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Learning Behavior of Distribution System Discrete
Control Devices for Cyber-Physical Security
Ciaran Roberts, Anna Scaglione, Mahdi Jamei, Reinhard Gentz, Sean Peisert, Emma M. Stewart,

Chuck McParland, Alex McEachern, and Daniel Arnold

Abstract—Conventional cyber-security intrusion detection sys-
tems monitor network traffic for malicious activity and indi-
cations that an adversary has gained access to the system.
The approach discussed here expands the idea of a traditional
intrusion detection system within electrical power systems, specif-
ically power distribution networks, by monitoring the physical
behavior of the grid. This is achieved through the use of high-
rate distribution Phasor Measurement Units (PMUs), alongside
SCADA packets analysis, for the purpose of monitoring the
behavior of discrete control devices. In this work we present a set
of algorithms for passively learning the control logic of voltage
regulators and switched capacitor banks. Upon detection of an
abnormal operation, the operator is alerted and further action
can be taken. The proposed learning algorithms are validated on
both simulated data and on measured PMU data from a utility
pilot deployment site.

NOMENCLATURE

δi Time series difference for event i
∆ Summation of individual δi series
τi Time delay for event i
η Vector of residuals
Cap_State Binary variable indicating whether capacitor

bank is connected to the network
BW Controller deadband bandwidth.
E Set of all recorded events for a device.
ICT Primary rated current of current transformer.
Inv_Init Binary variable indicating whether time delay

has been initialized in case of inverse time
delay

iu/vu Vector of current/voltage measurements corre-
sponding to voltage step-up operations

id/vd Vector of current/voltage measurements corre-
sponding to voltage step-down operations

m Total number of events for a particular device
N Voltage deviation from VTarget normalized to

BW/2
NPT Potential transformer ratio.
RDrop Voltage drop due to network resistance.
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S Set of events for a device.
Sdown Set of step-down events for a device.
Sup Set of step-up events for a device.
Tuser User set time delay.
Terror Error of controller time delay
tia Time at which devices actuates for event i
tic Time at which variable crosses upper-/lower-

threshold for event i
tsampling Sampling period of controller
tw Time window for events
ttimer Countdown timer to device actuation
tfrac remain Fraction of ttimer remaining when operating

with an inverse time delay
Vlower Voltage lower threshold.
Vupper Voltage upper threshold.
VTarget Regulator target voltage.
Vset User set target voltage at zero loading condi-

tions.
XDrop Voltage drop due to network reactance.
ZDrop Voltage drop due to network impedance.

I. INTRODUCTION

The increasing penetration of Distributed Energy Resources
(DER) is transforming the role of the distribution grid in
modern power networks. Historically, the distribution grid
exhibited very well understood and predictable behavior due to
slow time-varying aggregated demand profiles. This, however,
is no longer universally the case with significant levels of
distributed solar and electrical vehicles, among others, prolif-
erating distribution networks, potentially causing large power
variations and power quality problems. The rising level of
variability within distribution networks will require a more ac-
tive management of the network via an Advanced Distribution
Management System (ADMS), with two-way communication,
greater levels of automation and Fault Location, Isolation, &
Service Restoration (FLISR) capabilities. This increased level
of automation and communication, however, opens potential
entry points for adversaries seeking to disrupt operations.

In order to minimize the risk of cyber-attacks, a holistic
cyber-physical security approach, marrying both the physical
operating behavior of the grid as well as the superimposed
communication/control layer, is required. The use of physical
voltage and current measurements alongside SCADA data
has been explored for the transmission grid for detecting
false data attacks and subsequent malicious mis-operation of
protection equipment [1], [2], for detecting false data attacks
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against automatic generation control [3] and for detecting
abnormal voltage and/or current measurements [4], [5]. At
the distribution level, a similar approach was adapted in
[6], [7] where the authors were interested in unauthorized
control actions of DER. This work differs in that it focuses
on regulation equipment and adapts a model-based approach,
similar to [3], which typically requires less training data than
machine learning approaches. This reduces the re-learning
period following an intentional change in control settings.

This work seeks to utilize distribution Phasor Measurement
Units (PMUs), which are receiving increasing attention in
recent literature [8]–[10], as an independent isolated read-only
sensor network to complement existing intrusion detection
systems (IDSs), that focus on monitoring SCADA traffic [11]–
[13]. We use PMUs to monitor the physical behavior of
control devices on the distribution gird, namely On-Load Tap
Changing (OLTC) transformers and capacitor banks. Given a
sufficient density of these control devices, an adversary could
use them to force the voltage into the voltage ride-through
range of DER [14]. This can subsequently cause the tripping
of a large population of DER and/or affect customer power
quality and target specific sensitive loads.

Additionally, our work is motivated by seeking to detect
adversaries within a SCADA network prior to the initiation
of an attack, namely when they may be carrying out re-
connaissance. Reconnaissance is where an adversary would
gain information about a network or verify controllability, but
their action(s) would not trigger an alarm or alert, and would
likely go unnoticed by the operator. In a distribution grid,
an example could include altering the static time delay or
deadband bandwidth of an On-Load Tap Changing (OLTC)
transformer, for the case where it is remotely configurable,
to confirm controllability. In the case of the Ukrainian cyber-
attack, it was noted that the adversaries likely gained access to
the network up to six months prior to the attack and conducted
reconnaissance during this period [15]. This work seeks to
detect abnormal operation of these control devices that may
go unnoticed by a system operator, particularly if the SCADA
data from the device in question is being spoofed. Once
these abnormalities have been detected, the operator would
be notified that there may be an adversary in their SCADA
network.

The primary contribution of this work is a set of algorithms
to passively learn and monitor the control logic of distribution
system regulation equipment, specifically OLTC transformers
and capacitor banks. We first detect and assign control actions
to specific control devices. Following this, a coarse estimation
of the time delay of the device, static or dynamic, is estimated.
Then we optimize locally around this coarse estimation of
the time delay to more accurately estimate the delay of the
device and the upper- and lower-thresholds, outside of which
the device actuates, are estimated. Finally, a threshold for
classifying operations as normal or abnormal is proposed.

The paper is organized as follows; Section II describes the
general architecture for monitoring discrete switching devices
from a Cyber-Physical security standpoint, Section III presents
an overview of the possible control schemes that regulators and
capacitor banks can operate under, Section IV describes the

proposed methodology for identifying and parametrizing their
control logic, Section V validates this proposed methodology
through both simulation and data from a utility network and
empirically analyzes its performance and Section VI concludes
with a summary and potential future work.

Notation: Throughout the paper, unless otherwise noted, all
variables are real. Bold lower case symbols are used to denote
vectors, bold upper-case symbols are used to denote matrices
and a hat over a parameter corresponds to its estimated value.

II. CROSS-CORROBORATION WITH SCADA

As described in Section I, one of the primary motivations for
this work is the use of an independent, isolated sensor network
to corroborate SCADA, specifically regarding the behavior
of discrete control devices. In order to monitor SCADA we
deploy the Bro network monitoring tool [16] that passively
listens to network traffic and sends reports to our monitoring
framework, where these reports are correlated and further
analyzed with corresponding PMU data. This fused analysis is
beneficial for us because it allows the analysis of “broad data”
(from large amounts of SCADA enabled devices) with “high
detail data” (from high sample rate PMU data). Furthermore,
the additional cross-checking helps to validate whether any
of the devices are reporting false or otherwise incorrect data,
e.g. is an adversary spoofing data to hide abnormal behavior
from a control device. Fig. 1 outlines the process of passively
monitoring control devices and alerting operators upon the
detection of abnormal operation.

Learn Control
Logic

Monitor Device

Operation
Expected?

Inspect Device
SCADA Data

Operation
consistent with

SCADA?

Operator Alert:
Confirm settings

changed

Operator Alarm:
Potential packet

spoofing

Operation Detected

No

No
Yes

Yes

Fig. 1. Logic for detecting reconnaissance attacks.

Of particular focus for this work will be the activity of
learning the control logic of these devices. While in principle
the behavior of each component on the grid should be known
to the operators, it is desirable to minimize the amount of
a-priori knowledge of the cyber-physical environment and
configuration that is assumed in the analysis. Learning it from
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the measurements themselves makes the architecture read-
only, isolating the cyber-physical data analytics from outdated
and incorrect data entry as well as manipulation. Our work
proves that, abstracting the functionality of devices in a certain
class and extracting its parameters, one can learn from PMU
data the devices normal configuration, having a baseline for
the detection of anomalies. The learning approach is based on
the devices expected behavior. This is preferable to a black
box approach, which requires significant more training data
and it is not amenable to interpretation. Section IV outlines
the methodology for learning this logic and concludes with
a subsection discussing how to differentiate with normal and
abnormal behavior.

III. AN OVERVIEW OF CONTROL LOGIC SCHEMES

Within this work we focus on discrete regulation equipment.
A similar approach can be adapted for DER with Volt/Var
and/or Volt/Watt functionality; however, this is beyond the
scope of this work. In this section we review the control logic
of voltage regulators and capacitor banks, which constitute the
targets of our anomaly detection algorithms.

A. Voltage Regulators

Operational voltage regulation control schemes can be
generally characterized by two distinct properties; 1) their
upper- and lower-voltage thresholds and 2) their user-defined
time delay. In order for our approach to be generalizable, it
must be able to both identify the specific implementation and
parameterize the corresponding control scheme. Given this, a
brief description of the modes of operation are outlined below.

1) Voltage Threshold Boundaries: Voltage regulators typi-
cally operate with upper and lower voltage thresholds, outside
of which they will actuate. These thresholds may be static,
which means that, irrespective of loading conditions, the upper
and lower thresholds delimit a fixed range within which
the regulator tries to maintain the voltage. Another mode
of operation is where a regulator estimates, and regulates,
the voltage at a certain bus corresponding to a customer
load center, as a linear function of i) local measurements at
the secondary terminals of the transformer, namely current
magnitude and power factor, and ii) its respective network
properties [17]–[20]. This mode of operation is called Line
Drop Compensation (LDC). In LDC operation the difference
between the customer voltage and the voltage measured at
the regulator terminals is attributable to a voltage drop along
lines and other transformers. A graphical representative of the
static threshold and LDC is shown in Fig. 2, where BW
is the deadband bandwidth of the regulator. It is important
to note that a regulator may use measurements that are not
at the regulator site, but from another node in the network.
For our algorithms we assume that we have access to the
same measurement values that the regulator controller is acting
upon. This can achieved either by direct measurement at
the same node as the controller or by using nearby sensors
to estimate the controller measurements, assuming sufficient
observability. In the case of the latter, errors in line impedance
and/or systematic errors in the respective instrument transfers

BW

| I(t)|

| V(t) |

0 0

(a) Static Threshold (b) LDC 

Upper Threshold

Lower Threshold

2

VTarget
VSet

| I(t)|

| V(t) |

VSet

VTarget

Fig. 2. Static Threshold and LDC Voltage Thresholds.

may adversely impact the ability to accurately estimate the
controller measurements. Particular care must be taken to
appropriately account for these sources of error [21].

When operating in LDC mode, a regulator may employ
LDC-R&X or LDC-Z. The LDC-R&X scheme determines its
target voltage as follows. Consider a line with resistance RL
and reactance XL with a load at its end. RDrop and XDrop

(whose units are volts) are the expected voltage drops due to
the line characteristics, calculated as follows:

RDrop =
ICT
NPT

RL

XDrop =
ICT
NPT

XL

(1)

where ICT is the primary rated current of the current trans-
former and NPT is the potential transformer ratio. Let pf(t)
denote the power factor and qf(t) denote the load reactive
power factor, where qf(t) = sin(arccos(pf(t))) [17], mea-
sured at the secondary terminals of the transformer. The target
voltage for the LDC-R&X scheme is then given by:

VTarget(t) = Vset + (pf(t)RDrop + qf(t)XDrop)
I(t)

ICT
(2)

Within this work we assume that we have available measure-
ments of both voltage and current phasors, from which we can
obtain the necessary magnitude quantities and power factor.

The LDC-Z method is implemented in scenarios where there
is no dominant single line, or path of lines, from which a
suitable RL and XL can be determined. The LDC-Z control
logic is a simple linear relationship between the measured
voltage and current magnitudes, as shown in (3):

VTarget(t) = Vset + ZDrop
I(t)

ICT
(3)

where ZDrop, whose units is in volts, is some expected voltage
drop at rated current, estimated analytically and/or through
simulation.

The upper- and lower-thresholds, outside of which the
regulator will actuate, are then given by the following (4) for
both the LDC-R&X and LDC-Z:

Vupper(t) = VTarget(t) +BW/2

Vlower(t) = VTarget(t)−BW/2
(4)

The parameters to be estimated for the case of static thresholds
are simply Vupper and Vlower while both LDC-Z and LDC-
R&X require estimating Vupper and Vlower at zero loading
conditions, and additionally, RDrop and XDrop for LDC-R&X
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Fig. 3. Defining tia, tic and tw for fictitious time series voltage profiles.

and ZDrop for LDC-Z. Throughout the paper we refer to the
time instant immediately before the actuation of a switching
event i, from either a regulator or switched capacitor bank,
as tia, the time at which its voltage crosses its upper-/lower-
threshold as tic and the time duration of our event sample as
tw. These are graphically shown in Fig. 3 for some fictitious
voltage time series profiles. The controller time delay associ-
ated with this switching action is then given as τi = tia − tic.
Estimating the threshold that the voltage magnitude crossed
requires detecting the times of control device actuation, tia,
and finding the crossing time, tic, which requires identifying
the controller time delay.

2) Controller Time Delay: Typically, once a regulator has
determined that the measured voltage has exceeded an allow-
able range, it begins a countdown timer before taking an action
aimed at restoring the voltage. If the voltage re-enters the
allowable range prior to this timer reaching zero, the timer
is reset, and no action is taken. Otherwise, the regulator will
execute a tap change operation.

This controller time delay can be a constant set by the
user, Tuser, or it can be varied; the general indication is that
the delay is inversely proportional to the ratio of the voltage
deviation relative to the deadband BW , as shown in Fig. 4
where N(t) is defined as:

N(t) =
2|V (t)− VTarget|

BW
. (5)

The control logic, which is executed once per controller
sampling period, for a regulator operating with a static time
delay is trivial. Once the voltage exits the allowable range
a countdown timer is initiated. If the voltage does not re-
enter the allowable range before the countdown timer has
elapsed, a control action is taken. The logic for an inverse
time delay, however, is not as straight forward. Although
the specific implementation of the inverse time delay can
differ across controllers, following consultation with vendors
an example implementation of an inverse time delay is outlined
in Algorithm 1 where tsampling is the controller sampling
period, ttimer is the remaining time left on the countdown
timer in seconds, tfrac remain is the fraction of time remaining
and Inv_Init is a binary variable indicating whether the time
delay has been initialized, Within this work we assume that
N(t) settles at a quasi-steady state value following a discrete
jump in the voltage timer series and it is this value for N(t)
which will be used for estimation purposes. In that case, the
controller time delay τi associated with the ith event, from

0 2 4 6 8 10 12
N(t)

0

25

50

75

100

T
im
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 [%
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er
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Inverse Delay: τi = 
Tuser
N(t)

Fig. 4. Static and inverse regulator time delay.

when the voltage magnitude first crossed the threshold to the
switching event, is therefore:

τi = Tuser/N(t) (6)

Upon detection of a voltage excursion, regulators may deter-
mine the required tap position to restore the voltage within
allowable bounds and do so in one tap movement or more
gradually, by multiple tap movements [17]. In the case of the
latter, and when operating under a definite time delay, the
regulator will typically have an inter-tap time delay which
determines the time delay between subsequent tap executions
once an initial operation has taken place. Initially we will filter
out possible tap-operations under the influence of an inter-tap
by only considering events sufficiently separated in time, e.g.
events must be separated by at least 2 minutes. If the regulator
operated with an inter-tap delay, this can easily be learned
online.

Algorithm 1: Voltage regulator logic for stepping down
the voltage with inverse time delay

1 Vupper(t) and Vlower(t) are given by (3) and (4);
2 if V (t) > Vupper(t) then
3 if Inv_Init=0 then
4 Compute N(t) using (5) ;
5 Initialize ttimer = τi using (6) ;
6 Inv_Init = 1
7 else
8 ttimer = ttimer − tsampling ;
9 if ttimer ≤ 0 then

10 Step-down the voltage;
11 Inv_Init = 0 ;
12 else
13 tfrac remain = ttimer/τi ;
14 Compute N(t) using (5) ;
15 Compute τi using (6) ;
16 ttimer = tfrac remain × τi ;

17 else if V (t) < Vlower(t) then
18 Mirrors logic in lines 3-16
19 else
20 Inv_Init=0 ;
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B. Switched Capacitor Banks

Switched capacitor banks can be operated under a number of
possible modes, and in some cases can operate under multiple
modes simultaneously, provided there is an associated priority
list [22], [23]. The most common variables upon a switched
capacitor bank can be programmed to operate under include:
• Measured voltage
• Computed VAR demand
• Measured Current
• Temperature (to compensate for inductive AC loads)
• Time schedule (based on time of day)

Each individual mode of operation is less complex in compar-
ison to a regulator, with a simple upper and lower threshold
specified1 and an associated time delay. In the case of switched
capacitor banks, however, there can be an additional internal
time delay in the operation logic. This additional safety
switching delay begins counting down once the user-defined
time delay has elapsed. This safety switching delay allows
the operators to move away from the capacitor bank before
switching in/out, operating in either manual or autonomous
mode, given that the potential for fault is higher during a
switching action. This safety switching delay can be the same
for switching in/out or can be different. The capacitor bank
will perform a switching action regardless of whether or not
the quantity of interest re-enters its allowable range once the
safety switching delay countdown timer has been initiated,
unless this action is manually overridden by a physical button
on the controller interface. Algorithm 2 describes the logic
of a capacitor bank controller whereby Cap_State is a binary
variable indicating whether the capacitor bank is connected the
network. The logic outlined in Algorithm 2 should be executed
once per timestep.

Algorithm 2: Capacitor Bank Switching Logic for Voltage

1 if ttimer > 0 then
2 if V (t) > Vupper and Cap_State=1 then
3 ttimer = ttimer − tsampling ;
4 else if V (t) < Vlower and Cap_State=0 then
5 ttimer = ttimer − tsampling ;
6 else
7 ttimer = Tuser ;

8 else if ttimer ≤ 0 then
9 tsafety = tsafety − tsampling ;

10 if tsafety ≤ 0 then
11 Capacitor bank switching performed
12 Reset tsafety
13 ttimer = Tuser

IV. METHODOLOGY FOR LEARNING DEVICE BEHAVIOR

A. Measurement Requirements and PMU Placement

In order to learn the behavior of individual devices, discrete
control actions must first be detected in distribution PMU

1The voltage mode can also use a second threshold, an extreme threshold,
for which the user set time delay is zero.

Subtransmission 

          Grid

PMU 2

PMU 1

OLTC 1

OLTC 2

Fig. 5. Monitoring device behavior with PMUs.

data and then attributed to individual devices on the network.
Detection can be a simple threshold algorithm determined
by the physical properties of the controller, e.g. distribution
OLTC transforms typically regulate voltage ±10% with ±16
tap positions. Therefore each tap change changes the voltage
by 0.625% with an actuation time period of 40-60 ms [24].
Given that the number of control devices are typically orders of
magnitude less than the number of nodes within a distribution
network this can be achieved with a minimal number of PMUs.
We assume that each PMU provides phasor measurements of
both the voltage and current, i.e. magnitude and angle, from
the same point at which the controller of interest is measuring.
As noted in Section III-A this can be done through direct
measurement or by estimation using nearby sensors, assuming
sufficient observability and a thorough treatment of impedance
and/or instrument transformer error [21]. From these measure-
ments we have both voltage and current magnitudes and can
compute both pf and qf from the angle values. Using the
relative topological information of these PMUs and the control
devices of interest, step changes in voltage, and reactive power
in the case of switched capacitor banks, can be used to detect
and classify discrete control actions [25]. An example of a
placement at a pilot site deployment is shown in Fig. 5 where
PMU 1 and PMU 2 are used in conjunction to determine
whether a step change in voltage magnitude was a local action
of OLTC 1 or OLTC 2 respectively or whether it was an event
on the sub-transmission grid. An example of both a local event
recorded on PMU and a global event, observed in both PMU
1 and PMU 2 is shown in Fig. 6. It is the high accuracy GPS
synced time-stamped measurements that are exploited when
attributing control actions to devices. For the example shown
in Fig. 6 an event would only be misclassified as global if
there was an event on the subtransmission network 1) that
caused the voltage that each respective device is regulating to
cross its upper- or lower-threshold at the same time instant,
and 2) the controllers for both OLTC 1 and OLTC 2 have the
same user defined delay and 3) the time delay error of each
controller is sufficiently small that it is undetectable by the
measurements. Although these conditions are possible, they
becoming increasingly unlikely as the number of measure-
ments for cross-comparison from parallel feeders connected
through the same subtransmsission feeder increases.
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Fig. 6. Example of a recorded local and global event for all 3 phases.

B. Learning Regulator Control

The learning of regulator control logic can be broken up
into two steps: 1) learning the associated time delay and 2)
learning the upper- and lower-threshold boundaries. There are
two causes for the voltage to exit the deadband of a regulator
or switched capacitor bank. These are 1) a ramp up/down in
net-load that pushes the voltage outside its allowable range
in a continuous manner, or 2) a discrete jump in the voltage
caused by either a large change in net-load load or an event on
the transmission/subtransmission grid, e.g. a switching action
or the actuation of subtransmission regulation equipment. It is
the latter, case 2, which we seek to exploit in order to obtain
an initial coarse estimate of Tuser.

For the case of ramps in the net-load we can expect that
normally V (t) ≈ V (t−1) for measurements one second apart.
However, when a discrete jump in the voltage profile occurs
this will not hold true ∀t and we will seek to estimate the time,
ti, for which V (ti) 6≈ V (ti + 1) for some events i. Therefore
we will estimate t̂ic by detecting this discontinuity with an
approach similar to the Early-Late Gate timing recovery block
in signal processing [26] where for each event i ∈ S and
averaging period n, its time series δi is given by (7):

δi(t) = V i(t−)− V i(t+) ∀t ∈ [tia − tw + n, tia − n] (7)

where

V i(t−) =
1

n

t∑
j=t−n

V (j) V i(t+) =
1

n

t+n∑
j=t

V (j) (8)

This averaging will attenuate high frequency voltage fluctu-
ations due to motor starts and/or switching in of large inverter
interfaced resources. A sample field-recorded voltage profile
and its corresponding δ time series can be seen in Fig. 7.

We then sum over the m individual δ time series vectors to
obtain a new time series, ∆:

∆ =
∑
i∈Sup

δi −
∑

i∈Sdown

δi (9)

where the negative sign accounts for the fact that δ time series
for voltage step-down events will exhibit a large negative peak,
as shown in Fig. 7, while δ time series for voltage step-
up events will exhibit a large positive peaks. For the case
of a static time delay, i.e. t1a − t̂1c ≈ ... ≈ tna − t̂nc , this
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Fig. 7. Detected event from pilot deployment site and its δ time series profile
for n=1s.
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Fig. 8. Example of a ∆ time series, given by (9), from a pilot site deployment.

summation will amplify individual δi values around t̂ic, i.e.
when all voltage time series are increasing as they cross their
respective upper-threshold or decreasing as they cross their
respective lower-threshold, and attenuate all other values due
to the stochastic nature of voltage fluctuations. An example
of a ∆ time series from a pilot deployment site is shown in
Fig. 8. The time series profile exhibits a distinct singular peak
close to 90s, where the end of the window corresponds to tia,
and consequently this particular OLTC has a static time delay,
T̂user, close to 30s. This distinct peak is due to the summation
of individual peaks, similar to those in Fig. 7, given by (9).

In the event of a distinct singular peak in the ∆ time series
profile, as is the case in Fig. 8, we can conclude that the
regulator is operating under a static time delay. For the case of
an inverse-time delay, we can expect multiple peaks in ∆ and
this case will be addressed in Section IV-B2. First, however,
we must introduce the methodology for estimating the upper-
and lower-thresholds.

1) Parameterizing a regulator with a static time delay:
For a regulator operating with a static time delay, a coarse
estimate of the time at which the voltage exited its allowable
range, t̂ic, is given by tia − T̂user. This is a coarse estimation
of tic as the error of the time delay on a regulator can vary. In
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order to robustify the estimation process against measurement
noise, a measurement at time t is taken to be the mean of a
10 cycle window centered at t. Given a set of voltage step-
up operations, Sup of length p we define the ordered vector
vu(ti) to be [V 1(ti),...,V p(tn)]T , where V 1(ti) denotes the
voltage at some time ti ∈ [t1a − tw, t1a] for event 1 ∈ Sup. A
similar vector is defined for the current, iu(ti), and for both
the voltage and current, vd(ti) and id(ti) respectively, in the
set of voltage step-down operations, Sdown.

For the case of LDC-Z the equations describing the control
logic are given by:

Vupper(t
i
c) = Vset +

BW

2
+
I(tic)

ICT
ZDrop

= v̂upper + I(tic)ẑDrop

Vlower(t
i
c) = Vset −

BW

2
+
I(tic)

ICT
ZDrop

= v̂lower + I(tic)ẑDrop

(10)

where v̂upper = Vset + BW/2, v̂lower = Vset − BW/2 and
ẑDrop = ZDrop/ICT . For LDC-Z, the optimization is given
by:

minimize
x,ti

||y(ti)−A(ti)x||22

subj. to |t̂ic − ti| ≤ Terror ∀i
t̂ic − ti = α ∀i

(11)

where: y(ti) = [vu(ti),vd(ti)]T , x = [ẑDrop, v̂upper, v̂lower]
T

A(ti) =

[
iu(ti) 1 0
id(ti) 0 1

]
,

where A(ti) is an m × 3 matrix, y(ti) is a vector of length
m, Terror is the specified accuracy of the regulator time delay
and 1 and 0 are vectors of 1’s and 0’s respectively. The MI-
QP optimization in (11) can be reduced to a single-variable
optimization by exploiting the closed form solution for x as
a function of ti, as given by (12). The first constraint in (11)
allows the optimization to sweep over the neighborhood of t̂ci
in order to compensate for the inaccuracy in the internal time
delay of the OLTC controller. This allows us to refine our
coarse estimation of t̂ic from (7) - (9). The second constraint
enforces that a uniform offset from t̂ic across all events in
order to ensure that the optimization remains computationally
tractable. Given that it is only being evaluated over a small
discretized time period, with each evaluation having a closed
form solution given by (12), the problem remains computa-
tionally light.

xopt(t
i) = (A(ti)TA(ti))−1A(ti)Ty(ti). (12)

Assuming that the controller operates on moving averaged
measurements [18], with measurement errors that are Gaussian
i.i.d. random variables, we can consider the controller to be
acting upon the true value. The error, ε, in the model

y(ti) = A(ti)x+ ε (13)

is then given by the variance of the voltage during the period
t̂ci ± Terror, where Terror is the error of the controller time
delay. Thus we can express the error as

ε ∼ N (0, σ2I) σ2 = f(V ar(V (t)),Terror) (14)

and the covariance of the estimated parameter, x̂i, is given by

V ar(x̂i) = σ2(ATA)−1i,i (15)

Consequently we have that for controllers with large time
delay inaccuracies and/or sites with large voltage volatility,
we require a larger library of events to converge to the true
value of x.

In order to estimate parameters under the hypothesis that
LDC-R&X is in operation, we define the additional ordered
vector for voltage step-up operations iupf (ti), of length p, as
[I1pf (ti),...,Ippf (ti)]T where

I1pf (ti) = pf1(ti)I1(ti) (16)

and similar vectors for iuqf (ti),idpf (ti) and idqf (ti) Given that,
we can now perform the following optimization:

minimize
x,ti

||y(ti)−A(ti)x||22

subj. to |t̂ic − ti| ≤ Terror ∀i
t̂ic − ti = α ∀i

(17)

where: y(ti) = [vu(ti),vd(ti)]T ,
x = [r̂Drop, x̂Drop, v̂upper, v̂lower]

T

A =

iupf (ti) iuqf (t
i) 1 0

idpf (t
i) idqf (t

i) 0 1


where A(ti) is an m × 4 matrix, y(ti) is a vector of
length m and the optimal estimate of x(ti) is given by (12).
Determining whether LDC-Z or LDC-R&X is in operation
is carried out by comparing the RMSE value from (11) and
(17). The case of static thresholds is simply LDC-Z or LDC-
R&X with ẑDrop ≈ 0 and r̂Drop ≈ x̂Drop ≈ 0 respectively.
The optimization in (11) and (17) should only be preformed
for a set of events where all the operations occurred under
conventional power flow direction or where all the operations
occurred under reverse power flow conditions, due to these
modes of operation not necessarily having the same LDC
settings.

2) Parameterizing a regulator with an inverse time delay:
In the event that there exist multiple positive peaks in ∆,
then it is possible that the regulator is operating under an
inverse time delay. In that case we need an initial estimate of
the upper- and lower-voltage thresholds to parameterize the
inverse time delay function. We perform this initial estimation
for x at tia using (12). Given that once a voltage time series
crosses its threshold, it must remain outside the allowable
range in order for that crossing to result in a tap-operation
(if it did not, the timer would reset upon re-entering the
allowable range and it would have to exit this range again
and consequently have a new t̂ic). Thus we have that for all
voltage step-down events V (tia) > V (t̂ic) and voltage for all
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step-up events V (tia) < V (t̂ic). Therefore, estimation of the
parameters at tia will result in upper- and lower-bounds on
the upper-threshold and lower-threshold respectively. Once an
estimate of the upper- and lower-thresholds, and consequently
the target voltage and bandwidth as given by (19), has been
obtained we can estimate the user defined time delay. We do so
be detecting large jumps in the individual voltage time series
profiles by (7). Given k time series profiles with a discrete
jump in their voltage time series profile at time t̂ic, we define τi
as tia− t̂ic and estimate the user specified delay by re-arranging
(6) as:

Tuser =
1

k

k∑
i=1

2τ i|V (t̂ic)− VTarget(t̂ic)|
BW

(18)

where VTarget(t̂ic) is given by (10) and BW is computed by:

BW = v̂upper − v̂lower (19)

Given that such estimation of the bandwidth will be an
overestimation, due to performing the optimization at tia and
the relationship between the bandwidth and thresholds given
by (19), we will tend to underestimate Tuser. We can however
go through an refinement algorithm in order to obtain a more
accurate estimation. This is summarized in Algorithm 3. Due
to inaccuracies in the operational inverse time delay, ±10%
[18], we take a measurement at time t to be the mean of a
one second measurement window centered oat time t when
parameterizing a regulator with an inverse time delay.

Algorithm 3: Parameterizing an OLTC under operation of
inverse time delay

1 Initialize estimation of parameters at tia using (12)
2 Compute Vtarget(t̂ic) and BW using (10) and (19)
3 Detect discrete voltage jumps in time series profiles with

(7)
4 Using subset of events with discrete jumps at t̂ic, define

τi as tia − t̂ic and estimate Tuser using (18)
5 Compute t̂ic for each individual profile as follows,

t̂ic = tia−Tuser×min
(

1,
BW/2

maxti(|V (ti)− VTarget(t̂ic)|)

)
6 Perform the optimization outlined in (11) at t̂ic
7 Compute Vtarget and BW using (19)
8 Repeat Steps 4 to 7 while |Tuser − T prioruser | > ε

C. Learning Switched-Capacitor Control

The task of inferring the control logic of switched-capacitor
banks is similar to that of regulators, but with an additional
step. Given that a switched capacitor bank can operate under
multiple control modes simultaneously, this additional step is
necessary for determining which mode was responsible for
each individually recorded switching action. Once events have
been attributed to their respective modes, the parameterization
of the control logic of these modes can be carried out. The
following approach does not apply to switched capacitors on

Vi(tSwitch)

Vari(tSwitch)

�V    �Var 

U

Fig. 9. Example of control triggering modes identified using subspace
clustering on feature matrix in (20).

a time schedule. Due to the deterministic nature of time-
scheduled switching relative to the stochastic time varying of
the other triggering features (e.g. voltage and Var demand),
identifying a switched capacitor under the operation of a time-
schedule is a trivial exercise. For the remainder of the modes,
classifying events with respect to their triggering mode is
carried out first constructing the matrix, Ψ, shown in (20):

Ψ =


V1(t

1
a) V ar1(t

1
a) I1(t

1
a)

V2(t
2
a) V ar2(t

2
a) I2(t

2
a)

...
...

...
Vi(t

i
a) V ari(t

i
a) Ii(t

i
a)

 (20)

and then performing subspace clustering on this matrix [27].
Subspace clustering, as employed here, is the task of deter-
mining axis-parallel affine subspaces. If we denote these affine
spaces as Θγ , where γ denotes the feature variable of interest,
e.g. voltage, we can then attribute a subset of the events
contained within these affine spaces to the corresponding
triggering mode. In fact, the subset of the events associated to
mode γ is given by:

Eventsγ = Θγ \ (∩ni=1Θi) . (21)

A graphical representation of classifying events for the case
of a two-dimensional feature space is shown in Fig. 9.

Once events have been assigned to their respective modes,
the thresholds can be determined in a similar manner to the
regulator, whereby the time delay for voltage switching is
estimated by peak detection in ∆ time series. As noted in
Section III, given that a switching in/out action may have a
different safety switching delay, there may have different time
delays, given by Tuser + tsafety . Therefore, peak detection
needs to be performed on ∆up and ∆down as given by (22)
and the threshold boundaries are estimated by (23). A similar
approach is adapted for current and var mode.

∆up =
∑
i∈Sup

δi

∆down = −
∑

j∈Sdown

δj
(22)

minimize
x,ti

||y(ti)−Ax||22

subj. to |t̂ic − ti| ≤ Terror ∀i
t̂ic − ti = α ∀i

(23)

where: y = [vu(ti),vd(ti)]T , x = [v̂upp, v̂low]
T
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A =

[
1 0
0 1

]
,

D. Monitoring Control Devices

In the event that an operation has been detected in PMU
data that is inconsistent with a device’s historical behavior,
the corresponding SCADA communications will be inspected.
A suitable method for classifying an operation as abnormal or
unexpected is a threshold approach. We denote our vector of
residuals from performing the optimization given by (11) or
(17) as η. Then, we can set the threshold for the voltage as
3σ of η, where σ denotes the standard deviation of the vector.

V. APPLICATION TO TEST CASES

A. Simulated Control Schemes

For simulating different control schemes we replay field
recorded voltage and current phasor measurements through
a simulated controller whose properties mirror that of [18],
specifically a static time delay error of ±0.5% and inverse time
delay of ±10%. There were 3 control schemes implemented:

1) OLTC with static thresholds and a fixed time delay
2) OLTC with LDC-Z and a fixed time delay
3) OLTC with LDC-R&X and an inverse time delay

For input to the learning algorithm a total of 40 events were
used for each case, equally divided between voltage step-up
and step-down operations. The estimation values along with
the actual values are shown in Table I. As can be seen, the
algorithm was successfully able to accurately estimate the
parameters, with the case of the inverse time delay logic
yielding the least accurate estimates. The underestimation of
Tuser was partly due to the overestimation of BW as well as
a small number of events who experienced a discrete jump in
their voltage time series profile. The inaccuracy in estimating
RDrop and XDrop highlights the fact that in practice there
may be insufficient excitation of the system to accurately
estimate both parameters independently due to the objective
suffering from multiple local minima. In such a case the
system is under-determined. For the purpose of monitoring
a regulator for abnormal operation it is less critical that each
independent parameter be correctly identified but rather that
we can determine whether a tap is consistent with historical
behavior or not. For model validation purposes, however, we
would require more events in order to obtain a unique optimal
value.

TABLE I
COMPARING PARAMETER ESTIMATIONS FOR SIMULATED DATA

VTarget BW Tuser ZDrop RDrop XDrop

Case 1
Estimated 119.98 V 2 V 20.06s 0.02 - -

Actual 120 V 2 V 20 s 0 - -

Case 2
Estimated 118.9 V 2.12 V 19.71 s 4.16 - -

Actual 119 V 2 V 20 s 4 - -

Case 3
Estimated 118.73 V 2.2 V 16.83 s - 2.28 3.21

Actual 119 V 2 V 20 s - 2 4

In order to empirically investigate the performance of the
algorithm for various system conditions for the case of a static
time delay we consider two cases. In the first of these cases

10 20 30 40
Total Number of Events

119.0
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120.0

120.5

121.0
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lta

ge
  [
V
]

Dataset 1
Dataset 2

Fig. 10. v̂upper and v̂lower estimates for different voltage volatility levels.

we examine the performance of the algorithm under different
feeder voltage profiles, with varying volatility. We use field
recorded voltage measurements from two different distribution
feeders whose one-second voltage difference variance is shown
in Table II. For the second case we use measurements from one
of these sites, Dataset 1, and examine the performance of the
algorithm under two different regulator controller time delay
errors, 0.5% and 5%. We assume that the time delay errors
are independently identically distributed, drawn from Gaussian
distribution with variance ε, where ε is the specified accuracy
bounds. As discussed in Section III-A, we assume that the
controller acts upon averaged measurements to minimize mea-
surement error [18]. For each case the OLTC controller took
as inputs both magnitude and angle of voltage and current
measurements and simulated the control logic presented in
Section III.

TABLE II
FIELD MEASURED ONE SECOND VOLTAGE VARIANCE

Var(V(t)-V(t-1s)) [%]
Dataset 1 0.056
Dataset 2 0.048

Fig. 10 and Fig. 11 consider the impact of volatility and
time delay error respectively. As predicted in Section IV more
volatile voltage profiles and/or higher inaccuracies in the time
delay result in larger variances in the parameter estimations.
It is notable that although there is initially a difference in
parameter estimation variances in Fig. 10, this difference
stabilizes above 30 events. A difference in the accuracy of
the time delay, however, has a more pronounced impact with
a offset in the median of the estimated parameters.

Under the operation of a controller with a time delay
inaccuracy of ±0.5% [18], and given that the median number
of operations per year for substation OLTC’s is 3,000 [28],
Fig. 10 indicates that the expected learning period is on
the order of days. For capacitors, who typically switch less-
frequently, the learning period may be longer.
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Fig. 11. v̂upper and v̂lower estimates for different controller time delay
errors.

B. Utility Recorded Data

In order to validate our approach using real data we consider
two OLTC transformers at pilot site deployments whose sec-
ondary terminals are being measured by a distribution PMU
reporting at 120 Hz. Both locations are independent distribu-
tion feeders electrically connected through a sub-transmission
network. In order to identify operation of the OLTC, both
sensors were used to classify events as either global, i.e.
originating from the transmission or subtransmission network,
or local, i.e. OLTC transformers. Once a set of tap operations
has been identified, the control logic is identified and param-
eterized. For each site, initially a total of 100 events were
randomly chosen, equally divided between voltage step-up and
voltage step-down operations. Voltages are presented on a 120
V basis. In both cases, the ∆ time series profile exhibited one
distinct peak, as can be seen in Fig. 12, and correspondingly an
initial estimate for Tuser was obtained. Estimated and reported
quantities are shown in Table III for both devices. For the case
of OLTC 1, when the optimization to determine the upper-
and lower-thresholds was carried out there was only a minor
difference between the RMSE’s as shown in Table IV. The
primary reason for this is that 74% of the events had a value
for pf(t̂ic) > 0.95, and consequently we can see from (2) and
(3) that RDroppf(tic) + XDropqf(tic) ≈ ZDrop. For different
feeders with more variations in power factor, this difference in
RMSE is expected to increase. The estimated LDC relationship
for both OLTC 1 and OLTC 2 are shown is Fig. 13. The RMSE
for OLTC 2 was noticeably less than that for OLTC 1. This
difference is attributed to the difference in measured current
levels. As can be seen in Fig. 13, there were very low current
levels measured for OLTC 1. This is due to a large penetration
of photovoltaic installations on that particular feeder which
supplies a significant portion locally and thus reduces the
transformer loading. These low loading conditions impact the
parameter estimation due to the non-linear errors introduced by
the current transformer through which we are stepping down
the current for measurement. At such low current levels, the
errors associated with the current transformer may no longer
be assumed to be a stable bias offset. It is unclear how the error
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Fig. 12. Estimating Tuser via Delta time series profile.
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Fig. 13. Estimated lower- and upper-thresholds.

manifests itself but it is worth noting that the measurements
for OLTC 1 in Fig. 13 are significantly denser at higher current
levels.

TABLE III
COMPARING PARAMETER ESTIMATIONS FOR UTILITY

MEASURED DATA

VTarget BW Tuser

OLTC 1
Estimated 119.07 V 2.54 V 32.26 s
Reported 119 V 3 V 30 s

OLTC 2
Estimated 120.21 V 2.56 V 31s
Reported 120 V 3 V 30 s

TABLE IV
RMSE FROM MODEL FITS ON UTILITY DATA

LDC-Z LDC-R& X
OLTC 1 3.43 V 3.56 V

OLTC 2 0.80 V 0.74 V

Minor discrepancies between estimated and reported quan-
tities are within the scale calibration accuracy of the con-
troller [29]. Table V-B shows an estimate of the threshold for
abnormal event detection as described in Section IV-D. Again,
the uncertainty for OLTC 1 is larger due to OLTC operations at
low current levels, well below the rated current of the current
transformer.

In order to gain further understanding into the performance
of the algorithm on field measured data we investigate its
performance by i) varying the number of events that exhibit a
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Fig. 14. Algorithm performance for m = 80 events with varying number of
series with discrete jumps for OLTC 2.

discrete jump in their voltage profile while keeping the total
number of events constant and ii)varying the total number
of events for a given estimate of Tuser, the time delay. A
boxplot plot showing the range of estimations for both the
upper- and lower-threshold for these cases are shown in Fig. 14
and Fig. 15. For each scenario we randomly choose events
with replacement from our library of events and carry out
the estimation. This is repeated a total of 100 times for each
condition of interest.

As expected, both Fig. 14 and Fig. 15 support the intuition
that with additional training data, the range of the estimates
decrease. This growing library of historical events allows us
to have greater confidence in labeling an action as normal
or abnormal. Fig. 14 indicates that, for the case of a static
delay, the number of discrete jumps has minimal impact of the
performance. So long as there is a sufficient number to obtain a
coarse estimation of Tuser, allowing the optimization to search
locally over ti results in a stable estimation. Fig. 15 seem
to indicate that for this particular feeder, estimation ranges
stabilize above 60 total events, with minimal improvement
beyond 80 events. However, for the purpose of detecting
abnormal behavior the approach performs a lower number of
events can be used with a minor degradation in performance,
as indicated by the range of estimations in Fig. 15.

VI. CONCLUSIONS

In this work we proposed an online algorithm for passively
learning and monitoring the control logic of distribution OLTC
transformers and/or switched capacitor banks. The demon-
strated ability of our approach to learn the control logic of
devices negates the need for an operator to specify the settings
a priori, facilitating the deployment of the cyber-physical data
analytic engine described in Fig. 1. Also, the proposed ap-
proach does not inherit errors arising from inaccurate/outdated
databases or human input and allows for further decoupling
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Fig. 15. Algorithm performance for varying number of events with 8 number
of time series with discrete jumps for OLTC 2.

and isolation of the independent (read-only) sensor network,
which increases its integrity. The proposed approach was
validated on both simulated and utility recorded data.

A limitation of the proposed method is the requirement that
there exist large discrete jumps in subset of the voltage profiles
prior to the execution of a control action. These discrete
jumps are exploited for obtaining a coarse estimation of the
controller time delay, around which the optimization algorithm
is allowed to explore. For the case of an inverse time delay
in particular, feeders with fewer of these events will cause the
performance of the learning algorithms to decrease. Follow-on
work will seek to relax this requirement, by considering the
statistical properties of a family of events prior to execution
of a tap change or capacitor switching logic. The expected
impact is that the learning period would be reduced for the
case of infrequent discrete jumps in the voltage profile causing
it to exit its allowable range. Future work could also seek
to investigate an optimal placement algorithm that achieves
sufficient observability while minimizing the total number of
PMUs. Additionally, while the proposed learning algorithms
are suitable for devices that operate on local measurements,
they are not suitable for feeders that may employ a centralized
volt/var optimization for determining control device behavior
in the future. Follow-on work would seek to extend the
underlying idea within this paper and adapt a purely data-
driven learning algorithm for inferring such control logic.
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