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Abstract 

What is the role of feedback information in different visual 
category learning (VCL) scenarios? To address this question 
we tested participants’ performance in VCL tasks in which 
stimuli varied in three feature dimensions, one of which was 
relevant for the task and the other two were irrelevant. The 
relevant feature could be identified based on trial-by-trial 
feedback. In one condition the task relevant and irrelevant 
features were highly-salient. In the second condition all 
features had low-visual-saliency. Feedback information was 
also manipulated: In the high-information condition the task 
relevant feature could be identified by the information 
provided in each trial whereas in the mid-information 
condition the feedback was ambiguous and information from 
several learning trials was required in order to confidently 
identify the relevant feature. Surprisingly, our data shows that 
mid- and high-information feedback are similarly effective in 
high-saliency VCL tasks. In contrast, in low-saliency VCL 
tasks, mid-information feedback impairs learning. We suggest 
that VCL can be done effectively either when feedback is 
ambiguous or in low-saliency conditions, but not in scenarios 
when both challenges occur concurrently.  
 
Keywords: Visual category learning; Feedback information; 
Attentional learning; Perceptual learning; Feature-saliency. 

 
Introduction 

Humans are capable of effectively managing a vast amount 
of sensory information, rapidly rendering it into a coherent, 
reliable and meaningful representation of objects and 
events. This capability depends on two fundamental 
learning processes: One is perceptual learning which allows 
identifying subtle, initially hard to detect, differences 
between stimuli (Goldstone & Barsalou, 1998; Kourtzi, 
2010). The other is attentional learning which requires 
shifting attention to relevant attributes while at the same 
time filtering out irrelevant, even if salient, visual attributes 
(Blair, Watson & Meier, 2009; Kalish & Kruschke, 2000; 
Rehder & Hoffman, 2005). It is known that these two forms 
of learning allow reducing the probability of future decision 
errors by improving discriminability among similar objects 
from different categories, and allowing effective 
generalization to novel stimuli. To date, it is not clear how 
these processes interact in different learning scenarios.  

Difficulty in perceptual learning tasks is determined by 
feature-saliency. Difficulty in attentional learning tasks is 
determined by the numbers of simultaneous perceptual 
features one has to process when categorizing objects. 

Learning trajectories in both attentional and perceptual 
learning tasks are also determined by the availability of 
informative feedback. In this study we examine the 
interaction between perceptual and attentional learning by 
testing the interaction between feature-saliency and 
feedback information in visual category learning (VCL) 
tasks of complex visual stimuli.  

We define feature-saliency as the physical dissimilarity 
between stimuli in a given feature dimension. When objects 
are perceived as highly dissimilar across a feature 
dimension, this feature is perceived as more diagnostic than 
lower-saliency feature dimensions (Chin-Parker & Ross, 
2004). In each VCL task in our experiment stimuli differed 
from one another in three feature dimensions, yet only one 
was relevant for correctly categorizing the stimuli. In each 
task we kept the relative feature saliency (low or high) 
similar across all three feature dimensions making them 
equal candidates for being perceived as task relevant. 
Therefore, the diagnostic value of each feature could be 
determined only by the information provided by feedback. 

We define the feedback information level based on its 
ambiguity. In each learning trial we presented a pair of 
stimuli and the participant had to determine if these stimuli 
belong to the same category or different categories. We used 
two levels of feedback information: 1) In the high-
information learning condition the feedback in each and 
every trial provided sufficient information for learning the 
rule as same-category pairs were identical only in the task 
relevant feature and differed in the two irrelevant ones, 
whereas different-categories pairs were different only in the 
task relevant feature (and identical in the two irrelevant 
ones). If A denotes the relevant feature, B and C the 
irrelevant features, and X is the outcome of a categorization 
decision, the only possible trial-by-trial inferred causality (a 
feasible feature-decision association) in the high-
information condition was ...XAXAXA   
2) In the mid-information condition each trial was 
ambiguous as same-category pairs were identical in the task 
relevant feature and one of the two irrelevant features 
(randomly alternating between the two), whereas different-
categories pair were different in the task relevant feature 
and one of the irrelevant features. The causality here was

)...()()()( XBAXCAXCAXBA   
This learning scenario is more likely to require distributing 
attention between features and integrating information 
across more trials in order to learn the categorization rule.  
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We expect VCL efficiency to depend both on feature-
saliency and the level of feedback information. Specifically, 
we hypothesize that when differences across visual feature 
dimensions are hard to detect, shifting attention from one 
feature to the other will not be effective due to the poor 
representation of features. This will become a greater 
challenge when feedback is ambiguous, making it harder to 
associate a feature representation with the corresponding 
decision outcome (Nosofsky & Palmeri, 1996). In contrast, 
when feature-saliency is high, relevant visual information is 
readily available, enabling to rapidly shift attention away 
from irrelevant features. This may allow effective learning 
even in the face of ambiguous feedback. Therefore, we 
expect an interactive effect of feature-saliency and feedback 
information. Nevertheless, based on current knowledge, we 
cannot predict whether this interaction will manifest as an 
additive effect or as an augmented interference in which the 
effect of feedback ambiguity on learning efficiency will be 
more profound in low-saliency learning conditions. 
 

Methods 
Participants 
Sixty paid adults (36 females), with normal or corrected to 
normal vision, participated in the experiment. The 
experiment was approved by the Stanford University IRB. 
 
Materials and setting 
We ran the experiment using Psychtoolbox (MATLAB®) 
on 1920X1200 pixels computer display. Participants’ head 
was located about 70 cm (~2 feet) from the computer screen 
such that each one of the two simultaneously presented 
stimuli occupied approximately 14 of the visual field.  
 
Stimuli 
We used four distinct sets of novel creature-like stimuli. In 
each set the stimuli varied in three feature dimensions (see 
examples in Figure 1). Exemplars for each stimulus set were 
produced from one standard object and three morph targets, 
each differed from the standard in one feature dimension. 
For VCL tasks with high-feature-saliency we used high 
morph values (at least 77%). Low-saliency exemplar pairs 
differed by small morph values (22-33%). The morphing 
values we used were determined based on pilot tests such 
that within each stimulus set differences in all feature 
dimensions were similarly likely to be detected. We also 
ensured that in the low-saliency condition differences within 
each feature dimension will be not detected easily without 
feedback. For each stimulus set we determined two 
categories. Members of each category varied in the two 
irrelevant feature dimensions and were identical in the third. 
This third feature-dimension was the diagnostic feature-
dimension differentiating between the two categories. 
 
Design  
Tasks differed in feature saliency (high-saliency vs. low-
saliency), and three levels of feedback information. In high-
saliency VCL tasks both within-category and between-

categories differences had high-saliency. In low-saliency 
VCL tasks both within-category and between-categories 
differences had low-saliency. In each VCL task participants 
were trained with one of three levels of feedback 
information: 1) High-level information feedback that 
potentially enabled identifying the diagnostic feature within 
each learning trial; 2) mid-level information feedback, in 
which each learning trial provided ambiguous information 
regarding which feature was the relevant one; 3) In addition 
to these two feedback-based learning conditions, we also 
tested participants in a control condition in which no 
feedback was provided to the participants. This provided a 
useful benchmark for assessing the contribution of feedback 
information to learning. 

Each VCL task was based on a different stimulus set and 
a unique combination of feature-saliency and feedback 
information level. In order to prevent cross-conditions 
differences in categorization performances that derive from 
differences between stimulus sets, we counterbalanced the 
tasks across participants such that each one of the four 
stimulus sets was used in each one of the six experimental 
conditions the same number of times.  

 

  
 

Figure 1: Examples of pairs of creatures from the four 
stimulus sets. Each row shows examples from a different 
stimulus set. Left: high-saliency pairs; Right: low-saliency 
pairs. Green arrows indicate high-saliency differences in the 
three feature dimensions in which the paired creatures differ 
(e.g., in the upper row the two creatures differ in horns, 
limbs and body-with). In each stimulus set, the same 
diagnostic feature was used for both the low- and high-
saliency tasks. From top to bottom, the task relevant feature 
was body-width, head-spikes, horns and body curvature. 

 
Each VCL task included seven blocks: four test blocks 

(denoted as T1-T4) that alternated with three learning 
blocks (L1-L3). Each block consisted of 24 trials. In each 
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trial two creatures were presented simultaneously on a 
computer screen for 2.2 seconds during which the 
participant had to decide if they belonged to the same or 
different categories by pressing one of two keyboard keys. 
Feedback was given during the 0.8 seconds inter-trial 
interval: In the mid- and high-information feedback 
conditions, a green square indicated a correct answer and 
red square an incorrect one. In the control, no feedback, 
learning blocks and in the test blocks, a yellow square 
indicated that the response was recorded (Figure 2a). 

During test blocks, creature pairs always differed in two 
feature dimensions. Same-category pairs differed in the two 
irrelevant feature dimensions and were identical in the 
relevant one (as the right upper pair in Figure 2b). Different 
categories pairs differed in the relevant feature dimension 
and in one of the irrelevant feature dimensions, but were 
identical in the other irrelevant dimension (see left lower 
pair in Figure 2b). This design prevents participants from 
making the same/different categorization decision based on 
the overall similarity between stimuli. It also allowed us to 
keep the statistics of the three features and their pair-wise 
covariance identical. 

For feedback-based learning blocks, pairs of creatures 
were selected in the following way: 1) In the high-
information feedback condition same-category pairs were 
identical in the relevant feature dimension and differed in 
the two irrelevant feature dimensions. Different-categories 
pairs differed in the relevant feature dimension and were 
identical in the two irrelevant ones. Thus, each trial 
indicates either all the within-category variability (same-
category pairs), or only the diagnostic feature dimension 
discriminating between categories (different categories 
pairs). 2) For mid-information feedback, same-category 
pairs were identical in the relevant dimension and in one of 
the two irrelevant dimensions (alternating between the two 
across different trials). Different-category pairs differed in 
two features: the relevant one and an irrelevant one (again, 
randomly alternating across trials between the irrelevant 
two). Although in this case each trial was ambiguous, it was 
still possible to learn the categorization rule based on the 
information provided across several trials. Such ambiguity 
in the feedback keeps the attentional learning aspect of the 
task more challenging by increasing the probability that 
participants will divide attention, in each trial, between two 
feature dimensions that are equally perceived as relevant. 3) 
The composition of the trials in the learning blocks with no 
feedback was similar to the one used in the test blocks. 
 
Procedure 
To keep the duration of the experimental session short (~ 75 
minutes), each participant performed a combination of three 
out of six conditions; [2 feature-saliency] X [3 feedback 
information]. Participants were informed that in each VCL 
task they have to learn to classify unfamiliar creatures from 
two distinct subspecies based on one attribute (feature 
dimension). Participants were also told that any variability 
in other attributes should be considered as irrelevant and 

ignored. Before starting the experimental tasks, participants 
performed a warm-up VCL task (with a different stimulus 
set). This enabled the participant to become familiarized 
with the experimental tasks.  
 

 
 

Figure 2: Experimental design. (a) An illustration of an 
experimental trial. A pair of stimuli presented for 2.2 
seconds during which the participant had to judge if the 
creatures are from same or different categories. This was 
followed by 0.8 seconds of feedback presentation (e.g., 
green square indicates a correct answer) after which the next 
trial started. (b) Examples of different-categories (left) and 
same-category (right) pairs, high-information (top) and mid-
information (bottom) condition. In each of the feedback 
based learning blocks, the category relation between the 
paired stimuli could be derived from the feedback. In High-
information trials different-categories pairs differ only in the 
relevant feature, and same-category pairs are identical only 
in this feature. Such a trial enables effectively pinpointing 
the relevant feature dimension by eliminating 2 out of three 
possible hypotheses. Mid-informative trials provide less 
information since such a trial always leaves two options (out 
of three). (c) A table describing all possible hypotheses for a 
given VCL task. When all feature dimensions are salient the 
participant is only required to decide which feature is 
relevant (H1 – H3). When features are not salient, VCL 
requires shifting from H0 (represent a case in which the 
participant is unaware of either one of the potentially 
relevant feature dimensions) to the correct hypothesis 
signaling the relevant feature dimension. 
 
Performance measurements 
We define a “Hit” as correctly deciding that two creatures 
are members of the same category, and a “False-Alarm” as 
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incorrectly deciding that creatures of different categories are 
members of the same category. Based on the Hit and False-
Alarm rate we calculated participants’ sensitivity using the 
non-parametric measure A-prime (Grier, 1971; Formula 1). 
A’=1 indicates perfect performance and A’=0.5 indicates 
chance level. 0≤A’<0.5 represent a response confusion.  
 
Formula 1: A-prime calculation. H denotes the Hit rate, and 
F the False-Alarm rate (Hit and False-Alarm rates are 
calculated based on the 24 trials in each test/learning block). 

 

 

Benchmarks 
We evaluated participant performances according to the 
following benchmarks: Chance performance, A’=0.5; 
Perfect performance, A’=1; Performance based on 
systematically referring to an irrelevant feature during a test 
block or during a no-feedback “learning” block, A’= 0.12; 
Performance based on systematically referring to an 
irrelevant feature during a learning block with mid-
information feedback, A’=0.5; Performance based on 
systematically referring to an irrelevant feature during a 
learning block with high-information feedback , A’= 0.  
 

Results 
Reported data is based on 24 participants in each condition. 
Excluded from this analysis are cases in which performance 
level was inconsistent between the test vs. the learning trials 
within a given VCL task (evident as high performance in the 
learning blocks, where feedback was available, contrasted 
with near-chance performance in the following test blocks, 
where feedback was not available). 
 
Pre-learning performance  
First, we confirmed that the initial performance level, in 
each of the two feature-saliency conditions, is similar. A 
two-way analysis of variance (ANOVA) with feature-
saliency and feedback information as independent variables, 
and participants’ sensitivity (A’) in the first, pre-learning, 
test block (T-1) as the dependent variable shows no 
significant interaction F(2, 144) = 0.93, no main effect of 
feedback information F(2, 144) = 0.91, and no main effect 
of feature-saliency F(1, 144) = 2.12, p = 0.15.  
 
Trial-by-trial, feedback-based, learning dynamics 
We assessed categorization improvement in the mid- and 
high-feedback information conditions based on learning 
trajectories across 72 learning trials (across the three 
learning blocks, L1 to L3). We calculated performance 
based on a moving average with a window of six trials. 
Figure 3 shows rapid learning, with almost identical 
trajectories, both with mid- and high-information feedback 
in the high-saliency condition. In contrast, in the low-
saliency condition mid-information feedback resulted with 
significantly lower improvement compared with high-
information feedback. Note that high-information feedback 

ended with similarly high performance level in both 
saliency conditions, yet in the low-saliency condition it 
required more learning trials.  

Separate two-way ANOVAs, one for the high-saliency 
condition and one for the low-saliency condition, with 
feedback information (mid/high) as the between participants 
independent variable, learning trial number (1-72) as a 
within participant independent variable, and participants’ 
percent correct as the dependent variable, show a significant 
difference in the linear contrast between mid- and high-
information feedback learning conditions in the low-
saliency condition, F(1, 46) = 4.73, p < 0.04, but not in the 
high-saliency condition, F(1, 46) = 0.29. 

Indeed, a three-way ANOVA with feature-saliency, 
feedback information and learning trial number as 
independent variables, and participants’ percent correct as 
the dependent variable, confirm that the interaction between 
feature-saliency and feedback information is significant, 
F(3, 92) = 2.73, p < 0.02, partial η2 = 0.029  (Figure 3). 

 

 
 

Figure 3: Participants’ mean percent correct in the high-
saliency (a) and low-saliency (b) conditions in each of the 
72 learning trials. The value in each bin is based on moving 
average with a window of 6 trials (error bars represent 
standard error of the mean across 24 participants). Gray dots 
represent the significance level (p-value) of the difference 
between mid- and high-information learning in each trial 
(based on independent sample t-tests; Dashed line marks a 
significance level of p = 0.05). This illustrates a consistent 
significant difference between the mid- and high-
information conditions, particularly in the second half of the 
learning process, only in the low feature-saliency condition.  
 
Between test blocks dynamics 
To further assess participants learning, we examined their 
performance in the test blocks where no feedback was given 
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and all trials had the same composition irrespective of the 
feedback information condition (paired creatures always 
differed in 2 features; see Methods). Results are shown in 
Figure 4. Our analysis shows significant improvement in all 
learning conditions (all p < 0.01). Importantly, we found a 
significant difference in the learning trajectories between the 
mid- and high-information feedback conditions in the low-
saliency condition but not in the high-saliency condition.  
   

 
 

Figure 4: Participants’ mean sensitivity (error bars represent 
standard error of the mean) in the (a) high-saliency and (b) 
low-saliency conditions. Feedback information levels are 
marked by different colors. T-1 to T-4: Performance in the 
test blocks (data points connected with lines); L-1 to L-3: 
Performance in the learning blocks. When feature-saliency 
is high, there are no significant differences in VCL 
efficiency between the mid- and high-information 
conditions. On the other hand, when the feature-saliency is 
low and participants were provided with mid-information 
feedback, performance was lower as compared with the 
high-information feedback condition.  
 

High-feature-saliency VCL: A two-way ANOVA for the 
high-saliency condition, with feedback information and test 
block order (T-1 to T-4) as independent variables and 
participants’ sensitivity (A’) as a dependent variable shows 
no significant linear contrast between the mid- and high-
information conditions, F(1, 46) = 0.04 (Figure 4a). 

Low-feature-saliency VCL: In contrast to the above, in 
the low-saliency condition there was a significant linear 
contrast between the mid- and high-information feedback 
conditions, F(1, 46) = 6.09, p < 0.02 (Figure 4b). 

Comparing high-feature-saliency and low-feature-
saliency VCL: A three-way ANOVA with feature-saliency 

(low/high), feedback information (mid/high) and test block 
order (T1 to T4) as independent variables, and participants’ 
sensitivity (A’) as a dependent variable, confirm that the 
interaction between feature-saliency and feedback 
information is close to significant, F(3, 92) = 2.84, p = 0.06, 
partial η2 = 0.030.   

Next, we examined if differences in sensitivity between 
the high- and low-saliency conditions are driven mostly by 
participants’ Hit rate or by their False-Alarm rate. We found 
no significant effect in the False-Alarm rate and a trend in 
Hit rate: Two-way ANOVAs, one for the high-saliency and 
one for the low-saliency condition, with feedback 
information and test block order as independent variables 
and participants’ Hit rate (in the test blocks) as the 
dependent variable, show a close to significant difference 
between the mid- and high-information feedback conditions 
in the low-feature-saliency condition, F(1, 46) = 3.65, p = 
0.06, but not in the high-feature-saliency condition, F(1, 46) 
= 0.57. A similar analysis with False-Alarm rate as the 
dependent variable, shows no significant difference between 
mid- and high-information learning, neither in the low-
saliency condition, F(1, 46) = 1.49, p = 0.23, or in the high-
saliency condition, F(1, 46) = 1.94, p = 0.17.  

These findings are surprising since the main challenge in 
low-saliency tasks is to learn to identify subtle important 
differences between similar categories (i.e. avoiding False 
Alarms) rather than deciding correctly that two apparently 
similar objects are from the same category (i.e. avoiding 
Misses). Nevertheless, our findings shows that higher 
information feedback in low-saliency conditions is mostly 
helpful in assisting participants performing better by 
avoiding Misses. We suggest that the lack of significant 
differences in False-Alarms rate represent, in fact, a 
response bias exhibited by participants in low saliency 
conditions – instead of discriminating between categories 
based on the relevant feature dimension, in the low-saliency 
tasks participants are more likely to react to any apparent 
subtle difference among paired creatures as if it is relevant, 
perhaps due to poor capacity in pinpointing the relevant one. 

This interpretation is consistent with the apparent 
“superior” performance in the first few learning trials in the 
low-saliency mid-information condition (Figure 3b) where 
the participants seem to perform better than in the low-
saliency high-information condition. In mid-information 
tasks, a strategy based on deciding “different categories” 
whenever identifying any difference, is with advantage 
since the task diagnostic feature is always coupled with an 
irrelevant one (whereas same-category pairs differ in only 
one, irrelevant, feature-dimension). That is, in low-saliency 
mid-information learning conditions people are likely to 
effectively avoid False-Alarms but for the wrong reason.  
 
Performance in the control, no feedback, tasks 
Finally, we confirmed that without feedback there is no 
significant learning in our VCL tasks: A two-way ANOVA 
conducted for the no feedback VCL tasks with feature-
saliency (high/low) and test block order (T1 to T4) as 
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independent variable, and participants’ sensitivity (A’) as 
the dependent variable, shows no significant interaction 
between feature-saliency and test block F(3, 46) = 1.73, p = 
0.20, and no test block order learning effect F(3, 46) = 0.36. 
Note that mean performance in the no-feedback tasks never 
significantly exceeded values of A’=0.5. 
 

Discussion 
We tested the interaction between feature-saliency and 
feedback information in visual category learning (VCL) 
tasks as a mean to explore the nature of the interaction 
between perceptual learning and attentional learning. 
Simply speaking, perceptual learning is a process that 
involves improvement in the ability to identify important 
fine differences between categories, whereas attentional 
learning improves the ability to filter out irrelevant (even if 
salient) within category differences (Hammer et al., 2009). 
Here we show that the interaction between these two 
processes is more complex than this simplistic view. 

We report two important findings: First, perhaps 
surprisingly, we show that mid-information and high-
information feedback are equally effective for learning 
when stimuli have marked visual differences as in the high-
saliency condition. This suggests that when diagnostic 
visual information is readily accessible, ambiguity in 
feedback (which is associated with higher attention load) 
can be resolved with no apparent effort (at least in simple 
rule learning tasks and when testing typical adults). Second, 
importantly, there are substantial differences between mid-
information and high-information feedback when stimuli are 
only subtly different. This suggests that low-saliency VCL 
depends more on informative feedback that serves to orient 
attention to the relevant feature. Unlike in high-information 
learning trials, in mid-information learning trials with low-
saliency features, participants may not only face difficulties 
in noticing the relevant feature, but also have difficulties in 
disassociating it from irrelevant ones. Therefore, 
participants may have been unaware of the relationship 
between the feedback and the relevant feature-dimension, 
which consequently lowered learning effectiveness.  

These findings are relevant to the developing debate on 
the role of attention in perceptual learning: Most findings 
suggest that perceptual learning requires attention to a target 
visual feature (Ahissar & Hochstein, 1993; Schoups et al., 
2001), or the presence of informative feedback associated 
with an attended visual feature (Herzog & Fahle, 2002). In 
contrast, recent findings show that “accidental” perceptual 
learning can occur (Seitz, Kim & Watanabe, 2009). 
Nevertheless, this seems to be restricted to learning 
scenarios with informative feedback where unattended 
features are strongly correlated with an attended one.  

Here we show that when there is only a partial positive 
correlation between the presentation of a task relevant 
feature and the presentation of irrelevant features (as it is 
inherently the case in mid-information feedback conditions), 
together with lack of explicit information regarding which 
feature is relevant, there is significant interference with the 

learning process. This is evident as significantly less 
effective learning compared with cases where the relevant 
feature and irrelevant features are consistently anticorrelated 
(as in high-feedback-information learning scenarios). 

We conclude that the role of attention in visual learning 
tasks depends on the correlations between relevant and 
irrelevant features, the nature of information provided by 
available feedback, and feature-saliency. This suggests that 
in everyday life scenarios, when making judgments on 
complex objects in cluttered scenes, the relative contribution 
of attentional learning and perceptual learning can change 
quite substantially from one learning scenario to the other. 
Thus, perceptual learning and attentional learning should 
not be construed as mutually exclusive processes but rather 
as complementary processes, and visual learning tasks 
should be considered as a mixture of these two processes. 
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