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ABSTRACT OF THE THESIS 

 

How the Streptococcal M87 Protein Binds Human C4b-Binding Protein 

 

by 

 

Matthew Allen McGowan 

 

Master of Science in Chemistry 

 

University of California, San Diego, 2017 

 

Professor Partho Ghosh, Chair 

 

The pathogenic bacterium Streptococcus pyogenes, or Group A Streptococcus 

(GAS), causes diseases throughout world. These diseases can range from mild to life 

threatening and leave the afflicted individuals susceptible to autoimmune response. 

Despite the widespread threat of GAS, no vaccine exists against it. The lack of a vaccine 

is due in large part to the antigenic variability of the N-terminus, or hypervariable region 

(HVR), of the GAS surface protein known as the M protein.   



 xiii   

 

One promising approach to vaccine design is to study the interactions between the 

human complement inhibitor C4b-binding protein (C4BP) and the M protein, as C4BP 

recognizes many strains of GAS with differing HVRs. A previous study reported four 

crystal structures of M protein HVRs in complex with the binding domains of C4BP 

(C4BPα1-2), revealing conserved binding patterns between M proteins and C4BP that 

could be applied to about half of the GAS implicated in binding C4BP.  

To continue this line of investigation, eight M protein HVRs whose sequences did 

not match the previous binding motifs (M14.5HVR, M18.6 HVR, M58 HVR, M80 HVR, M75 

HVR, M87 HVR, M112HVR, PrtHHVR) were cloned, expressed, and purified to obtain 

cocrystal complexes with C4BPα1-2. The 2.69 Å resolution limit structure of the 

M87HVR-C4BPα1-2 complex was determined, which has further demonstrated the 

involvement of previously identified C4BP amino acids but has also identified unique 

interactions. The M87 binding pattern appears to occur in other M protein HVRs, giving 

further knowledge applicable to the design of a GAS vaccine.  
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The Medical Significance of Group A Streptococcus 

Streptococcus pyogenes, often referred to as Group A Streptococcus (GAS), is a 

gram positive bacterium responsible for a variety of human diseases. In most cases, these 

diseases are mild and treatable with antibiotics (e.g. strep throat, impetigo, and scarlet 

fever). In rare cases, and most often in areas of the world where access to antibiotics and 

proper healthcare is limited, these infections can become invasive (e.g. necrotizing 

fasciitis, toxic shock syndrome, and sepsis) and present serious health risks with mortality 

rates of 20% or higher, even with proper treatment (Lamagni et al. 2009). GAS infection 

also leaves individuals vulnerable to autoimmune sequelae (post-streptococcal 

glomerulonephritis, rheumatic heart disease, rheumatic fever, and several CNS diseases) 

(Snider and Swedo 2003; Cunningham 2016).  

Severe GAS infections are a global problem: a 2005 study reported 18.1 million 

individuals from various regions across the Earth were suffering from severe infections, 

with 1.78 million more cases developing annually (Carapetis et al. 2005). These 

infections lead to 517,000 deaths annually (Carapetis et al. 2005). Rheumatic heart 

disease is responsible for most of these cases (15.6 million cases and 233,000 deaths a 

year), and invasive GAS diseases are also prevalent (663,000 new cases annually, 

163,000 deaths a year) (Carapetis et al. 2005). In Hong Kong and China, genes from the 

GAS M1T1 clone encoding antibiotic resistance and the M12 clone encoding scarlet 

fever-associated elements have been transferred between each other, leading to a 

resurgence of individuals suffering from scarlet fever (Davies et al. 2014; Ben Zakour et 

al. 2015). 
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The global prevalence of severe GAS infections, lack of antibiotic treatment in 

developing areas of the world, and the potential for further antibiotic resistance create a 

pressing need for a vaccine. Unfortunately, no vaccine has been developed to combat 

GAS infections. The lack of a vaccine is due, in large part, to the antigenic variability of 

the major antigen and surface-associated virulence factor of GAS, the M protein. 

The Role of M protein in GAS 

 M proteins are bound to the cell wall of GAS and are a major virulence factor of 

S. pyogenes. M proteins form α-helical coiled-coil dimers which extend ~500 Å from the 

cell wall, allowing for interaction with host proteins (Fischetti 1989). The coiled coils 

have a heptad sequence periodicity, and maintain their structure through hydrophobic 

interactions between amino acids in the a and d positions of the heptad repeat (Fig. 1a). 

The M protein is composed of four regions, A-D, with sequence variability increasing 

from the C-terminus (D) to the N-terminus (A). The most N-terminal ~50 amino acids of 

M protein, which extend furthest into the host environment, are characterized by a high 

amount of sequence variability between strains (or emm types) of GAS, and are therefore 

known as the hypervariable region (HVR). The HVR is typically the region which 

interacts with host proteins, thus shielding GAS from opsonophagocytosis as well as 

preventing recognition by antibodies between strains (Metzgar and Zampolli 2011). More 

than 200 different HVRs have been identified, and it is this sequence that is used as a 

serological marker to identify strains of GAS. 

The hypervariability of the M protein causes serial infections of GAS to be 

common and makes design of a vaccine against GAS difficult, as antibodies elicited for 
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one strain of GAS are often specific only to that strain (Dale et al. 2016). In addition to 

hypervariability, vaccine design is also stymied by the lack of an animal model that 

properly mimics disease in humans, the complex epidemiology of GAS, and the risk of 

autoimmune responses (Dale et al. 2011). Despite these obstacles, much progress has 

occurred in GAS vaccine design. A 2011 study resulted in a vaccine candidate 

recognizing 30 different HVRs when tested in rabbits (Dale et al. 2011). In addition to 

having bactericidal activity on the serotypes in the vaccine, there was also cross-coverage 

on several other non-targeted strains. This vaccine candidate, however, lacks 

epidemiological coverage. Though the vaccine would recognize 90% of invasive disease 

causing GAS in the U.S., other regions have coverage under 50% (Dale et al. 2011). To 

better combat GAS and overcome the hypervariability in the M protein, the ideal vaccine 

would elicit a highly cross-reactive antibody. 

M Protein and its Interaction with C4b Binding Protein 

 Recent studies on the interactions between M proteins and human C4b-binding 

protein (C4BP) have implications for the development of a potential GAS vaccine that 

would offer broad coverage (Persson et al. 2006; Buffalo et al. 2016). C4BP, an inhibitor 

of the human innate immune system, prevents the formation of C3 convertase (C4bC3a in 

the classical and lectin pathways) by competitively binding C4b (Ricklin et al. 2010). As 

C3 convertase produces proteins that aid in and signal phagocytosis, C4BP functions to 

prevent damage to host tissue by controlling the production of these proteins. C4BP is 

composed of 7 α chains which bind C4b and one β chain which binds the anticoagulant 

protein S. These chains are formed by a series of linked complement control protein 

(CCP) domains (Ricklin et al. 2010) (Fig. 1b).  
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Group A Streptococcus is primarily eliminated via opsonophagocytosis. To 

combat this, many strains of GAS have developed the ability to bind C4BP. As C4BP has 

seven α chains which can bind C4b and disrupt the formation of C3 convertase, this 

recruitment leads to a decrease in phagocytic killing of GAS cells. The recruitment of 

C4BP to the cell surface has the added benefit of cloaking the cell from phagocytes by 

preventing the deposition of antibodies (Berggård et al. 2001).  

 C4BP appears to recognize a wide variety of GAS strains. In one study, ~88% of 

the GAS strains tested were found to interact with C4BP (Persson et al. 2006). This is 

remarkable considering C4BP is known to bind the M protein at the HVR (Berggård et al. 

2001). The conserved binding to C4BP, despite such high variability in the M protein 

HVR, allows for a unique approach to vaccine design. By investigating the binding 

characteristics of these proteins, a vaccine eliciting a broadly neutralizing antibody could 

be developed. Though this vaccine would, at best, recognize only those M proteins which 

bind C4BP, it would be a great step forward in creating a comprehensive vaccine for 

GAS. Recent work studying the structures of four M protein HVRs (M2HVR, M22HVR, 

M28HVR, M49HVR) in complex with the first two domains of the C4BP α chain (C4BPα1-

2) has shed light on the subtle binding patterns between M proteins and C4BP (Buffalo et 

al. 2016). 

Previous MHVR-C4BPα1-2 Complexes 

 Previous structural data of M2HVR, M22HVR, M28HVR, and M49HVR in complex 

with C4BPα1-2 has led to the recognition of certain common characteristics in these 

binding interactions. Broadly, these cocrystal structures show two binding interfaces: a 
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major site formed by C4BPα2 and a minor site formed by C4BPα1 (Fig. 2 and 3). The 

interaction between MHVR and C4BPα2 contains the most binding residues and has the 

largest buried surface area (~550 Å, slightly over twice as large as the interface with 

C4BPα1), thus appearing to be the main site of contact between the proteins. All MHVR 

proteins studied interacted with the same five residues of C4BPα2, forming a 

"quadrilateral" (Fig. 2). This quadrilateral bound the MHVRs via a hydrophobic interaction 

through C4BP Ile78 and Leu82, a hydrogen bond with the main chain nitrogen of C4BP 

His67, a hydrogen bond or salt bridge with C4BP Arg64, and a salt bridge (or in the case 

of M49 a hydrophobic interaction with side chain carbons) with C4BP Arg66 (Buffalo et 

al. 2016). 

  The C4BPα1 domain exhibited an 180˚ rotation from its unbound conformation 

when it associated with the M protein (Fig. 4). This rotation allowed Arg39 of C4BPα1 to 

form a salt bridge with a negative residue of the M protein (Fig. 3). The side chain 

carbons of Arg39, along with main chain residues of C4BPα1, formed a "hydrophobic 

nook" in which a bulky hydrophobic residue of the MHVRs rested (Buffalo et al. 2016). 

 The binding patterns observed in these previous structures fell into two larger 

modes. One mode, M2/M49, had only one of the M protein α-helices of the dimeric 

coiled coil making contacts to and individual C4BP molecule, while the other mode, 

M22/M28, had both M protein α-helices of the coiled coil making contact to an 

individual molecule of C4BP (Fig. 2). The binding patterns were then compared to other 

M protein sequences. This comparison suggested 11 M proteins would bind in the fashion 

of M2 and M49, and 29 M proteins would bind in the fashion of M22 and M28 (Buffalo 
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et al. 2016). The assignment of these M proteins, however, still left ~50% of M proteins 

of the GAS strains demonstrated to bind C4BP uncategorized (Buffalo et al. 2016)
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Chapter 2: Materials and Methods 
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Expression Constructs 

 Coding sequences for the first 100 amino acids of mature M proteins (MHVR) were 

chemically synthesized and inserted into pUC18 (Genewiz) for M14.5 (amino acids 43-

142), M18.6 (43-142), M58 (42-141), M75 (42-141), M80 (42-141), M87 (42-141), 

M112 (43-142), and PrtH (42-141). The coding sequences were then cloned into pET28a 

with sequences encoding a preceding N-terminal hexahistidine tag (His6) and PreScission 

protease cleavage site (pET28aNHisPP). The M75 coding sequence contained an extra 

base, causing a frameshift in the sequence. Site-directed mutagenesis (Agilent 

QuikChange) was carried out according to the manufacturer’s protocol in order to fix this 

error.  

Protein Purification 

 All plasmids containing M protein coding sequences were transformed into and 

expressed in Escherichia coli BL21-Gold (DE3) and purified as described previously 

with some exceptions (Buffalo et al. 2016). Specifically, after induction with 2 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG), bacteria were grown at 18 ℃ rather than 

room temperature for 16 h. The lysis buffer used was 300 mM NaCl, 100 mM NaPi 

buffer, pH 7.5, and once resuspended, bacteria were treated with deoxyribonuclease (200 

µg/mL), lysozyme (200 µg/mL), and 0.5 mM phenylmethanesulfonylfluoride (PMSF). 

Ni-NTA purification was performed without deviation. Following elution from Ni-NTA 

agarose beads (Qiagen), M proteins were dialyzed (MWCO 3,500 Da, regenerated 

cellulose membrane) in 4 L of phosphate buffered saline (PBS) at 4 ℃ for 16 h, then 
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transferred to 2 L of cold PBS and dialyzed for a further 4 h at 4 ℃. M proteins were then 

purified by size exclusion chromatography (Superdex 75) using PBS at 4 ℃.  

 C4BPα1-2 was expressed and purified as described previously (Buffalo et al. 

2016). 

Crystallization 

 Purified M(14.5, M58, M80, M87)HVR and C4BPα1-2 proteins were mixed (~7.5 

mg total protein in a volume of 1-2 mL) at 1:1 molar ratios and dialyzed overnight in 10 

mM Tris pH 8.0 at 4 ℃ (Slide-A-Lyzer Dialysis Cassette 3500 MCWO, 0.5-3 mL). The 

resulting protein solution was concentrated to ~15 mg/mL via ultrafiltration (Amicon 

Ultra centrifugal filter units MWCO 3,500), as determined by a Nanodrop 1000 

measuring the absorbance at 280 nm and using the calculated molar extinction 

coefficient. This protein solution underwent crystallographic screening using a mosquito 

robot implementing hanging drop vapor diffusion.  

 For M87HVR, the initial conditions leading to crystal formation (0.2 M KH2PO4, 

20% w/v PEG 3,350, pH 4.8) were further refined by varying pH levels and 

concentration of the PEG 3,350. The optimal precipitant used for the M87HVR-C4BPα1-2 

complex was 0.1 M sodium citrate, pH 4.8, 0.2 M KH2PO4, 25% w/v PEG 3350 (Fig. 5). 

The crystals were then scooped into nylon microloops (Hampton CryoLoops) and 

transferred to precipitant containing 20% glycerol as a cryoprotectant, before being cryo-

cooled in liquid N2. 
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M87HVR-C4BPα1-2 Cocrystal Structure Determination 

 The M87HVR-C4BPα1-2 crystals were exposed to X-ray beams at the Advanced 

Photon Source, beamline 24-ID-E. Diffraction data were indexed, integrated, and scaled 

using the software Rapid Automated Processing of Data (RAPD) at NE-CAT 

(https://rapd.nec.aps.anl.gov/rapd) (Table 1). 

The structure of M87HVR-C4BPα1-2 was determined by molecular replacement 

with Phenix PhaserMR using the two C4BPα1-2 molecules from the structure of the M2 

K65A/N66A-C4BPα1-2 complex as the search model (Adams et al. 2010; Buffalo et al. 

2016). A molecular replacement solution with a log likelihood gain of 365 was identified. 

Electron density maps calculated from molecular replacement phases, as visualized by 

the software Coot, showed evidence for M87HVR α-helices in the asymmetric unit, which 

contained one 2:2 complex. Side chains of M87HVR were initially modeled as alanines. 

The M87HVR model and theC4BPα1-2 model were subjected first to rigid body 

refinement. The register of M87HVR was found by identifying electron density attributable 

to neighboring bulky hydrophobic residues (Tyr95, Phe91, and Trp92). Model building 

was done manually in Coot through inspection of σ
A
-weighted 2mF

o
 – DF

c
 and mF

o
 – 

DF
c 
omit electron density maps followed by refinement in Phenix using default settings 

as well as TLS parameterization (M87HVR: 58-96, 97-136; C4BP: 0-13, 14-33, 34-73, 74-

86, 87-96, 97-124) (Emsley et al. 2010). The model went through ~40 cycles of 

rebuilding and refinement. At the last stages of refinement, waters were modeled using 

default parameters. Two citrate ions were modeled into the electron density map, and 

Phenix ReadySet! was used to generate geometry restraints for these ions (Adams et al. 

2010). Electron density was continuous for all of the main chain of C4BPα1-2 except for 
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residues 19 and 20, and for M87 from residues 45-124. The model had a MolProbity 

clashscore of 12.02 (95th percentile), no Ramachandran outliers (96.38% of amino acids 

in favored regions), 92.35% favored rotamers and 1.98% poor rotamers, and a 

MolProbity score of 2.06 (97th percentile) (Chen et al. 2010) (Table.2). 

Algorithm to Determine M87-like Binding Patterns. 

 M proteins of similar binding modes to that of M87 were determined by matching 

a string of residues with similar charge characteristics (positive: lysine and arginine; 

negative: glutamic acid and aspartic acid), hydrophobicity (valine, isoleucine, leucine, 

tryptophan, tyrosine, and phenylalanine), or hydrogen bonding potential (acceptors: 

asparagine, aspartic acid, glutamine, glutamic acid, histidine, serine, threonine, tyrosine; 

donors: arginine, asparagine, glutamine, histidine, lysine, serine, threonine, tryptophan, 

tyrosine) relative to the positions seen in the M87 sequence  (Appendix II). Any matching 

residue was given a score of 1, residues that could only hydrogen bond where a salt 

bridge was observed in the M87HVR-C4BPα1-2 structure were scored as 0.5, and, if 

applicable, residues with opposite charge characteristics were given a score of -1. M 

protein peptide sequences from the CDC database were then parsed and given a total 

score based on the properties and relative position of the amino acids in the sequence. A 

cut off score of 9 (with a maximum score of 14, as M87 has 14 binding residues) was 

chosen, as M protein segments scoring 8.5 and below often did not match the heptad 

periodicity of M87 in the highest scoring alignment as predicted by COILS (Lupas, Van 

Dyke, and Stock 1991). M protein sequence segments with high scores found outside of 

the HVR were not considered. 
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Selection of M proteins 

 In order to expand the current knowledge of M protein-C4BP interactions, eight 

M protein hypervariable regions (MHVR) were selected as crystallization candidates. M 

proteins were selected based on a residue pattern that suggested a unique binding mode 

from that observed in the four previously determined structures (Fig. 6). Though PrtH is 

predicted to have a similar binding mode to that observed in the M22/M28 pattern, it was 

selected based on its lack of a hydrophobic residue in the region of the sequence that is 

predicted to bind to the C4BPα1 hydrophobic nook (Fig. 6). Similarly, M112 is predicted 

to bind analogously to the M2/M49 mode, but has no charged residue to bind with Arg66 

of C4BP, as was seen in all previously observed interactions. The remaining six M 

proteins (M14.5, M18.6, M58, M80, M75, M87) were selected from a group of different 

emm type S. pyogenes that bound C4BP in a whole cell binding assay, but were not 

predicted to bind in a mode similar to that previously observed (Fig. 6) (Persson et al. 

2006; Buffalo et al. 2016).  

Progress with Selected M proteins 

 An overview of the progress with these MHVR proteins can be found in Figure 7. 

All these MHVR proteins were successfully cloned into pET28aNHisPP vectors from 

pUC57 vectors and transformed into Escherichia coli BL21-Gold (DE3) for protein 

expression, with the exception of M18.6HVR. A digestion product from pUC57 matching 

the approximate size of the M18.6 insert was observed in agarose gels (Fig. 8), but 

attempts to ligate this insert into pET28aNHisPP and transform the vector into E. coli 

BL21-Gold (DE3) did not yield a positive result. The other MHVRs, once ligated into 
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pET28aNHisPP and transformed into E. coli BL21-Gold (DE3), were expressed and 

purified.  

 All MHVR proteins were expressed at levels detectable by SDS-PAGE of bacterial 

lysates (Fig. 9). Purification was successful as assessed by SDS-PAGE (Fig. 9 and 10). 

Initially, expression was not observed with M75HVR. After reviewing sequencing results 

of its coding sequence, a frameshift error caused by a base pair insertion near the end of 

the sequence was discovered. Site directed mutagenesis (Agilent QuikChange) was used 

to obtain the correct coding sequence. After transformation of E. coli BL21-Gold (DE3) 

with this corrected plasmid, protein expression upon induction was observed.  

 Once these MHVR proteins were purified and concentrated, crystal screening was 

undertaken with M14.5HVR, M58HVR, M80HVR, and M87HVR. The M80HVR-C4BPα1-2 

complex did not form crystals. M14.5HVR-C4BPα1-2 formed small crystals (~10 microns, 

in 0.1 M HEPES pH 7.5, 1 M sodium acetate trihydrate, 0.05M cadmium sulfate 

hydrate), which could not be replicated in subsequent optimization screens (Fig. 11a.). 

These crystals were never exposed to X-rays. M58HVR-C4BPα1-2 formed crystals in 

several conditions. The first (2.0M (NH4)2SO4, 0.1M Tris pH 8.3) gave rise to large 

(~300 microns) but fairly ill-defined crystals (Fig. 11b.). After exposing these crystals to 

X-ray beams, the resulting diffraction pattern suggested that the crystals were indeed 

protein, but the reflections were so few and faint that no usable data set could be 

obtained. Pursuing a different condition (0.2 M LiNO3, 20% v/v PEG 3350, and 0.1 M 

sodium citrate, pH 5.2) led to crystals with a more well-defined morphology (spikes ~100 

microns long, 10 microns wide), but the X-ray data obtained from these crystals were 
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again too weak to be of use (Fig. 11c).  M87HVR was the only M protein to form a 

complex with C4BPα1-2 from which a structure could be determined. 

Crystal Structure Analysis of M87HVR-C4BPα1-2 

 The structure of the M87HVR-C4BPα1-2 complex shares similarities with the four 

previously determined MHVR-C4BPα1-2 complexes, but has unique features as well. 

M87HVR forms an α-helical coiled-coil dimer, with one C4BPα1-2 molecule bound on 

either side of the dimer (Fig. 12). The coiled coil in M87HVR is slightly unwound while in 

contact with C4BPα1-2, having a pitch of ~180 Å rather than the canonical 150 Å (Fig. 

13). The N-terminal portion of M87HVR is in contact with C4BPα2, while the C-terminal 

portion of M87HVR is in contact with C4BPα1. This orientation is reflective of how intact 

C4BP approaches M protein attached to the cell wall of S. pyogenes. The binding mode is 

reminiscent of that seen with M22/M28, as both M protein α-helices are in contact with a 

single molecule of C4BPα1-2 (Buffalo et al. 2016) (Fig. 14, 15, 16, and 17).  

 The total buried surface area between the M87HVR dimer and the two C4BPα1-2 

molecules is ~1600Å2 (within the 1450-1690 Å2 observed in previous structures) 

(Buffalo et al. 2016). Like previous structures, the interface is predominantly polar in 

character and has a modest surface complementarity of ~0.69, within the range of the 

other MHVR-C4BPα1-2 interfaces (Buffalo et al. 2016). The C4BPα1 domain exhibits the 

characteristic 180˚ rotation seen in the other M protein-C4BP complexes. This rotation 

aids in the binding of M87HVR to C4BPα1-2 as it allows Arg39 of C4BPα1 to form a salt 

bridge with Asp96 of M87, the only non-hydrophobic binding interaction between M87 

and the C4BPα1 domain (Fig. 18 and 19). 
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 Of note, the two C4BPα1-2 molecules bound to the M87HVR coiled coil differ 

slightly; these are named hereafter Interface 1 and Interface 2 (Fig. 14 and 16). In 

Interface 1, M87HVR is bound to five residues of C4BPα2 at six points of contact (Fig. 14 

and 15), while in Interface 2, M87HVR  is bound to six residues of C4BPα2 at six points of 

contact (Fig. 16 and 17). Both these sites, as seen in M2HVR, M22HVR, and M28HVR, 

interact with Arg64 of C4BPα2 (Fig. 2, 14, and 16). Arg64 interacts with three separate 

residues of M87HVR. Arg64 forms a salt bridge with its guanidinium group to Asp80, a 

hydrogen bond with its main chain nitrogen to Glu85, and a hydrogen bond to Tyr81. 

Lys63, which bridges the C4BPα1 and C4BPα2 domains, forms electrostatic interactions 

with Glu89 of M87HVR. His67 of C4BP interacts in all MHVR-C4BPα1-2 structures, and 

here its main chain nitrogen hydrogen bonds with Gln78 of M87HVR in Interface 1 and its 

imidazole group forms an electrostatic interaction with Glu75 in Interface 2 (Fig. 14 and 

16). 

 Some interactions are unique to Interface 1 of the complex. Interactions with 

Arg66 of C4BPα2 are seen in all previously studied MHVR-C4BPα1-2 complexes, but are 

observed only in Interface 1. Arg66 is hydrogen bonded to Ser82 of M87HVR.  Glu70 of 

C4BPα2 is involved in an electrostatic interaction with Lys66 of M87HVR (Fig. 14 and 

15). 

 Interface 2 also has unique characteristics. Arg66, observed to interact in all 

previous HVR-C4BP structures and in Interface 1 of this structure, takes no part in 

Interface 2. The main chain carbonyls of C4BP Ile78 and Thr80 are hydrogen bonded to 

the amide nitrogen of M87HVR Gln73. Interestingly, this interaction takes place at a site 
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where only hydrophobic interactions have been observed in other complexes (Fig. 2 and 

16). Interface 2 also shows a unique area of hydrophobic interaction between M87HVR 

and C4BPα1-2 (Fig. 18 and 19). This hydrophobic pocket is in C4BPα1, very near the 

junction between domains. Here, the a and d residues Leu88 and Ile84, respectively, of 

the M87HVR heptad repeat interact with C4BPα1 Val38 and Ile61, respectively (Fig. 18 

and 19). Glu71 of M87 forms an electrostatic interaction with Gln75 of C4BP in Interface 

2 (Fig 16 and 17). 

 The C4BPα1 domain binds M87HVR with one electrostatic interaction, seen in 

both interfaces, between C4BPα1 Arg39 and M87HVR Asp96 (Fig. 20 and 21). The bulky 

aromatic Trp92 of M87HVR fits into the "hydrophobic nook" created by the alkyl chain of 

Arg39 and main chain residues of C4BPα1 (Fig. 20 and 21). This binding is similar to 

that seen with M2HVR, whose Asp79 residue salt bridges to C4BP while M2HVR Phe75 

binds in the "hydrophobic nook". This site on C4BP has been identified in all structures 

to date.  

 The identified binding residues were used to predict which other M proteins 

would likely bind C4BP in a similar fashion. Six M proteins from strains of GAS shown 

to bind C4BP, but not matching any previously identified binding mode, appeared to fit 

the M87 mode (Fig. 22). In addition to the strains shown to bind C4BP, M proteins from 

24 untested strains also fit this binding pattern (Fig. 23). Interestingly, M22 and several 

M proteins predicted in the M22/M28 binding motif also fit this predicted binding mode 

(Fig. 24).  This match makes sense as both M87 and M22 bind with both helices to a 

single C4BP molecule, and both M87 and M22 bind His67, Arg64, and Arg39 in the 
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same relative location as described in the pattern (Fig. 24). M87 was most likely not 

previously categorized with M22 for two reasons. The first is that it does not have a 

hydrophobic residue that fits into the hydrophobic pocket of C4BPα2 as M22 does, as a 

glutamine is instead hydrogen bonded to the main chain carbonyls of residues in this 

pocket (Fig. 16 and 17). The second is that the M87 residue which binds Arg66 of C4BP, 

Ser82, is not in the same location of the binding pattern as the glutamate which binds 

Arg66 in the M22HVR-C4BPα1-2 complex. Despite these differences, the overall binding 

patterns of M87 and M22 to C4BP are similar. 
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 The identification of binding residues in the M87HVR-C4BPα1-2 complex offers 

further information that may be invaluable towards the design of a comprehensive 

vaccine for GAS. The key binding residues of C4BP previously identified all take part in 

interactions on the M87HVR-C4BPα1-2 interface, with the exception of Leu82 (Fig. 2, 14, 

and 16). Both M87HVR helices are required to form the interface with C4BPα2—a binding 

mode similar to that observed in M22HVR and M28HVR. However, M87HVR also has 

distinct binding interactions not seen in M22HVR or M28HVR which may give insight into 

designing a vaccine that will recognize M87 and similar M types. Notably, the 

differences observed between Interface 1 and Interface 2 of this complex support the idea 

of tolerance in the C4BP reading head, as even the same M protein may bind C4BP with 

multiple side chain conformations. 

 As seen before, The C4BPα2 domain hosts the majority of binding interactions in 

the complex and contains a majority of the buried surface area (Buffalo et al. 2016). The 

C4BPα1 domain also undergoes the characteristic 180˚ shift in order to bind to M87. 

These data further support the observations and predictions of previous work that the 

C4BPα2 domain is the major contributor of interactions with M proteins and that the 

C4BPα2 domain binds the M protein first, eventually leading to the domain rotation of 

C4BPα1 (Buffalo et al. 2016; Berggård et al. 2001). The hydrophobic interactions 

between C4BP Ile61 and Val31, and M87 Ile84 and Leu88, may further stabilize this 

orientation (Fig 15.1 and 15.2). The interaction of Arg39 and the hydrophobic nook it 

forms on C4BPα1 to a negative and/or hydrophobic residue of the M protein has now 

been observed consistently across five MHVR-C4BPα1-2 structures. The conservation of 
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this interaction suggests the Arg39 hydrophobic nook is the most important site on the 

C4BPα1 domain for binding, although previous structural analysis showed that some M 

proteins (M22 and M28) do not require salt bridging to interact at this site. 

 The binding region of C4BPα2, previously identified as a “quadrilateral” in the 

M2/M49 and M22/M28 binding modes, shows several similarities and distinctions in the 

binding with M87. The C4BPα2 residues Arg64 and His67 are found to bind, albeit in 

several different modes, to all M protein structures to date. C4BP Arg64 is bound to M87 

Asp 80 in Interface 1 and Interface 2, and forms one of only two salt bridges between the 

molecules (the other being between C4BP Arg39 and M87 Asp96). This interaction may 

be further stabilized by M87 Glu85 and Tyr81, which bind the main chain and side chain 

of Arg64, respectively. The retention of an interaction with Arg64 in all known structures 

suggests Arg64 has a great effect on the overall stability of the complex. Interface 1 and 

Interface 2 also exhibit interaction between C4BP His67, though the type of bond differs 

(Fig. 14 and 16). Both Arg64 and His67 have been subjected to mutagenesis experiments 

(R64Q and H67Q) in the M22 protein, and both mutants attenuated binding between M22 

and C4BP (Blom et al. 2000). This study, along with the conservation of these residues in 

binding, suggests they are important in a broad range of interactions between C4BP and 

M proteins. A unique feature of this complex is seen in Interface 1. C4BP Ile78, which 

has been observed to bind all M proteins with hydrophobic interactions, was seen 

hydrogen bonded to M87 Gln73 with its main chain carbonyl. This interaction 

demonstrates the flexibility that residues on C4BP can exhibit when binding to different 

M proteins. As C4BP Arg66 is only involved in binding at interface 1 by making an 
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electrostatic interaction with M87 Ser82, its role in the structure does not seem to be as 

prominent as that of Arg64. 

 The subtle variations between MHVR-C4BPα1-2 binding patterns, and even 

between different interfaces of a single complex, are a testament to the tolerance and 

flexibility of this interface. One may suspect the interactions found in Interface 1 and 

Interface 2 of M87HVR, as well as those found in all previous structures, contribute most 

to the stability of the complex. Nonetheless, mutational analysis is required to better 

determine the significance of each binding interaction on the M87HVR-C4BPα1-2 

interface. As there are still 37 C4BP binding GAS strains whose M proteins do not fit any 

known binding mode, the study of their structure could add to the understanding of 

exactly what is needed to allow binding with C4BP, and which interactions are less 

significant.  

The creation of a vaccine for GAS must overcome many challenges, such as 

cross-reactivity with native α-helical proteins like myosin and tropomyosin, broad 

epidemiological coverage, and immunogenic optimization. The most difficult part of this 

challenge is arguably the design of an antigen which will elicit an immune response 

against a broad range of the numerous strains of GAS. The foundation to such a design 

may very well come from research like that presented here, which reveals the intricacies 

of how C4BP binds to M proteins. 
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Figure 1: Schematic of the Heptad Repeat and Cartoon of M Protein Binding to 

C4BP. 

a. A representation of the heptad repeat of a protein coiled coil. Residues at the a and d 

positions of the coil are usually hydrophobic (φ) and interact with each other. 

Occasionally, amino acids in the e and g positions of the heptad will further strengthen 

the coil via electrostatic interaction. b. A cartoon of C4BP bound to M protein. The 

boxed region represents the binding area; the α1 and α2 domains of C4BP bind the HVR 

of M protein. The column next to the M protein helix (green) displays its regions relative 

to the cell surface and C4BP. 
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Figure 2: Binding Mode of M2, M49, M22, and M28 to C4BPα2. Reproduced from 

Buffalo, et al. 2016. 
The C4BPα2 quadrilateral (blue dashed lines), with the C4BPα2 backbone shown in ribbon 

representation and key side chains shown as bonds. The chemical character of M protein 

residues that interact with the quadrilateral is depicted: φ, hydrophobic; —, negative; H, 

hydrogen bond forming. M2, M49, M22, and M28 residues that interact with the C4BPα2 

quadrilateral, shown in open book representation with respect to C4BPα2. The M protein 

residues form the complementary quadrilateral (red dashed lines). 
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Figure 3: Binding Mode of M2, M49, M22, M28 to C4BPα1. Reproduced from 

Buffalo, et al. 2016. 

The C4BPα1 Arg39 nook. M2, M49, M22, and M28 residues that interact with the 

C4BPα1 Arg39 nook shown in open-book representation 
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Figure 4: Rotation of C4BPα1-2. Reproduced from Buffalo, et al. 2016. 
a. Superposition of free (magenta) and M protein-bound C4BPα1-2 (cyan) based on the 

C4BPα2 domain, depicted as Cα chain traces. C4BPα1 rotates 180° around Lys63 (left). 

The position of Arg39 is shown in bonds representation. b. 90° rotation view of the 

superposition shown in panel a, with one α-helix of the M2HVR, which interacts with Arg39, 

shown as a blue ribbon. 
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Figure 5: M87HVR-C4BPα1-2 Cocrystal Complex. 

The cocrystals of M87HVR-C4BPα1-2 varied in size, but the largest were ~400 microns 

along the long axis and ~80 microns across the short axis.  

 

 

Figure 6: Sequence Alignment for Selected M Proteins. 

Residues at “d” position of the heptad repeat are highlighted in red. PrtH has no 

hydrophobic residue in the section of its sequence that is predicted to bind to the 

hydrophobic nook of C4BPα1 (highlighted green). M112 has no negative residue in the 

section of its sequence that is predicted to form an electrostatic interaction with C4BP 

(highlighted in blue). 
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Table 1: Data Collection and Refinement Statistics. 
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Table 2: Validation Statistics of the M87HVR-C4BPα1-2 Complex. 

Statistics Raw Count Percentage 

Clashscore (all 

atoms) 12.34  
Poor rotamers 7 1.98% 

Favored rotamers 326 92.35% 

Ramachandran 

outliers 0 0.00% 

Ramachandran 

favored 373 96.38% 

MolProbity Score 2.07  
Cβ deviations 

>0.25Å 0/3247 0.00% 

Bad bonds 14/4381 0.32% 

Bad angles 0/16 0.00% 

Cis Prolines 4/375 1.07% 

CaBLAM outliers 3 0.79% 

CA Geometry 

outliers 3 0.79% 
   
   
   

 

Figure 7: Progress Toward Crystal Structures of Selected M Proteins. 

Green check marks represent processes successfully completed. A red “X” represents a 

process that either failed or was not attempted for a given M protein. The M112HVR did 

not need to be cloned, as it was provided cloned into pET28aNhisPP commercially. 
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Figure 8: Restriction Digest of MHVR Inserts. 

Restriction digest with XhoI and BamHI (3 h, 37℃) shows excision of the PrtHHVR and 

M18.6HVR inserts. Restriction digests were run on 1% low melt agarose in TAE, and 

visualized with ethidium bromide (EtBr). 

 

 

 

Figure 9: Expression Gel of M87HVR. 

SDS-PAGE shows M87HVR protein levels at different stages of expression and 

purification. A thick band at ~12 kDa after IPTG induction indicates successful 

expression. The flowthrough, wash, and elution fractions were taken during Ni2+-NTA 

purification. The elution fraction contains contaminant proteins, indicating size exclusion 

is necessary. 
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Figure 10: Size Exclusion of M87HVR. 

Chromatogram and corresponding SDS-PAGE for M87HVR. 

 

 

Figure 11: M58HVR-C4BPα1-2 and M14.5HVR-C4BPα1-2 Crystal Screen Drops. 

a. A drop in the M14.5HVR-C4BPα1-2 mosquito nanodrop screen. Precipitant: 0.1 M 

HEPES pH 7.5, 1 M sodium, acetate trihydrate, 0.05 M cadmiumsulfate hydrate. Size: 

less than 10 microns. These crystals were never exposed to X-ray beams. b. A well in the 

M58HVR-C4BPα1-2 hanging drop crystal tray. Precipitant: 2.0 M (NH4)2SO4, 0.1 M Tris 

pH 8.3. Size: ~300 microns. These crystals were taken to a synchrotron, and confirmed to 

be protein, but diffraction was weak and no usable data sets were obtained. c. A well in 

the M58HVR-C4BPα1-2 hanging drop crystal tray. Precipitant: 0.2 M LiNO3, 20% v/v 

PEG 3350, and 0.1 M sodium citrate pH 5.2. Size: ~70 microns long, ~10 microns wide. 

No usable data were obtained from these crystals. 
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Figure 12: Structure of the M87HVR-C4BPα1-2 Complex. 

M87HVR shown in green. C4BPα1-2 shown in cyan. 
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Figure 13: Radius and Pitch of the M87HVR α-Helical Coiled Coil while Complexed 

with C4BPα1-2. 
Radius and Pitch of the coiled coil increase where M87 binds the C4BPα1 domain of C4BP. 

 

 

Figure 14: Interface 1 between M87HVR and C4BPα2. 

Residues of C4BPα2 (cyan) are labeled in cyan. Residues of M87HVR (green) are labeled 

in black. 
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Figure 15: Interface 1 between M87HVR and C4BPα2 Displayed in Open Book 

Format. 

The C4BPα2 domain shows six points of contact with M87HVR. Residues of C4BPα2 

(cyan) are labeled in cyan. Residues of M87HVR (green) are labeled in black. 
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Figure 16: Interface 2 between C4BPα2 and M87HVR. 

Residues of C4BPα2 (cyan) are labeled in cyan. Residues of M87HVR (green) are labeled 

in black. 
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Figure 17: Interface 2 between M87HVR and C4BPα2 Displayed in Open Book 

Format. 

The C4BPα2 domain shows six points of contact with M87HVR. Residues of C4BPα2 

(cyan) are labeled in cyan. Residues of M87HVR (green) are labeled in black. 
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Figure 18: Hydrophobic Binding Site of C4BPα1, Interface 2. 

One side of the M87HVR-C4BPα1-2 binding interface exhibits a hydrophobic patch. This 

patch involves the M87HVR residues Ile84 and Leu88, d and a residues of the heptad 

repeat, and C4BPα1-2 residues Val38 and Ile61. Residues of C4BPα2 (cyan) are labeled 

in cyan. Residues of M87HVR (green) are labeled in black. 
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Figure 19: Hydrophobic Binding Site of C4BPα1, Interface 2, Displayed in Open 

Book Format. 

Residues of C4BPα2 (cyan) are labeled in cyan. Residues of M87HVR (green) are labeled 

in black. 
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Figure 20: C4BPα1 "Hydrophobic Nook". 

Arg39 of C4BPα1 salt bridges with Asp96 of M87. Trp92 of M87HVR rests in the 

hydrophobic nook formed by Arg39 and main chain atoms of C4BPα1. Residues of 

C4BPα2 (cyan) are labeled in cyan. Residues of M87HVR (green) are labeled in black. 

 

 

Figure 21: C4BPα1 "Hyrdophobic Nook” Displayed in Open Book Format. 

Residues of C4BPα2 (cyan) are labeled in cyan. Residues of M87HVR (green) are labeled 

in black. 
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Figure 22: Sequence Alignment of M Protein HVRs, from C4BP Binding GAS 

Strains, to the M87 Binding Mode. 

All M proteins listed are from GAS strains which have been tested to bind C4BP in 

Persson, et al. 2006. Residues which bind or are predicted to bind are highlighted in 

green. The heptad register is listed on top.  The corresponding residues of C4BP which 

bind to M87 are listed at the bottom. 

 

 

Figure 23: Sequence Alignment of M Protein HVRs, from GAS Strains Untested in 

C4BP binding, to the M87 Binding Mode. 

All M proteins listed have not been tested in a C4BP binding experiment. Residues which 

bind or are predicted to bind are highlighted in green. The heptad register is listed on top.  

The corresponding residues of C4BP which bind to M87 are listed at the bottom.  
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Figure 24: Sequence Alignment of M22-like Protein HVRs to the M87 Binding 

Mode. 

All M proteins listed have been predicted to bind like M22. Residues which bind or are 

predicted to bind are highlighted in green. The heptad register is listed on top.  The 

corresponding residues of C4BP which bind to M87 are listed at the bottom. Residues of 

C4BP highlighted in orange bind both M87 and M22 at the same location. 

 

 

 

Figures 2, 3, and 4 listed in the Appendix are reproductions of figures that appear 

in Conserved Patterns Hidden within Group A Streptococcus M Protein 

Hypervariability Recognize Human C4b-Binding Protein. Cosmo Buffalo, et al., 

Nature Microbiology, 2016. These figures are used with permission from Nature 

Publishing Group. 
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