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Abstract

Oligomers of the amyloid β-protein (Aβ) have been implicated in the pathogenesis of Alzhei-

mer’s disease (AD) through their toxicity towards neurons. Understanding the process of

oligomerization may contribute to the development of therapeutic agents, but this has been

difficult due to the complexity of oligomerization and the metastability of the oligomers thus

formed. To understand the kinetics of oligomer formation, and how that relates to the pro-

gression of AD, we developed models of the oligomerization process. Here, we use experi-

mental data from cell viability assays and proxies for rate constants involved in monomer-

dimer-trimer kinetics to develop a simple mathematical model linking Aβ assembly to oligo-

mer-induced neuronal degeneration. This model recapitulates the rapid growth of disease

incidence with age. It does so through incorporation of age-dependent changes in rates of

Aβ monomer production and elimination. The model also describes clinical progression in

genetic forms of AD (e.g., Down’s syndrome), changes in hippocampal volume, AD risk

after traumatic brain injury, and spatial spreading of the disease due to foci in which Aβ
production is elevated. Continued incorporation of clinical and basic science data into the

current model will make it an increasingly relevant model system for doing theoretical calcu-

lations that are not feasible in biological systems. In addition, terms in the model that have

particularly large effects are likely to be especially useful therapeutic targets.

Author summary

Oligomeric assemblies of Aβ are hypothesized to be seminal pathologic agents in Alzhei-

mer’s disease (AD). Mechanistic studies of oligomerization and neurotoxicity in humans

are currently impossible, yet such studies promise to advance efforts toward target identi-

fication and drug development. To overcome this hurdle, we developed a simple, mathe-

matical model parameterized using experimental data extant. The model couples the

kinetics of oligomerization with oligomer toxicity and enables determination of age-

related changes in AD risk and hippocampal volume, the effects of traumatic brain

injury on lifetime AD risk, gene dosage effects, and the effects of spatial variation in Aβ
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monomer concentrations on millimeter scales. The model is easily interpretable and pro-

vides a foundation for development of more comprehensive models of AD development

and progression.

Introduction

Alzheimer’s disease (AD) currently is the 6th leading cause of death in the U.S. and its preva-

lence continues increasing rapidly [1]. Thus, there is a critical need for the development of

effective preventive, ameliorative, or curative therapeutics. Unfortunately, none exist [2]. This

is due in part to the multifactorial nature of AD, which makes contemporaneous study of the

entire system infeasible and requires researchers to focus on smaller system elements. One

such element is amyloid plaque formation. Plaques in the brains of those with AD are extracel-

lular deposits of long protein fibrils formed by the amyloid β-protein (Aβ) and one of the

pathognomonic features of AD. This inspired the hypothesis that fibril formation is the semi-

nal pathologic event in AD [3]. However, this “amyloid cascade hypothesis,” has largely been

supplanted by the “oligomer cascade hypothesis,” which suggests that pre-fibrillar structures,

oligomers, are the most important toxic agents [4]. Like AD itself, the process by which mono-

meric Aβ forms fibrils is complicated and involves a multitude of small, oligomeric assemblies,

as well as large, pre-fibrillar precursor structures [5]. It has been suggested that oligomers as

small as dimers may be the most important of these assemblies [6]. It also is important to note

that Aβ is but one player in AD etiology. The roles of tau, inflammation, mitochondrial dys-

function, etc. remain to be incorporated into a single unifying hypothesis.

Aβ oligomerization and its effect on neurons in vitro and in vivo are being studied inten-

sively (for recent reviews, see [7, 8]). Studies in our group [9] and others [10–12] have focused

on the structural biology and kinetics of oligomerization and fibril formation. These studies

have sought to relate these biophysical aspects of Aβ assembly to disease occurrence, pathol-

ogy, and progression. Unfortunately, little is known about the relationship of oligomer states

to the development of disease. It is clear that the constitutive level of Aβ production correlates

directly with time of onset and severity of disease. This is quite apparent in people with

Down’s syndrome, who possess three copies of the amyloid precursor protein gene that

encodes Aβ and who tend to develop AD early in life, with some showing symptoms as early as

age 40 [13]. Simple gene dosage extrapolation suggests that amyloid precursor protein (APP)

concentration should be 150% the level found in normal individuals. This indeed has been the

case in humans [14, 15]. In addition, studies by Cheon et al. [16] have shown that immunore-

active APP species are expressed in Down’s syndrome brains at even higher levels (�1.8–

2.7-fold) than is Aβ. Higher Aβ expression also is observed in rare familial forms of AD that

are characterized by mutations in APP or the enzymes responsible for its production [17].

These mutations result in increased concentrations of Aβ or an increase in the relative amount

of two forms of the protein, Aβ40 and Aβ42. Aβ42 is only two amino acids longer (42 vs. 40)

than Aβ40, yet its pathogenicity is substantially higher.

Though Aβ is produced in the brain throughout life, AD is not usually observed before age

65 [18]. AD risk increases exponentially after that, reaching approximately 30% by age 85 [19].

Age is the most important risk factor for sporadic AD [20], but genetics also play a role. Apoli-

poprotein E, which can exist in the body in three different forms—ApoE2, ApoE3, and

ApoE4—is a cholesterol carrier protein. The type of apolipoprotein E one expresses also has a

significant effect on risk [21] and risk is increased substantially in individuals that express
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ApoE4 [21]. Blunt force trauma to the head, e.g., traumatic brain injury (TBI) or chronic trau-

matic encephalopathy (CTE), now are understood to be significant risk factors as well [22, 23].

Here, we report the creation of a mathematical model of the time-dependence of AD pro-

gression and its relationship to the kinetics of Aβ production, elimination, and toxicity. The

model unites dynamic processes occurring at the protein level (Aβ oligomerization) and

between Aβ and neurons, processes of hippocampal atrophy, and clinical disease development

over the life span of the individual. The model predicts biologically significant time scales for

development of AD; offers explanations for how blunt force trauma, Down’s syndrome, and

changes in hippocampal volume affect disease risk; illustrates how individual rates of age-

related neuronal degeneration affect disease prevalence and incidence; and provides mechanis-

tic insight into how the disease may spread in the brain.

Assumptions and model development

The oligomer cascade hypothesis posits that neuronal death in AD is primarily due to oligo-

mers. In our model, we are therefore interested in describing the coupling between oligomers

and loss in neuronal viability. This also requires modeling the kinetics of Aβ assembly. Our

foci are on early stages of Aβ oligomerization under some simplifying assumptions, one of

which is the division of Aβ peptide forms into monomers and two classes of oligomer, dimers

and all others (which we refer to as higher-order oligomers (HOOs)). We examine how oligo-

merization correlates with AD development and progression.

We begin by describing the concentration of monomers M and dimers D in the interstitial

fluid. While HOOs may also be toxic, we show in the S1 Text (Mathematical Details section)

that the HOOs play a negligible role in the model when compared to the dimers. Dimers

have also been found to be the most abundant form of Aβ in the human brain [24] and they

are toxic [4] to neurons. Strong evidence, to our knowledge, does not exist showing mono-

mers are toxic, hence they are excluded as factors in the loss of viable cells. We model viable

cell density V as being lost at a rate proportional to the dimer concentration with proportion-

ality constant σ. At each instant, the percentage chance that one develops AD for each one

percent decrease in viable neurons is defined to be γ, what we refer to as the neuronal death
elasticity of AD risk (similar to the economic concept of “price elasticity of demand,” the per-

cent change in demand for each percent increase in price [25]). For kinetics, we stipulate

that monomers are produced at a rate S and they are cleared at a rate κ; dimerization (and

the formation of HOOs through monomer addition) occurs at a rate ν, with a dissociation

rate μ. To consider the effects of diffusion, we assign monomers a diffusivity DM and dimers

a diffusivity DD. Lastly, there is evidence for rate constants such as S and κ being age depen-

dent with S increasing with age and κ decreasing with age. When rate constant time-depen-

dence is considered, we use linear models where l
G
S and l

D
S are the time it takes for S to

double in the general and Down Syndrome populations, and λκ is the time when κ would

reach 0 (at which point the model is no longer accurate). See Fig 1 for a schematic of the

mechanisms.

We note that our own prior experimental data [5, 26], and recent work by Hasecke et al.
[27], show that small oligomers, including trimers, exist in a rapid equilibrium with other

assembly species. We have not modeled this entire equilibrium state because our model is pre-

dictive in nature, not accommodative, i.e., we do not want to fit our data to all data that exist a
priori, which would constrain the model’s potential usefulness and the possibility of discovery.

Instead, we chose a model-building strategy that incorporates only those elements that we pre-

dict will control the system. This means that some known elements have been omitted and

others may not correspond to known factors influencing Aβ assembly.
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Recently, Knowles et al. [28, 29] studied the molecular pathways of Aβ-42 oligomer and

fibril formation, finding that oligomer dissociation is favored significantly over continued

monomer addition leading to fibril formation (under their experimental conditions). Thus,

the focus of our model upon low order oligomers is an important step in understanding AD

etiology.

Full details of parameter estimation are provided in the S1 Text (Parameter Estimation sec-

tion). Here, we provide an overview of the steps taken to arrive at the parameters in Table 1.

See Fig 2 for an illustration. Note that a variable with a bar indicates a representative scale/size

for that variable. For instance, monomer clearance κ could be time-dependent and �k is a rep-

resentative size of κ. From experiments with brain slice cultures and mixed neuron-glial cul-

tures, oligomer toxicity was examined at different concentrations [30, 31], allowing us to

estimate �s from a survival model [32]. The loss of neurons is coupled with increased risk of

AD through the neuronal death elasticity of AD risk γ, based on the notion that AD develops

when one or more neurons [33] critical for memory processes dies. We estimate γ from AD

incidence data and our model [34].

Fig 1. Model scheme. A: Monomers are produced at rate S (zeroth order) and cleared at a rate κ (first order). Two

monomers combine to form a dimer with rate constant ν (second order) and a dimer can dissociate at rate μ (first

order) into two monomers. Monomers and dimers can combine to form trimers at rate ν (second order), with

negligible backwards reactions. Neurons are killed at a rate σ times the dimer concentration. Thus, as the dimer

concentration rises, so does the speed of neuronal death. Monomers and dimers diffuse with diffusivities DM and DD,

respectively. B: Representative production/loss rates of individual components when concentrations are at their

baselines values in Table 1, without the rates changing with age. Incoming arrows represent gain/production; outgoing

arrows represent loss/clearance. For example, in each second, 40% of the dimer concentration is lost due to

dissociation (dimers have a very short lifespan) and gained from dimerization illustrating that the monomer-dimer

equilibrium is fast relative to other equilibria, whereas cell viability is lost very slowly.

https://doi.org/10.1371/journal.pcbi.1009114.g001
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Through estimates of Aβ42 monomer production rates [35] and the ratio of Aβ42 to Aβ40

in the brain [36], we estimate �SG. We estimate �SD by assuming the production rate is propor-

tional to APP concentration which is increased by 50% [14, 15]. Further studies that show how

the activity of β-secretase may increase with age [37–39] allow us to estimate l
G
S and l

D
S . Like-

wise, experiments that show how Aβ clearance changes with age [40] allow us to estimate �k

and λκ. Measured soluble Aβ concentrations from the literature allow us to estimate the char-

acteristic scale of the dimer concentration [41]. Based on some further assumptions relating to

the relative speed of the different reactions and experiments on relevant rate constants [42, 43]

we arrive at estimates for the characteristic scale of the monomer concentration, the dissocia-

tion rate �m, and dimerization rate �n. In modeling prevalence, we consider the number of years

a patient survives with AD. As a simplification, we assume that after a course of illness of

length TD = 7.1 years, all AD patients die [44]. We also estimate lifetime risk by using the aver-

age life expectancy in the United States of TL = 78.5 years [45].

Monomers and dimers

We denote t as time (age) so that t = 0 corresponds to birth, and M and D as the concentrations

of monomers and dimers, respectively. The kinetics are modelled by the partial differential

equations (PDEs) Eqs (1) and (2).

@M
@t

¼ DMDM þ S � kM � 2nM2 � nMDþ 2mD ð1Þ

Table 1. Values of parameters within the model. See Fig 2 for an explanation of how these values were determined and their sources; Bars (e.g., �S), indicate a quantity rep-

resentative of that in a healthy brain; Lit. denotes values listed in literature; Inf. denotes values inferred or fit from published data; Mod. indicates a value fit from our model

with reference to literature; Def. denotes the definition of a value used in our study in various calculations, derived from other quantities in the table.

Parameter Meaning Value Source

�κ Baseline monomer loss rate 6.15 × 10−5 s−1 Lit. [40]

�D Characteristic dimer concentration 1.00 × 10−12 M Lit. [41]

�μ Baseline dimer dissociation rate 0.400 M−1 s−1 Lit. [42, 43]

TD Survival time after AD diagnosis 2.23 × 109 s [7.1 yr] Lit. [44]

TL Life expectancy in United States 2.48 × 109 s [78.5 yr] Lit. [45]

DM Monomer diffusivity 5.47 × 10−7 cm2 s−1 Lit. [46, 47]

DD Dimer diffusivity 4.30 × 10−7 cm2 s−1 Lit. [46, 47]

�SG Baseline monomer production rate (general) 3.63 × 10−12 M s−1 Inf. [35, 36]

�SD Baseline monomer production rate (Down Syndrome) 5.45 × 10−12 M s−1 Inf. [14, 15, 35, 36]

�M Characteristic monomer concentration 5.90 × 10−8 M Inf. [35, 36, 40]

�ν Baseline monomer combination rate 115 s−1 Inf. [42, 43]

�σ Baseline cell-dimer damage rate 4.94 M−1 s−1 Inf. [30–32]

λG
S Linear growth doubling time of production in general population 4.85 × 109 s [154 yr] Inf. [39]

λD
S Linear growth doubling time of production in Down Syndrome population 2.72 × 109 s [86.2 yr] Inf. [38]

λκ Linear decay time to zero for clearance 3.60 × 109 s [114 yr] Inf. [40]

γ Neuronal death elasticity of AD risk 6.01 × 10−1 Mod. [34]

�x Characteristic lengthscale 9.43 × 10−2 cm Def.

�t Characteristic timescale 1.62 × 104 s [4.5 hr] Def.

�U Characteristic neuronal damage rate 4.94 × 10−12 s−1 [1.56 × 10−4 yr−1] Def.

�ω Characteristic AD development rate 2.96 × 10−12 s−1 [9.34 × 10−5 yr−1] Def.

https://doi.org/10.1371/journal.pcbi.1009114.t001
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@D
@t

¼ DDDDþ nM2 � mD � nMD ð2Þ

Including HOOs is possible. We provide heuristics of what this could look like in the S1

Text (Mathematical Details section) but also show that the concentrations and toxicity effects

of these HOOs are negligible based on our parameter estimates. Thus, Eqs (1) and (2) suppress

terms of negligible size.

If only time dynamics are considered without modeling space, Eqs (1) and (2) are replaced

by ordinary differential equations (ODEs):

dM
dt

¼ S � kM � 2nM2 � nMDþ 2mD ð3Þ

dD
dt

¼ nM2 � mD � nMD ð4Þ

Fig 2. Means of obtaining model parameters. Some parameters (blue) were taken from published values in the literature; others (yellow-orange) were fitted based on

experimental data; the value γ (green) is fitted from our overall model with reference to clinical data.

https://doi.org/10.1371/journal.pcbi.1009114.g002
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It has been observed that Aβ clearance rate decreases with age [40], whereas the activity of

β-secretase increases [37]. Many forms could be chosen for S(t) and κ(t) for these respective

rates at a time t. For S(t) and κ(t), we employ linear models, to be as simple as possible, using

data presented in the S1 Text (Parameter Estimation section) to write

SðtÞ ¼ �Sð1þ t=lSÞ; kðtÞ ¼ �kð1 � t=lkÞ; ð5Þ

where

ð�S; lSÞ ¼

(
ð�SG; l

G
S Þ in the general population

ð�SD; l
D
S Þ in the Down Syndrome population

ð6Þ

depend on whether an individual is in the general or Down Syndrome populations. Note that

individual equations on lines containing multiple equations are referenced with a subscript

indicating their order in the line, e.g., the equation defining S(t) would be referred to by (5)1.

The form of S(t) assumes that monomer production is directly proportional to the activity of

β-secretase and to the concentration of APP. It is possible that a combination of genetics and

lifestyle factors play a role and may modify the rates that S and κ change. It also is possible that

σ, ν, and μ vary with age. However, literature extant does not provide sufficient insights to

model this quantitatively, thus we treated these rates as constants. We note that the model

loses validity for t near 114 yr as the clearance rate reaches zero around this point. From the

values of l
G
S , l

D
S , and λκ, S(t) and κ(t) change very slowly.

Cell viability, incidence, and prevalence

Over each small volume of brain, we model the cell viability 0� V� 1 as the number density

(number per unit volume) of viable neuronal cells divided by the number density of neurons

in perfectly healthy brain tissue. We model the decrease in this viability with a hazard function

which is proportional to the oligomer concentration by

@V
@t

¼ � sDV: ð7Þ

Viability decreases faster the more oligomers are present; σ is a coupling constant for oligomer

toxicity. We fit for σ [48] using cell viability assay data [30, 31]. We note the model could easily

be generalized to accommodate other potentially toxic proteins, e.g., tau, by adding additional

damage terms to Eq (7) and incorporating an equation describing the concentration of those

proteins.

As described in the S1 Text (Parameter Estimation section), given the viability model with

homogeneous brain tissue, we also identify the survivorship function H(t) (fraction of individ-

uals who do not have AD by age t), incidence I(t) (per capita rate of AD development of age t
individuals), prevalence P(t) (fraction of individuals age t with AD), and Υ(t1, t2) (cumulative

risk of AD between ages t1 and t2, with no AD up to t1) through

HðtÞ ¼ Vg IðtÞ ¼ gsD ð8Þ

PðtÞ ¼ 1 � e�
R t
maxf0;t� TDg

IðsÞds
Uðt1; t2Þ ¼ 1 � e�

R t2
t1

IðsÞds ð9Þ

where Eqs (8) and (9) are valid for 114 yr = λκ> t2, t1. The choice of γ in Table 1 is made by

considering incidence data.

PLOS COMPUTATIONAL BIOLOGY From reaction kinetics to dementia: A simple dimer model of Alzheimer’s disease etiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009114 July 19, 2021 7 / 24

https://doi.org/10.1371/journal.pcbi.1009114


Solutions

Solving these equations can be complicated. However, in the parameter regime considered,

various approximations are possible owing to a separation of time scales. There are fast time

scales for dimer dissociation (�ms); intermediate time scales for monomer decay (�h); and

long time scales for changes in kinetic rate constants and loss of neuronal health (decades).

The relative sizes of terms can also be exploited. Since the losses due to trimerization are, by

model construction, negligible with respect to dimer evolution, the dimer concentration is

controlled by dimerization and dimer dissociation, which forces D to scale quadratically with

M. This also means the monomer concentration is described through a balance of production,

clearance, and possibly diffusion, which can also be solved analytically. Finally, owing to the

slow changes in rate constants, monomers and dimers are always quasi-static. Combining this

with the slow change in neuronal viability due to dimers at their natural concentrations makes

the simple first order decay of cell viability V with respect to dimer concentration straightfor-

ward to solve over the long time scales of AD development.

Ordinary differential equations. With only time-dependence (assuming conditions in

the brain are uniform throughout), after the effects of initial conditions are no longer relevant

(see S1 Text (Mathematical Details section)), we have

MðtÞ ¼
SðtÞ
kðtÞ

; DðtÞ ¼
nðtÞS2ðtÞ
mðtÞk2ðtÞ

; VðtÞ ¼ expð�
Z t

0

UðuÞduÞ ð10Þ

where we define

UðtÞ ¼
sðtÞnðtÞS2ðtÞ
mðtÞk2ðtÞ

; oðtÞ ¼ gUðtÞ: ð11Þ

From (10)2, we obtain the incidence, prevalence, and lifetime risk of the disease with Eqs

(8)2 and (9)1−2. In the special case that S, κ, μ, ν and σ are constant, representing ideal aging

whereby production, clearance, and other rates are optimal throughout life, we have

M ¼
�S
�k

D ¼
�n�S2

�m�k2
VðtÞ ¼ expð� �UtÞ ð12Þ

HðtÞ ¼ expð� �oUtÞ IðtÞ ¼ �o ð13Þ

PðtÞ ¼ 1 � e� �ominft;TDg Uðt1; t2Þ ¼ 1 � e� �oðt2 � t1Þ; ð14Þ

where

�U ¼
�s�n�S2

�m�k2
; �o ¼ g �U : ð15Þ

The value �U is an estimate for the rate neurons die in perfectly healthy brain tissue. The

value �o is an estimate for the rate at which AD develops in the perfectly healthy population.

Effectively, �U and U(t) describe events occurring at the cellular level and �o and ω(t) describe

events at the population level.

Partial differential equations. To study spatial effects, we consider the question of a

localized increase in Aβmonomer production and how this affects cells in the vicinity. We

consider a spherically symmetric source of excess monomers. We consider a hypothetical sce-

nario with k ¼ �k; m ¼ �m; n ¼ �n, and s ¼ �s. We choose S ¼ �S except over a sphere of radius

X� ¼ 2�x centered at x = 0 where the monomer production is increased by ρ = 23.1%. There,

PLOS COMPUTATIONAL BIOLOGY From reaction kinetics to dementia: A simple dimer model of Alzheimer’s disease etiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009114 July 19, 2021 8 / 24

https://doi.org/10.1371/journal.pcbi.1009114


S ¼ �Sð1þ rÞ. The choice of X� is made so as to be on the order of �x, a characteristic length a

monomer may diffuse before its clearance; and the choice of ρ comes from our findings on

traumatic brain injury where 0:231�S is a representative increase in monomer production. We

wish to study how the Aβ assemblies vary in space and how the viability changes over space

and time. The solutions are presented in Eqs (16) and (17)1−2.
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DðxÞ ¼
�nMðxÞ2

�m
Vðx; tÞ ¼ expð�

�s�nMðxÞ2

�m
tÞ ð17Þ

Model predictions

In this section we focus primarily upon the results. Commentary on the predictive power of

the model is in the Discussion. Readers can access our code at https://bitbucket.org/3k1m/

dimer_model_ad/src/master/.

From the model developed, a series of comparisons can be made between our model and

clinical observations. In general, we can consider our ODE model in two forms:

• A static model in which all rate constants are constant over a lifetime. This represents

an ideal situation in which age-related decreases in monomer clearance rate, increases in

monomer production, etc., do not take place. In this model, neuronal damage is as slow as

possible.

• A dynamic model in which the rate constants S and κ vary as in Eq (5)1−2. Here, through

aging, the rate constants change in disadvantageous directions.

While we believe the dynamic model is more accurate, explicitly taking into account the

aging process (S and κ change over time), it does not always lend itself to simple analysis. The

static model, although less quantitatively accurate, is particularly useful for gleaning qualitative

insights into parameters because its solutions are simple expressions.

Our PDE model, which takes into account spatial variations in the system, is done with the

kinetic rate constants being constant in time.

AD incidence, prevalence, and lifetime risk

Clinical data. Age is the single leading risk factor for developing AD. In the ODE model,

we can compare the predicted incidence, prevalence, and lifetime risk from the model with the

clinical data. We consider the incidence rate (per person) in the United States [34], the AD

PLOS COMPUTATIONAL BIOLOGY From reaction kinetics to dementia: A simple dimer model of Alzheimer’s disease etiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009114 July 19, 2021 9 / 24

https://bitbucket.org/3k1m/dimer_model_ad/src/master/
https://bitbucket.org/3k1m/dimer_model_ad/src/master/
https://doi.org/10.1371/journal.pcbi.1009114


prevalence by age range in the World Health Organization region AMRO A [19], and esti-

mates of lifetime risk. The lifetime risk at age 60 for males is 13.9% and for females is 20.1%

[49]. Averaging the two, we estimate the lifetime risk of AD is 17% at age 60. We investigate

these data with the ODE model.

Model. The incidence, prevalence, and lifetime risk described here are given by Eqs 8)2,

(9)1,2, (13)2 and (14)1,2.

Static model (κ, S constant). Over a lifetime, the incidence would be a constant, �I , given

by �I ¼ �o ¼ 9:34� 10� 5 yr� 1: By Taylor expanding (14)1, the prevalence at each age� TD =

7.1 yr is approximately constant, �P, with value �P ¼ �oTD ¼ 0:0663%; where γ is chosen based

on the dynamic model below. We can use (14)2 with t1 = 60 y and t2 = TL to estimate the life-

time risk of 0.17%.

Dynamic model (κ, S time-dependent). Allowing the rates to vary, we can examine how

the incidence and prevalence increase with age, which we depict in Fig 3. We choose γ so that

the dynamic model incidence at age 60 matches clinical data, finding γ = 0.601. Using a linear

best fit on the log-scale, our dynamic model predicts doubling times for prevalence and inci-

dence of 12 y and 11 y, respectively. The fact that the model’s predictions are within a factor of

2−3 of the clinically observed times is encouraging. From (9)2 with t1 = 60 y and t2 = TL, our

model predicts a lifetime risk of 2.4%.

Gene dosage and Down’s Syndrome

Clinical data. Due to the under- or over-expression of particular genes, the production of

monomers could be altered. For individuals with Down’s Syndrome, the trisomy of chromo-

some 21 results in life-long levels of APP that are� 1.5 times that of normal individuals [14,

15] and an AD incidence at least 3 times higher [50]. In addition, Down’s Syndrome patients

may present symptoms of dementia as early as age 40 [13].

Zigman et al. [51] have reported the cumulative incidence of AD within the general and

Down’s Syndrome populations. From their work, we estimate that at age 70, the prevalence of

AD is 4% in the general population and 65% in the Down’s Syndrome population. At age 80,

the prevalences are 18% and 70%, respectively. From these data, we find that at ages 70 and 80,

the ratios of the prevalences of AD among Down’s Syndrome individuals to the prevalence of

AD among the general population are 16.25 and 3.89, respectively.

Model. Based on the ODE model, we can predict the ratios of prevalences between the

Down’s Syndrome and general populations at ages 70 and 80. For the static model, these ratios

Fig 3. Incidence and prevalence. Comparison of static and dynamic models with clinical data for AD. The dotted

green lines represent the line of best fit to clinical data [19, 34] on log-scale; The black solid lines are the lines of best fit

to the dynamic model on log-scale. A: for prevalence, the clinical doubling time is 4.9 y and our dynamic model

predicts 12 y. B: for incidence, the clinical doubling time is 4.9 y and our dynamic model predicts 11 y. The value γ is

chosen so that clinical and dynamic model incidence agree at age 60.

https://doi.org/10.1371/journal.pcbi.1009114.g003
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are 2.24 and 2.24, respectively (the prevalence of the static model does not vary with ages

above TD). For the dynamic model, the ratios are 3.07 and 3.15, respectively.

Hippocampal volume (HV)

Clinical data. Changes in HV can take place during the aging process but these changes

are particularly extensive in AD patients. Frankó et al. [52] used MRI to estimate HV in longi-

tudinal studies of AD patients, mean age 75, patients with mild cognitive impairment (MCI),

mean age 75, and controls, mean age 76. They found that HV decreased by averages of 42

mm3, 30 mm3, and 15 mm3 per year in the AD, MCI, and control groups, respectively. The

average HVs reported at initial scans were 3934 mm3, 4127 mm3, and 4464 mm3, respectively.

Using these data, we can estimate that around age 75, the three groups have approximate

annual decreases in HV of 1.06% (AD), 0.727% (MCI), and 0.336% (control). We note some

studies in cognitively normal individuals have failed to find significant differences in HV but

did find statistically significant differences in some brain measures like the thicknesses of the

entorhinal cortex and parahippocampal gyrus when subjects were classified into two groups

Aβ+ and Aβ− with a Pittsburgh Compound B (PiB) MRI scan [53].

In a study by Gordon et al. [54], participants received MRI and PiB/PET scans along with

assays of tau and phosphorylated tau. Patients then were classified into four disease states

reflecting the presence/absence of amyloid (Aβ+/Aβ−) and the presence/absence of CSF tau/

phospho-tau, which were used as a proxy for neurodegeneration (ND+/ND−). We focus here

on the states 0 (Aβ−/ND−) and 2 (Aβ+/ND+), which we consider normal or “AD.” The study

found those in state 0 (mean age 63.4) had measured HVs of 7755 mm3 and those in state 2

(mean age 71.6) had measured HVs of 7063 mm3. Thus, the AD patients of mean age 71.6 had

HVs that were only 91.1% as large as those without AD and mean age 63.4.

Model. In the ODE model, if we assume HV is proportional to V(t), the model yields

estimates for HV changes over time. We test our static and dynamic models against the data

described above. We find the dynamic model adequately describes cognitively normal individ-

uals. To describe the HV rate of change in AD patients and the HV ratios at different ages, we

need to scale U(t) (11)1 up by a factor F> 1. This then leads us to examine how a distribution

of rate parameters within the population could influence clinical outcomes.

Static model (κ, S constant). With static values, each year, the hippocampal volume

should decrease by a rate
� V 0ðtÞ

VðtÞ ¼
�U ¼ 0:0154%y� 1: This is a factor of� 22 smaller than the

typical loss of HV in non-AD patients. However, we would not expect the agreement to be

strong because the static model does not include effects of aging upon rate constants like S
and κ.

Dynamic model (κ, S time-dependent). We compare the model predictions with clinical

findings in Fig 4. We plot what the HV would look like under the dynamic model with the rel-

ative change (V0(t)/V(t) = −0.29%/y) at age t = 75 y. This agrees well (within� 16%) with the

rate of change of −0.336%/y in the control group of Frankó.

Our model attempts to describe the average patient and their resulting HV (or neuronal

viability) over a lifetime. AD development is seen as a probabilistic event where the probability

of developing AD depends on the amount of HV lost. Our dynamic model does not match the

observed rate of −1.06%/y for the HVs in the Frankó AD patients (it is off by a factor of�

3.65). One possible means of reconciling this is by assuming those with AD on average have

U(t) values that are larger than the general population by a factor F = 3.65 so as to match

−1.06%/y. This AD-pathology model with rescaled rate constants is also shown in Fig 4.

Given the dynamic model and the AD pathology model, we can compute the ratio in HVs

between those at age 71.6 years (state 2+) to those of 63.4 years (controls). Taking the HV ratio
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of our AD pathology model at age 71.6 to the dynamic model at age 63.4 yields 0.859, which is

close to the observed 0.911 ratio (with� 6%).

Distributions of damage rates. We now ask whether the model allows for those with AD

to have higher values of U(t) than the rest of the population. For simplicity, we study the static

model and assume U(t) = U0, a constant, where U0� g(u) has a probability density function

with mean value U� and standard deviation S�.

On one hand, it may seem obvious that if someone has AD, more neurons have been

destroyed and an appreciably above average U0 is expected (U0 describes the rate of neuronal

death). But even people with lower values of U0 can develop AD and, depending on the distri-

bution, there could be many more people with average or below-average U0’s than those with

U0’s that are above the average. Thus, it is not immediately obvious that AD patients will have

above-average U0 values. This above-average U0 in the AD group turns out to be true, however,

which we show in the S1 Text (Uncertainty Quantification and Damage Distributions section).

It is in fact true even in the dynamic model when U(t) is U0 times an age-dependent scaling. In

particular, within the AD and non-AD populations, the average U0 values are

E½U0jAD
þ� � U� þ

S�
2

U�
; E½U0jAD

� � � U�: ð18Þ

Thus, those without AD on average have a “normal” U0 but those with AD on average have an

above average U0. This would allow for consistency between our model and the requirement

to scale U(t) to match AD-specific data.

Under these assumptions, we can be very specific with (18) about how spread out U0-values

are within the population. We find that S�2

U�2 ¼ F � 1 is most consistent with the data. Numeri-

cally, with F = 3.65, we find that the standard deviation to mean ratio is

S�=U� � F� ¼ 1:63: ð19Þ

Blunt force trauma

Clinical data. Whether the risk of developing AD definitively increases as a result of Trau-

matic Brain Injury (TBI) is not clear [55] as there are many factors at work: the nature of the

trauma, its location, whether consciousness was lost, and whether TBI incidents are reported/

remembered, etc. However, a more recent study by Fann et al. [56] does provide data for esti-

mated hazard ratios of developing AD given a patient’s history of TBI and years since their

first TBI. For our study, we focus upon the long-term risk of AD given the number of TBIs

using their “model 1”, which adjusts for age, sex, marital status, and calendar period, but does

not adjust for other comorbidities since the comorbidities may reflect physiological differences

between individuals, which would require further modeling.

After an acute TBI, it has been noted that APP processing increases, resulting in increased

Aβ production and deposition [57]. In studies on pigs with a head rotational acceleration

injury, axonal damage, resulting in an accumulation of APP, has been noted 6 months after

injury [58]. In humans, axonal damage and intra-axonal Aβ accumulation can last for years

[58]. It should be noted that neprilysin, an Aβ degrading enzyme, also appears to be upregu-

lated following TBI, which could counteract increased Aβ production. Olsson et al. [59] found

that after TBI, the concentration of ventricular cerebrospinal fluid-Aβ(1–42) increased over

the days following the event by�1073%. Likewise, in the days following the TBI, ventricular

cerebrospinal fluid-α-sAPP increased by 1933%.

Model. For simplicity, for each TBI, we assume the rate S increases by a fixed amount A,

without mitigating effects and we work with the static model to avoid needing the age of a
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patient at each of their TBIs. In the Discussion we comment on extending this to the dynamic

model.

Assuming that for each TBI, the monomer production rate rises by a constant value, the rel-

ative hazard rate (relative to having no TBIs) after having n TBIs should be R̂ ¼ 1þ n A
�S

� �2

based on Eqs (13)2 and (15)2. This model has one free parameter, a ¼ A=�S. After fitting, see

Fig 4, we venture the idea that, very approximately, each TBI results in a long-term increase in

the monomer production rate of approximately 0:231�S. While the Olsson et al. [59] did not

monitor Aβ concentration over years, given the massive (> 10-fold) increases in Aβ observed,

a lifetime increase of 23.1% is not unrealistic. Were Aβ concentration to increase by a factor

of 10, then, over that time window with such high Aβ-levels, the relative hazard rate would be

100!

Spatial spreading of AD

Using the PDE model, we gain insight into the effects of localized excesses of monomers. In an

idealized, spherically symmetric geometry with constant rate constants, we consider a hypo-

thetical scenario. We imagine that over a sphere radius of 2�x, the monomer production rate is

increased by an amount 0:231�S, the characteristic increase that we speculate results from a

TBI, and that this increased production remains constant over a lifetime. This results in a

modest excess of monomers and dimers above their baseline values. In turn, this affects the

viability of cells in that vicinity so that over a lifetime, cell damage is more pronounced nearer

to the excess monomer production. We display the results in Fig 5. These results suggest that if

a part of the brain is damaged, resulting in a local excess of monomers, the closer that region

of damage is to neurons that are particularly important for memory, the more likely lifetime

risk may be permanently elevated, even if these neurons were not originally damaged.

Another interesting result is the spatial extent over which monomer concentration is ele-

vated. In the example, monomer production is increased by� 20% over a radius of� 0.2 cm.

At the center, the monomer and dimer concentrations have risen by� 20% and� 40% over

their baseline values. However, on the surface of the sphere, the monomer and dimer concen-

trations have already diminished to almost their baseline values.

Fig 4. A: Time dependence of HV for the dynamic model with or without additional AD pathology. An HV of 1 is

maximal. At age 75, the annual changes in hippocampal volume are −0.015% (static model, not shown), −0.29%

(dynamic model), and −1.1% (AD pathology model—rates have been scaled to match this value). The HV ratio

between those at age 71.6 (AD pathology) to age 63.4 (CN) is 0.859. We can also compare within models. The

hippocampal volume ratios between age 71.6 to age 63.4 years are as follows: 0.999 (static), 0.984 (dynamic), and 0.944

(AD pathology). B: Traumatic Brain Injury. Our fit to clinical data [56] for the relative hazard rate R̂ vs number of

TBIs, n. The error bars represent one standard error. Model fit: R̂ðnÞ ¼ ð1þ anÞ2 with a ¼ A=�S to be estimated. The

fitted value is a = 0.231.

https://doi.org/10.1371/journal.pcbi.1009114.g004
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Uncertainty quantification

Here, we consider variability within the model including (1) how variations in the rate con-

stants affect disease outcomes, i.e., sensitivity; (2), how a hypothetical distribution of damage
rates within a population alter observable outcomes; and (3), how disease outcomes may be

observed in finite population sizes.

To keep the analysis simpler, we will assume

UðtÞ ¼
sðtÞS2ðtÞnðtÞ
k2ðtÞmðtÞ

¼ U0XðtÞ ð20Þ

oðtÞ ¼
gsðtÞS2ðtÞnðtÞ
k2ðtÞmðtÞ

¼ o0XðtÞ ð21Þ

where

U0 ¼
sð0ÞS2ð0Þnð0Þ

k2ð0Þmð0Þ
; o0 ¼

gsð0ÞS2ð0Þnð0Þ

k2ð0Þmð0Þ
ð22Þ

are the neuronal damage rate and the AD development rates at birth and X(t) is a scaling fac-

tor. For the static model, X(t) = 1. In the dynamic model, X(t) increases with age.

From these assumptions and Eqs (8)2 and (9)1,

PðtÞ ¼ 1 � expð� o0

Z t

maxf0;t� TDg

XðsÞdsÞ; IðtÞ ¼ o0XðtÞ ð23Þ

are the full time-dependent solutions. With S and κ varying as prescribed in Eq (5)1,2,
R
XðtÞdt ¼ l

3

k
ð t
l2

Slk
þ
ð 1
lS
þ 1
lk
Þ2

1� t=lk
þ

2ð 1
lS
þ 1
lk
Þ

lS
logð1 � t=lkÞÞ þ C:

Let f be a response variable that depends upon the quantity q. The sensitivity of f with

respect to q shall be denoted by

D
f
q ≔

q
f
@f
@q
; ð24Þ

Fig 5. Spatial model. A: the excess monomer production is taken to be spherically symmetric. The distance (x−axis) denotes the distance from the center of the

source. The dashed circle/lines represent the boundary where excess monomer production ceases. B: monomer and dimer concentrations, and monomer

production rate, versus distance from center. These values have been nondimensionalized by �M , �D, and �S, respectively. C: viability at various ages plotted

against position.

https://doi.org/10.1371/journal.pcbi.1009114.g005
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and it is the ratio of the relative change in f to the relative change in q. Roughly it is the percent-

age that f changes when q increases by 1%.

Model sensitivity. There are various approaches to assess how the model behaves in the

presence of perturbations to the parameters. We consider first small perturbations and

describe how outcomes vary with a 1% change in a parameter value, for instance. Then we

consider the possibility the AD development rate ω could vary substantially from our estimate.

Owing to the large uncertainty in rate constants, this is possible: literature suggests wide ranges

of values for �m [42, 43]. However, as described in the S1 Text (Uncertainty Quantification and

Damage Distributions section), the estimates we have are still valid in many of these cases.

Sensitivity analysis. Denoting P65 and I65 as the AD prevalence and incidence at age 65,

for example, we find that D
P65

o0
¼ 0:997, D

I65

o0
¼ 1, D

o

g
¼ 1, D

o0
�S ¼ 2, D

o0

�k
¼ � 2, D

o0

�m
¼ � 1,

D
o0

�n
¼ 1, and D

o0

�s
¼ 1.

Scaling AD development rate ω. In Fig 6, we plot the prevalence for the time-dependent

model by allowing ω0 to be scaled by several powers of 2. Roughly speaking, we find that the

incidence goes up by a factor of 2 every time ω0 does. What is interesting is that if we consider

clinical data for AD prevalence in males and females [60], the curves are different, possibly

reflecting differences in ω0 between the two sexes. This data is also presented in Fig 6. The

dynamic model, in contrast, does not saturate at a prevalence below 100%.

In clinical AD data [60], the rate of increase of prevalence appears to slow after around age

90, where we observe an inflection point (see arrow in Fig 6). It may be that relevant rate con-

stants such as S and κ change differently much later in life than in our model. Thus, while the

model may be mathematically valid up to λκ = 114 y, its qualitative description of prevalence is

most descriptive up to age� 90 y.

Distribution of initial damage rates U0. We consider an example system to illustrate the

effects of distributions of U0 within the population. From Eq (19), we speculated there could

be a probability distribution for U0 within the population with a mean of �U and a specified

standard deviation to mean ratio. We consider an example distribution given in Table 2. We

Fig 6. Significant variations of rate constants. A: the prevalence for the time-dependent model as ω0 is scaled. B:

clinically observed prevalence of AD in males (M) and females (F) [60] with inflection point marked by arrow.

https://doi.org/10.1371/journal.pcbi.1009114.g006

Table 2. Example distribution. The probability distribution here has that the mean U0 value is �U and the standard-

deviation to mean ratio is consistent with (19).

Value of U0 Probability

�U=10 0.765

3:93 �U 0.235

https://doi.org/10.1371/journal.pcbi.1009114.t002
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note there are many more people who have below average damage rates than those with above

average damage rates.

We explore the effects of distributions of U0 values upon prevalence and incidence both

analytically and through running stochastic simulations. We simulate a population of size 40,

000 over 90 years. These simulations are not deterministic. Results appear in the S1 Text

(Uncertainty Quantification and Damage Distributions section). We find that prevalence and

incidence are lower given a distribution of U0-values with a given mean �U than when �U is the

only value for U0. We show mathematically [61] in the S1 Text that this effect (that when U0 is

distributed about a mean, incidence and prevalence will be lower than or equal to the inci-

dence and prevalence when U0 can only take one single value) is independent of the specific

distribution. This is rather surprising as allowing a distribution of U0-values means that U0 can

be larger than �U in some individuals. But in the end, despite some having this larger rate, the

prevalence and incidence end up being smaller. Put another way: if within a population there

are people with a distribution of U0-values then if everyone in the population had a damage

rate equal to the mean (and this would include lowering the damage rate of those with above-

average values), prevalence and incidence would both increase! However, the difference

between fixing U0 ¼
�U and having a distribution is small.

Effects of population size. From the stochastic simulations described in the preceding

section, for a fixed initial population size N0, we can compute confidence intervals for observ-

ables like prevalence and incidence. We find the upper and lower bounds of the confidence

intervals are very close to the mean value. As N0!1, i.e., for large enough populations that

have been observed, which is on the order of several million for AD, all simulations tend to

yield the mean value, which we have already calculated (see S1 Text (Uncertainty Quantifica-

tion and Damage Distributions section)).

Discussion

Quantitative predictions

We have developed a mathematical model for AD risk and progression based on the kinetics

of Aβ oligomerization and clearance and its relationship to neuronal viability. We sought to

combine data concerning oligomer kinetics and neuronal properties such as sensitivity to olig-

omers and microscale in the brain and infer their effect upon changes in brain physiology and

AD development on a macroscale over a lifetime. Besides one free parameter, γ, the macroscale

information was not used for fitting. As a result, agreement with clinical data is significant.

Even qualitative agreement is significant. Even if precise values of the parameters are not

known at the time, qualitative agreement could suggest the correct mechanisms are incorpo-

rated in the model. We summarize the results in Table 3 and discuss the comparisons below.

Hippocampal volume. The dynamic model predicts an annual rate of HV loss in cogni-

tively normal individuals at age 75 to within 16% of the rate found in patients, thus successfully

modeling the normal aging process and changes to HV over time [52]. This is very promising

as only rate constants based on oligomer kinetics (monomer production rate, dimerization

rate, etc.) and cell viability assays were used, yet the model accurately described large scale

physiological changes taking place over years or decades. Our model then showed that the

average neuronal damage rate could be higher on average among patients with AD. By assum-

ing the damage rate is F = 3.63 times higher in AD patients, we were then able to describe the

rate of HV loss per year in AD patients at age 75. We found that the ratio of brain volumes

among those with mean age 71.6 y who had AD to those without AD with mean age 63.4 y dif-

fered from published values [54] by only 6%.
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Traumatic brain injury. By assuming that each TBI increases monomer production

by a fixed amount 0:231�S due to the quadratic dependence of incidence upon monomer

concentration, our static model predicts that the relative incidence R̂ with n TBIs is given by

R̂ðnÞ ¼ ð1þ 0:231nÞ2. The agreement with clinical data is nearly perfect [56].

Similar results could be obtained with the dynamic model, but we would have to assume

that SðtÞ ¼ �Sð1þ 0:231nÞXðtÞ. We could interpret this as roughly saying: monomer produc-

tion scales with X(t) due to increased γ-secretase activity over a lifetime and it is proportional

to the amount of APP, which grows by 0.231 of its baseline value for each TBI. We note that

TBI leading to AD could be mediated by proteins other than Aβ. As we remark in the Cell Via-

bility, Incidence, and Prevalence section, although beyond the scope of our current work, the

model could be modified to include such effects.

Prevalence and incidence. The dynamic model predicts AD prevalence and incidence

double every 12 and 11 y, respectively, which is close (within a factor of� 2 − 3) to the 4.9 y

observed clinically for both [19, 34]. The factor of 2 − 3 is not concerning as the empirical for-

mulas to model S(t) and κ(t) were as simple as possible (linear). The fact that over the age

ranges clinically studied our model yields approximate exponential growth and that this

growth rate is even within an order of magnitude of the clinical data shows promise.

With all of the constants from the oligomerization rate constants and neuronal sensitivity

fixed, we only had one free parameter, γ, which was used to match incidence data at age 60.

The doubling times for incidence (and prevalence, at least approximately), are independent of
γ. Thus, the comparison here is entirely based on the extrapolation of cell-scale phenomena to

the population scale studied over decades. The model and clinical incidence and prevalence do

not agree because the doubling times do not match and thus the errors will get worse with age.

The agreement between model and clinical incidence at age 60 is due to the choice of γ.

Lifetime risk. The lifetime risk of someone 60 y of age developing AD has been reported

to be 17% [49]. Our dynamic model predicts a value of 2.4%. The prediction is only accurate to

Table 3. Summary of model results. Each result is presented in this manuscript. Three significant figures are used as

the model results come from formulas and the parameters were stored with 3 significant figures.

Phenomena Clinical Data Model Result

HV rate of change −0.336%/y control age 76 [52] Predict −0.29%/y

HV rate of change −1.06%/y AD age 75 [52] Infer AD group has higher damage rate by factor

F = 3.63 and possible damage rate distribution

HV ratios Ratio is 0.911 for AD group at

age 71.6 to control at age 63.4

[54]

Predict: 0.859

TBI Relative Incidence as function

of number of TBIs [56]

Assuming each TBI increases monomer production

by 0:231�S, nearly perfect match
Prevalence & Incidence Both double every 4.9 y [19, 34] Predict doubling times of 12 y and 11 y, respectively

Prevalence & Incidence Observed variation with age

[19, 34]

Does not agree

Lifetime risk 17% from age 60 [49] Predict: 2.4%

Down Syndrome relative

prevalence

� 3 − 16 times higher [50, 51] Predict: 3.07 − 3.15 times higher risk, depending on

age

Down Syndrome

prevalence and relative

prevalence

Variation with age [51] Does not agree

Localized Increase of

Monomer Production

N/A Quantitative description of monomer, dimer, and

viability vs time near a focus of � 1 mm3 increased

monomer production

https://doi.org/10.1371/journal.pcbi.1009114.t003
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within an order of magnitude. The main reason for the magnitude of this difference is mathe-

matical: if the incidence values are not accurate in the model, the accumulated risks we calcu-

late will not be valid either.

Down’s syndrome. Those with Down’s Syndrome, who express� 50% more APP than

normal individuals, will have an AD prevalence that is much more than 50% higher. This is a

quantitative mystery. The relative prevalence ranges from 3 to perhaps 16 [50, 51]. Our model

suggests that those with Down’s Syndrome have a relative prevalence of 3.15 at age 80. The fact

that our model accurately describes the ≳ 3-folder greater prevalence is an accomplishment.

In general, we find that if monomer production increases by a factor O2 then incidence and

prevalence increase by at least�O2 (see S1 Text (Uncertainty Quantification and Damage Dis-

tributions section)). This is a lower bound that ignores age-dependent changes in kinetic rate

constants. By including this quadratic dependence with a more rapid increase of γ−secretase

activity observed in Down’s Syndrome patients, we have gained insights into the much higher

prevalence.

Spatial spreading of AD. We were able to consider a hypothetical scenario where mono-

mer production was increased over a millimeter scale for a lifetime. Our model provided

quantitative insights into the monomer and dimer concentrations and the cell viability as a

function of distance from the excess production at various ages. It will be interesting to see if

this prediction from the model is observed in patients. To our knowledge, such information is

not yet available.

Age-dependent toxicity σ. As a further exercise, we consider how the model agreement

can improve with a linear, age-dependent toxicity function σ(t). Our model applies to the

general possibility that rate constants other than S and κ vary slowly with age. We take σ(t) =

σ0(1 + t/λσ) with σ0 a constant. We thus assume σ increases with age. Data do suggest that

older neurons are more sensitive to Aβ oligomers [62]. Studies have also found that with age,

energy production and DNA repair may be reduced in cells [63]; and within the brain, neu-

rons experience increased oxidative stress, perturbed energy homeostasis, and accumulations

of damaged proteins [64]. Indeed, σ increasing with age is likely.

What we find is that if λσ = 9.01 y, s0 ¼ 0:107�s, and γ were set to 0.732 from its present

0.601, then we recover the HV data as before, AD prevalence doubles every 8.9 y, and AD inci-

dence doubles every 10 y over the range of ages we fit previously. This agrees even better with

the clinical doubling times of 4.9 y for both incidence and prevalence. Details are presented in

the S1 Text (Uncertainty Quantification and Damage Distributions section).

Implications

If the model’s rate constants accurately represent those occurring in vivo then, by Eqs (11)2 or

(15)2, the model predicts that the rate of neuronal death (and AD incidence) is proportional

to S2 (S is the Aβmonomer production rate), ν (dimerization rate), and σ (cell sensitivity to

dimers) and inversely proportional to both κ2 (κ is the Aβmonomer clearance rate) and μ
(dimer dissociation rate). The quadratic dependencies are most significant: If S increases by a

factor of 2 (or if κ decreases by a factor of 2), the neuronal death rate quadruples. While it is

logical that lower monomer production and increased clearance would be therapeutically ben-

eficial, our study here gives a quantitative (quadratic) basis for the effects of these treatment

objectives. The other factors σ, ν, and μ only influence the death rate in direct proportion (or

inverse proportion) to their value. For instance, if μ doubles, the death rate goes down by a fac-

tor of 2.

The ODE model accounts for the loss of HV over a lifetime and the changes in AD risk

associated with APP gene dosage. If APP gene expression changes by a factor O then relative
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risk scales by at least O2. The static ODE model, through fitting for a free parameter, allows us

to precisely describe how TBI increases one’s lifetime risk of AD if each TBI increases the

monomer production rate by 0:231�S. The PDE model provides an understanding of how Aβ
concentrations and cell viability could vary over millimeter scales, leading us to speculate that

the location of a TBI may influence the increased lifetime risk of AD: even if a brain injury

occurs away from a neuron that is especially important for memory, our model suggests that

the closer the injury is to such a neuron, the greater the long-term AD risk. Efforts to reduce

excess Aβ production near a site of injury could reduce AD risk.

Through uncertainty quantification, we found that variations in the neuronal damage rate

and AD development rates within people can give rise to surprising phenomena. For example,

if the mean value of the damage rate is fixed within the population then populations with dis-
tributions of damage rates (by which we mean not all the damage rates are the same) will have

lower prevalence and incidence than populations where everyone’s damage rate is precisely

the mean value. In addition, the mean damage rate among the AD population, even if most

of the people in the population have damage rates below the mean, will be higher than the

mean. Through a comparison between male and female AD prevalence data, it is that possible

some differences in prevalence stem from males and females having different AD development

rates ω.

Model improvements

We have shown that a model comprising of only a few mechanisms and assumptions is able to

recapitulate many observed features of AD and aging. However, as would be expected for a

new model, there are areas where the model is not accurate, such as the values of incidence

and prevalence of AD year-by-year. Some natural next steps to improve the model could

include accounting for: (1) the myriad of enzymes involved in Aβmetabolism; (2) genetic fac-

tors; (3) variations between brains; (4) cell repair; (5) coupling monomer production rates

with the health/viability of the cells; (6) distinguishing the unique contributions of Aβ40 and

Aβ42 to the pathogenesis of AD (both were considered equivalent); (7) expanding anatomical

considerations from just interstitial fluid to the brain parenchyma and its distinct regions, ide-

ally accounting for stereotypical spreading of disease (Braak staging); (8) accounting for differ-

ences in Aβ-induced toxicity among different neuronal cell types and brain regions; and (9)

including contributions of glial cells and microglia.

We also would like to include more data to better account for nonlinearities in model

results. As a heuristic example, we found that with static rate constants, the HV of a subject of

age t would scale with e� �U t . Most studies had a distribution of subject ages and HVs. For our

models, we used the mean age for t as the time variable and the mean HV as a target volume as

we did not have access to each subject’s data. However, it is not generally true that the mean
value of a nonlinear function evaluated at a series of inputs is equal to the nonlinear function
evaluated at the mean value of the inputs.

Most of our results come from the ODE model, which describes the brain as a homoge-

neous volume or describes the case in which the diffusion of monomers and dimers is infinite.

The PDE model offers more opportunity to explore spatial effects. While our present PDE

analysis did not consider the finiteness of the brain, the model could be adapted to describe

boundary conditions, such as the blood brain barrier, and differences in brain compartments,

such as location-dependent rate constants, varying diffusivities, etc.

In many cases, the model’s limitations stem from a lack of data pertaining to in vivo mea-

surements of Aβ kinetics and oligomer toxicity. It would be of particular interest if the model-

ing assumptions and assumed rate constants could be validated clinically. However, one of the
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benefits of such a simple model is that many results can be obtained and understood from sim-

ple formulae, which could easily become intractable, and inaccurate (overfitted), with more

elements and systems included. We expect many of the results presented would still hold, even

if the rate constants changed significantly—provided the same processes can be deemed negli-

gible from the larger-scale system behavior. In this sense, the model is quite robust even con-

sidering its limitations.

There are numerous other factors that have been implicated in AD risk and pathogenesis

including diet, exercise, mood, brain activity, education, and sleep quality (impaired glympha-

tic clearance of Aβmonomers during sleep [65, 66] may reduce κ, which would accelerate neu-

ronal damage). Of course, many other factors likely exist about which we are unaware. These

also could influence the model’s rate parameters so that some individual’s exhibit a faster neu-

ronal death rate and increased risk for AD at every age. We expect our model to be used to

conceive of new experiments in clinical and basic science settings and to be modified as the

results of these experiments become available—a ping-pong effect.

Conclusions and future work

We have developed a simple mathematical model describing the time dependence of develop-

ment of AD and the contributions of Aβmonomers, dimers, and trimers to it. The model

produces explicit equations whose solutions are consistent with clinical features of disease

development and allow for interpretation of individual terms and rate constants. For example,

the ratio of monomer production to monomer clearance, S/κ, is a term that is highly signifi-

cant, suggesting that its reduction would lessen disease risk and slow progression. The model

serves as a starting point for numerical simulations and in silico studies. Most importantly, the

fact that such a complicated disease process can be simplified so much and produce accurate,

clinically verified predictions suggests that the model can be used to test existing, and yield

new hypotheses about disease causation. This would be especially valuable for studying aspects

of AD for which little experimental data are available or the application of experimental or

clinical methods of study is impractical. For example, the model could be used to explore the

effects of predetermined numbers and magnitudes of TBIs on localized increased expression

of APP and Aβ and consequent disease initiation and progression.

Supporting information

S1 Text. This file contains the parameter estimation and mathematical analysis for our

study. Table A: Viability Data. Values were estimated from graphs published by Lambert et al.
[30] and Cizas et al. [31]. Standard errors for the Lambert data in the control (oligomer con-

centration of 0) are based on a worst-case estimate. The figure markings obscured the error

bars and we chose the half-width of the largest marker as the standard error as part of the cal-

culation. The study of Lambert et al. did not specify whether the error bars displayed were

standard errors or standard deviations. We assume standard errors. Such variations only

change σ by a modest scaling factor. Table B: Dimensionless parameters. With �� 1 chosen,

these serve as constants for the asymptotic calculations. For the values displayed, we use

�S ¼ �SG. All parameters except for � are O(1). The bottom parameters ensure that the slow

timescales over which κ and S change are on the scale of 1/�2. Fig A: Viabilities at various olig-

omer concentrations after 24 hours. We fit the model to viability data [30, 31]. The errors bars

represent two standard errors. Fig B:U0 values conditioned on disease. The mean value of U0

is plotted among patients with AD, AD+ and patients without AD, AD− as a function of age.

The approximations derived above are extremely accurate, even in the dynamic model. A:

static model. B: dynamic model. Fig C: Confidence Windows. The solid line is the simulation
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mean and the dashed lines represent the boundaries of the 95% confidence window. A/B: with

U0 fixed and static; C/D: with U0 fixed and dynamic; E/F: with U0 from example distribution

and static; G/H: with U0 from example distribution and dynamic. Fig D: Stochastic Trajecto-

ries. A few random trajectories of prevalence and incidence for the entire population. A/B:

with U0 fixed and static; C/D: with U0 fixed and dynamic; E/F: with U0 from the example distri-

bution and static; G/H: from U0 from example distribution and dynamic. Fig E: Incidence

Model. A: U0 fixed and static; B: U0 fixed and dynamic; C: U0 from example distribution and

static; D: U0 from example distribution and dynamic. Prevalence Model. E: U0 fixed and static;

F: U0 fixed and dynamic; G: U0 from example distribution and static; H: U0 from example dis-

tribution and dynamic. Incidence variation with ω0. I: incidence for dynamic model with ω0

varying. Fig F: Age-Dependent Toxicity. A: prevalence curve [19]. B: incidence curve [34]. C:

HV curve.

(PDF)

Acknowledgments

The authors would like to thank Colleen Sun for help in the early stages of this research.

Author Contributions

Conceptualization: Michael R. Lindstrom, Manuel B. Chavez, Elijah A. Gross-Sable, Eric Y.

Hayden, David B. Teplow.

Formal analysis: Michael R. Lindstrom.

Investigation: Michael R. Lindstrom.

Methodology: Michael R. Lindstrom, Manuel B. Chavez, Elijah A. Gross-Sable, Eric Y. Hay-

den, David B. Teplow.

Supervision: Michael R. Lindstrom.

Validation: Manuel B. Chavez, Elijah A. Gross-Sable.

Visualization: Manuel B. Chavez, Elijah A. Gross-Sable.

Writing – original draft: Michael R. Lindstrom, David B. Teplow.

Writing – review & editing: Michael R. Lindstrom, Manuel B. Chavez, Elijah A. Gross-Sable,

Eric Y. Hayden, David B. Teplow.

References

1. Kochanek KD, Murphy SL, Xu J, Tejada-Vera B. Deaths: Final Data for 2014. National Vital Statistics

Reports. 2019; 65(4):1–121.

2. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline:

2019. Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2019 2019/10/22;

5:272–293. Available from: https://doi.org/10.1016/j.trci.2019.05.008. PMID: 31334330

3. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992; 256:184–

185. https://doi.org/10.1126/science.1566067 PMID: 1566067

4. Ono K, Condron MM, Teplow DB. Structure-neurotoxicity relationships of amyloid β-protein oligomers.

Proceedings of the National Academy of Sciences USA. 2009; 106(35):14745–14750. Available from:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=

19706468. PMID: 19706468

5. Roychaudhuri R, Yang M, Hoshi MM, Teplow DB. Amyloid β-Protein Assembly and Alzheimer Disease.

Journal of Biological Chemistry. 2009; 284(8):4749–4753. Available from: http://www.jbc.org/content/

284/8/4749.short. PMID: 18845536

PLOS COMPUTATIONAL BIOLOGY From reaction kinetics to dementia: A simple dimer model of Alzheimer’s disease etiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009114 July 19, 2021 21 / 24

https://doi.org/10.1016/j.trci.2019.05.008
http://www.ncbi.nlm.nih.gov/pubmed/31334330
https://doi.org/10.1126/science.1566067
http://www.ncbi.nlm.nih.gov/pubmed/1566067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19706468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19706468
http://www.ncbi.nlm.nih.gov/pubmed/19706468
http://www.jbc.org/content/284/8/4749.short
http://www.jbc.org/content/284/8/4749.short
http://www.ncbi.nlm.nih.gov/pubmed/18845536
https://doi.org/10.1371/journal.pcbi.1009114


6. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein

dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medi-

cine. 2008 08; 14(8):837–842. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18568035. PMID:

18568035

7. Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-βOligomer Hypothesis: Beginning of the Third

Decade. J Alzheimer’s Disease. 2018; 64(s1):S567–S610. https://doi.org/10.3233/JAD-179941 PMID:

29843241

8. Chen XQ, Mobley WC. Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology

Studies of Oligomeric Aβ and Tau Species. Frontiers in Neuroscience. 2019 06; 13:659–659. Available

from: https://www.ncbi.nlm.nih.gov/pubmed/31293377. PMID: 31293377

9. Hayden E, Teplow DB. Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimer’s Res Ther.

2013; 5(6):60. https://doi.org/10.1186/alzrt226 PMID: 24289820

10. Greenwald J, Riek R. Biology of Amyloid: Structure, Function, and Regulation. Structure. 2010; 18

(10):1244–1260. https://doi.org/10.1016/j.str.2010.08.009 PMID: 20947013

11. Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, et al. Aβ(1–42) fibril structure illuminates

self-recognition and replication of amyloid in Alzheimer’s disease. Nature Structural & Molecular Biol-

ogy. 2015; 22(6):499–507. https://doi.org/10.1038/nsmb.2991 PMID: 25938662

12. Chuang E, Hori AM, Hesketh CD, Shorter J. Amyloid assembly and disassembly. Journal of Cell Sci-

ence. 2018; 131(8). Available from: https://jcs.biologists.org/content/131/8/jcs189928. PMID: 29654159

13. Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VL, et al. A genetic cause

of Alzheimer disease: mechanistic insights from Down syndrome. Nature Reviews Neuroscience. 2015;

16(9):564–574. https://doi.org/10.1038/nrn3983 PMID: 26243569

14. Oyama F, Cairns NJ, Shimada H, Oyama R, Titani K, Ihara Y. Down’s syndrome: Up-regulation of β-

amyloid protein precursor and τ mRNAs and their defective coordination. Journal of neurochemistry.

1994; 62(3):1062–1066. https://doi.org/10.1046/j.1471-4159.1994.62031062.x PMID: 8113792

15. Rumble B, Retallack R, Hilbich C, Simms G, Multhaup G, Martins R, et al. Amyloid A4 protein and its

precursor in Down’s syndrome and Alzheimer’s disease. New England Journal of Medicine. 1989; 320

(22):1446–1452. https://doi.org/10.1056/NEJM198906013202203 PMID: 2566117

16. Cheon MS, Dierssen M, Kim SH, Lubec G. Protein expression of BACE1, BACE2 and APP in Down

syndrome brains. Amino Acids. 2008 Aug; 35(2):339–343. Available from: https://doi.org/10.1007/

s00726-007-0618-9. PMID: 18163181

17. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annual Review

of Neuroscience. 2011; 34:185–204. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21456963.

PMID: 21456963

18. Alzheimer’s disease fact sheet; 2019. Available from: https://www.nia.nih.gov/health/alzheimers-

disease-fact-sheet.

19. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia:

a Delphi consensus study. The Lancet. 2005; 366(9503):2112–2117. https://doi.org/10.1016/S0140-

6736(05)67889-0 PMID: 16360788

20. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) esti-

mated using the 2010 census. Neurology. 2013 05; 80(19):1778–1783. Available from: https://www.

ncbi.nlm.nih.gov/pubmed/23390181. PMID: 23390181

21. Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiol-

ogy and targeting strategies. Nature Reviews Neurology. 2019;p. 1. https://doi.org/10.1038/s41582-

019-0228-7 PMID: 31367008

22. Mendez M. What is the relationship of traumatic brain injury to dementia? J Alzheimer’s Disease. 2017;

57:667–681.

23. Turner RC, Lucke-Wold BP, Robson MJ, Lee JM, Bailes JE. Alzheimer’s disease and chronic traumatic

encephalopathy: Distinct but possibly overlapping disease entities. Brain Injury. 2016; 30(11):1279–

1292. https://doi.org/10.1080/02699052.2016.1193631 PMID: 27715315

24. Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ. Soluble amyloid β-protein dimers isolated

from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proceed-

ings of the National Academy of Sciences. 2011; 108(14):5819–5824. https://doi.org/10.1073/pnas.

1017033108 PMID: 21421841

25. Bernstein MA, Griffin J. Regional differences in the price-elasticity of demand for energy. National

Renewable Energy Lab.(NREL), Golden, CO (United States); 2006.

26. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB. Amyloid b-protein fibrillogenesis—

Detection of a protofibrillar intermediate. Journal of Biological Chemistry. 1997; 272(35):22364–22372.

https://doi.org/10.1074/jbc.272.35.22364

PLOS COMPUTATIONAL BIOLOGY From reaction kinetics to dementia: A simple dimer model of Alzheimer’s disease etiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009114 July 19, 2021 22 / 24

https://www.ncbi.nlm.nih.gov/pubmed/18568035
http://www.ncbi.nlm.nih.gov/pubmed/18568035
https://doi.org/10.3233/JAD-179941
http://www.ncbi.nlm.nih.gov/pubmed/29843241
https://www.ncbi.nlm.nih.gov/pubmed/31293377
http://www.ncbi.nlm.nih.gov/pubmed/31293377
https://doi.org/10.1186/alzrt226
http://www.ncbi.nlm.nih.gov/pubmed/24289820
https://doi.org/10.1016/j.str.2010.08.009
http://www.ncbi.nlm.nih.gov/pubmed/20947013
https://doi.org/10.1038/nsmb.2991
http://www.ncbi.nlm.nih.gov/pubmed/25938662
https://jcs.biologists.org/content/131/8/jcs189928
http://www.ncbi.nlm.nih.gov/pubmed/29654159
https://doi.org/10.1038/nrn3983
http://www.ncbi.nlm.nih.gov/pubmed/26243569
https://doi.org/10.1046/j.1471-4159.1994.62031062.x
http://www.ncbi.nlm.nih.gov/pubmed/8113792
https://doi.org/10.1056/NEJM198906013202203
http://www.ncbi.nlm.nih.gov/pubmed/2566117
https://doi.org/10.1007/s00726-007-0618-9
https://doi.org/10.1007/s00726-007-0618-9
http://www.ncbi.nlm.nih.gov/pubmed/18163181
https://www.ncbi.nlm.nih.gov/pubmed/21456963
http://www.ncbi.nlm.nih.gov/pubmed/21456963
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
https://doi.org/10.1016/S0140-6736(05)67889-0
https://doi.org/10.1016/S0140-6736(05)67889-0
http://www.ncbi.nlm.nih.gov/pubmed/16360788
https://www.ncbi.nlm.nih.gov/pubmed/23390181
https://www.ncbi.nlm.nih.gov/pubmed/23390181
http://www.ncbi.nlm.nih.gov/pubmed/23390181
https://doi.org/10.1038/s41582-019-0228-7
https://doi.org/10.1038/s41582-019-0228-7
http://www.ncbi.nlm.nih.gov/pubmed/31367008
https://doi.org/10.1080/02699052.2016.1193631
http://www.ncbi.nlm.nih.gov/pubmed/27715315
https://doi.org/10.1073/pnas.1017033108
https://doi.org/10.1073/pnas.1017033108
http://www.ncbi.nlm.nih.gov/pubmed/21421841
https://doi.org/10.1074/jbc.272.35.22364
https://doi.org/10.1371/journal.pcbi.1009114


27. Hasecke F, Miti T, Perez C, Barton J, Schölzel D, Gremer L, et al. Origin of metastable oligomers and

their effects on amyloid fibril self-assembly. Chem Sci. 2018; 9:5937–5948. Available from: http://dx.doi.

org/10.1039/C8SC01479E. PMID: 30079208
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