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1. Summary

Textile fabrics are highly anisotropic, so that their mechanical
properties including strengths are a function of direction. An
extreme case is when a woven fabric sample is cut in such a
way where the bias angle and hence the tension loading direction
is around 45° relative to the principal directions. Then, once
loaded, no yarn in the sample is held at both ends, so the
yarns have to build up their internal tension entirely via yarn—
yarn friction at the interlacing points. The overall fabric strength
in such a sample is a result of contributions from the yarns
being pulled out and those broken during the process, and thus
becomes a function of the bias direction angle 6, sample width
W and length L, along with other factors known to affect fabric
strength tested in principal directions. Furthermore, in such a
bias sample when the major parameters, e.g. the sample width
W, change, not only the resultant strengths differ, but also the
strength generating mechanisms (or failure types) vary. This
is an interesting problem and is analysed in this study. More
specifically, the issues examined in this paper include the exact
mechanisms and details of how each interlacing point imparts the
frictional constraint for a yarn to acquire tension to the level of
its strength when both yarn ends were not actively held by the
testing grips; the theoretical expression of the critical yarn length
for a yarn to be able to break rather than be pulled out, as a
function of the related factors; and the general relations between
the tensile strength of such a bias sample and its structural
properties. At the end, theoretical predictions are compared with
our experimental data.

2. Introduction

In comparison with rigid solids, textile fabrics are highly complex
materials for mathematical formulation and treatment. A major

© 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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Figure 1. (a) Fabric sample tested in the bias directions. (b) Examples of broken samples of different widths.

portion of the complexity is attributable to direction-dependence, i.e. the anisotropy of the fabric
structure. In the case of woven fabrics for example, the anisotropy is originated chiefly by the fact that
the fabric is formed by two groups of yarns (warp and weft) interlaced perpendicularly. As a result,
the strength tested along the warp or weft directions (the principal directions) will diverge if the two
groups of yarns are not identical. Even if the strengths in both principal directions are the same when
the same types of yarns and weave structure are used, the strengths tested at directions other than the
principals (the bias directions) will still be very different. Although this anisotropy imparts huge benefits
(e.g. draping and shape conformity, to just name a couple) to woven fabrics in their intended purposes
for clothing and home furnishings, it complicates, nevertheless, any analytical attempts dealing with
fabric properties.

Textile structures are interesting engineered objects, for they acquire their strengths via, entirely or
partly, their internal frictions [1,2]. In the case of woven fabric, this interyarn friction is brought into
play by the interlacing between the warp and weft yarns [1,3,4]. Without such interweave of the yarns,
a woven fabric is disintegrated into merely a sheet of two layers of yarns disjoined from each other. Of
course, both layers of parallel yarns still possess strength, but only when loaded along the respective
yarn axis. Once woven, however, a fabric acquires the load carrying capacities not only along the two
perpendicular principal directions coinciding with the warp and weft yarn axes, but also along any other
bias directions, thus translating a two-axes-loading-only system into an omnidirectional material which
is able to carry axial tension and even in-plane shear loads. Of course, those tensile and shear strengths,
such as other properties, depend on the relative alignment of the load to the principal directions—
thus, the behaviour of anisotropy. Additionally, the fabric in-plane shear properties are closely related
to its tensile properties, mainly because yarns in a fabric fail predominantly in tension, regardless the
nature of the external loads [1]. An associated behaviour in such fabrics is the ability for yarns to
reorient themselves towards the loading direction and such a realignment ability of yarns is enabled
again by the frictional interconnection between the warp and filling yarns—i.e. the friction provides both
connectivity and mobility to the entire structure. The friction can even incite phase change in fabrics under
large deformation—fabric buckling and yarn jamming, the phenomena where fabric turns from an ordered
phase into a disordered one. Another interesting case is when a fabric sample is cut in such a way where the
bias angle and hence the loading direction is at 45° to the principals. Then, once loaded, no yarn is held
at both ends, as shown in figure 1. The yarns now have to build up internal tension entirely via yarn—
yarn friction at the interlacing points. In other words, the yarn-yarn interactions have turned to be the
only mechanism for the sample to attain strength as a whole. Compared with simple shear and uniaxial
extension tests, uniaxial bias extension test can capture more information about the fabric mechanics,
and in fact a thorough investigation on such bias tensile behaviour of woven fabric will involve all the
major issues mentioned above.
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From the public record, Kilby [5] was the first to study in detail the anisotropic mechanics of woven
fabrics, and at about the same time Cooper [6] carried out a series of bias extension tests under a cycling
low load to analyse the response of woven fabrics. There has been a long list of research activities
reported on the topic since. Spivak [7] attempted to find the connection between bias extensions and
shear properties for plain-weave fabrics, and concluded rather un-encouragingly that as different fabrics
behave so distinctively it is unlikely that a universal relationship between the two groups of properties
can be established. More specifically however, Buckenham [8] discovered that the significant differences
between the fabric shear test and the bias extension test were caused mainly by the occurrence of the
sample buckling in the shear test, and for fabrics that did not buckle during shear test, there was a highly
linear correlation in sample shear rigidities derived, respectively, from the two types of tests.

Further, Du & Yu [9] used the Spivak model [7] to correlate the bias extension test operated on an
Instron-type system with the shear test from KES-F1 instruments. It was concluded that bias extension in
45° direction exhibited the highest correlation (over 0.8) with its shear behaviour, compared with those
in other directions, confirming that reported earlier by Spivak & Treloar [10]. Naujokaityte et al. [11] also
investigated the 45° bias extension behaviours of finished as well as unfinished cotton fabrics, captured
the greyscale high-resolution digital images of the deformed sample during uniaxial tension process and
analysed the influence of different parameters on the fabric responses in bias extension tests. Bekampiene
& Domskiene [12] studied the influence of aspect ratio of fabric specimens on bias extension behaviour.
Dolatabadi & Kovar [13] used two-dimensional fast Fourier transform to assess the exterior position of
yarns in deformed fabrics, and reported that there was a critical shear angle related to fabric geometrical
size. Dridi et al. [14] developed an orthotropic hyperelastic model to simulate the bias extension test,
and their numerical analyses found that the ratio of shear and tensile rigidities of fabrics is a critical
factor for shearing deformation. Harrison et al. [15] put forward a novel biaxial and bias extension test
to characterize wrinkling and shear—tension coupling behaviours for woven fabrics. Meanwhile, Pan
and co-workers [16,17] examined the connection between shear and bias tensile strengths of woven
fabrics and proposed a general failure criterion for the materials. A thorough review on the experimental
measurement of fabric mechanical properties can be found in Bassett et al. [18].

Using textile fabrics as reinforcement, the questions in fabric mechanical behaviours in bias direction
have attracted enormous interest from composite area as well. Peng & Cao [19] adopted a dual
homogenization method combined with finite-element approach to develop a pin-joint unit cell model,
simulating a trellising test which is deemed the major deformation mechanism in the bias extension.
Potter [20] studied the behaviour of woven reinforcements under bias extension also using the pin-joint
net assumption, and proposed a theoretical analysis to predict the global behaviour of unidirectional
prepreg. Then, Lebrun et al. [21] compared both bias-extension test and the picture-frame method,
developed theoretical equations based on the pin-joint net approximation and proposed a modified
version of picture-frame test to explore the influence of the fabric architecture on the material properties.
Again, Peng & Cao [22] proposed a non-orthogonal constitutive model, thus decoupling the shearing
and tensile deformations, to characterize the anisotropic properties of plain-weave composites under
bias extension and shear load. They then used the stress and strain transformation between the global
and local coordinates to develop constitutive equations for woven composite. Yu et al. [23] focused on the
large deformation mechanism during the bias extension tests carried out under different temperatures
and loading speeds. Then, digital image correlation analysis was used to identify three deformation
phases, and at the end, a theoretical model based on energy method was proposed to explain the
failure mechanisms.

In this paper, we take a different approach from the existing literature and deal with the fracture
physics at micro and local level during fabric failure by focusing on the mechanisms of how the
individual yarn strength is translated into fabric strength via interyarn friction. It is the first complete
study in exploring the origin of the tensile strength of a narrow and bias woven fabric via theoretical
analysis and experimental validation.

Beginning with an experimental work conducted on three fabrics, we first examine the fractured
samples and explore the important parameters involved in the bias woven fabric samples of increasing
width. Then, by differentiating the contributions from both broken and pulled out yarns as functions
of sample width, we build a theoretical model to describe the sample fracture process based on the
probabilistic strength theories, and thus predict the sample strength at different levels of the related
parameters. The predictions are then compared with the experimental data, along with discussions on
some key issues.

The usefulness of this study is multiple. First, for a narrow bias woven fabric sample, this is the
first such study on the origin of its tensile strength, both theoretically and experimentally. Furthermore,
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the conclusions drawn can be helpful in understanding the mechanics of fabric-reinforced composites.
Although it seems once the fabric as the reinforcement is embedded into a matrix system, the fabric
frictional shear behaviours discussed in this work are restricted or even eliminated and its structural
characteristics are reduced into something representable by a single fibre volume fraction. However,
given the complexity of the composite behaviours, such a view is an over-simplification with no
supporting evidence. After all, regardless how the fabric is interacting with the matrix, we are still
dealing with a composite system where both the reinforcement and matrix contribute collectively to
the system behaviours. For instance, failure of composite is known as a complex and multistage process
involving the so-called fragmentation phenomenon [24], where the larger reinforcement breaks down to
small pieces, yet still carrying load and contributing to the overall behaviours of the system: our analysis
on a small bias sample is thus relevant to the understanding of the composite behaviours.

More importantly, this experimental and modelling work actually presents a methodology dealing
with the strength of a discrete system formed by components whose tensile strengths are given. In other
words, this work shows the fracture mechanics of a discrete system formed by individual components
connected only with contact frictions. Our study demonstrates that in translating the strengths of the
components into the system performance, the probabilistic distributions among the constituents have to
be included.

3. Afabric bias tensile experiment

Three kinds of plain-weave fabrics as shown in table 1 have been collected for this study. For the bias
tensile tests, our experimental work was conducted on the fabric samples cut in such a shape as in
figure 1a that, when loaded, no yarn is held by both ends, so that all the yarns build up stress entirely via
yarn-yarn friction at the interlacing points. As a result, only the yarns with enough embedded length can
reach the stress level high enough to break, whereas the shorter yarns can only be pulled out, contributing
much less towards fabric strength. In preparing the samples, both bias direction angle 6 from the warp
direction and the sample length L were fixed at values 6§ =45° and L =100 mm. The sample width,
however, was allowed to change at most in eight steps of 5, 8, 10, 15, 20, 25, 35 and 45mm so as to
examine how the sample width, thus different failure mechanisms or types, impacts the sample strength.

For our test, the standard test method ASTM D 5035-11 was followed whenever possible, with stated
adjustment in sample width. Dynamometer Instron 4411 (AGS material tester) was used with load cell
capacity of 500N and pneumatic jaws. Sample gauge length was L =100 mm and the crosshead speed
1mms~!. Fabric pretension was set as zero. Each test result in this study is the mean of three repeats.

Figure 1b shows examples of broken samples of different width for the glass fabric. Because all yarns
were held only at one end during testing, so that when the sample width is very small (W =5mm, for
instance in figure 1b), no yarn has sufficient length to realize its full strength via the friction, and thus was
pulled out, leading to a low overall specimen strength and a broken specimen cross section of isosceles
triangle shape—the space left by the pulled out yarns in specimen. Yet, as the width increases, growing
number of yarns at the centre break, and only the short yarns at the fringes are still pulled out: the broken
specimen cross sections evidently illustrate that the tip of the once triangle becomes increasingly blunt
or flat.

All the testing data as specified in the standard test method ASTM D 5035-11 are provided in
tables 2—4, and are also plotted against the sample width in figure 2. For clarity, figure 2a shows only the
data for the polyester/cotton fabric. Both fabric strength (N per yarn) and breaking elongation increase
from a lower level for narrower specimens along with sample width W, but stabilize when specimen
width reached some critical values, and then levels off or drop a little, when W further increases to
W =25mm (it is suspected that as the sample becomes too wide, gripping over the sample width
becomes less uniform, leading to the slight drop in the results which otherwise would be a plateau). Such
width effect is more apparent on fabric strength than on its breaking elongation, whereas the breaking
energy—being a joint product of both strength and elongation, follows and yet magnifies the trend. In
other words, for such a bias test, unlike the orthogonal strip test, sample width W becomes an important
variable. Figure 2b compares all three fabrics but only in fabric strengths and similar trend is clearly
exhibited.

Figure 3, using data in tables 5-7, helps explain this altering failure types by showing the changes
of total yarn numbers P and broken yarns M versus the specimen widths W, where the total number
P=M+ N and N is the yarns being pulled out (slipping). Practically all yarns are pulled out at the
beginning when W =5mm, so that M = P and N = 0. As the specimen width W and thus the total number
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Table 1. Parameters of three kinds of fabrics.

i

thread count, cm—

yarn size, tex no. filaments

fabric type warp weft warp weft areal density, gm—2

polyester/cotton 2 2 24 24 — — 108.2
s S B o oo e e
gI P T L S o 0 + o 160+15 .......... ey

load, N
fabric type width (mm)
polyester/cotton 139 4.44 17.40 43.96 87.03 104.05 — —
wool 10.24 29.62 38.60 49.07 93.00 116.55 — —
glass 0.85 — — 24.07 62.78 76.99 113.33 134.12

elongation at break, %

fabric type width (mm)

polyester/cotton 27.06 2522 27.54 32.3 3314 3219 — —
R o e a0 oy ww ai S S
gass wn o —  — 2%  BM  BE BT BN

Table 4. Energy to break under bias tensile loading (L = 100 mm).

energy to break, N mm yarn~'

fabric type width (mm)

polyester/cotton 0.73 1.58 5.82 8.1 1375 13.25 — —
s T L nw o o o S o
glass ............................................................. o s e Ty

P rise, growing number of yarns is broken, leading to the increase in sample strength. It is interesting to
note that as specimen width W and total yarn number P grow, the number of slipping yarns N, indeed,
stays nearly constant, confirming that the yarns being pulled out are always the ones at both edges,
roughly a constant and independent of sample width W.

Clearly, the major variables, in this case, include the bias direction angle 6, the sample (gauge) length
L, and sample width W. When 6 = 0° or 90°, the case reduces to the orthogonal ones. Yet, for a given 6 of
other values

— if W is too small, all yarns will slip and be easily pulled out and the fabric strength is minimum;
— when W increases, more and more yarns can realize their strength and break, and the fabric
strength increases.
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Figure 2. (a) Results for polyester/cotton fabric in bias tests. (b) Influence of sample width on tensile strengths. : ;
i~
45 =
L 8
20 k for polyester/cotton fabric
35k
30 total no. yarns P
25 F
20
15 F
no. broken yarns M
10
5
0 : A i 1 i
5 10 15 20 25 30

sample width (mm)

Figure 3. Numbers of broken and total yarns versus width.

When both 6 and W are given, however,

— when sample length L is zero, all the yarns are held in both ends, and are able to break;
— as L increases, however, more yarns slip, depending on the values of W and 6.

Thus, the issues to be dealt with in modelling this bias sample strength include:

— the exact mechanism and details how each interlacing point imparts the frictional constraint for
yarns to acquire tension to the level of their strength, when both yarn ends were not actively
held by the testing grips;

— next, the theoretical expression for the critical length for a yarn to be able to break rather than
being pulled out, as a function of bias direction angle 6, sample width W and length L, as well as
other parameters; and

— as yarns can only be broken in tension, the yarns in a fabric sample tested in bias direction
have to realign themselves to be stretched so as to break or be pulled out. Then, how such yarn
realignment influence the fabric behaviour and hence its strength.



Table 5. Yarn number as function of fabric width W for polyester/cotton fabric.

W (mm) 5 8 10 15 20 25
total 9 13 16 3 32 40
5||pp|ng ............................ 913 ,,,,,,,,,,,,,,,,,,,,,,,,,,, : 6 ........................... 18 ........................... L 20
o S o S o L o

Table 6. Yarn number as function of fabric width I for wool fabric.

W (mm) 5 8 10 15 20 25

4. Theoretical considerations

In fact, the issue of yarn realignment is most significant in fabric tear test, and there have been some
comprehensive studies devoted to the subject [25,26]. It will hence be considered negligible in our
analysis. In addition, the influences of the bias direction angle 6 and the sample length L have been
investigated extensively [5,16,27,28]. Our study will hence focus on the impact of sample width W, first
because it has rarely if ever been dealt with in existing public literature, and also that just changing the
sample width W alone is a subject with sufficient challenges, as demonstrated below.

4.1. The sample loading and geometries

From the illustration in figure 1, it is seen that a bias sample is still symmetrical about the centreline in
the warp direction, so we need to analyse only one-half (0.5 W) of the sample as sketched in figure 4.
In the part shown in figure 4, the two lines of maximum yarn length /i, divide it into three parts: in
between the two Iy, lines is the region B where yarns are all with the same length I, and thus is the
strongest region. As a result, the sample strength is actually determined by the other two equal regions
A with mixture of longer and short yarns: analysing either of them (e.g. the top left one) will give us the
sample strength.

Next, we need to find out in the region A the numbers of yarns that during the test will be broken and
pulled out, respectively, at a given width W, and the sum of total forces from both groups will give us
the total breaking load of the sample. By definition, the total number of yarns in the width direction for
the half sample width is

0.5Wny
P=——"= 4.1)
sinf
where ny is the fabric count—number of yarns per cm fabric length. Thus, the spacing between two
yarns in this bias sample is sin 6 /(11y). Other simple geometries in figure 4 include Iy = 0.5W/sin 6 and
the sample length along the width direction at ith yarn, I, =i/(ny- sin ). The embedded length ; for
yarni (i=1 to P) becomes
i

;= . 4.2
! nysiné “42)

stz poindo o5y Swotnpniaposeiorss [



0.5W

Figure 4. One half (0.51/) of the bias sample for analysis.

As expected a yarn with an embedded length less than a critical length I. (yet to be determined) will slip
or be pulled out, so that the total number of slipping yarns is

N={k,l <l and k=1, 43)
and the remaining M number of yarns will break, where

0.5Wny
M=P-N=——"% -N. 4.4)
sin

The sample tensile strength is a result of both yarn breakage and pullout in a sample cut in bias directions.
Note that because the embedded length /; for yarn i increases with sample width W, the number of broken
yarns M for a constant critical length I grows with W as shown in equation (4.4) and by the experimental
results in figure 3.

4.2. Mechanics at an interlacing point and yarn pullout from fabric

The next step is to find out the force carried by a yarn being pulled out of the fabric as a function of
embedded yarn length ; until the length exceeds the critical value I.. The key to the answer lies in the
interaction at the interlacing points between warp and weft yarns. Assume this resistance constraint y
per crossing point consists of two parts, a compression-dependent (frictional) part and a compression-
independent (adhesive) one [4], i.e.

Ty = Ty1 + Ty2. 4.5)

For plain weave and equal warp (L) and weft (T) parameters, i.e. yarn thickness ty|, = tyr = ty, fabric count
nyL = nyr =1y, we have for the compression-dependent component from [4]

2
Ty = C—H(UL + or)sin[arctan(4tyny)]. (4.6)
y

It is obviously generated from the tensile load exerted either uniaxially as in the warp direction oy,
(weft direction o1 =0), or biaxially with both o7 and o7 to cause a tightening effect to the fabric so as
to increase the pressure at the yarn contact points. Here o7 and ot are the stresses in the warp and weft
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directions; Cy represents the length of the yarn—yarn contact area;  is the yarn—yarn contact frictional
coefficient.

The adhesive component is a non-zero quantity even when the sample is load free and it satisfies [4]
_ 2wy

Typ = tanh(2pwy), 4.7
=g, anhowy) )

where wy is the yarn width, y; is the adhesive resistance at the contact points when compression is zero,
and p is a factor reflecting the yarn tightness with a unit of length~!:

1 |Gy
p= (4.8)
ty nEy

where Gy and Ey are the shear and tensile moduli of the yarn, respectively. Thus, the total unit constraint
7y can be expressed as

2u . 2)’swy
Ty = — (o + or)sin[arctan(4tyny)] + T tanh(2pwy). (4.9)
0

CY y

That is, even where or =0, as long as a yarn is pulled out from the fabric structure, the associated tension

o, will generate at each contact the point resistance ty1. When 7y is high enough, the yarn will break.
Once we obtained the resistance 7y at an interlacing point, we can then proceed with next issue, i.e.

the pulling out force on N =P — M yarns that slip during extension. Clearly, this pulling out force will

be a function of embedded yarn lengths. There has been some research on this issue [29-32], and we use

here the results by Pan & Yoon [31]. The major assumptions corresponding to the theory are listed below:

(a) assume that the interactions between the warp and weft yarns will not affect the properties of
individual yarns—we will, however, lift this assumption in the next section;
(b) neglect the jamming effect and distortion of woven fabrics during the process.

Based on the analysis in [31], the maximum force P, to pull a yarn over a single crossing point with
resistance 7y in a woven fabric is clearly

Pm =1y (4.10)

Then, for a yarn with embedded length of Iy, the maximum tensile force required to pull this yarn out of
the fabric can be calculated as

Py = tyRound|[nyly ], (4.11)

where the Round function Round( ) is used to round the fraction part to reflect the discrete nature of the
crossing points. This and equation (4.9) show that for a given embedded yarn length Iy, the pullout force
Py is a function of fabric count, yarn shape, dimension and mechanical properties. In the critical case
when the pullout force reaches the yarn breaking load Py,

Pj = tyRound[nyly] = Py, (4.12)

the yarn will be broken in the fabric. Equation (4.12) thus sets the criterion for identifying the number of
broken yarns N using equation (4.3). The only issue remains in the equation is what yarn breaking load
Py, to use in equation (4.12). As the yarns are already integrated into a structure, will they still possess the
same originally determined ex sifu yarn strength? In other words, will the yarn—yarn interactions inside
a fabric alter that original ex situ yarn strength? To answer this question, we have to examine the effect
on yarn strength owing to interactions between yarns in a fabric, and thus remove the first assumption
listed above, originally adopted in [4,31].

4.3. Interactions between yarns during sample extension—the yarn in situ behaviour

To understand the effect of yarn—yarn interactions on yarn/fabric strengths, we cite here an earlier work
by Shahpurwala & Schwartz [3] where they studied the relationships between strengths of individual
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yarns, yarn bundles and fabrics. In the study, they validated or revealed some connections on the tensile
strengths between fabric and its constituent yarns.

(a) The statistical mean strengths of yarn bundles are no greater than those of their constituent
yarns, oy, < oy. In other words, as the individual yarns form a bundle, they collectively weakened
themselves owing to the load sharing between the broken and still-surviving yarns in the bundle,
leading to this bundle strength deterioration. However, the authors provided only theoretical
predictions, with no experimental yarn bundle data in their study.

(b) The mean fabric uniaxial strengths are no smaller than that of the constituent yarn bundle
in the same direction oF > o3,. That is, when yarn bundles (warp and weft) were interlaced
in perpendicular directions to form the fabrics, the whole system is reinforced. Clearly, what
accounts for the strength discrepancy between the parallel yarn sheet and a real fabric is the
yarn interaction occurring in the interlacing points.

(c) The mean fabric strengths o can be smaller than, equal to or greater than oy of its yarns.

To more thoroughly analyse the phenomenon involved, we have to briefly review the studies on
statistical nature of fibrous material strength and the associated theories. It has become common
knowledge that individual yarn samples taken from the same package will not yield the same tensile
strength because of the various statistical variations over yarn length, as stipulated by Peirce in 1926
[33]. In fact, according to Coleman [34], the cumulative probability distribution function of such sample
population is of the Weibull type, and hence the mean or the expected value of the yarn breaking strength,
oy, can be calculated as

oy = (lya) VP (1 + %) , (4.13)

where « is the scale parameter and g the shape parameter, both independent of sample length Iy.
Following this, Daniels [35] demonstrated that because of the Weibull distribution of the yarn strength,
the strength of a parallel yarn bundle made of such yarns deviates from that of its constituent yarns, and
acquires the value of

b = (lyap)~Pexp (1 - %) . (4.14)

It is easy to demonstrate that at given parameters «, 8 and sample length Iy, there is always oy > oy, i.e.
the mean yarn bundle strength cannot exceed that of its constituent yarns, as discussed in detail in [3,35].

Then, another parallel yarn bundle is introduced in the perpendicular direction and interlaced
together to form a piece of fabric. If we ignore the interactions resulted, the fabric strength would be
the same as the bundle strength

oF = 0p = (lyap) " /Pexp (1 - %) (4.15)

which clearly violates the experimental data that oF > 6},. In other words, to account for the enhanced
fabric strength, one has to consider the interactions at the interlacing points when two perpendicular
yarn sheets are woven together.

Here, is the key clue. It was reported that during the fracture process of both composites [24] and
yarns [36] that with increasing strain on the structures, the constituent fibres break repeatedly, termed as
the process before overall system failure. This phenomenon indicates that a broken fibre can again build
up tension, carry load, break into even shorter segments and successively contribute towards the overall
system strength. On the other hand, because of the length—strength dependency, the strengths of these
fibre segments will become higher with decreasing length, thus explaining the higher systems strengths
resulting.

Shahpurwala & Schwartz [3] therefore concluded that a more realistic prediction is obtained if the
fabric is considered as a bundle of yarn segment whose length, termed as effective or critical length, is
much shorter than the original yarn length. By back calculation using the weakest-link scaling based
on the known fabric and yarn strength distributions, they determined the critical lengths, much shorter
than the original yarn length and depending on the type of fabrics. Their study thus confirmed that
the mechanical behaviour of a yarn in a fabric differs considerably from its ex situ performance tested
in isolation from the fabric. However, their approach here is a more or less empirical one, thus failing
to establish a theoretical relationship between the critical sub-bundle yarn length and the interactions
between yarns in a tensioned fabric.
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In summary, the interactions at the interlacing points have reinforced the system so much that the
ultimate fabric strength is elevated from the much lower level of yarn bundles into a value sometimes
even higher than that of its original constituent yarns.

Based on the model proposed by Shahpurwala & Schwartz [3] that a fabric be treated as a system of
chains formed by yarn sub-bundles whose length is equal to the so-called critical length I. <y, Pan [4]
proposed that the actual mean fabric strength be calculated as

ot = (leaB) VPexp (1 - %) . (4.16)

The key now is the determination of the effective critical breaking length I..

According to Wimolkiatisak & Bell [37], any yarn fragment with length longer than [ is still able to
break somewhere along its length as its stress exceeds its instantaneous in situ strength. So, the next length
of the fragments actually varies in the range of [0.5].—I.], with the mean length being 3 /4l.. Therefore, the
mean length before yarns break into I. will be 4/3l.. Based on all of this, Pan [4] derived the theoretical
expression for . to be used in equation (4.16) to determine oF:

1 o4\ 1]
l°=[nyry () <1+ﬁ)} , )

where ny is the fabric count (number of yarns per fabric length). Bringing the unit constraint 7y from
equation (4.9) into equation (4.17) one can evaluate the critical yarn length which is a function, among
others, of extensions oy, or, fabric weave structure ¢, ty and ny, yarn-yarn friction 1 and yarn strength
parameters « and S.

In connection to the yarn pullout analysis, the in situ yarn strength, i.e. the fabric strength per yarn,
oF can be related to the yarn pulling out force in equation (4.12) as

oF = tyRound[nyl.] = Pyy. (4.18)

Note that when using the unit of N yarn~!, the fabric tensile breaking load and fabric strength converge
to the same meaning; therefore, no distinction is made between the two in our analysis.

5. Experimental results

To validate the theoretical predictions above and provide parameters needed for the modelling work, we
also conducted the following experimental work.

5.1. Yarn pullout data

For the three fabrics detailed in table 1, yarn pullout tests were done only on the warp yarns. The sample
preparation and pulling out tests are detailed in [29,30], and table 8 holds the test data. It is seen from
the data that first when the embedded yarn length is below the critical length, the yarn will be pulled
out rather than broken. In the case of the glass fabric, the yarn is so strong that even if we extended
the embedded yarn length to the maximum level allowable by the machine of 220 mm, it is still below
its critical length, so all yarns were pulled out. For the other two fabric types, when the embedded
yarn length was increased respectively to 50 (wool) and 100 (polyester/cotton), the yarns were indeed
fractured inside.

In addition, when we introduced the yarn unit point resistance zy, we made no differentiation yet as
to whether it is for the case of yarn pulled out or broken. By looking at the data in table 8, we found
that, regardless of yarn breakage or not, the 7y values acquired appear in the same order of magnitude.
Further analysis and discussion on the 7y values are provided below.

5.2. Tensile strengths of yarn, yarn bundle and fabric

Next, we conducted tensile strength tests, all at gauge length of L =100 mm, of individual yarns, yarn
bundles (to supplement the work by Shahpurwala & Schwartz [3]), and fabrics, and the results are
provided in tables 9-12. For comparability, we unravelled the weft yarns from a fabric sample to test
the warp yarns only as the yarn bundles, and then tested the warp yarns individually as the single
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Table 8. The warp yarn pullout test data. Numbers in parentheses are the mean values.

embedded length Ty

fabric type (mm) max load (N) (10=" N per contact point) status
polyester/cotton 50 1.45 0.13 pulled out

Table 9. The tensile strength of single yarns in fabric (L = 100 mm).

N peryarn
fabric type warp
polyester/cotton 3.87 2.55
wool 246 212
glass 3.98 3.02

Table 10. The tensile strength of warp yarn bundles (w = 30 mm, L =100 mm).

fabric type N per bundle N per yarn

polyester/cotton 225.88 348
................................................... e
........................................................ glass18995264

Table 11. The tensile strength of fabrics.

N per sample N peryarn

fabric type length (mm) x width (mm) warp EL)
polyester/cotton 100 x 30 240.50 3.64 2.79

yarn samples. We then compared the related strength data summarized in table 12 of all three types of
samples, and confirmed from the actual data that:

(a) of the three strength values, the mean strength of yarn bundles is indeed the lowest of the three,
OF > 0}, 0y > oy, for all three fabrics;

(b) the mean fabric strength can be smaller than (for wool and polyester/cotton fabrics), equal to or
greater (for glass fabric) than those of its constituent yarns; and
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Table 12. Experimental strengths (warp only, L = 100 mm, N per yarn).

case single bundle fabric

polyester/cotton 3.87 342 3.64
....................................................... s
........................................................ gIass e

(c) if comparing the tensile strength in table 12 with the pullout data in table 8, ignoring
the unbroken glass fabric, the pullout breaking force Py, can be greater (wool) or smaller
(polyester/cotton) than any of the corresponding yarn, bundle and fabric strengths. Besides
experimental errors, which were carefully minimized during our tests, this may be an indication
that some differences in failure type may exist between the pullout test and the normal tensile test.

6. Determination of the parameters

There are several parameters required in modelling that have to be determined from the
experimental data.

6.1. The Weibull parameters « and 8

We statistically estimated the values for the yarn shape and scale parameters o and p listed in table 13
for the three different fabrics based on their yarn strengths, along with the fibre density values. Then,
in table 14, we provide some assumed structural values shared by all three different fabric samples, for
modelling purposes.

6.2. Other geometrical parameters
Yarn thickness ty can be calculated from the given yarn count

tex

ty(cm) = 7
y(em) 1+ey\ mpVey x 10°

6.1)

where tex is the yarn count number (g km™1); ey = wy/ty the yarn cross-section ellipticity; Vg the fibre
volume fraction in the yarn; and o the fibre specific density (g cm™2). Yarn width wy is

wy = eyty. (6.2)

The circumference of the yarn is
Ly =157(t +wy) -\ [ywy. 6.3)

So that the length of the yarn-yarn contact area Cy = Ly /2 in equation (4.9).

6.3. The contact resistance Ty and the critical yarn length /¢

To explain the reinforcing effect of the yarn interlacing in a fabric, and to calculate the critical length I,
the contact point resistance ty is clearly the key parameter to be determined first. There appear multiple
ways, termed below as methods 14, of deriving 7y value:

1) from equation (4.9), directly calculate ty;

2) from the pullout data and equations (4.12) or (4.18), for both /. and zy;

3) from the bias tensile data and equation (4.18), for both /. and zy; and

4) from the normal uniaxial tensile test data and equations (4.16) and (4.17), for both . and ty.

~ o~~~
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Table 13. Derived parameters for calculation (warp only, L = 100 mm, N per yarn).

scale parameter

shape parameter 3 o (N"Pmm~")
polyester/cotton 3.87 7 5.80 10~ 143
L e T b
B e e o

Table 14. Assumed parameter values in calculation.

property typical value unit note

fabric fibre volume fraction vy, 05
................................. yarncrosssectlonelllptlcltyey14wy/ty
...................................... Iengthofyarncontactareacy/y/2mmplalnweave

Table 15. 7, and / values determined via different methods (polyester/cotton, warp only).

case method 2 pullout method 3 bias method 4 normal
7y (N per point) 0.0132 0.091 0.063
I (cm) 6.00 119 383

It has been demonstrated in [4] how to obtain 7y value using method 1, involving many parameters
including both stresses o7, and o7. A thorough analysis on it is available there. We will therefore not
pursue it further. If we look at the three types of experiment, i.e. the normal tensile test, the bias tensile
test and the yarn pullout, there are really two distinctive events individually or jointly leading to the
failure of a fabric sample, namely the yarn pullout and yarn breakage. These two events thus represent
two different fabric failure mechanisms or types. We term them type I in yarn pullout, and type II in yarn
breakage. As a result, we can classify the test methods in terms of the failure types involved, such as
the yarn pullout test (type I dominant, corresponding to method 2 in the above list), normal tensile test
(type I dominant, method 4) and the bias tensile test (type I + type II, method 3). If we want to reflect the
distinctive impact on fabric structure of the two failure types, it is only reasonable that we use different ty (thus )
values in predicting the corresponding test results.

The actual calculation is for the polyester/cotton fabric only. For method 2 of yarn pullout test, we can
get the data from table 15 based on equation (4.18), ry = 0.0132 N per point and /. = 6.0 cm, averaged over
the pullout results. For method 4 of normal tensile test, it is shown in table 12 that o = 3.64 N per yarn.
Plugging it first into equation (4.16) gives lc = 3.83 cm, and then [ into equation (4.17) to find 7y = 0.063 N
per point.

As for method 3, however, some additional steps are involved to derive the critical yarn length I.. Take
the bias tensile test results in table 5 for polyester/cotton sample. During the test, all yarns were pulled
out when sample width is low. Yarn breakage occurred only when sample width W =15 mm with the
total yarn number P = 23, there are M = 18 yarns pulled out, named yarns 1,2, .. .,18, and N =5 broken,
named 19, 20, . . ., 23. Using equation (4.1) for yarns i = 1-23, we can calculate the embedded yarn length
distribution in figure 5. As the longest 5 will be broken, then the critical yarn length should be between
the lengths for yarns 18 and 19, and a simple average gives [ =1.189 = (1.157 + 1.221)/2. Then, from
the bias test results in table 2, the sample breaking load is 43.96 N when W =15 mm. There are 5 yarns
broken, carrying a total of 5 x 3.64 =18.2 N, where the in situ yarn strength, i.e. the fabric strength per
yarn, of = 3.64 is from table 12. So, the total 18 slipping yarns contributed 43.96 — 18.2 =17.47 N force,
which translates via equation (4.18) into 7y = 0.091 N per point.

In the end, all 7y values are listed in table 15 from methods 2-4 for polyester/cotton sample,
confirming that the values derived using different methods indeed differ quite significantly, and the
ranking of the 7y values is method 3 (bias)> method 4 (normal)> method 2 (pullout). That is, in a bias
sample, the resistance at interlacing point is intensified because of the obliquity of the yarns.
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Figure 5. Distribution of embedded yarn lengths and the critical value /.

Table 16. Strengths for different cases (warp only, N per yarn). e, experiment; p, prediction. Data used: method 4 for 7, and /..

contact resistance
single oy bundle oy, fabric of (N per point) 7, critical length /; (cm)
polyester/cotton® 3.87 3.42 3.64

polyester/cotton" ............... L e T ey
s e S S
T e Sy S
glasse .............................. e S gy
glassp ................................... e e T

7. Predictions and comparison with the experimental data

7.1. Single yarn, yarn bundle and fabric strength calculation and comparison

For verification of the results obtained so far, we used « and B values for all three fabrics to calculate the
individual yarn strength using equation (4.13), and yarn bundle strength using equation (4.14). All the
results in comparison with the corresponding experimental data are provided in table 16.

It is seen from table 16 that although variations do exist, we nonetheless confirmed that the mean
strength of yarn bundles, both experimental and predicted values, is the lowest of the three, oF >
0p, 0y > 0}, for all fabrics, except fabric 2 (wool) whose predicted bundle strength is greater than its
fabric strength.

For the normal fabric strength prediction from equation (4.16), we should use the corresponding value
of critical length I from method 4. The I and 1y, values for the other two, wool and glass, fabrics are also
calculated using the same method 4, also shown in table 16. It is interesting to see that both . values
for fabric 1 (polyester/cotton, I. = 3.83 cm) and fabric 3 (glass, I. = 3.41 cm) are smaller than the original
length L =10.0 cm. But, the value for fabric 2 (wool, I = 58.77 cm) is larger than 10.0 cm, indicating that
the fragmentation-invoked reinforcing effect is not significant enough in fabric 2 that its fabric strength
of is lower than its bundle strength. Conversely, for the other two fabrics their /. values are smaller than
the original 10.0 cm, so that their fabric strengths are indeed enhanced.
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Figure 6. (a) Predicted numbers of broken and total yarns in sample widths. (b) Predicted and experimental sample strengths versus
widths.

Table 17. Bias test results as functions of sample width W (polyester/cotton). e, experiment; p, prediction. Data used: method 3,
7y = 0.091(N per point), [ =119 (cm).

W (mm) 5 8 10 15 20 25

total yarns 9 3 16 PX] 32 40
e R ) G L —
pquUt .......................................... g g o T B P
sample strength . (N ) ..................... o T o T VR i
samplestrength e(N) .................... e S ca T e o e

7.2. Numbers of total, broken yarns as a function of sample width W

Again take the polyester/cotton fabric for example. As we are dealing with the bias tensile test involving
yarn pullout, we use the 7y and /. values calculated via method 3 in table 16. The fabric account in the
warp direction is 22 ¢cm, so that for a given sample width W, the corresponding total number of yarns
can be calculated from equation (4.1), as shown in table 17.

For a sample of given width W and total yarn number P, the embedded yarn lengths distribution
(rounded to integer) can be calculated from equation (4.1), as illustrated in figure 5. Note that for a
given fabric, its critical length I is a fixed fabric property. In the beginning when sample width W is so
small whose longest embedded yarn length [; < I, so all the yarns in the sample will slip. As the sample
width W increases, the embedded yarn lengths grow. As soon as the sample width reaches a critical
value, so that there is a yarn with embedded length [; > I, the yarn breakage takes place. Beyond this
critical sample width, as the number of pullout yarns N remains constant, the other P — N =M yarns
are the broken ones. So, in table 17 for the polyester/cotton fabric, [. = 1.19 cm, the numbers of pullout
and broken yarns are calculated corresponding to each given sample width W, and plotted in figure 6a.
The parallelism between the lines of total and broken yarn numbers in figure 6 suggests that once yarn
breakage starts, as both specimen width W and total yarn number P grow, the number of slipping yarns
M stays nearly the same, whereas the broken yarn number increases. Figure 64 is in good agreement with
the corresponding experimental results in figure 3.

7.3. The breaking load of bias samples as a function of sample width W

A fabric sample, bias at # and with M broken and N slipping yarns during the test, will achieve a total
breaking load P

P =Py + Py, (7.1)
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where the contribution from all M broken yarns is
Py = MF. (7.2)

Again, the in situ yarn strength, i.e. the fabric strength per yarn 6 = 3.64 N per yarn in table 16 calculated
from equation (4.16), is used here. The contribution from all N slipping yarns is

N
Py = Round[nylj] - 7y, (7.3)
i=1
where the 7y, =0.091 N per point from method 3 corresponding to the bias tensile test is used in
calculation. The embedded yarn length [; for the slipping yarns can be determined using the combination
of equations (4.2) and (4.3).

As M and N are functions of fabric width W, the total breaking load of the fabric sample thus also
becomes a function of fabric sample width. The total bias sample strength at each width is calculated
also in table 17, in comparison with the corresponding experimental results. The values then are plotted
in figure 6b, and a consistent general trend between the data of the two groups is apparent. Examining
the data in table 17 in more detail, for narrow width samples where yarn pullout is dominant during a
test, the predicted sample strength is greater than the experimental data. This continues until W = 10 mm
just before yarn breakage takes place, where the two results coincide. Once beyond that sample width,
the predicted results are below the experimental ones.

One explanation for the overestimation in the pure yarn slippage stage is that we implicitly assumed
the contact resistance ry = 0.091 N per point remains constant along an embedded yarn length [;, but this
is unlikely the case and the resistance may be smaller at both yarn ends. Of course, the variations in
fabric structure and properties, and, especially, the distortion in fabric structure during the test are all
other possible contributors to the errors in predictions.

8. Conclusion

This is the first complete study in exploring the origin of the tensile strength of a narrow and bias
woven fabric via theoretical analysis and experimental validation. Furthermore, the conclusions drawn
can be helpful in understanding the failure process of fabric-reinforced composites where the larger
reinforcement breaks down to small pieces, yet still carrying load and contributing collectively to the
overall behaviours of the system. More importantly, this experimental and modelling work actually
presents a methodology dealing with the fracture mechanics of a discrete system formed by components
associated to each other only via contact friction.

More specifically, the frictional interactions between the warp and weft yarns in a fabric are essential
to the fabric mechanics and such frictions provide both connectivity and mobility to the entire fabric
structure. The interlacing point resistance 7y is thus the key parameter in reflecting the intensity of such
interaction.

Compared with the uniaxial normal tensile tests, bias extension tests can capture more information in
understanding the complex mechanics in woven fabrics. The resultant tensile strength in a bias sample
involves both yarn pullout and breakage, and the relative proportion of the two failure types depends
on, as demonstrated in this study, the bias direction angle 6, sample width W and length L, along with
other factors known to affect fabric strength tested in principal directions. A bias tensile process can
hence be considered a mixed type of the yarn pullout test (type I) and yarn breakage (type II), and the
7y resistance acquires different values for different sample failure types. Consequently, in theoretically
predicting the behaviour of a bias tensile sample, the appropriate value of the point resistance 7y has to
be used in modelling each type. Furthermore, even for a single type, the 7y value may not be a constant
along the entire embedded yarn length, especially in yarn pullout test where variation in 7y value seems
to be more realistic.

In addition, the critical embedded yarn length /. can be used as a criterion to judge the existence and
degree of the fragmentation-invoked in situ reinforcing effect in a fabric.
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