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REVIEW ARTICLE

Advances in Deep Neuropathological Phenotyping of
Alzheimer Disease: Past, Present, and Future

Mustafa N. Shakir, BS and Brittany N. Dugger , PhD

Abstract
Alzheimer disease (AD) is a neurodegenerative disorder charac-

terized pathologically by the presence of neurofibrillary tangles and

amyloid beta (Ab) plaques in the brain. The disease was first de-

scribed in 1906 by Alois Alzheimer, and since then, there have been

many advancements in technologies that have aided in unlocking the

secrets of this devastating disease. Such advancements include im-

proving microscopy and staining techniques, refining diagnostic cri-

teria for the disease, and increased appreciation for disease

heterogeneity both in neuroanatomic location of abnormalities as

well as overlap with other brain diseases; for example, Lewy body

disease and vascular dementia. Despite numerous advancements,

there is still much to achieve as there is not a cure for AD and post-

mortem histological analyses is still the gold standard for appreciat-

ing AD neuropathologic changes. Recent technological advances

such as in-vivo biomarkers and machine learning algorithms permit

great strides in disease understanding, and pave the way for potential

new therapies and precision medicine approaches. Here, we review

the history of human AD neuropathology research to include the no-

table advancements in understanding common co-pathologies in the

setting of AD, and microscopy and staining methods. We also dis-

cuss future approaches with a specific focus on deep phenotyping

using machine learning.

Key Words: Alzheimer disease, Concomitant pathologies, Convo-

lutional neural networks, Deep learning, Immunohistochemistry,

Machine learning, Whole slide imaging.

INTRODUCTION
Alzheimer disease (AD) is a neurodegenerative disease

first described by Alois Alzheimer in 1906 in his case report
“€Uber eine eigenartige Erkrankung der Hirnrinde” [About a
peculiar disease of the cerebral cortex], which described a 51-
year-old female patient presenting to clinic with thoughts of
jealousy toward her husband and memory weakness (1, 2).
“She then showed signs of paranoia, disorientation to time and
place, and inability to perform basic tasks to care for herself
(1).” His patient died 4.5 years after she was admitted to a
mental asylum, and upon examining her brain postmortem,
Alzheimer noted “very peculiar changes of neurofibrils are
observable. . . Eventually, the nucleus and the cell disintegrate,
and only a tangled bundle of fibrils indicates the place which
had formerly been occupied by a ganglion cell” (1). Alzheimer
also reported deposition of certain stainable chemical in the
ganglion cells, reporting that the fibrils and the depositions
seem to go hand in hand (1).

Since that case report, a plethora of publications have
advanced the field of AD research. As of August 4, 2021, a
simple search on PubMed for “Alzheimer disease” revealed
over 173 500 peer reviewed articles on AD. Although great
strides have been made (Fig. 1—timeline), the diversity of the
pathophysiology processes of the disease is still not
completely appreciated or understood. This review delves into
the history of human AD neuropathology by examining the
neuroanatomic phenotypes of AD, AD heterogeneity, and no-
table advancements in pathology tools, such as microscopy
and staining methods that have advanced AD research. Last,
we examine future direction of AD research with a specific fo-
cus on deep phenotyping using machine learning to enhance
precision medicine approaches.

AD PATHOLOGIES, LOCATIONS, AND
HETEROGENEITIES

Pathological hallmarks of AD consist of the presence
of extracellular aggregated amyloid beta (Ab) protein in the
form of Ab plaques and aggregated hyperphosphorylated
tau protein in the form of neurofibrillary tangles (NFTs)
within the brain (3). With Ab plaques, numerous subsets
can exist based upon Ab morphology and if the plaque is
associated with dystrophic neurites (i.e. neuritic plaques)
(4). These plaques and NFTs can differ in density, makeup,
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and anatomical distribution (4–10). Both NFTs and Ab pla-
ques are hypothesized to be distributed in a hierarchical
fashion, with certain brain regions being more susceptible
to their accumulation (3). An Ab plaque phase and an NFT
staging scheme were developed by Braak and Braak (6)
and Thal et al (8), respectively, to denote neuroanatomical
progression. Furthermore, a semiquantitative assessment has

been developed through the Consortium to Establish a Reg-
istry for Alzheimer’s Disease (CERAD) to denote neuritic
plaque burden present during neuropathological analysis
(11). These systems are incorporated into the current neuro-
pathological diagnostic guidelines for AD put forth by the
National Institute on Aging and Alzheimer’s Association
(NIA-AA) (5, 7).

FIGURE 1. Timeline of select advancements in understanding the pathology of Alzheimer’s disease and deeper phenotyping
(orange text) and select advancements in scientific tools (blue text). AD, Alzheimer disease; ADNC, Alzheimer disease
neuropathologic changes; Ab, amyloid beta; cEM, cryoelectron microscopy; CERAD, Consortium to Establish a Registry for
Alzheimer’s Disease; CNS, central nervous system; dx, diagnosis; IHC, immunohistochemistry; NFT, neurofibrillary tangles; NIA,
National Institute of Aging; NIA-AA, National Institute of Aging and Alzheimer’s Association; NINCDS-ADRDA, National Institute
of Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease and Related Disorders Association; LBD, Lewy body
disease; LCM, laser capture microdissection; TDP-43, transactive response (TAR) DNA binding protein at 43 kDa; VaD, vascular
dementia; WSI, whole slide imaging.
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For Thal Ab plaque phase, the process starts in the neo-
cortex (designated as “Phase 1”), slowly progressing inferiorly
through the diencephalon and brainstem, eventually ending in
the cerebellar cortex (designated as “Phase 5”) (5, 8). For
Braak NFT stages, the process starts at the level of the transen-
torhinal cortex (termed transentorhinal Stages I and II), moves
to the limbic region (Stages III and IV), and finally reaches the
association isocortices (Stages V and VI) (6). Additional
works hypothesize that tau deposits may occur earlier in areas
other than the entorhinal cortices, such as the locus coeruleus
(12, 13) and the olfactory bulb and tract (14). Some research-
ers place greater emphasis on tau deposits in neurites (i.e. neu-
ropil threads) when assessing disease progression (15). To
calculate the CERAD neuritic plaques score, semiquantitative
assessments are conducted in the densest square millimeter
area of neocortex (including superior/middle temporal gyri,
middle frontal gyrus, and/or inferior parietal lobule) (11). The
scale range is none (no neuritic plaques present), sparse (>0
but <6 neuritic plaques), moderate (between 6 and 20 neuritic
plaques), or frequent (having>20 neuritic plaques) (11).

Following these staging/phasing processes, an ABC
score is then derived- “A” for Thal amyloid phase, “B” for
Braak NFT staging, and “C” for CERAD neuritic plaque den-
sities. This ABC score is then further synthesized to denote
the likelihood of AD neuropathologic changes (ADNC) con-
tributing to the clinical presentation of the patient (Not, Low,
Intermediate, or High) (5, 7). Unlike previous consensus crite-
ria, such as NIA-Reagan, classifications are independent from
clinic presentation of the patient (5, 7). This is significant be-
cause, in certain instances, patients can have ADNC and be
clinically asymptomatic (5, 7, 16). In addition, some groups
have further stratified AD to include “asymptomatic at-risk
for AD,” “presymptomatic AD,” and then “prodromal (i.e.
preclinical) AD” (17), further showing the clinical heterogene-
ity and complexity of the pathophysiology.

Although the spatial dispersion pattern of Ab plaques
and NFTs is often predictable, there are instances in which the
distribution of these pathologies has been variable and did not
follow the previously mentioned schematics. These cases have
taken on identities such as atypical AD (18). Two neuropatho-
logically defined subtypes of atypical AD have arisen: the hip-
pocampal sparing subtype (18), in which the hippocampus is
relatively spared from degeneration relative to the rest of the
cortex (19), and the limbic-predominant type AD (18), in
which NFT deposition is severe but restricted to the medial
temporal lobe relative to the rest of the cortex (20). Further-
more, there have been attempts to classify AD into different
subtypes in-vivo using positron emission tomography (PET)
imaging patterns (21). For example, Vogel et al (21) proposed
subtyping AD into a limbic subtype, a posterior occipitotem-
poral subtype, a medial temporal lobe sparing subtype, and a
temporal lateral subtype. In addition, there have been intrigu-
ing studies relating to primary age-related tauopathy (PART)
(22). PART is a recently coined term used to describe the pres-
ence of NFTs in brains with minimal or no Ab plaques, and
hence are currently not on the continuum of the AD spectrum
(22). PART can be very common among older individuals, re-
gardless of the presence of clinical dementia (22). Previous
terms used to describe tauopathy-related changes were either

not distinctive enough between clinical and pathological diag-
nosis, or used pejorative terms like “senile” (22). The transi-
tion in language to PART was made to reduce the use of
pejorative terminology and to align these changes with the
NIA-AA revised diagnostic criteria that separate the clinical
presentation from the neuropathological presentation (22).

In the context of the above-mentioned variances of AD,
it becomes clear that during postmortem examination, robust,
quantitative analyses of the neuroanatomic distribution of pa-
thologies are important to establish deeper phenotyping of
AD, and to aid in creating—as one may state—a deeper neuro-
pathologic landscape. Moreover, analyzing the neuroanatomic
distribution of AD pathologies can provide insights into poten-
tial concomitant pathologies such as Lewy bodies (23, 24).
For example, Dugger et al (23) revealed in clinicopathologi-
cally diagnosed Lewy body disease (LBD) cases with proba-
ble rapid eye movement sleep behavior disorder had a lower
Braak NFT stage and were less likely to have frequent neuritic
plaques present. Furthermore, within the current recommenda-
tions for clinical and pathological diagnosis of dementia with
Lewy body (DLB), the degree of ADNC observed (Braak
NFT stage) influences the likelihood that Lewy-related pathol-
ogy findings are associated with a typical DLB clinical syn-
drome (24).

Although we have focused on hallmark pathologies in
this review, other pathophysiological changes have been noted
to occur in AD including neuronal and synaptic loss, and in-
flammatory processes such as those related to microglia and
astrocytes (3, 72). The role of inflammation in AD is not fully
elucidated, and there are data to support both helpful and
harmful roles that may change based on temporal aspects of
disease as well as based on the abundance and type of inflam-
matory proteins/cells (72). Additional history of AD, espe-
cially the early stages related to defining its etiology has been
reviewed previously (73).

CONCOMITANT PATHOLOGIES WITHIN AD
Although AD is the most common cause of dementia

worldwide (74), “pure” AD (i.e. a clinical diagnosis of demen-
tia and upon postmortem analysis the brain contains only AD
pathologies, not meeting any other criteria for another neuro-
clinicopathological diagnosis) is not as frequent (75). Cases
often have other neurodegenerative comorbidities within the
setting of AD (75–81). The most common concomitant patho-
logical diagnoses found in the setting of AD are LBD, deposits
of TAR DNA binding protein at 43 kDa (TDP-43), and vascu-
lar dementia (VaD) (76–78, 80, 81); these pathologies can ex-
ist in multiple combinations and severities (82, 83). Some
examples of these pathologies are shown in Figure 2. Figure 3
graphs the number of articles published each year since 1977
using the terms “Lewy body dementia” and “Alzheimer dis-
ease” or “vascular dementia” and “Alzheimer disease” or
“TDP-43” and “Alzheimer disease” in a PubMed query on
August 4, 2021.

It is unknown whether these concomitant pathologies
are caused by each other and/or are the results of a common
underlying pathophysiological change (84). It does seem,
however, these pathologies may have some synergistic effects
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on each other, as seen in the case of some vascular pathologies
and AD, as well as TDP-43/LBD-AD (85–87). The coexis-
tence of these pathologies is very common, with the first
reported copathology of AD and LBD dating back to 1938
(30). Interestingly, Henrich Lewy and Alois Alzheimer

worked in the same laboratory making disease overlap even
more intriguing. Synergistic effects can be clinically signifi-
cant as some studies have shown that concomitant pathologies
can alter the threshold of dementia diagnoses (87). In a clinical
setting, these diverse underlying pathophysiologies make di-

FIGURE 2. Types of pathologies seen in the setting of Alzheimer disease (AD); AD is defined by the deposition of (A) Ab plaques
and (B) neurofibrillary tangles, furthermore Lewy type synucleinopathy, such as Lewy bodies and Lewy neurites (C) and TAR
DNA binding protein at 43 kDa (TDP-43) deposits (black arrows, using an unphosphorylated antibody to TDP-43) (D) can also
be located within the setting of AD. Scale bars: B, C¼50 mm; A, D¼200 mm.

FIGURE 3. Number of articles published each year looking at “Lewy body dementia” and “Alzheimer disease” or “vascular
dementia” and “Alzheimer disease” or “TDP-43” and “Alzheimer disease” (query done on August 4, 2021) Query was done
using Medical Subject Headings (MeSH) headings and Used for Terms through the Ovid database. To compare the history,
discovery, and prevalence of Alzheimer disease heterogeneity. LBD, Lewy body dementia; VaD, vascular dementia.
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agnosis a challenge. Furthermore, it is not just a “who” or
“what” (i.e. what pathologies) but a “when” and “where,” as
the temporal and neuroanatomical aspects of these processes
may also alter clinical presentations. Multiple studies have
shown the clinical diagnostic accuracy of AD alone is not at
100% when compared with the neuropathological diagnosis,
with some studies reporting full accordance of AD clinical
and pathological diagnoses in 49% of their cohort (88). This
study reported a sensitivity of 46% and a specificity of 88%
when it came to diagnosing AD with at least one other neuro-
degenerative comorbidity (88). Beach et al (89), examining
900 individuals National Alzheimer’s Coordinating Center
database, revealed sensitivity ranged from 70.9% to 87.3%,
whereas specificity ranged from 44.3% to 70.8% for probable/
possible AD levels of clinical confidence compared with AD
neuropathological diagnoses. Kovacs et al (78) encourage di-
agnostic procedures should not be terminated after finding the
most obvious neuropathological change in the demented brain
due to the common existence of multiple neurodegenerative
disorders. Furthermore, much of the work on diagnostic accu-
racy has been done on cohorts consisting of predominately up-
per-middle-class White Caucasians, and may not capture the
diversity of our world. This is important as many persons from
backgrounds other than non-Hispanic white can have
increases in mixed pathologies (90, 91). Specifically, a recent
study examining Latino decedents revealed the clinical diag-
nosis of AD to have 97.1% sensitivity and 57.9% specificity
for autopsy-verified AD (92). There is an increasing need for
more diverse cohorts in neuropathology studies to understand
the variety of neuropathologic landscapes to assure adequate
treatment, diagnosis, and prognosis for all individuals who
suffer from AD and related dementias.

AD AND LBD
LBD is a neurodegenerative disorder characterized by

accumulation of aggregated a-synuclein in the brain, leading
to the development of Lewy bodies (found within neuronal cy-
toplasm), and Lewy neurites (found in neuronal processes) (3,
93). Clinically, LBD can present as DLB, Parkinson disease
dementia, or Parkinson disease (94). In 1997, a-synuclein, a
presynaptic protein, was revealed to be the main component of
Lewy pathologies (95). Similar to AD, LBD has a predictable
neuroanatomic distribution of a-synuclein deposits, and there
have been an evolution of staging systems to assess the pattern
of the distribution. The first reported staging scheme by
Kosaka et al (96) was in 1984 that included 3 categories of
brainstem, transitional, and diffuse LBD. Nearly a decade later
in 2003, Braak et al (97) provided a finer-grained 6-stage sys-
tem and used a semiquantitative approach, and although
stated, the staging procedure proposed did not require evalua-
tion of lesional density. Then in 2009, Beach et al (98) refined
things further to be more inclusive of the LBD spectrum, in-
cluding subjects with more limbic-predominant Lewy pathol-
ogies, with the Unified Staging System using the semi-
quantitative scoring proposed by McKeith et al in the third
DLB consortium. In 2021, the latest staging system was
reported by Attems et al (99), termed the Lewy Pathology
Consensus Criteria, and focused on a dichotomous scoring ap-

proach with a justification of minimizing interrater reliability.
However, this dichotomous approach may result in inflated
reporting of LBD diagnoses. The DLB Consortium has also
put forth clinico-neuropathologic recommendations with a
semi-quantitative approach for Lewy pathologies, with the
first consensus report in 1996 (100) and the most recent fourth
consensus report published in 2017 (24).

There have been studies that hypothesized the presence
of subtypes within LBD, differing in certain clinical features
and/or anatomic distributions (23). LBD commonly exists
with other pathologies, including AD and other neurodegener-
ative diseases (23, 79, 101). Different subtypes of LBD, based
on the anatomic location of Lewy bodies, tend to be more
commonly present with AD pathology, with the most common
being amygdala predominant (102–104). With amygdala pre-
dominant LBD, studies have shown Lewy bodies to positively
correlate with NFTs but not Ab plaques (105). This has led
researchers to hypothesize the presence of LBD pathologies in
the amygdala in the setting of AD to be a distinct form of a-
synucleinopathy (105, 106). These subtypes, as well as the
presence of co-pathologies, have caused alteration in the most
recent consensus criteria for LBD, reflecting the importance
of the anatomic distribution of Lewy bodies and incorporating
ADNC when assessing the likelihood of associations with
clinical syndromes (24). This new incorporation is significant
because the overlap between AD and LBD can be highly prev-
alent; depending on the cohort examined, up to 50% of brains
with AD pathology also show LBD pathology (79, 104, 107).
Some have even termed this common occurrence as “triple-
brain amyloidosis” (consisting of a-synuclein, NFTs consist-
ing of tau proteins, and Ab plaques of Ab aggregates) (108).
The presence of LBD in addition to AD is clinically signifi-
cant because the course of the AD-LBD disease tends to be
more aggressive and with more pronounced cognitive dys-
function than pure AD (23, 109–111).

AD AND TDP-43
TDP-43 is normally a nuclear protein involved in

mRNA processing; it was not until 2006 that TDP-43 was im-
plicated in the pathogenesis of some neurodegenerative dis-
eases (112). TDP-43 is associated with a subset of
frontotemporal lobe dementias, amyotrophic lateral sclerosis,
and hippocampal sclerosis (112). Hippocampal sclerosis has
been associated with AD since 1989, when Zweig et al (113)
reported the presence of AD pathology in patients with hippo-
campal sclerosis; Dickson et al (52) later confirmed this find-
ing with a larger study. Although TDP-43 can be a sine qua
non for select diseases, it can also be present within the setting
of other diseases, such as AD, but does not necessarily indicate
the presence of hippocampal sclerosis plus AD (3, 114, 115).
The first report of concomitant TDP-43 and AD was in 2007,
and presence of TDP-43 proteinopathy in the setting of AD
can be somewhat common, ranging from 20% to 37% (63, 80,
116). Studies examining the rate of TDP-43 deposits in indi-
viduals with AD or at risk of AD (i.e. people with Trisomy 21)
found that brains with ADNC had higher rate of TDP-43
deposits than those not showing ADNC, suggesting a potential
common association between the neuropathological origin of
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these diseases (117–120). Similar to LBD, the presence of
TDP-43 in the setting of AD has been noted to enhance cogni-
tive impairment, represented by reduced scores on cognitive
function tests, as well as increased likelihood of developing
AD-like symptoms before death (80, 86, 121). Certain areas of
the brain tend to harbor ADNC and TDP-43 pathology concur-
rently, particularly the amygdala, entorhinal cortex, and den-
tate gyrus of the hippocampus (63, 122–125). There also have
been TDP-43 staging schemes based on the deposition in these
select anatomic areas (115, 126, 127), with limbic-predomi-
nant TDP-43 encephalopathy being the most recent terminol-
ogy proposed; albeit there is still much to understand
regarding the spectrum of TDP-43 deposition in human brain
(115, 128).

AD AND VAD
In contrast to the former proteinopathies, VaD is not de-

fined by intracellular pathogenic protein accumulation, but
rather is associated with cerebrovascular disease, which occurs
on a spectrum of intracranial vessel injuries denoted by infarc-
tions, hemorrhages (129, 130), and other vascular pathologies
such as cerebral amyloid angiopathy (87, 131) and arteriolo-
sclerosis (132). Although all forms of cerebrovascular pathol-
ogy have the potential to increase risk of dementia, VaD
seems to be most correlated with pathology involving the mi-
crovasculature of the brain, termed small vessel disease (133).
Historically speaking, the association between brain vascular
pathology and the distinct type of dementia it causes (e.g. dif-
ferent than “senile dementia,” which was the term assigned to
AD dementia) has been appreciated and noticed even before
AD, by Alois Alzheimer himself (27).

The clinical presentation of AD-associated dementia is
different than VaD-associated dementia. The former is insidi-
ous and slow in onset, whereas the latter is abrupt and predict-
able in onset and progression (134). However, it can be
difficult to clinically ascertain the difference between VaD
and mixed VaD-AD dementia (134). As with LBD and TDP-
43, VaD is prevalent with AD, presenting in over 30% of cases
(87, 133, 135), and is associated with greater cognitive impair-
ment than pure AD (87, 133). Furthermore, concomitant AD
and VaD have been noted to be more frequent in select ethno-
racial groups, especially those of Hispanic descent (91). As for
staging schemes and creating a consensus for diagnosing
VaD, there have been multiple attempts (136–140); however,
there is no universally used system in place.

STAINING AND MICROSCOPY ADVANCEMENTS
AND RELATIONS TO AD

When it comes to making a neuropathologic diagnosis
of AD, ADNC must be observed on histological analysis of
the brain (7). Hence, postmortem analysis of brain tissue
remains the gold standard for a definitive diagnosis of the dis-
ease (141). Generally speaking, histological analysis of post-
mortem samples involves fixing and cutting the tissue,
staining the tissue for visualization/detection of the different
structures within, and finally analyzing the stained specimen
for pathologic changes utilizing a microscope. Below we re-

view select advancements in these methods related to diagno-
ses as well as deeper phenotyping of the disease.

ADVANCES IN STAINING
In terms of AD, the current standard method of evalua-

tion is when formalin-fixed paraffin-embedded sections are
subjected to immunohistochemistry (IHC) using antibodies
for select proteins such as Ab and tau. Although the main pil-
lars of neuropathological findings in AD have been known for
decades (see timeline for first discovery of Ab plaques and
NFTs components), the road to reaching a consensus on the di-
agnostic process has been complicated, as diagnostic techni-
ques have evolved and changed dramatically since the disease
was first reported, over a century ago.

In his initial report, Alois Alzheimer used a modified
version of the silver stain developed by Bielschowsky to visu-
alize plaques and NFTs (2, 142). Bielschowsky’s silver
method was one of the many iterations of the silver stain,
which was originally developed by Camilo Golgi in 1873,
who used silver to stain cellular components (25). A few years
after that, Ramon y Cajal modified the stain to visualize
deeper structures within a neuron (for review, see [143]).
Cajal’s stain was further developed to the mirror reaction sil-
ver stain, which was the basis for the Bielschowsky’s method
(for review see [144]). Bielschowsky’s modification allowed
for the amount and size of the silver precipitate to increase,
thus allowing for better tissue visualization (144). Although
this staining technique allowed Dr. Alzheimer to visualize the
plaques and NFTs within the tissue, full appreciation of pla-
ques and NFTs was still a challenge.

Another pivotal advancement in staining was in 1942,
when florescent antibodies revealed pneumococcal antigen in
tissues, this marked the first published report to our knowledge
of using antibodies for diagnostic purposes (145). The use of
antibodies in histology allowed one to “tag” a particular anti-
gen of interest, to facilitate better localization and visualiza-
tion of said antigen. In 1951, Coons (32) incorporated this new
florescent antibody technique into histochemical analysis,
marking the first reported use of IHC in medicine, to our
knowledge. About 15 years after, IHC began to be incorpo-
rated into studying the nervous system, when Rauch et al (39)
used the technique to attempt to isolate a protein in the spinal
cord. Later on in 1986, this technique played a major role in
determining the core component of NFTs, which reacted posi-
tively to antibodies that target tau protein (45, 49). Presently,
there are a plethora of antibodies available to visualize select
species of tau and Ab to denote pathologies and their progres-
sion (for reviews, see [4, 146, 147]).

During IHC’s infancy, there were further efforts focused
on advancing the staining techniques to improve tissue visuali-
zation. This led to the discovery of the thioflavin stains (thio-
flavin T and S), which were discovered in 1959 and 1967,
respectively (34, 40). These 2 stains were similar as they
revealed aggregates that exhibit beta-pleated sheet structures
or amyloid structures and differed in the light emission they
exhibit under fluorescence microscopy (34, 40). In addition to
the discovery of thioflavin stains, the silver stain was further
optimized later on in 1971 by Gallyas (42). This stain, which
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took his name, can selectively stain different parts of the cell,
depending on the initial chemical preparations of the stain
(144) as well as select tau species/isoforms. Bielschowsky’s
method can be used complementary to Gallyas, as the former
reveals predominately senile plaques and 3-repeat tau deposits
(Pick bodies), and the latter revealing 4-repeat tau deposits
(144). The Gallyas stain was used by Braak and Braak (6) to
develop the NFT staging scheme.

ADVANCES IN MICROSCOPY
Besides advancements in staining, the evolution of mi-

croscopy has also played a pivotal role in AD phenotyping and
understanding of the underlying pathophysiology. Back in
1906, Alois Alzheimer used an optical microscope to visualize
the neuronal changes that occurred in his patient (1, 142).
Since then, advancements in microscopy such as the use of
electron microscopy (EM) and cryoelectron microscopy
(cEM) as well as the development of light-sheet fluorescence
microscopy (LSFM), laser capture microdissection (LCM),
and virtual microscopy (with whole slide imaging [WSI] in
1997; see timeline) have expanded our ability to visualize tis-
sue changes at a much greater detail. EM allows one to visual-
ize structures at a much stronger magnification (up to 300
million times, compared with 1500 on a light microscope,
allowing observations at an atomic level) than the ordinary op-
tical microscope (148), and the first use of EM in AD dates
back to 1963 when a study examined the cortex/white matter
of 5 patients with a presenile dementia diagnosis (36). cEM
allows the visualization of biomolecular structures at a very
high resolution, and was recently used in 2017 and 2019 to vi-
sualize tau and Ab secondary protein structure after purifica-
tion from brains of patients with AD (67, 68). Furthermore, a
recent cEM paper provides evidence for a hierarchical classifi-
cation of tauopathies that complements neuropathology and
clinical diagnosis (149). cEM is an exciting area as it has the
capabilities of providing a better understanding of the struc-
ture of pathological proteins shedding further light on disease
pathophysiology (67, 68, 150, 151). LSFM was developed in
1993 and was termed orthogonal-plane fluorescence optical
sectioning (152); later, it was optimized to the current LSFM
in 2004 (153). This microscopy technique allows one to ac-
quire images at a much faster rate than the typical microscope
allows. LCM was first applied in 1996, 30 years after develop-
ment of the first laser that could perform microsurgery (i.e.
isolating parts of tissue without damaging the surroundings)
(35). This advancement in microscopy allows one to isolate
very small sections of tissue (as small as a single cell) under a
microscope, allowing for a more precise and isolated observa-
tion of the tissue undergoing examination (56). Last, WSI was
first developed in 1997 and gave one the ability to transform
glass slide sections into digital images, improving quality, res-
olution, and ease to visualization (for review see [61]). The
technology has been used broadly across many fields includ-
ing (but not limited to): teleconsulting, archiving, research, pa-
thology, and even education (154). For example, some
medical students are starting to learn pathology using WSI in
the United States (155). WSI was approved by the Food and
Drug Administration (FDA) for use in surgical pathology in

2017, making it a potential key player in histopathological
diagnostics (66). WSI has advantages over traditional micros-
copy such as the ability to partition digital images into pixels
and sort them by hue/light/saturation and/or red/green/blue
values for more quantitative approaches and percent areas af-
fected by select staining. Following WSI, images can be
viewed through a computer interface, eliminating the need for
a microscope and enhancing the ability to share images for
collaborative, consultation, and educational purposes. There
are disadvantages as well, WSI can produce a variety of for-
mats (SVS, bigtiff, CZI, etc.) due to the vastly different scan-
ners on the market and a lack of universal format for image
production (156–159), scanning systems can differ in the ex-
posure and color contrast they can offer as well as associated
metadata and compression rates; some allow changes in con-
trast/exposure at acquisition only, whereas others allow it later
(154). Another issue associated with WSI is large file sizes, a
single digitized slide may produce a file of 1 GB in size, and
with numerous slides/cases across multiple studies, storage/
transferring of images become important items to consider
when developing the infrastructure necessary to support the
technology. Despite the disadvantages, WSIs are potential key
player in contributing to the neuropathologic landscape pro-
viding deeper phenotyping of AD neuropathologic landscape
(18, 23, 160–162).

OTHER ADVANCEMENTS
Other scientific advancements such as the development

of the field of proteomics (and other “omic” entities), the dis-
covery of in-vivo PET imaging biomarkers for AD patholo-
gies, as well as the emergence of technologies such as digital
spatial profiling (DSP) and machine learning algorithms have
aided with deeper phenotyping of AD. Proteomics is defined
as the study of proteins and their processes, and this field has
been crucial in AD research, as the pathology of the disease is
mainly driven by a proteinopathy. Proteomics was first estab-
lished in 1996, following the discoveries of genome sequenc-
ing in the 1970s, 2D gel electrophoresis to separate proteins in
1975, and antigen retrieval from paraffin-embedded tissues in
1992 (55). Another advancement was in biomarkers; Pitts-
burgh Compound-B was first discovered in 2004 (62) and was
based on concepts of the thioflavin stains for detecting amy-
loid structures. It gave clinicians and researchers the ability to
visualize Ab in-vivo using PET imaging (62). An 18F com-
pound with a longer half-life, Florbetapir, was approved by
the federal FDA for clinical use in 2012 (64). In 2013, an 18F
tau tracer, Flortaucipir, was developed for in-vivo examination
of tau deposits on PET imaging (65) and was FDA approved
in 2020 for use in a clinical setting (71). There have also been
other PET ligands for tau and Ab and are reviewed elsewhere
(163, 164). Select PET biomarkers have been shown to be
moderately sensitive/specific for diagnosing AD compared
with the gold standard neuropathological diagnosis. Beach et
al (165) found Florbetapir had between 69% and 95% sensitiv-
ity and between 83% and 89% specificity (depending on the
reader of the scan) in diagnosing AD. The increasing accuracy
of these in-vivo techniques has led researchers to an in-vivo
biomarker classification system for AD, termed the “A/T/N
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classification system” (166). This system proposes classifying
AD in-vivo through a variety of imaging techniques (i.e. PET,
MRI) and fluid biomarkers (i.e. CSF protein biomarkers of
AD) that measure Ab (A), tau (T), and degree of neurodegen-
eration (N) (166).

Finally, within the past decade, use of technologies such
as DSP and machine learning for postmortem brain tissue
analysis has emerged for deeper phenotyping of AD (69, 70,
167, 168). DSP aims to perform spatial profiling of highly
multiplex proteins or RNAs during postmortem IHC analysis
(169). In the medical literature, DSP has been mostly used to
study RNA and protein spatial interactions in cancer (169,
170). Prior to this technology, the ability to spatially profile
proteins was limited in their multiplexing and quantification
(169). DSP is an important technology as it can aid in under-
standing how a protein spatially behaves in an environment
with other proteins giving further insight into disease patho-
physiology (169). As for machine learning, the next section
will provide an overview of the technology, how it has been
applied medically, with a specific focus on AD, and current
cautions to consider.

THE FUTURE OF AD DEEP PHENOTYPING USING
MACHINE LEARNING TOOLS

Attempts at correlating a specific clinical phenotype of a
patient with AD pathology have been ongoing since 1968 (29,
41), and the current neuropathologic diagnostic criteria for
AD are still not robustly quantitative (5). A scalable quantita-
tive method to characterize AD could aid immensely in deeper
phenotyping of disease, and one immerging methodology that
may provide a scalable, reproducible option is machine learn-
ing. To illustrate the rise of machine learning in the field, com-
parison to that of say IHC, Figure 4 depicts the number of
articles published each year containing the search items

“immunohistochemistry” and “Alzheimer disease” or
“machine learning” and “Alzheimer disease” on PubMed.

Machine learning, which can be broadly defined as the
discipline of teaching computers how to learn patterns from a
dataset, has recently been applied to the medical field, as
experts are observing that some clinical data are appropriate
for machine learning (171). The association between machine
learning and neurology dates back to 1943, when a theoretical
mathematical framework was developed to frame neuronal ac-
tivity in terms of a calculus model (31). In terms of general
practical application, machine learning was first put to use in
1958, when a model was developed to examine information
storage and organization in the brain (33). In the past few
years, the application of machine learning to disease etiology
and presentation has gained traction, as it has reached a level
equivalent to that of an expert pathologist when it comes to
cancer diagnoses, particularly skin and breast cancer (172–
174). Specifically, a class of machine learning named convo-
lutional neural networks (CNNs) has been at the forefront of
medical diagnosis, especially for tasks that rely heavily on vi-
sual inspection (e.g. examining digital slides) (69, 175). CNN
models can learn to extract patterns from visual data (i.e.
WSI) after adequate training without the need for an operator
to manually define image parameters or working templates
(175). For further details regarding machine learning and
CNNs in the general context of pathology please see the recent
review by Rashidi et al (175).

In 2019, machine learning was applied in the neuropa-
thology realm, and analysis of WSI has shown promising
results as algorithms were able to precisely identify tauopa-
thies and reach expert level AD pathological quantification
(70). With respect to Ab pathologies, a ground breaking study
outlined a pipeline using WSI that produces machine learning
derived scores comparable to the semiquantitative scores
given by an expert pathologist (69); this pipeline has since

FIGURE 4. Number of articles published each year containing the search items “immunohistochemistry” and “Alzheimer
disease” or “Machine learning” and “Alzheimer disease” (query done on August 4, 2021). Query was done using MeSH
headings and used for terms through the Ovid database to compare the history and prevalence of immunohistochemistry
relative to machine learning. AD, Alzheimer’s disease; IHC, immunohistochemistry.
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been validated in independent cohorts (167). These machine
learning methods paired with WSI could help reduce the inter-
rater variability seen with using the CERAD criteria for AD
diagnosis (176), as well as provide a scalable means to in-
crease our capability of deeper phenotyping of AD, further im-
proving our understanding of the disease. CNN algorithms
have also been developed to classify different topographical
distribution of tau pathology in progressive supranuclear palsy
and corticobasal degeneration (177, 178). Additionally, there
have been works to determine whether CNNs can help classify
AD in-vivo using neuroimaging data; 1 study revealed the use
of CNN and traditional machine learning yielded an accuracy
rate of 98.8% for classifying AD and 83.7% for predicting the
transition from mild cognitive impairment to AD (179).

A specific class of CNN models named U-NET, is par-
ticularly effective at analyzing WSI in segments (i.e. image
segmentation) (180), which can prove to be helpful in deter-
mining the regional differences of AD pathology deposition
(181). U-NET is loosely defined as a fully functioning CNN,
and it was first described in 2017 (182). The model has been
primarily used to quantify and detect cancer morphology on
WSI, showing a moderately high detection rate of 75% for
urothelial cell carcinoma (183). It has also been compared
with expert pathologist opinion in detecting and quantifying
immune cells in certain cancers, and has shown a moderately
high agreement score with the pathologist evaluation (184). In
terms of AD, the model has been used to aid in gray matter
and white matter segmentation (181); and Wurts et al (185)
have recently hypothesized that a pretrained U-NET model
may be successful at identifying and segmenting tau patholo-
gies in AD.

Although machine learning will aid immensely with
scalable deep phenotyping of AD, it has not yet reached a
point where it can replace a neuropathologist. The technology
should be used to augment the ability of the neuropathologist,
especially as the number of pathologists in the field has been
decreasing; machine learning is intended to be a part of this
“clinical decision support system” (186). Machine learning
does have certain cautions to consider before algorithms reach
a point of mass application. Namely, the robustness of CNNs
across larger diverse cohorts without making major adjust-
ments to the pipeline remains one of the largest concerns in
the field (167). So far, machine learning analysis of WSI has
been conducted in select cohorts only (i.e. a health system or
research study cohort), on select anatomic areas with select
IHC stains so these pipelines may fail when utilizing other
samples unless major adjustments are made (167). This is un-
derstandable as machine learning algorithms, such as CNNs,
require training data that come from the cohort they are ap-
plied to, so when there is a change in the cohort, the CNNs
“training” must be adjusted as well. Some groups have been
successful in developing workflows applicable to different
cohorts with minimal modifications, paving the way for more
general and all-around robust pipelines to be developed (167).
Another hurdle is the bias-variance tradeoff that is seen in su-
pervised machine learning, which is the most common type
used in pathology (175). The bias-variance tradeoff states that

if the dataset the CNN is given is very specific, then the pre-
dictive value of the CNN will be high, but the application of
the algorithm will be limited (175). On the other hand, if the
dataset given is very general, the predictive value of the model
will be low, but the algorithm will be applicable to a wider
range of datasets (175). This also can add to the risk of overfit-
ting, which is the idea that the training dataset may become
too broad and start to fit nonpathological data into the model,
giving erroneous results. To overcome this hurdle, a CNN
model that effectively balances the variance with the bias is
needed to establish an algorithm that is both highly predictive
and applicable to multiple datasets. Furthermore, machine
learning in the realm of pathology relies heavily on WSI, and
WSIs have many limitations (discussed in advancements in
microscopy); due to the nature of this dependence, all of the
limitations of WSI become limitations in applying machine
learning (187). These application limitations are still being
discovered, for example, it was recently revealed that the for-
mat of the imaging (i.e. PNG vs JPEG) fed into the machine
learning model did not impact the performance of the model
(188). Although this may not be the case for all variables, fur-
ther research is needed on how these pre-analytical variables
can influence the performance of a model (188). Appropriate
infrastructure also needs to be considered in order to encom-
pass the entire workflow from slide scanning to implementing
machine learning algorithms. This infrastructure should in-
clude not just equipment (slide scanner, data storage/servers,
and graphic processing units—either cloud-based or on prem-
ises) and space but personnel with appropriate expertise, in-
cluding pathologists, machine learning engineers, IT
personnel, statisticians, and database managers to aid in proper
development and maintenance of the workflow. Multidiscipli-
nary dialogs are key in the future of this technology, and will
become critical in its application.

The field of machine learning is, in many ways, still at
its infancy. The use of the technology is expanding, and de-
spite all the limitations mentioned, machine learning continues
to gain popularity in the scientific and medical communities.
A 2020 review identified 64 machine learning-based medical
devices and algorithms that are FDA approved (189). Further-
more, the FDA has acknowledged the potential impact of the
machine learning as future medical devices, and published a
discussion paper with propositions on how to manage machine
learning-related devices in terms of policy and safety (190).
Additionally, some groups have already developed, clinically
validated, and experimentally implemented a machine learn-
ing model for the diagnosis of prostate cancer in a routine clin-
ical practice (191). To further promote these technologies and
have more generalizability, in the field of cancer research,
there have been recent efforts toward establishing an open-ac-
cess digital database for histological slides to be shared and
made public (192). This is an important step for machine
learning, which is dependent on data sharing to develop valid
and reliable algorithms. An open-access database means the
ability to develop a pipeline algorithm that can learn from data
that are broader and more diverse both on the levels of cohort
demographics and disease spectrum.
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CONCLUSION
Over the past century, there have been significant

advancements in AD neuropathology research that have im-
proved our understanding of its pathophysiology. The advan-
ces bring into focus the heterogenous nature of the AD
neuropathologic landscape. In addition, research is moving to
more robustly quantitative methods, using techniques such as
machine learning to provide deeper disease phenotyping to al-
low for viewing of the neuropathologic landscape in a scalable
way. This progression is extremely important in the journey to
develop effective therapies and improved prognosis and diag-
nosis for AD for all individuals. Specifically, having a better
phenotyping and understanding of AD is a necessary step to
adapting a precision medicine approach to treating the disease
(193). Precision medicine is a treatment and prevention ap-
proach that takes into account the unique presentation of each
patient and tailors therapies to match the patient’s specific cir-
cumstances that lead to the diseased state (193). The concept
of AD deep phenotyping to aid in precision medicine
approaches should take into account phenotype heterogeneity
examining data from persons of diverse backgrounds and in-
corporate scientific tools that enhance understanding of dis-
ease pathophysiology (overview in Fig. 5). Precision

medicine is used for certain cancer therapies, and the approach
is starting to make its way into the neurodegenerative realm of
medicine. The concept of integrating machine learning with
precision medicine is not new as both fields of radiology and
oncology have integrated machine learning algorithms into
their practice to personalize therapies for their patients (194,
195). When it comes to AD, similar to machine learning inte-
gration, the integration of precision medicine into the field is
still at its beginning. In fact, less than 2 years ago, Alzheimer
Precision Medicine Initiative was started (196). This is an in-
ternational organization that aims to implement nascent AD
therapies based on a patient’s unique biomarkers, genetic
makeup, and disease state (196). Machine learning and preci-
sion medicine have already begun to intersect in the field of
AD, and with the appropriate effort and technology, these
new advancements may bring us closer to curing and prevent-
ing AD.
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