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Abstract

While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent
studies often involve additional populations, including admixed populations such as African Americans and Latinos. In
admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale
(admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations
have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not
both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies,
as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these
methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0
chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer
GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in
statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies.
At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware
imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases
statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed.
Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.
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Introduction

Genome-wide association studies (GWAS) are the currently

prevailing approach for identifying genetic variants with a modest

effect on the risk of common disease, and have identified hundreds of

common risk variants for a wide range of diseases and phenotypes

[1,2]. Although GWAS have initially focused on populations of

European ancestry, studies of other populations will capture

additional genetic diversity that may be absent or present only at

low frequency in Europeans. GWAS in non-Europeans will often

involve admixed populations, such as African Americans and Latinos,

with recent ancestry from two or more ancestral populations [3,4].

GWAS disease mapping in homogeneous populations relies on

linkage disequilibrium (LD) between nearby markers to identify

SNP association [5]. Admixed populations exhibit another form of

LD at a coarse scale (admixture-LD) due to chromosomal segments

of distinct ancestry [6]. This enables admixture mapping (mapping

by admixture-LD) to be an effective approach for identifying disease

genes in admixed populations [7–14]. As genotyping costs have

decreased, however, GWAS have become an increasingly appealing

alternative. Although GWAS and admixture mapping have

historically been viewed as distinct approaches, GWAS in admixed

populations can in theory capture both SNP and admixture

association signals, which have been shown to contain independent

information [15]. To date, GWAS in such populations have either

considered SNP association only [3,16,17], or SNP and admixture

association separately [4]. We show below that combining these

signals leads to increased statistical power because case-only

admixture association statistics contain information independent

from case-control SNP association statistics.

It is important to complement theoretical methods development

with empirical evaluation on large real data sets. To this end, we

have evaluated our methods using 6,209 unrelated African

Americans from the CARe cardiovascular consortium as well as

5761 unrelated African-American women from a GWAS for

breast cancer. We ran comprehensive simulations based on real

genotypes and phenotypes simulated under a variety of assump-

tions. Our main focus was on case-control phenotypes, in which

case-only admixture association is particularly valuable. Our

analysis of simulated and real (coronary heart disease, type 2

Statistical Tests for GWAS in Admixed Populations
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diabetes and breast cancer) case-control phenotypes shows that

our combined SNP and admixture association approach attains

significantly greater statistical power than can be achieved by

applying either approach separately. Although our main focus is

on case-control phenotypes, we also provide a detailed evaluation

of association statistics for quantitative phenotypes, using simulat-

ed and real (LDL and HDL cholesterol) phenotypes.

Since the general assumption in GWAS is that the causal SNP is

not directly typed in the study, it is important to assess how the

newly introduced scores perform in the context of genotype

imputation. First, we show that imputation accuracy is marginally

improved when local ancestry is taken into account in the

imputation procedure. Second, our analysis in African Americans

shows that for case-control studies our methods for combining SNP

and admixture association outperform other approaches even in the

presence of imputation. Finally, we show that when the causal SNP

is not typed and cannot be reliably imputed our methods yield

higher statistical power at finding the region harboring the causal

variant when compared to previous approaches. Based on these

findings we provide recommendations for the use of our combined

approach in GWAS of admixed populations.

Results

CARe data set
We analyzed data from 6,209 unrelated African Americans from

the CARe consortium who were genotyped on the Affymetrix 6.0

chip, and merged in genotype data from the HapMap3 project (see

Methods) [18]. We ran principal components analysis (PCA) on the

merged data using the EIGENSOFT software, using only the CEU,

YRI and CHB populations from HapMap3 to compute principal

components [19,20]. The CARe samples generally occupy

intermediate positions between CEU and YRI, consistent with

previous work (Figure S1) [21,22]. We ran the HAPMIX program

for inferring local ancestry (0, 1 or 2 European chromosomes) at

each location in the genome on the CARe samples, using phased

CEU and YRI haplotypes from HapMap3 as reference [23].

HAPMIX was run in a mode that assigns European or African

ancestry to each allele, thus resolving the local ancestry of each allele

when both genotype and local ancestry were heterozygous (see

Methods). We defined genome-wide ancestry for each sample as the

average of local ancestry estimates across the genome (scaled to 0.0,

0.5 or 1.0). Genome-wide European ancestry estimates had a mean

of 19.2% and standard deviation of 12.0% across samples

(consistent with previous work [21,22]), and were .99% correlated

with the top eigenvector from PCA analysis. We defined average

local ancestry at each location in the genome as the average of local

ancestry values across samples. A plot of average local ancestry

shows no unusual peaks in average local ancestry (Figure S2),

consistent with the fact that the full set of CARe samples were not

ascertained for a specific disease phenotype and thus would not be

expected to produce an admixture peak, and confirming that

HAPMIX does not produce artifactual deviations in average local

ancestry. Importantly, we note that local ancestry can be estimated

using any of the local ancestry inference methods that have been

proposed (e.g. [7,23,24]), as long as they are accurate and do not

produce artifactual deviations in average local ancestry. We

mention in passing that very strong selection since admixture for

an allele differing in frequency between Europeans and West

Africans could in theory produce a true local ancestry deviation, and

our data could be used to provide an upper bound on the size of any

such effect. We do not pursue this here.

Overview of association statistics for case-control
phenotypes

We used the Armitage trend test with correction for genome-wide

ancestry as a baseline for the evaluation of other approaches, as this

approach was used in previous association analyses using CARe

data [25] (see Methods). Next, we considered a SNP association

score conditioned on local ancestry, as well as a case-only admixture

score which evaluates the causal hypothesis that, restricting to

disease cases, the proportion of European ancestry at the candidate

locus differs from the genome-wide proportion [7] (see Methods).

Historically, an advantage of admixture association was that disease

mapping could be performed using a coarse set of markers, due to

the large size of ancestry segments and the resulting admixture

linkage disequilibrium [22]. However, even when GWAS data are

available, admixture scores that compare disease cases to the same

disease cases elsewhere in the genome contain different information

than SNP association scores that compare cases to controls; the

additional information is particularly valuable when the causal SNP

has very different allele frequencies in the ancestral populations.

One possibility is to add the SNP association score conditioned on

local ancestry to the admixture score to produce a x2(2dof) score,

but as we show below, the higher degrees of freedom leads to a

reduction in statistical power. We instead propose a mixed x2(1dof)

score that jointly evaluates both SNP and admixture association

using a single SNP odds ratio, by using the implied ancestry odds

ratio (see Methods). An important question is whether the odds ratio

conditioned on African local ancestry differs from the odds ratio

conditioned on European local ancestry, as this has implications for

fine-mapping the causal SNP. This can be addressed by comparing

the x2(1dof) SNP association score conditioned on local ancestry to

a x2(2dof) SNP association score which allows different odds ratios

for African versus European local ancestry (see Methods). A final

question, important in the context of localizing the causal SNP, is

whether the ancestry odds ratio is fully explained by the SNP odds

ratio. This can be addressed by comparing the x2(1dof) MIX score

that accounts for both admixture and case-control signal using a

single SNP odds ratio and the x2(2dof) SUM score that allows for

independent SNP and ancestry odds ratios.

We also explored whether it is necessary to assign African or

European ancestry to each allele for a sample and SNP in which both

Author Summary

This paper presents improved methodologies for the
analysis of genome-wide association studies in admixed
populations, which are populations that came about by the
mixing of two or more distant continental populations over
a few hundred years (e.g., African Americans or Latinos).
Studies of admixed populations offer the promise of
capturing additional genetic diversity compared to studies
over homogeneous populations such as Europeans. In
admixed populations, correlation between genetic variants
exists both at a fine scale in the ancestral populations and at
a coarse scale due to chromosomal segments of distinct
ancestry. Disease association statistics in admixed popula-
tions have previously considered either one or the other
type of correlation, but not both. In this work we develop
novel statistical methods that account for both types of
genetic correlation, and we show that the combined
approach attains greater statistical power than that achieved
by applying either approach separately. We provide analysis
of simulated and real data from major studies performed in
African-American men and women to show the improve-
ment obtained by our methods over the standard methods
for analyzing association studies in admixed populations.

Statistical Tests for GWAS in Admixed Populations
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local ancestry and genotype are heterozygous. Although the

HAPMIX algorithm supports this functionality, it represents a

significant complexity, particularly if representing local ancestry

inference in terms of real-valued probabilities. We focus below on

scores based on diploid local ancestry (AA, AE or EE) that do not

require this extra information, and show that these scores perform

nearly as well as scores that are based on haploid local ancestry (A or

E) for each of two chromosomes with local ancestry inference and

phasing performed jointly.

Simulations of case-control phenotypes
We randomly selected 100,000 autosomal SNPs and, for each

SNP, assigned simulated phenotypes based on either a null model

or causal model for that SNP. Under the null model, we chose

1,000 cases and 1,000 controls at random. Under the causal

model, we chose 1,000 cases and 1,000 controls corresponding to

odds ratios R = 1.2,1.5 or 2.0 (see Methods). Thus, our simulations

use real genotypes, with simulated phenotypes that are different

for each SNP being tested (and different for each value of R). This

framework automatically leads to admixture association signals as

would exist with real phenotypes: for example, a causal SNP in

which the risk allele has higher frequency in Europeans than in

Africans will lead to the selection of 1,000 cases with higher than

average European ancestry at the disease locus.

We compared 5 scores: Armitage trend test with correction for

genome-wide ancestry (ATT), SNP association conditioned on local

ancestry (SNP1), admixture association using cases only (ADM),

sum of SNP1 and ADM (SUM), and our new mixed score (MIX).

All of these are x2(1dof) scores, except for SUM which is x2(2dof).

We note that the strength of the induced admixture signal at highly

differentiated SNPs (as measured by the ancestry odds ratio) in the

simulated data fits the model assumed in the MIX score.

In Table 1 (Typed Genotypes) we display results obtained by all

scores averaged across all SNPs, and averaged across SNPs with

CEU versus YRI allele frequency difference of at least 0.4, roughly

the top decile of differentiation. We used a p-value cutoff of 5e-08 for

all scores except ADM for which a threshold of 1e-05 was employed.

The different ADM threshold is motivated by the smaller number of

independent hypotheses tested across the genome in an admixture

scan (an effect of the large size of the ancestry segments) [6,7]. The

MIX score attains 8% higher power than the ATT score for random

SNPs (24% higher power for SNPs in the top decile) at R = 1.5. The

SNP1 score, which is conditioned on local ancestry, is analogous to

disease mapping in Europeans or Africans (see Text S1). Thus,

disease mapping in African Americans using the MIX achieves an

increase in statistical power of 13% for random SNPs and of 67% for

SNPs in the top decile of population differentiation over disease

mapping in Europeans or Africans. This advantage is obtained both

because MIX is a more powerful score than ATT, and because of

the inherent advantage of disease mapping in admixed populations,

which contain more polymorphic variation. As expected, the

advantage of the MIX score is greatest for SNPs with large allele

frequency differences between Africans and Europeans, for which

admixture association produces a strong signal (Table 1 (Typed

Genotypes) and Figure 1). We obtained similar results for a variant of

the MIX score based on haploid local ancestry with joint local

ancestry inference and phasing (Text S1). Thus, fully powered

association statistics in admixed populations do not require joint

local ancestry inference and phasing. We finally note that the

heterogeneity score that tests for differences in effect size for African

versus European local ancestry (HET) attained average values

between 0.99–1.01 (data not shown), exactly as expected since

simulated phenotypes did not involve heterogeneity in effect size.

We also assessed all scores at null simulated data (R = 1) using the

standard genomic control [26] statistic lGC which attained a value

of 1.001 for MIX, 0.986 for SNP1 and 0.999 for the ATT score,

respectively. We observed a lGC of 1.101 for the ADM score, which

is suggestive of inflation, although we note that, for 1000 cases and a

thousand independent genomic regions (as expected in the ADM

score), a lGC of 1.101 can arise by chance. However, since multiple

Table 1. Average statistical power of simulated case-control scores in African Americans computed using (a) typed or (b) imputed
genotypes.

Typed Genotypes

R = 1.2 random R = 1.2 D.0.4 R = 1.5 random R = 1.5 D.0.4 R = 2.0 random R = 2.0 D.0.4

ATT x2(1dof) 0.0017 0.0026 0.3803 0.5533 0.8351 0.9769

SNP1 x2(1dof) 0.0014 0.0012 0.3628 0.4181 0.8279 0.9362

ADM x2(1dof) 0.0001 0.0013 0.0081 0.0903 0.0737 0.6306

SUM x2(2dof) 0.0012 0.0028 0.3555 0.624 0.8287 0.9874

MIX x2(1dof) 0.0021 0.0046 0.4131 0.6899 0.8486 0.9907

Imputed Genotypes

R = 1.2 random R = 1.2 D.0.4 R = 1.5 random R = 1.5 D.0.4 R = 2.0 random R = 2.0 D.0.4

ATT x2(1dof) 0.0010 0.0008 0.2871 0.2988 0.7620 0.7762

ATT-dose x2(1dof) 0.0010 0.0008 0.3009 0.3134 0.7775 0.7938

SNP1 x2(1dof) 0.0009 0.0007 0.2673 0.3013 0.7483 0.8748

ADM x2(1dof) 0.0001 0.0013 0.0081 0.0903 0.0737 0.6306

SUM x2(2dof) 0.0007 0.002 0.2668 0.5086 0.7567 0.9729

MIX x2(1dof) 0.0013 0.0034 0.3184 0.5915 0.778 0.9786

For each score we list the proportion of SNPs for which the score attains genome-wide significance (defined as P,5e-08 for all scores except ADM, P,1e-05 for ADM),
for random SNPs as well as SNPs in the top decile of population differences (D.0.4), for R = 1.2, R = 1.5, R = 2.0 simulations (see main text). For R = 1.0 the power is 0 for
all scores. In general the MIX score shows an increase in statistical power relative to the ATT score, and a further increase in power relative to the SNP1 score, which is
analogous to disease mapping in European or African populations. ATT-dose denotes ATT test using imputation dosages.
doi:10.1371/journal.pgen.1001371.t001
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factors (e.g. deviations from random mating, correlation in errors of

local ancestry estimates) could potentially lead to inflation of the

ADM statistic, we have also devised an admixture statistic,

ADMGC that incorporates the empirical variance of the average

local ancestry (see Methods). It can be shown that ADMGC is

equivalent to dividing the ADM statistics by lGC. Furthermore, we

show how to incorporate ADMGC within the MIX framework to

obtain a new version of our score (MIXGC) that incorporates the

new admixture component. As expected, both ADMGC and

MIXGC attain lGC of 1.000 (data not shown) in simulated null

data. We note that MIXGC should be used when there is significant

indication of inflation. As this was not the case here, we chose to use

MIX for all results below.

We also assessed the performance of our scores when the disease

model assumptions are not met. We simulated causal SNPs under

various disease models such as dominant and recessive or when two

causal independent SNPs are present within an admixture block. To

simulate two causal independent SNPs within same admixture

block, we restricted to SNPs less than 5Mb apart and with LD less

than .1 (as measured by r2). Results in Table S3 confirm that for

most scenarios studied the MIX score outperforms the standard

ATT score with correction for genome-wide ancestry. Interestingly,

when restricting to 2 causal SNP scenario in which one of the causal

is in the top decile of differentiation (which induces a strong

admixture signal) we observe that the SUM score outperforms all

other scores in terms of power, showing the potential utility of this

score at loci with multiple causal variants.

We also looked at heterogeneous effects across Europeans and

Africans by simulating 100,000 causal SNPs with R = 1.5 (under no

heterogeneity) and assessing the scores at SNPs with different levels

of LD with the simulated causal in the two populations. Different LD

across populations will induce heterogeneous effects as a function of

the allele frequencies and the population specific LD pattern. Results

in Figure S4 show that under small heterogeneous effects (difference

in observed odds ratios ,0.25), the MIX score outperforms the other

scores in terms of power while in the presence of larger heterogeneity

all scores are underpowered in this simulation.

Genotype imputation in African Americans
Due to the limited number of markers present on the genotyping

platforms, it is often the case that the causal SNP is not directly

typed within the GWAS. However, genotypes typed in a study can

be used as predictors, in conjunction with haplotypes over denser

sets of SNPs from external repositories of human variation such as

the HapMap [27], to impute genotypes at SNPs untyped in the

current study. Genotype imputation has been widely used as a

method for boosting statistical power in association and fine-

mapping studies as well as in meta-analysis that combines

information across studies as a tool for increasing the number of

markers interrogated for association with the phenotype [28–30].

Multiple methods [31,32] have been proposed for solving the

imputation problem and have been shown to be very accurate when

the haplotypes used as a reference panel provide a good match to

the study population [28,30,33]. In admixed populations various

imputation approaches have been proposed ranging from assigning

global weights to the reference panels based on empirical estimates

of ancestry [30], to assigning coalescent-based weights to each of the

reference haplotypes in every sample and every locus in the genome

[34]. A standard approach for imputation in African Americans is to

use a reference panel composed of European and African

chromosomes [18,25]. Recent work has shown that imputation

conditional on local ancestry estimates can boost the overall

accuracy when compared to imputation based cosmopolitan

reference panels that contain haplotypes from all the ancestral

populations [24,35]. Here, through the use of real CARe genotypes,

we show that imputation conditional on local ancestry yields a small

improvement in imputation accuracy in African Americans. Our

local ancestry aware imputation framework uses, at every locus in

Figure 1. Statistical power of SNP1, ATT, MIX scores as a function of population differentiation. We plot the average power of each
score as a function of allele frequency difference between CEU and YRI, for the R = 1.5 simulation only.
doi:10.1371/journal.pgen.1001371.g001
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the genome, a reference a panel of haplotypes that is specified by the

local ancestry (see Methods).

Following a standard masking approach, we masked 100,000

SNPs at random from the CARe data, imputed them and assessed

imputation accuracy using a standard accuracy measure, the

squared correlation between imputed and true ‘masked’ genotypes.

We observe an average imputation r2 of 0.858 when our local

ancestry aware framework is used, as opposed to 0.855 under the

standard cosmopolitan approach, confirming that there is a small

gain in accuracy by conditioning imputation on local ancestry. We

observe a smaller improvement in imputation performance than the

one reported in [24,35] which can be an effect of different

imputation methods as well as of difference in size of reference

HapMap panels used. We employed a much larger set of reference

haplotypes (HapMap phase 3 versus phase 2) in imputation that

could potentially reduce the effect of incorporating local ancestry.

Importantly, we note that the gain in accuracy is observed across all

SNPs and leads to a small gain in statistical power for association

(see Figure 2 and Table S1). We also point out that a large

percentage of the imputed SNPs show a large difference in

imputation performances between the European and African

segments (see Figure S3). Roughly 40% of the imputed SNPs show

accuracies differing by at least 0.1 in terms of squared correlation in

European versus African segments with 26% being more accurately

imputed in European segments versus 14% in African segments.

Case-control association statistics at imputed SNPs
A straightforward approach for extending association statistics at

imputed SNPs is to use the maximum likelihood estimates for

unobserved genotypes. Although this procedure does not fully

account for the uncertainty in the imputed genotypes, it has been

previously shown to perform well when there is considerable

confidence in the imputed genotype calls. Throughout this paper

we compute statistics over the maximum likelihood genotype calls.

Although our novel scores could potentially be improved by fully

incorporating the imputation uncertainty in the likelihood framework

we note that the MIX score outperforms the standard ATT score,

even when the ATT score accounts for the imputation uncertainty

through the use of dosages instead of maximum likelihood genotype

calls (see Table 1 (Imputed Genotypes)). An important aspect of

applying the case-control statistics to imputed data in African

Americans is to properly account for the difference in imputation

quality between African and European segments. We accomplish this

by adjusting the observed allelic odds ratio as a function of imputation

quality in the MIX and SNP1 score (see Text S1).

We masked the 100,000 SNPs that were used for simulation of

phenotypes and imputed genotypes at these SNPs using our local

ancestry aware imputation framework (see Methods). We computed

the scores over the imputed genotype calls with the results displayed

in Table 1 (Imputed Genotypes). As expected, scores over imputed

data show a reduction in statistical power because of the noise

introduced by imputation errors. Importantly, we note that, similarly

to typed data, the MIX score outperforms the other scores in terms of

power, attaining 11% higher statistical power than the ATT score for

random imputed SNPs (97% higher power for imputed SNPs in the

top decile of allele frequency differentiation) at R = 1.5. Even when

the ATT score allows for imputation uncertainty in the form of

dosages, there is still a gain in statistical power of 6% at random SNPS

(R = 1.5) of MIX over ATT. We also note that adjusting the MIX

score for different imputation qualities leads to a small improvement

in statistical power at imputed SNPs (see Table S1).

Scoring when the causal SNP is not typed and cannot be
imputed

An important aspect in disease scoring statistics is to assess their

performance when the causal SNP is untyped and, due to various

reasons (e.g. not present in the reference panel), cannot be

imputed. To address this scenario we randomly picked 100,000

Figure 2. Imputation accuracy as a function of population differentiation. We plot the average imputation accuracy as a function of allele
frequency difference between CEU and YRI both when CEU+YRI was used as reference and when using the local ancestry aware framework.
doi:10.1371/journal.pgen.1001371.g002
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autosomal SNPs and simulated case-control phenotypes for

R = 1.5 using the methodology described above. For all the SNPs

we evaluated the statistics at 40 SNPs in the neighborhood of the

simulated SNP and, for each score, computed the maximum

statistic in this region by either masking the simulated causal SNP

or by including it in the computation of the maximum. Results in

Table 2 show that, both when the causal SNP is present in the data

and when it is absent from the data, the MIX score outperforms all

the other scores in terms of power.

Application to real phenotypes
Application to coronary heart disease and type 2 diabetes

case-control phenotypes. As a sanity check we evaluated these

scores using data from the CARe study for two case-control

phenotypes: coronary heart disease (CHD) and type 2 diabetes

(T2D), for which associations at several loci have been reported

previously [25]. Results for genotyped and imputed SNPs are

displayed in Table 3 (see Methods). Because CARe is a cohort study,

the number of cases for CHD or T2D is much smaller than the

number of controls, so that in addition to being generally

underpowered, in this analysis the potential advantage of

incorporating case-only admixture information is marginal (see

Table S2). Indeed, as expected, the ATT and MIX scores generally

produce similar results, though in some instances the ATT score

slightly outperforms the MIX score, and in this example the MIX

score was not the ‘‘Best score’’ at any of the five loci. Interestingly,

we observe that two of the top SNPs (rs1333047 and rs6475606)

show a relatively large HET score (HET = 6.84, P-value = 0.009 for

Table 2. Disease scoring when the causal SNP is not typed or imputed.

Score Average maximum x2 value Proportion of regions that are genome wide significant

ATT x2(1dof) 26.17 18.08 0.3834 0.1752

SNP1 x2(1dof) 25.47 17.52 0.3622 0.1618

ADM x2(1dof) 4.23 4.22 0.0135 0.0134

SUM x2(2dof) 28.62 20.69 0.3571 0.1675

MIX x2(1dof) 27.46 19.05 0.4158 0.1988

We list the average maximum statistic and the percentage of times it attains genome wide significance (defined as P,5e-08 for all scores except ADM, P,1e-05 for
ADM) for each of the case-control scores obtained in a region of 40 SNPs centered around the 100,000 simulated causal SNPs with R = 1.5. The results obtained when the
score at the simulated causal SNP was removed from the computation of the maximum are denoted in bold. The MIX score outperforms the other scores both when the
causal is present or unobserved in the data.
doi:10.1371/journal.pgen.1001371.t002

Table 3. Results for CHD and T2D case-control phenotypes.

CHD

SNP chrom position (build35)
CEU
freq

YRI
freq ATT SNP1 ADM SUM HET MIX

rs17577085 5 141,843,788 0.11 0.00 2.66 1.54 1.46 2.00 0.00 2.06

rs4244029* 5 141,893,025 0.08 0.27 2.66 2.84 1.31 3.06 0.56 2.51

Best score 5 - - - 2.66 2.84 1.93 3.06 - 2.51

rs325105 6 147,805,960 0.47 0.012 2.62 1.65 0.81 1.57 0.65 2.15

rs325129* 6 147,848,836 0.25 0.74 3.22 2.55 1.05 2.57 0.26 3.12

Best score 6 - - - 3.22 2.86 1.18 2.79 - 3.13

rs6475606 9 22,071,850 0.5 0.01 1.87 2.72 0.11 2.11 2.04 2.38

rs1333047* 9 22,114,504 0.49 0.99 2.32 3.64 0.00 2.95 2.05 2.96

Best score 9 - - - 2.50 3.64 0.32 2.95 - 2.99

T2D

SNP chrom position (build35)
CEU
freq

YRI
freq ATT SNP1 ADM SUM HET MIX

rs13424957 2 165,575,897 0 0.28 4.58 4.19 0.61 3.76 0.00 4.46

rs13396952* 2 165,562,786 0.02 0.3 4.41 4.04 0.57 3.61 0.13 4.29

Best score 2 - - - 4.58 4.19 1.01 3.76 - 4.46

rs7901695 10 114,744,078 0.28 0.53 4.11 4.36 0.75 4.01 0.16 3.97

rs7903146* 10 114,748,339 0.25 0.29 5.37 5.03 0.80 4.69 0.19 5.05

Best score 10 - - - 5.37 5.03 1.25 4.69 - 5.05

For each CHD region, we list results for each score (-log in base 10 of the p-value) for the originally implicated genotyped SNP, the imputed (* denotes imputed SNPs) or
genotyped SNP producing the most significant P-value in the region and the best score for each of the five scores. Analogous to CHD, for each T2D region. The value
achieving the smallest p-value is denoted in bold.
doi:10.1371/journal.pgen.1001371.t003
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rs1333047 and HET = 6.79 P-value = 0.009 for rs6475606),

implying different odds ratios conditional on African versus

European local ancestry. We believe that these SNPs may tag

unobserved causal SNP(s) with very different LD patterns in

Africans versus Europeans. However, we cannot rule out the

alternate explanation that the causal SNP has heterogeneous effect

size (for example, due to gene-gene interaction with another causal

SNP in the same region that has different allele frequencies in

Africans and Europeans).

Finally, we note that due to the fundamental difference between

the asymptotically equivalent goodness-of-fit (ATT) and likeli-

hood-ratio x2(1dof) tests (MIX), the scores may differ in either

direction, but the likelihood-ratio approach used in the MIX score

is theoretically appropriate (see Text S1).

Application to FGFR2, a known locus associated with

breast cancer. For a test analysis with a larger number of cases

and potentially greater case-only admixture information, we also

evaluated the above scores at the known FGFR2 breast cancer

locus [36] in 3,153 African American cases and 2,831 controls

from a GWAS for breast cancer. We focused our analysis on this

locus because it has been extensively fine-mapped in African

American populations [37] with the strongest reported association

at SNP rs2981578. We performed imputation in this region and

applied our scores to all SNPs within 1MB of this SNP. As

expected the highest signals of association were observed at SNP

rs2981578 (see Table 4). We note that both the SUM and MIX

scores outperform the ATT test showing the utility of

incorporating case only admixture association in the scoring

statistics, especially in the presence of strong admixture signals.

Since the SUM likelihood generalizes the MIX likelihood by

allowing for an extra free parameter (the ancestry odds ratio), the

difference in the SUM-MIX can be viewed as a test of whether the

ancestry odds ratio inferred from the SNP allelic odds ratio R fits

the observed ancestry odds ratio in the data. Multiple causal

variants within the same admixture block could potentially create

a large admixture signal that is not captured by the odds ratio at

each of the causal SNPs (see Table S4). Thus, the difference

between the SUM = ADM+SNP1 score (x2(2 dof) = 22.74) and

the MIX score (x2(1 dof) = 17.04) provides some evidence (x2(1

dof) = 5.7, P-value = 0.016) that rs2981578 may not be the unique

causal variant at the FGFR2 locus. We also note that the HET

score (x2(1 dof) = 1.80) provides little to no evidence in support of

the hypothesis of heterogeneity at this SNP. Complete results of

the breast cancer GWAS will be presented elsewhere (C. Haiman

and colleagues, unpublished data).

Overview of association statistics for continuous
phenotypes

We again used the Armitage trend test with correction for

genome-wide ancestry as the baseline for our analyses. We also

considered a SNP association score conditioned on local ancestry,

as well as an admixture score that associates the local ancestry to

the continuous phenotype with genome-wide ancestry as a

covariate. (There is no analogue to a case-only admixture score

for quantitative traits). As in the dichotomous case, we summed

the SNP association score conditioned on local ancestry with the

admixture score to produce a x2(2dof) score, but show below that

the higher degrees of freedom lead to a reduction in statistical

power. Finally, we considered a x2(1dof) heterogeneity score that

tests for a difference in effect size conditional on African or

European ancestry, by comparing a model that allows different

effect sizes to a model with a uniform effect size (see Methods).

Simulations of quantitative phenotypes
Analogous to simulations of dichotomous phenotypes, for

100,000 randomly chosen SNPs we used CARe genotypes and

simulated phenotypes for 2,000 samples based on a null model or a

causal model with effect sizes e = 0.05,0.10,0.20 (see Methods).

We compared 4 scores: Armitage trend test with correction for

genome-wide ancestry (QATT), SNP association conditioned on

local ancestry (QSNP1), local ancestry admixture association

(QADM), and sum of QSNP1 and QADM (QSUM). All of these

are x2(1dof) scores, except for QSUM which is x2(2dof). Results

are displayed in Table 5 (Typed Genotypes). We display results

averaged across all SNPs, and averaged across SNPs with CEU

versus YRI allele frequency difference of at least 0.4, roughly the

top decile of differentiation. We see that the Armitage trend test

(QATT) outperforms the other scores. Here, there is no advantage

to incorporating admixture scores, since no case-only score is

available and since summing SNP and admixture association

scores (QSUM) loses statistical power due to increased degrees of

freedom. We finally note that the heterogeneity score that tests for

differences in effect size for African versus European local ancestry

(QHET) attained average values between 0.99–1.01 (data not

shown), exactly as expected since simulated phenotypes did not

involve heterogeneity in effect size. As in the case of the

dichotomous phenotypes, we masked the 100,000 SNPs followed

by imputation and we applied the above scores on the imputed

genotypes (see Table 5 (Imputed Genotypes)). Although the overall

statistical power decreases for all scores because of imputation

errors, we note that as before, QATT outperforms the other scores

in terms of statistical power.

Application to real quantitative phenotypes
We evaluated the above scores using data from two quantitative

phenotypes from CARe, LDL and HDL cholesterol, for which

associations at several loci have previously been reported. Results

for genotyped and imputed SNPs in the region are displayed in

Table S4. As in our simulations, the QATT score yields the best

performance the majority of the time. However, one aspect of the

results is of particular interest. Multiple LDL and HDL SNPs on

chromosome 2 produce strong admixture association (QADM)

scores, with the result that the x2(2 dof) QSUM score outperforms

the x2(1 dof) ATT score. We point out that the presence of

multiple causal variants, or alternatively an untyped/unimputed

variant with large allele frequency differentiation, may invalidate

the assumptions made by the QATT score and lead to poor

performance. This suggests that the QSUM score can be of value

in a minority of instances where strong admixture associations

exist. We caution that in such cases an additional multiple

hypothesis testing correction may be needed and that the QSNP1

score conditioned on local ancestry will be needed for localization

[38].

Table 4. Results obtained at FGFR2 locus, SNP rs2981578
using MACH imputation.

ATT ADM MIX SNP1 HET SUM

x2 value 13.99 6.16 17.04 16.57 1.80 22.74

-log10(p-value) 3.74 1.88 4.44 4.33 0.75 4.94

We list the x2 values along with the –log(p-value) obtained by the case-control
scoring statistics showing that incorporating the admixture signal yields
increased results over the standard ATT test with correction for global ancestry.
We note that SNP rs2981578 shows the highest scores in the region.
doi:10.1371/journal.pgen.1001371.t004
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Discussion

Incorporating admixture association signals into GWAS of

admixed populations is likely to be particularly informative for

diseases for which risk differs depending on ancestry. Cardiovascular

disease (CVD) is a prime example, as African ancestry is associated to

higher CVD mortality and to CVD risk factors such as hypertension,

serum lipid levels and left ventricular hypertrophy [39–41]. Other

diseases for which African ancestry is a risk factor include prostate

cancer, diabetic retinopathy, lupus and uterine fibroids [42–45].

Although we have focused here on African Americans, our methods

are broadly applicable to other admixed populations.

By analyzing real and simulated case-control phenotypes, we

have shown that the MIX score, which incorporates both SNP

and admixture association signals, yields a significant increase in

statistical power over commonly used scores such as the

Armitage trend test with correction for global ancestry. For

randomly ascertained quantitative traits, in contrast to case-

control phenotypes there is no case-only admixture score and

thus no benefit from joint modeling of admixture and SNP

association. Thus, for quantitative phenotypes, in general, the

QATT score yields higher statistical power than other

compared scores. Therefore, we recommend the use of MIX

and QATT scores for dichotomous and quantitative traits,

respectively, in future GWAS in admixed populations. Howev-

er, we note that in various scenarios (e.g., multiple causal

variants, heterogeneous effects, absence of the causal variant

from the typed or imputed markers) assumptions made by the

MIX and QATT may be invalid and using them can lead to

poor performance. To this extent, we recommend that special

consideration be given to regions with high signals of admixture

association, in which the SUM and QSUM scores may produce

higher association signals than MIX and QATT. As a future

direction, we note that an improved score for non-randomly

ascertained quantitative traits could potentially be developed,

which would generalize both the MIX score for dichotomous

traits and the QATT score for randomly ascertained quantita-

tive traits.

As GWAS in European populations have demonstrated,

association statistics need not be limited to SNPs that have been

genotyped, because imputation algorithms that we and others

have developed can be used to infer the genotypes of untyped

SNPs by making use of haplotype information from HapMap. Our

methods also perform well in the setting of imputation, when the

causal SNP is not genotyped. As future work we consider the

extension of our likelihood based scores to fully account for

imputation uncertainty, where a promising direction is to define

the likelihood as a full integration over the missing data given the

observed data and the parameters of the model [46,47].

Our results using simulated phenotypes show that, although

benefiting from a reduced multiple-hypothesis testing burden, the

admixture scoring yields lower power for finding associations when

compared to SNP association scoring. An explanation is the

limited number of SNPs that show high allelic differentiation

among the ancestral populations (e.g., in our simulations only

7.6% of the SNPs have an allelic differentiation greater than 0.4

between Europeans and Africans). However, we note that the

question of whether there exists a combined SNP and admixture

score that benefits from reduced multiple hypothesis testing for the

admixture component of the score is an important open question

that requires further consideration.

While this paper focuses on frequentist approaches for disease

scoring in admixed populations, we mention that joint modeling of

admixture and SNP association signals could be developed in a

Bayesian framework [48]. For example, SNPs that lie in regions of

high admixture signals could be given a higher prior of association

with phenotype. We expect this type of approach to provide added

value especially in regions with multiple independent causal

variants in which region-based scores could yield increased signal

over marginal SNP scores.

Although in this work we have focused on African Americans, in

theory our approaches can be extended to other admixed

populations such as Latino populations, which inherit ancestry

from up to three continental ancestral (European, Native

American and African) populations. The approaches presented

in this work can be extended to three-way admixed populations

Table 5. Average statistical power of simulated quantitative scores in African Americans.

Typed Genotypes

e = 0.05
random e = 0.05 D.0.4 e = 0.10 random e = 0.10 D.0.4 e = 0.20 random e = 0.20 D.0.4

QATT x2(1dof) 0.0013 0.0009 0.2165 0.3223 0.8566 0.9883

QSNP1 x2(1dof) 0.0012 0.0005 0.1951 0.2087 0.8437 0.9422

QADM x2(1dof) 0 0.0001 0.0004 0.0048 0.0229 0.2594

QSUM x2(2dof) 0.0006 0.0003 0.1636 0.2473 0.8353 0.9839

Imputed Genotypes

e = 0.05
random e = 0.05 D.0.4 e = 0.10 random e = 0.10 D.0.4 e = 0.20 random e = 0.20 D.0.4

QATT x2(1dof) 0.0008 0.0009 0.1526 0.1677 0.7853 0.7993

QSNP1 x2(1dof) 0.0007 0.0008 0.1346 0.1398 0.7663 0.7772

QADM x2(1dof) 0 0.0001 0.0004 0.0048 0.0229 0.2594

QSUM x2(2dof) 0.0004 0.0004 0.1115 0.1245 0.7617 0.7762

For each score we list the proportion of SNPs for which the score attains genome-wide significance (defined as P,5e-08 for all scores except QADM, P,1e-05 for
QADM), for random SNPs as well as SNPs in the top decile of population differences (D.0.4), 0, e = 0.05, e = 0.10, e = 0.20 simulations (see main text). For e = 0, the power
is 0 for all scores. Imputed Genotypes: The same 100,000 SNPs were masked, followed by imputation, and the imputed genotypes were scored and presented as in
Typed Genotypes.
doi:10.1371/journal.pgen.1001371.t005
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either by considering one ancestry versus the rest strategy or by

jointly modeling the three ancestry odds ratios so that a single SNP

odds ratio would lead to implied ancestry odds ratios for each

ancestry. However, we caution that in the context of Latino

populations, more work is needed to assess the performance and

possible biases of the local ancestry estimates and its potential

effects on methods that incorporate admixture and case-control

signals into disease scoring statistics.

A final consideration is in fine-mapping causal loci. Here the

availability of samples—or chromosomal segments—of distinct

ancestry is valuable [38] for localization of the causal variant. We

note that the HET score could be used in localizing the causal

variant under the hypothesis of no heterogeneity across

populations; recent studies have provided empirical support for

this hypothesis [49]. Importantly, by comparing MIX and SUM

score the question whether the admixture signal is fully explained

by the SNP odds ratio can be assessed. An important open

question and future research direction is designing optimal

algorithms for cross-population fine mapping that leverage the

different LD patterns among the chromosomal segments of

distinct ancestry.

Methods

Ethics statement
The CARe project has been approved by the Committee on the

Use of Humans as Experimental Subjects (COUHES) of the

Massachusetts Institute of Technology, and by the Institutional

Review Boards of each of the nine parent cohorts.

CARe data set
Affymetrix 6.0 genotyping and QC filtering of African-

American samples from the CARe cardiovascular consortium

was performed as described previously [25]. After QC filtering for

each of ARIC, CARDIA, CFS, JHS and MESA cohorts and

subsequent merging, 8,367 samples and 770,390 SNPs remained.

To limit relatedness among samples we restricted all analyses to a

subset of 6,209 samples in which all pairs have genome-wide

relatedness of 0.10 or less (inferred using the smartrel program in

EIGENSOFT 3.0; see Web Resources). We merged CARe

genotype data with genotype data from the HapMap3 project

[18]. HapMap3 samples had been genotyped on both Affymetrix

6.0 and Illumina 1M chips. We excluded SNPs that did not pass

QC in HapMap3, as well as A/T and C/G SNPs to avoid allele

complementarity issues, leaving 556,698 SNPs for further analysis.

(We note that HAPMIX accuracy is insensitive to the number of

SNPs, if at least 250,000 SNPs are used [23].)

Inference of local ancestry using HAPMIX
When run in default mode, HAPMIX outputs local ancestry

estimates as the expected probability of 0, 1 or 2 copies of

European ancestry at each SNP (see ref. [23] and Web Resources).

However, HAPMIX can also be run in a mode that outputs the

inferred joint distribution of local ancestry and allele value, so as to

resolve the ‘‘het-het’’ case (both genotype and local ancestry

heterozygous). In order to obtain integer estimates of local

ancestry, one approach is to simply round the probabilities, which

however can lead to biased estimates in regions with limited SNP

coverage. We chose an alternative approach that does not produce

these types of biases: sampling from the probabilities for 0, 1 or 2

European chromosomes at each position. Results in this mode are

highly concordant with the default mode, producing correlations

of 100% in genome-wide ancestry and 98.8% in local ancestry.

Simulated case-control phenotypes
We selected a random subset of 100,000 autosomal SNPs. For

each SNP, we simulated phenotypes for R = 1.0 (null model) and

R = 1.2,1.5,2.0 (causal models). For the null model, we chose

random subsets of 1,000 cases and 1,000 controls. For causal

models, we chose a random subset of 1,000 controls, and then chose

1,000 cases from the remaining samples so that samples with 0:1:2

reference alleles have relative probabilities 1:R:R2 of being chosen.

Association statistics for case-control phenotypes
ATT: the Armitage Trend Test. A x2(1dof) statistic via the

Armitage trend test with adjustment for genome-wide ancestry, as

described previously [50]. Genome-wide ancestry was inferred as

the genome-wide average of local ancestry estimates from

HAPMIX [23]. We note that this is .99% correlated to the top

eigenvector of a principal components analysis run using CEU and

YRI from HapMap3 to compute principal components [18,20].

SNP1: SNP association conditioned on local ancestry. A

x2(1dof) likelihood ratio test that compares the null hypothesis of

case-control odds ratio R = 1 with the alternate hypothesis of R

?1, where R is assumed to be the same across populations, while

the allele frequencies are treated as nuisance parameters.

For every local ancestry X1X2 (AA, AE, or EE) and phenotype Y

(1 for cases, 0 for controls), let RRX1X2,Y , RVX1X2,Y ,VVX1X2,Y

denote the counts of individuals with genotypes 2, 1 or 0. Then the

SNP1 likelihood is defined as

LAA,AE,EE(pA,0,pE,0,R)~

P
Y[f0,1g

pA,Y
2RRAA,Y zRVAA,Y (1{pA,Y )2VVAA,Y zRVAA,Y

P
Y[f0,1g

pA,Y
RRAE,Y z0:5RVAE,Y (1{pA,Y )VVAE,Y z0:5RVAE,Y

pE,Y
RRAE,Y z0:5RVAE,Y (1{pE,Y )VVAE,Y z0:5RVAE,Y

P
Y[f0,1g

pE,Y
2RREE,Y zRVEE,Y (1{pE,Y )2VVEE,Y zRVEE,Y ,

where pA,1~
RpA,0

1{pA,0zRpA,0

, pE,1~
RpE,0

1{pE,0zRpE,0

represent the

allele frequencies in cases, pA,0, pE,0 represent allele frequencies in

controls and R is the allelic odds ratio.

Then, the x2 statistic with 1 degree of freedom is:

SNP1~2 max
pA,0,pE,0,R

logLAA,AE,EE(pA,0,pE,0,R){

"

max
pA ,pE

logLAA,AE,EE(pA,pE ,1)

�
:

ADM: admixture association using cases only. A x2(1dof)

likelihood ratio test that compares the local ancestry in the disease

cases to the average local ancestry across the genome in the same

disease cases. This is more powerful than comparing cases to

controls, since no statistical noise is introduced from controls [7].

However, it is critical when using this approach to infer local

ancestry using a method that has been shown not to produce

artifactual deviations in average local ancestry in large data sets of

controls from the admixed population [23].

Let hi be the genome-wide ancestry of individual i, and let Ni be the

number of European chromosomes in individual i at the candidate
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SNP. Restricting to disease cases only, we define the likelihood as

function of ancestry odds ratio V, where V is the multiplicative risk

for disease given one or two European alleles. It follows that the

likelihood for 2, 1, or 0 European alleles at individual i is:

qi,2~
V2hi

2

V2hi
2zV2hi(1{hi)z(1{hi)

2
,

qi,1~
V2hi(1{hi)

V2hi
2zV2hi(1{hi)z(1{hi)

2

qi,0~
(1{hi)

2

V2hi
2zV2hi(1{hi)z(1{hi)

2

Then the likelihood is Ladmix(V)~P
i

qi,Ni
, with the a x2(1dof)

likelihood ratio test defined as:

ADM~2 max
V

logLadmix(V){logLadmix(1)

� �
:

SUM: sum of SNP1 and ADM. A x2(2dof) that sums the

SNP1 and the ADM statistics [25]. We note that, since SNP1

conditions out the local ancestry and the ADM statistic employs

only the local ancestry, these two tests contain independent

information.

MIX: mixed SNP and admixture association. A x2(1dof)

test that combines the SNP1 and ADM likelihood functions by

using the implied ancestry odds ratio V(R) under the assumption

of a single causal variant with same odds ratio R across the

European and African populations.

The MIX likelihood is defined as the product of the likelihoods

for SNP1 and ADM as Lcombined (pA,pE ,R)~LAA,AE,AA(pA,pE ,R)
Ladmix(V(R)), where V(R)is the relative increase in risk per extra

European allele under the assumption of single causal variant with

odds ratio R. It follows that V(R) is a function of the SNP odds

ratio R and the population allele frequencies in controls:

V(R)~
pE,0

pA,0

pA,1

pE,1
~

pE,0Rz1{pE,0

pA,0Rz1{pA,0
. We then compute a x2

statistic with 1 degree of freedom as:

MIX~2 max
pA,0,pE,0,R

logLcombined (pA,0,pE,0,R){

"

max
pA,pE

logLcombined (pA,0,pE,0,1)

�
:

HET: test for heterogeneity of effect size as a function of

local ancestry. A x2(1dof) test that compares the alternate

hypothesis of different odds ratios in different ancestries with the

null model that assumes the same odds ratio. The likelihood

LAA,AE,EE(pA,0,pE,0,RA,RE) extends the SNP1 likelihood by

allowing ancestry specific odds ratios (RA and RE) which leads

to pA,1~
RApA,0

1{pA,0zRApA,0
and pE,1~

REpE,0

1{pE,0zREpE,0
. We

then compute a x2(1dof) statistic as:

HET~2 max
pA,0,pE,0,RA,RE

logLAA,AE,EE(pA,0,pE,0,RA,RE){

"

max
pA,0,pE,0,R

logLAA,AE,EE(pA,0,pE,0,R,R)

#
:

Incorporating the empirical variance of the average
ancestry estimates in ADM and MIX scores

We incorporate the observed variance of the average local

ancestry across the genome assuming that the average local

ancestry cat each SNP is normally distributed with mean m(V) and

standard deviation s2, where V is the ancestry odds ratio. We

estimate s2 empirically and set m(V)~
Vm

mVz1{m
, where m is the

empirical mean across the genome of the per SNP average local

ancestry estimates. Then, the admixture likelihood becomes

Ladmix{GC(V)~
1ffiffiffiffiffiffiffiffiffiffi

2ps2
p e

{
(c{m(V))2

2s2 . We can then compute a

x2(1dof) statistic, ADMGC, that incorporates the empirical

variance and in the ADM score as:

ADMGC~2 max
V

logLadmix{GC(V){logLadmix{GC(1)

� �
:

In a similar manner we can replace Ladmixwith Ladmix{GC in the

admixture component of the MIX likelihood to compute a new

x2(1dof) statistic MIXGC, that incorporates the empirical variance

of the average local ancestry:

MIXGC~2 max
pA,0,pE,0,R

log(LAA,AE,EE(pA,0,pE,0,R)Ladmix{GC(V(R)){

"

max
pA ,pE

log(LAA,AE,EE(pA,0,pE,0,1)Ladmix{GC(1))

�
:

Optimization algorithm for association statistics for
case-control phenotypes

Many of the likelihoods defined above require a multidi-

mensional optimization. The number of parameters optimized

in the likelihoods is 3 for the SNP1 score, 1 for the ADM score,

3 for the MIX score and 4 for the HET score. (The HET score

can be reduced to two independent 2-parameter optimizations

by considering cases and controls separately.) For the ADM

score, Newton’s method was used. For the SNP1, MIX and

HET scores, Brent’s algorithm was used (GSL software library

implementation; see Web Resources). The maximization is

performed in one dimension over each parameter in turn,

repeating for each parameter until the algorithm converges. In

rare instances, extreme variation in the slope of the log

likelihood as a function of odds ratio can cause the algorithm

to not converge; in this situations a simple binary search is

used.

Genotype imputation in African Americans
We employed the widely used MACH [51] imputation

method to infer genotypes at untyped SNPs in the CARe

African American samples. As reference haplotypes we used

either the cosmopolitan approach of providing all the CEU and

YRI haplotypes from HapMap Phase 3 data [18], or a local
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ancestry aware approach in which, for every locus in every

sample, we provided either YRI, CEU+YRI, CEU reference

haplotypes to MACH according to the number of copies of YRI

(2/1/0) inferred by HAPMIX. We note that the local ancestry

aware approach has been previously shown to boost imputation

accuracy in admixed populations [24. 35]. For both strategies

we ran MACH in two steps, first by training the model

parameters on a random sample of 200 individuals with the

rounds parameter set to 50 followed by imputation of all the

samples using the trained model from step 1. Importantly, we

note that the local ancestry aware approach can be applied as

an add-on to any imputation method.

Accounting for different imputation quality in African
and European segments

Even when the true odds ratio is the same across populations,

different imputation quality across the segments with different

ancestries can lead to different estimates for the allelic odds

ratios in European versus African segments. We account for this

by adjusting the observed allelic odds ratios in the SNP1 and

the MIX scores as follows. Following a derivation similar to

[52] (see Text S1) we show that the expected observed odds

ratio at an imputed causal SNP with true odds ratio R, is a

function of R, the imputation accuracy (as measured by the

correlation between true and imputed SNP), and the allele

frequency:

R
imputed
A ~

1z(R{1)(
ffiffiffiffiffi
r2

A

q
zpA,0(1{

ffiffiffiffiffi
r2

A

q
))

1z(R{1)pA,0(1{
ffiffiffiffiffi
r2

A

q
)

,

R
imputed
E ~

1z(R{1)(
ffiffiffiffiffi
r2

E

q
zpE,0(1{

ffiffiffiffiffi
r2

E

q
))

1z(R{1)pE,0(1{

ffiffiffiffiffi
r2

E

q
)

Unfortunately we do not know the true genotypes, and thus

cannot compute the correlation between the true and imputed

genotypes. However, reliable estimates for this correlation have

been proposed; here we chose to use MACH r̂r estimates shown to

produce robust estimates of imputation quality [53]. To estimate

ancestry-specific imputation error rates, we restrict the computation

to segments containing both alleles from that ancestry. Given that

imputation accuracies are estimated directly from the data,

R
imputed
A ,R

imputed
E depend on the term R and the allele frequencies.

Then, the likelihood term from the MIX admixture association

score becomes Lcombined (pA,0,pE,0,R)~LAA,AE,EE(pA,0,pE,0,R
imputed
A ,

R
imputed
E )Ladmix(V(R)). As in the previous version of the score, the

optimization is done over the three free terms pE,0,pA,0 and R.

SNP1 score is updated in a similar fashion.

Application of the scores when the causal SNP is not
typed or imputed

We randomly selected 100,000 autosomal SNPs and simulated

phenotypes as described above using R = 1.5. For all the compared

scores, we computed the maximum statistic over all SNP across a

region centered on the SNP of interest (taking the 20 SNPs

upstream and 20 SNPs downstream). We computed the maximum

of the statistics either over 41 SNPs by including the simulated

causal SNP or over 40 SNPs by ignoring the statistics at the

simulated causal SNP.

Application to coronary heart disease and type 2
diabetes case-control phenotypes

Case-control phenotypes for coronary heart disease (CHD) and

type 2 diabetes (T2D) were ascertained as described previously

[25]. In each case, phenotypes were available for only a subset of

the five CARe cohorts. Restricting to 6,209 unrelated individuals

as defined above, we analyzed 929 cases and 4,150 controls for

T2D, and 179 cases and 3,328 controls for CHD. For every

analyzed SNP we performed imputation within a region of 10Mb

centered on the SNP of interest using the MACH imputation

method under the local ancestry aware framework. We assessed

the scoring statistics at all SNPs within 100Kb of the SNPs of

interest.

Application to FGFR2 locus
The FGFR2 locus has been associated with breast cancer in

women of European and Asian descent [36], and further fine

mapping in African-American women has identified SNP

rs2981578 as showing the highest signal of association [36,37].

We analyzed data from a GWAS including 5,761 unrelated

African-American women from 11 epidemiological studies: The

Multiethnic Cohort Study (MEC) [54], The Los Angeles

component of The Women’s Contraceptive and Reproductive

Experiences (CARE) cohort [55], The Women’s Circle of Health

Study (WCHS) [56], The San Francisco Bay Area Breast Cancer

Study (SFBC) [57], The Northern California Breast Cancer

Family Registry (NC-BCFR) [58,59], The Carolina Breast Cancer

Study (CBCS) [60], The Prostate, Lung, Colorectal, and Ovarian

Cancer Screening Trial (PLCO) [61], The Nashville Breast Health

Study (NBHS)[62], The Wake Forest University Breast Cancer

Study (WFBC) [63]. Informed consent was obtained from all

subjects. Detailed information about the design and organization of

each study will be provided elsewhere (C. Haiman and colleagues,

unpublished data). Genotyping was conducted using the Illumina

Human1M-Duo BeadChip. A total of 1,043,036 SNPs were kept

after QC filtering. Imputation was performed using the MACH

software, providing as reference all the haplotypes of CEU and YRI

HapMap Phase 2 panels). We focused our analysis on all the typed

or imputed SNPs, 251 in total, located 100Kb upstream and

downstream of SNP rs2981578.

Simulated quantitative phenotypes
For each of 100,000 autosomal SNPs, we simulated phenotypes

for e = 0 (null model) and e = 0.05,0.10,0.20 (causal model), using a

random subset of 2,000 samples. For the null model, phenotypes

were sampled from a normal distribution with mean 0 and

variance 1. For the causal model, the mean was shifted to 0:e:2e for

0:1:2 reference alleles. In each case, we subtracted out the overall

phenotypic mean.

Association statistics for quantitative phenotypes
Armitage Trend Test (QATT), x2(1dof). Let hi,gi,Qi denote

genome-wide ancestry, genotype (0, 1 or 2) and phenotype for

sample i. The model is Qi~czegizahizN(0,s2). We compute a

x2(1dof) statistic as Nr(�QQi,�ggi)
2, where�hhi is adjusted to mean 0 and

�QQi and �ggi are each adjusted for�hhi. We also compute the effect size e.

SNP association conditioned on local ancestry (QSNP1),

x2(1dof). Let ci denote local ancestry (0, 1 or 2 European copies)

for sample i. The model is Qi~czegizacizN(0,s2). We

compute a x2(1dof) statistic as Nr(�QQi,�ggi)
2, where �cci is adjusted to

mean 0 and �QQi and �ggi are each adjusted for �cci. We also compute

the effect size e.
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Admixture association (QADM), x2(1dof). The model is

Qi~czecizahizN(0,s2). We compute a x2(1dof) statistic as

Nr(�QQi,�cci)
2, where �hhi is adjusted to mean 0 and �QQi and �cci are each

adjusted for �hhi. We also compute the effect size e.
Sum of QSNP1 and QADM (QSUM), x2(2dof). We sum the

two x2(1dof) statistics to produce a x2(2dof) statistic.
Test for heterogeneity of effect size as a function of local

ancestry (QHET), x2(1dof). Let gA,i and gE,idenote the

number of reference alleles of African or European local ancestry.

If joint local ancestry and phasing information is not available and

gi~ci~1, we use expected values gA,i~pA and gE,i~pE , where pA

and pE are estimated as above by maximizing LAA,AE,EE

(pA,pE DNULL). The model is Qi~czeAgA,izeEgE,izaciz
N(0,s2). We compute a x2(2dof) statistic as N times the

proportion of variance of �QQi jointly predicted by �ggA,i and �ggE,i,

where �QQi, �cci, �ggA,i, �ggE,i are adjusted to mean 0 and �QQi, �ggA,i, �ggE,i are

adjusted for �cci. We also compute the effect sizes eA and eE . We

define the QHET score as the x2(2dof) statistic minus the QSNP1

score, thus testing the statistical significance of eA=eE .

Application to LDL and HDL cholesterol phenotypes
LDL and HDL cholesterol phenotypes in CARe samples were

ascertained as described previously. We analyzed 5,801 samples for

LDL and 5,946 samples for HDL for which phenotypic data were

available, restricting to 6,209 unrelated individuals as defined above.

For every analyzed SNP we performed imputation within a region of

10Mb centered on the SNP of interest using the MACH imputation

method under the local ancestry aware framework. We assessed the

scoring statistics at all SNPs within 100Kb of the SNPs of interest.

Web resources
http://www.hsph.harvard.edu/faculty/alkes-price/software/(MI-

XSCORE software)

http://www.hsph.harvard.edu/faculty/alkes-price/software/(EI-

GENSOFT software)

http://www.stats.ox.ac.uk/,myers/software.html (HAPMIX

software)

Supporting Information

Figure S1 Principal components analysis of CARe and Hap-

Map3 samples. Only the HapMap3 populations CEU, YRI and

CHB were used to compute principal components.

Found at: doi:10.1371/journal.pgen.1001371.s001 (0.11 MB PDF)

Figure S2 Average local ancestry of 6,209 CARe samples.

Found at: doi:10.1371/journal.pgen.1001371.s002 (0.07 MB PDF)

Figure S3 Proportion of SNPs with imputation accuracy

difference in European versus African segments under a specified

threshold. The imputation accuracy in European (African)

segments was estimated for each SNP as the squared correlation

between true masked genotypes and imputed genotypes restricted

to samples containing 2(0) European (African) alleles at that locus.

Found at: doi:10.1371/journal.pgen.1001371.s003 (0.04 MB PDF)

Figure S4 Proportion of SNPs achieving genome-wide signifi-

cance as function of the expected difference in odds ratios between

Africans and Europeans. Scores were computed at SNPs neighbor-

ing 100,000 simulated causal SNPs (R = 1.5), tagging with different

LD in European versus Africans the simulated causal.

Found at: doi:10.1371/journal.pgen.1001371.s004 (0.03 MB PDF)

Table S1 Average value and statistical power of simulated case-

control MIX score in African Americans imputed genotypes under

various imputation settings (MIX*-denotes no adjustment for

differences in imputation error rates). For each setting we list the

average x2 value and proportion of SNPs for which the score

attains genome-wide significance (defined as P,5e-08), for

random SNPs as well as SNPs in the top decile of population

differences (D.0.4), for R = 1.0, R = 1.2, R = 1.5, R = 2.0 simula-

tions (see main text). The proportion of SNPs attaining genome-

wide significance is indicated in parentheses. Adjusting for

imputation quality difference improves the power in all cases. Local

ancestry aware imputation yields increase in power. Overall, the

MIX score with local ancestry aware imputation and adjustment for

differences in imputation quality yields the best results.

Found at: doi:10.1371/journal.pgen.1001371.s005 (0.03 MB

DOC)

Table S2 Average statistic and statistical power of case-control

scores in African Americans computed for different number of

cases and R = 1.5. The number of controls is set to 1000. For each

score we list the average x2 value and proportion of SNPs for

which the score attains genome-wide significance (defined as

P,5e-08 for all scores except ADM, P,1e-05 for ADM). In

general all the scores show decrease in performance with the

decrease in number of cases. The increase in performance of MIX

over ATT score diminishes with the number of cases: for 100

cases, the increase of average x2 in MIX over ATT is less than 1%,

while for 1000 cases, the same increase is greater than 5%.

Found at: doi:10.1371/journal.pgen.1001371.s006 (0.03 MB

DOC)

Table S3 Average statistic and statistical power of case-control scores

in African Americans computed under various disease models. 1000

cases and 1000 controls were simulated at 100,000 SNPs with odds

ratio R. For each score we list the average x2 value and proportion of

SNPs for which the score attains genome-wide significance (defined as

P,5e-08 for all scores except ADM, P,1e-05 for ADM). In the

multiple causal scenarios, for each of the 100,000 SNPs, a nearby SNP

(distance less than 5Mb and with r2,0.1) was selected and a disease

model with two causal SNPs was simulated in which both SNPs had an

odds ratio of 1.5. With the exception of the ‘Dominant’ scenario in

which ATT and MIX obtain similar results, in all remaining cases

MIX outperforms the other scores in terms of power.

Found at: doi:10.1371/journal.pgen.1001371.s007 (0.04 MB

DOC)

Table S4 Results for LDL and HDL quantitative phenotypes. (a)

We list results for each score (-log in base 10 of the p-value) for

genotyped SNPs that have previously been associated to LDL in

CARe samples, the imputed (* denotes imputed SNPs) or

genotyped SNPs producing the most significant P-values, and

the best score for each of the five scores. (b) Analogous to (a), for

SNPs associated to HDL. The value achieving the smallest p-value

is denoted in bold.

Found at: doi:10.1371/journal.pgen.1001371.s008 (0.08 MB

DOC)

Text S1 Supplementary Note.

Found at: doi:10.1371/journal.pgen.1001371.s009 (0.09 MB

DOC)
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