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ABSTRACT OF THE DISSERTATION 

 

Singularities of non-Hermitian Photonic Systems and their Applications 

 

by 

Ashok Kodigala 

Doctor of Philosophy in Electrical Engineering (Photonics) 

University of California, San Diego, 2017  

 

Professor Boubacar Kanté, Chair 
 

 

The following dissertation focuses on a new class of devices based on singularities 

of non-Hermitian photonic systems for applications pertaining to sensing and lasing. These 

are systems with electromagnetic resonances that exhibit peculiar behavior. One in which 

multiple resonances of shared symmetry coalesce to form so called Exceptional Point (EP) 

singularities. Systems at EPs are known to be highly sensitive to environmental 

perturbations making them conducive for sensing applications. The first half of this 

dissertation is centered on investigating resonance dynamics of plasmonic nanostructures, 

comprised of metallic nano-particles, as they have the ability to confine light to an 

extremely small space (i.e. sub-wavelength) which in turn helps detect particles of 



 

 

 xvii 

equivalent size. Herein, a framework for designing EPs in coupled metallic nano-particle 

arrays is presented. The latter half is centered on another type of peculiarity in which a 

resonance lifetime in a cavity diverges to infinity (i.e. infinite quality factor). These are 

resonance states that defy conventional wisdom by remaining localized, or bound, to a 

cavity while residing in a continuum of radiating or leaky states. These singularities are 

appropriately termed Bound States in the Continuum (BICs). This dissertation presents the 

first experimental demonstration of a BIC laser. It is constructed on a III-V semiconductor 

material platform (InGaAsP) which emits in the telecommunication band (~1.55 μm) and 

operates at room temperature. This laser is intrinsically low threshold (i.e., power efficient) 

and can be compact in size. It offers some unique and useful properties in terms of its 

tunability in emission wavelength and emission angle. It has the ability to naturally 

generate vector beams and the potential for high-power emission. A brief discussion on 

challenges to real-world applications is provided for these technologies. 

 

  



1 

 

Chapter 1  

 

Introduction 

Most physical systems are open or non-conservative in nature meaning they are 

free to exchange energy with their environment in the form of radiation and absorption. 

This is in contrast with closed systems where energy remains in the system and the system 

deemed conservative. Resonances of open and closed systems can be modeled with a 

Hamiltonian formalism from non-Hermitian quantum mechanics [1, 2]. In Hermitian or 

closed systems, eigenmodes do no decay and their eigenvalues are real. However, in non-

Hermitian or open systems, eigenmodes can decay or grow and consecutively their 

eigenvalues are complex [1]. It is the singularities or peculiar behavior of these non-

Hermitian systems that are primarily of interest as they yield interesting applications for 

sensing and lasing. Two such singularities called Exceptional Points (EPs) and Bound 

States in the Continuum (BICs) described below are the focus of this dissertation.  

1.1 Exceptional Points (EPs) 

EPs are special singularities of systems described by non-Hermitian Hamiltonians. 

At an EP, at least two eigenfrequencies and their corresponding eigenstates truly coalesce 

to become one [3, 4]. EPs are ubiquitous in physics, having been demonstrated in various 

fields such as quantum mechanics, acoustics, and photonics. They are highly sensitive to 
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external perturbations as even a minute variation will lift the degeneracy and cause splitting 

of both resonant frequencies and linewidths. As such, EP based nanophotonic devices are 

highly conducive for sensing applications with enhanced sensitivity [5]. Recent 

experimental demonstration of EPs on nanophotonic platforms such as whispering gallery 

mode micro-toroid cavities [6] and micro-ring resonator systems [7] has energized the 

topic. However, an experimental realization of an EP in a plasmonic platform is yet to be 

done. Sensing with plasmonics, or metallic nano-particles, can benefit from large field 

enhancements and the ability to control light at a sub-wavelength scale. The work presented 

in the first half of this dissertation explores a plasmonic shift-bar system, originally used 

for the demonstration of negative refraction or negative index media [8, 9], as the basis for 

plasmonic EPs for sensing.  

1.2 Bound States in the Continuum (BICs) 

Different from EPs, BICs are peculiar states that manifest themselves as resonances 

that do not decay. These resonances defy conventional wisdom as they remain confined, 

or bound, to a cavity while residing in a continuum of radiating or leaky states. They were 

first explored mathematically by von Neumann and Wigner in 1929 at the advent of 

quantum mechanics [10]. Since then BICs have been shown to occur in physical systems 

in many areas of physics including acoustics, microwaves and very recently in photonics 

[11-13]. BIC cavities are intrinsically high quality (Q) factor cavities have the potential to 

function as laser cavities. However, they were strictly limited to passive systems and have 

not been realized in active systems for lasing until the work in this dissertation. The 

inspiration for our work started with investigation of resonances in high-permittivity 
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subwavelength dielectric cylindrical resonators in the microwave domain [14, 15]. The 

lasers experimentally demonstrated here are based on resonance trapped BIC modes 

different from symmetry protected BICs, both of which exist in photonic crystal slabs [16, 

17]. These resonance trapped BIC lasers are constructed on a III-V semiconductor material 

platform (InGaAsP) and are optically pumped. They emit in the telecommunication band 

(~1.55 μm) and operate at room temperature. The remaining half of this dissertation 

explores BIC lasing cavities and their unique properties. 

1.3 Outline of Dissertation 

This dissertation work focuses on the two singularities as described above and is 

organized as follows. Chapter 2 provides an in-depth background for describing open 

systems with Hamiltonian formalism derived from Coupled Mode Theory (CMT) and non-

Hermitian quantum mechanics in the context of exploring hybridized plasmonic 

resonances of the shift-bar system. Chapter 3 judiciously builds on this and explores EPs 

and their properties in more complicated plasmonic structures. Chapter 4 is an extensive 

study on single-mode resonance trapped BIC lasers and their properties with details on 

experimental characterization and results. Chapter 5 follows up with the fabrication details 

of these suspended membrane BIC lasers and its challenges. Lastly, in Chapter 6, I discuss 

future research directions as it pertains to EPs and BICs while summarizing the present 

work. 
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Chapter 2  

 

Resonance Dynamics of Plasmon 

Hybridized Systems 

2.1 Introduction 

Over the past decade, there has been considerable interest and progress in the field 

of plasmonics. Primarily, the focus has been in realizing devices that levy plasmonics’ 

ability to manipulate light at a sub-wavelength scale. These devices have enabled a wide 

range of applications spanning plasmon-lasers [1], amplifiers [2], sub-wavelength imaging 

[3], enhanced photovoltaics [4], and chemical and biological sensing [5]. Resonances are 

an integral part of said devices and control over them will propel the next wave of 

plasmonic technology. Usually, the approach to analyzing plasmonic resonances, which is 

inspired by Lorentzian resonances, is to locate the peaks and troughs of transmission and 

reflection spectra. However, this approach fails for the general case of non-symmetric or 

Fano resonances [6], especially if there are overlapping resonances [7]. Naturally, the 

question arises as to how resonances can be quantitatively observed. 

In this chapter, we model resonances in a plasmonic system by using a formalism 

similar to that of the effective Hamiltonian formalism from non-Hermitian quantum 

mechanics [8, 9]. In electromagnetism, it has been derived within the framework of 

Coupled Mode Theory (CMT) [10, 11]. The model system we study has resonances that 
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arise from strong coupling between closely packed particles and can be understood 

intuitively as plasmon hybridization [12, 13]. By computing the complex poles of the 

scattering matrix, we obtain a quantitative estimate of both resonance frequencies and 

linewidths corresponding to the real and imaginary terms respectively. As such, we are 

able to track the evolution of these resonances in the complex plane during the 

hybridization process. We thoroughly investigate a specific system comprising two 

coupled plasmonic bars and demonstrate that it supports an inverted hybridization scheme. 

The effective Hamiltonian model is used to identify a negative coupling regime that is at 

the origin of this hybridization inversion.  

2.2 Effective Hamiltonian 

 We introduce a form of the scattering matrix borrowed from CMT and non-

Hermitian quantum mechanics as the basis for analyzing Fano resonances of an optical 

resonator (see Figure 2.1) [8, 10, 11, 14]. In this formalism, plasmonic resonators are free 

to interact with their environment via radiation and such systems are commonly referred to 

as being open. Hence, a closed resonator by itself may be viewed as being in constant 

feedback with its environment. Scattering parameters of the full system can be represented 

as a superposition between a feedback term which includes the resonances of interest and 

a background term, C, as written in Equation (1) and schematically drawn in Figure 2.1b.  

𝐒 = 𝐂 + 𝑗𝐕[𝜔𝐈 − 𝐇𝐞𝐟𝐟]
−1𝐕† (1) 

Here, C is a background scattering matrix accounting for resonances away from the 

frequency range of interest [10, 11, 14, 15]. V is a complex coupling matrix that captures 
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the interaction between the environment and the resonator. Lastly, Heff is an effective 

Hamiltonian matrix that describes individual resonances that are simultaneously coupled 

to each other and the environment. This effective Hamiltonian term can be decomposed 

into two primary components [16], -- one describing the discrete resonator states, H0, -- 

and another describing the coupling between discrete states and the environment 

(continuum), VV†, as shown in Equation (2). 

 
Figure 2.1: (a) Two-port schematic of an optical resonator system with S+ (incoming 

waves) and S- (outgoing waves). (b) Block diagram representation of the scattering matrix 

in terms of the effective Hamiltonian, Heff, background term, C, coupling matrix, V, and 

its conjugate transpose. The scattering matrix is abstractly represented as a superposition 

of background term and a resonator system that is in constant feedback with the 

environment.

𝐇𝐞𝐟𝐟 = 𝐇𝟎 + 𝑗
1

2
𝐕𝐕† + 𝑗𝚲L 

 

(2) 

The third term, jΛL, in the equation represents extraneous losses. In our case, this 

term mostly accounts for plasmonic losses. H0 is an n×n Hermitian matrix with ‘n’ being 

the number of resonances. V is an n×m coupling matrix with ‘m’ representing the number 

of ports (decay channels) making the second term, (j/2) VV†, an n×n anti-Hermitian matrix. 

Collectively, this makes the effective Hamiltonian a non-Hermitian matrix with complex 

eigenvalues signifying the location of resonance frequencies and their respective 

linewidths (decay rates).  
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 Equation (1) can be appropriately rewritten in rational form where it can be seen at 

once that the complex poles of the scattering matrix are also the eigenvalues of the effective 

Hamiltonian, Heff (see Eq. (3)).  

𝑆𝑛𝑚 = 𝐶𝑛𝑚 + 𝑗∑
⟨Ѱ𝑛|𝐕|Ѱ𝑘⟩⟨Ѱ̃𝑘|𝐕

†|Ѱ𝑚⟩

𝜔 − 𝜔𝑘
𝑘

 
(3) 

Here, ωk are the eigenvalues of Heff and Ѱ𝒌 , Ѱ̃𝑘  are the eigenvectors of Heff and its 

conjugate transpose [9]. 

2.3 Mode Symmetries of Hybridized Shift-bar System 

The plasmonic system based on coupled identical gold bars, depicted in Figure 

2.2(a), is considered. The dimensions of a single bar are chosen such that the dipolar 

resonance resides in the optical domain at a wavelength of 1.55 µm. The reconfigurability 

and controllability of coupling parameters in such systems have proven advanced 

opportunity in resonance tuning beyond the capability of isolated antennas [17]. Pairing 

gold bars in close proximity hybridizes their plasmon modes into modes of opposite 

symmetries with current oscillating in-phase (symmetric) and out-of-phase (anti-

symmetric). The spectral locations of these symmetric and anti-symmetric resonances can 

be tuned by spatially translating one bar in relation to its counterpart. Such a hybridization 

scheme has previously been used to demonstrate negative refraction [18, 19], but the 

quantitative description of resonance dynamics remains unexplored.   

  We consider the unit cell of an array consisting of paired gold bars separated by a 

thin silicon dioxide spacer as illustrated in Figure 2.2. An incident plane wave with the 

electric field parallel to the length of the bars is used to excite the system. 
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Figure 2.2: (a) Physical setup of paired gold bars separated by a dielectric (SiO2) spacer 

with dimensions: L=450 nm, W=50 nm, t=40 nm, py=400 nm, ϵsub=2.25 (permittivity of 

oxide), and variable parameter: hsub, px, dx. The gold bars are described using the Drude 

model with a plasma frequency (ωp=1.367x1016 rad/sec) and collision frequency 

(ωc=6.478x1013 rad/sec) based on values from Reference 20. (b) Energy-level diagram 

describing the plasmon hybridization in the shift-bar system with modes: ω+ (Symmetric) 

and ω- (Anti-symmetric). ω1 and ω2 are the decoupled resonances of each bar. 

2.4 S-Parameters and Rational Fitting 

We compute the scattering parameters using full-wave finite-element simulations 

and observe two resonances. The resonances we observe share an asymmetric line-shape 

characteristic of Fano resonances [6, 21]. In general, Fano resonances occur as a result of 

interference between a narrow resonance and a broader continuum. Due to the asymmetric 

line-shape of a Fano resonance, it is difficult to pinpoint a resonance frequency and its 

linewidth from transmission and reflection spectra. To clarify this, we provide here the 

expressions capturing Fano behavior for reflection, |S11|
2, and transmission, |S21|

2, spectra 

derived from CMT pertaining to a single resonance and single continuum [11, 15].  

|𝑆11(𝜔)|
2 = |𝑟|2

|𝐸 ± 1/𝑞|2

𝐸2 + 1
 

(4) 

|𝑆21(𝜔)|
2 = |𝑡|2

|𝐸 ∓ 𝑞|2

𝐸2 + 1
 

(5) 

Here, E is the reduced energy (E = (𝜔 − 𝜔0) 𝛾0⁄ ), q is the asymmetry parameter (𝑞 =

𝑟 𝑡⁄ ), ω0 is the resonant frequency, γ0 is the linewidth, with r and t denoting the complex 
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background reflection and transmission coefficients respectively. For cases when q is either 

zero or infinity, the line-shape is symmetric and Lorentzian. When q is between zero and 

infinity, the line-shape is asymmetric for a single resonance. From the above equations, we 

see that the transmission tends to zero when ω=ω0±γ0q and the reflection is zero when 

ω=ω0∓γ0/q. As such, it can be clearly seen that the resonance information cannot be 

inferred from the peaks and troughs of transmission and reflection spectra when the 

resonance is asymmetric. Besides, this is insufficient for cases with multiple resonances as 

is the case for our plasmonic system.  

In our system, the quantitative values of the two resonance frequencies and their 

respective linewidths are not immediately apparent. The scattering amplitude matrix 

provides information on the frequency evolution of transmission and reflection coefficients 

which are fitted by a rational function of the form given by Eq.(6), based on Eq.(3). The fit 

yields complex poles corresponding to the symmetric, ω++jγ+, and anti-symmetric, ω-+jγ-

, modes as well as background poles in Sb. The real and imaginary parts of the complex 

poles indicate the resonant frequencies and linewidths respectively.  

𝑆𝑚𝑛(𝜔) =
𝑐+

𝜔 − (𝜔+ ± 𝑗𝛾+)
+

𝑐−
𝜔 − (𝜔− ± 𝑗𝛾−)

+ 𝑆𝑏 (6) 

 

Figure 2.3 and Figure 2.4 show the excellent fit of scattering parameters with rational 

functions, yielding reliable values for the resonance frequencies and linewidths. Note that 

the extracted poles affiliated with the resonances are the same for both transmission, |S21|
2, 

and reflection, |S11|
2.  
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Figure 2.3: Simulated transmission, |S21|

2, and reflection, |S11|
2, spectra (solid curve) and 

their rational fits (dots) for px=800 nm, hsub=100 nm, and dx=0. ω- and ω+ are the resonant 

frequencies of the anti-symmetric and symmetric modes in that order indicated here by 

dashed vertical black lines. γ- and γ+ are the corresponding linewidths. The resonance 

information extracted is as follows: ω-=149.6 THz, γ-= 9.8 THz, ω+=252.5 THz, γ+= 97 

THz. 

 
Figure 2.4: Simulated absorption, 1-|S11|

2-|S21|
2, spectra (solid curve) and its rational fit 

(dots) for the case above: px=800 nm, hsub=100 nm, and dx=0. 
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This method of tracking resonance behavior is general and is not limited to the shift-

bar system and can be readily applied in situations involving more complex geometries 

such as dimers, core-shells, and other systems [12, 13, 22]. This method should be used for 

resonances away from any diffraction thresholds arising from the periodicity. The 

structures need not be of sub-wavelength dimensions to apply this method, i.e., it is valid 

in between diffraction thresholds [23]. This convenient technique will be used to study the 

dynamics of resonances for the shift-bar system as physical parameters such as the x-shift, 

dx, oxide thickness, hsub, and x-periodicity, px, are varied. 

2.5 Inversion Point and Degree of Inversion 

Using the model previously presented, we examine the effect of shifting a bar in 

the x-direction on the symmetric and anti-symmetric resonances. We note that such 

symmetry-breaking has not been quantitatively studied so far. Initially at no-shift, the 

symmetric mode resides at a higher energy (higher frequency) due to repelling forces and 

the anti-symmetric mode is at a lower energy (lower frequency) as a result of attractive 

forces (see Figure 2.2(b)). As the setup is modified by shifting one bar, the initial 

symmetry, along the plane bisecting the thickness of the substrate, is broken [18, 24, 25]. 

The degree to which this symmetry is broken between the bars determines the strength of 

the Coulomb forces pertaining to the two plasmon modes. As one of the bars is 

progressively displaced, the repelling forces associated with the symmetric mode weaken 

and at some point become attractive. Similarly, the attractive forces relating to the anti-

symmetric mode weaken to become repulsive. This is clearly observed in Figure 2.5(b) 

where the frequency of the high frequency resonance, ω+, decreases with increasing shift, 
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dx, and the frequency of the low frequency resonance, ω-, increases with shift. In the 

following, the point at which the two resonances cross will be termed the ‘inversion point’ 

and the difference between the resonant frequencies (Δω=ω+-ω-) referred to as the ‘degree 

of inversion’. 

 
Figure 2.5: Reflection spectra, |S11|

2, as a function of shift ‘dx’ for px=900 nm and hsub=75 

nm (a) and corresponding resonant frequencies acquired via rational fitting (b). The inset 

plot indicates the degree of inversion, Δω, at dx=px/2 as a function of periodicity and oxide 

thickness, hsub=100 nm (cyan), 75 nm (green), 50 nm (magenta). Positive Δω indicates the 

resonances have not crossed and negative means they have crossed to reach inversion. The 

inset shows that inversion is not always achieved. See Appendix A for full scattering 

parameters and inversion computation.  

Figure 2.5(a) is a color plot of the reflection spectra, |S11|
2, as a function of the shift, 

dx. The locations of the resonance frequencies, corresponding to either the symmetric or 

anti-symmetric modes, are not easily discernible. Discerning the resonance frequency for 

the symmetric mode is particularly difficult due to its broader nature. Therefore, by 

employing the previously outlined rational fitting scheme, we can quantitatively track the 

resonances. The results are presented in Figure 2.5(b). It is worth noting here that the 

resonances exhibit periodic behavior with dx due to the periodicity, px, of structure under 
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consideration. The plot in Figure 2.5(b) is symmetric along the point dx=px/2 just as the 

physical geometry is symmetric with respect to a shift of px/2. Hence, the periodicity in the 

x-direction has an influence on the maximum degree of inversion as does the substrate 

thickness, hsub. Reducing the substrate thickness increases the near-field coupling between 

the bars thereby increasing the likelihood of achieving inversion as shown in the inset of 

Figure 2.5(b). For a substrate thickness of 100 nm, the inversion is either inconspicuous or 

nonexistent as a consequence of a weaker near-field coupling compared to thicknesses of 

75 and 50 nm. The inversion is thus a consequence of near-field coupling and also depends 

on the x-periodicity of the unit cell. Once the resonance frequencies are extracted for a 

certain parameter space as seen in Figure 2.5(b), we are able to choose a distinct dx 

parameter value in order to tailor the resonance frequency of the shift-bar system. 

2.6 Static Dipole Approximation 

Thus far, we have analyzed the resonant behavior of the shift-bar system in the 

context of scattering parameters. We may also view these bars as interacting static dipoles 

with finite dipole moments. This approximation can be made due to the particles’ sub-

wavelength dimensions. The length of a bar is a third of the free-space wavelength, i.e. 

L=~λ0/3. We now consider a pair of static and point-like dipoles as a substitute for gold 

bars. The interaction energy between them can be written as 

𝑊12 =
𝑝1 ∙ 𝑝2 − 3(𝑛 ∙ 𝑝1)(𝑛 ∙ 𝑝2)

4𝜋𝜖0|𝑥1 − 𝑥2|3
 

(7) 

where p1, p2 are the individual dipole moments and x1, x2 are the position vectors from the 

origin, and n is the unit normal vector pointing in the direction of x1-x2 [26, 27]. The 
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interaction energies for the symmetric and anti-symmetric cases are plotted in Figure 2.6(a) 

as a function of shift, dx. The symmetric case describes like dipoles pointing in the same 

direction and the anti-symmetric case describes like dipoles pointing in opposite directions 

with dipoles separated by distance, d, in both cases. The energies are greatest when both 

dipoles are aligned, and they approach each other eventually crossing before reaching a 

maxima. After the maxima, they slowly asymptote to zero as the two dipoles grow farther 

apart. A similar situation arises when we consider a finite array (N-by-N) of dipoles 

arranged into two sheets also separated by distance, d, as seen in Figure 2.6(b). Here, the 

interaction energy is calculated in the perspective of the center dipole of a single sheet as 

described by Equation (8).  

𝑊1_𝑡𝑜𝑡𝑎𝑙 =∑ 𝑊1𝑛
𝑁2

𝑛=2
+∑ 𝑊1𝑘

𝐾2

𝑘=1
 

(8) 

The first term is the sum of all in-plane dipole interactions and the second term captures 

the out-of-plane interactions. The energies plotted in Figure 2.6(b) for an array size of 9x9 

as a function of shift, dx, clearly show the periodic nature of the system. The tail asymptote 

here occurs as a consequence of a shift larger than half the sheet length when the center 

dipole is no longer in close proximity with a dipole in the adjacent plane. Note that this 

asymptotic tail is not observed for an infinite array when N approaches infinity. 
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Figure 2.6: (a) Interaction energy between two dipoles in the symmetric and anti-symmetric 

configuration.(b) Interaction energy for symmetric and anti-symmetric case seen by center 

dipole embedded in the first sheet of NxN array of dipoles with N=9, px=6, py=12, d=1, 

and dipole moments of unit magnitude. The insets portray a schematic view of different 

dipole configurations. 

The behavior of the interaction energies in the inversion region is also of interest. 

For an array, the interaction energies reach their respective maxima before declining 

similar to the two-dipole scenario. The energies start approaching a local asymptote within 

the inversion region if the x-periodicity is large. The asymptotic behavior within the 

inversion region in an ensemble of interacting static dipoles is reminiscent of our original 

shift-bar system with a large x-periodicity, px. However, if the periodicity is small, the 

energies do not reach their absolute maxima and in extreme cases inversion is not achieved.  
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Figure 2.7: (a) Evolution of resonant frequencies as a function of shift, dx, with linewidths 

pertaining to (b) symmetric and (c) anti-symmetric modes for shift-bar system with 

dimensions px=1000 nm and hsub=50 nm. The dotted line indicates the uncoupled resonance 

frequency at 198.5 THz. See Appendix A for full set of complex eigenvalues.  

We show in Figure 2.7 the resonant frequencies and linewidths for the shift-bar 

system with a large x-periodicity of 1000 nm. In the inversion region, we noticeably 

observe that the resonance frequencies approach a local asymptote after reaching their 

maxima in a manner similar to the static dipole model. The linewidth of the symmetric 

mode is an order of magnitude greater than that of the anti-symmetric mode. We note that 

a pair of anti-symmetric dipoles has a combined dipole moment that is zero whereas the 

symmetric pair has a combined moment that is additive and non-zero. Therefore, 

considering dynamic effects, the symmetric mode corresponding to the symmetric dipole 

pair will strongly radiate into the continuum thus exhibiting a broad Fano resonance. 

Conversely, the anti-symmetric mode will be sub-radiant and will have a much narrower 

Fano resonance. A more rigorous dynamic model, considering retardation effects, of the 

shift-bar system would be needed to capture some of the asymmetries that the static dipole 
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model does not explain. At optical frequencies, retardation effects play an important role 

in determining resonances due to the large size of structures [28].  

2.7 Negative Coupling Regime 

The shift-bar systems can also be described by expanding the effective 

Hamiltonian, Heff, in Equation (2) to a 2x2 matrix given by Equation (9). Here, ω1 is the 

resonant frequency of a single gold bar, κ is the complex coupling constant between the 

two bars, γ1 and γ2 are the diagonal terms of VV+ matrix, γ0 and its conjugate are the cross 

terms. Lastly, γ1L and γ2L are the extraneous material losses.  

𝐇𝑒𝑓𝑓 = [
𝜔1 𝜅
𝜅∗ 𝜔1

] +
𝑗

2
[
𝛾1 𝛾0
𝛾0
∗ 𝛾2

] + 𝑗 [
𝛾1𝐿 0
0 𝛾2𝐿

] 
(9) 

Starting with a simple but periodic form for the coupling constant, κ, described in Equation 

(10), we compute the eigenvalues of the effective Hamiltonian. The coupling constant is 

taken to be periodic as we expect resonances to be periodic with shift, dx. We assume the 

following modulation for κ:  

𝜅 = 𝜅0 + 𝛽 cos (
2𝜋

𝑝𝑥
𝑑𝑥) 

(10) 
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Figure 2.8: (a) Resonant frequencies of shift-bar system acquired via rational fitting (dots) 

and resonant frequencies from Hamiltonian Model (solid) for the symmetric (red) and anti-

symmetric (blue) modes. (b) Coupling constant, κ, in green used to compute the resonant 

frequencies with parameters: px=900 nm, hsub=100 nm, κ0=132, β=153, and ω1=195 THz. 

The vertical dotted lines denote the zero-crossing points for κ. 

The resonant frequencies extracted by rational fitting to the scattering parameters 

are superimposed with resonant frequencies computed using the Hamiltonian model as 

seen in Figure 2.8(a). There is good agreement between the two. Results in the figure show 

that the coupling constant is negative within the inversion region which is indicative of an 

inverted plasmon hybridization [24]. This behavior is typical of coupled electric dipoles 

and can thus be expected to hold for many different plasmonic resonators around their 

electric dipole resonance. The shift-bar system described above was experimentally 

realized on a glass substrate and is in agreement with the predictions (see Reference 29). 

2.8 Concluding Remarks 

In this chapter, we have demonstrated that the effective Hamiltonian formalism can 

be used to explain the negative coupling behavior within the inversion region for our 
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plasmonic shift-bar system. Due to a strong dependence on near field interactions, the 

inversion is contingent on the periodicity and substrate thickness. To this end, we employed 

a static dipole approximation to provide an intuitive description of the effects of periodicity 

on interaction energies. For large periodicities, we find the energies approach a local 

asymptote within the inversion region and small periodicities may not achieve inversion. 

The degree of inversion and the location of the inversion point are easily and widely tuned 

by varying the periodicity, substrate thickness, and shift. Hence, resonances in the shift-

bar system are highly tunable. Additionally, we experimentally and quantitatively show the 

inversion of the two fundamental resonances. Moreover, we accurately extracted resonance 

information, both resonant frequencies and linewidths, solely from experimental and 

numerical scattering parameters. The quantitative approach to extracting complex poles 

presented here can be generalized to any system exhibiting asymmetric Fano resonances. 

This powerful approach is still valid for cases with multiple overlapping resonances. 

Therefore, this work will greatly enhance the ability to engineer resonances of future 

plasmonic devices. Lastly, the work presented in this chapter serves as the groundwork for 

a more complex plasmonic system studied in Chapter 3 that has great potential for sensing 

applications.  

 

Chapter 2, in part, is a reprint of the material as it appears in A. Kodigala, T. Lepetit, 

and B. Kanté, "Engineering resonance dynamics of plasmon hybridized systems," Journal 

of applied physics 117, 023110 (2015). The dissertation author was the primary researcher 

and author of this paper. 



22 

 

 

 

References 

1. R-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub 

diffraction-limited plasmon laser by total internal reflection,” Nature Mater. 10, 110 

(2011).  

2. P. Berini, and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nature 

Phot. 6, 16 (2012).  

3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, 

“Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193 

(2010).  

4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature 

Mater. 9, 205 (2010). 

5. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and Harald Giessen, “Three-

Dimensional Plasmon Rulers,” Science 332, 1407 (2011).  

6. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. 

Rev. 124, 1866 (1961). 

7. S. Klaiman, and N. Moiseyev, “The absolute position of a resonance peak,” J. Phys. B: 

At. Mol. Opt. Phys. 43, 185205 (2010). 

8. N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, 

United Kingdom 2011). 

9. F-M. Dittes, “The decay of quantum systems with a small number of open channels,” 

Phys. Rep. 339, 215 (2000). 

10. W. Suh, Z. Wang, and S. Fan, “Temporal Coupled-Mode Theory and the Presence of 

Non-Orthogonal Modes in Lossless Multimode Cavities,” IEEE J. Quant. Electron. 40, 

1511 (2004). 

11. S. Fan, W. Suh, and J.D. Joannopoulos, “Temporal coupled-mode theory for the Fano 

resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569 (2003). 

12. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, “Plasmon Hybridization 

in Nanoparticle Dimers,” Nano Lett. 4, 899 (2004). 

13. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the 

Plasmon Response of Complex Nanostructures,” Science 302, 419 (2003). 

14. J. P. Hespanha, Linear Systems Theory (Princeton University Press, New Jersey 2009). 



23 

 

 

 

15. T. Lepetit, E. Akmansoy, J.-P. Ganne, and J.-M. Lourtioz, “Resonance continuum 

coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82, 195307 

(2010).  

16. H. Feshbach, “Unified theory of nuclear reactions,” Ann. Phys. 19, 287 (1962).  

17. L. Novotny and N. Van Hulst, “Antennas for light”, Nature Photon. 5, 83 (2011). 

18. B. Kanté, S.N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, “Controlling 

Plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79, 075121 

(2009). 

19. V. M. Shalaev, W. Cai, U. K. Chettiar, H-K. Yuan, A. K. Sarychev, V. P. Drachev, and 

A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 

3356 (2005).  

20. P. B. Johnson and R. W. Christy, “Optical Constant of the Noble Metals,” Phys. Rev. 

B 6, 4370 (1972).  

21. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, 

and C. T. Chong, “The Fano resonance in plasmonic nanostructures and 

metamaterials,” Nature Mater. 9, 707 (2010). 

22. J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. 

Nordlander, G. Shvets, F. Capasso, “Self-Assembled Plasmonic Nanoparticle 

Clusters,” Science 328, 1135 (2010).  

23. N. A. Gippius, T. Weiss, S. G. Tikhodeev, and H. Giessen, “Resonant mode coupling 

of optical resonances in stacked nanostructures,” Opt. Exp. 18, 7569 (2010).  

24. B. Kanté, Y.-S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, 

X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed 

nanorings,” Nat. Commun. 3, 1180 (2012). 

25. A. Christ, Y. Ekinci, H. H. Solak, N. A Gippius, S. G. Tiknodeev, and O. J. F. Martin, 

“Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) 

(2007). 

26. J. D. Jackson, Classical Electrodynamics, Chapter 4 (3rd ed.) (John Wiley & Sons, Inc., 

New York 1998).  

27. S. A. Maier, Plasmonics: Fundamentals and Applications, Chapter 5 (Springer 

Science, New York 2007). 

28. F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: 

Geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 

127, 204703 (2007).   



24 

 

 

 

29. J. Park, A. Kodigala, A. Ndao, and B. Kanté, “Hybridized metamaterial platform for 

nano-scale sensing,” Opt. Exp. 25, 15590 (2017).  



 

 

25 

 

Chapter 3  

 

Exceptional Points (EPs) in Three-

Dimensional Plasmonic 

Nanostructures 

3.1 Introduction 

In this section of the chapter, we expand on the discussion of open systems started 

in Chapter 1 in the context of EPs. As stated previously, most physical systems are open in 

nature, i.e. energy flows in and out and is exchanged with the environment as radiation and 

absorption which is in contrast with closed systems where energy stays put and is 

conserved. Closed systems benefit from the well-established theory for conservative 

systems, i.e. Hermitian systems. A remarkable difference is that in Hermitian systems, 

eigenmodes do not decay and their corresponding eigenvalues are real whereas in non-

Hermitian systems eigenmodes do decay and consequently their corresponding 

eigenvalues are complex [1]. Over the last decade many have sought to bridge the gap 

between physics of open and closed systems. This renewed attention has underlined one of 

the fundamental differences between Hermitian and non-Hermitian systems: their 

singularities. In Hermitian systems, modes couple to induce singularities called diabolical 

points (DPs), where only the respective eigenvalues are equal whereas for non-Hermitian 
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systems modes couple to induce singularities called exceptional points (EPs), 

where both eigenvalues and eigenvectors coalesce [2-3].  

In conjunction with theoretical inquiries, recent experimental work has given a 

glimpse of the many promises that an increased understanding of open systems holds. For 

instance, there has been ample effort in realizing novel photonic devices in the realm of 

lasers such as: PT-symmetric lasers [4-5], lasers operating near EPs [6], Bound State in 

Continuum lasers [7-9]. Concurrently, there has also been theoretical progress with strictly 

passive devices exploiting EPs for a superior sensing scheme that offers enhanced 

sensitivity [10-11]. Recently, however, there is experimental realization of EPs 

demonstrating enhanced sensitivity in a whispering gallery resonator system and a micro-

ring resonator system [12-13]. Thus far, EPs have been experimentally studied in a variety 

of physical systems including 2D microwave cavities [14], electronic circuits [15], 2D 

chaotic optical microcavities [16], and coupled atom-cavity systems [17]. However, to 

date, exceptional points have not been realized in a fully three-dimensional plasmonic 

system. This is of importance because it is highly desirable to have a sensitive sub-

wavelength sensing system compatible with biologically relevant substances. Plasmons 

resulting from the interaction between photons and free electrons are ideally suited for 

biological sensing given the field enhancement and resonance sensitivity to environment.  

3.2 Mode Symmetries of Hybridized Three-bar System 

Here, we report the first evidence of the existence of EPs in an open plasmonic 

system made of coupled plasmonic nanoresonators. We show that the control of the near-

field and far-field interactions lead to a systematic construction of EPs. We subsequently 
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propose a general class of plasmonic architecture exhibiting designer exceptional points. 

We consider the plasmonic system based on three coupled nanobars, depicted in Figure 

3.1a. The dimensions of an individual gold nanobar are chosen such that the fundamental 

resonance falls in the optical domain at a frequency of 193.5 THz (1.55 µm). Placing these 

gold nanobars in close proximity couples their individual plasmon modes into hybrid 

modes as shown in Figure 3.1b [18]. Here, the instantaneous charge profiles of the first 

three modes are depicted. Intrinsically, the system has reflection symmetry with respect to 

the xy-plane that bisects the central nanobar and its modes are thus either even or odd. In 

our case, modes A and C have an even symmetry whereas Mode B has an odd symmetry. 

Mode A, with eigenfrequency ωA, has charges in all the bars oscillating in-phase and mode 

C, with eigenfrequency ωC, has charges in all bars oscillating out-of-phase. Mode B, ωB, 

has no charges in the central bar as seen in Figure 3.1b. Therefore, mode A resides at a 

higher energy (higher frequency) due to all repelling Coulomb interactions and mode C 

resides at a lower energy (lower frequency) as a result of attractive Coulomb interactions. 

Lastly, mode B resides between mode A and mode C on the energy scale.  
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Figure 3.1: (a) Physical setup of a unit cell with three paired gold bars, with the middle one 

separated by a variable distance (dx, dy, dz) with respect to the other two. The dimensions 

of each nanobar are given by L (450 nm), W (50 nm), and t (40 nm). The periodicity in x 

and y-directions are given by Px (800 nm) and Py (400 nm). The dielectric (SiO2) spacer is 

shown in blue. The gold bars are described using a Drude model with a plasma frequency 

(ωp=1.367x1016 rad/sec) and collision frequency (ωc=6.478x1013 rad/sec) [19].  (b) Energy-

level diagram describing the plasmon hybridization in the gold-bar system with three 

modes: ωA, ωB, ωC where ωA > ωB > ωC for dx=0. ω0 corresponds to the resonance of an 

individual bar. See Appendix B for further description of modes and their symmetries.   

The formation of an EP can be understood as a specific case of mode coupling and 

can thus be described by Coupled-Mode-Theory (CMT) as previously stated in Chapter 2. 

In this framework, mode coupling is described by a non-Hermitian effective Hamiltonian 

matrix [20, 21]. 

𝐇𝐞𝐟𝐟 = 𝐇𝟎 + 𝑗𝚲L + 𝑗
1

2
𝐕𝐕†  

 

(11) 

Where H0 is a Hermitian Hamiltonian matrix that describes the system without coupling 

(closed system). The second term, j𝚲L, in the equation represents extraneous losses. In our 

case, this term accounts for plasmonic losses. The third term, VV†, describes the coupling 

with the environment. Hence Heff describes the full system (open system). Here, the 

eigenmodes of the system are represented by the complex eigenvalues and eigenvectors of 

the effective Hamiltonian. Experimentally, however, these eigenvalues are not directly 
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available. Nevertheless, we can measure the scattering spectra and extract eigenvalues as 

they directly correspond to the complex poles of the scattering spectra [22, 23].  

An EP is a singularity of the effective Hamiltonian, which arises due to its non-

Hermitian nature, at which two modes coalesce [2]. To achieve an EP, both the real and 

imaginary parts of the eigenvalues (resonance frequency and linewidth) need to coincide 

simultaneously. For an EP of order 2, such coalescence is dependent on at least two 

physical parameters [3]. A method is thus needed to select among the geometrical 

parameters of the system (dx,dy,dz). 

For the three-nanobar setup portrayed in Figure 3.1, a closed system Hamiltonian 

can be used for an intuitive understanding of the mode behavior as described below.  

𝐇𝟎 = (

𝜔0 𝜅𝑛 𝜅𝑛2
𝜅𝑛 𝜔0 𝜅𝑛
𝜅𝑛2 𝜅𝑛 𝜔0

) (12) 

 

 

Here, ω0 is the uncoupled resonance of an individual nanobar. κn and κn2 are the nearest 

and next-to-nearest neighbor coupling constants acting between two individual nanobars. 

We note that this matrix is bisymmetric and hence has eigenvectors that are either 

symmetric (even) or skew-symmetric (odd) [24]. For a 3x3 H0, there are always two even 

(modes A and C) and one odd (mode B) eigenvectors. For the initial three-nanobar setup 

(dx=0, dy=0, dz=0), κn is much larger than κn2 and the Hamiltonian is almost tridiagonal. 

This is not favorable for coalescence as even and odd modes are then interlaced. Hence, 

we need to reduce κn with respect to κn2 to move away from a diagonally dominant 

Hamiltonian (1st constraint). Besides, since even and odd modes do not couple, we are only 

interested in the coalescence of the two even modes. Therefore, we seek a parameter that 

does not introduce coupling between even and odd modes, i.e. does not break the system’s 
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mirror symmetry (2nd constraint). Both constraints can be met by shifting the middle bar 

along the x-direction [23, 25].  

Since plasmonic losses in these identical nanobars are represented by a scalar 

matrix, the losses only contribute an overall complex shift. Moreover, the coupling to the 

environment adds to the imaginary part of the eigenvalues. 

Here, xL and xR are the left and right eigenvectors respectively. For a sufficient shift, dx 

and dz, mode A and mode C become degenerate (complex eigenvalue). 

 
Figure 3.2: Resonance information in the form of complex poles extracted from scattering 

parameters and plotted as a function of shift ‘dx’ (middle-bar) for Px=800 nm and dz=60 

nm. (a) Resonance frequency of modes A (○), B (Δ), C (□) and higher order mode D (◊) 

with varying ‘dx’ and their corresponding (b) linewidths. There is observable coupling 

between neighboring modes that share a symmetry, i.e. mode A with C at dx=350 nm and 

mode A with D at dx=80 nm. Mode B is unperturbed by both the shift and neighboring 

modes due to its symmetry. Coupling of modes A and C is of interest for this parameter set 

as the resonance frequency cross with ‘dx’ and linewidths experience an avoided resonance 

crossing. See Appendix B1 for full scattering parameters for three-bar system.   

𝜆𝑖 = 𝜔𝑖 + 𝑗𝛾𝐿
𝑖 − 𝑗

1

2

𝒙L
𝑖 𝐕𝐕†𝒙R

𝑖

𝒙L
𝑖 (𝐇𝟎 + 𝑗𝚲L)𝒙R

𝑖
 𝑖 ∈ ⟦𝑎, 𝑏, 𝑐⟧ (13) 
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We now numerically examine the effect of shifting the middle bar in the x-direction 

on all three modes of the coupled plasmonic system (see Figure 3.2). As the middle bar is 

progressively displaced, the repelling forces associated with mode A weaken to become 

attractive. Similarly, the attractive forces of mode C weaken to become repulsive. Lastly, 

the Coulomb forces associated with mode B remain constant with shift of the central bar 

as there is no field present in this bar. This behavior is noticeable in the resonances of this 

system as seen in Figure 3.2a. Mode A moves to lower frequencies with shift and mode C 

moves to higher frequencies with shift whereas mode B remains unperturbed. Due to the 

presence of a higher-order resonance (mode D), also with an even symmetry, mode A does 

not monotonously decrease with shift. For values of ‘dx’ below 80 nm, mode A increases 

in frequency with shift due to coupling to mode D. As evident from the coupling between 

even modes A and D around dx=100 nm and between modes A and C at dx=340 nm, 

neighboring resonances of shared symmetry couple to each other. Having an odd 

symmetry, mode B never couples to any of the even modes. The coupling between modes 

is further evident in their linewidth behavior as seen in Figure 3.2b. As modes A and D are 

avoided in frequency at dx=80 nm, their respective linewidths cross. Similarly, modes A 

and C cross in frequency at dx=340 nm and their linewidths exhibit an avoided resonance 

crossing. In terms of the near-field coupling terms, at no shift, i.e. dx=0, κn is the dominant 

coupling term. With an increase in dx, κn weakens with respect to κn2. It is precisely this 

interplay that forces the eigenvalues associated with modes A and C to converge towards 

one another, which is mandatory for engineering an EP. Note that the present system is not 

exactly at an EP.  
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3.3 Exceptional Point in Three-bar System 

In the close vicinity of an order-2 EP, the effective Hamiltonian of this system can 

be written in its reduced form as a 2x2 matrix considering only the two concerned even 

modes [2].  

𝐇𝑒𝑓𝑓 = [
𝜔𝐴 0
0 𝜔𝐶

] + 𝑗 [
𝛾𝐴 √𝛾𝐴𝛾𝐶

√𝛾𝐴𝛾𝐶 𝛾𝐶
] 

(14) 

As stated earlier, realization of an EP via two modes requires at least two physical 

parameters. The two parameters used for the above system to reach an EP are a shift, dx, 

in the central bar and the inter-spacing between nanobars, dz, in the z-direction where both 

parameters influence κn and κn2. By performing detailed full-wave finite element 

simulations, we present here a numerical proof of an EP in our nanobars system (see Figure 

3.3). An EP occurs at a frequency of ~212 THz for a 345 nm lateral shift of the middle bar 

and an inter-particle spacing close to 61 nm. For dz=61 nm, the two resonance frequencies 

(ωA, ωC) cross each other with increasing shift, dx, and the linewidths (γA, γC) avoid each 

other as seen in Figure 3.3a. Conversely, for dz=61.5 nm, the linewidths cross and 

frequencies are avoided as seen in Figure 3.3b. For a value between 61 and 61.5 nm, there 

is a definite occurrence of an EP singularity where both resonance frequencies and 

linewidths coalesce.  
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Figure 3.3: Resonances approaching an exceptional point (black ■) plotted in the complex 

plane (γ+jω) for modes A (○) and C (□) as a function of ‘dx’ (300 to 400 nm) for two 

different values of inter-bar spacing, dz=61 and 61.5 nm (increasing ‘dx’ indicated by 

arrows). (a) For dz=61 nm, the resonance frequencies of modes A and C cross as the center 

bar is shifted (dx) but the linewidths are avoided whereas (b) for dz=61.5 nm, the linewidths 

cross and the resonance frequencies are avoided. An EP singularity occurs at a value of 

‘dz’ between 61 and 61.5 nm for a dx of ~345 nm where both resonance frequencies and 

linewidths coalesce. 

3.4 Residue Divergence at EP 

Another indication of an occurrence of an EP lies with the complex residues of the 

corresponding complex poles associated with the resonances [26, 27]. In the case of the 

three-nanobar system, both the real and imaginary components of the residues diverge as 

one approaches the EP (see Figure 3.4a-b). As the EP is approached from the left, or 

increasing dx, the real parts diverge and similarly the imaginary parts diverge as the EP is 

approached from the right. However, the sum of the residues for both the real and 

imaginary remain finite (see Figure 3.4c-d) [28].  
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Figure 3.4: Residues of the corresponding modes A (○) and C (□) as a function of shift, dx, 

for dz=61 nm. (a) Real and (b) Imaginary parts of the residues diverging when approaching 

the EP (dx=345 nm). Sum of the (c) real and (d) imaginary parts of the residues which 

remain finite. 

3.5 EPs with Multiple (N>1) Coupled Resonators and 

Five-bar System 

Furthermore, an EP is not exclusive to the three-bar system. An EP can also be 

realized in systems with more plasmonic resonators in a given unit cell. Here, we address 

the general case of having an odd number of bars (N=2n+1) in a unit cell and once again 

guided by an NxN closed system Hamiltonian. In general, for such a matrix of order N, 

there are ⌈𝑁 2⁄ ⌉ even and ⌊𝑁 2⁄ ⌋ odd eigenvectors. These eigenvectors are alternately even 

and odd with eigenvalues arranged in descending order given that the eigenvalues are 

distinct. The resulting eigenvectors of eigenvalues (see Eq. 3) can be expressed as 
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(𝐮 𝛼 +𝐉𝐮)T   (even eigenvectors) 

(𝐮 0 −𝐉𝐮)T   (odd eigenvectors) 

(15) 

Here, J is the exchange matrix [24]. Note for an odd eigenvector, there is no excitation or 

field in the central bar as was the case for Mode B earlier. 

As an example, we take the case with five coupled bars (n=2) described by 5x5 

Hamiltonian, H0, written as follows when all bars are perfectly aligned in the z-direction, 

i.e. dx=0. 

 𝐇𝟎 =

(

 
 

𝜔0 𝜅𝑛
𝜅𝑛 𝜔0

𝜅𝑛2 0 0
𝜅𝑛 𝜅𝑛2 0

𝜅𝑛2 𝜅𝑛
0 𝜅𝑛2
0 0

𝜔0 𝜅𝑛 𝜅𝑛2
𝜅𝑛 𝜔0 𝜅𝑛
𝜅𝑛2 𝜅𝑛 𝜔0)

 
 

 

(16) 

Here, we can neglect the coupling terms κn3 and κn4 as they are simply dominated by κn and 

κn2. Similar to the three-bar case, we must choose physical parameters to modify so as to 

weaken κn and strengthen κn2. In order to retain the bisymmetric nature of the Hamiltonian, 

we note that all nearest-neighbor and next-to-nearest-neighbor coupling terms need to be 

the same as you modify the geometry of the system in accordance with the two constrains 

outlined earlier. Therefore, we concurrently shift the top, middle and the bottom bars in the 

x-direction which satisfies this condition and appropriately modifies κn and κn2. For an 

order N=5, there are three even and two odd eigenvectors. For an EP, we focus our attention 

on interaction between two of the even modes. The two parameters are still the inter-

spacing, dz, along the z-direction and shift, dx (see Figure 3.5). Similar to the three-bar 

case, we observe resonances crossing in frequency and an avoided crossing in linewidths 

as evidence of an EP. An EP occurs at a frequency of ~227 THz for a 345 nm lateral shift 

of the bars and an inter-particle spacing, dz, close to 42 nm. This approach is general and 
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can be utilized to engineer an EP in coupled nanoresonator structures which can be 

physically realized [29]. 

 
Figure 3.5: Realization of an exceptional point in a system with 5 bars (2n+1 with n=2) 

with top, middle and bottom bars shifted by dx (300 to 400 nm) for dz=42 nm and 43 nm. 

Mode 1 (○) and Mode 2 (□): two modes of shared symmetry interact to form an EP (■) at 

a value of d between 42 and 43 nm for a dx of ~345 nm.  (a) For dz=42 nm, the resonance 

frequencies of modes 1 and 2 cross as the bars, indicated by arrows, are shifted (dx) but 

the linewidths are avoided whereas (b) for dz=43 nm, the linewidths cross and the 

resonance frequencies are avoided. See Appendix B2 for full scattering parameters for five-

bar system. 

3.6 Concluding Remarks 

We have demonstrated the existence of exceptional points in three dimensional 

systems of coupled plasmonic nanostructures. The EP is constructed by coalescing 

symmetry-compatible modes and its existence is further evident from the diverging 

complex residues in the vicinity of the EP singularity. A thorough discussion on the 

importance of mode symmetries for EPs was presented. 
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The general approach to designing EPs in systems of coupled resonators proposed 

here can be used to construct EPs of higher order in physical systems where more than two 

modes coalesce. These ideas could be applied to other areas of wave physics such as 

acoustic and matter waves. We believe this work paves the way to the experimental 

observation of exceptional points in various physical systems and will foster further 

research towards unprecedented sensing schemes. With the experimental progress 

presented in Chapter 2 for the plasmonic shift-bar system, an experimental demonstration 

of an EP in a plasmonic system is soon to come.  

 

Chapter 3, in part, is a reprint of the material as it appears in A. Kodigala, T. Lepetit, 

and B. Kanté, "Exceptional points in three-dimensional plasmonic nanostructures," 

Physical Review B 94, 201103(R) (2016). The dissertation author was the primary 

researcher and author of this paper. 
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Chapter 4                                                      

 

Lasing from Photonic Bound States 

in the Continuum (BICs) 

4.1 Introduction 

In 1929, only three years after the advent of quantum mechanics, von Neumann and 

Wigner showed that Schrödinger’s equation can have bound states above the continuum 

threshold [1]. These peculiar states, called bound states in the continuum (BICs), manifest 

themselves as resonances that do not decay. For several decades afterwards the idea lay 

dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger 

revived interest in BICs when they suggested that BICs could be observed in 

semiconductor superlattices [2, 3]. BICs arise naturally from Feshbach’s quantum 

mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more 

physical than initially realized [4]. Recently, it was realized that BICs are intrinsically a 

wave phenomenon and are thus not restricted to the realm of quantum mechanics. They 

have since been shown to occur in many different fields of wave physics including 

acoustics, microwaves and nanophotonics [5-16]. However, experimental observations of 

BICs have been limited to passive systems and the realization of BIC lasers has remained 

elusive. Here we report, at room temperature, lasing from an optically pumped BIC cavity. 

Our results show that the lasing wavelength of the fabricated BIC cavities, each made of 
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an array of cylindrical nanoresonators suspended in air, scales with the radii of the 

nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing 

from the designed BIC cavity persists even after scaling down the array to as few as 8-by-

8 nanoresonators. BIC lasers open up new avenues in the study of light–matter interaction 

because they are intrinsically connected to topological charges [17] and represent natural 

vector beam sources (that is, there are several possible beam shapes) [18], which are highly 

sought after in the fields of optical trapping, biological sensing and quantum information. 

Cavities play a fundamental role in wave phenomena from quantum mechanics to 

electromagnetism and dictate the spatiotemporal physics of lasers. In general, they are 

constructed by closing all channels through which waves can escape. We report, at room 

temperature (295 K), a BIC laser that harnesses optical modes residing in the radiation 

continuum but, nonetheless, possess arbitrarily high quality factors, Q. These 

counterintuitive cavities are based on resonance-trapped, symmetry-compatible modes that 

destructively interfere.  

Generally, open systems are described by non-Hermitian effective Hamiltonians 

that have multivariate and complex eigenvalues describing modes of the system. These 

eigenvalues exist in a multidimensional hyperspace but, in a given frequency range, the 

investigation can be reduced to a finite number of variables, thus limiting the complexity 

of the effective Hamiltonian [7]. When eigenvalues come close to crossing as a function of 

a geometrical parameter that modifies the system, avoided resonance crossing occurs, that 

is, eigenvalues repel each other in the entire complex plane [19-21]. Friedrich and Wintgen 

showed that resonance-trapped BICs represent a particular type of avoided resonance 

crossing for which coupling occurs predominantly in the far-field.  
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4.2 BIC Cavity Design 

Our system consists of a thin membrane of semiconductor material suspended in 

air. We subsequently structure the membrane at the nanometer scale. The field in the air is 

a superposition of independent waves, which are interpreted as decay channels, and can be 

either propagating or evanescent. The field in the membrane, which becomes a 

superposition of coupled waves owing to structuring, is also coupled to the field in air. In 

the resulting open system described by a non-Hermitian Hamiltonian, the imaginary part 

of the complex eigenfrequency serves to quantify the decay of modes via the resonance 

lifetime. This lifetime is governed by coupling amongst different waves within the 

membrane through the Fourier coefficients of the periodic permittivity. A precise 

engineering of coupling among relevant waves in reciprocal space can lead to total 

destructive interference, that is, an infinite lifetime. BICs arise in the limit when a complex 

eigenfrequency mode tend towards a purely real eigenfrequency mode. They are very 

peculiar discrete modes in that they are actually embedded within the continuous spectrum 

but intrinsically possess an infinitely high radiation quality factor as a result of their non-

decaying nature. BICs are thus ideally suited for the design of perfect nanophotonic 

cavities. 

As shown in Figure 4.1, our BIC cavity is composed of a periodic array of 

nanoresonators of radius R interconnected by a network of supporting bridges used for the 

mechanical stability of the system. The membrane consists of several InxGa1−xAsyP1−y 

multiple quantum wells, specially designed to operate around the telecommunication 

wavelength (λ≈1.55 μm). The radius of the cylindrical nanoresonators is the only parameter 



43 

 

 

 

we use to tune the modes of the membrane and alter the effective Hamiltonian. The 

structure is fabricated using electron-beam lithography and reactive ion etching to define 

the cylindrical nanoresonators, followed by a wet etching step to create the membrane (see 

Chapter 5). It is worth noting that the radii of the fabricated nanoresonators are always 

smaller than their nominal design values, a consequence of reactive ion etching. As a result, 

the maximum achievable radius is strictly smaller than a/2 where a is the period of our 

structure. 

 
Figure 4.1: (a) Tilted electron micrograph of InGaAsP multiple quantum wells cylindrical 

nanoresonator array suspended in air. All structures are fabricated using electron beam 

lithography followed by reactive ion etching to form the cylinders. We subsequently use 

wet etching to suspend the structure (see Chapter 5 for details). (b) Top view of an 8-by-8 

array with supporting bridges, which are used for the mechanical stability of the membrane. 

The dimensions of the structure are the period (1200 nm), the thickness (300 nm) and the 

bridge width (200 nm). (c) Schematic of the fabricated system illustrating the pump beam 

(blue) and lasing from the BIC mode (red). The radius of the cylindrical nanoresonators is 

the key parameter in our BIC design.  

4.3 Diverging Quality Factor (Q) at BIC Singularity 

To analyze our system, we calculate the quality factors at normal incidence around 

1.55 μm, that is, within the gain bandwidth of the material. The system was modelled using 
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a three-dimensional finite element-method eigenfrequency solver. We restrict the 

discussion to odd modes (transverse-magnetic-like) as they have much higher quality 

factors than even modes (transverse-electric-like) in the wavelength range of interest (see 

Appendix C1). We find three modes around 1.55 μm with appreciable quality factors, one 

doubly degenerate mode (modes 1 and 2) and one singly degenerate mode (mode 3). Figure 

4.2a shows their quality factor as a function of the radius (522 nm ≤ R ≤ 534 nm). The 

quality factor of mode 3 is independent of the radius and remains high throughout the 

calculated range. This mode corresponds to a symmetry-protected mode [22]. In contrast, 

the quality factor of modes 1 and 2 depends strongly on the radius and reaches a maximum 

at an optimum radius of Ropt = 528.4 nm. At this optimum radius, modes 1 and 2 completely 

decouple from the radiation continuum and thus become BICs. This mode corresponds to 

a resonance-trapped mode (see Appendix C2). 

The quality factor can diverge in two different situations. In the first situation (mode 

3), coupling to the outside vanishes solely as a result of symmetry mismatch. Any 

perturbation that preserves symmetry, such as a modification of the radius, has no impact 

on its quality factor. This type of mode has been extensively studied before [23]. In the 

second situation (modes 1 and 2), coupling to the outside vanishes as a result of total 

destructive interference [13, 24]. This BIC mode (resonance-trapped) is fundamentally 

different from previous works on band-edge lasers [25-27] (symmetry-protected) that are 

restricted to high symmetry points of the reciprocal lattice. Resonance-trapped BICs 

achieve an infinite quality factor at the singular radius Ropt but the quality factor remains 

very high for radii around Ropt. Figure 4.2b shows the transmission spectrum at normal 
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incidence of our structure, in which the quality factor of modes 1 and 2 can be seen to tend 

slowly to infinity from its vanishing linewidth.  

Figure 4.2c shows the dispersion relation of the BIC structure at R = Ropt along the 

MΓ and ΓX directions. Here Γ, X, and M are high-symmetry points of the first Brillouin 

zone for a square lattice. We also plot the complex dispersion relation of modes 1 and 2 

(Figure 4.2d, e) and mode 3 (Figure 4.2f). Figure 4.2f shows that mode 3 is extremely 

sensitive to symmetry-breaking perturbations as its quality factor drops sharply away from 

the Γ point. Quality factors of modes 1 and 2, which are no longer degenerate away from 

the Γ point (as seen in Figure 4.2c), do not drop as sharply as that of mode 3. Modes 1 and 

2 are thus much less sensitive to symmetry-breaking perturbations. Additionally, the 

resonance-trapped BIC is robust because a variation in radius only induces its displacement 

in k-space (reciprocal space, where k is the wavevector), whereas a symmetry breaking 

perturbation destroys the symmetry-protected mode [13]. This is of utmost importance in 

device design as fabrication tolerances will have less impact on resonance-trapped BICs 

than on modes that rely on symmetry protection. Moreover, designing a mode with a high 

quality factor in a large region of k-space is of practical importance because fabricated 

devices, which are never spatially infinite, always sample the dispersion relation in a finite 

neighborhood in k-space [28]. Therefore, for a given quality factor, we can achieve a much 

smaller device footprint with a resonance-trapped BIC mode than with symmetry-protected 

modes.  
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Figure 4.2: (a) Quality factor of high-Q modes at the Γ point around the telecommunication 

wavelength for different nanoresonator radii. The quality factors of modes 1 and 2, which 

are doubly degenerate at the Γ point, are strongly dependent on the radius R. For R = Ropt 

at 528.4 nm, this quality factor approaches infinity to form a resonance-trapped BIC. For 

radii around Ropt the quality factor remains very high. (b) Transmission spectrum at normal 

incidence showing the vanishing linewidth of modes 1 and 2 when the radius approaches 

Ropt. The wavelength of the modes is a function of the radius and it continuously varies 

between the smallest radius (R = 522 nm) and the largest radius (R = 534 nm). (c) 

Dispersion relation around 1.55 μm for high-Q modes (1, 2 and 3) in both MΓ and ΓX 

directions as a function of k(a/2π). The inset shows the first Brillouin zone of the square 

lattice and irreducible contour for cylindrical nanoresonators (shaded area). The contour 

connects high-symmetry points Γ, X, and M. (d–f) Quality factor of high-Q modes in both 

the MΓ and the ΓX direction for mode 1 (d), mode 2 (e), and mode 3 (f). Insets represent 

the normalized electric field on the surface of a unit cell. Modes 1 and 2 are identical under 

90-degree rotation. Mode 3 is a symmetry-protected mode and is thus not affected by 

geometrical changes that preserve symmetry, such as the change of radius. The quality 

factor of mode 3, however, drops rapidly away from the high-symmetry point Γ. It drops 

more rapidly compared to the quality factor of modes 1 and 2. The sharper drop of the 

quality factor of mode 3 away from Γ implies that the integrated quality factor of this mode 

will be smaller than those of modes 1 and 2 in the case of finite-sized samples. 
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4.4 Device Characterization 

To experimentally demonstrate lasing from our BIC cavity, we optically pump the 

membranes at room temperature with a pulsed laser (λ = 1064 nm, T = 12 ns pulse at a 

repetition rate f = 300 kHz) using a micro-photoluminescence setup and record the resulting 

spectral emission (see Figure 4.3). A 20x long working distance microscope objective with 

a numerical aperture (NA) of 0.4 is used to focus the pump beam and simultaneously collect 

the emission from the sample. To minimize chromatic aberration, a telescope is introduced 

(lenses L-6 and L-7) to adjust the divergence of the pump beam such that the focal planes 

of the pump and emission wavelengths coincide. Using a double 4-f imaging system in 

conjunction with a pump filter, laser structures are either imaged onto an IR CCD camera 

(Indigo Alpha NIR), or spectroscopically measured with a monochromator (CVI Digikrom 

DK480) in conjunction with a cooled InGaAs detector in lock-in detection configuration. 

The monochromator can resolve a linewidth of ~0.33 nm. 

 
Figure 4.3: (a) Micro-photoluminescence (PL) setup used to measure laser emission from 

BIC lasers. Red color connection represents the pump path; green color connection 

represents the collection/imaging path; and black color connection represents electrical 

cables. The microscope objective (M.O.) with L-1,2,3 and L-1,4,5 compose a double 4-f 

imaging system for the IR CCD Camera and the monochromator, respectively. (b) 

Photograph of the micro-PL setup including laser in the far-right, IR camera, and 

monochromator. 
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4.5 Lasing from an Optically Pumped BIC Cavity 

Figure 4.4a shows the evolution of the output power as a function of both the pump 

power and the wavelength. At low pump power, we observe a spectrally broad 

photoluminescence spectrum, while at high pump power, we observe a drastic overall 

suppression of the photoluminescence in favor of one extremely narrow peak, that is, 

lasing. As depicted in Figure 4.4a, three modes show amplification at first (Ppump≈48 μW) 

but, ultimately, only one remains. Lasing occurs at a wavelength of 1551.4 nm with a 

detection-limited linewidth of about 0.33 nm (see inset of Figure 4.4b). Figure 4.4b shows 

the evolution of the output power as a function of the pump power around this lasing 

wavelength. We observe a clear threshold behavior with a threshold power of 56 μW or a 

density of 140 mW mm−2. 
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Figure 4.4: (a) Evolution of the normalized output power as a function of both wavelength 

(μm) and pump power (μW) for a 16-by-16 array with a nanoresonator radius of 525 nm. 

We observe the transition from a broad spontaneous emission to a single lasing peak at 

1551.4 nm. (b) Output power as a function of the average pump power (light-light curve) 

around the lasing wavelength. We observe the onset of lasing at a threshold power of 56 

μW. The red lines are linear fit to the data indicating the regions of spontaneous and 

stimulated emission. The blue dots correspond to measurements and numbers 1 through 5 

denote spectra plotted in (a) (see Appendix C4 for emission power estimate). The inset 

shows the lasing spectrum at a pump power of 158 μW with a measured linewidth of ~0.33 

nm (detection limited). 

4.6 Robustness and Scaling of BIC Lasers 

To further demonstrate the robustness and scalability [29, 30] of the BIC lasers, we 

fabricated several devices (36 devices) with a range of radii and array sizes as seen in 

Figure 4.5a. Figure 4.5b shows the measured lasing wavelength of devices of different 

array size (8-by-8, 10-by-10, 16-by-16 and 20-by-20), and different radii of 

nanoresonators. The solid and dashed lines represent, respectively, the theoretical resonant 

wavelength of modes 1 and 2 and mode 3 for different radii of nanoresonators in the infinite 

array. We observe a very good agreement between the experimental lasing wavelengths 

and the theoretical resonant wavelengths of the resonance-trapped BIC mode (modes 1 and 
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2). This agreement confirms that lasing is indeed from the BIC mode over the entire range 

of radii. Moreover, the persistence of lasing for all array sizes down to as few as 8-by-8 

nanoresonators shows the scalability of our BIC laser, thanks to the large quality factor of 

the resonance-trapped BIC mode in a wide region of k-space.  

 
Figure 4.5: (a) Electron micrographs of fabricated BIC lasers of size 8-by-8, 10-by-10, 16-

by-16, and 20-by-20. (b) Lasing wavelength as a function of nanoresonator radius, from 

500 nm to 550 nm, with array sizes of 8-by-8 (cross), 10-by-10 (circle), 16-by-16 (square), 

and 20-by-20 (diamond). Each point corresponds to a device with a specific radius, bridge 

width and array size. Error bars indicate the standard deviation of radii measured from 

fabricated devices. The lines represent the theoretical resonant wavelength of modes 1 and 

2 (solid line) and 3 (dashed line) for different radii of nanoresonators, for the infinite array. 

The good agreement between the experimental lasing wavelengths and the theoretical 

resonant wavelengths of the resonance-trapped BIC mode (modes 1 and 2) confirms that 

lasing is indeed from the BIC mode. 

4.7 Lasing Threshold at BIC Singularity 

Further evidence of lasing from the BIC mode can directly be observed in the 

measured threshold power of the lasers. The threshold power has a clear minimum close to 

Ropt (about 525 nm), reflecting a maximum quality factor at the BIC singularity as seen in 
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Figure 4.6. The inverse relationship between quality factor and threshold is evident here in 

comparison to Figure 4.2a. 

 
Figure 4.6: Measured laser threshold power as a function of radii for the lasers clearly 

shows a minimum (56 μW) close to Ropt (about 525 nm) reflecting the maximum quality 

factor around the BIC singularity and offers further proof of lasing from the BIC mode 

(modes 1 and 2). The inverse relationship between quality factor and threshold is evident. 

Mode 3 has no variation in quality factor with radii. The vertical error bars are the standard 

error in the threshold power estimated over multiple measurements (varying pump power) 

repeated more than three times whereas the horizontal error bars represent the standard 

deviation of measured radii. The green shaded area is a guide to the eye. 

4.8 Threshold Power Density versus Cavity Size 

Similarly, in these laser devices, the effect on the quality factor as a function of 

array size is easily discernible from the measured laser threshold powers. Here, we 



52 

 

 

 

uniformly pump lasers of varying size and compare their threshold power densities (see 

Figure 4.7 below). For any given radius, the lasing threshold power density, Pth, decreases 

with increasing array size, N. This is clearly indicative of an increase in the quality factor 

as the laser array size increases [30]. Furthermore, the material loss contribution to lasing 

threshold power is intrinsic to all lasers. Ideally, at the BIC singularity, the material loss is 

the only significant loss mechanism as the array size approaches infinity. Additional 

characterization such as far-field profiles and polarization measurements of these lasing 

devices are provided in Appendix C3. 

 
Figure 4.7: Lasing threshold power densities, Pth (μW/μm2), as a function of laser array 

size, N, for a given resonator radius (R=530 nm). The effect on the quality factor due to 

the finiteness of the laser arrays is evident from the decreasing lasing thresholds with 

increasing size. As the array size increases, the cavity more closely resembles that of an 

infinite structure. This effect is observable irrespective of the resonator radius. The vertical 

error bars are the error in the threshold power over multiple measurements. 



53 

 

 

 

4.9 Linewidth of BIC Lasers 

Linewidth of lasers generally arises from phase fluctuations in their output from 

mainly two sources: spontaneous emission, which is inherent in all lasers, and carrier 

density fluctuations which is relevant in the case of semiconductors lasers such as the ones 

presented here. For carrier density fluctuations, there is a proportionality between the 

frequency shift of the laser due to a change in carrier density, ΔN, termed the linewidth 

enhancement factor, α [31]. 

We report, in Figure 4.8a below, linewidths well above lasing threshold as a 

function of varying radii. There is evidence to suggest that lasers operating close to the BIC 

singularity also have a minima in their linewidths similar to their threshold powers (i.e. 

diverging Q) in agreement with the modified Schawlow–Townes formulation for 

semiconductor lasers [32, 33] (see equation below). The contribution from carrier density 

fluctuations is represented by α2 and 1 represents the spontaneous emission contribution 

from the original Schawlow–Townes formulation [32].  

∆𝜈 ∝ (1 + 𝛼2)
(∆𝜈𝑐)

2

𝑃𝑜𝑢𝑡
 

Here the laser linewidth, ∆𝜈, is directly proportional to the resonator bandwidth, 

∆𝜈𝑐, which is reciprocally related to the cold-cavity, Q, with Pout being the output power. 

Hence, we expect the lasing linewidths to be minimal near the BIC point as evident from 

Figure 4.8a. Here lasers away from BIC point (~525 nm) with radii 505 and 550 nm have 

larger linewidths than the lasers operating near the BIC point. However, the measured 
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linewidths near the BIC point reach the resolution limit (~0.33 nm) of the monochromator. 

This can be seen in Figure 4.8b for linewidth evolution as a function of pump power for a 

device of radius 525 nm. Below threshold, when spontaneous emission is predominant, the 

linewidth narrows as the inverse of output power in agreement with Schawlow-Townes 

[32]. Around threshold, the rapid increase of the coupling between the gain coefficient and 

the refractive index of the gain medium slows down the narrowing of the linewidth [33, 

34]. Above threshold, we once again reach the detection limit for this particular sample.  

 
Figure 4.8: (a) Lasing linewidths for devices with varying radii at pump powers above 

threshold (blue markers). Laser linewidths near the BIC singularity have reached the 

resolution limit of ~0.33 nm indicated by the dotted line (red). (b) Lasing linewidth for 

device with R≈525 nm as a function of pump power below and above threshold (blue 

markers). The lasing threshold of this device is 56 μW. Below threshold, the linewidth 

narrows as you approach the lasing threshold in agreement with Schawlow-Townes 

linewidth formula. Lasing linewidths measured above threshold have reached the 

resolution limit of ~0.33nm. These linewidth measurements are detection limited by a 

combination of the grating period, entrance/exit slit width of the monochromator, and 

resulting signal-to-noise ratio. 

The above threshold linewidth behavior can be observed in a BIC laser sample 

operating far away from the BIC point as seen in Figure 4.9. Note that this sample is from 
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a separate fabrication run and was not included in the previous data set. Here, the above 

threshold laser linewidth is ~0.5 nm which is well above the detection limit of 0.33 nm. 

With increased pump power above threshold, there is only a slight increase in the laser 

linewidth as seen in Figure 4.9b. An exact relationship between carrier density fluctuations, 

α2, and output power, Pout, needs to be investigated to gain insight into the above threshold 

linewidth behavior of BIC lasers.    

 
Figure 4.9: (a) Linewidth evolution of a laser away from BIC point as a function of pump 

power in linear scale and (b) log scale with a threshold of ~62 μW. The dotted line is the 

detection limit of ~0.33 nm. Laser linewidth above threshold is well above the detection 

limit.  

An unambiguous linewidth measurement for cases below the current detection limit 

requires experimental modifications and is currently in progress. 

4.10 Concluding Remarks 

In this chapter, we have reported an optically pumped BIC laser operating at room 

temperature from a cavity mode that can, surprisingly, have arbitrarily high quality factors 
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despite being embedded in the continuum of radiation modes. This cavity, made of an array 

of suspended cylindrical nanoresonators, shows persistent single-mode lasing for various 

radii and array sizes. The lasing wavelength follows the theoretical prediction of the BIC 

mode and the inverse relationship between quality factor and lasing threshold is 

experimentally demonstrated. These results demonstrate the robustness and scalability of 

the system. The ability to confine light within the radiation continuum opens up the study 

of the intriguing topological physics of BICs and the realization of non-standard photonic 

devices, sensors and sources. Moreover, the development of an electrically pumped BIC 

laser, currently in progress, will help achieve these goals.  

 

Chapter 4, in part, is a reprint of the material as it appears in A. Kodigala, T. Lepetit, 

Q. Gu, B. Bahari, Y. Fainman and B. Kanté, "Lasing action from photonic bound states in 

the continuum," Nature 541, 196 (2017). The dissertation author was the primary 

researcher and author of this paper. 
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Chapter 5  

 

Nanofabrication of Suspended PhC 

Lasing Membranes of InGaAsP 

Cylinders 

5.1 Introduction 

Membrane structures have attracted ample interest over the years from many 

disciplines with applications in micro-electro-mechanical systems (MEMS) [1], cavity 

opto-mechanics [2-4], and optical lasing [5, 6]. Depending on the application, diverse 

membrane materials are used with most applications resorting to silicon (Si) or dielectrics 

such as silicon nitride (Si3N4) and silicon dioxide (SiO2)
 [7-11]. The fabrication process 

differs for each. Nevertheless, the processes are established, and standard membrane types 

are commercially available. However, applications pertaining to lasing require intricately 

patterned membranes and typically employ alloyed semiconductor gain material such as 

InGaAsP with quantum wells [12]. These membranes are periodically patterned into 

photonic crystals (PhCs) to highly confine light of certain wavelengths or, in other words, 

sustain high quality factor (Q) modes required for lasing [13, 14]. Thus, these membrane 

PhCs serve as optical cavities for lasers. Here, we construct photonic crystal cavities with 

InGaAsP that employ bound states in the continuum (BIC) for lasing [15-19]. Bound states 

in the continuum (BICs) are waves that exist within a continuum of radiating waves and 
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yet do not radiate or decay. Contrary to conventional wisdom, these states remain 

localized or bound to the cavity [20]. 

Unlike conventional PhCs that most often take the complimentary form, i.e. 

periodic array of holes, these suspended PhC cavities are composed of periodically spaced 

and interconnected cylinders. Furthermore, because the cylinders’ radii are critical to the 

lasing mode in BIC lasers, stringent requirement is placed on fabrication precision. Hence, 

the fabrication of these new devices offers its own unique challenges which include 

maintaining pattern dimensionality while realizing a fully suspended and mechanically 

stable membranes. Here, we describe two different approaches of fabricating these BIC 

membrane lasers and their effect on device performance. One approach involves a 

hydrogen silsesquioxane (HSQ) electron beam lithography resist serving as a dry etch mask 

and another with an added chromium (Cr) hard mask. We find that the performance of 

these devices is sensitive to the fabrication quality and is hampered by deviations in the 

device dimensions from those intended. Moreover, we elaborate on dry etch requirements 

in conjunction with the optimization of etching window geometry for a quick membrane 

release by selectively wet etching the substrate. We investigate etch windows that have 

either rectangular or trapezoidal openings which offer different etch overlaps among crystal 

planes of the InP substrate. An etch window that has the maximum etch overlap results in 

the quickest membrane release given the same dry etch depth. 
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5.2 Device Fabrication 

In this work, BIC membrane lasers are fabricated using standard nanofabrication 

techniques. We choose the active medium to be epitaxially grown multiple quantum wells 

of InGaAsP material lattice-matched to InP substrate and tailored to emit in the 

telecommunication band (1.5-1.6 μm). The gain material consists of nine Inx=0.564Ga1-

xAsy=0.933P1-y quantum well layers of 10 nm thickness (bandgap of 1.6 μm) and Inx=0.737Ga1-

xAsy=0.569P1-y barrier layers of 20 nm thickness (bandgap of 1.3 μm). An additional top 

barrier layer of 30 nm makes the total height of the gain 300 nm (Figure 5.1a). All finished 

samples are composed of a system of periodic cylindrical resonators interconnected by 

bridges for mechanical stability (Figure 5.1b-c). The patterns including the interconnecting 

bridges are defined by dry etching with the help of a hard etch mask. In what follows, we 

employ two fabrication approaches each with different etch masks to realize these 

structures. One (Method I) involves a HSQ electron beam lithography resist and another 

(Method II) with an added Cr hard mask. The etch resistance of the two masks differ 

drastically and thus directly affect the final dimensions of the patterns. 
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Figure 5.1: (a) Schematic of epitaxially grown InGaAsP layers on InP substrate with nine 

quantum wells (in red). (b) Top view of laser membrane with cylindrical resonators 

arranged in a square lattice interconnected by bridges and a secondary outer pad. (c) Tilted 

view of the membrane with a magnified view of the cylindrical resonators with radius (R), 

thickness (H = 300 nm), and period (P = 1.2 μm).  

A. Method I (HSQ Hard Mask) 

Figure 5.2 shows the process flow for the fabrication of BIC membrane lasers using 

a HSQ negative tone resist acting as the hard mask for reactive-ion etching (RIE). Starting 

with the epitaxially grown wafer (Figure 5.2a), 6% HSQ in methyl isobutyl ketone (MIBK) 

is spin-coated at 2500 rpm for 60 s and soft-baked at 180 ºC for 60 s to yield a film thickness 

of 130 nm. Subsequently, the HSQ is exposed at 100 kV and 3 nA beam current with 800 

μC/cm2 dose using a Vistec EBPG5200 electron beam lithography machine. The sample is 

developed using 25% tetramethylammonium hydroxide (TMAH) in water developer for 

60 s (Figure 5.2b). In step c, a purely RIE process is performed at a base pressure of 30 
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mTorr and a temperature of 35 ºC with a RF power of 150 W using a Trion RIE/ICP Dry 

Etcher. The etch is carried out with 10 sccm (standard cubic centimeter per minute) of 

methane (CH4) flow, 40 sccm of hydrogen (H2), and 7 sccm of argon (Ar) combination for 

680 s with an estimated etch rate of 70 nm/min to yield an etch depth of 800 nm [21]. Here, 

the etch time is chosen such that all of the 300nm of InGaAsP would be etched in addition 

to a considerable thickness of InP for easy membrane release. Next, residual organic 

contamination and polymer buildup during RIE are removed with a microwave oxygen 

(O2) plasma treatment with an O2 flow rate of 120 sccm (150 W) for 15 min. The HSQ 

layer is removed with 30 s of buffered oxide etchant (BOE) with a ratio of 6:1 (H2O:HF) 

(Figure 5.2d). Next, with the help of photolithography and a hydrochloric acid (HCl) based 

wet-etching solution, we remove a substantial amount of InP substrate below InGaAsP [22-

24]. In step e, the areas to be wet-etched are opened in the negative-tone NR9-1500PY 

photoresist spun at 3500 rpm for 40 s to yield a thickness of 1.5 μm. After a 20 s UV 

exposure with the Karl Suss MA6 Mask Aligner and a reversal bake at 100 ºC for 60 s, the 

resist is developed for 35 s with RD6 developer. Lastly, a diluted solution of hydrochloric 

acid (HCl:H2O::3:1) with three parts acid to one part water by volume is used to selectively 

and anisotropically etch InP while minimally etching InGaAsP for a total etch time of 3 

min (Figure 5.2f-g). Radii of the final cylindrical resonators are smaller than the radii 

defined after e-beam lithography mainly due to the eroding (i.e. narrowing) HSQ hard mask 

during RIE [25, 26]. Consequently, the InGaAsP sidewalls are also eroded. This reduction 

in dimensions is exacerbated with increased etch depth or etch time. The reduction in radii 

for an etch depth of 800 nm was ~70 nm. The reduction in dimensions also applies to the 

interconnecting bridges, and consequently, the mechanical stability of the membrane is 
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drastically weakened. To compensate for this reduction, the dimensions can be over 

defined by the e-beam lithography mask. However, for a periodic structure the maximum 

radii of the cylinders defined by the lithography mask is limited to half the period (P/2). 

Hence, dimensions close to P/2 cannot be realized with the current fabrication process with 

HSQ as the etch mask. Therefore, a tougher etch mask is needed to preserve the dimensions 

defined by e-beam lithography during the dry etching process. 

 

Figure 5.2: Device fabrication process without a metal hard mask starting with the 

epitaxially grown multiple quantum wells on InP substrate and ending with the 

nanocylinders suspended membrane (a-g). Note that the bridges connecting the cylinders 

are intentionally drawn thinner as a guide to the eye. Both the bridges and the cylinders are 

of the same thickness. 
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B. Method II (HSQ with Chrome Hard Mask) 

To address the issue of reduced dimensions during the RIE step, we modify the 

above fabrication process to include a metal hard mask in addition to the HSQ. However, 

this process requires some initial preparation of the wafer (see Figure 5.3). A 100 nm of 

950 PMMA A2 is spin coated at 1500 rpm for 60 s and soft-baked at 180 ºC for 60 s. 

Subsequently, 30 nm of Cr is thermally deposited on top at a rate of 0.4 Å/s using a Denton 

502 Thermal Evaporator. The Cr layer serves as a dry etch hard mask to attain and preserve 

the critical dimensions of the membrane. The PMMA layer serves as a sacrificial layer for 

the final and easy removal of the Cr (Figure 5.3b). The Cr is not directly deposited on the 

InGaAsP as it is extremely difficult to remove and adds significant losses to the optical 

device. Similar to method I, the wafer is spin-coated with 130 nm of HSQ resist. However, 

it is critical that the HSQ not be soft-baked at this step as the PMMA underneath will reflow 

and cause the Cr layer to crack extensively. Not soft-baking HSQ resist has been shown to 

avoid thermally induced contrast reduction [27, 28]. Hence, in comparison, not soft-baking 

slightly improves the contrast but does not significantly affect the cylinder definition. Next, 

the HSQ is exposed at 100 kV and 3 nA beam current with 800 μC/cm2 dose and developed 

using 25% tetramethylammonium hydroxide (TMAH) in water developer for 60 s (Figure 

5.3c). In step d, RIE processes are performed using the Oxford Plasmalab 80+ to 

sequentially etch the Cr and PMMA layers. First, the Cr layer is etched with a base pressure 

of 90 mTorr and a temperature of 15 ºC with a RF power of 30 W. The etch is carried out 

with a combination of 3 sccm of O2 flow and 50 sccm of chlorine (Cl2) for 7 min with an 

estimated etch rate for Cr being 10 nm/min. Note that the Cr is over-etched to ensure that 
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all Cr residue on the surface of the PMMA is removed, as any remaining Cr will block the 

subsequent dry etching of the PMMA. Next, the PMMA layer is etched with a base pressure 

of 50 mTorr and a temperature of 20 ºC with a RF power of 50 W. The etch is carried out 

with only 50 sccm of O2 flow for 2 min 40 sec. It is worth noting that in addition to etching 

PMMA, the oxygen plasma extensively undercuts the PMMA below the Cr (black arrows 

in Figure 5.3d). Thus, the etch needs to be tightly controlled such that all the PMMA is 

removed from the InGaAsP surface and yet the undercut is minimal [29]. The PMMA 

undercut ultimately contributes to rough sidewalls in the patterned InGaAsP. Both the Cr 

and PMMA dry etch steps were thoroughly optimized. Following the Cr/PMMA etch, we 

dry etch the InGaAsP/InP as described in method I except with a longer etch time of 16 

min for a total etch depth of 1200 nm (Figure 5.3e). This etch depth is deeper compared to 

method I (800 nm). Here, in contrast to method I, the higher etch resistance of the metal 

hard mask allows for a deeper etch into the InP substrate with minimal reduction in pattern 

dimensions. The deeper etch is required and is conducive for an easy membrane release 

discussed below. Next, the HSQ/Cr/PMMA stack is removed (Figure 5.3f). Starting with 

top layer, HSQ is easily removed with the help of BOE (6:1). To lift-off Cr, the sample is 

submerged in acetone for 2 hours with slight sonication so all the PMMA is attacked and 

the Cr layer is lifted off. Following the lift-off, the same wet etching recipe described in 

method I is used to suspend the membranes (Figure 5.2e-g). However, in comparison with 

the sole HSQ hard mask, we now etch for a shorter 2 min 18 sec for complete membrane 

suspension due to the deeper dry etch of the III-V material. Ultimately, the reduction of 

cylinders’ radii is minimized with the use of the Cr metal mask. 
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Figure 5.3: Device fabrication process involving a metal hard mask, starting with the 

epitaxially grown multiple quantum wells on InP substrate (a-f). The subsequent membrane 

release process is the same for both processes: with and without a metal hard mask (Fig. 

5e-g). Note that the bridges connecting the cylinders are intentionally drawn thinner as a 

guide to the eye. Both the bridges and the cylinders are of the same thickness. 

5.3 Results and Discussion 

Figure 5.4 is a direct comparison of the dry etch quality of InGaAsP/InP with a 

HSQ hard mask (Method I) and an added Cr hard mask (Method II). A control pattern was 

etched for both cases while aiming for similar etch depths. With HSQ serving as the hard 

mask and its narrowing during the dry etch, the InGaAsP sidewalls have eroded inward 

directly resulting in the reduction of lateral dimensions as seen in Figure 5.4a and in Figure 

5.4b with the HSQ removed. However, with the added Cr layer, the patterns etched in 

InGaAsP experience minimal reduction in the lateral dimensions as seen in Figure 5.4c and 

in Figure 5.4d with the mask removed. This comparison is further apparent from the 

analysis of bridge reduction of the finished devices shown in Figure 5.5. In Figure 5.4c, 

the undercut in PMMA due to the oxygen plasma is clearly visible underneath the Cr layer. 
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After the initial etch over the PMMA thickness, the undercut rate was estimated to be 20 

nm/min [29]. A PMMA layer that is not undercut below Cr during its etch has rough edges 

and consequently this roughness is transferred to the InGaAsP layer thereby degrading the 

devices. On the other hand, a PMMA layer that is heavily undercut will once again lead to 

a reduction in lateral dimension, i.e. cylinder radius and bridge width. The dimension of 

the radius directly affects the cavity mode of the laser and the widths of the bridges affect 

the mechanical stability of the eventually suspended membrane. 

We show in Figure 5.5 the reduction in bridge widths from their nominal or defined 

values as a function of the nominal radius of the cylinders for Method I (HSQ mask) and 

Method II (added Cr mask). The two processes have different original bridge widths, as 

seen in Table 5.1, since the bridges are expected to shrink dramatically for the HSQ process 

compared to the Cr. Hence, it is more appropriate to look at the ‘width reduction’ of the 

bridges from the original. With a HSQ mask, the bridge reduction is worse than with an 

added Cr mask. As seen in the image insets of Figure 5.5, HSQ mask yields visibly thinner 

bridges. However, in both cases, the bridge reduction is greatest when the cylinder radii 

are small and lowest when the radii are large. With small radii cylinders and for a fixed 

periodicity, there is more access to the sides of the bridges for the dry etch gases. This 

contributes to an increased sidewall erosion and thus thinner bridges. Overall, the Cr mask 

and its increased etch resistance help alleviate the erosion in the membrane’s most critical 

elements: the bridges. The etch selectivity of HSQ is ~7-8 and in comparison, the 

selectivity for Cr is greater than ~50. 
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Table 5.1: Original dimensions of bridge widths and radii defined for HSQ and Cr 

processes 

  HSQ (W)  Cr (W) 

R555 to 580 nm  240 nm  
200 nm 

R585 to 600 nm  180 nm  

 
Figure 5.4: Electron micrograph images of Reactive Ion Etching (RIE) of InGaAsP/InP test 

patterns. Method I: Side view after dry etch with HSQ as etch mask (a) and after HSQ 

removal (b). Method II: Side view after dry etch with an added Cr hard mask (c) and after 

mask removal (d). Both were dry etched to a depth of 950 nm. The sidewall erosion is 

visible with a HSQ hard mask (a) compared to an added Cr hard mask (b). An undercut in 

the PMMA layer below the Cr is also observed. 

 

For method I, it is worth noting that the etching resistance of HSQ could not be 

improved significantly with an oxygen plasma post-treatment as previously suggested [30]. 
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This is mainly due to the drastic variation in system conditions and in the gases used for 

the dry etch. As for method II, to alleviate the need for a PMMA spacer, selective wet 

etching of the Cr layer directly deposited on InGaAsP were explored including CR-7 

(perchloric acid based) and CR-1020 (nitric acid based) etchants, however all etchants 

significantly attack and damage InGaAsP [31]. 

 

Figure 5.5: Reduction in bridge widths, W, from the nominal bridge widths as a function 

of the nominal radius for (a) Method I: HSQ mask and (b) Method II: added Cr mask. Left 

inset is a schematic of cylindrical resonators of radius, R, with interconnected bridges with 

widths, W. Right insets are images of the finished devices. The vertical error bars are the 

standard error in the measurement of the bridge widths. With a HSQ mask, the bridge 

reduction is worse than with an added Cr mask. However, in both cases, the bridge 

reduction is greatest (lowest) when the cylinder radius is small (large). With small radii 

cylinders and for a fixed periodicity, there is more access to the sides of the bridges for the 

dry etch gases. This contributes to an increased sidewall erosion and thus thinner bridges.  

Following the dry etch of InGaAsP/InP material, the InGaAsP patterns are 

suspended by selectively removing the InP underneath with the help of HCl solution. The 

successful suspension of the InGaAsP patterns is contingent on the dry etch depth into InP 

and the geometry of the surrounding etching window as seen from Figure 5.6. There is a 
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strong crystallographic dependence on the etch rates of InP with HCl solution [22]. As seen 

in Figure 5.6a, the etch is halted by the indium (In)-rich {111} planes sloped at 55° from 

the plane of InGaAsP forming etch pits [23]. If the InP dry etch depth is shallow, adjoining 

{111} planes of neighboring openings do not meet, and the suspension process is 

completely halted by the etch pits. Therefore, the total dry-etch depth (h) required for 

adjoining {111} planes to meet and fully suspend the InGaAsP membrane of thickness (t) 

is: ℎ ≥ 𝑅 tan(55°) + 𝑡 where R is the radius of the cylinders. Hence, it is imperative that 

the dry etch of InP be sufficiently deep in addition to the use of an appropriate etch window. 

As seen in Figure 5.6b and listed in Table 5.2, we employ three different etching windows 

for the square patterns: i. Rectangular with opening widths (2P) and supporting arms 

(2.5P), ii. Trapezoidal with thick supporting arms (3P) and opening widths (4P), iii. 

Trapezoidal with thinner supporting arms (P) and opening widths (4P) where P = 1.2 μm 

[32]. All three etch windows lead to suspended structures given the appropriate dry etch 

depth is reached. The less efficient the geometry of the etch window, the more the dry etch 

depth required. In our case, the rectangular etch window is the least efficient. It is worth 

highlighting that a longer etch depth leads to a reduction in lateral dimensions even with a 

Cr metal mask. Therefore, it is prudent to optimize the geometry of the wet etch window 

for a quick membrane release. For a given geometry of the etch window such as the 

rectangular one, we see both a suspended array which subsequently collapsed (Figure 5.6c. 

i) and an etch-halted array (Figure 5.6c. ii). The two samples were processed together 

where both are dry-etched for an etch depth of 600 nm and subsequently wet-etched for 1 

min 30 sec in HCl:H2O (3:1) solution. The only difference being the cylindrical resonators 

in one array have smaller radii than the other. The array in Figure 5.6c. i with a measured 
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radius of 440 nm, allows for larger dry-etched openings in-between the cylinders compared 

to the array in Figure 5.6c. ii with a larger radius of 540 nm. The larger openings make it 

easier for the neighboring {111}-InP planes to meet for a given dry etch depth. Hence, the 

smaller radii membrane is easily released whereas the other is halted by the formation of 

etch pits. It is worth noting that only a HSQ hard mask was used for these two samples. 

Therefore, the released membrane collapsed due to the reduction of the supporting bridge 

widths past their breaking point during the dry etch process. Similarly, wet etch of an array 

with a trapezoidal geometry is halted by the formation of etch pits due to thick supporting 

arms as seen in Figure 5.6d. Even prolonging the wet etch to 4 min did not break the etch 

pits. However, a trapezoidal etch window with thin supporting arms allows for a quick (2 

min 18 sec) membrane release leaving a visibly large V-groove that runs underneath as 

seen in Figure 5.6e. Larger arrays were also fabricated and, as expected, required longer 

wet-etching times for complete suspension. 

Table 5.2: Summary of wet etch windows and their dimensions for membrane release 

Etch Window Opening Widths (white) Supporting Arms (blue) 

Rectangular 2P (2.4 µm) 2.5P (3.0 µm) 

Trapezoidal I 4P (4.8 µm) 3P (3.6 µm) 

Trapezoidal II 4P (4.8 µm) P (1.2 µm) 
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Figure 5.6: Etch requirements and optimization of membrane release. (a) Dependence of 

InP dry-etch depth on the crystallographic selective wet-etching of InP. The etch is halted 

by the slowest set of etch planes, indium (In)-rich {111} planes of InP sloped at 55º. 

Therefore, the total dry-etch depth (h) required for adjoining {111} planes to meet and 

fully suspend the InGaAsP membrane of thickness (t) is: ℎ ≥ 𝑅 tan(55°) + 𝑡 (b) Three 

different wet-etch windows for membrane release: i. rectangular windows with opening 

widths (2P) in white and supporting arms (2.5P) in blue, both indicated by black arrows, 

ii. trapezoidal windows with thick supporting arms (3P) and trapezoidal opening widths 

(4P), iii. trapezoidal windows with thin supporting arms (P) and opening widths (4P) with 

P = 1.2 μm. (c-f) Electron micrograph images of completed fabrication for different etch 

windows and etch conditions. (c) Two 10x10 arrays with rectangular etching windows 

where both are dry-etched for an etch depth of 600 nm and subsequently wet-etched for 1 

min 30 sec in HCl:H2O (3:1) solution. (i.) Collapsed array with measured cylindrical radii 

of 440 nm after wet etching and (ii.) equivalent array with larger measured radii of 540 nm 

with halted etch due to formation of etch pits along {111} plane of InP. (d) Array with 

trapezoidal etch window with a halted etch due to thick supporting arms of InGaAsP 

indicated by outer white arrows and halted InP etch underneath indicated by second pair of 

white arrows. There are visible etch pits between the cylindrical resonators. All the etch 

pits remain even after a prolonged wet-etch of 4 min. (e) Successfully suspended array with 

trapezoidal etch window due to the thinner supporting arms (white arrows) which was wet-

etched for a total of 2 min 18 sec. A visibly large V-groove runs underneath the fully 

released membrane along the {011} direction. 

Both method I with a HSQ mask and method II with an added Cr metal-mask yield 

functional devices. However, the metal mask offers a tighter control over the finest 

dimensions of the pattern, i.e. radius and bridge widths (see Figure 5.7). A completed 

10x10 array with HSQ as the hard mask can be seen in Figure 5.7a and a magnified view 
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in Figure 5.7b. Similarly, a 10x10 array with Cr hard mask can be seen in Figure 5.7c and 

a magnified view in Figure 5.7d. As seen, the cylinders fabricated with the Cr hard mask 

maintain the mask dimensions with straighter sidewalls whereas with the HSQ mask both 

the cylinders and bridges shrink drastically with sloped sidewalls. There is also some 

noticeable sidewall roughness when using a Cr/PMMA hard mask mainly due to the etch 

quality of the PMMA.  

 
Figure 5.7: Electron micrograph images of completed membrane structures with 10x10 

cylindrical resonators interconnected by a network of bridges with a visible etch pit below 

in the InP substrate for HSQ etch mask (a) and added Cr hard mask (c). Respective zoom-

in images of two cylinders at the center of the array (b, d). As seen, the cylinders fabricated 

with the Cr hard mask maintain the mask dimensions with straighter sidewalls whereas 

with the HSQ mask both the cylinders and bridges shrink drastically with sloped sidewalls.  
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5.4 Device Performance 

In Figure 5.8, we observe lasing from devices made using a HSQ hard mask and a 

Cr hard mask. In Figure 5.8a, we observe lasing from a fully suspended 10x10 array 

fabricated with a HSQ hard mask emitting at 1567 nm with a threshold power of 67 μW. 

Similarly, we also observe lasing from a 10x10 array fabricated with the help of a Cr hard 

mask but emitting at 1540 nm with a threshold power of 89 μW (Figure 5.8b). Both arrays 

are optically pumped by a 1064 nm laser with 12 ns pulse width at a repetition rate of 300 

kHz (Figure 5.8c).  

By design and in virtue of the limitation of the two fabrication methods, the 

dimensions within the laser array (radius and bridge widths) are different which influences 

the lasing mode and thus dictates the lasing wavelength and threshold power. Hence, the 

two lasers emit at different wavelengths and have different thresholds. It is also worth 

noting that different etch windows were used for the two devices shown here. A rectangular 

etch window was used for the HSQ hard mask and a trapezoidal window with thin 

supporting arms for the Cr hard mask. The etch window has no effect on laser results but 

rather a considerable effect on the release of the lasing membranes during fabrication. The 

lasing mode is strictly dictated by the dimensions of the cylinders and bridges in the array. 

An optimized etch window such as the trapezoidal maximizes the etch overlap among 

crystal planes resulting in a quicker membrane release time for a given dry etch depth [32]. 

This also allows for a shorter dry etch time (or etch depth) thereby preserving 

dimensionality of the cylinders and bridges. 
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Figure 5.8: Lasing from fully suspended devices fabricated using a HSQ hard mask (a) and 

a Cr hard mask (b). Both devices are 10x10 arrays optically pump at 1064 nm and operating 

at room temperature as seen by IR camera during testing (left insets). (a) Light-Light (LL) 

curve of the laser fabricated using a HSQ hard mask emitting at 1567 nm (right inset) with 

a threshold of 67 μW (vertical dotted line). (b) LL curve for a laser fabricated using a Cr 

hard mask emitting at 1540 nm (right inset) with a threshold of 89 μW. (c) Schematic of 

photoluminescence setup for the characterization of membrane lasers with a pulsed pump 

(1064 nm) path in blue and emission/imaging path in red with a CCD camera, a 

monochromator, and an InGaAs detector tied to a lock-in amplifier. A microscope 

objective (NA=0.4) and L1 to L8 correspond to the lens assembly to the sample.  

5.5 Concluding Remarks 

In this chapter, we have described two different approaches of fabricating 

suspended membrane lasers composed of periodic cylindrical nanoresonators on an 

InGaAsP/InP platform. One approach involves HSQ as a dry etch hard mask and the other 

uses a Cr metal hard mask. The HSQ mask leads to significant reduction in dimensions 
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during the dry etching process. We observe that this reduction affects the mechanical 

stability of the membrane by eroding the bridges that keep the cylindrical resonators 

suspended. It also affects the cylinders’ radii which are critical to the lasing mode. We have 

shown that using a metal hard mask significantly minimizes the lateral reduction in the 

dimensions of the pattern in comparison to the HSQ hard mask. A metal mask allows for 

a precise fabrication of patterns defined by e-beam lithography. Moreover, we have 

discussed dry etch requirements to avoid etch pit formation in InP and the importance of 

an optimized wet etching window. A trapezoidal etching window with thin supporting arms 

was found to be the optimal window for a quick membrane release. We have shown that 

device functionality was unimpaired by either fabrication method. However, in the case of 

the metal hard mask, device performance such as a reduction in threshold power can be 

further improved with the reduction in sidewall roughness. Hence, a better alternative to 

PMMA spacer is needed: one that can be anisotropically etched straight with smooth 

sidewalls. The techniques outlined here will be of practical interest in the design and 

construction of novel membrane based devices with applications ranging from microfluidic 

biosensors to lasers on flexible substrates. 

 

Chapter 5, in part, is a reprint of the material as it appears in A. Kodigala, Q. Gu, 

T. Lepetit, B. Bahari, and B. Kanté, "Mechanically stable conjugate and suspended lasing 

membranes of bridged nano-cylinders," Optical Materials Express 7, 2980 (2017). The 

dissertation author was the primary researcher and author of this paper. 
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Chapter 6  

 

Summary and Outlook 

In this dissertation, we have explored two special types of singularities, Exceptional 

Points (EPs) and Bound States in the Continuum (BICs), as they pertain to open photonic 

systems with applications for enhanced sensing and low-threshold lasing respectively. An 

intrinsically lossy plasmonic platform was quantitatively studied and designed to exhibit 

mode coalescence or EPs. In contrast, a semiconductor gain material was structured to 

support resonance trapped BIC modes which were experimentally demonstrated to lase. 

The first chapter of this dissertation served as an appropriate introduction to the topics of 

EPs and BICs while motivating the present research in their respective material platforms.  

Chapter 2 of this dissertation provided the much-needed background for describing 

open systems, such as the plasmonic shift-bar system, which are free to interact with their 

environment via radiation with an effective Hamiltonian formalism derived from Coupled 

Mode Theory (CMT) and non-Hermitian quantum mechanics. This allowed for the 

quantitative estimate of resonance information (i.e. eigenmodes) from the scattering 

parameters of a plasmonic system. Using this method, resonance dynamics of coupled 

plasmonic bars were thoroughly investigated and as predicted. This chapter laid the 

foundation for the work presented in Chapter 3.   
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Chapter 3 presents an EP singularity in a 3D plasmonic nanostructure. The systems 

were composed of coupled plasmonic nanoresonators and were judiciously and 

systematically driven to EPs by controlling symmetry-compatible modes via their near-

field and far-field interactions. Moreover, diverging residues near EPs were shown. The 

proposed platform opens the way to the investigation of EPs for enhanced light-matter 

interactions and applications in sensing.  

Chapter 4 showed the experimental demonstration of the first resonance-trapped 

BIC lasers on an InGaAsP material platform operating at room temperature. The design, 

characterization and analysis of these optically pumped BIC lasers were described. These 

BIC lasers, made of an array of suspended cylindrical nanoresonators, carry some truly 

unique properties. They are fairly robust and can be scaled down in size to arrays as small 

as 8-by-8 unit cells. Similarly, they can also be scaled up for higher emission powers. The 

lasing wavelength was shown to follow the theoretical prediction of the BIC mode and the 

inverse relationship between quality factor and lasing threshold was also experimentally 

demonstrated. Moreover, operating near the BIC singularity, these lasers have very low 

threshold powers limited mainly by material losses. Topological properties of these BIC 

lasers remain to be explored. 

Chapter 5 is dedicated to the fabrication of these suspended membrane BIC lasers 

and the challenges therein. Two different fabrication approaches were presented in an effort 

to optimize and finely control the dimensions of the patterns. This is crucial for laser 

operation near the BIC singularity. A chromium (Cr) metal hard mask during dry etching 

was shown to offer finer control over pattern dimensions such as the cylinder radius. 
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Moreover, a thorough discussion on the suspension process and the mechanical stability of 

these lasers was presented.  

Throughout this dissertation, we have described several areas subject to future 

research. First, experimental realization of EPs on a plasmonic platform such as the shift-

bar system is a challenging task both in terms of fabrication and the accurate 

characterization of loss mechanisms to reach an EP. Not just scattering amplitudes but also 

their phase information may be needed to observe an EP. Once achieved, its successful 

implementation as an enhanced sensor requires further work with system integration and 

the addition of specificity. Further theoretical inquiries into loss mechanisms are also 

needed. As per BIC lasers, the immediate focus being the realization of an electrically 

pumped BIC laser. As expected, there are a few challenges to surmount. Mainly, the 

difficulty in maintaining current uniformity across the laser array especially when scaling 

up in size for higher emission power. Since these structures are suspended membranes, 

heat dissipation during device operation is also a concern and needs to be mitigated. With 

these issues addressed, BIC lasers may soon see various applications including solid-state 

LIDAR for autonomous vehicles amongst others.  
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Appendix A (Ch 2) 

A.1 S-parameters and eigenvalues of shift-bar (two-bar) 

system 

This appendix consists of full scattering parameter and the eigenvalues determined for the 

shift-bar system described in Chapter 2. It serves as an expansion to the data provided in 

Figure 2.5a, b, and its inset describing the maximum inversion between the symmetric (ω+) 

and anti-symmetric (ω-) modes at a shift, dx, of half-period (px/2) as a function of px and 

hsub. To begin, Figure A.1 displays the reflection, transmission, and absorption spectra as 

a function of shift, dx, for px=600 nm and hsub=75 nm. For a given periodicity, the full 

spectra for varying oxide spacer thicknesses (hsub=50, 75, 100 nm) are displayed in Figure 

A.2 (px=600 nm), Figure A.4 (px=700 nm), Figure A.6 (px=800 nm), Figure A.8 (px=900 

nm), and Figure A.10 (px=1000 nm). Correspondingly, their respective complex 

eigenvalues with resonance frequencies and linewidths are displayed in Figure A.3 (px=600 

nm), Figure A.5 (px=700 nm), Figure A.7 (px=800 nm), Figure A.9 (px=900 nm), and 

Figure A.11 (px=1000 nm). Here, the effect of periodicity and spacer thickness is clearly 

seen as described by the static dipole approximation in Chapter 2.  
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Figure A.1: (left to right) Reflection, |S11|

2, transmission, |S21|
2, and absorption, 1-|S11|

2-

|S21|
2, spectra as a function of shift, dx, for px=600 nm and hsub=75 nm. The non-radiative 

anti-symmetric (ω-) mode is clearly visible in the absorption spectra whereas the symmetric 

(ω+) mode is visible in the reflection and transmission spectra as a broad or highly radiative 

mode. 

 
Figure A.2: (left to right) Reflection, |S11|

2, transmission, |S21|
2, and absorption, 1-|S11|

2-

|S21|
2, spectra as a function of shift, dx, for px=600 nm and hsub=50, 75, 100 nm (top to 

bottom) with non-radiative anti-symmetric (ω-) and radiative symmetric (ω+) modes. 
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Figure A.3: (a) Evolution of resonant frequencies as a function of shift, dx, with linewidths 

pertaining to (b) symmetric (ω+) and (c) anti-symmetric (ω-) modes for px=600 nm and 

hsub=50, 75, 100 nm. 

 
Figure A.4: (left to right) Reflection, |S11|

2, transmission, |S21|
2, and absorption, 1-|S11|

2-

|S21|
2, spectra as a function of shift, dx, for px=700 nm and hsub=50, 75, 100 nm (top to 

bottom) with non-radiative anti-symmetric (ω-) and radiative symmetric (ω+) modes. 
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Figure A.5: (a) Evolution of resonant frequencies as a function of shift, dx, with linewidths 

pertaining to (b) symmetric (ω+) and (c) anti-symmetric (ω-) modes for px=700 nm and 

hsub=50, 75, 100 nm. 

 
Figure A.6: (left to right) Reflection, |S11|

2, transmission, |S21|
2, and absorption, 1-|S11|

2-

|S21|
2, spectra as a function of shift, dx, for px=800 nm and hsub=50, 75, 100 nm (top to 

bottom) with non-radiative anti-symmetric (ω-) and radiative symmetric (ω+) modes. 
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Figure A.7: (a) Evolution of resonant frequencies as a function of shift, dx, with linewidths 

pertaining to (b) symmetric (ω+) and (c) anti-symmetric (ω-) modes for px=800 nm and 

hsub=50, 75, 100 nm. 

 
Figure A.8: (left to right) Reflection, |S11|

2, transmission, |S21|
2, and absorption, 1-|S11|

2-

|S21|
2, spectra as a function of shift, dx, for px=900 nm and hsub=50, 75, 100 nm (top to 

bottom) with non-radiative anti-symmetric (ω-) and radiative symmetric (ω+) modes. 
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Figure A.9: (a) Evolution of resonant frequencies as a function of shift, dx, with linewidths 

pertaining to (b) symmetric (ω+) and (c) anti-symmetric (ω-) modes for px=900 nm and 

hsub=50, 75, 100 nm. 

 
Figure A.10: (left to right) Reflection, |S11|

2, transmission, |S21|
2, and absorption, 1-|S11|

2-

|S21|
2, spectra as a function of shift, dx, for px=1000 nm and hsub=50, 75, 100 nm (top to 

bottom) with non-radiative anti-symmetric (ω-) and radiative symmetric (ω+) modes. 
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Figure A.11: (a) Evolution of resonant frequencies as a function of shift, dx, with 

linewidths pertaining to (b) symmetric (ω+) and (c) anti-symmetric (ω-) modes for px=1000 

nm and hsub=50, 75, 100 nm. 
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Appendix B (Ch 3) 

B.1 S-parameters and eigenvalues of three and five-bar 

systems with EPs 

The following appendix provides scattering spectra for the three and five-bar 

systems both of which have been shown to possess an EP in Chapter 3. For the two-bar 

case, we simply referred to the fundamental modes as being either symmetric (even) or 

anti-symmetric (odd) with respect to the bisecting plane as seen in Figure B.1a. However, 

for a system with more than two resonators there is more than one mode of shared 

symmetry. For example, the three-bar system has two fundamental symmetric (even) 

modes (A, C) and one fundamental anti-symmetric (odd) mode (B) as seen in Figure B.1b. 

Since, even and odd modes are non-interacting, the behavior of these modes can be easily 

observed individually with the help of symmetry planes: perfect electric conductor (PEC) 

for odd modes and perfect magnetic conductor (PMC) for even modes. To begin, Figure 

B.2 below displays the 1-port reflection spectra as a function of shift, dx, for px=800 nm 

and dz=60 nm which is close to an EP as can been seen in Figure 3.2 of Chapter 3. 

 
Figure B.1: (a) Schematic depiction of symmetric (even) and anti-symmetric (odd) modes 

of two-bar system with a bisecting symmetry plane (blue line). (b) Depiction of even (PEC 

plane) and odd (PMC plane) modes of three-bar system with bisecting symmetry planes 

(blue lines) for easy analysis.  
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Figure B.2: (left) 1-port reflection, |S11|

2, spectra with PEC plane showing odd mode (B) 

and (right) spectra with PMC plane even modes (A, C, and D) for the three-bar system at 

px=800 nm and dz=60 nm. The EP is in the vicinity of a shift, dx, of 345 nm and 212 THz 

as seen in Figure 3.3 with Modes A and C.  

The above half-space (PEC and PMC) 1-port scattering spectra can be combined 

to yield the full 2-port spectra with the following relationship below [1] which is seen in 

Figure B.3:  

𝑆11
2𝑝𝑜𝑟𝑡 =

1

2
(𝑆11
𝑒𝑣𝑒𝑛 + 𝑆11

𝑜𝑑𝑑) 

𝑆21
2𝑝𝑜𝑟𝑡 =

1

2
(𝑆11
𝑒𝑣𝑒𝑛 − 𝑆11

𝑜𝑑𝑑) 
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Figure B.3: (left to right) Combined half-space (PEC and PMC) 2-port reflection, |S11|

2, 

transmission, |S21|
2, and absorption, 1-|S11|

2-|S21|
2, spectra as a function of shift, dx, for 

px=800 nm and dz=60 nm with both visible even and odd modes for three-bar system.  

The previous approach is also applied to the five-bar system to isolate either even 

or odd modes of the systems as seen in Figure B.4 and combined spectra in Figure B.5 

below.  
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Figure B.4: (left) 1-port reflection, |S11|

2, spectra with PEC plane showing two fundamental 

odd modes and (right) spectra with PMC plane with three fundamental even modes (A, C, 

and D) for the five-bar system at px=800 nm and dz=40 nm. The EP is in the vicinity of a 

shift, dx, of 345 nm and 228 THz as seen in Figure 3.5.  

 
Figure B.5: (left to right) Combined half-space (PEC and PMC) 2-port reflection, |S11|

2, 

transmission, |S21|
2, and absorption, 1-|S11|

2-|S21|
2, spectra as a function of shift, dx, for 

px=800 nm and dz=40 nm with both visible even and odd modes for five-bar system. 



96 

 

 

 

References 

1. J-S. Hong, Microstrip Filters for RF/Microwave Applications, New York: Wiley, 2nd 

Edition, page 20 (2011). 

 



 

 

97 

 

Appendix C (Ch 4) 

C.1 Odd and Even Modes 

We plot the complex dispersion relation for both odd and even modes (membrane 

mirror plane), in the wavelength range from 1.45 μm to 1.67 μm, in Figure C.1. 

 
Figure C.1: Complex dispersion relation as function of k (a/2π) of the structure along MΓ 

and ΓX in the wavelength range from 1.45 μm to 1.67 μm and for a BIC radius of 528.4 

nm. Odd modes, (a) Frequency vs. phase (b) Quality factor vs. phase. Even modes, (c) 

Frequency vs. phase (d) Quality factor vs. phase. 

As can be seen, there are three odd modes and three even modes in this wavelength 

range. No mode has a higher overall quality factor than the two odd modes (doubly 

degenerate at Γ) around 1.55 μm, which are the BIC modes (Figure C.1b, blue and green 

lines). In addition, there are two symmetry-protected modes, one odd and one even, whose 

quality factors are high only at Γ (Figure C.1b, red and Figure C.1d, blue). Finally, there is 
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a pair of even modes that are degenerate at Γ with a low quality factor (Figure C.1d, 

red and green). 

C.2 Group Theory and Tunable off-Γ BICs 

The distinction between the ‘resonance-trapped’ and ‘symmetry-protected’ modes 

is further evident in the context of group theory [1]. In brief, spatial symmetries of a 

periodic membrane can be used to classify its modes. The point group of a square-lattice 

membrane suspended in air is the direct product of point groups C4v and C1h. Accordingly, 

its modes can be classified using the irreducible representations of both point groups. The 

two character tables below summarize how each irreducible representation behaves with 

respect to each symmetry operation. 

C1h E C2 

A +1 +1 

B +1 -1 

 

C4v E 2C4 C2 2σv 2σd 

A1 +1 +1 +1 +1 +1 

A2 +1 +1 +1 -1 -1 

B1 +1 -1 +1 +1 -1 

B2 +1 -1 +1 -1 +1 

E 2 0 2 0 0 

There are ten different modes that can exist in such a lattice (two times five). Since 

we restrict consideration to modes with an odd symmetry with respect to the membrane 

plane, only five are left: (B,A1), (B,A2), (B,B1), (B,B2), and (B,E). At Γ, plane waves in 

free space admit an E representation and can thus only couple to (B,E) modes. Such modes 

have a low Q-factor on account of their radiative nature. In contrast, all other modes are 
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uncoupled by virtue of symmetry, i.e., they form symmetry-protected BICs, and thus have 

an infinite Q-factor. This was first reported by Paddon and Young [2]. 

Furthermore, (B,A1), (B,A2), (B,B1), and (B,B2) modes are all singly degenerate 

while the (B,E) mode is doubly degenerate. In our band diagram (Figure C.1a), we see 

clearly one singly degenerate mode at 1520 nm and one doubly degenerate mode at 1558 

nm. From the above symmetry considerations, we would thus expect only the lower 

wavelength mode to have an infinite Q-factor. However, we clearly see that this is not the 

case. This means that the doubly degenerate mode is not a BIC by virtue of symmetry-

protection, i.e., it must be a resonance-trapped BIC. Unlike previous works [3, 4], we show 

here that such BICs do not always happen away from high-symmetry points but can also 

occur at Γ. As such, our lasing structure fundamentally differs from the work by Bo Zhen 

et al. [5] where lasing originates from a symmetry-protected mode. 

Moreover, the “resonance-trapped” BIC exploited in this work can be placed by 

design at either a high-symmetry point, such as the Γ-point, or at a generic point in k-space. 

In this work, we chose to exploit the BIC at Γ because many applications rely on surface 

emitting lasers. In this sense, compared to “symmetry-protected” BICs that have to operate 

at Γ, “resonance-trapped” BICs are more versatile. We show in Figure C. below that the 

diverging quality factor associated with the “resonantly-trapped” BIC modes (modes 1-2) 

can be placed off-Γ by choosing a membrane thickness of 290nm, i.e., differing from the 

current 300nm used to fabricate all our BIC lasers. As seen in Figure C.a, modes 1-2 are 

the doubly degenerate BIC modes and mode 3 is the symmetry-protected mode. As seen in 

Figure C.b, for a thickness of 290nm, the diverging Q of the symmetry-protected mode 
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remains at Γ whereas the diverging Q for modes 1-2 are now off-Γ. For the experiments, 

this membrane thickness is predefined during the finely controlled epitaxial growth. 

 
Figure C.2: a, Quality factor of modes 1-3 as a function of phase at optimal radius of 528.4 

nm and a membrane thickness of 300 nm. b, Quality factor as a function of phase for a 

varied membrane thickness of 290 nm. Modes 1-2 are the doubly degenerate BIC modes 

and mode 3 is the symmetry-protected mode whose diverging Q remains at Γ whereas the 

diverging Q for modes 1-2 can be placed off-Γ. 

C.3 Far-field Emission and Polarization of BIC Lasers 

Figure C.3 shows the calculated normalized far-field intensity profile for the lasing 

BIC mode with superimposed electric field [6]. The IR CCD images of a suspended laser 
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array in operation and its corresponding far-field emission can be seen in Figure C.4 and 

Figure C.5. The pump beam neatly overlaps the laser array (Figure C.4b) and the resulting 

emission collected over the camera bandwidth is presented in Figure C.4c. Far-field 

emission of the laser array operating above threshold is filtered around the lasing 

wavelength using a bandpass filter (FWHM of 40nm) as seen in Figure C.5. Here, a 

bandpass filter with a FWHM of 40nm is utilized so as to only collect emission around the 

lasing wavelength and to avoid camera saturation. The emission profile is more prominent 

as the pump power is increased. The non-uniform pattern is partly a consequence of back 

reflections from the etched substrate below the laser array (i.e., V-groove etch pit as seen 

in Figure C.6). Light emitted towards the bottom is reflected by the V-groove once or 

several times before passing through the suspended membrane. This leads to scattering in 

other directions and contributes to the experimentally observed far-field. Moreover, the 

finiteness of the array also leads to some in-plane emission. 

 
Figure C.3: Normalized far-field intensity profile for the lasing BIC mode with 

superimposed electric field. 
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Figure C.4: (a) IR CCD image of suspended laser array. (b) Image of the array with 

overlapping pump beam. (c) Image of emission from the laser array collected over the 

camera bandwidth. 

 

Figure C.5: Far-field emission of laser array over multiple pump powers with dotted outline 

indicating the physical size and location of the array. Emission profiles of lasers operating 

above threshold with increasing pump power: (a) 82 μW, (b) 98 μW, (c) 111 μW, (d) 135 

μW. 

 

Figure C.6: (a) Electron micrograph image of a fully suspended membrane structure with 

16x16 cylindrical resonators interconnected by a network of bridges with a visible etch pit 

in the InP substrate [7] and large openings for easy membrane release. (b) Zoom-in image 

of two cylinders at the center of the array. 

As further identification of the lasing mode, we have conducted polarization 

measurements of our laser arrays operating above threshold (see Figure C.7 below). There 
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is agreement between the measured and calculated polarization ellipses as seen in Fig. 

Figure C.7b and c. There is observable pinching in the measured ellipse corresponding to 

the predicted polarization ellipse. Note that the predicted ellipse does not account for the 

finiteness of the laser array. Furthermore, experimentally one of the degenerate modes wins 

mode competition and lases. Modes 1-2 are degenerate at Γ for infinitely large samples. 

Individually, the polarization ellipses for each of the two modes are orthogonal. Ideally, 

without imperfections, the two modes would be truly degenerate; thus the resulting 

polarization ellipse from the laser emission would be a circle. 

 
Figure C.7: Polarization measurement of laser operating above threshold. (a) 

Photoluminescence spectra of a 16-by-16 laser array with a nanoresonator radius of 525 

nm as a function of the polarizer angle. (b) Measured polarization ellipse and (c) predicted 

polarization ellipse not accounting for the finiteness of the lasing array. There is observable 

pinching in the measured ellipse corresponding to the ideal polarization ellipse. 
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C.4 Emission Power Estimate 

 We have carried out additional measurements for a quantitative estimate of the 

emission power from our laser devices. In our case, the pump laser is pulsed with a 12 nSec 

pulse width at f=300 kHz (period=~3μSec) in conjunction with a 1 kHz chopper reference 

for the lock-in amplifier. Hence, the emission from our laser devices is also emitting with 

a 300 kHz repetition rate with a 1 kHz modulation. However, the present photodiode 

detector has a bandwidth of 2 kHz with a single pole roll-off (-20 dB/dec) in its frequency 

response which is far shorter than the 300kHz repetition rate (see Figure C.8a and b below). 

Consequently, the power estimated while compensating for the single pole roll-off is an 

indirect measurement (see Figure C.8 below).  

 
Figure C.8: (a) Normalized single-pole frequency response of the photodiode detector with 

a red arrow indicating the repetition rate of 300 kHz which is outside the 2kHz bandwidth 

of the detector. (b) Laser emission recorded off the photodiode where the 1kHz reference 

for lock-in amplifier is apparent but the higher frequency signal of 300kHz is not present. 

(c) Estimated emission power of laser device (R525 16x16) in the micro-watt range as a 

function of average pump power. 
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Appendix C, in part, is a reprint of the material as it appears in the supplement of 

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman and B. Kanté, "Lasing action from 

photonic bound states in the continuum," Nature 541, 196 (2017). The dissertation author 

was the primary researcher and author of this paper. 
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