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1.  Introduction
In earth system modeling, biogeochemistry strongly affects mass and energy exchanges between ecosystems 
and the physical climate system (Heinze et al., 2019). Morphologically, biogeochemistry has three pillars: bi-
ology, geophysics, and chemistry. In the context of mathematical modeling, geophysics and chemistry gen-
erally have much stronger theoretical foundations than biology (Brutsaert, 2005; Stumm & Morgan, 1996; 
Vallis, 2006), even though all three are macroscale responses that emerge from atomic interactions, which 
in an ideal (but impractical) scenario can be predicted by solving the Schrödinger equation of all atoms 
together (so that arguably they all are subtopics of physics; Feynman et al., 2011c).

In seeking a better understanding of ecological dynamics, for example, competition and symbiosis, mathe-
matical formulations of the substrate-consumer relationship (e.g., the interactions between many microbes 
as consumers and their diverse substrates) are essential for theoretical modeling and interpreting empiri-
cal experiments, such as phytoplankton population dynamics (Tilman, 1982), plant-microbial competition 
of nutrients (Zhu et al., 2017), and microbial decomposition of organic matter (Tang & Riley, 2013b; Yu 

Abstract  In studying problems like plant-soil-microbe interactions in environmental biogeochemistry 
and ecology, one usually has to quantify and model how substrates control the growth of, and interaction 
among, biological organisms (and abiotic factors, e.g., adsorptive mineral soil surfaces). To address 
these substrate-consumer relationships, many substrate kinetics and growth rules have been developed, 
including the famous Monod kinetics for single-substrate-based growth and Liebig's law of the minimum 
for multiple-nutrient-colimited growth. However, the mechanistic basis that leads to these various 
concepts and mathematical formulations and the implications of their parameters are often quite 
uncertain. Here, we show that an analogy based on Ohm's law in electric circuit theory is able to unify 
many of these different concepts and mathematical formulations. In this Ohm's law analogy, a resistor 
is defined by a combination of consumers’ and substrates’ kinetic traits. In particular, the resistance is 
equal to the mean first passage time that has been used to derive the Michaelis-Menten kinetics under 
substrate replete conditions for a single substrate as well as the predation rate of individual organisms. 
We further show that this analogy leads to important insights on various biogeochemical problems, such 
as (a) multiple-nutrient-colimited biological growth, (b) denitrification, (c) fermentation under aerobic 
conditions, (d) metabolic temperature sensitivity, and (e) the legitimacy of Monod kinetics for describing 
bacterial growth. We expect that our approach will help both modelers and nonmodelers to better 
understand and formulate hypotheses when studying certain aspects of environmental biogeochemistry 
and ecology.

Plain Language Summary  Currently, scientists often use ad hoc or empirical approaches 
to conceptualize and formulate biogeochemical processes encountered in environmental sciences. Here, 
we propose that many biogeochemical processes can be coherently conceptualized and formulated using 
an analogy based on Ohm's law, a mathematical theory that is widely used to model electric circuits, 
and the land-atmosphere exchange of water and energy. We show that this Ohm's law analogy is able to 
explain observations such as why microbial growth often follows Monod kinetics, how fermentation can 
sometimes dominate aerobic respiration when glucose is plentiful, and how plants and microbes grow 
under multiple-nutrient-colimitation. Since this Ohm's law analogy unifies the mathematical foundation 
of biogeophysics and biogeochemistry, we believe that it can potentially lead to more robust land 
ecosystem models for projecting the climate change.

TANG ET AL.

© 2021 The Authors. Journal of 
Advances in Modeling Earth Systems 
published by Wiley Periodicals LLC on 
behalf of American Geophysical Union.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Conceptualizing Biogeochemical Reactions With an 
Ohm's Law Analogy
Jinyun Tang1 , William J. Riley1 , Gianna L. Marschmann1, and Eoin L. Brodie1

1Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Key Points:
•	 �Ohm's law is proposed to formulate 

biogeochemical reactions
•	 �Ohm's law successfully represents 

multiple-nutrient-colimited growth
•	 �Ohm's law may help improve and 

unify biogeochemical models

Supporting Information:
Supporting Information may be found 
in the online version of this article.

Correspondence to:
J. Tang,
jinyuntang@lbl.gov

Citation:
Tang, J., Riley, W. J., Marschmann, 
G. L., & Brodie, E. L. (2021). 
Conceptualizing biogeochemical 
reactions with an Ohm's law analogy. 
Journal of Advances in Modeling Earth 
Systems, 13, e2021MS002469. https://
doi.org/10.1029/2021MS002469

Received 11 JAN 2021
Accepted 28 SEP 2021

Author Contributions:
Conceptualization: Jinyun Tang
Formal analysis: Jinyun Tang
Funding acquisition: Jinyun Tang, 
William J. Riley, Eoin L. Brodie
Investigation: Jinyun Tang
Writing – original draft: Jinyun Tang
Writing – review & editing: William 
J. Riley, Gianna L. Marschmann, Eoin 
L. Brodie

10.1029/2021MS002469
RESEARCH ARTICLE

1 of 19

 19422466, 2021, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021M

S002469, W
iley O

nline L
ibrary on [01/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4792-1259
https://orcid.org/0000-0002-4615-2304
https://doi.org/10.1029/2021MS002469
https://doi.org/10.1029/2021MS002469
https://doi.org/10.1029/2021MS002469
https://doi.org/10.1029/2021MS002469
https://doi.org/10.1029/2021MS002469
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021MS002469&domain=pdf&date_stamp=2021-10-21


Journal of Advances in Modeling Earth Systems

TANG ET AL.

10.1029/2021MS002469

2 of 19

et al., 2020). In the past, three approaches have been used to obtain such relationships. The first approach 
is by fitting empirical response functions to observational data (e.g., Monod, 1949). The second approach is 
based on an ad hoc heuristic conceptualization of the problem, for example, the logistic equation was de-
rived by adding a quadratic term to dissipate the exponential growth of a population when Pierre-Francois 
Verhulst was helping his teacher Alphonse Quetelet to model human population dynamics (Cramer, 2002). 
The third approach is based on systematic applications of some theory, such as the law of mass action 
(Atkins et al., 2016), statistical mechanics (Ma, 1985), or renewal theory (Doob, 1948). Notably, Michae-
lis-Menten kinetics (and some of its extensions) can be derived by applying any of these theories (see re-
views in Kooijman, 1998; Swenson & Stadie, 2019; Tang & Riley, 2013b, 2017), with the renewal theory even 
being able to show that Michaelis-Menten kinetics is the statistical mean of the stochastic description of 
a single-enzyme molecule processing the substrate molecules (English et al., 2006; Reuveni et al., 2014).

Compared to the empirically based and ad hoc approaches, which generally provide limited understanding 
of the processes implied by the parameters, theory-based approaches have the advantage of linking various 
related, albeit fragmented, knowledge (that is abstracted from a much wider range of observations compared 
to the limited observational data used by empirically based approaches), thereby enabling a deeper under-
standing of the processes and systems of interest. For instance, when the law of mass action is employed to 
derive the Michaelis-Menten kinetics, using related theory of chemical reaction rates (e.g., Smoluchowski's 
diffusion model of chemical reaction, von Smoluchowski, 1917), Tang and Riley (2019a) were able to upscale 
the microbially enabled reactions from one permease to a single bacteria cell and then to a representative 
soil volume (∼O(1 cm3)) and used the results to explain why substrate affinity parameters are observed to 
be highly variable in soil. Additionally, the theory-based approach has been used to derive the temperature 
response function of microbial activity (Ghosh & Dill, 2010) and to explain why Michaelis-Menten kinetics 
are more appropriate for microbial uptake of small molecules, while reverse Michaelis-Menten kinetics are 
more appropriate for enzymatic degradation of organic polymer particles (Tang & Riley, 2019b).

In this study, we first introduce an analogy that uses the Ohm's law from electric circuit theory to interpret 
substrate-consumer relationships. Similar analogies have been widely used by land models to represent the 
gradient-driven land-atmosphere exchanges of water, gases, and energy (e.g., Lawrence et al., 2019; Riley 
et al., 2011; Shuttleworth & Wallace, 1985; Wu et al., 2009; so that in a certain sense, Ohm's law is unifying 
all three aspects of biogeochemistry into physics). We then exploit this analogy to explain several interesting 
biogeochemical phenomena that are observed in different contexts. We conclude the paper with recommen-
dations of other potential applications of this analogy.

Although the example problems below are solved with the Ohm's law analogy, we note that they can all be 
solved using the more accurate equilibrium chemistry approximation (ECA) kinetics (Tang & Riley, 2013b) 
or the synthesizing unit plus ECA (SUPECA) kinetics (Tang & Riley, 2017). However, the Ohm's law analogy 
proposed here is more intuitive and can provide an alternative to the ECA and SUPECA kinetics in formu-
lating biogeochemical models.

2.  Methods
2.1.  A Brief Review of Ohm's Law and Circuit Theory

We below briefly review Ohm's law and the theory of series and parallel resistor circuits. More detailed 
descriptions of circuit theory can be found in Feynman et al. (2011b).

Ohm's law describes the relationship between voltage ( E V  ), electric current ( I  ), and resistance ( E r ) as


VI
r

� (1)

To simplify the presentation, we henceforth assume that all variables are properly defined as in the inter-
national system of units.

For a series concatenation of resistors jE r  , application of Ohm's law yields


 j j

VI
r� (2)
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For a parallel concatenation of resistors jE r  , application of Ohm's law leads to

 
   

 

1
j

j
I V

r
� (3)

and the electric current through each resistor is

j
j

VI
r� (4)

From Equations 3 and 4, we can further derive




 

   
 

1

1

j

j
l j

l

I
I r

r
� (5)

which states that when all other resistors are fixed, the fraction of current through jE r  increases with decreas-
ing jE r  . We will see later that this inference is very useful to explain shifts in metabolic pathways in biological 
organisms.

As another analogy, Ohm's law has also been used to represent soil evaporation (Bonan,  2019; Tang & 
Riley, 2013a), where voltage is calculated as the difference between atmospheric and soil water vapor con-
centrations, resistance is the sum of atmospheric and soil resistance, and current is the evaporation flux.

2.2.  Michaelis-Menten Kinetics Interpreted With Ohm's Law

Michaelis-Menten kinetics represent the single-enzyme-catalyzed single-substrate reaction velocity E v as




maxv ESv
K S

� (6)

where, in the original application by Michaelis and Menten (1913), maxE v  is the maximum specific catalytic 
rate enabled by the enzyme and E E , E S , and E K are enzyme concentration, substrate concentration, and half 
saturation coefficient, respectively. We note that, for enzymes, E K also includes contributions from the disso-
ciation process (e.g., Briggs & Haldane, 1925).

By defining k v Kf 
max

/  , Equation 6 can be rewritten as

v
E

v K v S

E

v k Sf

           1 1 1/ / / /max max max

� (7)

We then note that Equations 1 and 7 are mathematically of the same form. Therefore, for Michaelis-Menten 
kinetics, if we apply the Ohm's law analogy by regarding E E as voltage and E v as current, the corresponding 
resistance is

   
1 1

E S
max f

r r r
v k S� (8)

where EE r  represents the resistance as an intrinsic property (i.e., a kinetic trait) of the enzyme, and SE r  repre-
sents the resistance introduced by the effective substrate delivery rate toward the enzyme (i.e., a kinetic trait 
of the substrate in the working environment of the enzyme). Further, EE r  and SE r  are of the unit of time, where 
(in the renewal theory applied to enzyme-substrate interactions, e.g., Kooijman, 1998) EE r  is the mean time 
for the enzyme to convert the enzyme-bound substrate molecules into product molecules and SE r  is the mean 
time for the substrate molecules to approach the enzyme molecule and form enzyme-substrate complexes. 
Therefore, E r is the mean first passage time of the stochastic single-enzyme degradation of the substrate 
molecule (e.g., Kooijman, 1998; Ninio, 1987; Qian, 2008). In particular, in many reactions, fE k  is approxi-
mately proportional to the substrate diffusivity (Alberty & Hammes, 1958; Chou & Jiang, 1974), such that 

fE k S is the diffusive substrate flux sensed by enzyme molecules. We then observe that SE r  increases with the 
decrease of diffusive substrate flux, which can result from lower substrate concentration or lower diffusivity 
(due to tortuosity, adsorption, or lower moisture in porous media like soil). In Tang and Riley (2019a), the 
relationship between SE r  and diffusivity has enabled a way to parameterize how soil moisture affects micro-
bial substrate uptake, which probably can also be used to parameterize how soil moisture affects plant root 
uptake of macronutrients.
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Alternatively, for high-enzyme concentration systems (such as the hydrolysis of cellulose, Kari et al., 2017; 
Tang & Riley, 2019b), where the reverse Michaelis-Menten kinetics better describe the dynamics, we have

v
S

v K v E

S

v k Ef

           1 1 1/ / / /max max max

� (9)

where substrate E S instead plays the role of voltage, and 1/ k Ef  defines the resistance due to the effective de-
ployment rate of enzyme E E to the substrate. Comparing Equations 8 and 9, we see that the roles of substrate 
and enzyme in the Ohm's law analogy are context dependent.

That the resistance E r in Equation 8 is of the unit time has also motivated some researchers to apply the time-
budget idea to derive predator-prey relationships (e.g., Holling, 1959; Murdoch, 1973), where EE r  is referred 
as the mean time a predator spends on handling its prey, and SE r  is the mean time for a predator to encounter 
its prey. Further, McAdams and Shapiro (1995) noticed that the circuit analogy can be used to interpret 
and model genetic networks. However, few studies have pointed out the linkage between the time-budget 
analysis and Ohm's law, except, based on a suggestion by Thomsen et al. (1994), Almeida et al. (1997) made 
an analogy of the membrane electron transport chain to an electric circuit, and successfully used it to model 
denitrification. Later, Murkin (2015) suggested that the Ohm's law may be used to help students better un-
derstand enzyme kinetics in teaching biochemistry. Recently, this method has been used by Domingo-Fe-
lez and Smets (2020) to build the Activated Sludge Model-Electron Competition (ASM-EC) model, which 
demonstrated the efficacy of this analogy in constructing robust biogeochemical models. Further, the mo-
lecular biology of membrane electron transport chains and redox reactions are quite similar to the working 
principles of chemical batteries (Frederiksen & Andresen, 2008; Schmidt-Rohr, 2018), thereby motivating 
us to explore more extensively the applicability of Ohm's law analogy below.

In the Ohm's law analogy, kinetic interactions between an enzyme and its substrate molecules can be sum-
marized as the battery-resistor relationship shown in Figure 1a, where the battery potential is enzyme con-
centration E E , and the battery's resistance is EE r  , while the resistor (i.e., substrate) has resistance SE r  . However, 
we note that this analogy is accurate only when the substrate is nonlimiting for the enzymes (i.e., when 
Michaelis-Menten kinetics are more appropriate, Tang & Riley, 2019b). For cases when substrate is limiting, 
the reverse Michaelis-Menten kinetics are more appropriate (Tang, 2015), and the roles of substrate and 
enzyme in the analogy are reversed (see Equation 9). We also note that the ECA kinetics are able to more 
accurately handle the wide range of substrate abundances with respect to enzymes (Tang, 2015). We next 
show how the Ohm's law analogy can help formulate biogeochemical kinetics for various situations.

3.  Applications
3.1.  Series Resistor Circuit-Based Formulation of Chain-Like Enzyme Reactions

Many metabolic pathways consist of a chain of reactions. Examples include the Calvin-cycle (in photo-
synthesis), membrane electron transport chain, glycolysis (Figure 1b), and citric acid cycle, and note that 
most of these reaction pathways involve cofactors (Madigan et al., 2009; Taiz & Zeiger, 2006). Nonetheless, 

Figure 1.  (a) Circuit schema for the Michaelis-Menten kinetics, with the example (in red box) depicting the conversion 
of pyruvate into acetyl-coA and CO2 by the enzyme complex pyruvate dehydrogenase complex; (b) Series resistor-
based schema for an enzyme chain and its reaction on substrate 1E S  , where dotted lines indicate multiple resistors ,E jE r  
concatenated in series. Symbols are explained in the main text. The example for (b) depicts the metabolic pathway of 
glycolysis.

 19422466, 2021, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021M

S002469, W
iley O

nline L
ibrary on [01/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

TANG ET AL.

10.1029/2021MS002469

5 of 19

assuming that at each step the enzyme and its cofactor together form an integrated enzyme functional 
unit to process the substrate delivered from a prior step, and the whole chain of enzymatic reactions is in 
detailed balance (i.e., the whole chain is in steady state without overflow, Cao, 2011, an assumption that is 
often made in flux balance models, Orth et al., 2010), we can then use the series circuit analogy to calculate 
the overall enzyme kinetics in a straightforward manner. According to the schema for this configuration 
(Figure 1b), when the whole enzyme chain is taken as a catalysis unit, the abundance of enzyme at the first 
step represents the voltage of the battery, and the total resistance is

     chain 1 , ,1 ,1
N
j E j S E Sr r r r r� (10)

where  1
, max,E j jE r v  , such that the first right-hand side term is the total resistance represented by the max-

imum catalysis rate of the overall enzyme chain, and  
1

,1 ,1 1S fE r k S  is the resistance due to the incoming 
substrate flux to the first enzyme in the chain. For the overall chain, the specific reaction rate for substrate 
processing is then

v

E r

v S

K v v

j
N

j

j
N

chain

chain chain /

 
 




 



1 1

1
1

1

1 1 1

max,

max, max,, j S
   1

1

� (11)

where K v k f1 1 1


max, ,
/  , and chainE E  represents the enzyme functional unit (e.g., for the glycolysis metabolic 

pathway in Figure 1b, chainE E  could be the amount of enzyme hexokinase 1E E  , assuming that all other enzymes 
are highly regulated in forming the chain of enzymes catalyzing related biogeochemical reactions). Equa-
tion 11 can be simplified as




max,chain 1chain

chain chain 1

v Sv
E K S� (12)

with

   
  

11
max,chain 1 max, max,minN

j j j jv v v� (13)

and

K
K

v v

K

v v
j
N

j j
N

j

chain

/


 


 




1

1 1

1

1

2 1
1

max, max, max, max,
� (14)

From Equation 11, we assert that an enzyme chain is equivalent to a functional enzyme unit with kinetic 
traits max,chainE v  and chainE K  . Moreover, from Equations 13 and 14, we infer that increasing the chain length 
decreases the overall reaction rate ,max chainE v  (which is even slower than the slowest step  max,min j jE v  ) and the 
half saturation coefficient chainE K  of the enzyme chain.

Several interesting inferences can be drawn from Equations 10–14 that will provide us with a better under-
standing of the trade-offs in metabolic pathways and their temperature sensitivity, both of which are essen-
tial for parameterizing biochemical models, such as microbial respiration (Alster et al., 2020), plant pho-
tosynthesis, and respiration (Medlyn et al., 2002; Slot & Kitajima, 2015). First, even though any chain-like 
metabolic pathway as a whole can be represented similarly with the Michaelis-Menten kinetics (e.g., Equa-
tion 12), there are trade-offs between power and bioenergetic assimilation efficiency for various metabolic 
pathways of different lengths, which can be understood as follows. The function of an energy producing 
metabolic pathway is to harvest energy from substrate molecules, we thence can compare an ATP producing 
metabolic pathway to a thermal engine which also extracts energy from substrate molecules (i.e., fuels). 
The second law of thermodynamics suggests that a thermal engine has higher thermodynamic efficiency 
when it runs slower (and the highest efficiency can be achieved only when the system is in thermodynamic 
equilibrium, i.e., not running at all, Salamon et al., 2001). Equation 13 suggests that a longer reaction chain 
slows down the overall transformation rate from a given substrate to its final product, and thus its applica-
tion to electron transport chains leads us to assert that a longer chain will likely be thermodynamically more 
efficient (this argument echoes the Ladder theorem in finite time thermodynamics, Salamon et al., 2017). 
In contrast, shorter electron transport chains imply faster substrate use even though they are less efficient 
in extracting Gibbs free energy from the substrate. For instance, by using a different electron transporter 
for each electron transported through a shorter chain, fewer protons are pumped across the membrane and 
thus fewer ATPs can be produced (Chen & Strous, 2013), or by using fewer intermediate electron carriers 
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such that fewer protons are pumped across the membrane for each transferred electron (if generating one 
ATP uses a fixed number of protons as is often observed), the same redox reaction will be faster but less effi-
cient (Aledo & del Valle, 2002; Chen & Strous, 2013). Therefore, the length of electron transport chains can 
characterize the trade-off between substrate use rate and the corresponding bioenergetic assimilation effi-
ciency, an important selection factor for organisms during their evolution. Since the structural information 
of electron transport chain can be inferred by genomic analysis (Lane & Martin, 2010), this insight from the 
Ohm's law formulation can then serve to better guide model parameterization of plant and microbial sub-
strate uptake and use. Additionally, we note that in microbial modeling, the metabolic cost for constructing 
and maintaining the chain of enzymes is usually considered separately as part of the respiration for main-
tenance or structural biomass growth and is thus not part of the calculation of a substrate's bioenergetic as-
similation efficiency (Kooijman, 2009). Indeed, in one chemostat-based study, Chen et al. (2017) found that 
Vibrionales bypass respiratory complex III to consume part of the oxygen using a cytochrome bd terminal 
oxidase to speed up growth, but the bioenergetic efficiency was reduced from ∼80% to ∼32% because of the 
longer canonical respiratory chain. Similarly, observations indicate that the less efficient fermentation path-
way with fewer involved enzymes is faster than the aerobic respiration pathway that involves many more 
enzymes (and is thus longer and more efficient in extracting Gibbs free energy from substrate molecules, 
Madigan et al., 2009). In Section 3.5, we use the parallel circuit analogy to explain why such bypassing of 
more efficient pathways will occur under substrate abundant conditions.

The second inference to be made is about the temperature sensitivity of parameters ,max chainE v  and chainE K  , two 
essential trait characteristics for biochemical modeling, whose mathematical parameterization (particularly 
for microbes) has been under intense debate (Allison et al., 2018; Davidson et al., 2012; Maggi et al., 2018).

In the simplest one-step case, ,max chainE v  equals ,1maxE v  , and chainE K  equals 1E K  . According to transition state theory 
(e.g., Eyring, 1935), ,1maxE v  would have the following temperature dependence,

 
   

 
1

max,1 max,1, expref
Gv v T

RT
� (15)

where ,1,max refE v  is some reference reaction rate, E T  is temperature,  1E G  (>0) is the Gibbs energy of activation, 
and E R is the universal gas constant. Similarly, for a reaction pathway consisting of a chain of enzymes, each 

,max jE v  will have a temperature dependence similar to that in Equation 15, that is,

 
    

 
max, max, , exp j

j j ref
G

v v T
RT

� (16)

which when entered into Equation 13 leads to





                       

1
11 1

max,chain 1 max, , exp expjN
j j ref

G G Gv v T
RT RT

� (17)

Therefore, if  G G RTj    1
1/   , the temperature dependence of ,max chainE v  will be approximately like 

that in Equation 15.

The temperature dependence of 1E K  is determined by the temperature dependencies of ,1maxE v  and ,1fE k  . Inside 
the microbial cytoplasm and cell membrane (and also for whole microbial cells in most natural environ-
ments, and chloroplasts in mesophyll cells), ,1fE k  is positively related to diffusivity (Madigan et al., 2009). 
Thus, according to the Stokes-Einstein equation of translational diffusivity ( D k T aB    / 6  , where BE k  
is the Boltzmann constant, E  is the dynamic viscosity, and E a is the radius of the spherical particle; Feynman 
et al., 2011a), ,1fE k  can be approximated with a linear temperature dependence divided by the temperature 
sensitivity of the dynamic viscosity E  (which is exp B T TVF/    , where E B and VFE T  are empirical param-
eters, according to the semiempirical Vogel-Fulcher-Tamman-Hesse equation, Garcia-Colin et al., 1989). 
When the temperature dependence of ,1fE k  is combined with the Eyring-type temperature dependence of 

,1maxE v  , one may infer that the temperature sensitivity of 1E K  (= v kmax f, ,1 1
/  ) is of the Arrhenius type (because 

exp B T TVF/    of the dynamic viscosity E  is very similar to the Arrhenius equation, and the linear tem-
perature dependence of ,1fE k  cancels out the linear part of the temperature dependence of ,1maxE v  ). Once again, 
if  G G RTj    1

1/   , chainE K  will have an Arrhenius-type temperature sensitivity as well.
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When the above inferences are substituted to Equation 12, we can then infer the temperature dependence of 
chainE v  . From chemical thermodynamics, the temperature dependence of chainE v  depends on chemical kinetics 

(as characterized by the Michaelis-Menten term, i.e., v S K Smax chain chain, 1 1
/   in this example) and thermo-

dynamics (as a function of the Gibbs free energy) of the enzyme-catalyzed reaction (LaRowe et al., 2012). 
However, because enzymes are proteins, their conformational states are also temperature dependent (Mur-
phy et  al.,  1990). Thermodynamically, the undenatured (aka catalytically active) fraction of an enzyme 
population of length xE n  (as measured by the number of amino acid residues) can be described as (Murphy 
et al., 1990)


 

  
 

1

1
ax

x x
f

n Gexp
RT

� (18)

where

   G H T S C T T T ln T Tx p H S       





   
/� (19)

and

      0.268
,46.0 30 1 1.54p x CH xC n N� (20)

with heat capacity  pE C  defined as the energy required to reorganize the water molecules surrounding the 
protein (Ratkowsky et al., 2005).  pE C  increases with the nonpolar accessible area of the molecule, as meas-
ured by ,CH xE N  , the average number of nonpolar hydrogen atoms per amino acid residue.  pE C  also measures 
the hydrophobic contribution, with higher values implying higher hydrophobicity (and notice that greater 

,CH xE N  implies higher hydrophobicity). Other parameters include E S  as the enthalpy change at 
SE T  (the con-

vergence temperature for entropy, i.e., the temperature at which the hydrophobic contributions to E S  is 
zero) and E H  as the enthalpy change at 

HE T  (the convergence temperature for enthalpy, i.e., the temperature 
at which the hydrophobic contributions to E H  is zero), among which E S  , 

SE T  , and 
HE T  can be considered 

to be constant under environmental conditions, for example, Ratkowsky et al. (2005) took   373.6HE T   K, 
  385.2SE T   K, and   18.1E S    J K−1 (mol amino acid residue)−1, respectively. Assuming E H  , ,CH xE N  , and 
xE n  can be obtained from proteomic data for each type of enzyme (e.g., Sawle & Ghosh, 2011), we can then 

calculate ,ax jE f  for all enzymes involved in the chain. Therefore, putting together the kinetic, thermodynamic, 
and catalytically active enzyme fraction functions, we obtain

 


,
,

max chain
chain T j ax j

chain

v S
v F f

K S� (21)

where the thermodynamic temperature dependence of the reaction is
 

   
 

1 reac
T

GF exp
RT

� (22)

with  reacE G  (<0) being the Gibbs free energy of the overall reaction being catalyzed, which is defined by 
the chemical activity of initial substrates and final products for the overall chemical reaction carried out by 
the chain of enzymes (e.g., Jin & Bethke, 2007). In Equation 21, we have taken the conventional assump-
tion that the transition state theory description of the overall chemical reaction rate (as carried out by the 
chain of enzymes) is independent from the conformation status of the enzymes (Dill et al., 2011; Sawle & 
Ghosh, 2011). This assumption combined with the concept that TE F  is an intrinsic property of the overall 
chemical reaction then allows the total fraction of active enzymes to be factored out as  ,ax jjE f  . (Note that 

,ax jE f  can be viewed as the probability for enzyme E j to be in the conformed state, thus, by the theory of condi-
tional probability, the probability for the whole enzyme chain to be in active status is  ,ax jjE f  .)

Unless Equation 21 is applied to organisms capable of growing on alternative electron acceptors or donors 
and the system is undergoing fast transition in redox status (e.g., heterotrophic microbes in the fluctuating 
zone of soil water table, Zhang & Furman, 2021), TE F  can be taken approximately as 1. Therefore, the tem-
perature dependence of chainE v  is dominated by the kinetic term (i.e., the Michaelis-Menten term) and the 
temperature-dependent fraction of active enzymes (  ,ax jjE f  ). The kinetic term increases with temperature 
(see Equation 16), while the fraction of active enzymes first increases, then decreases with temperature 
(Equations 18–20). The overall temperature sensitivity of the reaction chain will then be of the form pre-
dicted by the macromolecular rate theory (MMRT; with fine tuning from substrate availability through the 
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kinetic term, i.e., the denominator of the Michaelis-Menten term in Equation 21 which MMRT does not 
consider; Arcus et al., 2016; Schipper et al., 2014). Therefore, for a population of cells that are not under 
substrate limitation and are exponentially growing (so that one metabolic pathway dominates the metabo-
lism), one should expect a MMRT-type temperature dependence of the metabolic rates. This result explains 
why Ratkowsky et al. (2005) were able to use the following equation to model bacterial growth rates under 
unlimited substrate supply (where the right-hand side of Equation 21 is reduced to , ,max chain ax jjE v f  ):

g
cT exp H RT

exp
n

RT
H T S C T T T ln T T

A

p H S


 

        


   



  

/

/1 




 














� (23)

where E g is growth rate, E c is an empirical constant, and  AE H  is substrate-dependent activation energy. Howev-
er, unlike previous assumptions that properties of some single control enzyme determine the overall growth 
(Johnson & Lewin, 1946), here E n and  pE C  represent mean values of protein length and their thermal prop-
erties, under possible influences from other molecules, such as phospholipids (e.g., Mansy & Szostak, 2008).

In summary, for dynamic modeling of microbial substrate uptake and assimilation (and perhaps plant auto-
trophic respiration as well, e.g., Liang et al., 2018), we recommend representing the temperature sensitivity 
as in Equation 21 rather than using the MMRT directly. Additionally, we note that plant photosynthesis 
models have long represented carboxylation and oxygenation using a form similar to Equation 21 (e.g., 
Medlyn et al., 2002). Adopting a similar functional form for microbial biogeochemical reactions (and plant 
autotrophic respiration) may improve the coherence of coupled plant-soil-microbe interactions. Besides, 
the Ohm's law formulation above will further enable biogeochemical models to use proteomic information 
to inform their parameterization that is not possible with the Michaelis-Menten kinetics.

3.2.  Series Resistor-Based Formulation of Enzyme-Catalyzed Redox Reactions

Many biogeochemical processes are of the redox type, for example, photosynthesis, aerobic respiration, ni-
trification, and anaerobic denitrification (Madigan et al., 2009; Taiz & Zeiger, 2006). Basically, enzyme-cata-
lyzed redox reactions facilitate electron transfers from electron donors to electron acceptors. This process 
can be summarized with the schema in Figure 2a that has one resistor representing electron donors (  ,S edonE r  ), 

Figure 2.  (a) Type-1 circuit schema for redox-type reactions where electron donor binds before the electron acceptor 
to the enzyme, with the example (in red box) depicting the binding of RuBP (ribulose 1,5-bisphosphate) and O2 to 
Rubisco enzyme to produce PGA (3-phosphoglycerate) and Gly (glycine) in the oxygenation pathway of photosynthesis; 
(b) Type-2 circuit schema for redox-type reactions where electron acceptor binds before electron donor to the enzyme; 
(c) Circuit schema for parallel resistor-based representation of competitive enzymatic reactions, with an example of an 
organism (in the red box) building biomass from assimilating ammonia and nitrate as substitutable nitrogen sources. 
Type-1 and type-2 schema are equivalent and are not differentiated in the Ohm's law analogy based on resistance. 
Symbols are explained in the main text.
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and the other resistor (  ,S eaccE r  ) representing electron acceptors, with the enzyme (symbolically) being the 
battery. By applying the Ohm's law analogy, the reaction rate is


eacc edon

Ev
r r� (24)

where r v k Seacc max eacc f eacc eacc     1 1/ /
, ,  , and r v k Sedon max edon f edon edon     1 1/ /

, ,  . When the two are com-
bined, Equation 24 can be rewritten as

v
E

r k S k SE f eacc eacc f edon edon


     1 1/ /

, ,

� (25)

with r v vE max eacc max edon     1 1/ /
, ,

 , r k SS eacc f eacc eacc, ,
 1/  , and r k SS edon f edon edon, ,

 1/  . We note that in this se-
ries resistor-based formulation, the total resistance (or mean first passage time) does not include the dis-
count resulting from the concurrent binding of electron donors and acceptors to the enzyme (i.e., type-2 
configuration in Figure 2b, where electron donor binds before electron acceptor to the enzyme, is as good 
as type-1 configuration in Figure 2a, where electron donor binds after electron acceptor to the enzyme; be-
cause these two configurations have the same resistance, they are not differentiated in the Ohm's law anal-
ogy). However, this discount can be incorporated by renewal theory (or law of mass action, where these two 
configurations are considered as different and allowed to occur concurrently, such that the total resistance 
is smaller), which leads to the synthesizing unit (SU) model (Kooijman, 1998) below:

v
E

r k S k S k S kE f eacc eacc f edon edon f eacc eacc f


       1 1 1/ / /

, , , ,eedon edonS � (26)

Compared to Equation 25, the SU model (i.e., Equation 26) is numerically more accurate (in approximat-
ing the law of mass action, the standard method that deals with biogeochemical reactions, Koudriavstev 
et al., 2001). Equations 25 and 26 differ by the term   1/ k S k Sf eacc eacc f edon edon, ,  that accounts for the coex-
istence of schemas in Figures 2a and 2b.

Equation 25 was derived as early as in Alberty (1953) and is called the additive model. It was found to be 
the superior formulation to model multiple nutrient limitations of microbial and plant growth in O’Neill 
et  al.  (1989) (where electron donors and acceptors are replaced with complementary nutrients, such as 
nitrogen and phosphorus). In particular, the additive model (Equation 25) can be extended to include an 
arbitrary number of nutrients:

v
E

r k SE j f j


   1/

,

� (27)

where jE S  are essential nutrients (e.g., carbon, nitrogen, phosphorus, potassium, and chloronium). 
Smith (1976, 1979) used Equation 27 to model plant growth and microbial growth under carbon, nitrogen, 
phosphorus, and potassium colimitation. Based on past successful applications (Franklin et al., 2011; Koo-
ijman, 1998), the SU model (i.e., Equation 26) may be argued as mathematically more rigorous than the 
series resistor-based additive model (i.e., Equation 25 or 27). However, given the usually significant uncer-
tainty of ecological data, the series resistor-based additive model may be equally good (even using the same 
parameters as in the SU model). Indeed, when we applied both the SU model and the resistor-based additive 
model to the measured algal growth rates under various levels of phosphorus and vitamin B12 additions 
(Droop, 1974; this data set was also used by Kooijman (1998) when the SU model was first developed), both 
models can be satisfyingly calibrated with respect to the growth data (Figures 3a and 3b; albeit higher maxi-
mum growth rate is inferred for fast adapted algae by the SU model, Table S1 in Supporting Information S1). 
Nevertheless, when the normalized growth rates are plotted as a function of the normalized substrate flux-
es, the SU and resistor-based additive models show very similar growth patterns (Figures 3c and 3d). The 
SU model and additive model also performed equally well for the plant growth data from Shaver and Me-
lillo (1984) (Figure 4), and their parameter values are also quite comparable in magnitude (Figure S1 and 
Table S1 in Supporting Information S1). Moreover, when the SU and additive models are used to model 
aerobic heterotrophic respiration using the parameterization from Tang and Riley (2019a), we once again 
find the two models driven by identical parameters resulted in very similar goodness of fit with respect to 
the measurements (Figure 5 and Table S2 in Supporting Information S1). These lines of evidence suggest 
that one can probably use these two models alternatively (but more extensive studies are needed to quantify 
the resultant structural uncertainty in the broader context of biogeochemical modeling). In particular, both 
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Figure 3.  (a) Comparison of the calibrated synthesizing unit (SU) model prediction for the algal growth rates data from Droop (1974); Panel (b) same as 
panel (a) but from the calibrated resistor-based additive model; (c) Contour of normalized growth rate as a function of normalized fluxes of substrates A (with 

 ,A f A AE f k S  ) and B (with  ,B f B BE f k S  ) for the SU model; Panel (d) same as panel (c) but for the resistor-based additive model. The additive model is presented as 
Equation 25, and the SU model is presented as Equation 26. Model parameters are in Table S1 in Supporting Information S1.

Figure 4.  (a) SU model predicted versus measured plant growth; (b) Additive model predicted versus measured plant growth. The data are from Shaver and 
Melillo (1984). Model parameters are in Table S1 in Supporting Information S1.

 19422466, 2021, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021M

S002469, W
iley O

nline L
ibrary on [01/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

TANG ET AL.

10.1029/2021MS002469

11 of 19

can be a substitute for Liebig's law of the minimum that is used by most existing biogeochemical models 
(Achat et al., 2016; Tang & Riley, 2021). However, the additive model (derived from the Ohm's law analogy) 
is computationally much simpler than the theoretically more accurate SU model for situations that involve 
many more complementary nutrients (Tang & Riley, 2021).

Additionally, we note that Equation 27 can be extended (using a mixed series-parallel circuit; see Figure 6b 
and Section 3.4) into a photosynthesis model to replace the Farquhar or Collatz model that is formulated 
based on Liebig's law of the minimum, which has to arbitrarily smooth the abrupt transitions from one lim-
iting process to another (e.g., Collatz et al., 1990, 1992; Farquhar et al., 1980; Kirschbaum & Farquhar, 1984). 
Notably, the use of Liebig's law of the minimum and smoothing functions has been recently identified 
as one major source of uncertainty in modeling terrestrial ecosystem gross primary productivity (Walker 
et al., 2021). Taking these potential applications together, we contend that it is possible to use the same 
kinetics to formulate models of plant photosynthesis, microbial substrate dynamics, and biomass growth, a 
strategy that will likely enhance the mathematical coherence in modeling plant-soil-microbe interactions.

3.3.  Parallel Resistor-Based Formulation of Competitive Kinetics

Many microorganisms can feed on multiple substrates. For example, Escherichia coli and yeasts are able to 
perform both aerobic and anaerobic respiration (e.g., Dashko et al., 2014; Unden & Bongaerts, 1997); some 
methanotrophic bacteria can oxidize methane, ammonia, and carbon monoxide (Bedard & Knowles, 1989); 
and some denitrifiers can consume oxygen, nitrate, nitrite, nitric oxide, and nitrous oxide while feeding on 
one carbon substrate (Chen & Strous, 2013). Plants can also use diverse mineral nitrogen forms to produce 
biomass (e.g., Masclaux-Daubresse et al., 2010; Tang & Riley, 2021). Moreover, some enzymes can react 
on different substrates. For example, the ribonuclease enzyme is able to degrade various RNA molecules 
(Etienne et al., 2020). One common feature shared by all these different biogeochemical processes is that 
the uptake of one substrate often competitively inhibits the uptake of others. Thus, it is meaningful for us 
to show that such problems can be formulated using the parallel circuit (plus one series resistor) using the 
Ohm's law analogy.

Figure 5.  Left panels are SU model-based prediction of respiration-soil-moisture relationship; right panels 
are based on the resistor-based additive model. The two models (described in Supporting Information S1) used 
identical parameters, which are detailed in Tang and Riley (2019a). The statistics for model-data fitting (in 
terms of linear regression and root mean square error) between two models are identical to 0.01 (see Table S2 in 
Supporting Information S1).
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We first formulate the competitive Michaelis-Menten kinetics using the schema in Figure 2c. For this case, 
the total resistance is

 


       
 

11
, ,E S E j E j S jr r r r r r� (28)

where  1
, ,S j f j jE r k S  , and ,E jE r  is the resistance due to preprocessing of substrate jE S  before it is handed to the 

central enzyme E E (i.e., the enzyme that products of all substrates have to pass through), and r vE max E 1/
,  

is the resistance due to the maximum substrate processing rate of the central enzyme (which for redox 
reactions could be determined by the time spent on processing the electron donors if jE S  here are electron ac-
ceptors). If , 0E jE r  , which is usually assumed for competitive Michaelis-Menten kinetics, the second term 

SE r  becomes  
1

,f j jjE k S  , and the reaction velocity is

v
E

r

E

v k Smax j f j j

 
    1

1

/
,

� (29)

and the corresponding flux through pathway E j is

v
vr

r
v

k S

k S
E

v S K

S K
j

S

S j

f j j

l f l l

max j j

l l l

 


 
 

,

,

,

/

/1
� (30)

where K v kj max f j /
,

 . Therefore, jE v  is the reaction velocity computed from the competitive Michaelis-Ment-
en kinetics. We note that Equation 30 is meaningful only when pathway E j produces new molecules. How-
ever, even for inhibitors, whose binding to enzymes does not produce new molecules, if we regard dissocia-
tion as a way of producing new molecules, then Equation 30 is still meaningfully representing competitive 
inhibition.

Figure 6.  (a) Mixed resistor circuit schema for redox reactions with alternative electron donors and acceptors, with example (in red box) depicting the use of 
acetate and methanol as electron donors, and nitrite and nitrate as electron acceptors during denitrification; (b) Circuit scheme for photosynthesis; (c) Circuit 
schema for the parallel fermentation and aerobic respiration pathways. Symbols are explained in the main text.
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3.4.  Mixed Series and Parallel Resistor-Based Formulation of Redox Reactions of Alternative 
Electron Donors and Acceptors

Many microorganisms (such as denitrifying bacteria that play an essential role in the Earth's nitrogen cycle; 
e.g., Robertson & Groffman, 2015) are able to grow on different electron donors and acceptors. Such pro-
cesses can be modeled using the SUPECA kinetics (Tang & Riley, 2017). Below, we show that it can also be 
formulated using the schema of mixed series and parallel resistors in the Ohm's law framework.

Based on the schema in Figure 6a, the total resistance is

          
1 11 1

, ,edon eacc l l edon j j eaccr r r r r� (31)

where the resistance for electron donors is

   , , , , ,
, , , , ,

1 1
l edon E l edon S l edon

max l edon f l edon l edon
r r r

v k S� (32)

and the resistance for electron acceptors is

   , , , , ,
, , , , ,

1 1
j eacc E j eacc S j eacc

max j eacc f j eacc j eacc
r r r

v k S� (33)

Accordingly, the corresponding reaction flux through electron donor E j is

 
,

, ,

edon edon
j edon

j edon j edon edon eacc

E r E rv
r r r r r� (34)

while the corresponding reaction flux through electron acceptor E j is

 
,

, ,

eacc eacc
j eacc

j eacc j eacc edon eacc

E r E rv
r r r r r� (35)

Now considering an application that involves two electron acceptors, for example, nitrate and nitrite in 
denitrification, we have

 
3 2

1 1 1

eacc NO NOr r r� (36)

which when combined with Equation 35 leads to

v
E

r r r r r
NO

NO edon edon NO NO
3

3 3 2


  /� (37)

and

v
E

r r r r r
NO

NO edon edon NO NO
2

2 2 3


  /� (38)

which are just Equation 10 in Almeida et al. (1997) that have been successfully used to fit the measurement 
of denitrification rates from Almeida et al. (1995). With proper number of resistors, the denitrifier model by 
Domingo-Felez and Smets (2020) can also be easily recovered from Equations 31–35.

Further, we note that the relationship between the light, Rubisco enzyme-catalyzed carboxylation and oxy-
genation reactions in photosynthesis can be formulated analogously in Figure 6b, from which we can obtain 
the gross carbon fixation rate gE A  as

 
       , ,

1 0.5OC
g

Light R OC C max C O max O

ErA
r r r r r r r

� (39)

where


 
     

1

, ,

1 1
OC

C max C O max O
r

r r r r
� (40)

with E E representing Rubisco enzyme, LightE r  is due to light reaction, RE r  is due to RuBP flux, ,C maxE r  and CE r  are 
associated with the carboxylation pathway, and ,O maxE r  and OE r  are associated with the oxygenation pathway. 
However, we will present detailed quantitative analysis elsewhere.
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In summary, the examples in Sections 3.1–3.4 show that the Ohm's law analogy can formulate both plant 
and microbial biogeochemistry in the same framework.

3.5.  Other Potential Applications of the Ohm's Law Analogy

Besides the applications described above, we below derive some quite interesting results to further highlight 
the potential of the Ohm's law analogy in biogeochemical modeling.

First, we will explain why fermentation can occur even when there is still oxygen to support the energetical-
ly more efficient aerobic respiration. Such a phenomenon is called the Warburg effect (i.e., lactate producing 
aerobic fermentation) in proliferating mammalian cells (a phenomenon important to the understanding of 
cancer development), or the Crabtree effect (i.e., ethanol fermentation) of unicellular yeast Saccharomyces 
cerevisiae (e.g., de Alteriis et al., 2018). Escherichia coli have also been observed to shift to the seemingly 
bioenergetically less efficient yet faster metabolic pathways under high substrate concentrations (e.g., Flam-
holz et al., 2013; Labhsetwar et al., 2014). Depending on the details to be represented, we acknowledge that 
there are multiple ways to model such phenomenon even with the circuit analogy (Molenaar et al., 2009; 
Schuster et al.,  2015), highlighting the challenge for a comprehensive and robust understanding of this 
biochemical phenomenon. We next present one plausible mathematical explanations to show that, under 
certain aerobic conditions, high glucose concentration makes fermentation more favorable.

According to the schema in Figure 6c, the specific ATP generation rate from the fermentation pathway is

v
Y

f r
FM ATP

FM

S fm

,
   1/

� (41)

where SE f  is the incoming flux of pyruvate (produced from glycolysis) sensed by the two metabolic pathways 
(and is proportional to the incoming glucose flux sensed by the organism under steady state), fmE r  is the 
resistance associated with the conversion of pyruvate into fermentation products (which could be lactate, 
ethanol, or acetate depending on the organism, Madigan et al., 2009), and FME Y  is the ATP yield of fermenta-
tion. Similarly, the specific ATP generation rate from the aerobic respiration pathway is

v
Y

f r r f
AO ATP

AO

S cac etc

,

      1 1

2
/ /

O

� (42)

where accE r  and etcE r  are resistance associated with the citric acid cycle, and the electron transport chain, re-
spectively, while O2E f  is the incoming oxygen flux, and AOE Y  is the ATP yield of aerobic respiration. Because 
the citric acid cycle involves many more enzyme-catalyzed steps than fermentation, cac fmE r r  . Meanwhile, 

AOE Y  is about 20 times the value of fmE Y  (Madigan et al., 2009).

In a metabolically active organism, for fermentation to be more favorable than aerobic respiration (in terms 
of ATP production rate for the same amount of enzyme allocated, i.e., , ,FM ATP AO ATPE v v  ), the following 
condition needs to be satisfied:

Y

Y

f r

f r r f

r

r r f

FM

AO

S fm

S cac etc O

fm

cac etc


  

      


 

1

1 1 1
2

/

/ / / OO2
 � (43)

where the term after the second “>” suggests that fermentation is more favorable only when oxygen is be-
low a certain level of availability (note that 2OE f  is approximately proportional to diffusion). When the oxygen 
availability is sufficiently low (even though the system is not qualified as anaerobic), higher substrate con-
centration (i.e., greater SE f  ) will make fermentation more effective in generating ATP for the same amount of 
enzyme allocated for catabolic reaction. If we additionally consider that the fermentation pathway requires 
the organism to maintain a much smaller number of enzymes than required for the aerobic oxidation path-
way (which is equivalent to increase the value of Y Y

FM AO
/  further, making the inequality (Equation 43) even 

easier to be satisfied), we can expect fermentation to be preferred under high glucose supply (i.e., greater SE f  ) 
even under certain aerobic conditions. (For anaerobic conditions, O2E f  approaches zero, and the inequality 
(Equation 43) is easily satisfied.)

Therefore, as illustrated above, the Ohm's law analogy enables us to quickly and vividly infer that increasing 
the substrate concentration E S reduces the resistance faster for the fermentation pathway than for the aerobic 
respiration pathway. Since genomic expression usually follow the induction and then response paradigm 
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(i.e., the Jacob-Monod model, Tiwari et  al.,  1974), the microbes under consideration will metabolically 
shift toward fermentation even though oxygen is available and aerobic respiration yields more ATP per 
unit of carbon consumed (Causton et al., 2001). In contrast, models based on the flux balance method or 
law of mass action will be more sophisticated to formulate and understand for such metabolic shift (Kesten 
et al., 2015; Nilsson & Nielsen, 2016). Given the significance of metabolic shift in various contexts, including 
methane and hydrogen dynamics in environment and industrial biogeochemistry (Lu et al., 2009; Madigan 
et al., 2009), we expect to study this problem in a more quantitative and extensive way elsewhere.

Another very interesting application of the Ohm's law analogy is to qualitatively explain why the sub-
strate-growth rate relationship of an exponentially growing bacterial population can be fitted with the 
Monod kinetics (Monod, 1949), whose validity is assumed implicitly in most existing studies of microbial 
growth on single substrate. For an exponentially growing bacterial population, the bacteria proteomes are 
approximately in steady state. Meanwhile, from the Ohm's law analogy, we know that any functioning 
circuit-network can be equivalently represented by a bulk resistor. Therefore, we contend that however 
complex the circuit representation of a bacterial metabolism would be, as a whole it can be equivalently 
represented by a constant resistance EE r  . When this EE r  is combined with the resistance associated with the 
incoming substrate flux (see Equation 7), we then say that the bacterial growth would very likely follow the 
Monod kinetics. However, when the bacteria are in transition from one metabolic state into another (e.g., 
from gluconate to succinate), extra resistors are introduced accompanying the change of proteomes, result-
ing in a dynamic EE r  and thus Monod kinetics will fail for such situations (e.g., Erickson et al., 2017). This 
argument also explains why models based on flux balance analysis with proteomic constraints can simulate 
exponentially growing E. coli and yeast realistically (Labhsetwar et al., 2014, 2017), but the flux balance 
models are cumbersome to apply in dynamic environments.

3.6.  Limitations of the Ohm's Law Analogy

While the Ohm's law analogy can be used to model many challenging biogeochemical processes, it is not 
appropriate for all types of biogeochemical networks. For instance, it is not able to properly couple two or 
more consumers (i.e., two or more batteries) within a single circuit network, even though the electric circuit 
theory itself does not forbid such a configuration to occur (which can be solved with the Kirchhoff's law of 
voltage and current, e.g., Feynman et al., 2011b). Rather, the coupling can only be done by first represent-
ing the substrate dynamics of each consumer separately, and then coupling them together by differential 
equations. Such coupling could be critical when many consumers are competing for a limiting substrate, 
even though none of the consumers is substrate limited when other consumers are excluded (e.g., Etienne 
et al., 2020). The ECA kinetics (Tang & Riley, 2013b) and its progeny SUPECA kinetics (Tang & Riley, 2017) 
are more capable of resolving such situations. In soil biogeochemistry, one such situation is to model the 
interaction of a substrate molecule (e.g., ammonium, inorganic phosphorus, or dissolved organic carbon) 
that is simultaneously undergoing uptake by organisms and adsorption by mineral surfaces. Fortunately, a 
simple remedy is possible for the Ohm's law analogy from the ECA kinetics. In the ECA kinetics, microbial 
uptake of substrate E S under the influence of adsorption by mineral surface E M (with affinity parameter ME K  ) is

F
v SB

K S MK K B

max

M


  / � (44)

where E K is the half saturation constant for the uptake of E S by microbe E B in the absence of E M , and E B is the 
within-population competition effect introduced by ECA. Tang and Riley (2019b) showed that E B is negligi-
ble due to the large size contrast between microbes (and likewise fine roots) and substrate molecules. When 
E B is ignored, Equation 44 becomes

F
B

v k S M K

B

v k Smax f M max f


        


    

1 1 1 1 1/ / / / /
� (45)

with

k
k

M K
f

f

M

 
  1 /� (46)
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Now the Ohm's law analogy will still work if 1/k Sf
  is used to defined the substrate-dependent resistance. 

Moreover, Equation 46 suggests that mineral surfaces may slow the microbial uptake of substrate E S by effec-
tively reducing the substrate delivery rate toward the microbes.

However, when the sizes of substrates and competitors are similar (e.g., in some predator-prey relation-
ships), the Ohm's law analogy will be too cumbersome to apply, and the ECA or SUPECA kinetics should 
be used. Nonetheless, it will be very interesting and helpful to construct and compare models for the same 
system using both the Ohm's law analogy and ECA (or SUPECA) kinetics.

4.  Conclusions
By exploiting the mathematical similarity between the Ohm's law and Michaelis-Menten kinetics, we show 
that the electric circuit analogy can be used to derive many interesting results of biogeochemical kinetics. 
We show this approach reproduces many successful applications in the literature, including aerobic heter-
otrophic respiration, multinutrient colimited microbial (and plant) growth, and denitrification dynamics. 
This approach also sheds new insights on the temperature sensitivity of kinetic parameters in substrate 
uptake, the Warburg and Crabtree effect in prokaryotes and eukaryotes, and conceptually explains why the 
Monod relationship accurately represents the kinetics of exponentially growing bacterial populations, and 
why flux balance modeling constrained by proteomics is able to accurately model microbial growth. Based 
on these results, we expect that the Ohm's law analogy will help build a unified kinetic modeling framework 
of microbial and plant biogeochemistry to make more robust predictions.
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