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Abstract: Modulation of the amplitude of high-frequency cortical field activity locked to changes in
the phase of a slower brain rhythm is known as phase-amplitude coupling (PAC). The study of this
phenomenon has been gaining traction in neuroscience because of several reports on its appearance
in normal and pathological brain processes in humans as well as across different mammalian
species. This has led to the suggestion that PAC may be an intrinsic brain process that facilitates
brain inter-area communication across different spatiotemporal scales. Several methods have been
proposed to measure the PAC process, but few of these enable detailed study of its time course.
It appears that no studies have reported details of PAC dynamics including its possible directional
delay characteristic. Here, we study and characterize the use of a novel information theoretic
measure that may address this limitation: local transfer entropy. We use both simulated and actual
intracranial electroencephalographic data. In both cases, we observe initial indications that local
transfer entropy can be used to detect the onset and offset of modulation process periods revealed
by mutual information estimated phase-amplitude coupling (MIPAC). We review our results in the
context of current theories about PAC in brain electrical activity, and discuss technical issues that must
be addressed to see local transfer entropy more widely applied to PAC analysis. The current work
sets the foundations for further use of local transfer entropy for estimating PAC process dynamics,
and extends and complements our previous work on using local mutual information to compute
PAC (MIPAC).

Keywords: phase amplitude coupling; cross frequency coupling; information theory; transfer entropy

1. Introduction

A hallmark feature of electrophysiological recordings of brain activity is the presence of rhythmic
oscillations [1,2]. Interaction between activity in different frequency bands has been associated
with particular brain states and stimulus responses in humans in both healthy and pathological
conditions, and more generally in mammalian brains [3]. Until recently, oscillatory dynamics
in different frequency bands were, in effect, treated as being largely independent. It is now
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acknowledged that rhythms at different frequencies can interact temporally both within and between
brain structures. More importantly, clearly-defined cross-coupling interactions between neural
frequency bands appear across mammalian brain evolution, suggesting they may be supported
by a universal evolutionary mechanism serving essential brain functions [1,4]. These facts bring
relevance to cross-frequency coupling (CFC) studies, and more importantly, to its most widespread
and studied variant, phase-amplitude coupling (PAC).

In phase-amplitude coupling, the phase of a slower rhythm regulates changes in the amplitude of
activity at higher frequencies, either within the same signal or between two recorded signals [3]. It is
understood that high-frequency oscillations (HFO) emerge from and are topologically constrained
within small brain functional areas. In contrast, larger generating areas and/or area-coupled networks
are associated with slower rhythms [2]. A consensus view of brain PAC is that activity in disjoint
frequency bands interacts by manifesting an architectural hierarchy: low-frequency oscillations
manifest or express synchrony within and coherence between large neuronal ensembles, while their
phase regulates local changes in faster field activity within brief time/phase windows [1,5]. This pattern
of cortical rhythmic interdependence is believed to foster efficient, precisely timed information
transmission flow across spatiotemporal scales [4]. Implicit here is also the idea that PAC reflects the
causal influence of low-frequency phase on high-frequency amplitude.

PAC has been observed between various frequency bands, in multiple brain regions,
under different task conditions and in multiple species (see Table 1 in [3]). In addition to the widespread
prevalence of PAC in healthy brain process, links have been found between PAC and a variety of
neurological pathologies (e.g., in epilepsy [6], Parkinson’s disease [7,8], Alzheimer’s disease [9],
mild cognitive impairment [10], schizophrenia [11,12], and obsessive-compulsive disorder [13]).

Several methods have been proposed to estimate PAC. Although none has been established yet as
the gold standard, three methods have been most often used by the scientific community: the Mean
Vector Length Modulation Index (MVLmi) [14], the Kullback–Leibler Modulation Index (KLmi) [15],
and the General Linear Model Modulation Index (GLMmi) [16]. These methods rely on the assumed
covariation of the phase and amplitude time series to statistically estimate PAC presence and strength.
One limitation of these approaches is their lack of time resolution. A new PAC estimation method based
on mutual information, recently proposed by us in [3]), addresses this challenge. Another limitation of
’correlation’-based PAC estimation is that it assumes that interactions between the two time series are
instantaneous, thus missing the effect of any delayed interplay among frequency bands.

Delays among brain signals arise mainly due to intrinsic information propagation lags through
brain circuitry. It has been demonstrated that the brain oscillatory processes are intimately related to
these delays, which are believed to constitute an essential mechanism for inter- and intra-brain network
synchronization [17]. The delay coordinated activity has proven vital for normal brain function to such
an extent that its disruption has been associated with pathologies including multiple sclerosis [18] and
schizophrenia [19]. The ability to estimate interaction delays in brain signals may enable estimation of
the directionality and causation in the interaction. Thus, the estimation of the dynamics of directed
interaction in multi-scale PAC scenarios may help understand PAC’s functional significance.

Concepts from information theory (IT) have proven effective in addressing some current PAC
measurement constraints (e.g., [3]). In addition to the advantage provided by the model-free
assumptions in the estimation of IT quantities, two specific developments have made information
theory especially suitable to addressing some current PAC limitations: (1) Introduction of transfer
entropy [20] as a measure of predictive information transfer and interaction delay between time series;
and (2) development by Lizier of theory and methods for estimating IT measures in a pointwise or
local manner [21].

Here, we explore the use of local transfer entropy to study and characterize phase-amplitude
coupling dynamics. We aim to provide an initial report of the use of local transfer entropy to study the
temporal dynamics of PAC process interactions involving delays. In Section 2, we provide a general
background on information theory and introduce the concepts and estimation techniques for transfer
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entropy as well as its local measure. We then address PAC estimation using transfer entropy (Section 3)
and then present simulated and actual data results in Sections 4 and 5, respectively. In Section 6,
we discuss the results and provide general observations on the use and interpretation of TE in the
context of PAC.

2. Information Theory and Transfer Entropy

Information theory background. A central quantity in Information Theory is the Shannon
Entropy H. To introduce this key concept, let us assume two discrete random variables X and
Y with sets of values x and y, respectively, probability distributions p (x), p (y), conditional
probabilities p (x | y) and p (y | x), and joint distribution p (x, y). These quantities are related by
p(x, y) = p(x|y)p(y) = p(y|x)p(x). The quantity H(X), which is the average of the “log-surprise”
log1/p(x) = −log2 p(x) for an observation X = x (see Equation (1)), represents the expected
uncertainty associated with a measurement x of the random variable X:

H (X) = −∑
x

p (x) log2 p (x) (1)

Shannon entropy can be extended to two random variables X and Y; then, the joint entropy can
be defined as in Equation (2):

H (X, Y) = −∑
x,y

p (x, y) log2 p (x, y) (2)

It is also convenient to define the notion of conditional entropy as the average uncertainty about
x that remains when the value of y is known (Equation (3)):

H (X | Y) = −∑
x,y

p (x, y) log2 p (x | y) (3)

With these definitions in place, we can then formalize the mutual information (MI) between the
random variables X and Y as a non-negative and symmetric measure defined in Equations (4) and (5):

I (X, Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
≥ 0 (4)

= H (X)− H (X | Y) (5)

By assuming a third random variable Z—with sets of values z, probability distribution p (z),
conditional probabilities p (x | z) and p (y | z), and related to X and Y by p(x, z) = p(x|z)p(z) and
p(y, z) = p(y|z)p(z)—one obtains the conditional mutual information (Equation (6)):

I (X, Y | Z) = H (X | Z)− H (X | Y, Z) (6)

Transfer entropy. Now, let us assume the coupled physical system X and Y , whose behaviour is
described by the random process X and Y produces the time series xt = {x1, ..., xN}, yt = {y1, ..., yN}
at the discrete recording times t ∈ {1...N}. With these definitions in place, Wiener’s principle of
causality states that, if knowledge about the past of realizations of X and Y together allows one to
predict the future of Y better than knowledge about the past of Y alone, then a causal influence can
be assigned from the process X to Y [22]. In the information-theoretic framework, this principle can
be reformulated as “What information does the past of X provide about the future of Y that the past of Y did
not already provide?” [23]. The quantity capturing this principle, transfer entropy, was formalized by
Schreiber [20] in terms of the conditional mutual information (Equation (7)):

TE (Y → X) = I
(
X+; Y−|X−

)
(7)
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Here, X+ is a future random variable of the process X, whereas X− and Y− designate the
reconstructed past state variables of the process X and Y, respectively. This quantity as stated in
Equation (7) can be viewed as the average information contained in the past of the source signal Y−

about the next state X+ of the destination that was not already contained in X past, X−. Current
extensions of this formulation have been proposed by Wibral et al. [23] and Lizier et al. [24] by
assuming: (1) An interaction delay u between the time series xt and yt ; (2) The times series xt and
yt can be approximated by a Markov process of order k and l respectively. With this assumptions,
Equation (7) can be rewritten in a more general form [24] as in Equation (8):

TE(k,l)
Y→X (t, u) = I

(
Xt : Y(l)

t−u|X
(k)
t−1

)
(8)

Transfer entropy is a positive asymmetric quantity whose interpretation is still being debated. However,
a consensus seems to be forming around the idea that the quantity provided by TE, far from
being interpreted as “true causality”, may be a predictive information transfer [23,25] or predictive
causality. These are important concepts that are usually tangled in discussions of information transfers
(see [25] for an in-depth discussion). The idea of causal effect may be assumed to mean the extent to
which a source process directly drives the next state of a destination process [25]. This can be seen in
the action of a falling row of dominoes. On the other side, predictive causality implies one’s ability to
predict without committing to a belief in causal efficacy.

Local transfer entropy. Most of the information theory quantities currently in use (e.g., entropy,
mutual information, transfer entropy) can be seen as an spatial or time average of more fundamental
local or pointwise information bearing quantities. Local information theoretic measures characterize
quantities from a specific, localized subset of measurements x and y of the random variables X and
Y, rather than the associated average measure computed over all available data [26]. For example,
local mutual information values i (x, y) (Equation 9) may be averaged to compute overall MI I (X, Y)
(Equation (10)):

i (x, y) = log2
p (x | y)

p (x)
(9)

I (X, Y) = EX,Y [i (x, y)] (10)

Since the TE is just a conditional MI (see Equation (7)), local transfer entropy can be defined as
the pointwise conditional mutual information computed from an specific source state y(l)t−u to a specific

target event xt conditioned by the event state history of the target x(k)t−1 [24] as in Equation (11):

te(k,l)
Y→X (t, u) = i

(
xt : y(l)t−u|x

(k)
t−1

)
(11)

While the TE is a strictly positive quantity, the local transfer entropy may be either positive or
negative, indicating whether or not the source y(l)t−u is providing informative information regarding

the set xt, y(l)t−u, x(k)t−1. When TE is negative, Lizier [27] pointed out that the source element is actually
misleading about the state transition of the destination. Other instances where other causal information
sources influence the destination, or in stochastic systems, may lead to negative TE values. Given this,
we may not lose any clear insight into the interaction of our variables of interest by neglecting negative
TE values, as we will do here.

One of the practical advantages of the local transfer entropy is that it provides information about
the dynamics of the information transfer while at the same time allowing recovery of the interaction
delay δ between the time series of the system analyzed as in Equation (12) [26]:

δ = argmax
u

(
TE(k,l)

Y→X (t, u)
)

(12)

These features will be exploited in this manuscript to analyze the dynamics of the PAC process.
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Estimating transfer entropy. Estimation of transfer entropy is usually carried out through the
use of mutual information and conditional mutual information estimation methods. The simplest
and most widespread estimators for MI are extensions of algorithms to compute entropy based
on straightforward plug-in evaluation of defining densities by its empirical estimates (called the
plug-in estimator by [28]). Another popular branch of entropy estimation methods use a similar
principle but estimate the underlying densities by (1) kernel estimation methods (KDE) [29,30] or
(2) by taking advantage of the geometry of the space jointly formed by the support of the variables
used in the computation, approximating the densities at the point x using the volume defined by a
sphere encapsulating its K nearest neighbors (known as K-nearest neighbors, K-NN [31–33]). Despite
its widespread popularity, this family of methods is known to have serious bias problems [34–38].
Recent advances in the development of MI nearest-neighbour estimators, specifically that proposed by
Kraskov, Stogbauer, and Grassberger (KSG) [33] have provided an alternative to substantially improve
the problem of the bias by providing a method that effectively bypasses the need to estimate densities.
The KSG estimator builds on the nearest-neighbors-based Kozachenko and Leonenko entropy estimator
(KL) [38], which Kraskov et al. modified to make the bias resulting from the nonuniformity of the
densities in marginal spaces cancel each other. To do this, Kraskov et al. observed that, for any fixed K
value, the distance to the Kth neighbor in the joint space is larger than the distances to the neighbors
in the marginal spaces, which lead to use different distances scales in the joint and marginal spaces
when using the KL estimator for computing MI [33]. Consequently, Kraskov et al. recommended not
to use a fixed value of K for the marginal entropy estimation and proposed a K-NN MI estimator in
(Equation (13)):

I (X, Y) = ψ (K)−
〈
ψ (nx + 1) + ψ

(
ny + 1

)〉
+ ψ (N) (13)

Here, N is the number of samples of X and Y, and ψ denotes the digamma function (ψ (x) =

Γ (x)−1 dΓ(x)
dx ). The terms nx(i) and ny(i) designate the number of samples falling into a strip of the

marginal space of X and Y, respectively, defined by the distance to its K nearest neighbors. MI values
I (X, Y) are returned in nats. For a detailed derivation of the method, see [33] or [3].

The KSG estimator constitutes an effective non-parametric estimator of MI that is data efficient
(resolving structures down to the smallest possible scales), adapts resolution (binning scale changes
according to the underlying data point density), and has minimal bias [33]—is indeed unbiased
for independent variables. The neat formulation of the KSG estimator allowed Lizier [26] to
extend it to compute local mutual information by unrolling the expectation (〈...〉) in Equation (13),
yielding Equation (14):

i (x, y) = ψ (K)− ψ (nx + 1)− ψ
(
ny + 1

)
+ ψ (N) (14)

An extension of this formulation has been proposed for the computation of local transfer entropy
through the direct estimation of conditional mutual information in the form of Equation (15):

i(x, y|z) = ψ(K)− ψ(nxz) + ψ(nyz)− ψ(nz) (15)

In this manuscript, we used this formulation proposed by Lizer for the computation of TE [27] as
implemented in the JIDT Toolbox [39].

Active information storage. From a corollary of Wiener’s causality principle in the IT context,
it can be derived that, for the values of TE to be interpretable in the context of Wiener causality, it is
necessary to ensure that a signal can optimally predict its own future behavior. It is then convenient to
introduce an IT quantity to describe how well a signal can predict itself. This is the aim of the active
information storage (AIS) introduced by Lizier [21], which defined a measure of how much of the
information from the past of the process X is observed to be in use in determining its next observation.
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Formally, the AIS can be defined as the expected mutual information between realizations x(k)n of the
past state X(k)

n and the corresponding realizations xn+1 of the process X (Equation (16))

AISx (k) = I
(

X(k)
n : Xn+1

)
(16)

Given a range of values for the state’s length parameters k and l, we use the maximal values of
AIS to estimate the optimal value of the state’s lengths that ensures optimal signal self-prediction.

3. Approaching PAC Estimation with Information Theory Local Measures

We now study and characterize the temporal dynamics of directed information transfer
(from phase to amplitude) in the PAC process through local transfer entropy. Note that we assume
only directed phase to amplitude interactions. This choice is discussed in Section 6.3.

Most methods for computing PAC follow a similar data processing pipeline. First, high and
low-frequency band signals are extracted for the two frequency ranges in which the PAC coupling is to
be assessed. These frequency bands are centered on a lower central frequency fphase for the phase time
series, and a higher central frequency famp for the amplitude time series. For this, either band-pass
filtering or time-frequency decomposition can be used with similar results. Then, instantaneous
phase and amplitude time series are obtained from the low- and high-frequency band signals,
respectively, using the Hilbert transform or else directly from the complex signal when time-frequency
decomposition has been used. These time series are then used to compute a PAC measure. After the
PAC measure is computed, a statistical analysis is usually carried out by comparing the estimated
PAC value with a distribution of surrogate PAC values calculated under a no-PAC assumption.
Surrogate values are obtained by computing PAC from the original input signals after shuffling the
two time-series many times as to destroy any PAC relationship [15]. Significance is then assessed by
determining whether the estimated PAC measure for the actual data belongs or not to the distribution
of surrogate PAC values. Here, we will follow this same preprocessing pipeline.

We have recently proposed and validated a method, MIPAC, to estimate time-resolved PAC
using local mutual information [3]. Estimating PAC through MIPAC begins by computing two
time series capturing instantaneous phase and amplitude in the two frequency bands of interest.
Then, local mutual information is computed between these two signals following Equation (14).
When computing Equation (14) in MIPAC, rather than the Euclidean norm used for the instantaneous
amplitude, a circular norm [40]—to account for its periodic nature– is used for the phase component
to compute and find the nearest neighbors in the marginal space defined by the support of the
instantaneous phase. Finally, the local mutual information time series is low-pass filtered under fphase.

Our analysis using local transfer entropy resembles that used for MIPAC [3]. Again, it begins
by computing two time series capturing the instantaneous low-frequency phase and high-frequency
band amplitude. To assess phase-to-amplitude information transfer and estimate the delay in the
interaction between these frequency features, we first estimate the TE for a range of delays u. Given the
periodic nature of the frequency components in question, a plausible range of delays may be defined
by a time range smaller than the span of a full cycle of the lower (phase) frequency. Since the TE is
maximal when the parameter u is the actual interaction delay δ [23], we choose to analyze the local
transfer entropy time series corresponding to the u that maximizes the TE. Statistical significance is
then computed at each latency as described previously.

Before TE computation, special consideration should be given to selecting the state history
length for each signal. Although a few algorithms and methods have been proposed to estimate
these lengths (e.g., [41,42]), a consensus on choice of method is far from being reached [26]. In our
work, we estimate the history lengths (also called ’embedding parameters’) k and l by determining
empirically the embedding values that maximize the AIS in the instantaneous phase and amplitude.
Since the KSG algorithm is bias corrected by construction, the values of k and l that maximize the TE
should successfully capture the corresponding past states’ relevant information. The estimated history
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values, along with an estimate of the nearest neighbors parameter K, are used then to estimate the
delay u as described previously. In the current manuscript, data processing, simulations, computation,
and analysis were performed using EEGLAB [43], functions from the PACTools plug-in to EEGLAB [44],
and custom scripts written in MATLAB (The Mathworks, Inc.). The JIDT Toolbox [39] was used to
compute local TE and AIS.

4. Simulation Results

Simulating PAC. Simulated PAC signal coupling was generated by following [45]. Here, coupling
in the signal was simulated between amplitude frequency fAmp = 70 Hz and phase frequency
fphase = 6 Hz with a sampling frequency of f s = 1000 Hz. The lower frequency component,
or modulator Sφ was built by band-pass filtering a Gaussian white noise signal around fphase assuming
a ∆ fphase = 1 Hz bandwidth. The filter consisted in a Hamming-windowed (sinc) FIR notch filter
implemented in the EEGLAB function pop_eegfiltnew.m [43]. The modulator signal was normalized
to have unit standard deviation σphase = 1 before computing the cosine of its instantaneous phase
obtained by using the Hilbert transform. The resultant modulator signal Sφ was then used to generate
the high frequency component, or carrier SA. For this, a sinusoid with frequency fAmp = 70 Hz was
modulated by using a sigmoid fed by Sφ as in Equation (17):

SA (t) =
1

1 + exp
(
−λSφ (t)

) (17)

Here, the parameter λ = 6. We then introduced a delay between SA and Sφ by shifting SA τ

ms forward respect to Sφ. In the remainder of the text, τ = 30 ms if not otherwise specified. Finally,
to obtain the simulated PAC signal (N = 5000 samples), we added both the delayed SA, Sφ and a
Gaussian white noise with power of 0.5 dBW, as implemented in MATLAB function wgn, to yield a
resultant signal with SNR = 23.7.

Simulation results. A continuous PAC simulated signal was generated as indicated at the
beginning of this section. Figure 1 shows the time-averaged mutual information phase amplitude
coupling (MIPAC) computed between phase frequencies from 3 to 10 Hz (1-Hz steps) and amplitude
frequencies from 40 to 120 Hz (in 10-Hz steps) in the simulated signal. The figure shows that the
coupling has been effectively introduced between amplitude frequency fAmp = 70 Hz and phase
frequency fphase = 6.
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Figure 1. Comodulogram for the simulated PAC signal. Comodulogram depicting the time-averaged
mutual information based phase amplitude coupling (MIPAC) computed between phase frequencies
from 3 to 10 Hz (1-Hz steps) and amplitude frequencies from 40 to 120 Hz (10-Hz steps) for the
simulated signal.
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In Figure 2, we show the simulated PAC signal (top panel) and the time course of the MIPAC
computed for fphase = 6 and amplitude frequencies from 40 to 120 Hz (10-Hz steps) (lower panel).
Black and red lines here depict the beginning and end of the high frequency oscillation (HFO) bursts.
In this case, we see that from the perspective of the MIPAC, PAC seems to be present along the whole
signal while missing some HFO around 1000 ms and 4000 ms. Roughly, the MIPAC seems to peak
after HFO onset, but this is not strict, since MIPAC peaks appear following the HFO in some instances.
In these instances, MIPAC appears to be reset by the onset of the following HFO.

Figure 2. Simulated PAC signal and MIPAC. Top panel shows the simulated PAC signal with coupling
between amplitude frequency fAmp = 70 Hz and phase frequency fphase = 6 Hz using a sampling
frequency of f s = 1000 Hz. Here, the phase component is delayed 30 ms with respect to the amplitude
component. Vertical black and red dotted lines denote the onset and end of HFO bursts. Lower panel
shows the MIPAC computed between fphase = 6 Hz and amplitude frequencies from 40 to 120 Hz
(10-Hz steps). Despite the delay between the frequency components, MIPAC seems able to detect the
temporal evolution of PAC in the simulated signal. MIPAC appears to peak roughly by the end of the
HFO events with some instances were the peaks persist after the culmination of the HFO. In these
cases, a reset of the MIPAC appears to occur with the onset of the following HFO. All non-zero values
are statistically significant (p < 0.05, uncorrected) as per a test performed using 100 surrogates values.
Non-significant values were set to zero.

To characterize the self-prediction ability of the instantaneous phase and amplitude
components, at fphase = 6 Hz and fAmp = 70 Hz respectively, for a given value of nearest
neighbors K = 50, we compute the active information storage as a function of the history length
parameter k. Unless otherwise specified, throughout the manuscript, significance testing was carried
out by generating 100 surrogate signals whose duration and number of samples match those of the
signal for which statistical significance is being assessed. The results of this computation are shown in
Figure 3.

In Figure 3, all computed AIS values for both instantaneous phase and amplitude were statistically
significant (p < 0.05, uncorrected) as per a test performed using 100 surrogate values. The maximum
AIS values for instantaneous phase and amplitude appear to suggest that k = 1 for phase, and k = 3 for
amplitude ensure an optimal self signal prediction. In the following, we will use these peaks on the
AIS as values for the history length parameters for instantaneous phase (k = 1) and amplitude (l = 3).
After testing with multiple values for nearest neighbors (not shown here), this result appears to be
stable with respect to the parameter K. Next, for the given embedding parameters (k = 1 and l = 3) and
delay u = 30 ms, we compute the TE in both directions between instantaneous phase and amplitude
for a number of values of K (nearest neighbors). Significance testing was carried out by generating 100
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surrogate values. Figure 4 shows the results of this computation. Here, only positive and significant
(p < 0.05, uncorrected) TE values are shown. Note that, independent of the value of K used, transfer of
information from phase to amplitude appears to be dominant, peaking at K = 116. In the remainder of
this analysis, the transfer of information from amplitude to phase will not be considered.
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Figure 3. Active information storage as a function of the embedding history k. Active information
storage (AIS) computed for the instantaneous phase at fphase = 6 Hz (blue squares) and instantaneous
amplitude fAmp = 70 (red dots). Peaks in the AIS suggest that an embedding history of k = 1 for the
phase and l = 3 for the amplitude are adequate to capture the relevant past history. All values shown
are statistically significant (p < 0.05, uncorrected) as per a test performed using 100 surrogate values.
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Figure 4. Transfer entropy as a function of K-nearest neighbors. Transfer entropy computed from the
low frequency phase component at fphase = 6 to the high frequency amplitude component at fAmp = 70
(blue square), and in the opposite direction (red dots), as a function of the K-nearest neighbors values.
Embedding history of k = 1 for the phase and l = 3 for the amplitude were used. Only significantly
positive values are shown (p < 0.05, uncorrected). Information transfer from phase to amplitude
appears to be predominant, independent of the value of K.

The lower panel of Figure 5 shows local TE computed from instantaneous phase at 6 Hz to
amplitude in a band from 40 Hz to 120 Hz. The upper panel is similar to that in Figure 2, showing the
simulated signal and the onset and offset of the HFO (red and black vertical dotted lines). For the TE
computation, we used the parameters estimated in the previous analysis: k = 1, l = 3, u = 30 and
K = 116. We can see that, despite similarities to the MIPAC results in Figure 2, the local TE seems
to peak at HFO burst onsets and offsets. Similar to the behaviour of MIPAC in Figure 2, the local TE
measure misses the HFO events occurring near 1000 and 4000 ms.
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Figure 5. Simulated PAC signal and local TE. The top panel is similar to the top panel in Figure 2 and
shows the original simulated signal in blue, the black and red vertical dotted lines marking HFO burst
onsets and offsets. Bottom panel shows the local TE computed from the simulated signal’s instantaneous
low frequency phase at fphase = 6 to its instantaneous amplitude in the 40–120 Hz band. Significant TE
values here appear at the beginning and end of HFO events. For reader’s convenience, we have added
to the upper panel (see red solid trace) the time course of the computed local TE at 70 Hz. All non-zero
values are statistically significant (p < 0.05, uncorrected) as per a test performed using 100 surrogate
values. Before plotting, non-significant values were set to zero.

Finally, to test the capability of TE to recover different delays, we simulated a PAC signal with
the same parameters as described at the beginning of the current section but with different delays u
between the phase and amplitude components. These delays ranged from 0 to a delay corresponding
to one full cycle of the phase frequency component at fphase = 6 Hz (in this case, 166 time points).
Delay estimation followed as described at the end of the Section 3, by using a range of delays ranging
from 0 to 166 points and the parameters k, l, and K used previously. Figure 6 shows normalized
TE values using a color code, as a function of the delay values used in the simulation (y-axis) and
subsequent estimation (x-axis). The red dots denote the maximum TE achieved for each simulated
signal given the estimated delay, and indicate the best estimated delay. Ideally, estimated and simulated
delays would meet at the black diagonal dotted line. From our results, the procedure followed appears
to successfully recover the simulated delay, having a maximum deviation from the real simulated
delay of only ten samples, equivalent to 10 ms (see Section 6.1 for further discussion).

Figure 6. Delay estimation. Transfer entropy estimated using different delays ranging from 0 to the
latency (166 time points) corresponding to one full cycle of the phase frequency component (here at
fphase = 6 Hz) for a set of simulated signals generated using the same delay values (y-axis). For each
simulated signal, the maximum estimated TE value is indicated by a red dot; this yielded the best
estimated delay. Estimated values appear to be consistently close to optimal estimation performance,
indicated by the black diagonal dotted line.
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5. Estimating PAC with Transfer Entropy from Actual ECoG Data

To evaluate our findings in real data, we applied the same methodology as in Section 4 to actual
electrocorticographic (ECoG) data from a human subject.

Data collection. Electroencephalographic (EEG) recording from a single subject undergoing
pre-surgical epilepsy evaluation at the North Shore University Hospital, Long Island Jewish Medical
Center (NY) was performed using intracranial electrodes at a sampling rate of 1999 samples per second
per channel. Data were referenced to common-average reference. Seizure detection algorithms were
used; the data were also reviewed by an EEG technician and a physician. From a labeled data clip
recorded during an epileptic seizure, 5 s of data (n = 9995 samples) were extracted from a recording at
an electrode (label: Tm2) located in the temporo-medial area (label: Tm2). Figure 7 shows the spectral
characteristics of the data clip in an event-related spectral perturbation (ERSP) plot [46] obtained
through a wavelet decomposition as implemented in EEGLAB function newtimef.m. We can see a
rhythmic low frequency activation at 4–8 Hz simultaneously with a broadband (30–250 Hz) activation
from this figure. We will refer to these frequency bands as low and high, respectively.
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Figure 7. Time-frequency features of the data clip. Spectral characteristics of the 5 s data clip obtained
through a wavelet decomposition implemented in EEGLAB function newtimef.m.

Computing MIPAC. Figure 8 shows MIPAC computed between the low (4–8 Hz) and high
(30–250 Hz) frequency bands of the data clip shown in Figure 7. Instantaneous phase and amplitude
were extracted from the low and high frequency ranges respectively as detailed in Section 3.
Here, the time courses of the ECoG signal and of MIPAC are shown in red and blue, respectively.
Significance computed using 100 surrogates (p < 0.05, uncorrected) appears in light gray. As we
expected, increases in MIPAC correspond to HFO bursts appearing at a similar phase of the low
frequency oscillation.

n
a
ts

Figure 8. Time course of ECoG data and MIPAC. The red trace shows the 5 s time course for one
ECoG data channel during an epileptic seizure. The blue trace shows MIPAC computed between
low-frequency ECoG signal phase (at 4–8 Hz) and high frequency amplitude (30–250 Hz). Statistically
significant MIPAC values (p < 0.05, uncorrected, 100 surrogates) are shown in light gray.
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Estimating PAC using local TE. Using the same instantaneous phase and amplitude derived from
the low- and high-frequency bands defined previously, analysis was carried out as in Figures 3 and 5.
First, AIS was computed for embedding history lengths from 1 to 50 (not shown). Retaining the
embedding history parameters corresponding to the highest AIS, their values were set to k = 3
(phase) and l = 3 (amplitude). Next, we computed transfer entropy in both directions, from phase
to amplitude and from amplitude to phase, as a function of the K nearest neighbor parameter in the
range K = 1 to 40 (Figure 9). The resulting information transfer was predominantly from phase to
amplitude, independent of the value of K. However, some information transfer from amplitude to
phase was also found.
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Figure 9. Transfer entropy in ECoG data as a function of K-nearest neighbor values. Transfer entropy
computed on the 5 s data clip for a range of K-nearest neighbor values between instantaneous phase
at 4–8 Hz and instantaneous amplitude in the range 30–250 Hz. Information transfer from phase to
amplitude is designated with blue squares, while red circles designate transfer in the opposite direction.
The process seems dominated by flow of information from phase to amplitude, although there is some
flow of information in the opposite direction. Each value shown is statistically significant (p < 0.05,
uncorrected) as per a test performed using 100 surrogates.

Next, we computed the TE from instantaneous phase to amplitude using the parameters k and
l from the AIS analysis and K = 100, for a range of delay values ranging from 0 to 195 samples
(corresponding to half a cycle of the central frequency, fphase = 6 Hz, of the lower frequency band).
The maximum TE in the delay range studied corresponded to a value of u = 85 samples (not shown).
We selected this delay value along with the values of k, l and K previously used to compute the local
transfer entropy from instantaneous phase to amplitude (Figure 10).

In Figure 10, the time course of the signal and the local TE are shown in red and blue, respectively.
Significance testing (p < 0.05, uncorrected) for local TE, carried out using 100 TE surrogates, is shown
in light gray. Local TE values were filtered below 12 Hz (roughly two times the central frequency
of the lower frequency band) for better visualization of their main features. As can be seen here,
local TE increases and peaks roughly at the beginning and end of HFO bursts. This result resembles
that obtained for the simulated signal in Figure 5. An apparent decline of TE values between 2000 ms
and 3000 ms appears inconsistent with the MIPAC results shown in Figure 8.
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Figure 10. Time courses of the ECoG data and of local TE between low frequency phase and high
frequency amplitude time series. The red trace shows the time course of the 5 s ECoG data clip recorded
during an epileptic seizure. Computed local transfer entropy (from phase to amplitude) is shown in
blue. The local TE time course seems to peak at onsets and offsets of HFO bursts in the ECoG signal.
Statistically signficant TE values (p < 0.05, uncorrected, 100 surrogates) are shown in light gray.

6. Discussion

6.1. Computing TE and MIPAC in Simulated PAC Data

In Section 4, we simulated a PAC signal (sampling rate, 1000 Hz) in which the instantaneous phase
at fphase = 6 Hz modulated the instantaneous amplitude at famp = 70 Hz. A delay of u = 30 samples
(equivalent to 30 ms) was introduced to simulate a causal interaction from phase to amplitude.
Using this signal, we computed mutual information-based phase-amplitude coupling (MIPAC) for all
combinations of phase frequencies from 3 to 10 Hz (in 1-Hz steps) and amplitude frequencies from
40 to 120 Hz (in 10-Hz steps). A comodulogram conformed with the temporal average of MIPAC values
(Figure 1) confirmed the existence of PAC at the selected frequencies. Comparing MIPAC time series
to the time course of the simulated signal for fphase = 6 Hz and famp = 70 Hz, we found that increases
in MIPAC corresponded to bursts of simulated (70 Hz) HFO. Next, we computed bidirectional transfer
entropy between phase ( fphase = 6 Hz) and amplitude ( famp = 70 Hz). A critical step when computing
transfer entropy is determining the signal’s history length, or embedding parameters. Several methods
have been proposed to estimate these values, but none has produced a consensus as to the best
estimation method. Here, we explored the space of parameters that maximize signal self -prediction,
as measured by active information storage (AIS) [21], to obtain the embedding parameters we used for
instantaneous phase (k) and amplitude (l) (see Figure 3). To compute the AIS, we assumed a value
for the nearest neighbors of K = 50. However, the value of K seems not to be relevant, as AIS is very
robust to the selection of this parameter [47]. Using the estimated parameters k and l, we computed
transfer entropy as a function of the nearest-neighbor parameter K in both directions, from phase to
amplitude and from amplitude to phase (Figure 4). We found that, in the simulated signal, the transfer
of information from phase to amplitude was dominant, independent of the selected value of K. TE’s
dependency on the parameter K seemed to be described by a concave function with a maximum at
K = 116, which we used in further computations.

At this point, it is important to recall that TE estimation was carried out using the KSG estimator
implemented in the JIDT toolbox [39], and, when using this estimator, TE is defined to be the average
value of the local TE. In this case, we found that the K value corresponding to peak TE in Figure 4
was suitable for describing the process simulated, but using lower K values to estimate local TE led
to increased variance in the time series. This fact brings to the table the issue that how to select the
number of neighbors in the KSG algorithm is still under discussion.

Using parameters k, l, and K estimated in the previous analysis, we replicated the analysis in
Figure 2 using local TE. Since in this case the flow of information from phase to amplitude was dominant
(Figure 5), we only computed local TE in this direction. We found that, for a range of frequencies near
famp = 70 Hz, phase at fphase = 6 Hz is related to increased local TE near onsets and ends of HFO
signal bursts. This result, as we can see, differs from the time course of MIPAC, which seems to most
often reach its maximum local value during HFO bursts.
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As it was demonstrated by Wibral et al. [23], TE is maximal when the delay parameter u is equal
to the true interaction delay δ [23]. This principle can be used to estimate the interaction delay between
the process involved in the TE computation by exploring the space of the parameter u. In Figure 6,
we simulated several signals using the same parameters as in Figure 2 but varying the delay between
instantaneous phase and amplitude in a range from zero to 116 samples, corresponding to a full cycle
of the phase frequency. For each of these signals, TE was computed for a range of u varying from zero
to 116 samples. The TE maximum was indicated by red dots in Figure 6, while the true delay was
indicated by the diagonal dashed black line. For each signal, we obtained a plateau of maximum TE
values around the true simulated delay value, with the maximum deviation in the value of u being
no bigger than 10 ms. It is obvious from Figure 6 that the maximum TE values always underestimate
the real value and that an almost constant bias of 10 ms seems to be present. The cause of this bias
is not clear and will be the subject of planned future study. However, we note that the 10-ms bias or
deviation is on the order of the generation of action potentials [48].

6.2. Estimating PAC with Local TE in Actual ECoG Data

To evaluate the use of local TE in estimating PAC in actual ECoG data, we used a brief recording
from intracortical electrodes (ECoG) in a single patient undergoing pre-surgical monitoring for epilepsy
(see Section 5). We used five seconds of data during a clinician-labeled seizure from a single electrode
placed in the medial temporal brain region and referred to average reference across the ECoG recording
array. The spectral characteristics of the signal in Figure 7) featured two main frequency ranges having
significant activity, the low-frequency 4–8 Hz theta band and across a high-frequency broadband range
(30–250 Hz) [49]. These two frequency ranges were used to first extract instantaneous (low-frequency)
phase and (high-frequency) amplitude, and then to compute PAC using the MIPAC method (Figure 8).
As in the simulated signal, statistically significant increases in MIPAC corresponded clearly to bursts
of high-frequency activity in the signal. This result was later compared to the local TE-derived
PAC estimate.

To estimate local TE between these frequency ranges, we carried out an analysis similar to what
we performed (Figure 3) to estimate the embedding parameters for phase (k) and amplitude (l),
which suggested using k = l = 3. These values were used to study the relationship of bidirectional
TE to the nearest neighbor parameter K (Figure 9). Contrasting with the simulated signal results
(Figure 4), for the actual signal, we found statistically significant information transfer between phase
and amplitude in both directions, though that from phase to amplitude dominated. This result was
preserved over the range of K studied (up to K = 100). Next, we investigated the local TE for K = 2,
where the TE between phase and amplitude in both directions was maximal, and confirmed that the
variance of the local TE was considerably higher than for higher K values (not shown), and that TE
features appeared to become independent of K for values above K = 40. Based on this, we decided to
use the value K = 40 as well as k = l = 3 in our next computation. Then, we computed local TE from
phase to amplitude using the same frequency components (Figure 10). The result replicated our finding
for the simulated signal in which the local TE peaks occurred at high-frequency burst onsets and offsets.
We speculate that these information transfer maxima at the beginnings and ends of high-frequency
bursts reflect the causal role of the low-frequency oscillation controlling the appearance of the bursts,
most likely indicating that firing of neurons in the local neighborhood is thereby constrained within a
small time window (a few 10 s of ms) at times at which the relatively large theta frequency swings
produced a biasing potential that encouraged neural spiking across neurons in the affected cortical
domain. Thereby, spike impulses from the PAC-exhibiting area, upon reaching common target neurons
in near synchrony, should be more effective in affecting the activity of the target neurons, possibly
enhancing short and long-term plasticity in those neurons and shaping effective coupling strength of
these network pathways [50–52].
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6.3. The Problem of Directional Causality in PAC

In our work, we have only assumed the flow of information directed from low-frequency
phase to high-frequency broadband amplitude, disregarding the potential opposite interaction
suggested recently by [53]. This choice is in line with an overwhelming amount of experimental
work published in the last years indicating and providing models to support phase-to-amplitude
coupling (e.g., [52,54–57]). For example, neurophysiological evidence for the modulation of
high-frequency amplitude by the phase of slow neuronal oscillations has been observed in the
interaction between slow neocortical oscillations and thalamocortical rhythmic burst firing (spindles)
during slow-wave sleep [54]. Slow oscillations are composed of synchronized states alternating
between hyperpolarization (down-state) and depolarization (up-state) and spread through the
neocortex travelling to the thalamus, where they promote a pattern of increase and decrease in rhythmic
burst firing. Thus, the spindles’ temporal evolution is continuously initiated, shaped, and terminated
by slow-wave-promoted corticothalamic feedback (for reviews, see [52,54,55]), providing evidence for
the modulation of high frequency amplitude through oscillatory phase.

Another example supporting phase-to-amplitude interaction comes from work of Schroeder and
Lakatos, [56,57] examining coupling between gamma band (30–100 Hz) amplitude and phase at delta
(<3 Hz) or theta (4–7 Hz) frequencies [2,14]. Slow oscillations in the cortex can become entrained to
external rhythms, thus aligning high excitability phases or up-states to occurring or expected external
events so as to enhance their sensory processing. During the slow-oscillation high-excitability phase,
gamma band (or high-frequency broadband) amplitudes may be enhanced such that a gamma burst
occurs at the time when a task-relevant input is expected. Since gamma-band activity appears to be
more metabolically-demanding than low-frequency oscillations [58,59], the coupling between gamma
and the slower phase is believed to ensure that information transfer resources are used efficiently
and high-frequency activity (and concomitantly, spike signaling using local neuronal resources) is
selectively enhanced at critical time points. This suggests that slow oscillations act as gatekeepers for
local high-frequency (and spiking) activity, thus suggesting a phase-to-amplitude causal relationship
(for a review see [60]).

It is appropriate to recall that PAC has also been demonstrated in nonlinear oscillators [61] in
which there is no specific modulation process or known mechanism for generating such an effect,
the nonlinear dynamics of the system itself thus being the most probable cause of the PAC phenomenon.
Therefore, PAC results (including those obtained through information theory-based methods) must
be interpreted cautiously, especially if there is no physiologically plausible mechanism or model
explaining the process. We acknowledge that a causal relationship from high-frequency amplitude
to low-frequency phase might exist, but we argue that this should come from some common driving
activity operating with different delays in the high- and low-frequency ranges in which PAC is assessed.

6.4. MI and TE, Two Faces of the PAC Process?

In both our simulated and actual data analyses, MIPAC indicated a continuous modulation
process with a local maximum within the time window of the modulated high-frequency bursts.
On the other hand, TE peaks appeared at the beginnings and ends of these periods, though in
some instances (see Figure 10, 2000–3000 ms), where MIPAC indicated a coupling, TE failed to
display this behavior. These results pose the question of what information about PAC in cortex are
provided by instantaneous MIPAC (a form of local mutual information) and by delay-estimating
transfer-entropy based phase-amplitude coupling (TEPAC). Recall that local mutual information
captures both linear and nonlinear statistical relationships between the two time series involved in
its computation, while positive transfer entropy indicates a weak causality or predictive information
transfer between them. These two principles are thus not in contradiction, nor are our PAC results.
We hypothesize that the flow of information at the beginning of the modulation process, as measured
by local TE, initiates or facilitates the process that MIPAC measures. However, the mechanisms
responsible for this facilitation remains unclear, and this idea may conflict with the implicit assumption
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that the PAC phenomenon is a continuous process carried out and determined by the influence of
the timing of neural oscillations on a brain area’s cell ensemble. Another option is that TE may not
represent a physical process in the PAC phenomena, and the results obtained are just a statistical
characterization of the modulation process without further information on the actual biophysical
interactions. In the current manuscript, we do not address these questions but rather here provide an
initial report characterizing PAC computed using local transfer entropy. We do believe, despite these
open questions, that the ability of TE to estimate interaction delays, adding to the overlapping
information provided by MIPAC, may favor the use of local TE in addition to or instead of MIPAC
for intensive PAC analysis. However, in our opinion, there are a few technical considerations that
first must be addressed before recommending local transfer entropy as a method for studying PAC in
electrophysiological signals.

6.5. General Considerations for Approaching PAC Estimation Using Local Transfer Entropy

6.5.1. Parameters Selection for Estimating Local TE

Perhaps the most controversial issue when computing transfer entropy is how to estimate its
embedding parameters. As we did here, maximizing the AIS on each source to obtain the embedding
parameters may potentially neglect multivariate effects between the past of both source and target
signal. An alternative approach could be to optimize the AIS in the target signal and then find the
source embedding that maximizes the TE from the source to the embedded target. In other words,
one would find the source embedding that maximizes the conditional MI (CMI) between the source
past and the next value in the target, conditioned on the target’s past. The CMI actually accounts
for both redundancies between both past states (e.g., due to a common driver/input to both signals),
as well as potential synergistic effects. Such an approach has, for example, been discussed recently by
Novelli [62]. It remains here to investigate how this strategy may improve TE estimation in our PAC
context. However, as we have already discussed, there is not yet any consensus on the best way to
approach the embedding parameter estimation. In addition, note that the exhaustive search method
used in this manuscript may not be practical to use when studying PAC in lengthy continuous signals.
In such cases, methods like that proposed by Ragwitz [42] that estimate the dimension and delay of
the embedding while minimizing the prediction error for future samples of the time series, may be the
better option. This method is implemented in two of the most advanced, specialized, and widely used
software tools for computing transfer entropy and other IT measures: JIDT [39] and Trentool [63].

Currently, the only way to accurately estimate local IT measures including transfer entropy is
via the KSG estimator which also requires setting another parameter, the number of neighboring
points K in the joint space spanned by the signal supports used to define the marginal neighborhoods
to compute Equation (14). Unfortunately, there is currently no efficient approach to estimating this
parameter, though once it is set properly (to avoid undersampling of points in the marginal spaces),
the computed measure (either local TE or MI) is quite stable to the selection of [47]. To summarize
the discussion of these parameters, we would like to stress the key importance of the selection and
setting of both the embedding parameters and the number of neighbors K for accurate computation of
local TE.

6.5.2. Event-Related Data and TE

Here, we focused on characterizing the PAC process from the perspective of local TE applied
to continuous signals. We did not consider the case of data segments time-locked to a set of similar
stimulus events (i.e., event-related data epochs). We believe that these same methods could also be
applied to such event-related data, estimation in this case taking advantage of the data geometry
inherent in the matrix of similarly latency-aligned data windows (dimension, number of trials by
latencies), as proposed by Gomez-Herrero [64] and applied by us for MIPAC estimation [3].
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6.5.3. The Importance of the Filtering Strategy

The two frequency components entering the PAC analysis are entirely determined by the filter
bandwidths, which in turn depend on the filtering strategy used to extract them [61]. Ultimately,
the selection of the bandwidth appears to be a critical part of preprocessing for TE computation.
We have identified three ways in which the filtering strategy may negatively impact the PAC analysis
outcome and, in particular, PAC measured by transfer entropy.

The first problem area is in selecting the bandwidth of the phase signal passband in order
to satisfy the Hilbert transform narrowband requirement (ideally an almost sinusoidal activity).
The choice of bandwidth for the phase component is constrained by the condition of the signal
having a meaningful phase and is, therefore, often correctly chosen to be narrow [61]. However,
the validity of the narrowband assumption for extracting high-frequency amplitude in most published
PAC studies is questionable, as variability in high-frequency activity in brain signals very often
does not have a narrowband characteristic [45,49]. Thus, using the Hilbert transform may yield
non-meaningful amplitude estimations and thus potentially flawed PAC analysis [45,65,66]. On the
other hand, shrinking the bandwidth to satisfy the Hilbert narrowband requirement has been shown
to lead to misidentification by PAC of phase-frequency coupling—another form of cross-frequency
coupling [67]. It has also been reported that narrowband filtering leads to an under-estimation of
the information transfer delay [68]. In particular, Wollstadt reported a constant underestimation
of the delay using narrowband filtered signals, a delay that increases the more narrow the band
becomes (see Figure 7 in [69]). Thus, narrowband filtering may also be a potential source of error
when reconstructing delays using TE. Although further investigation is needed, we hypothesize
that narrowband filtering could be responsible for the latency bias shown in Figure 6. While much
of the PAC literature uses the Hilbert transform to estimate both the phase and amplitude signals,
other Fourier-based time-frequency methods might equally be applied to extract the amplitude signal
of wideband high-frequency processes.

The second problem area is in selecting the bandwidth to capture the higher-frequency spectral
features indicating an ongoing PAC process. Here, the bandwidth used to extract the high-frequency
component should be wide enough to accommodate the sidebands peaks indicating modulation by
lower-frequency activity. This requirement is key for successful PAC estimation and has led to strong
PAC guidelines suggesting that, if a narrowband higher frequency component’s bandwidth does not
include the sideband peaks produced by amplitude modulation by the lower frequency, then the
presence of CFC cannot be detected [61]. Thus, as per Aru and colleagues, the solution to these
requirements is to look for a sweet spot where the frequency dynamics shows a meaningful activity
against small bandwidth settings [61].

Finally, methodological problems associated with isolation of frequency band activity by filtering
have been largely discussed in the context of Granger Causality (GC) [70–72]. These issues may also
affect TE computation, which for jointly Gaussian variables has been demonstrated to be equivalent
to GC [73]. In particular, Weber [68] has shown that, when analyzing connectivity in a network
setting, filtering and downsampling signals ahead of computing TE may reduce the number of detected
connections. We believe that most of these caveats may be overcome by approaching TE findings with a
hypothesis-driven analysis supported by stringent statistical testing, but further investigation is necessary
in this regard. A recently proposed method has recommended addressing the problem of filtering in
TE computation by implementing the filtering only when generating surrogate data representing the
null-hypothesis of no information transfer at the frequencies of interest [74]. Studying how this approach
will influence PAC analysis by local TE, where the signals entering the TE analysis are first bandpass
filtered and Hilbert transformed (see Section Specific caveats in [74]), will be future work.

Here, despite the above-mentioned limitations, we have shown the potential of TE to address the
study of delayed interactions in the PAC process. It should be noted that the same formulation used
here for TE potentially allows studying PAC conditioned by other and/or more variables. This indeed
may be a perfect approach to address the question of directionality between two processes when both
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may be driven by some third process. Although computing TE while naively conditioning on several
other signals (e.g., instantaneous phase and amplitude values at other sources or channels) seems
currently numerically infeasible [24], it is convenient to know that this may be an option in the future,
given the ever-retreating compute horizon. In this regard, it is worth mentioning that recent proposals
for the estimation of conditional and multivariate TE may ease the computational burden presented
by the combinatorial explosions in the number of source combinations evaluated by implementing a
non-uniform embedding strategy [62,75–77]. These strategies may represent a possible solution for
the current problem in the TE-resolved PAC when conditioning by several instantaneous phase and
amplitude values at other sources or channels.

7. Conclusions

Here, we used local transfer entropy (TE) to estimate and characterize phase-amplitude coupling
in cortical local field activity. We used first simulated and then actual ECoG seizure data and,
in both cases, found local TE peaks at onsets and offsets of PAC modulation periods estimated
using MIPAC, our previously reported method for estimating time-resolved PAC. Although further
investigation is needed, we hypothesize that information transfer indicated by TE may signal, or even
facilitate, the coupling process. This mechanism should be the focus of further studies. We discussed
some limitations we consider important to address before recommending that studies of PAC in
electrophysiological signals rely on the use of local transfer entropy. Despite these cautions, we see
real potential in the use of TE for the study of PAC, and specifically in the study of its interaction
delays, which to date are an issue not widely discussed in the PAC literature. We are aware that, in our
attempt to characterize PAC by features highlighted by local TE, we are leaving a number of open
questions. We hope this initial investigation will help catalyze interest in the application of local TE to
the brain PAC phenomenon, hopefully shedding light on the physiological role of PAC processes in
the human brain.
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