and number of 
dispersal events (250 and 450) to illustrate their 
effects (Table 1). To explore additional aspects of our 
simulation approach, for A. ultramarina, a species with 
a relatively small distributional area that facilitates 
development of larger number of replicate simulations, 
we performed a set of extra simulations under current 
conditions. To show the effects of number of replicates 
(5, 10, and 50; “normal” kernel, SD = 1) and raster 
resolution (30” and 5’; “normal” and “log-normal” 
kernels, SD = 1, and 0.6, respectively), we performed 
simulations only with 250 dispersal events. Lower 
values of standard deviation for log-normal kernels 
(0.1, 0.4, and 0.8) were also explored for this species 
in simulations with 250 and 450 dispersal events.

In our parameterizations for simulations under a 
changing framework, we varied dispersal kernel and 
kernel SD, as we did for simulations under the stable 

Figure 4. Occurrence records and extents of G areas (rectangular boxes) for four species of the genus Aphelocoma used 
as examples of simulations to define accessible areas. Elevation (Amatulli et al. 2018) is used as a base map.
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framework. Here, we did simulations under two 
types of cycle with the following duration for glacial, 
interglacial, and transition periods: (1) 45 ka for glacial 
(LGM) and interglacial (current) periods, and 5 ka for 
the two periods of transition (i.e., 45–5 cycles); and (2) 
25 ka for each of the four periods (i.e., 25–25 cycles; 
1 ka = 103 years). We obtained transitional climatic 
scenarios between LGM and current conditions using 
the algorithm explained in Preparation of climatic 
scenarios. Scenario span was set to 2.5 ka, with 
25 dispersal events occurring during this time interval 
(i.e., one dispersal event per 100 years). We defined the 
total simulation period to be 1 Ma, which represents 
10 cycles of 100 ka with 40 climatic scenarios per 
cycle. The maximum number of dispersers (NdMax) 
was set to 2, and the suitability threshold was the 
default value (Table 1); these two parameters were 
held constant for all simulations. Most simulations were 
run with the default number of replicates (Table 1, 
Supplementary Table S4). In all, 62 simulations under 
the stable framework (12 common processes for the 
four species, and 14 extra for A. ultramarina), and 
48 under the changing framework were performed 
(110 simulations in total). All simulations were run 
as sequential processes (non-multi-core analyses) 
on a XEON 2.8 GH, 32 GB of RAM computer, which 
prevented high demands of RAM.

Implications of M hypotheses for ENM outputs
We explored the implications for ENM outcomes 

from Maxent 3.4.1 (Phillips et al. 2017) derived from 
using M areas defined with our approach versus M 
areas delimited with methods currently used in the 
field. To do so, we compared the range and frequency 
of environments represented in distinct M areas 
for all species using annual mean temperature and 
annual precipitation. We also obtained metrics of 
performance for Maxent models produced using the 
different M hypotheses for each species, including 
partial ROC tests, omission rates, and AICc values, 
which allowed selection of optimal models for each 
calibration area approach. The simulated M selected 
for these comparisons was obtained in a framework 
of changing conditions using 45–5 cycles (i.e., LGM 
and present periods each lasted 45 ka; transitions 
lasted 5 ka), a normal kernel (SD = 2), environmental 
rasters at 2.5’ resolution, and 10 simulation replicates. 
Alternative M hypotheses were delimited using four 
approaches: (1) convex hull polygons of records with 
500 km buffers; (2) polygons resulted from buffering 
occurrences with a 500 km distance; (3) concave hull 
polygons of records with 500 km buffers; and (4) a 
selection of ecoregions containing occurrence records 
plus a buffer of one ecoregion on all sides. These 
alternative accessible areas were created in R using 
the ellipsenm, rgdal (Bivand et al. 2019), and rgeos 
(Bivand and Rundel 2019) packages. Spatial polygons 
representing ecoregions (Omernik and Griffith 2014, 
Commission for Environmental Cooperation 1997) are 
included as part of Appendix S1.

To obtain appropriate ENMs and compare their 
performance using distinct M areas, we performed 

model calibration exercises for all M hypotheses using 
the kuenm package (Cobos et al. 2019a). To reduce 
dimensionality and avoid multicollinearity-related 
issues, we performed PCAs with the 15 bioclimatic 
variables and used the first five principal components 
(PCs) in these explorations. We randomly partitioned 
occurrence data into a 50% training set and a 50% set 
for testing models. In all, 1300 candidate models were 
evaluated for each M during calibration, for a total 
of 26,000 models (i.e., 4 species x 5 M hypotheses x 
1300 models). Candidate models for each M resulted 
from combining 5 feature classes (q, lq, lp, qp, and 
lqp; where l = linear, q = quadratic, and p = product), 
10 regularization multipliers (i.e., 0.1, 0.25, 0.5, 0.75, 
1–6), and 26 distinct sets of variables representing 
all unique combinations of more than two PCs 
(Cobos et al. 2019b; Supplementary Table S5).

We calibrated Maxent models using a total of 
20,000 points randomly selected from each M for all 
species, except for A. unicolor (6,373 points in total), 
as this last species had the fewest number of pixels in 
one of the M hypotheses used; all occurrences were 
included among the background points. We measured 
model performance only on the background points 
mentioned above. Models with optimal performance 
were those that met the following criteria: (1) statistical 
significance (partial ROC; Peterson et al. 2008), (2) 
omission rate < 0.05 (Anderson et al. 2003), and (3) 
ΔAICc ≤ 2 (Akaike Information Criterion corrected for 
small sample sizes; Warren and Seifert 2011); we note 
that the ΔAICc metrics were among the reduced set 
of models that passed the first two criteria, rather 
than globally among the full set of candidate models. 
These metrics allowed us to select the best model for 
each species and M. We then produced geographic 
projections of each best parameterization in a final 
model using all occurrence data, 10 replicates by 
bootstrap, cloglog outputs, and free extrapolation 
for projections to assess the implications of using 
distinct M hypotheses. Extrapolation risks in ENMs 
were assessed through mobility-oriented parity 
(MOP) analyses (Owens et al. 2013) using the five PCs 
masked with each M. MOP analyses identify risks of 
strict or combinational extrapolation in the area of 
model projection (G) by comparing environments 
in that area against the closest 5% of the cloud of 
conditions inside M. Raster layer and spatial polygon 
processing were done in R using the package raster 
(Hijmans 2019), as well as rgdal and rgeos. PCAs, model 
calibration, and MOP analyses were done using the 
kuenm package. R code for replicating all analyses is 
presented in Appendix S2.

Results

Simulation results
The calibration areas resulting from our simulations 

were consistent with the distribution of the 
studied Aphelocoma species, including potential 
unsuitable regions where these taxa have not been 
recorded. Simulations within a stable framework 
were considerably faster than simulations under 
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a changing framework (Supplementary Fig. S2). 
The 110 parameterizations for Aphelocoma species 
took a total of 1851 hours of computational time, 
with A. californica simulations taking most of that 
time (60.5%; Supplementary Table S4). Mean times 
for simulations per species were as follows: A. 
californica (46.7 hours), A. coerulescens (2.5 hours), A. 
ultramarina (10.4 hours), and A. unicolor (16.8 hours; 
Supplementary Fig. S2, Supplementary Table S4). 
The length of the simulations was associated mostly 

with the number of occurrences used and the size 
of G (Fig. 4), as well as the dispersal kernel and the 
number of dispersal events (Supplementary Table S4).

The factors with major effects on the geographic 
characteristics of the M areas obtained with our 
simulations were raster pixel size, kernel type, 
and kernel standard deviation, as well as whether 
simulations were performed within a stable or a 
changing framework of climatic conditions (Fig. 5–6, 
Supplementary Fig. S3–13). Number of replicates, 

Figure 5. Effect of parameter settings (number of replicates, raster resolution, number of dispersal events, and framework 
of climatic conditions) on simulated M areas obtained for Aphelocoma ultramarina. All simulations were performed using 
normal kernels and a kernel SD = 1. Occurrences inside NF used to start simulations are represented with black dots; 
annual mean temperature is used as a base map.
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number of dispersal events (under stable conditions; 
Fig.  5), and the type of cycle within the changing 
framework (i.e., 45–5 or 25–25 cycles; Fig. 6), did not 
show strong effects on the geographic shape or size 
of our results (Supplementary Fig. S3–13).

Log-normal dispersal kernels produced broader 
M areas than normal kernels with equal SDs; 
increasing SD values made M areas broader. In the 
case of log-normal kernels with SD values ≥ 0.8, M 
outcomes presented scattered and small areas around 
the main region of dispersal in simulations of 2.5’ 
resolution (see boundaries of log-normal example 
in Fig. 6; Supplementary Fig. S3–10, S12). Accessible 
areas simulated under the changing framework of 
climatic conditions were broader, including regions 
that were not reached with simulations under the 
stable framework of current conditions (e.g. Islas 

Tres Marías, Mexico, for A. ultramarina; Fig. 6, see 
also Supplementary Fig. S7–10). The effect of raster 
pixel size is related directly to the extent of resulting 
M areas (Supplementary Fig. 13).

Although simulations under the changing 
framework were done for a total simulation period of 
1 Ma (10 glacial-interglacial cycles; 1 Ma = 106 years), 
the maximum extent of M, considering current 
geography, was reached after ~375 ka (150 scenarios, 
less than 4 cycles) for three of the four species. 
Hence, we presume that most simulations under this 
framework would have taken a third of the allocated 
time. This case did not hold for A. ultramarina, for 
which ~925 ka (370 scenarios, > 9 cycles) was needed 
for reaching stability in the resulting M. Regarding the 
frequency for which areas in the final M were visited 
in distinct replicates, we detected high variability in 

Figure 6. Effect of parameters on simulated M areas obtained for Aphelocoma ultramarina under a changing framework of 
climatic conditions. Time of periods in the type of glacial-interglacial cycle (25–25 and 45–5) is defined in ka. All simulations 
were done using 10 replicates, at a pixel size of 2.5’, with 25 dispersal events during each scenario (scenario span = 2.5 
ka). Occurrences inside NF used to start simulations are shown as black dots, and annual mean temperature is the base 
map. Note that the log-normal kernel example identified an extremely broad area with scattered boundaries, extending 
from northern Mexico south through much of Mesoamerica.
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areas close to occurrences (Supplementary Fig. S14). 
Most areas close to the border of M showed zero or 
low variability between simulation replicates, except 
for areas with high suitability.

Implications of M hypotheses for ENM outputs
The M hypotheses that we explored differed 

in overall extent and complexity of borders. Areas 
resulting from polygons derived from convex hulls, 
concave hulls, and buffers were simpler than those 
derived from ecoregions and simulations, and were 
similar in size among each other (Supplementary Table 
S3). The size and shape of Ms derived from ecoregions 
and simulations were dependent on the species and 
the geographic domain of interest G. The largest Ms 
for A. californica and A. unicolor were generated 
from ecoregions and simulations, respectively. For A. 
coerulescens, all alternative calibration areas were 
larger than the simulated M, and all Ms had similar 
sizes for A. ultramarina (Supplementary Table S3). 
Range and frequency of environmental conditions 
inside Ms compared to conditions associated with 
occurrences varied depending on the M hypothesis of 
each species (Supplementary Fig. S15–16). Ranges of 
mean annual temperature in simulated Ms were closer 
to values in occurrences than the ranges presented in 
alternative M hypotheses for two species: A. californica 

and A. coerulescens (Supplementary Fig. S15), hence, 
occupying smaller ranges in environmental space (see 
also annual precipitation ranges for A. ultramarina; 
Supplementary Fig. S16).

The variables used in ENM calibrations (first 
five PCs) explained >97% of the variance for all M 
hypotheses in each species (Supplementary Table S6). 
Regularization multipliers and variable sets of best 
models varied widely among M hypotheses in each 
taxon, however, feature classes were similar and most 
variable sets included the first principal component 
(Table 2, Supplementary Tables S5, S7). All model 
calibration exercises resulted in at least one model 
that met the three selection criteria. Concave and 
convex Ms in most species produced just one optimal 
parameterization (Supplementary Table S7), which 
was also the case for all M hypotheses of A. californica 
(Table 2). Buffer-derived M areas had one or more 
parameterizations that coincided with those selected 
from simulated Ms of A. ultramarina and A. unicolor.

Geographic patterns of model outputs transferred 
across G depended rather dramatically on the 
hypothesis of M used (Fig.  7, Supplementary Fig. 
S17–19). Although patterns observed cannot be 
generalized, suitable areas (suitability above a 5% 
modified minimum training presence threshold) were 
broader for A. californica and A. ultramarina when 

Table 2. Summary of characteristics and performance of models selected during model calibration, considering distinct 
M areas for the four Aphelocoma species (see additional results in Supplementary Table S7). All models were significant 
(p-value < 0.001, partial ROC test) and had the lowest AICc value among best models in each combination of species and 
M approach. PC = principal components.

Species M hypothesis Regularization 
multiplier

Feature 
classes Variable set Omission rate Parameters

A. californica Convex 0.5 lqp PC: 2, 4, 5 0.048 9
Buffer 2 lqp PC: 1 – 3 0.048 9

Concave 0.1 lqp PC: 1 – 5 0.041 20
Ecoregions 0.1 lqp PC: 1 – 3, 5 0.039 13
Simulation 2 lqp PC: 1 – 4 0.049 13

A. coerulescens Convex 0.1 lqp PC: 1 – 5 0.018 17
Buffer 0.5 lqp PC: 1 – 5 0.028 14

Concave 0.1 lqp PC: 1 – 5 0.037 17
Ecoregions 0.1 lqp PC: 1, 2, 5 0.041 9
Simulations 4 lqp PC: 1, 3, 5 0.046 5

A. ultramarina Convex 0.25 qp PC: 2 – 5 0.039 10
Buffer 0.75 lqp PC: 1 – 4 0.039 13

Concave 0.1 lqp PC: 1 – 4 0.039 13
Ecoregions 1 lqp PC: 1 – 5 0.020 12
Simulations 0.5 lqp PC: 1, 3, 4 0.020 8

A. unicolor Convex 5 lqp PC: 1, 2, 4 0.026 7
Buffer 0.75 lqp PC: 1, 2, 4 0.026 7

Concave 1 lqp PC: 1, 2, 4, 5 0.026 10
Ecoregions 6 lq PC: 2, 4, 5 0.037 4
Simulations 0.5 lqp PC: 1, 2, 4 0.000 8
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using Ms from convex hulls and ecoregions than when 
using other M hypotheses (Fig.  7, Supplementary 
Fig. S17). The same pattern was observed in A. unicolor 
when using the M hypothesis based on ecoregions 
(Supplementary Fig. S19).

In general, simulated M hypotheses identified 
broader areas with risk of strict extrapolation 
(Fig. 8, Supplementary Fig. S20–22). This point was 
especially true for A. coerulescens, for which only 
small areas were detected with the M based on 
ecoregions, and no areas of strict extrapolation were 
identified when using Ms constructed with buffers, 
convex hulls, and concave hulls. However, considerably 
broader areas were noted using the simulated M 
(Supplementary Fig. S21). In the case of A. ultramarina, 
areas of strict extrapolation in the central Caribbean 
coast of Mexico, the Yucatán Peninsula, and southern 
Guatemala were only detected while using our 
approach (Fig. 8). Areas of strict extrapolation were 

considerably reduced for A. unicolor and were null for 
A. californica when ecoregions were used to construct 
M. For A. unicolor, areas of strict extrapolation 
recovered using the simulated M were broader in the 
Florida Peninsula, a region outside of the accessible 
area for the species.

Discussion
The geographic extent and environmental diversity 

of the area across which correlative ENM and SDM 
are calibrated is one of the factors with major 
implications for modeling outputs and, therefore, 
model interpretation. The effects of such areas are 
seen especially in how well predictions fit to the data 
(Anderson and Raza 2010), but also, and depending on 
the response of suitability to distinct variables, in the 
ability of a model to produce appropriate projections 
to distinct environmental scenarios (i.e., model 

Figure 7. Geographic projections of suitability for Aphelocoma ultramarina derived from Maxent models produced with 
selected parameters, using distinct M hypotheses. Models were produced with 10 replicates, cloglog output, and other 
parameters as shown in Table 2. Gray indicates suitable values falling below a modified least training presence threshold of 5%.
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transfer). Barve et  al. (2011)—based on statistical 
and biological implications of such areas—proposed 
that areas for model calibration should reflect a 
region that has been accessible to the species during 
relevant periods of time (M). The latter consideration in 
defining calibration areas is perhaps not yet a universal 
standard, but is increasingly becoming an explicit 
methodological step when using ENM and SDM tools. 
However, approaches to defining M in applications 
so far have been simple, and hypotheses about 
accessibility are usually erected using fixed-distance 
buffers or assumption-based delimitations considering 
known biogeographic barriers (e.g. Boria et al. 2014, 
de Andrade et al. 2020, Romero-Alvarez et al. 2020). 
These approaches have helped to improve model 
quality, but whether the difference between actual 
simulations of accessible areas and simpler hypotheses 
has significant effects on model outputs has not been 
explored until now.

Advantages of the simulation-based approach
Here, we presented a simulation-based method by 

which to define M hypotheses to be used as areas for 
ENM and SDM calibration. Our method reconstructs 
M by considering species’ ability to disperse, as well 
as the geometry, pattern, and dynamics of suitable 
areas, through which we anticipate it could help delimit 
more appropriate M hypotheses. This realism is shown 
when comparing borders and extents of simulated Ms 
with those obtained from other methods, as limits of 
accessible regions from simulations are not always as 
distant from records as borders of other M hypotheses 
based on fixed-distance buffers applied to points or 
hull-polygons—because real-world environmental 
and geographic landscapes are complex, a simple, 
equal-rate spread from known populations is unlikely 
to be realistic.

We emphasize that our approach is desirable 
because it simulates M directly, based on a set of 

Figure 8. Effects of using distinct M hypotheses for Aphelocoma ultramarina on results from mobility-oriented parity 
(MOP) analyses.



Machado-Stredel et al. Simulations for selecting ENM and SDM calibration areas

Frontiers of Biogeography 2021, 13.4, e48814 © the authors, CC-BY 4.0 license  15

biological assumptions rather than on proxies of those 
processes (e.g. a buffer, ecoregions). Our case example 
results illustrated the effect of M characteristics on 
model performance and their outputs. Simulated M 
areas, which were not always smaller than alternative 
M hypotheses (Supplementary Table S3), allowed 
us to obtain models that performed well during 
calibration (i.e., better than random expectations, 
and with omission rates < 0.05), but that we surmise 
did not include distant regions with environments 
that the species has likely never explored. According 
to Peterson  et  al. (2008), partial ROC tests show 
when model predictions are significantly better 
than null random expectations, which was the case 
for all of our selected parameterizations (Table 2). 
In terms of lowest omission rates, the best models 
for A. ultramarina and A. unicolor were produced 
from simulated Ms (see also M based on ecoregions 
for the former species; Table 2).

However, the models that showed lowest omission 
rates for A. californica and A. coerulescens (ecoregions 
and convex hull, respectively) might not be appropriate 
when considering MOP results, since almost no areas 
of strict extrapolation were detected (Supplementary 
Fig. S20–21; see also areas in the Yucatán Peninsula 
and Mesoamerica for A. ultramarina; Fig. 8). We note 
that all correlative models involve some degree of 
model transfer (if only from the sites sampled to the 
more continuous calibration region), and that out-of-
range conditions force models to extrapolate, which 
often leads to interpretations and conclusions that 
lack biological reality (Owens et al. 2013). As such, we 
emphasize the importance of evaluating the potential 
for extrapolation, and of the crucial role that rigorous 
estimation of accessible areas plays in identifying 
such potential.

Overfitting is among the most common issues of 
ENM and SDM, and it can derive from inappropriate 
selection of M areas, producing high omission rates 
and reduced areas of predicted suitability in model 
predictions. Our selection criteria in model calibration 
assures that models were not overfitted (i.e., low 
omission, AICc), at least for the particular M hypotheses 
that we tested (Cobos et al. 2019a). However, some 
predictions obtained with models using Ms from 
other methods appeared to be under-fitted, with 
broader suitable areas than models constructed with 
simulated Ms (Fig. 7, Supplementary Fig. S17, S19). 
Interestingly, some of the distant predicted suitable 
areas obtained with Ms from other methods were 
located in regions that did not show strict extrapolation 
risks in their corresponding MOP analyses. Such 
results—apparently appropriate models based on 
calibration metrics, but under-fitted considering actual 
distributions of species—are predictions that could 
lead to misinterpretation of suitable areas for species 
(Supplementary Fig. S20–21). Extrapolative potential 
hinges on the difference between the accessible area 
and the full area of interest in model development (G) 
through time, such that the M areas reconstructed 
with our simulations are likely to guide this perilous 
step more appropriately.

Aphelocoma jay biogeography
Although we have used the genus Aphelocoma as 

a test case purely out of convenience, as it presents 
well- and poorly-sampled species across a complex 
geographic setting, our simulated Ms offer some 
interesting insights into the geographic history of 
the genus. For A. californica (see Supplementary 
Fig. S3, S7), the Mohave Desert appears to represent 
a more porous barrier for this species than, for 
example, the boreal forest regions to the north of the 
species’ range (e.g. Washington state)— interestingly, 
the species’ M area is broadest toward the east and 
southeast, which indeed is likely the region in which 
this species has most often been found as a vagrant, 
although east-to-west gene flow proved more frequent 
than west-to-east movement across the Mohave Desert 
region (Peterson 1991).

For A. coerulescens, the M area (Supplementary 
Fig. S4, S8) embraced known distributions of the 
species closely, save for a somewhat broader area 
south to the tip of the Florida Peninsula, and north 
to northern Florida or southern Georgia. This species 
is extremely philopatric (Woolfenden and Fitzpatrick 
1984), and probably would be best characterized 
by the low-dispersal scenarios that we explored. 
Nonetheless, this result points to this species as 
geographically isolated, and likely without much in 
the way of broad geographic potential for exploration 
and possible colonization.

The species A. ultramarina sensu stricto (i.e., 
splitting off the 2 or 3 northern populations of 
A. ultramarina sensu lato) is endemic to the 
Transvolcanic Belt of central Mexico. The different 
simulations that we developed (see Supplementary 
Fig. S5, S9) had the interesting quality of anticipating 
greater dispersal capacity and flow to the northwest 
compared to the northeast. This difference coincides 
with at least a few instances of apparent gene flow, 
documented in the last monographic treatment of 
the genus (Pitelka 1951), but this region is woefully 
lacking in sampling intensity.

Perhaps the most interesting of the simulations 
corresponds to A. unicolor (Supplementary Fig. S6, S10). 
This species is restricted to Mesoamerican cloud forest 
patches, and as a consequence has a distribution that 
is highly fragmented. Our simulations suggest that 
populations of this species would have been highly 
connected under Last Glacial Maximum conditions, 
which contradicts recently published indications 
that the different geographic isolates of the species 
are highly differentiated (Venkatraman et al. 2019). 
As such, we suspect that dispersal ability in this species 
is minimal, perhaps even lower than the lowest 
dispersal setting that we explored in our simulations.

In sum, we noted considerable content in the 
outcomes of our simulations that was relevant to 
understanding the biogeography and natural history 
of the Aphelocoma jays. The comparison of the M 
hypotheses with the known distributions, and those 
two with the scanty evidence of gene flow out from 
species’ known breeding distributions is intriguing. 
However, much more sampling is needed if anything 
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quantitative is to be done with the known extralimital 
occurrences, beyond just anecdotal confirmation.

Assumptions and implications
Important assumptions are made when using 

our method to reconstruct M areas. Our simple 
approach to producing interpolations for glacial-
interglacial cycles is not free of subjectivity. These 
interpolations are intended to represent scenarios 
that follow a simple trend (linear) between glacial 
and interglacial conditions; for this reason, they do 
not represent mid-Holocene conditions (for instance) 
as appropriately as variables derived from climatic 
models constructed based on historic climatic and 
geological considerations (e.g. Rangel et  al. 2018). 
In the same sense, better approximations to integrate 
information from Pleistocene interglacials should be 
incorporated. Although other sets of variables could 
be used to represent various scenarios of changing 
conditions, use of past environmental scenarios will 
always be a source of uncertainty.

Another important assumption is the initial 
characterization of the species’ fundamental 
ecological niche (NF) by means of an ellipsoid 
envelope. Although this type of model produces 
convex representations of ecological niches, which 
resemble physiological response curves better than 
more complex shapes (Angilletta et al. 2010), ellipsoids 
constructed based on environmental conditions in 
occurrences are sensitive to multiple biases derived 
specifically from sampling (Jiménez  et  al. 2019). 
We acknowledge that NF cannot be fully represented 
in real world geography (Peterson and Soberón 2012, 
Soberón and Peterson 2020), and that other means to 
estimate it are needed. However, ellipsoid envelope 
models are fit using only data from occurrences and 
do not require a calibration or background area. 
These models are also less sensitive to extrapolation 
risks owing to their convexity; for this reason, we 
consider ellipsoid envelopes to be among the most 
appropriate hypotheses that can be used as a prior of 
the fundamental niche (see also Varela et al. 2011). 
Using three principal components as variables to 
build our ellipsoids aims to reduce dimensionality 
and improve transferability to past climates (Peterson 
2011), but we are working on allowing the use of 
other raw relevant variables in future versions of 
the package (see below). In particular, we caution 
researchers that aim to use our ellipsoid approach 
for species with life history traits that suggest the lack 
of a convex fundamental niche (e.g. annual plants in 
seasonal environments; Soberón and Peterson 2020).

Several studies have focused on incorporating 
dispersal into simulations of range dynamics using 
SDM outcomes or known refugia to define “starting” 
populations in their approaches (Engler et al. 2012, 
Bocedi et al. 2014, Nobis and Normand 2014, but 
see De Marco et al. 2008). In this work, we aim to 
simulate the area of potential dispersal of a species 
to accessible sites incorporating the effects of climate 
along its recent history, that is, the accessible area M, 
which we consider an appropriate calibration extent 

for ENM and SDM. Hence, using outputs from such 
algorithms as inputs in our simulations becomes 
prohibitive. Moreover, we consider that setting 
a single origin (e.g. one glacial refugium) to start 
simulations might be misleading, since for instance, 
not all hypothesized refugia contribute equally to 
postglacial expansions, the existence of cryptic or 
microrefugia has been recognized, and expansions 
might be complex and dependent on species-specific 
responses (Magri et al. 2006, Mee and Moore 2014, 
Pedreschi et al. 2019). Initially, we intended to use 
single occurrences as “starting” populations in each 
replicate, but as it can be expected, the place of origin 
had a considerable effect on the simulation outcome 
(Supplementary Fig. S23; see also low variance of 
simulations in Supplementary Fig. S14). Thus, we 
think that assuring that a species started spreading 
from one site in the face of climate change can be 
difficult, unless its history is well documented and/or 
there is evidence that the speciation event occurred 
in such site, which we are limited to assess in most 
instances.

Fossil occurrences represent an invaluable resource 
and a viable alternative for selecting “starting” 
populations, since they can depict a preliminary 
view of past species distributions (Varela et al. 2011). 
Although the fossil record has strong biases across 
time, geography, and taxonomic groups, as well as 
other potential issues that might limit its use in our 
approach (see Fernández-Jalvo et al. 2011, Varela et al. 
2011), we are working into incorporating user-defined 
“starting” populations into grinnell. This option will 
serve researchers counting with robust evidence of 
species limited to one or a few sets of regions in the 
past.

The Grinnellian fundamental niche holds the 
conditions in which populations have a positive intrinsic 
growth rate (i.e., source populations; Soberón 2007), 
and can serve as a link between the present and past 
distributions of a species if it remains conserved. 
Our ability to travel back in time and study past 
distributions is constrained by when such signals start 
to fade (e.g. niche evolution; see Lee and Gelembiuk 
2008). Having an estimate of the fundamental 
niche, one might assume that sites in which source 
populations are maintained in the present (inside NF), 
have a higher probability of being past populations, if 
past conditions in those sites have remained inside NF. 
Therefore, in our research we have selected subsets of 
present occurrences per replicate, that are inside an 
NF estimate and occupy suitable cells to simulate an 
area of potential dispersal. We recognize that better 
approximations can be taken (see future directions 
below), but we think that is more appropriate to 
consider the potential history of populations in several 
suitable points from past climates, than to assume a 
single origin of dispersal.

Using only climatic raster layers in these simulations 
allows us to consider past climatic scenarios. However, 
dispersal-limiting factors may not always be related 
exclusively to climate (e.g. Pickering et al. 2011, Cobos 
and Alonso Bosch 2018). For instance, one might 
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consider specific soil conditions that could prevent 
establishment of a species of plant even if appropriate 
climatic conditions are present (see Velazco et  al. 
2017). Other factors that could potentially prevent 
dispersal to and colonization of new areas include 
biotic interactions (Russo  et  al. 2006). Although 
the role of biotic interactions in defining species’ 
distributional limits has been argued to be minor 
because it often occurs at more local scales than other 
macroecological processes (Soberón 2007; but see, 
e.g. Wisz et al. 2013, Atauchi-Rojas et al. 2018), some 
key interactions could definitely influence the ability 
of populations to persist in certain places without 
migrational subsidies (e.g. Adams‐Hosking  et  al. 
2012, Newsome et al. 2017).

Future directions
Defining an M area that indeed approximates 

the geographic region that has been accessed by a 
species during relevant periods of time is a challenging 
endeavor, since M cannot actually be predicted, and 
no “truth” is likely ever to be available. Many aspects 
of the ecology, natural history, and geography of a 
species play roles in delimiting this area. Our simulation 
approach considers some of these aspects (e.g. suitable 
environmental conditions and dispersal ability) as part 
of the parameter settings that users define. However, 
defining appropriate values for those parameters is 
not an easy task, and even experts with substantial 
knowledge in a group of taxa could find these decisions 
to be challenging and subjective. We understand the 
subjectivity of defining some parameters, but argue 
that informed decisions (“educated guesses”) can be 
made when the ecology and natural history of a species 
are understood, and effects of changing parameters 
on simulation outcomes can be assessed through 
sensitivity analysis.

The number of dispersal events is a parameter 
that ought to have significant implications on results 
from simulations, but once this number is sufficient 
to allow exploring most reachable areas—as in our 
examples—its effect on results in our simulation 
framework is not dramatic (see stabilization below). 
The dispersal distance is extracted from kernels that 
should be selected based on the natural history of the 
study species. In that sense, we recommend choosing 
standard deviation values considering the spatial 
resolution of the study area and the information 
available on the species’ dispersal ability. Moreover, 
the maximum number of dispersers depends on 
the relationship between the fundamental niche 
and population fitness, but likely also on frequency-
dependent processes that are not considered within 
our approach yet, such that the effect of this parameter 
in the characteristics of simulated Ms remains to be 
tested.

Our approach certainly constitutes a work in 
progress, but we consider it a step forward in improving 
niche and distribution modeling methodologies. 
Some future steps for improving the current method 
include: (1) allowing use of different approaches 
and/or variables for fundamental niche estimation; 

(2) incorporating additional past climate layers to 
generate transitional scenarios, rather than just an 
interpolation between LGM and present climate 
layers; (3) improving how biogeographic barriers are 
considered in simulations; (4) identifying time points 
when accessible areas reach stabilization; (5) adding 
analyses of sensitivity to parameterizations; (6) adding 
functionalities for asymmetric dispersal patterns; and 
(7) general optimization of the software for faster 
processing.

To our knowledge, this paper presents the first 
simulation-based method to define calibration 
areas for ENM and SDM, for which we consider it 
a relevant contribution to the field of distributional 
ecology. The set of all sites ever accessed by a species 
across G is probably not knowable. However, our 
simulations constitute a method that summarizes 
a set of sites that have or have not been accessible 
to the species, over relevant periods of time. 
These sites represent an approximation to the M 
in the BAM framework, and as such offer a refined 
approach to choosing areas for model calibration in 
ENM and SDM applications. These simulation-based 
areas take into consideration the natural history of 
the species in question, the geography across which 
it is distributed, and the environmental variation 
across that area—as such, they lend to more 
rigorous contrasts in model fitting, as well as more 
realistic characterization of the potential for model 
extrapolation. Thus, we offer this methodology as 
an integral initial step in preparing for calibration 
of ecological niche models and species distribution 
models.
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