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Abstract

Four problems in stratified flows
by

Nathan Alexander Konopliv

We extend the vorticity-based modeling approach of Borden & Meiburg [I] to non-
Boussinesq gravity currents and derive an analytical expression for the Froude number
without the need for an energy closure. Via detailed comparisons with simulation results,
we assess the validity of three key assumptions underlying both our as well as earlier
models, viz. 1) steady-state flow in the moving reference frame; ii) inviscid flow; and iii)
horizontal flow sufficiently far in front of and behind the current. The current approach
does not require an assumption of zero velocity in the current.

Double-diffusive lock-exchange gravity currents in the fingering regime are explored
via two- and three-dimensional Navier-Stokes simulations in the Boussinesq limit. The
front velocity of these currents exhibits a nonmonotonic dependence on the diffusivity
ratio and the initial stability ratio due to the competing effects of increased buoyancy and
increased drag. Scaling arguments based on the simulation results suggest that even low
Reynolds number double-diffusive gravity currents are governed by a balance of buoyancy
and turbulent drag.

The stability of an interface separating less dense, clear salt water above from more
dense, sediment-laden fresh water below is explored via direct numerical simulations. We
find that the destabilizing effects of double-diffusion and particle settling amplify each
other above the diffusive interface, whereas they tend to cancel each other below. For
large settling velocities, plume formation below the interface is suppressed. We identify

the dimensionless parameter that determines in which regime a given flow takes place.
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The effects of shear on double-diffusive fingering and on the settling-driven instability
are assessed by means of a transient growth analysis. Shear is seen to dampen both
instabilities, which is consistent with previous findings by other authors. The shear
damping is more pronounced for parameter values that produce larger unsheared growth.
These trends can be explained in terms of instantaneous linear stability results for the
unsheared case. For both double-diffusive and settling-driven instabilities, low Pr-values
result in less damping and an increased importance of the Orr mechanism, for which a

quantitative scaling law is obtained.
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Chapter 1

Overview

This work can be divided into four studies on four topics, each of which has something
to do with gravity currents, two-component instabilities, shear or some combination of
the three. Because each study is fairly distinct from the other ones, they will each be
introduced separately, in addition to the brief overview given here.

Gravity currents occur when heavy fluid flows underneath light fluid, driven by grav-
ity. Depending on the relative density difference of the two fluids, a gravity-driven flow
may be classified as Boussinesq or non-Boussinesq. Boussinesq flows occur when the
relative density difference is small, and are more common in nature. Because of the
simplifications afforded by the Boussinesq approximation, Boussinesq flows are easier to
model than non-Boussinesq flows. In chapter 2], the vorticity model developed by Borden
& Meiburg [I] for Boussinesq gravity currents is extended to the case of a non-Boussinesq
gravity current. The validity of the key assumptions in the creation of this model are
also checked numerically. The citation for this work is [2].

In chapter |3 the focus is shifted back to Boussinesq gravity currents, but driven by
density differences caused by two components instead of one. Specifically, the case of hot
and salty water flowing over heavier cold and fresh water is considered. In this situation,
the salt is unstably stratified and the heat is stably stratified. This double stratification

is unstable to the double-diffusive fingering instability, which is driven by the release
1



Overview Chapter 1

of the potential energy stored in the salinity field. The release of the potential energy
stored in the salinity field causes the current to become more buoyant, but it also results
in additional drag on the current due to the fluid motion from the fingering instability.
These effects are analyzed as a function of two governing parameters — the diffusivity
ratio between heat and salt and the ratio of the density contributions from heat and
salt. Most of the simulations are done in two dimensions to minimize cost, but a three
dimensional simulation is performed as well for comparison. The citation for this work
is [3].

We then shift from gravity currents to an analysis of a purely two-component gravity-
driven instability in chapter[d A two-layer setup of fresh, particle-laden water below salty,
clear water is considered. In this situation, the differing diffusivities of the salinity and
particle concentration cause plumes to form on both sides of the interface, while particle
settling causes plumes to form only above the interface. A model is developed that is able
to predict whether settling or diffusion will be the dominant effect, which will determine
if plumes are present below the interface as well as above it. One potential application
for this work concerns “heavy” river outflows. If a river is exceptionally muddy, either
due to freak erosion events or generally high erosion in the area, the sediment in the river
can make the fresh river water heavier than the surrounding ocean water and the river
outflow will run along the bottom of the ocean. This is the same stratification as our
study. The main differences are the presence of shear and the scale or size of the problem,
but the model from our study still may be able to help predict the amount of mixing in
the current by predicting the presence of plumes below the interface. The citation for
this work is [4].

Finally, in chapter [5| we move back to the fingering instability and examine the effect
of shear on it using Kelvin waves. This transient growth analysis predicts that shear will

dampen the fingering instability, which is consistent with a wide array of previous work,
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discussed in section [5.I We then extend this analysis to the settling-driven instability
first identified by Alsinan et al.[5], and find that it too is dampened by shear. We look
closely at the mechanisms driving this instability and use that to explain the damping
effect of shear. In the case of either instability, we find that shear can occaisonally have
an amplifying effect. This is due to the previously known Orr mechanism, and we develop
a formula to quantify its effect. If the effect of the Orr mechanism is subtracted, shear

dampened both instabilities for every parameter combination tested.



Chapter 2

A vorticity model for
non-Boussinesq gravity currents

2.1 Introduction

Three quarters of a century ago, von Kdarmén [6] introduced the idealized gravity
current model shown in figure 2.1Th. He considered the flow in the reference frame moving
with the current front, and invoked three main simplifying assumptions: i) the flow is
steady in this reference frame; ii) the flow is inviscid; and iii) the fluid inside the current
is at rest. By neglecting the flow in the ambient and applying Bernoulli’s law along the
streamlines C-O and O-A, i.e., by assuming that the mechanical energy is conserved

along these streamlines, he obtained for the Froude number

Fy = S (2.1)

Here, U denotes the front velocity of the gravity current, h represents its height, ¢’ =

g(p1 — p2)/p1 indicates the reduced gravity, and o = ps/p; refers to the density ratio.
Benjamin [7] objected to von Karmdn’s analysis on the grounds that Bernoulli’s

equation should not be assumed to hold along streamline O-A, due to the dissipation that

occurs in this interfacial region as a result of the velocity shear between the current and

4
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Figure 2.1: Idealized gravity current in a deep ambient (a) and a channel (b).

the ambient, which causes the development of Kelvin-Helmholtz billows and turbulence.
Benjamin instead considered a corresponding gravity current in a channel of finite depth
H, as shown in figure 2.1p. By applying the same three simplifying assumptions as von
Karman, and also considering the pressure distributions far up- and downstream of the
current front to be hydrostatic, Benjamin was able to write the conservation laws for

mass and horizontal momentum flux as

UH = Uy(H —h) (2.2)

pcH + pUH = ppH +Lg(p1 — pa) h* — g (p1 — p2) Hh+ poUy (H — 1) . (2.3)

For a given set of values for current thickness, channel height and density ratio, the
above relationships represent two equations for the three unknowns U, U, and pg — pe,
so that one additional equation is required. To close the problem, Benjamin followed von
Kérman’s approach and applied Bernoulli’s law; however, he did so along the bottom
wall C-B of the channel, rather than along the interface as von Karman had done. For

a current of fractional height a = h/H, Benjamin thus obtained for the Froude number

U Jal-@)2-a)]"?
Fh“‘ﬁﬂ?‘{ ol +a) } ‘ (24)
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Note that the Froude number F}, based on the current height is related to the Froude
number Fj; based on the channel height by Fj, = Fya~'/2.

For Boussinesq gravity currents, Borden & Meiburg [I] showed that invoking an
energy closure assumption such as Bernoulli’s equation in Benjamin’s model becomes
unnecessary if the conservation of vertical momentum is enforced, along with the con-
servation of mass and horizontal momentum. This approach bypasses the controversy
between Benjamin and von Karman entirely, as the conservation of energy or head loss
arguments are not required. While there is no flow of vertical momentum into or out
of the control volume BCDFE, the importance of vertical momentum conservation inside
the control volume is clear. The ambient fluid is first accelerated and then decelerated in
the vertical direction, which affects the pressure profiles along the top and bottom walls.
In turn, these profiles determine the pressure jump pg — pc across the current front, for
which the need of an additional equation originally arose. Borden & Meiburg [I] showed
that the conservation of vertical momentum can be accounted for by considering the lin-

ear combination of the differential versions of the steady-state, inviscid, horizontal and

vertical momentum equations, in the form of the Boussinesq vorticity equation

dp
u-Vw=—g¢g->, 2.5
95 (2.5)
where w = % — g—; denotes the vorticity, and x and y represent the horizontal and vertical

directions, respectively. By integrating (2.5 over the control volume, we obtain a relation

governing the total circulation around the control volume

j{wu-ndS://—g'?dA. (2.6)
T

Equation (2.6 states that for incompressible flows in the Boussinesq limit the flow
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of vorticity into and out of the control volume is balanced by the baroclinic generation
of vorticity inside the control volume. For a sharp interface, the area integral of the
baroclinic term becomes ¢’h. Furthermore, no vorticity enters the control volume, and
the flow of vorticity out of the control volume is confined to the vortex sheet between
the current and the ambient. The vorticity flux carried by this sheet equals the vortex
sheet strength, v = Us, multiplied by the sheet’s principal velocity, upy = Uy /2 8 [].
Equation thus reduces to

%Ug =gh . (2.7)

Combining the vorticity conservation relationship ([2.7)) with the continuity equation ({2.2)
produces

Fye.=V2a(1 —a), (2.8)

where the subscript '¢’ refers to ’circulation model.” Borden & Meiburg [I] showed that
with regard to the vorticity flux of Boussinesq currents this relationship between the
Froude number and the current height results in better agreement with DNS simulation
results than Benjamin’s relationship . However, even Benjamin’s model prediction is
found to be quite close to the DNS data, which indicates that his zero-headloss assump-
tion closely approximates the situation in the simulated flow field. We note that in the
above analysis, the pressure jump pg — pc across the current front has become decoupled
from the problem of determining U and Us,, which were determined from the conservation
of mass and vorticity alone. Up to this point, we have used the conservation of horizontal
momentum only in linear combination with the conservation of vertical momentum, i.e.,
as the vorticity equation. Consequently, if desired, the pressure jump pg — pc across the
current front can now be determined from the horizontal momentum equation, as was
shown by Borden & Meiburg [I]. The decoupling of the pressure in the above analysis

is analogous to employing the streamfunction-vorticity formulation of the Navier-Stokes

7
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equations, which allows for the numerical simulation of incompressible flow fields without
having to calculate the pressure explicitly. As explained earlier, by accounting for the
conservation of mass, horizontal and vertical momentum, the above analysis did not have
to invoke any assumptions about energy conservation. Rather, individual terms in the
energy equation can now be evaluated, so that the overall loss of energy can be calculated
a posteriori, rather than assumed a priori.

We remark that both Benjamin’s model and the vorticity model assume that the flow
is inviscid. However, the role of viscosity in a real flow affects the two models differently.
Benjamin invokes the assumption of inviscid flow in order to apply Bernoulli’s equation
to a streamline along which he expects dissipation to be minimal. We expect that any
small amount of viscosity, and hence dissipation, will cause a loss of mechanical energy,
so that Bernoulli’s equation will no longer hold exactly. The vorticity model, on the other
hand, invokes the assumption of inviscid flow in the context of the vorticity equation, so
that it can model the vorticity field as an infinitely thin sheet. A small amount of viscous
diffusion in the flow will cause the sheet to attain a finite thickness. However, for the
parallel flow field far behind the current front a small amount of viscosity will not affect
the vorticity flux, which remains the same for a thin but finite vorticity layer as it is for
a vortex sheet. Hence we would expect the vorticity model to be less sensitive to small
amounts of viscosity than Benjamin’s model. The only caveat concerns the stagnation
point O, where even a small amount of viscosity might potentially lead to a diffusive loss
of vorticity out of the control volume.

As mentiond above, the investigation by Borden & Meiburg [I] was limited to Boussi-
nesq gravity currents. In the following, we extend their results to non-Boussinesq liquid
gravity currents,such as the ones investigated experimentally by Lowe et al.[10] and com-
putationally by Birman et al.[I1]. In this chapter, we will investigate in detail the signifi-

cance of the three key assumptions invoked by all of the above authors, viz. steady-state

8
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flow, inviscid flow, and gravity current fluid at rest.

2.2 Non-Boussinesq gravity currents: Theory

In the following, we will present two alternate ways of extending the above analysis
to liquid non-Boussinesq flows. The first approach, which more closely follows the work
of Borden & Meiburg [I] by focusing on the vorticity variable, will consider the problem
under the standard assumptions of steady-state inviscid flow, with the gravity current
fluid at rest. The second, alternative approach starts from the conservative form of the
momentum equations for primitive variables. It will be shown that, with this approach,
it is possible to relax some of the standard assumptions. The relationship between the

two approaches will be discussed briefly towards the end of the section.

2.2.1 Vorticity approach

In order to extend the modeling approach by Borden & Meiburg [I] to non-Boussinesq

gravity currents, we begin with the steady-state Euler equation
1
u-Vu=—-—-VP+g. (2.9)
p

By taking the curl, we obtain the steady-state, inviscid, non-Boussinesq vorticity trans-

port equation

u-Vw=-Vx <1VP) . (2.10)
p
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Integrating over the control volume and using the divergence theorm on the left hand

side yields an expression analogous to the Boussinesq case ([2.6)

j{wuwndS:—//Vx(%VP) dA:—/%VPdl. (2.11)

The final integral is a contour integral along the boundary taken in the positive sense.
Unlike the Boussinesq version of the problem, the pressure no longer decouples from the
vorticity transport equation. However, since the density is taken to be piecewise constant,
in each layer we may take the density out of the integral and reduce the right-hand side of
to (py* —p; ) (Po— P4), which depends only on the difference in pressures between
O and A. Taking the fluid in the current to be at rest leads to Po = Pg = P4 + p1gh.
We have not assumed anything about the pressure distribution in fluid 2 upstream or

downstream. From ([2.11]), we thus obtain for non-Boussinesq currents
/
h
j{wu-ndS:g—. (2.12)
o

As for the Boussinesq case, there is no vorticity flux entering the control volume and the
vorticity leaving the control volume is confined to a vortex sheet with strength U, and

principal velocity U,/2. The vorticity balance can then be written as

1 'h
SU3 = 97 . (2.13)

Combining this with the continuity equation produces an expression for the Froude num-

Fye = \/?(1 —a). (2.14)

In the limit of small density contrasts o &~ 1, so that the Boussinesq result is recovered.

ber

10
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2.2.2 Primitive variable approach

Alternatively, we can begin with the steady-state, two-dimensional Euler equation in
conservative form

V. (puu) + VP = pg , (2.15)

where y is the vertical direction, so that g = (0, —g) and the velocity vector has compo-
nents u = (u,v). We also assume that V - u = 0. Taking the z-component of the curl

of this equation gives a scalar equation that can be written as the divergence of a vector

field
9p + Ou(puv) + 19y [p(v? — u?)]
L=V.q=V_. o =0. (2.16)
—0y(puv) + 30, [p(v* — u?)]
After integrating over the control volume BCDE and applying the divergence theorem,
we are left with integrals over ¢, along the top and bottom walls, and integrals over g,
along the in- and outflow boundaries. Along the top and bottom walls we have v = 0, so
that
1

@y = —pudyv — pudyu — 2u*d,p = —3u*0,p | (2.17)

where the last equality follows from V - u = 0. Along the top there are no density
gradients, so that the last term is zero. Along the bottom, if x = 0 denotes the front
location, the velocity in the vicinity of the front will scale as u < U \/[E/_h This was
shown first by von Karmén [6] for the flow in the ambient, assuming that the current was
stationary, and later extended by McElwaine [12], who demonstrated that it also holds
in the current. We expect the local density profile near the front to be approximately
of error function shape p = (p1 + p2)/2 — (p1 — p2) exf(z/W)/2, where W is a (small)
width. Multiplying this by the velocity and integrating gives a contribution proportional
to (p1 — p2)U*W/h? for the right hand side of equation (2.17), which is small provided

11
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that W is much less than the current height h.
Along the in- and outflow boundaries we have the g,-term to consider. When inte-

grating, we can use v = 0 along the top and bottom walls to obtain

H H H 1 H
/ Gz dy = g/ pdy +/ O, (puv) dy — ~pu?| . (2.18)
0 0 0 2 0

This result is general in the sense that it holds for any density field, as well as any
divergence free velocity field such that v vanishes on the upper surface.

We now limit ourselves to flows in which W/h is small, so that the f qy dx contribution
discussed above is negligible. Furthermore, we assume that 0,(puv) = 0 sufficiently far
in front of and behind the front. The implications of this assumption will be discussed
in more detail below.

The shapes of the inflow and outflow velocity profiles are not important since, when
we integrate, only the top and bottom values contribute. The driving term is then seen

as the difference in the integral of density between the inflow and outflow boundaries:

1

H
g [ lonev) ~ penlv)ldy = 5 [ihoe — ubps —wbpp +ubpc] . (219
0

In the case considered in detail in this paper, we have ug = Uy, up = 0 and up = u¢, so

that

gh(p1 — p2) = 3Uspa. (2.20)

For general velocity profiles but piecewise constant density, equation (2.19) yields

|
pr | Hg = gup + Jus | = p2 [(H = h)g = ui] + pihg, (2.21)

up —uph +ul = 2hg(pi/ps— 1) =2hg' /o . (2.22)

12
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When up = ue, this relation gives a Froude number condition

Frre = \/?(1 —a), (2.23)

which is identical to the result obtained with the vorticity approach in (2.14]). However,
in the case when up # uc, there is no natural choice for the front velocity to define the
Froude number.

The result can be extended to integration along a streamline rather than just y = 0
or y = H. Integrating from A to B to C and then back along a streamline just outside

the current to A gives

u’ = 2hg . (2.24)

This suggests that perhaps the best measure of velocity to use is actually the velocity w4
taken just outside the current.

The above analysis holds for general input and output velocity profiles. Details re-
garding the extension of the primitive variable approach to three-dimensional flows are

presented in appendix [B.1]

In the following, we analyze the implications of assuming

/0 %(puv) dy =0 (2.25)

in the above derivation. Consider the inviscid, steady-state, vertical momentum equation

in conservative form

oP

) o,
__9r 2.9
ax(puv)Jr y(pv) oy "9 (2.26)

13
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C O B

D E

Figure 2.2: Schematic of a non-Boussinesq lock-exchange gravity current. The
Navier-Stokes simulations focus on the buoyant current along the top wall, which
more closely corresponds to a quasisteady flow in the moving reference frame than a
negatively buoyant bottom current.

and integrate from C' to D, using v = vp =0

D
0
/C By (Puv) dy + (ppv} — pcvg) = (Po — Pp) — pagH . (2.27)

This demonstrates that the assumption corresponds to requiring that Po and Pp
are hydrostatic relative to one another, which also had been assumed as part of the
vorticity approach in the previous section. Corresponding considerations apply to the
outflow boundary, provided that v4 = 0, i.e., that the interface at the outflow boundary

is flat.

2.3 Numerical simulations

In order to assess the relative accuracy of Benjamin’s and the vorticity model, we
compare their predictions to two-dimensional Navier-Stokes simulations of lock-exchange

gravity currents. The setup of the simulations is shown in figure [2.2] with the dashed line

14
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indicating the initial lock configuration. If the lock depth d is equal to (less than) the
height H of the domain, the resulting flow is referred to as a full depth (partial depth)
current.

During each simulation, one positively buoyant current is generated that propagates
to the left along the top wall, and one negatively buoyant current propagating to the
right. For full depth locks, this negatively buoyant current has the form of a gravity
current along the bottom wall, whereas for partial depth locks, it is a bore traveling
along the density interface. As will be seen below, the light current along the top wall
generally can be approximated more accurately by a quasisteady flow in the reference
frame moving with the current tip, so that it will be more suitable for assessing the

validity of the various models. For light currents, Benjamin’s analysis yields

U Jal-@)2-a)]"?
FH,b—\/g/—H—|: T a } , (2.28)

instead of equation ([2.4)) for dense currents, while the vorticity model results in

Fr.=V2a(l-a), (2.29)

rather than the corresponding relationship (2.14)) for dense currents.

2.3.1 Governing equations

We follow the simulation approach of Birman et al.[I1] and employ the incompressible,
non-Boussinesq Navier-Stokes equations in two dimensions. As long as there is minimal
diffusion, the velocity field can be considered divergence free, as the flow consists of
two separate incompressible fluids. For a discussion of the effects of diffusion on the

continuity equation and their quantitative assessment, we refer the reader to the work of

15
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Chen & Meiburg [13]. The dynamic viscosities of the two fluids are taken to be equal, and
the density field evolves based on a convection-diffusion equation. To minimize mixing,
we employ small diffusivities. Referring to figure and letting a star symbol denote
a dimensionless quantity, we nondimensionalize the equations with the lock height d,
the buoyancy velocity U, = v/¢’d, where ¢’ = g(p1 — p2)/p1 is the reduced gravity, the

dynamic pressure p;UZ and the ambient fluid density p; to obtain

V-u* = 0 (2.30)
Du* 1 1
= ——VP* Viu* 2.31
Dt* P + p*Re wot 1— aeg ( )
Dp* 1 9
— * 2.32
D+~ Rese’ P (2.32)

Here D/Dt* denotes the material derivative and e, is the unit vector in the direction of

gravity. The nondimensional parameters are then

Upd
Re=P00  go_ K ,_ P2 (2.33)
v PR P1

where p represents the dynamic viscosity and x indicates the molecular diffusivity of the
density field. Alternatively, we can employ the Péclet number Pe = Re Sc. We recast

the momentum equation ([2.31)) into the vorticity form

R S =GR Y o T (2.34)
Dt*  p*Dt*  p* Dt* = p*Re (1—o0)p*
where the velocity is defined as
u*
ut = . (2.35)
/U*

16
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We employ free-slip and no-flux conditions along all walls, so that the vorticity vanishes
along the boundaries. We emphasize that this does not necessarily translate into a
symmetry boundary condition for the vorticity field. To clarify this issue, consider the
flow along the top wall in the vicinity of the stagnation point. Applying the boundary

conditions w* = 0 and p, = 0 yields

R
Wi, =t | (2.36)

wol-0

so that wy, # 0 in regions with horizontal density gradients.

2.3.2 Computational approach

The unsteady simulations are performed in a streamfunction-vorticity formulation, by

integrating equations (2.34]) and ([2.32]) with an explicit third order, low storage Runge-

Kutta scheme [14]. The time derivatives % and g%: appearing on the right hand side of
(2.34) are evaluated iteratively at each Runge-Kutta substep. A pseudospectral method
in the z-direction and a eigth order compact finite difference scheme in the y-direction
are employed for the spatial discretization. As mentioned above, symmetry boundary
conditions cannot be applied along the top and bottom walls, so that we instead employ
right at the boundary a one-sided third order scheme for the concentration and a fourth-
order scheme for the vorticity, along with a centered fourth order scheme one point away

from the boundary.

An equation for pressure can be found by taking the divergence of ([2.31])

2
VEP — 9y [(6u ) N ou* Ov ] op* Du*  dp ( vt ) ‘ (2.37)

ox* oy* Ox* 9zt Dt* oy* \Dt*  1—o

Since this pressure relation is decoupled from the vorticity and density equations, the

17
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Figure 2.3: Simulation results for the density field of a full depth, non-Boussinesq flow
with Re = 5,000, Pe = 50,000 and ¢ = 0.3.
pressure field can be evaluated during a postprocessing step after the simulation has

finished.

2.3.3 Diagnostic tools

Figure [2.3| shows a representative full depth simulation at various times. The compu-
tational grid employs 16,384 x 512 points, with a time step of O(5 x 10™%), although its
exact size varies according to the CFL condition. The figure confirms that the buoyant
current propagating to the left along the top wall is more amenable to quasisteady mod-
eling than the bottom current. Nevertheless, below we will discuss comparisons between
DNS simulation results and model predictions for both the upper and the lower current.

The simulation is performed in the laboratory frame, and the results are then shifted

to the reference frame moving with the current front during postprocessing. Towards this
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Figure 2.4: Calculation of the quasisteady front velocity U for the full depth top
current with Re = 5,000, Pe = 50,000 and ¢ = 0.3. The small circles represent the
tip location at every 2,000*" time step. In order to evaluate the front velocity at a
given time, e.g., the large circle, we employ a local linear best fit of the front locations,
as indicated by the line.

end, we employ linear interpolation to find the tip of the upper current as the location
where p* = UTH along the top wall. The front velocity U* is then determined via linear
regression on the front location vs. time data, (c¢f. Figure . To shift the results to
the moving reference frame, U* is subtracted from the laboratory frame velocity field.
The height h*(z*,t*) of the top current is defined as
H HId (3% 0 4)

— 0
h*(z",t") = — dy* . 2.38
@=5- Lm0, (239)

For the flow of figure 2.3}, the current height is shown as a function of the distance behind
the current tip in figure 2.5 at selected times. This confirms that the steady-state
approximation holds with good accuracy near the front of the buoyant current.

In order to assess the validity of Benjamin’s and the current model, we will primarily
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Figure 2.5: Current height as a function of distance behind the front for a full depth
top current with Re = 5,000, Pe = 50,000 and o = 0.3, at t* = 20,22, 24, 26, 28 and
30. The steady-state approximation is seen to be valid in the vicinity of the current

tip.

compare their predictions for the vorticity flux as a function of location with correspond-
ing simulation results. Borden & Meiburg [1] discuss the reasons for focusing on the
vorticity flux, rather than the front velocity, due primarily to the difficulty in identifying
a single representative value for the current height to use in and . In the
past, different authors have employed such measures as the first maximum in the current
height behind the front, the current height at the gate location, a spatially averaged
value for this purpose or the center of mass [15]. Depending on which value is selected to
represent the current height, the predicted front velocities can vary appreciably, so that
the front velocity is ill-suited for determining which model is more accurate.

The vorticity flux Qp predicted by the Benjamin model can be found by using ([2.28)),
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along with the conservation of mass

QB % h 2—«
g~ 70 5w (239

The corresponding vorticity flux predicted by the current model is
h

=, 2.40
- (2.40)

cf. also equations (16) and (18) in Borden & Meiburg [I]. Both models predict identical
fluxes for a = % and in the limit o — 0, 7.e., for currents that either occupy half the
channel height or are much smaller than the channel height. The ratio between the two
predicted vorticity fluxes reaches a maximum of approximately 1.07 at @ = 2 — /3 ~
0.268.

The origin of vorticity flux discrepancies between simulation results and theoretical
predictions will be discussed here for the vorticity approach, with a corresponding dis-

cussion for the primitive variable approach given in appendix B.2] If we had kept the

viscous and unsteady terms when deriving (2.11)), we would have obtained
QO =Q,+Ep - Ef - E (2.41)

where Q" represents the instantaneous dimensionless vorticity flux out of the domain.
indicates the dimensionless vorticity flux predicted by the vorticity model for the steady,
inviscid case in which the gravity current fluid is at rest. E}, Ef and E}, denote the

deviations from this idealized model due to, respectively, fluid motion within the gravity
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current, unsteadiness and viscous effects

E;, = // ~V x (i*VP*) dA* — QF | (2.42)
P

Er = / v x (22 aar (2.43)

b ot* ’ '

B o= //Vx L2 ) aar (2.44)

I Re p* ) :

where the integration is carried out over the control volume BC'DE. The discrepancies

derived in appendix for the primitive variable approach are closely related to ,
(2.43) and . For this reason, we will in the following section limit our discussion of
the discrepancies between theoretical model predictions and simulation results to terms
, and .

We furthermore remark that, if we assume a hydrostatic pressure profile along the
downstream boundary B-A-E of the control volume, £} can alternatively be evaluated
as

c—1

Ep = (P — Pp)

(2.45)

g

The difference between evaluating Ej via (2.42)) and (2.45) thus provides information
on how close to hydrostatic the pressure profile is along B-A-FE. The pressure difference
P5 — Pj can be found by integrating the z-momentum equation from O to B in the

simulation. The z-momentum equation yields

* 1 B 2 % *
Eu,B = % o V u d,f (247)
B
* au* *
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Note that E7 p and Ejp can be thought of as partial evaluations of £ and Ej after
using Stokes’ theorem. By substituting (2.46]) into (2.45)), one obtains

U*2
Eb=(1-0) (_TB +E,+ E;B) (2.49)

For £, p = E}, and Ef p = Ef, Ep, B and Ly will tend to cancel each other out partially
in ([2.41)). This effect will be greatest when o and the fluid motion inside the current Uj;
are both small. As ¢ — 1, 5 — 0, which is consistent with the Boussinesq vorticity
model, which did not require any assumptions regarding the pressure profile inside the

current.

2.4 Simulation results and discussion

2.4.1 Full Depth Lock Releases

Figure compares the model predictions to the vorticity flux in the simulation for
the full depth current with Re = 5,000, Pe = 50,000 and ¢ = 0.3, as a function of the
distance behind the current tip. We note that both model predictions are very close to
the simulation result, and also to each other. This is perhaps not unexpected in light of
the fact that for a full depth current o &~ 0.5, and that for o = 0.5 the vorticity model
and Benjamin’s model predict identical vorticity flux values.

We now analyze the magnitude of the terms that account for the deviation between
the simulation result and the prediction by the vorticity model, i.e., Ep, Ef and EJ.
Figure shows the values of the integrals in , and as functions of
the distance z* of the control volume boundary B-A-FE behind the current front. The
figure indicates that close to the current tip the assumption of steady flow is very accurate.

Further downstream, the influence of the unsteadiness increases, which is consistent with
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Figure 2.6: Vorticity flux normalized by ¢'d vs. distance x* behind the current head

for the full depth curent with Re = 5,000, Pe = 50,000 and ¢ = 0.3 at t* = 22.

The values predicted by Benjamin’s model and the circulation model are

close to each other, and to the simulation results.
the graphs of the current heights at various times shown in figure 2.5 The influence
of viscous diffusion is significant near the tip of the current, but very small further
downstream. The fluid motion inside the gravity current plays a significant role near the
current tip, and farther downstream where the current height varies more strongly with
r*. Figure confirms that if the vorticity model prediction is augmented by the three
terms £, EY and E7, the correct simulation result for the vorticity flux is recovered.

Figure shows the magnitude of the pressure term E7} as a function of the distance
x* of the downstream control volume boundary B-A-FE behind the current tip. The open
symbols are obtained by direct integration of the integral in from the simulation
pressure field, while the solid line assumes a hydrostatic pressure profile along B-A-FE
and evaluates . The results are shown to be in good agreement everywhere except

near the current tip, which reflects the non-hydrostatic nature of the pressure field in this
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Figure 2.7: (a) Simulation vorticity flux Q* along with Q, and Q¢ + Ep — Ef — E}, as

functions of x*, for the full depth curent with Re = 5,000, Pe = 50,000 and ¢ = 0.3

at t* = 22. All quantities are evaluated directly from the simulation data, and made

dimensionless by ¢’d. The discrepancy between the vorticity flux Qf, predicted by

the vorticity model and the simulation result Q* is due to the quantities E%, Ef and

E}. Here E} is evaluated using (2.42). (b) Components of the difference between

the vorticity flux predicted by the circulation model and the flux observed in the

simulation, stemming from the three assumptions of motionless fluid inside the current

(E%), steady state (Ey) and inviscid flow (E};).
region. Recall that the non-Boussinesq vorticity model made two assumptions about the
pressure: (a) it assumed that the pressure distribution at the downstream boundary of
the control volume is hydrostatic; and (b) it assumed that as a result of the current fluid
being at rest, Po — Pp = 0. Figure indicates that far behind the current front (a) is
very accurate, so that (b) is largely responsible for the discrepancy between simulation
results and model predictions for the vorticity flux.

Figure analyzes the dependence of E}, E; and E; on the density ratio o and
on Re. We observe that increases in o or Re tend to reduce the magnitude of all three
of these terms, which indicates that predictions by the vorticity model become more

accurate as the flow is less viscous and closer to Boussinesq. The decrease in E} for

larger o is consistent with (2.49)) and reflects the fact that the pressure profile inside the
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Figure 2.8: Pressure-related deviation E7} evaluated using (2.42)) and (2.45)), for the
full depth curent with Re = 5,000, Pe = 50,000 and 0 = 0.3 at t* = 22. The
difference near the tip reflects the non-hydrostatic nature of the pressure in this region,
since implied a hydrostatic pressure distribution. Farther behind the current
tip, the assumption of hydrostatic pressure is very accurate. All quantities are made
dimensionless by ¢'d.

current becomes less influential as the flow approaches Boussinesq conditions. In order
to understand the decrease in E} for larger Re-values, it is important to realize that for
higher Re the shear layer between the current and the ambient becomes thinner, so that
the ambient stream drags less current fluid with it. Consequently, the counterflow along
the top wall inside the current required to replenish the loss of current fluid in the mixing
layer is reduced in strength for larger Re, which is confirmed by figure [2.10, Hence, the
streamwise pressure gradient inside the current is weaker for higher Re, so that E} is
reduced.

The weaker flow inside the current for larger o and higher Re also lowers any unsteady
effects, thereby reducing E;. Finally, indicates that £ scales with ﬁ, so that it

should decrease for larger values of o and Re, which is confirmed by figure [2.9,
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Figure 2.9: Effect of 0 and Re on Ep, E} and E}: (a,c,e) Re = 5000 and o = 0.3 (solid
line), 0.5 (dashed line) and 0.7 (dotted line); (b,d,f) ¢ = 0.3 and Re = 5000 (solid
line), Re = 10,000 (dashed line) and Re = 20,000 (dotted line). All three of E}, Ef
and E}, get smaller for lower viscosity and reduced density contrast, as explained in

the text.
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Figure 2.10: Streamwise velocity along the top wall inside the current, as a function
of the distance z* behind the current front, for ¢ = 0.3. For increasing Re-values, the
flow inside the current is reduced.

2.4.2 Partial Depth Lock Releases

Figure shows the evolution of a partial depth gravity current from a lock with
d/H = % The front of the buoyant current is not as smooth as that of the corresponding
full depth current discussed earlier, as a result of instabilities that emerge along the
interface. Nevertheless, figure indicates that for both values of ¢ tested, the vorticity
model predicts the vorticity flux accurately near the front. Benjamin’s model, while
not quite as close to the DNS results as the vorticity model, nevertheless shows good
quantitative agreement with the simulation data, which indicates that his zero-headloss
assumption closely approximates the situation in the simulated flow. This is confirmed
by figure which demonstrates that (for the present case of slip walls) the headloss
along the wall is limited to about 3-4% of the free stream kinetic energy.

The reasons for the good agreement between the vorticity model predictions and the

simulation data become clear from figure which shows the fluid velocity along the
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Figure 2.11: Density field of a partial depth, non-Boussinesq gravity current with
Re = 5,000, Pe = 50,000, 0 = 0.3 and d/H = 0.5.
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Figure 2.12: Vorticity flux vs. distance behind the current tip for the partial depth
current with Re = 5,000, Pe = 50,000, d/H = 0.5 and (a) 0 = 0.2 and (b) 0 = 0.3
at t* = 6. For both density ratios, the circulation model is seen to agree very
closely with the simulation results. Benjamin’s model , while not quite as close,
nevertheless also yields good quantitative agreement.
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Figure 2.13: Headloss inside the current along the top wall, for the partial depth cur-
rent with Re = 5,000, Pe = 50,000, d/H = 0.5 and 0 = 0.3 at t* = 6. The headloss
is limited to about 3-4% of the free stream kinetic energy, which explains the good
quantitative agreement between Benjamin’s model predictions and the simulation re-

sults.
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Figure 2.14: Fluid velocity inside the current along the top wall. Near the current
tip, partial depth currents (shown at ¢* = 6) exhibit smaller velocities than full depth
currents (shown at t* = 22).

top wall inside the current, for several full and half depth currents. The partial depth

currents generally give rise to smaller velocities inside the current. This is a consequence

of the weaker acceleration of the ambient fluid around the tip of partial depth currents,
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Figure 2.15: Deviation E} due to the fluid motion inside the gravity current, evaluated
from ([2.42)) (circles) and (solid line), respectively. The simulations are the same
as in figure at t* = 6 with (a) 0 = 0.2 and (b) o = 0.3, and all quantities are
made dimensionless by ¢'d.

so that partial depth currents experience less shear and a lower momentum transfer.

Equation ([2.49)) indicates that the weaker values of U}; associated with half depth currents

enhance the partial cancellation of £}, by £ and E, thereby resulting in improved model

predictions.

Figure [2.15|shows the deviation £} due to the fluid motion inside the gravity current,

evaluated from (2.42)) and ([2.45)), respectively. Both results agree closely with each other

in the vicinity of the current tip, which demonstrates that the pressure is approximately

hydrostatic there, despite the interfacial instabilities. Consistent with our earlier obser-

vations for full depth currents, the deviation decreases for larger o. Furthermore, the

values of E; and E, as a fraction of (27, are only about half as large as for the full depth

current. This also contributes to the good agreement observed in figure [2.12]
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Figure 2.16: Calculation of the quasisteady front velocity U for the full depth bottom
current with Re = 5,000, Pe = 50,000 and ¢ = 0.3. The small circles represent the
tip location at every 2,000*" time step. In order to evaluate the front velocity at a
given time, e.g., the large circle, we employ a local linear best fit of the front locations,
as indicated by the line.

2.4.3 Dense Currents

We now focus on the dense current moving towards the right along the bottom wall
in figure 2.3l Figure indicates that this current also has a steady front velocity.
Figure[2.17shows the bottom current heights for several times, corresponding to figure[2.5
for the top current. While a steady-state region again develops near the tip, it is much
shorter than that for the top current, as a result of the turbulent billows. Figure [2.18

compares DNS results and model predictions for the vorticity flux in this region. The

model predictions are given in (2.50) and (2.51)).

QB % h 2—«
yd O = 4 200 o (2.50)
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Figure 2.17: Current height as a function of distance behind the front for a full depth
bottom current with Re = 5,000, Pe = 50,000 and o = 0.3, at t* = 20,22, 24, 26, 28
and 30. The steady-state approximation is seen to be valid in the vicinity of the
current tip, although this region steady-state region is significantly shorter than that
for the top current.

The corresponding vorticity flux predicted by the current model is

Qo .
g/_d: C:

Q|-

h
g (2.51)

These predictions differ by (2.39) and (2.40]) by a factor of 1/0. Good agreement is

seen for both models, in spite of the fact the hydrostatic pressure assumption may not

be very accurate so close to the tip.

2.5 Summary

In the present investigation we have extended the vorticity-based modeling approach
by Borden & Meiburg [I] to non-Boussinesq gravity currents. This approach enables
us to arrive at a closed form solution for the Froude number without having to invoke

an energy-based closure assumption, such as had been required in the analyses by von
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Figure 2.18: Vorticity flux normalized by ¢'d vs. distance z* behind the current head,
for the full depth bottom current with Re = 5,000, Pe = 50,000 and ¢ = 0.3 at
t* = 22. In the steady-state region near the tip, the values predicted by Benjamin’s

model (2.50) and the circulation model (2.51)) are close to each other, and to the
simulation results.

Kéarmén [6] and Benjamin [7]. Hence the vorticity approach bypasses the discussion
among those authors as to which energy closure provides the optimal fit with experimental
and simulation data.

In the Boussinesq limit, it had been possible to decouple the pressure entirely from
the conservation equations for mass and vorticity, so that no assumptions whatsoever
had been required regarding the pressure. For non-Boussinesq currents, on the other
hand, the pressure does not decouple from the vorticity transport equation, so that a
certain amount of information regarding the pressure is needed for the exact integration
of the vorticity equation over a finite control volume. Towards this end, we stipulate
that the pressure distributions inside the current is hydrostatic. Furthermore, we assume
the pressure inside the current to be constant along the wall, since the current fluid is
considered to be at rest. On this basis we obtain a closed-form solution for the Froude
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number of non-Boussinesq gravity currents that reduces to the correct expression derived
for the Boussinesq limit.

In order to assess the accuracy of the predictions by the various models for non-
Boussinesq flows, we analyze the rate at which vorticity is convected out of the control
volume. For full-depth currents, the prediction by the vorticity model is close to that of
Benajmin’s model, and both are very close to corresponding high-resolution simulation
data. For partial depth currents, the vorticity model agrees closely with simulation data.
We show that Benjamin’s model predictions also reproduce the DNS results with good
accuracy, which indicates that the simulated flow satisfies Benjamin’s assumption of
vanishing headloss to a good approximation. Hence, the key contribution of the vorticity
model should be seen in its ability to predict the front velocity without any energy-based
closure assumptions, rather than in its improved accuracy.

We furthermore discuss the influence of the three main assumptions underlying all
of the above models, including the present vorticity-based model, regarding the nature
of the flow, wviz. i) the flow is steady in the reference frame moving with the current
front; ii) the flow is inviscid; and iii) the fluid inside the current is at rest. We find the
quasisteady flow assumption to be very accurate in the neighborhood of the front of the
top current, although unsteady effects increase farther downstream. The influence of
viscosity is significant near the front, but very small further downstream. The effects of
the fluid motion inside the current are small at an intermediate distance of a few current
heights behind the tip, but they increase both farther downstream and in the immediate
neighborhood of the tip. For a constant density ratio, the model predictions generally
improve with increasing Reynolds number, while for a constant Reynolds number they
improve for weaker density contrasts. We furthermore show that the effects of the above
three assumptions partially cancel each other out with regard to the predicted vorticity

flux, which explains the good agreement with simulation data across the entire range of
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Reynolds numbers and density ratios investigated.

36



Chapter 3

Double-diffusive lock-exchange
gravity currents

3.1 Introduction

Recent decades have seen rapid growth in our understanding of the dynamics of
single-component gravity currents [7, [16], 17, (18], based on laboratory experiments [19],
field observations ([20] and references therein), high-resolution numerical simulations
[21], 22], 23], and novel theoretical approaches [I]. These investigations have elucidated
the dynamical force balances governing the various stages of single-component gravity
current flows, as well as their front velocity, mixing properties and energy budgets. By
comparison, multicomponent gravity currents remain much less well understood, in spite
of their importance in natural settings and engineering applications, such as river plumes
[24], oceanic overflows [25] and desalination plants [26]. Most of the research on two-
component gravity currents to date has focused on the influence of a particulate phase,
and on the role of particle settling in triggering buoyancy reversal in such flows [27], 28].
On the other hand, very few investigations have focused on the effects of double-diffusion
on the dynamics of gravity currents driven by temperature and salinity differences.

Double-diffusion is known to give rise to a host of complex dynamical phenomena
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in nominally stably stratified thermohaline systems [29]. At the most basic level, the
experiments of Huppert & Turner [30] demonstrate that a fingering interface forms when
the slowly diffusing component is unstably stratified, while a diffusive interface emerges
for an unstable stratification of the faster diffusing component. The subsequent evolu-
tion of the convective flow can produce such interesting features as collective fingering
instabilities, staircases and horizontal intrusions [311, [32]. To date, double-diffusive con-
vection has primarily been explored for base states in which the fluid is at rest. On the
other hand, for base states in the form of gravity currents, characterized by sharp fronts,
pronounced temperature and salinity gradients, as well as strong shear, we might expect
the evolution of double-diffusive convection to proceed quite differently. This was con-
firmed in the laboratory experiments of double diffusive gravity currents by Maxworthy
[33], who explored the scaling laws and force balances governing both fixed volume and
constant flow rate double-diffusive currents and intrusions. The experiments by Yoshida
et al.[34], while similar in nature, focused on double-diffusive gravity currents with small
density differences, and on the ways in which such currents evolve differently from their
single-diffusive counterparts.

Laboratory experiments are commonly constrained by the choice of salt, sugar and
heat as the diffusing scalars, so that it is difficult to explore the influence of the diffusiv-
ity ratio on double-diffusive phenomena in a systematic fashion. At the same time, it is
challenging to obtain detailed time-dependent information on velocity and scalar concen-
tration fields from laboratory experiments. Numerical simulations, on the other hand,
are free to vary the diffusivity ratio within a wider range that is effectively bounded only
by resolution requirements. Consequently, the present investigation focuses on exploring
the interplay between gravity current flows and double-diffusion, and on quantifying the
dynamics of such flow fields as a function of the diffusity and stability ratios. Section

will define the physical set-up, and formulate the governing equations and dimensionless
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parameters. Section briefly reviews the computational approach, while section
focuses on the simulation results. It discusses the dependence of the gravity current
velocity and thickness on the governing parameters, as well as the structure of the result-
ing density and velocity fields. The convective and diffusive fluxes of heat and salinity
out of the current will be quantified, along with the various components of the energy
budget. In order to estimate the turbulent drag acting on the current, and its role in
the overall force balance, we will analyze the momentum flux across the current/ambient
interface. Some interesting aspects will be highlighted regarding the late-stage dynamics
of double-diffusive gravity currents. Section provides information on the force bal-
ances governing double-diffusive gravity currents, while section compares the results
of two- and three-dimensional simulations. Lastly, section summarizes the findings

of this chapter.

3.2 Physical problem

We perform direct numerical simulations of full-depth, double-diffusive lock exchange
gravity currents, as sketched in figure The left half of the domain initially contains
the lighter, hot and salty fluid of density p;, whereas the heavier, cold and fresh fluid
of density ps is located on the right. In dimensionless units, the domain extends from
x = —30 to x = 30, and it has a height of one. When the lock is released, the lighter fluid
forms a buoyant current that propagates towards the right along the top wall, whereas
the denser fluid propagates towards the left along the bottom wall. In the absence of any
symmetry-breaking perturbations, these currents develop symmetrically to each other
with regard to the center of the domain at (0,0.5). The simulations are terminated when

the currents approach the endwalls.
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Figure 3.1: Sketch of the lock exchange flow under consideration. The left reservoir is
initially filled with light, hot and salty fluid, while the right reservoir contains dense,
cold and fresh fluid. Upon removal of the gate (represented by the dashed line), the
hot and salty fluid forms a right-moving buoyant current along the top wall, while
the cold and fresh fluid propagates to the left along the bottom wall. The interface
separating the two currents may be subject to double-diffusive fingering.

3.2.1 Governing equations and dimensionless parameters

We employ the Navier-Stokes equations in the Boussinesq approximation, along with
convection-diffusion equations for heat and salinity. In order to nondimensionalize these

equations, we introduce the following scales for velocity, length and time, respectively
u=U0U,u , x=hx , t=—t. (3.1)

Here the tilde symbol indicates a dimensionless quantity. h represents the height of the

domain and U, denotes the buoyancy velocity

A
Uy=+gh , ¢= %g , (3.2)

where the reduced gravity ¢’ is defined based on the initial density difference Apy = pa—p1
and the average density po = (p1 + p2)/2.

Pressure, temperature, salinity and density are rendered dimensionless according to

~ T -1

~ S-S —
PIPOU(?P, T:TI_T2 2 pP—P1

S:— 0 —
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The following discussion will focus on dimensionless quantities, so that we now drop the

tilde symbols for convenience. The governing equations take the form

V.u = 0, (3.4)
M Vi = —VP+ V2 py (3.5)
ot B Re Py ’
oT 1,
oS 1,
p = —ClT + CQS +c3 . (38)

The constants c¢q, ¢ and c3 in the equation of state depend on the initial conditions, as

will be discussed below. The governing dimensionless parameters

Ubh Ubh Ubh kS
Re=— | —
kr

R
D
N

(3.9)

A
D
|
I
A
@
I
\]
I
A
&

have the form of a Reynolds and two Péclet numbers. Additionally, it is convenient to
define the diffusivity ratio 7. Here v denotes the kinematic viscosity of the fluid, while
kr and kg represent the diffusivities of heat and of salt, respectively. We remark that,
even when we vary the value of 7, we will employ the terms ‘salt’ (‘heat’) for the more
slowly (rapidly) diffusing scalar.
An additional dimensionless parameter arises through the initial conditions, in the
form of the stability ratio
Ry = — . (3.10)

C2
Keeping in mind that the initial dimensionless temperature and salinity differences are
unity, R,y denotes the ratio of the initial density contributions due to heat and salt,

respectively. Our interest focuses on situations in which the warm, salty fluid in the left
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reservoir is lighter than the cold, fresh fluid in the right one, so that the temperature
density contribution exceeds that of salinity, resulting in R,y > 1. The constants c;, c;
and ¢z in (3.8)) and (3.10)) can now be expressed as functions of R,,. The dimensionless

density of the warm, salty fluid is zero
0=—c1+c+cs, (3.11)
whereas that of the cold, fresh fluid is one
l=c3. (3.12)

Equations (3.10)), (3.11) and (3.12]) hence yield

Ry 1
Ro—1 ' 2T Ro—1"
p0 — p0 —

(3.13)

C1 =

As will be discussed in section at later times the effective dimensionless temper-
ature and salinity values of the top (73, S;) and bottom (7}, Sp) currents can be different

from their reservoir values, so that it is useful to define the time-varying stability ratio

R,(t) = RPO% (3.14)

where AT (t) = Ty(t) — Tp(t) and AS(t) = Si(t) — Sp(t) represent the time-dependent
temperature and salinity differences between the currents.
We furthermore define (¢) as the ratio of the time-dependent density difference

between the currents to the initial density difference between the reservoirs

Ap(t) Rypo 1

t) = = AT(t) —
) = o = AT - oy

AS(t) (3.15)
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where the initial density difference is Apy = 1.

We assume slip boundaries along all walls, as well as no-flux conditions for the tem-
perature and salinity. As will be discussed below, the present investigation primarily
focuses on the influence of the initial stability ratio I,y and the diffusivity ratio 7 on the

gravity current dynamics.

3.3 Numerical approach

We integrate the Navier-Stokes equations in two dimensions in the streamfunction-
vorticity formulation, which allows us to analyze strongly double-diffusive flows in the

regime 7 < 1. As usual, the streamfuction 1 is defined via

_ _
=% V=g (3.16)

u

while the vorticity w is given as

ov  Ou

The equations are discretized in the z-direction via a pseudospectral method, and in
the y-direction by means of sixth order compact finite differences [35]. A typical mesh
consisted of 8,192 x 257 grid points. The pressure can be calculated in a post-processing

step from the Poisson equation

(3.18)

V2P22<8u@ 8u@> dp

dxdy Oyox) Oy’
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subject to homogeneous Neumann boundary conditions at the left and right walls in

conjunction with

6;_1; =—p (3.19)
along the top and bottom boundaries. Equation is solved by means of a Fourier
approach in the z-direction, combined with sixth order compact finite differences in y.
Because all of the boundary conditions for the pressure are of Neumann type, we set the
average pressure to zero.

Detailed validation results for the code are discussed by Burns & Meiburg [36]. In
addition, we performed a number of convergence tests for various governing parameter
combinations, to ensure a sufficiently fine grid resolution.

The three-dimensional simulation to be discussed below was performed with the flow
solver IMPACT, whose implementation and validation details have been published else-
where [36, B7]. IMPACT uses a primitive variable formulation on a structured mesh.
Within a single cell, the variables are staggered, with velocity nodes centred on the face
normal to their direction of propagation and pressure/scalars located at the cell centre.
The solver uses central finite differences in all spatial directions with the accuracy ca-
pability ranging from second order up to tenth order compact. For the present work,
a non-compact sixth-order scheme is chosen for the three-dimensional simulation. The
improved accuracy and spectral resolution characteristics of staggered grids [35] dictate
that compact schemes are unnecessary. For temporal differencing, the low-storage third-
order Runge-Kutta/Crank-Nicolson scheme of [38] is used. The pressure is solved using
the Schur complement formulation, and at each Runge-Kutta substep a Richardson it-
eration is used to ensure convergence of the pressure field. Linear systems are solved by

the BiCGStab algorithm with a multigrid preconditioner.
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Figure 3.2: Salinity concentration for (a) a single-diffusive case with a diffusivity
ratio 7 = 1, (b) a mildly double-diffusive case with 7 = 2/3, and (c) a strongly
double-diffusive case with 7 = 1/8. All flows have R,y = 1.07 and are shown for
t = 30. At lower diffusivity ratios, the double-diffusive fingers are smaller and more
numerous. Even for the mildly double-diffusive case with 7 = 2/3, the flow structure
is quite different from that of a single-diffusive current, although the front velocity
remains similar.

3.4 Results

In the following, we will discuss results from a parametric study that we conducted by
means of two-dimensional simulations. Subsequently, we will present a comparison with a
representative three-dimensional simulation, in order to assess the importance of the third
dimension. A few comments are in order regarding the range of dimensionless parameter
values in the simulations. While numerical simulations can provide flexibility in the
diffusivity and stability ratios to be investigated, it is usually prohibitively expensive to
perform a parametric study for the very disparate diffusivities characteristic of heat /salt
systems. For this reason, we are unable to directly compare our results with those of

Maxworthy [33] and Yoshida et al.[34]. Nevertheless, the simulations to be discussed
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below will serve to identify scaling laws in the current dynamics as a function of the
dimensionless parameter values, and in some cases we will observe asymptotic behavior.
This will allow us to draw conclusions that also apply to much smaller diffusivity ratios.

We will begin with an overview of how the main features of the currents, such as their
structure, front velocity and thickness, depend on the governing dimensionless parame-
ters. Subsequently, we will discuss the detailed physical mechanisms responsible for the
observed behavior.

Figure |3.2] shows representative results for three configurations with identical param-
eter values Re = 10%, Per = 10% and R,y = 1.07, but different diffusivity ratios 7 = 1
(single-diffusive, top), 2/3 (weakly double-diffusive, middle) and 1/8 (strongly double-
diffusive, bottom). All flow fields are shown for ¢ = 30. The density difference between
the lighter fluid in the left reservoir and the heavier fluid in the right one is seen to
drive opposing gravity currents along the top and bottom walls. Superimposed on the
primarily horizontal motion of these light (warm, salty) and dense (cold, fresh) gravity
currents, double-diffusion gives rise to strong fingering in the vertical direction. These
fingers are driven by the release of potential energy stored in the unstable salinity strat-
ification. While a fraction £ of this potential energy released by the salt is converted
into potential energy of upwardly lifted colder fluid, linear stability investigations and
nonlinear simulations of classical double-diffusive convection suggest that & < 1 [29).
As will be demonstrated in more detail below, double-diffusion thus effectively reduces
the density of the light top current, while increasing that of the heavy bottom current.
As expected, lower diffusivity ratios (more disparate diffusivities) result in more intense
double-diffusive fingering, and hence in the pronounced acceleration of the gravity cur-
rents for 7 =1/8.

In figure we note that the single-diffusive gravity current for Re = 10® and 7 = 1

is laminar. It is stable towards shear instabilities, and no Kelvin-Helmholtz instabilities
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Figure 3.3: Salinity concentration for (a) a single-diffusive case with a diffusivity
ratio 7 = 1 and (b) a strongly double-diffusive case with 7 = 1/8. Both flows have
R,0 = 1.07 and are shown for ¢ = 30. Here Re = 4000, compared to figure where
Re = 1000.

form, as a suitably defined Richardson number would be above 0.25. For Re = 4 x 103,
on the other hand, the single-diffusive current does form Kelvin-Helmholtz instabilities,
as shown in figure , although their effect on the front velocity is small. For 7 = 1/8,
the flow is dominated by double-diffusive fingering for both values of Re, and Kelvin-
Helmholtz instabilities can be identified at most in the vicinity of the current tip, where
the fingering is less intense, as will be discussed in section [3.4.7]

This brief, qualitative description of the fundamental mechanisms at work suggests
a strong coupling between the predominantly horizontal motion of the gravity currents
and the primarily vertical double-diffusive fingering. To quantify the coupled dynamics
as a function of the key governing dimensionless parameters R, and 7 represents the
main goal of the present investigation. Towards this end, we perform a parametric study
involving diffusivity ratio values 7 = 2/3,1/2,1/3,1/4,1/6,1/8 and stability ratio values
Ry =1.05,1.07,1.1,1.15,1.2,1.3,1.5. All simulations employ a fixed Reynolds number of
103, along with a temperature Peclet number of 103. For all parameter combinations with

either R,y = 1.07 or 7 = 1/4, we perform ten simulations with slightly different random
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Figure 3.4: Current length vs. time for ten individual simulations with R,y = 1.07 and

7 = 1/8. Each simulation was initiated with a different random initial perturbation.

initial perturbations, so that we can obtain smoother data via ensemble averaging.
We initiate the simulations with an initial perturbation of white noise with an am-
plitude of 0.027 that is superimposed on an error function-shaped background initial

condition

(3.20)

T,S(x,y,t = 0) = 1 — erf ( +0.027"rand[0.5, 0-5](y>>

0.03

While the flow fields of individual simulations for identical dimensionless parameter com-
binations exhibit similar qualitative behavior, the ensemble averaging of ten simulations

allows us to obtain smoother quantitative information.

3.4.1 Current length

We define the length L(¢) of the rightward propagating buoyant top current as the

distance from the gate to the current tip, which is taken as the most advanced location
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with a dimensionless temperature of at least 0.05. Figure shows L(t) for all 10
simulations with R,y = 1.07 and 7 = 1/8. We observe that up until ¢ ~ 15 — 20
the currents undergo a slight acceleration, whereas they tend to slow down moderately
thereafter. At ¢ = 45, the individual current lengths differ by up to 4%.

For a constant initial stability ratio R, = 1.07, figure displays the ensemble-
averaged current length L(t) as function of 7. Keeping in mind that 7 = 1 corresponds to
classical, single-diffusive gravity currents, we find that strongly double-diffusive currents
propagate up to 50% faster than classical currents. We expect double-diffusion to affect
the current velocity via two opposing mechanisms: On one hand, double-diffusion can
modify the density contrast between a current and its ambient environment, which in
turn will affect the current velocity. At the same time, double-diffusive fingering will
increase the turbulent drag acting on the current, which should have a retarding effect.
Interestingly, figure indicates that the current velocity does not vary monotonically
with 7. For 7-values slightly less than one, i.e. for weakly double-diffusive currents, we
observe the current length to grow more slowly than for single-diffusive currents, whereas
for strongly double-diffusive currents it grows more rapidly. This suggests that 7 affects
the balance between buoyancy and turbulent drag in a nonlinear fashion.

The above observations are consistent with earlier findings by Kimura and Smyth
[39], and Smyth and Kimura [40, 41] on the interaction of double-diffusion with shear.
Those authors showed that for small values of 7 the effective diffusivity of momentum is
significantly smaller than that of the scalars.

A similar picture emerges regarding the influence of the initial stability ratio 12,y when
7 is held constant, cf. figure[3.5b. Buoyant currents with R,y — 1 contain large quantities
of both heat and salinity. Hence they are strongly double-diffusive and quickly release
substantial amounts of salt, so that their density decreases and they accelerate. Larger

values of Ry, on the other hand, correspond to more weakly double-diffusive currents,
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Figure 3.5: Current length vs. time for R,y = 1.07 with varying 7 (a), and for 7 = 1/4
with varying R, (b). Smaller values of 7 or R, i.e., more strongly double-diffusive
currents, result in larger front velocities. The single-diffusive case corresponds to 7 = 1
in (a), and to R,0 — oo in (b).
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Figure 3.6: Profiles averaged horizontally over the current length for (a) temperature
T, (b) salinity S, and (c) density p, at time ¢ = 45 with 7 = 2/3 (solid line), 7 = 1/8
(dashed line) and 7 = 1 (dotted line). All simulations have the same stability ratio
R,o = 1.07. Strongly double-diffusive currents lose their salinity more rapidly than
their heat, in spite of the lower molecular diffusivity of salinity, so that the density
difference driving the current increases.

for which the balance between buoyancy and turbulent drag becomes more complex, as

will be discussed in more detail below. The limit 2,y — oo corresponds to the classical,

single-diffusive case.

3.4.2 Current structure: temperature, salinity, density and ve-
locity

In order to provide quantitative evidence for the scenario outlined above, we now

discuss the effective temperature and salinity profiles of the current. Towards this end,

figures and display vertical T- and S-profiles averaged in the streamwise direc-

tion from the gate position to the location half a channel height behind the current front.
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These figures demonstrate that the strongly double-diffusive top curent (7 = 1/8) loses
both heat and salt more rapidly than its weakly double-diffusive counterpart (7 = 2/3).
In addition, it loses salt more quickly than heat, so that its effective density decreases.
This is confirmed by the density profiles displayed in figure |3.6c, which indicate that the
dimensionless density of the strongly double-diffusive top current can reach values as low
as -1.5 near the upper boundary, far below the left reservoir value of p = 0. Similarly,
the current density near the lower wall significantly exceeds the value p = 1 in the right
reservoir. The weakly double-diffusive current, on the other hand, loses heat and salinity
at approximately the same rate, so that its effective density varies from p = 1 near the
bottom wall to p = 0 near the top wall, similar to the single-diffusive gravity current.
This increased buoyancy for the strongly double-diffusive current is consistent with the
results shown in figure [3.2] where the strongly double-diffusive gravity current was seen
to propagate much faster than its weakly double-diffusive counterpart. However, to fully
understand the behavior shown in figure|3.2] we will also have to consider the potentially
higher drag acting on the strongly double-diffusive current, as a result of the fingering.
We will return to this point further below.

The influence of R,y is consistent with the above arguments. Again, the strongly
double-diffusive top current (R,y = 1.05) loses both salt and heat much more rapidly
than its weakly double-diffusive counterpart (R,y = 1.50), cf. figures and . It
also loses salt faster than heat, so that its effective density decreases, as confirmed by
the density profiles in figure [3.7c.

For R,y = 1.07, figure compares the density fields of single-diffusive (7 = 1),
weakly double-diffusive (7 = 2/3) and strongly double-diffusive (7 = 1/8) currents.
While the reservoir densities are identical for all flow fields, the current densities exhibit
very different properties. The density of the single-diffusive current has to fall in between

the reservoir densities, which is not true for the double-diffusive currents. The theoretical
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Figure 3.7: Profiles averaged horizontally over the current length for (a) temperature
T, (b) salinity S, and (c) density p, at time ¢t = 45 with R,y = 1.50 (solid line),
R,y = 1.05 (dashed line) and R,y — oo (dotted line). All simulations have the
same diffusivity ratio 7 = 1/4. Again, strongly double-diffusive currents lose their
salinity more rapidly than their heat, so that the density difference driving the current
increases.

density limits for the light and heavy double-diffusive currents are given by

p(T=1,5=0) = 1— By =143, (3.21)
Ry —1

p(T=05=1) = 1+ =153, (3.22)

Ry —1

respectively. For the strongly double-diffusive case 7 = 1/8, we notice that the minimum
and maximum fluid densities in the entire flow field appear near the upper and lower
walls, in the neighborhood of the gate location.

The formation of this pool of high-density fluid along the bottom wall, which is
confirmed by figure |3.9, strongly modifies the structure of the flow field. Since this fluid

is significantly denser than the fluid in the right reservoir, it tends to spread horizontally
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Figure 3.8: Density fields at ¢ = 30 for simulations with R,y = 1.07 and (a) 7 =1
(single-diffusive), (b) 7 = 2/3 (mildly double-diffusive), and (c) 7 = 1/8 (strongly dou-
ble-diffusive). For the single-diffusive flow, the range of possible densities is bracketed
by the reservoir values of 0 and 1. Double-diffusive flows, on the other hand, can give
rise to local density values outside this range. Strongly double-diffusive flows display
a local density maximum (minimum) near the bottom (top) center of the domain.
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Figure 3.9: Density profiles along the bottom wall for the simulations with R, = 1.07
at t = 30. For the single-diffusive current the density values have to fall in between
the reservoir values of 0 and 1, respectively, while for the strongly double-diffusive
current density values in excess of 4 appear near the gate location at x = 0.
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Figure 3.10: Horizontally averaged u-profiles at ¢ = 45: (a) for 7 = 2/3 and 1/8,

with R,y = 1.07, and (b) for R0 = 1.50 and 1.05, with 7 = 1/4. In each frame, the

more strongly double-diffusive current develops a pronounced three-layer structure.

Frame (c) shows the u-profile at = 3 for a simulation with R,y = 1.07 and 7 = 1/8.

The right-moving, very dense current next to the bottom wall is clearly visible, while

the left-moving current containing fluid from the right reservoir has been deflected

upwards, and away from the wall.
along the bottom wall in both directions, and below the fluid of the right reservoir.
Consequently, it deflects the left-moving current of right reservoir fluid upwards and
away from the bottom wall. In this fashion, the flow field to the right of the original gate
location acquires an effective three-layer structure, with a right-moving, light current
along the top wall made up of warm and increasingly less salty fluid, a left-moving
intermediate density current in the center of the channel, and a pool of very dense, cold
and salty fluid spreading horizontally along the bottom wall.

This emerging three-layer structure for strongly double-diffusive gravity currents (7 =

1/8) is confirmed by the horizontally averaged u-velocity profiles shown in figure [3.10p.

The weakly double-diffusive gravity current (7 = 2/3), on the other hand, exhibits a clear
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Figure 3.11: Salinity concentration for a current with R,y = 1.07 and 7 = 1/4, at

t = 35. The current interface, evaluated as described in the text, is drawn as a solid

line. To obtain effective current properties such as temperature, salinity and thickness,

we average from the gate location to half a channel height behind the current tip.
two-layer structure, with a light top current moving to the right, and a dense bottom
current moving to the left. Again, the influence of the parameter R, is found to be
consistent with these observations, as seen in figure |[3.10b. The weakly double-diffusive
current for R,y = 1.50 displays a two-layer structure, while its strongly double-diffusive

counterpart for R,y = 1.05 clearly has three distinct layers. The right-moving, dense

current along the bottom wall can be clearly recognized in the local velocity profile of

figure .

3.4.3 Current thickness

We now proceed to analyze the thickness of the buoyant top current. In order to be
able to do so, we need to distinguish the current from the ambient. Towards this end, we
define the interface location separating the top current from the ambient fluid below as
the y-location above which the horizontal volume flux in the positive z-direction reaches a
maximum. The condition of zero net horizontal volume flux implies that this y-location
also maximizes the horizontal volume flux in the negative z-direction below. For a
representative current with R,y = 1.07 and 7 = 1/4, figure shows that the y-position

of the interface remains nearly constant over the length of the current. Consequently,
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we can evaluate an effective top current thickness by averaging the local thickness over
the streamwise direction. In order to eliminate artifacts due to the current front, we
take this streamwise average from the gate location to the position half a channel height
behind the current front. We furthermore remark that, due to the initial transient flow
evolution, a meaningful current thickness can be identified only after ¢ ~ 5.

Figure displays the current thickness as a function of time for R,y = 1.07
and various values of 7. During the acceleration phase until ¢t ~ 15 — 20, the current
thickness decreases slightly, whereas subsequently it shows a mild increase as the current
decelerates. While weakly double-diffusive currents have a thickness similar to that of
single-diffusive currents, more strongly double-diffusive currents are seen to be increas-
ingly thinner, as a result of the transition from a two-layer to a three-layer structure of
the flow field, as described above. This trend is observed both for lower values of 7 (fig-
ure[3.12h) and for lower values of R, (figure[3.12b). We remark that the double-diffusive
fingering also strongly affects the dissipation associated with the current.

It would be desirable to develop simplified, conceptual models in the spirit of Ben-
jamin [7] and/or Borden & Meiburg [I] for predicting the velocity of double-diffusive
currents as a function of their height. However, it is not obvious how those earlier models
of steady, conservative currents could be extended to non-conservative, double-diffusive

currents whose effective heat and salinity vary with time.

3.4.4 Temperature and salinity difference between the current

and the ambient

We obtain the effective temperature and salinity of the buoyant top current by aver-
aging over the area of the current, i.e., over the area above the interface from the gate

location to the position half a channel height behind the tip. In order to quantify the
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Figure 3.12: Current thickness vs. time for R,y = 1.07 with varying 7 (a), and for
T = 1/4 with varying R, (b). Smaller values of 7 or R, i.e. stronger double-diffusion,
lead to thinner currents. The single-diffusive case corresponds to 7 =1 or R,y — oo.
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Figure 3.13: Vertically averged temperature and salinity in the ambient as a function

of x, for a current with Ry,p = 1.07 and 7 = 1/8 at ¢t = 45. Over much of the length

of the current, T" and S in the ambient are close to zero.
temperature and salinity differences AT and AS between the current and the ambient,
we need to identify representative values for the temperature and salinity of the ambient.
Towards this end, figure [3.13] shows the temperature and salinity, vertically averaged
over the region below the interface, as functions of the streamwise z-location for a repre-
sentative flow. While the ambient has acquired significant amounts of heat and salinity
near the gate location, its temperature and salinity values are close to zero over much of
the length of the top current. For this reason, we assume the effective temperature and
salinity values of the ambient to be zero, so that the AT- and AS-values between current
and ambient are taken to be equal to the temperature and salinity of the current itself.

Figure [3.14] shows the resulting, ensemble averaged results for AT(¢) and AS(t), for
the weakly double-diffusive current with R,y = 1.50 and 7 = 1/4. These indicate that
the temperature difference between the current and the ambient decays faster than the
salinity difference, i.e., the weakly double-diffusive current loses heat more rapidly than
salt. To identify the reasons for this behavior, we evaluate the diffusive and convective

fluxes of heat and salinity out of the current into the ambient according to

1

L(t)—0.5
Fyeonw(t) = ———— d ) 2
woll) = s [ vada (3.2)
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Figure 3.14: Current temperature and salinity vs. time for a weakly double-diffusive
current with R,0 = 1.50 and 7 = 1/4, and for a strongly double-diffusive current
with R, = 1.07 and 7 = 1/4. The weakly double-diffusive current is seen to lose heat
faster than salinity, which reflects the larger molecular diffusivity of heat, as compared
to salt. The strongly double-diffusive current, on the other hand, loses salinity more
rapidly than heat, as a result of the stronger turbulent diffusivity of salt, as compared
to heat.

Foairs(t) = ! / o, (3.24)
GHIIN T Pe (L(t) — 0.5) J, ay '

where ¢ represents T' or S, and the integrals are evaluated along an effective interface
y-location, which is taken as the actual y-location of the interface averaged over the
length of the current and from ¢ = 5 to t = 45. Figure demonstrates that for the
weakly double-diffusive current with R,y = 1.50 and 7 = 1/4 the diffusive outflow of heat
outweighs the diffusive outflow of salt for all times, as a result of the higher molecular
diffusivity of heat as compared to salt. On the other hand, the convective fluxes of heat
and salinity are nearly identical for early times, and mostly due to coherent vortical

structures such as Kelvin-Hemlholtz vortices, rather than double-diffusive fingering. At
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late times, fingering causes the convective outflow of salt to outweigh that of heat, and
the combined diffusive and convective fluxes of heat and salt are nearly the same.

A very different picture emerges for the strongly double-diffusive current with R,y =
1.07 and 7 = 1/4, also shown in figure In contrast to the weakly double-diffusive
current the salinity difference now decays faster than the temperature difference, indi-
cating that the current loses salt more rapidly than heat, in spite of the larger molecular
diffusvity of heat. The reason for this becomes clear when we analyze the convective and
diffusive fluxes of heat and salt out of the current, cf. figure [3.15b. As expected, the
diffusive outflow of heat from the current is larger than that of salt, due to the larger
molecular diffusivity. However, this effect is outweighed by the larger convective outflow
of salt, due to strong double-diffusive fingering. Hence, the effective turbulent diffusivity
of salt is larger than that of heat, in spite of its molecular diffusivity being smaller.

Figure shows ensemble averaged results for AT'(t) as function of 7 and R, re-
spectively. Corresponding plots of AS(t) exhibit the same qualitative behavior. Both
parts of figure indicate that AT(t) decreases more quickly as the strength of the
double-diffusive fingering increases. In the limit of 7 — 0, AT'(¢) reaches an asymptotic
limit. This reflects the fact that the effective diffusivity of heat depends on its molecular
diffusivity as well as on the strength of the fingering, with the latter reaching an asymp-
totic limit as the molecular diffusivity of salt approaches zero, cf. also the analysis by
Burns & Meiburg [36]. It is not immediately clear if a similar limit exists for R,y — 1.
We conclude that the presence of double-diffusive fingering strongly affects the temporal

decay of temperature and salinity in the current, and thus the current’s driving force.
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Figure 3.15: Diffusive and convective heat and salinity fluxes out of the top current,
averaged from z = 0 to © = x4, — 0.5 for (a) a weakly double-diffusive current with
T = 1/4 and Ry, = 1.50, and (b) a strongly double-diffusive current with 7 = 1/4
and R,y = 1.07. For both currents, the diffusive outflow of heat is larger than that
of salinity. However, for the strongly double-diffusive current this effect is outweighed
by the larger convective outflow of salt as compared to heat.
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Figure 3.16: AT ws. time for (a) R0 = 1.07 with varying 7, and (b) varying R
with 7 = 1/4. The diffusivity of heat is the same in all simulations. Lower values of 7
or R, give rise to more intense double-diffusive fingering, which causes AT to decay
more rapidly. The single-diffusive case corresponds to 7 =1 or R,9 — 0.
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Figure 3.17: Density difference v vs. time for (a) R, = 1.07 and varying 7, and
(b) varying R, with 7 = 1/4. For strongly double-diffusive currents, the density
difference can climb to twice the value of the reservoir fluids.
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3.4.5 Effective buoyancy

We can now employ to calculate the effective density of the buoyant current,
based on the results for AT and AS from section |3.4.4. Figure indicates that, for
constant 7,y and varying 7, weakly double-diffusive currents are slightly less buoyant
than single-diffusive currents. This is consistent with our earlier observation that they
lose heat more rapidly than salt as a result of molecular diffusion, cf. figure [3.14 On
the other hand strongly double-diffusive currents are significantly more buoyant than
single-diffusive currents, since fingering causes them to lose salt much more rapidly than
heat, as was also seen in figure [3.14] These findings are also consistent with our earlier
observation that weakly double-diffusive currents propagate slightly more slowly than
single-diffusive currents, whereas strongly double-diffusive currents advance much more
rapidly. The results shown in figure for varying R,y and constant 7 confirm this

scenario.

3.4.6 Energy budget

As shown in appendix [C] the mechanical energy balance for a Boussinesq flow can be

written as

K+ E, + W, + Wy = const. (3.25)

Here the kinetic energy K is defined as
u?
K:/E’dA, (3.26)
while the gravitational potential energy £, has the form

E, = /pxgdA , (3.27)
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and the energy lost to viscous dissipation is obtained as

1 t

The term

t Dp
W, = — /0 / vyl dAdr (3.29)

deserves some extra discussion, as it reflects the ways in which the diffusion of heat and
salt affect the energy budget. Absent such diffusion, in an incompressible flow field each
fluid particle maintains its density, so that W, = 0. The way in which the diffusion of
heat and salt influence the flow field via W, can be understood by exploring their role
under simplified conditions. Imagine a stably stratified configuration of fluid at rest,
consisting of a layer of warm fluid above a layer of colder fluid. In the absence of any
initial perturbations, the fluid will stay at rest for all times, and the only transport that
occurs is the downward diffusion of heat. This downward diffusion of heat implies that
the density of fluid particles in the upper (lower) layer increases (decreases), giving a
negative value of W,.. In the energy equation , the negative W, is balanced by
a positive change of E,, corresponding to an increase in potential energy. Winters et
al.[42] interpret W, in terms of the conversion of internal energy into potential energy
via irreversible molecular processes, while Tailleux [43] discusses W, in terms of the
Boussinesq limit of the work performed due to fluid compression.

Now consider a stably stratified configuration consisting of a layer of warm, salty,
lighter fluid above a layer of cold, fresh, denser fluid. In the absence of fluid motion, the
only transport is the downward diffusion of heat and salt. As we saw above, the downward
diffusion of heat gives a negative value of W.. On the other hand, the downward diffusion

of salt reduces (increases) the density of the upper (lower) layer, thereby resulting in a
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Figure 3.18: Material density derivative Dp/Dt for hot, salty, light fluid above cold,

fresh, dense fluid. (a) molecular diffusion only, (b) with double-diffusive fingering. In

each case, a pronounced four-layer pattern is observed along the interface.
positive value of W,.. However, due to the larger molecular diffusivity of heat as compared
to salt, the material density derivative due to the diffusion of heat outweighs that due to
the diffusion of salinity, so that we expect the net effect of molecular diffusion to result
in negative W, values. This is confirmed by figure [3.18a, which shows a pronounced
four-layer structure for Dp/Dt at the interface. Figure indicates that even in the
presence of strong double-diffusive fingering, this four-layer structure of the material
density derivative along the interface is maintained.

In order to clarify the effect of vertical convective transport on W., let us inspect the
integral in more closely. In a closed system such as the present one, the integral over
Dp/Dt vanishes. Now imagine a downward moving finger carrying hot and salty fluid.

As this fluid loses heat to its environment, it becomes increasingly denser, resulting in
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positive values of Dp/Dt. At the same time, however, neighboring fluid elements that
absorb the heat released by the finger will see their density decrease. Conversely, upward
moving fingers become increasingly lighter as they absorb heat, leading to negative values
of Dp/Dt, while the surrounding fluid becomes denser. For hot and salty fluid at rest
above cold and fresh fluid, figure demonstrates that the four-layer structure results
in W, being negative. Since figure shows that this four-layer structure is maintained
for double-diffusive fingering, we expect W, to remain negative even in the presence of
flow. This is confirmed by figure [3.19], which shows the temporal evolution of all terms
in for a weakly and a strongly double-diffusive simulation, respectively, along with
their sum. Here, all terms are scaled by the potential energy difference between the initial
state and a hypothetical final state in which the upper half of the domain contains the
lighter, hot and salty fluid, whereas the denser, cold and fresh fluid is located in the lower
half. This limiting state would be reached for long times in the absence of any molecular
diffusion of heat and salt. We refer to this energy difference as the ‘initially available
potential energy’ APE,. We observe that the sum of all energy components is preserved
with very good accuracy for both flows.

For the weakly double-diffusive current in figure [3.19n, we find that about 40% of
APEq is lost in the course of the simulation, and an approximately equal amount of
kinetic energy is generated. An amount equivalent to about 60% of APE, is dissipated
by viscous forces, and roughly the same amount of mechanical energy is introduced into
the flow field via the term W..

A qualitatively different picture emerges for the strongly double-diffusive current in
figure 3.19b. Here the amount of lost potential energy far exceeds APE(, which indicates
that the buoyant, hot and salty current must have released some of the potential energy
stored in the salinity field. In this context, it is useful to realize that the potential

energy difference between the initial state and the theoretical limit of a layer of hot, fresh
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Figure 3.19: Energy budget for a weakly double-diffusive current with R,0 = 1.07 and
T =2/3 (a), and a strongly double-diffusive current with R,y = 1.07 and 7 = 1/8 (b).
All energy components are scaled by the ‘initially available potential energy’ APE,
as defined in the text. The potential energy released by the strongly double-diffusive
flow far exceeds the initially available potential energy, reflecting the influence of

double-diffusive fingering.
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Rpo+1
Rpo—l

water above cold, salty water is times APEy. The amount of mechanical energy
introduced into the flow by W, also exceeds APEj. By the end of the simulation, nearly
three times APE( has been dissipated.

Figure shows a comparison of the time evolution of gravitational potential
energy for 7 = 2/3 and various R,. As explained earlier in section , for strong
double-diffusive fingering the convective downward flux of salinity outweighs that of heat,
resulting in a larger release of potential energy. Consequently, the current becomes lighter
and propagates faster. As R, increases, the dynamics of the current is governed by two
competing effects. The intensity of the fingering decreases, which slows down the rate at
which the potential energy of the salt is released. The fingering becomes very weak at
R, = 1.20 and nonexistent at R,o = 1.30, so that the potential energy budget becomes
dominated by diffusion. The current now loses its heat faster than its salinity, so that
it retains more of its potential energy than a single-diffusive current, and it propagates
more slowly. As R, increases further, the density contribution of the salinity decreases as
compared to that of heat, and the current propagates faster again. Eventually, for large
values of IR, its behavior approaches that of a single-diffusive current.This observation
is consistent with figure [3.5b, which showed that the current is slowest for intermediate
values of R.

Figure shows the corresponding graph for 7 = 1/8, where all of the currents
exhibit strong fingering. In this case, changing R,, changes the release of gravitational
potential energy in a monotonic way because the effect from fingering is always stronger
than bulk diffusion. It is interesting to note that the presence of double diffusive fingering
enables more potential energy to be released than a single diffusive current would have
theoretically available. This is because some potential energy in the salinity field can be
released in addition to the release of potential energy in the temperature field due to the

motion of the current.
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Figure 3.20: Potential energy vs. time for 7 = 2/3 (a), and 7 = 1/8 (b). In (a),
when R, is low enough to cause significant fingering, the fingering works to separate
T and S, resulting in the release of more potential energy. When R, is too high
for fingering, further increases in R,q result in more potential energy being released
because the salinity remaining in the current will contribute less to the density of
the current and the current will spread faster. In (b), fingering is always strong, so
decreasing R, results in the release of more potential energy.
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Figure 3.21: The ratio of W./Wy vs. time for (a) R,o = 1.07 with varying 7, and (b)
varying R,o with 7 = 1/4. Strongly double-diffusive currents give rise to about the
same ratio as single-diffusive currents, whereas weakly double-diffusive currents are
characterized by a larger ratio.
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While double-diffusive currents generate more dissipation than their single-diffusive
counterparts, i.e., they transfer more kinetic energy into internal energy, they also give
rise to larger W,, so that they transfer more internal energy to potential energy. The
magnitude of |[W,/Wy| provides insight into whether there is a net gain or loss of internal
energy. Figure displays this ratio for the usual parameter combinations. It is seen
to be less than one for most currents, although for the weakly diffusive current with
R,y = 1.07 and 7 = 2/3 it exceeds this value for some period of time. Here it is important
to keep in mind that not all of W, is necessarily converted into available potential energy.
In the simple case of static cold fluid underneath warm fluid, heat diffuses downward,
thereby increasing the potential energy. At the same time there is no dissipation, so that
|W./W4| becomes infinite. The system remains in a state of minimum potential energy,
and no potential energy is available for conversion into kinetic energy. Most interestingly,
figure indicates that the ratio |W./Wy| is about the same for single-diffusive currents
as for strongly double-diffusive currents, which suggests that strong fingering increases

W, and W, by proportional amounts.

3.4.7 Stability ratio

From the instantaneous temperature and salinity values of the current, we can calcu-
late its effective stability ratio I, as a function of time. The ensemble-averaged results
for R, shown in figure are consistent with the earlier discussion in section [3.4.4]
Strong double-diffusive fingering releases salt from the current more rapidly than heat,
so that the stability ratio increases with time. However, this growth of R, tends to slow
down over time since, as R, increases, the intensity of the double diffusive fingering de-
creases. Conversely, in the absence of double-diffusive fingering, the current loses heat

faster than salt, so that R, decreases with time. This is the case initally for 7 = 1/4
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Figure 3.22: Stability ratio R, vs. time for (a) R,0 = 1.07 with varying 7, and (b)
varying R, with 7 = 1/4. Note that for 7 = 1/4, the stability ratio for all currents
approaches 1.4 for long times, independent of the initial stability ratio R,. On the
other hand, for R,g = 1.07, different values of 7 result in different R,-values for long

times.
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and R,y = 1.50. This decrease in R, tends to promote double-diffusive fingering, which
in turn will slow down any further decrease of R,. As a result of these counterbalancing
effects, we find that for 7 = 1/4 all currents approach a stability ratio near 1.4 for long
times, independent of their initial stability ratio. In figure [3.22h, different values of
lead to different long term balances for the same R,,. Changing the value of 7 modifies
the strength of the effects of fingering and diffusion, which dictate the long term balance,
while changing R,, merely alters the initial condition. This effect applies not only in
time, but also spatially, as fluid near the current front has had more time to adjust the

local R, to reflect a balance of fingering and diffusive fluxes.

3.4.8 Vertical velocity

In order to quantify the fingering intensity and the turbulent drag acting on the
current, we evaluate the average magnitude V' of the vertical velocity along the interface

from the gate location to 0.5 dimensionless units behind the current tip

z;<tip—0.5

V(t):% S Jo(as interface(rs), 1) (3.30)

x;=0

where N indicates the number of grid points included in the summation. Figure [3.23]
shows representative, ensemble-averaged results for V' as a function of time.

For early times, parameter combinations giving rise to strong double-diffusive finger-
ing result in larger values of V. As either R,y or 7 is held constant and the value of
the other parameter is decreased to produce more intense fingering, V'(t) approaches an
asymptotic relation. For constant R, this suggests that as 7 is decreased, R,(t) in-
creases in such a way that the overall fingering intensity remains about the same, which
is consistent with figure [3.22h. For constant 7, the existence of the asymptote reflects

the fact that R,(t) approaches a constant value for all initial R,, as had been seen in
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Figure 3.23: Average vertical velocity magnitude V' vs. time for (a) R,0 = 1.07 with
varying 7, and (b) varying R,o with 7 = 1/4. Lower 7- or Rpp-values (more intense
double-diffusive fingering) initially produce larger vertical velocities, whereas for long
times the velocity magnitude depends only weakly on R,o and 7.
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figure . For long times V (t) decays for all currents, in line with the observations in
section B.4.7

We remark that vertical velocities along the interface can be generated not only by
double-diffusive fingering, but also as a result of the local thickening of the current behind
the tip, as well as due to Kelvin-Helmholtz instabilities. For this reason even the single-
diffusive current in figure displays non-zero values of V| although for all but the

smallest times these are much lower than those due to double-diffusive fingering.

3.4.9 Late-stage dynamics

Currents with sufficiently strong fingering to yield the three-layer structure described
in section [3.4.2| exhibit long-term dynamics fundamentally different from the early stages.
We will now discuss this for the representative case of R,y = 1.05 and 7 = 1/8 shown in
figures and [3.25] We conducted a single large simulation with these parameters in
an extended domain = € [—120, 120]. The streamline pattern indicates that already at
t = 25 the pools of hot fresh fluid at the center of the top wall, and cold salty fluid near
the center of the bottom wall have gained enough strength to deflect the original gravity
current pattern, thereby resulting in the three-layer structure discussed above. However,
the overall dynamics of the flow at this time is still governed by the right-moving top
current and the left-moving bottom current.

By time t = 75, these localized pools along the top and bottom walls have become
sufficiently strong to dominate the dynamics in the central region —20 < x < 20. Due to
their strong density difference relative to the surrounding fluid, these pools tend to spread
horizontally along their respective walls and give rise to new density fronts that propagate
in the direction opposite to the original currents, so that a secondary, left-propagating

top current emerges, along with secondary, right-propagating current along the bottom
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Figure 3.24: Streamlines in the laboratory reference frame at ¢t = 25, ¢t = 75, t = 100

and t = 150. Velocity fields were smoothed using a moving average window with a

width of 3 in . No smoothing was done in y. A current with R,y = 1.05 and 7 = 1/8

is shown. The size of the domain was z € [—120, 120], but only = € [—60, 60] is shown.
wall. Initially, the fluid displaced by the secondary, left-moving top current forms a
countercurrent immediately below that feeds into the original right-moving current along
the same wall, as sketched in the streamline pattern in figure[3.26k. A symmetric situation
emerges along the bottom wall. By ¢t = 100, however, the nature of the flow field has
undergone a qualitative change due to a topological transition of the streamline pattern:
The currents associated with the secondary fronts now form a closed recirculation zone
in the central region that has cut off the primary currents from their original reservoirs,

cf. figure|3.26p. As a result, in the central region of the channel the local flow direction

at t = 150 is opposite to what it was at ¢ = 25.
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Figure 3.25: Density contours at t = 25, ¢t = 75, t = 100 and ¢t = 150. Density fields
were smoothed using a moving average window with a width of 3 in z. No smoothing
was done in y. A current with Ryp = 1.05 and 7 = 1/8 is shown. The size of the
domain was z € [—120,120], but only = € [—60,60] is shown.

This closed recirculation region occupying the central section of the channel pushes
hot and salty fluid underneath cold and fresh fluid, as shown in figure A comparison
of figure to figure [3.25] confirms that in this region the hot, salty fluid is denser than
the cold and fresh one, as it has lost more of its original heat than salinity. Hence
this region becomes unstable to the ‘diffusive’ variant of the double-diffusive instability.
The rapid upward diffusion of heat creates a layer of hot and fresh fluid just above the
interface, along with cold and salty fluid just below it. These layers then drive ‘diffusive

convection’ [44], [45], which transports light fluid containing more heat than salinity

upward, and dense fluid with more salinity than heat downward. As a result, the density
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Figure 3.26: Sketches showing current fronts (dashed lines) and fluid motion (solid
lines) before (a) and after (b) the transition to late stage dynamics.
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Figure 3.27: Heat (top) and salinity (bottom) near the center of the domain at ¢t = 100
plotted with the true aspect ratio. In this region, denser hot and salty fluid exists
under lighter cold and fresh fluid, leading to the diffusive instability.
gradient driving the secondary currents intensifies, cf. figure [3.25(at ¢ = 150. Since the
mixing above and below the interface is incomplete, some of the hot and salty fluid rises

all the way to the top wall, where it forms a tertiary current flowing to the right, cf.

figure at t = 150. This current again displays the fingering instability, as seen in
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figure|3.27, In summary, in contrast to their single-diffusive counterparts, double-diffusive
gravity currents display a much more complex long-term behavior, which is characterized

by the repeated generation of new density fronts.

3.5 Force balances

We begin by developing dimensional scaling arguments for the force balances, and
subsequently convert these into dimensionless criteria. Following the approach of Max-
worthy [33], we consider buoyancy, inertial, viscous and turbulent drag forces acting on
the current. The turbulent drag due to vertical transport of horizontal momentum as a

result of double-diffusive fingering can be estimated as

dL
Fua~ poUVL ~ poVL (3.31)

where U represents the horizontal velocity scale. Here we use U ~ dL/dt, while Max-
worthy [33] and Didden & Maxworthy [46] employed U ~ L/t. These two approaches
are equivalent as long as the power law relationship between L and ¢ remains constant
for all times. By employing U ~ dL/dt, we gain some flexibility in terms of allowing for
temporal changes in the magnitude of the forces acting on the current, which may cause
a transition from one power law to another. The inertial force per Maxworthy [33] and

Didden & Maxworthy [46] scales as

dL\>
F; ~ poU?h, ~ po (E) he . (3.32)

The viscous force is discussed at length by Didden & Maxworthy [46]. For constant inflow,
those authors develop spreading relations for top currents along slip boundaries, and for

bottom currents along no-slip boundaries, governed by a balance of viscous and buoyancy
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forces. The currents are assumed to propagate into deep ambients, so that the drag on a
bottom current is determined by the current thickness, while the drag on a top current
is set by the growth of the shear layer into the ambient with time. In their experiments,
however, the authors observe that even top currents seem to obey a no-slip boundary
condition. They attribute this to impurities in the fluid, which cause the creation of a
film on top of the current that effectively acts as a solid surface. Consequently, they
assume that the viscous force scales with the current thickness even for a top current.
While we have a clean, stress-free boundary in our numerical experiments, the ambient
fluid layer is not deep, as the thickness of the current is roughly half the domain height.

Consequently, the viscous force F}, can be assumed to scale as

U L dL
F,~u—L~p——. 3.33
ju th th d ( )

The ratio of the double-diffusive to the viscous drag is thus given by
— ~ Vh.Re (3.34)

where the tilde symbol indicates a dimensionless variable. Representative values for our
numerically simulated currents are he ~ 0.5 and V = 0.1, cf. figure . For typical
simulation values of Re = 103, we hence estimate that the fingering drag Fj; is roughly
50 times stronger than viscous drag F),.

The buoyancy force can be estimated by integrating the hydrostatic pressure dif-
ference between an idealized current shape and the ambient, as shown by Didden &

Maxworthy [46] and Maxworthy [33]
Fy, ~ Apgh? . (3.35)
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For lock-release currents such as the ones considered here, the flow is always driven by
the buoyancy force, which is balanced by one of the other forces. For currents driven by
a supercritical forced inlet, Didden & Maxworthy [46] point out that the flow may be

driven by inertia; however, that does not apply to the present situation.

3.5.1 Inertia-buoyancy balance

The spreading relationship for a current governed by an inertia-buoyancy balance can

be derived by combining (3.32)) and ([3.35))

dL\?
f (E) he ~ Apgh? (3.36)

Consistent with our earlier numerical observations, we assume that the current thickness

h. is constant with time, while Ap can vary with time. We thus obtain

drL
—= ~ /() dh. , 3.37
% v(t)g (3.37)

where 7(t) represents the ratio of the instantaneous density difference driving the current

to the initial density difference. By nondimensionalizing and integrating in time we obtain

L~ /0 ;\/fy(t’)dt’ . (3.38)

The above differs from the analysis of Maxworthy [33] and Didden & Maxworthy [46]
in two ways. Firstly, we allow for a time-dependent ~(t), and secondly, we assume
h. is constant with time. In contrast, the earlier authors had assumed an additional

relationship of the form

Qt* = Lh, , (3.39)
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where () indicates a constant.

3.5.2 Turbulent drag-buoyancy balance

We obtain the spreading relationship for a current governed by a fingering drag-

buoyancy balance by combining (3.31)) and (3.35)

dL
pV L~ Apgh? . (3.40)

Nondimensionalizing and integrating gives

t (7

-~ Y -

- I? N/ ) gy (3.41)
& V

where ¢, indicates the transition time beyond which (3.41) first becomes valid, and Zs

represents the corresponding transition length. This balance corresponds to the one

proposed by Maxworthy [33], except that here we assume h, to be constant, as discussed

in the previous section, and we employ U ~ dL/dt instead of U ~ L/t.

3.5.3 Transition times

Hypothetically, if a certain force balance has been governing a current since ¢t = 0

and the current length L obeys a power law relationship with ¢, the approximation

—_—

dL L
dt t

(3.42)
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may be made and the proper scaling of L with ¢ will be recovered. If it is assumed that

~v =1 is constant, (3.38) simplifies to
L~t (3.43)

Assuming v = 1 and V constant and solving (3.41)) for L in a similar fashion, again using

B2, gives

- 0
L~y = 3.44
= (3.44)

Setting (3.44) equal to (3.43) and solving for ¢ gives an estimate of the time of the
transition of the current from a inertia-buoyancy balance to a turbulent drag-buoyancy
balance

P~ = (3.45)

This is consistent with how Maxworthy [33] estimated transition times for his force
balances. In light of our numerical findings, which show V ~ 0.1 (figure [3.23)), this gives
values of O(10) for t.

3.5.4 Numerical evidence of force balances

Inertia-buoyancy balance

Figure displays the ratio of the double-diffusive drag force to the inertial
force . We note that an inertia-buoyancy balance could at best be observed briefly
for very early times, before the current becomes long enough for the fingering drag to
dominate over inertia. However, as discussed above, the calculated current properties (7,
S, ) are less reliable during these early stages, so that we do not observe a clear inertia-

buoyancy stage for any of the double-diffusive currents. The single-diffusive current
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Figure 3.28: Ratio of fingering drag to inertia force for various simulations showing
that a pure inertia-buoyancy balance will not exist for currents with these parameters.
included in figure [3.28], while not having genuine double-diffusive fingering, nevertheless
gives rise to vertical velocities along its interface, so that the evaluation of results
in a non-zero value. However, this value is much smaller than for any of the double-
diffusive currents. An inertia-buoyancy balance can be observed for this single-diffusive
current, as shown in figure , which plots the two sides of against each other.
The linear relationship through the origin for early times demonstrates the validity of

(3-38).

Turbulent drag-buoyancy balance

Equation ({3.45)), with typical V-values in the range [0.05,0.10], provides an estimate

of the transition time to a turbulent drag-buoyancy balance in the range ¢ ~ 10-20. In
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Figure 3.29: (a) Single-diffusive current: an inertia-buoyancy balance is observed, as

indicated by the straight line, before viscous drag begins to become important. The

circles represent the two sides of (3.38) plotted against each other. The solid line is

a linear fit through the origin using data with ¢ < 50. (b) Double-diffusive current:

test for a turbulent drag-buoyancy balance at later times. In the figure, t; = 100 and

L is the length of the current at t = t5. The fact that the data forms a straight line

through the origin shows that (3.41)) holds in this time range.
order to test for this turbulent drag-buoyancy balance, we carried out a long simulation
until ¢ = 190 in a large control volume x € [—60, 60], for parameter values R,y = 1.50
and 7 = 1/8, which result in a moderate amount of fingering. Figure [3.29b plots the
two sides of (3.41]) against each other, with the additional assumption that v/V does
not depend on time, which holds approximately for this simulation. In order to provide
sufficient time for the transition to the turbulent drag-buoyancy balance to be completed,
we choose t;, = 100, with L, denoting the current length at ¢ = t,. The agreement of
the simulation data with the straight line through the origin in figure |3.29b confirms the
turbulent drag-buoyancy balance for long times.

There may be interesting implications of the above regarding the dynamics of double-

diffusive intrusions. Ruddick et al.[47] observed a constant Froude number for intrusions

driven by sugar and salt, suggesting a balance of inertia and buoyancy. However, at a

value of 0.005 the Froude number was surprisingly small, which could not be explained
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Figure 3.30: Three-dimensional isosurfaces of the salinity concentration for R,q = 1.07
and 7 = 1/8, at t = 14. From dark to light, the contour values are 0.1, 0.3, 0.5, 0.7
and 0.9.

by the authors. Although the diffusivities in the present simulations are much larger than
those of sugar and salt, our results suggest that the intrusions of Ruddick et al.[47] could
potentially have been driven by a buoyancy-fingering drag balance, with the appearance of
a constant Froude number coming from an increase in the buoyancy of the intrusions over
time. Because the length scales and velocities associated with the intrusions of Ruddick
et al.[47] yield a much lower effective Re than in the present simulations, we also cannot
exclude the possibility that buoyancy and viscous forces were in balance, in accordance
with . Either way, constant buoyancy would give a spreading relationship of L ~

Vt, whereas increasing buoyancy with time may result in a constant Fr.

3.6 Comparison of two- and three-dimensional sim-
ulations

All of the simulations discussed up to this point were two-dimensional in nature.
In order to explore the qualitative and quantitative agreement between two- and three-
dimensional flows, we conducted a single three-dimensional run for R,y = 1.07 and 7 =
1/8. A visualization of the salinity isosurfaces at ¢t = 14 is shown in figure 3.30] Due

to the high computational cost, this simulation employed a shorter domain in the z-
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Figure 3.31: Comparison of the current length L vs. time t for the two- and three-

-dimensional simulations with R, = 1.07 and 7 = 1/8. The results indicate that the

front velocity is not strongly affected by the third dimension.
direction, x € [—10, 10], instead of x € [—30, 30] as in the two-dimensional simulations.
The grid size was 2,049 x 257 x 257. The simulation was carried out until ¢ = 15, at which
time the current front approached the endwall. The properties of the three-dimensional
current including the current length L, the current thickness h. and the temperature and
salinity differences between the current and the ambient, AT and AS, were calculated
from the spanwise average of the simulation data.

Over the time interval of the simulations, the two- and three-dimensional currents
propagate at nearly identical velocities, as shown in figure [3.31. This is consistent with
earlier findings for single-diffusive gravity currents [21] as well as turbidity currents [4§].
Nevertheless, there are noticeable differences in the dynamics of the currents even at
these relatively early times, as will be seen in the following. Figure indicates that
soon after the start of the flow the thickness of the three-dimensional current drops by
about 20% compared to the equivalent two-dimensional current, which suggests that

the fingering is considerably more intense in three than in two dimensions. This is
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Figure 3.32: Noticeable differences emerge between the two- and three-dimensional
currents regarding their thickness h. (a), and their temperature and salinity difference
with respect to the ambient, AT and AS (b). Parameter values are R,y = 1.07 and
T=1/8.
confirmed by figure[3.32b, which displays the temperature and salinity difference between
current and ambient over time for both currents. The stronger fingering causes the three-
dimensional current to exhibit a much more rapid decay of AT and AS. It is interesting
to note that the front velocity remains nearly unchanged, in spite of the noticeable
differences in current height, AT and AS.

The 3-layer structure discussed earlier in section[3.4.2]is seen to emerge again for three-
dimensional currents, just as it had in two dimensions. Figure |3.33| compares streamwise
averaged u(y)-profiles and local u(y)-profiles at = 1 for the two- and three-dimensional
simulations, where the three-dimensional flows have been averaged over the spanwise
direction. The 3-layer structure is somewhat less pronounced in three dimensions, but
clearly similar in nature.

Our finding that the three-dimensional current is similar to its two-dimensional coun-
terpart but exhibits stronger fingering is consistent with results presented in Radko et
al.[49] for flows with stochastic shear. These authors’ work shows that fingering fluxes

are larger in unsheared three-dimensional flows as compared to two dimensions, but that
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Figure 3.33: u(y)-profiles at ¢t = 15 for 2D (solid line) and 3D (dashed line) simulations:
(a) averaged over the streamwise extent of the current (and also over the spanwise
direction for the three-dimensional flow), (b) local profile at = 1 (averaged over the
spanwise direction for the three-dimensional flow). Parameter values are Ry, = 1.07
and 7 = 1/8. The 3-layer structure discussed earlier for two-dimensional flows emerges
in three dimensions as well.

fluxes in a sheared three-dimensional environment are similar to two-dimensional fluxes
in an unsheared environment. This is mainly due to the fact that shear causes three-
dimensional fingers to align into salt sheets in the plane of the shear [50], since modes with
nonzero wavenumber in this direction are damped. As a result, shear effectively reduces
the dimensionality of the fingering from three to two dimensions, thereby reducing the
flux by a factor of 2 to 3 [49]. In two-dimensional gravity currents, the lack of the third
dimension prevents any sheets from forming, and only modes with nonzero wavenumbers
in the streamwise direction can grow. However, these modes will be damped in com-

parison to three dimensions, so that fluxes will be lower in the sheared two-dimensional
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Figure 3.34: Slice of salinity concentration at t = 14 normal to the vertical at y = 0.65,
which is roughly the location of the current interface shown in figure [3.32h.
environment.

The tendency of three-dimensional flows to form sheets is clearly visible in the hor-
izontal slice of the salinity field displayed in figure [3.34] The slice shown is located at
y = 0.65, which is roughly the height of the interface in figure [3.32h. The sheet-like
nature of the structures is more pronounced near the front of the current, where the
shear at this y-elevation may be more intense than near = 0. In addition, this current
section has been exposed to shear over a longer time interval, which may also contribute
to its more sheet-like structure. A similar effect in horizontal cross sections of fingering

in shear was also observed by Radko et al.[49].

3.7 Conclusions

The above simulations of lock-exchange flows in the Boussinesq regime demonstrate
that strongly double-diffusive gravity currents in the fingering regime can exhibit quite
different dynamics from their single-diffusive counterparts. Even at relatively modest
Reynolds numbers, for which single-diffusive currents remain laminar, double-diffusive
currents can give rise to pronounced small-scale fingering convection. By systematically
varying the diffusivity ratio 7 and the initial stability ratio R2,y, we are able to quantify
the influence of these parameters on the current evolution. Specifically, we notice that

the propagation velocity of the current depends nonmonotonically on these parameters.
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Strongly double-diffusive currents are seen to lose both heat and salinity more quickly
than weakly double-diffusive ones. Furthermore, they lose salinity more quickly than
heat, thereby increasing the initial density difference that drives them. This differential
loss of heat and salinity results in the emergence of strong local density maxima and
minima along the top and bottom walls in the gate region, which in turn promotes
the formation of secondary, counterflowing currents along the walls. These secondary
currents result in a pronounced three-layer structure of the flow. In the neighborhood of
the gate region, the late stages of the flow are characterized by currents flowing in the
opposite directions from the original ones, a phenomenon that bears some similarity to
the buoyancy reversal observed for certain types of particulate gravity currents [27].

A detailed analysis of the energy budget shows that strongly double-diffusive cur-
rents can release several times their initially available potential energy. It furthermore
elucidates the conversion of internal energy into mechanical energy via diffusion of the
scalar fields. By quantifying the vertical fingering velocity, we are able to estimate the
turbulent drag acting on the gravity current. Scaling arguments suggest that even at
fairly low Reynolds numbers double-diffusive gravity currents are governed by a balance
of buoyancy and turbulent drag, which is confirmed by the simulation results.

While the present simulations were motivated by thermohaline flows, the underlying
model may also be applicable to flows in which one of the scalars contributing to the
density is a particulate phase, as long as the influence of the settling velocity is small.
For non-negligible settling velocities, on the other hand, novel phenomena can arise, as
demonstrated in recent laboratory experiments [51], linear stability investigations [52} 53]
and nonlinear simulations [54) [36]. Similar considerations also apply to bioconvection in
stratified environments [55].

As a final remark, we note that a related problem concerns the evolution of double-

diffusive intrusions [50, [57], for which the upper and lower interfaces may be subject to
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different instability modes. Work along these lines is currently under way.
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Chapter 4

Interfacial instabilities in clear salt
water above sediment-laden fresh
water

4.1 Introduction

The recent investigations by Burns & Meiburg [52, 36] and Yu et al.[53] 54] address
the instability of an interface separating a less dense layer of sediment-laden fresh water
above, from a more dense layer of clear salt water below. This configuration is introduced
as a conceptual model for buoyant river plumes or hypopycnal turbidity currents propa-
gating along the ocean’s surface, respectively. The evolution of the interface is found to be
governed by the competition of two linear instability modes. On one hand, the unstable
stratification of the more slowly diffusing particulate phase can trigger double-diffusive
convection within the interfacial region. On the other hand, the downward settling of the
particular phase prompts the formation of a maximum-density 'nose’ layer of sediment-
laden salt water along the interface, which can trigger the growth of a Rayleigh-Taylor
instability along its lower boundary. Direct numerical simulations show that the effective
thicknesses [ and [, of the salinity and sediment concentration interfaces grow proportion-

ally to the square root of time, as does the nose layer thickness H, so that these processes
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can be modeled in terms of a turbulent diffusivity. For small values of H/l; < O(0.1)
double-diffusive fingering is found to dominate, whereas for larger ratios H/l; > O(0.1)
the dominant instability is of Rayleigh-Taylor type. This finding is consistent with the
experimental observations by Parsons et al.[51].

It is well known that under exceptional discharge conditions some rivers can carry
sufficiently high sediment loads to render them denser than the saline ocean water [58].
Under these conditions, the river plume will propagate along the seafloor ("hyperpycnal
flow’), so that a layer of more dense, sediment-laden fresh water is situated below less
dense, clear salt water, [27] ¢f. figure[f.1h. The downward particle settling velocity is now
directed away from the interface, so that it favors the formation of a minimum-density
nose region along the interface, with the potential for Rayleigh-Taylor instability along
its upper boundary, as sketched in figure [4.1p. Furthermore, the differential diffusion of
salt (fast) and sediment (slow) tends to create locally unstable density overhangs both
along the upper and the lower boundaries of the interfacial region, which will give rise
to gravitational instabilities. This regime of double-diffusive instability, in which the
more slowly diffusing particular phase is stably stratified, is commonly referred to as
the diffusive type, [59, 60, 30, 29] cf. figure [4.1c. Thus, the superposition of double-
diffusive and settling effects amplifies the potential for Rayleigh-Taylor instability above
the interface, and reduces it below, cf. figure [£.1d. The present investigation aims to
explore the nonlinear competition among these instability modes via DNS simulations,
with a particular focus on the conditions under which the gravitational instability below
the interface will be suppressed. While we will generally refer to the more rapidly diffusing
scalar as ‘salt,” we note that similar considerations apply to the inflow of a denser, warm,

sediment-laden river into a less dense, cold, fresh water lake.

96



Interfacial instabilities in clear salt water above sediment-laden fresh water Chapter 4

(b)

]

Figure 4.1: Qualitative shape of salinity (dashed line), sediment (dotted line) and total
(solid line) density distributions under various conditions: (a) initial distribution; (b)
later time, as a result of particle settling only; (c) later time, as a result of different
diffusivities only; (d) later time, as a result of both settling and different diffusivities.

(d)

4.2 Governing equations, initial and boundary con-
ditions

The governing equations are identical to the ones employed in Burns & Meiburg [36]
and we refer the reader to this reference for the detailed derivation. The equations
are made dimensionless using as salinity scale S,,,, the initial salinity in the upper
layer, and as particle concentration scale C,,,, the initial concentration in the lower

2

1/3
layer. In addition, we employ viscous scales for length d = (g,ygmw> , tiime d?/v

and velocity v/d, reflecting a balance of inertial, viscous and buoyancy forces. Here «
and v are the expansion coefficients for salinity and sediment concentration, respectively.
In dimensionless form, the conservation equations for mass, momentum, salinity S and

sediment concentration C are

Veu = 0, (4.1)
ou 9 N
E—FUNV’U/ = Vu—VP—(RSC+S)y, (42)
s 1,
aC  aC 1,
- - . = — 4.4
8t+%8y+u vC TSCVC’ (4.4)
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with the governing dimensionless parameters

Us

(v g Spmaz)V? Se=

V, = , T=—, Ry= . (4.5)

S=
=

S

&

3

IS

8

Here the dimensionless settling velocity V), represents the ratio of the Stokes settling
velocity vs and the characteristic viscous buoyancy velocity. Sc denotes the Schmidt
number, which is based on the diffusivity of salinity k,. k. refers to the sediment diffu-
sivity, and the diffusivity ratio 7 > 1. The upper layer being less dense than the lower
layer, the stability ratio R, which represents the ratio of the density contributions of
sediment and salt, is always larger than unity in the present investigation.

Based on a typical seawater salinity of 3.5%, a typical velocity scale in this problem
is about 7 mm/s or less. In this study, we analyze a simulation with V}, = 0.04, which
corresponds to a grain size of 9.0 um, a fine silt, assuming a particle specific gravity of 2.6
along with Stokes law for the settling velocity. Depending on the sediment content of the
fresh water, the stability ratio R, can take on a range of values in nature. Here we employ
Ry = 2.5, so that the sediment loading is 2.5 times larger than the salinity loading. While
Sc = 700 for salt water, this value is too large to conduct DNS simulations, and we use a
value of 1 instead. Estimates for the physical diffusivity of the particles as a function of
their size are available in the literature [61]. Here, we use 7 = 25 and note that further
increases in 7 made little difference in the final results.

The present investigation employs two-dimensional simulations of the above equa-
tions. We note that for the case of fresh water with particles above salt water, Burns &
Meiburg [36] had observed similar dynamics in two- and three-dimensional simulations,
so that we can expect two-dimensional simulations to provide meaningful insight for the
present case. Our simulations use periodic boundary conditions in the horizontal direc-

tion and slip walls with no flux at the top and bottom boundaries. The simulations are
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Figure 4.2: Snapshots of salinity concentration fields for four simulations with
R, = 2.5. (Left) The effect of settling only: V, = 0.04, Sc = 25, 7 = 1; (cen-
ter-left) the effect of double diffusion only: V, = 0, Sc¢ = 1, 7 = 25; (center-right)
the combined effects of settling and double diffusion: V, = 0.04, Sc = 1, 7 = 25;
(right) the effect of settling is strong enough to eliminate plumes in the bottom half:
Vp =0.04, Sc =7, 7 = 25. The domain shown extends from 0 to 700 in x and -300 to
300 in y, with the initial interface at y = 0 marked with a dashed line.
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always terminated before any plumes reach these boundaries. The flow field is initialized
from rest, with randomly perturbed, slightly smoothed step profiles for sediment and

salinity:.

4.3 Direct numerical simulations

In order to demonstrate the effects of settling and double diffusion in isolation, fig-

ures [4.2] and present the salinity and sediment concentration fields for four repre-
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Figure 4.3: Snapshots of sediment concentration fields for three simulations with

R, = 2.5. (Left) The effect of settling only: V), = 0.04, Sc = 25, 7 = 1; (center-left)

the effect of double diffusion only: V), =0, Sc¢ = 1, 7 = 25; (center-right) the combined

effects of settling and double diffusion: V}, = 0.04, Sc =1, 7 = 25; (right) the effect of

settling is strong enough to eliminate plumes in the bottom half: V), = 0.04, Sc =7,

7 = 25. The domain extends from 0 to 700 in  and -300 to 300 in y, with the initial

interface at y = 0 marked with a dashed line.
sentative simulations with Ry = 2.5, at three different times. While the full z-axis is
displayed, the domain is truncated in the y-direction, so that we can focus on the most
active region near the interface. The left column shows the case of particle settling in
the absence of double diffusion, for V,, = 0.04, Sc = 25 and 7 = 1. Rising plumes
can be identified in both the salinity and sediment concentration fields, as a result of
a Rayleigh-Taylor instability that develops along the upper boundary of the interfacial
region, in accordance with the sketch in figure [4.1p. By contrast, the second columns

show the case of double-diffusive instability in the absence of particle settling, for V,, = 0,
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Sc =1 and 7 = 25. Consistent with the sketch in figure . T, the flow exhibits a dif-
fusively dominated central layer from which positively and negatively buoyant plumes
of roughly equal size rise and descend into the upper and lower regions, as a result of
the local density overhangs above and below the central layer, respectively. The third
column shows the combined effects of double diffusion and sedimentation, for V,, = 0.04,
Sc=1and 7 = 25. As expected from figure [£.1d, we recognize a combination of strong
rising and weaker descending plumes, which indicates that sedimentation destroys the
approximate symmetry of the pure double-diffusive instability. Finally, the right column
shows a simulation for V}, = 0.04, Sc¢ = 7 and 7 = 25, for which the settling is sufficiently
strong to suppress the formation of plumes below the interfacial region. For those flows
with 7 = 25, the sediment concentration gradients are much more pronounced than the
salinity ones, due to the smaller diffusivity of the sediment. Taken together, figures
and indicate that along the upper boundary of the central, diffusively dominated re-
gion the effects of double-diffusion and sedimentation amplify each other, whereas along
its lower boundary they tend to cancel each other, possibly even to the point where in-
stabilities in the lower fluid layer are completely suppressed, which is consistent with the

sketches of figure [4.1]

4.4 Discussion

In the following, our analysis will focus on the simulation shown in the center-right
columns of figures |4.2] and where both sedimentation and double diffusion are in-
fluential. Figure displays the horizontal rms-fluctuations of the salinity field, as
a function of the vertical location and time. It confirms that the rising plumes above
the interface are stronger and spread more rapidly than their descending counterparts

below the interface. The analogous plot for the sediment concentration field (not shown)
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Figure 4.4: (a) Horizontal rms-fluctuations of the salinity concentration field, as func-
tion of the vertical coordinate and time. (b) Horizontal rms-fluctuations of the vertical
velocity as function of the vertical coordinate and time. Parameters for this simulation
were Sc =1, Ry = 2.5, 7 = 25 and V,, = 0.04.
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displays corresponding features. The horizontal rms-fluctuations of the vertical veloc-
ity field for the present case, shown in figure [1.4b, exhibit characteristics that are quite
different from the configuration analyzed by Burns & Meiburg [36]. These fluctuations
are seen to be very small in the slowly descending, central interfacial region, confirming
that this region is dominated by diffusion rather than convection. This suggests that the
flux of sediment across the central region will be a result of diffusion and settling only,
while the transport of salinity will be purely diffusive, and the convective components
are negligible.

These differences between the two configurations are confirmed by the temporal evo-
lution of the sediment and salinity interface thicknesses, [.(t) and I4(t), as well as the
corresponding interface locations, y.(t) and y,(t), cf. figure [£.5] These quantities are
obtained by fitting the horizontally averaged concentration profiles, S(y, t) and C(y, t),
to error functions, cf. Burns & Meiburg [36]. Equation shows the form of the fitted

function for salinity, with an identical expression holding for particle concentration

Sy, t) = %erf (y%t)(t)) . (4.6)

The inflection point of the error function profile then indicates the interface location,
while the error function width is taken as the effective interface thickness. Burns &
Meiburg [36] had found that for sediment-laden fresh water above salt water both in-
terface thicknesses grew proportionally to t'/? for all times, so that effective turbulent
diffusivities could be defined. Their simulation results showed that, in spite of its much
larger molecular diffusivity, the turbulent diffusivity of salt was smaller than that of sed-
iment. Figure demonstrates that, for the present configuration of clear salt water
above sediment-laden fresh water, the salinity interface thickness grows diffusively only

during the early stages of the flow. Once the convective instability sets in, both interface
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Figure 4.5: (a) Interface thicknesses for sediment (black) and salinity (grey) as func-
tions of time. The dashed line represents the initial diffusive growth of the salinity
interface thickness according to /4t/Sc. (b) Interface locations for sediment (black)
and salinity (grey) as functions of time. The dashed line represents the Stokes settling
velocity. Parameters for this simulation were Sc¢c =1, Ry = 2.5, 7 = 25 and V, = 0.04.
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thicknesses fluctuate around values that remain constant in time. This reflects a com-
petition between diffusion, which tends to thicken the interface, and convection, which
continuously sharpens it, analogous to a thermal boundary layer [30].

For sediment-laden fresh water above salt water, Burns & Meiburg [36] had found
that the sediment interface location, after initially descending with the particle settling
velocity, propagates downward at a reduced rate, while the salinity interface location
moves upward. As a result, the distance between the salinity and particle interfaces, i.e.,
the ‘nose thickness’ H was seen to grow proportinally to t'/2. A qualitatively different
picture emerges for the configuration of clear salt water above sediment-laden fresh wa-
ter, cf. figure [1.5b. Here the sediment interface propagates downward roughly with the
settling speed for all times. We note that the downward velocity of the sediment interface
is not to be confused with the effective particle settling velocity, which varies depending
on whether or not downward moving plumes are present. The salinity interface location,
after initially remaining stationary, subsequently tracks the sediment interface down-
ward, so that the distance between the two remains approximately constant with time.
This quasisteady nose thickness can be understood as the result of a balance between
two competing effects: The continued settling of particles moves the sediment interface
downward. This reduces the minimum density at the upper boundary of the interfacial
region, which in turn increases the strength of the salinity convection above the interfa-
cial region, thereby bringing the salinity interface downwards. Once the salinity interface
approaches the sediment interface, the density difference driving the convection above
the interfacial region is reduced, the downward motion of the salinity interface slows, and
the downward propagating sediment interface increases the offset again.

In the following, we will formulate scaling relations that allow us to distinguish the
two main flow regimes, viz. the regime characterized by plumes both above and below

the interfacial region, and the one that exhibits plumes only above the interfacial region.
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Figure 4.6: (a) Development of [ over time for different values of 7. (b) Development
of Is over time for different settling velocities. Parameters: (a) Sc¢ = 1, Ry = 2.5,
T =25, 50, 100, 200, (b) Sc=1, Ry =2.5, 7 =25, V,, =0, 0.02, 0.04, 0.06.
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Figure 4.7: Quasisteady salinity interface thickness Il; for different values of the

Schmidt number. Parameters: Sc = 10, 5, 2, 1, 0.5, 0.3, 0.1, R; = 2.5, 7 = 25,

Vp = 0.04. The dashed line has a slope of —1/3.
The generation of plumes below the interface is linked to the emergence of a local density
maximum in this region. In other words, descending plumes will form if the downward
diffusive flux of salinity Fy o< 1/(Sc [) across the interfacial region exceeds the downward
sediment flux as a result of settling Fi. o< V.

While Sc¢ and V), are known input parameters, the quasisteady salinity interface thick-
ness [, is not, so that we have to obtain it from the numerical simulations. Towards this
end, figure [4.6/shows a number of simulation results for [4(¢) as a function of the diffusiv-
ity ratio 7 and the settling velocity V,,. We find that, once convection sets in, [, remains
approximately constant in time and depends only weakly on 7 and V), for the regimes
explored. On the other hand, [, depends strongly on the Schmidt number. A log-log
plot of the quasisteady [, as a function of Sc shows that I, oc Sc™/? for large Se, cf.
figure 4.7 A dimensional scaling argument in support of this relationship can be con-
structed along the following lines: The plumes emanating from the interface at discrete

locations generate shear along the interface, thereby setting up a viscous boundary layer
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Figure 4.8: Value of the ratio of the sediment to salinity flux V, Sc [ for 15 numerical
simulations with R, = 2.5, 7 = 25 and the Sc- and V),-values listed in table Blank
markers indicate that plumes do not form below the interface, while solid markers
reflect the existence of plumes in this region.

along the horizontal interface. Since we employed viscous scaling to derive the original

v

set of governing equations, we have u oc ¥ within this boundary layer. For large Sc the
salinity boundary layer of thickness [, will be much thinner than the viscous boundary

layer of thickness §. Hence we have a characteristic velocity of the salinity u; = “6[5 = V(sé )

Balancing the dominant convective and diffusive terms in the salinity equation, wu, ‘g—i and

ks ‘327‘5, respectively, then yields & oc (£)1/3 = Sc¢™1/3, in agreement with the simulation

data in figure This scaling is only valid for moderate and large Sec, since when Sc is

small salinity will tend to diffuse further than the viscous boundary layer and then the

ulg

characteristic velocity of the salinity will no longer be us oc “=.

In order to explore the existence of a critical value of V,, Sc [, beyond which the
formation of plumes below the interface would be suppressed, we carried out simulations

108



Interfacial instabilities in clear salt water above sediment-laden fresh water

Chapter 4

Table 4.1: Sc- and Vj,-values of the simulations in figure

Simulation No. 'V, Sc
1 0.02 1.0
2 0.04 1.0
3 0.06 1.0
4 0.08 1.0
5 0.04 7.0
6 0.04 5.0
7 0.04 2.0
8 0.04 0.5
9 0.04 0.1
10 0.03 3.0
11 0.05 3.0
12 0.02 4.0
13 0.01 6.0
14 0.04 10.0
15 0.04 9.0

for Ry = 2.5, 7 = 25 and the Sc- and Vj-values listed in table i1 Figure indicates

whether or not a specific simulation exhibits negatively buoyant plumes.

The graph

confirms that for V,, Scl; < 2.5 descending plumes form, whereas flows with V,, Sc{; > 2.5

exhibit rising plumes only.
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Two-component instabilities and
shear

5.1 Introduction

When the density of a stably stratified fluid is a function of two scalar fields with
differing diffusivities, and one of these scalars is unstably stratified, there exists the
potential for a double-diffusive instability to evolve [29]. A prominent example concerns
the ocean, as heat diffuses one hundred times faster in water than salt. Even if the two
scalars diffuse at identical rates, an instability can form if the unstably stratified scalar
has a settling velocity associated with it [5, [62]. This situation can be encountered in
buoyant river outflows, where sediment is unstably stratified while the overall density
gradient is stable due to salinity [52], 36, 53, [54].

An important feature of river outflows is the presence of shear along the lower bound-
ary of the river plume. The effect of this shear on the growth of double-diffusive fingering
has been the subject of several studies [50], 40, 41, 49], which found it to dampen the
instability growth along the direction of the shear, thereby resulting in the formation of
salt sheets. In studying the influence of asymptotically weak Couette flow on double-

diffusive fingering, Linden [50] found that for large Prandtl numbers shear had a damping
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influence. For small Prandtl numbers, on the other hand, shear may amplify the fingering
instability. Smyth & Kimura [40, 41] employed hyperbolic tangent temperature, salinity
and velocity profiles within a linear stability analysis as well as direct numerical simula-
tions (DNS) to analyze the effect of shear on fingering. These authors examined fluxes,
the dissipation ratio and growth rates, and arrived at the conclusion that shear damp-
ens the fingering instability. Radko et al.[49] showed that in a DNS, fingering fluxes
in the presence of shear are a factor of 2-3 times smaller than without shear. Here we
will investigate the effects of finite-strength shear on both the double-diffusive and the
settling-driven instability. Towards this end, we would like to employ an infinite domain
to eliminate the effects of solid boundaries, as well as uniform shear profiles without
inflection points to avoid the presence of competing shear instabilities. As we will see, all
of these goals can be accomplished by means of a transient growth analysis, which has
the added benefit of providing detailed insight into the physical mechanisms at work.
Section will define the problem and derive the linearized equations describing
the instability growth. In section we describe the adjoint method employed for
calculating the objective gradients for the optimization procedure. Section presents

the results of this analysis, along with their physical interpretation.

5.2 Problem Formulation

Several strategies may appear feasible for investigating the effect of shear on double-
diffusive and settling-driven instabilities. Linden [50] performed a linear stability analysis
for a vertically bounded Couette flow with linear temperature and salinity gradients, as
sketched in figure However, in trying to extend this approach to the settling-driven
instability, we found the eigenvalues and eigenvectors to strongly depend on the size

of the domain, and to be dominated by boundary effects. This difficulty cannot be
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T C p u

Figure 5.1: Background temperature T, particle concentration C, density p and

x-velocity @w. Within the stable overall density stratification, the particle concen-

tration is unstably stratified.
eliminated by considering a sedimenting particle concentration field in an unbounded
error function-type background shear instead, as this set-up violates the quasi-steady
base state approximation. For these reasons, we opt to solve an optimization problem
in order to identify the maximum perturbation growth within a linearized framework.
This approach no longer requires a quasi-steady state approximation, and it allows us to
consider a wave-like perturbation with a time-dependent slope in an unbounded Couette
flow. This concept is known as Kelvin waves, and it has been successfully employed in
the study of the planar Couette flow [63] 64], 65, (66, [67].

Consider the Navier-Stokes equations in the Boussinesq approximation, along with
convection-diffusion transport equations for temperature T and particle concentration

C*, a linear equation of state for the fluid density, and the continuity equation. With
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asterisks denoting dimensional quantities, these read

*

g‘:j +ute Vi = —piSV*P* + VP z—gg* , (5.1)
8;: +ut - VT = BVERTE (5.2)
%C; +ut - VICr = ELVEOT 4 s’;% : (5.3)
pto= p(l—a’(I" = 1T5) + B°(C" = CF)) (5.4)

Vieu = 0 (5.5)

Here u* = (u*,v*, w*) represents the velocity, p* indicates the density, pj is the density
of a reference state with 7* = T and C* = C, P* denotes the pressure, g* = (0,0, —g*)
the gravity vector, v* the kinematic viscosity, k7. and k7, represent the diffusivity of heat
and particles, and o* and * express the density dependence on temperature and particle
concentration. Vi is the Stokes settling velocity

29*r;2(py — po)
9u*

Vi = (5.6)

Y

where 7, denotes the particle radius, p; the particle density and p* the dynamic viscosity.
Each variable ¢* can be thought of as the sum of a background or base state ¢*, and the

perturbation ¢*' from that state. We assume a background state of the form

o = (52,00, (5.7)
Cr = CH+Vir) (5.9)
ap* * % * (% * * (Y% *

o = g Lo (T =T5) + 51 (C" = )] (5.10)

where T* and C? are positive constants, as sketched in figure . We remark that at
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a given location, the background particle concentration increases uniformly with time
as a result of particle settling acting on the uniform background particle concentration
z-gradient. The density contributions due to the background profiles, as well as the
reference temperature and particle concentration, can be absorbed into the background

pressure P*. By substituting ¢* = ¢ + ¢*’ into the governing equations, we obtain

Du* ou*’ 1 oP*

S* * */S* - = *V*2 x/ 511
D 0 o ;i on VY (5.11)
Dv*’ o’ 1 OP*
S* *x 27 *V*2 */ 512
Dt* T ox* Py Oy* v v (5.12)
Dw* ow*’ 1 oP*
S* * - *V*Z */ * *T*/ o *C*/ 513
o T S o TV g e gy, (5.13)
DT+ or~ oT™
S* * — ]f* *ZT*/ o */ 514
Dt* T Ox* v Y g (5.14)
DC* oc oC* oc*
o 4 5t oy — kév*?C*/ —w* e + V';; el (515)
veeu? = 0, (5.16)

where D/Dt = 0/0t + u - V denotes the material derivative. We nondimensionalize the
problem using the length, time, temperature and concentration scales according to Radko

[29], where we replace salinity with particle concentration

T T e

d*:( kv |)1/4’ O A LY. SN

* ok [T c * )
gOé’Tz kT

*

Tr=dTI|, Cr =T (5.17)
B
Representative oceanic values of v* = 1079 m/s*, k& = v*/7, |T¥| = 0.01 K/m and

o = 2.07 x 107* K™ yield d* ~ 1 cm and t* ~ 10% s. After applying these scales and

114



Two-component instabilities and shear Chapter 5

dropping the apostrophes, we obtain the nondimensional governing equations

0 0 oP
8—7; + SZG_Z +wS+u-Vu = —Pra + PrV%u (5.18)
0 0 oprP
a—: + Sza—j; +u-Vo = —Pra—y + Prv%u (5.19)
0 0 oP
8_1;; + Sz% +u-Vw = —Pra + PrV2w+ Pr(T —C),  (5.20)
or or
E+Sza—x+w+u-VT = V°T, (5.21)
oC oCc  w 1_, oC
il =~ 4 = . = = V,— 22
at+SZa$+Rp+u vC TVC+ "o, (5.22)
V.u = 0. (5.23)
Dimensionless parameters arise in the form
Y o vV O_/*T*
Pr— — T — st =2 | .24
Th T TR T w s e 20

Linearization around the background state, and using the continuity equation to eliminate

pressure results in

&, o 0, A PT 0T
at(V w) = Szaxv w+ PrV w+Pr(ax2 + T
0*C  o9*C
T
%(T) = —Szg—x —w+ VT, (5.26)
0 B oc  w 9 oC
E(C) = -5z o R, +V C—i—‘/},az . (5.27)

We assume that the solution has the form of a plane wave with time-varying wavenumbers

q(z,y, z,t) = q(t) explik(t)x + il(t)y + im(t)z] . (5.28)
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Substitution into ([5.25))-(5.27)) yields

(5.30)

d
a(K?{&)H(% (i%xn%%yn%i—?z) = —ikSzK*w — PrK*w
+Pr(>+12)(T - C) , (5.29)
d ~ ~(dk dl  dm ~ ~
—(MY+T i +i—y+i—z| = —ikSzT —w— K°T
dt( ) + (zdt$+zdty+zdt z) ikS2T — w :
d ~ ~(dk dl  dm ~ w1~
-~ C O i S S s v _K2
dt< )+ (zdtx+zdty+z ; z) ikSzC R 7 C
—l—imVpé ,

where

K2(t) = k(t)* +1(t)* + m(t)* .

(5.31)

(5.32)

We would like to eliminate the terms with explicit dependence on z, so that we can

transform the equations to wave space and assume an infinite domain for the perturbation

fields. We do this by strategically choosing

dk
dt

dl dm

— = — = -Sk.
dt 0, dt o

0,

Substitution into (5.29))-(5.31) and rearranging into matrix form yields

K20 —PrK?  Pr(k®+12) —Pr(k*+1?) K%
d| -~ N
— = -2 12
i K K 0 T
C ~R'K~? 0 —7 K2 + i(mg — Skt)V, C
now with

K2(t) = k* +1* + (mo — Skt)* ,

(5.33)

(5.34)

(5.35)

where mq denotes the initial value of m(t). We note that at a fixed time, ([5.28)) reduces
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to Fourier waves in space. Hence any perturbation can be represented by a superposition
of these modes. Because the equations are linear, the solution to the PDEs is then given
by the superposition of the solutions of the modes present in the initial condition. Just
like in a traditional linear stability analysis, we consider one mode at a time, and then
optimize to identify the fastest growing mode. We keep in mind that the growth may
not be exponential in time, and that the spatial shape of the mode is time-dependent.

The entire analysis can then be performed in wave space. For added convenience later

on, we rewrite ([5.34)) as

w P(t) PrK2(k*+1?) —PrK—2(k* +1?) w
d |~ N
ol ~| _ e 5.36
|7 1 K 0 Tl . (536)
C ~R;! 0 —7 K2 4+ i(mg — Skt)V, ] \C

where the notation

Y(t) = —PrK?* + 2Sk(mg — Skt)K? (5.37)

is employed to save space.

5.3 Optimization Procedure
We aim to identify the maximum of the gain

D12+ [T12 +1C12)],_
oo (|w|~ + T+ [CP) li=tens (5.38)
(10 + T +|C[*) =0

with respect to k, [, mg, and the complex initial conditions for w, T and C. In the
absence of shear (S = 0), the equations depend only on k% + [? instead of on k and [

independently, so that we can set [ = 0 without loss of generality. When shear is present,
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its influence is removed if k = 0 so that the unsheared result is recovered, although now
as a function of [ instead of k. In a linear stability analysis, growth rates for sheared
double-diffusive fingering are generally lower for & > 0 than for £ = 0 [50, 40], so that we
expect the formation of “salt sheets” aligned in the direction of the shear, with £ = 0. In
the present investigation we set [ = 0, so that we can isolate the effect of shear. We note
that any problem with [ > 0 can be converted to one with [ = 0, although with different

S- and k-values, by the transformation

ko« VE2+P, (5.39)
Sk

S Nk (5.40)

In anticipation of findings to be discussed below, we remark that this transformation

implies the following: If for [ = 0, i.e. in the absence of spanwise perturbations, shear

is observed to dampen the growth, we can conclude that the maximum sheared growth

will likely occur for spanwise modes with k£ = 0, for which the unsheared growth results
are recovered.

Since the ODE for which we optimize is linear, multiplying the initial condition by a

complex constant will not affect the gain in ((5.38)). To remove this degree of freedom, we

set

(J@* + T +|C*)li=o = 1 (5.41)

and optimize for

G = ([0 + TP + |C*) 1= (5.42)

end
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We parameterize the initial condition constraint (5.41]) by setting

Wi—o = Tuwe’ (5.43)
ﬁzo = ’T‘TBZHT s (544)
6}:0 = reetfo . (5.45)

Note that these three values can be multiplied by a factor of ¥ for any § without affecting
(5.41)). Consequently we set
0, =0 (5.46)

and only optimize for 67 and 6. Equation ([5.41)) yields

2 4ri i =1. (5.47)

These three parameters and one constraint can be reduced to two free parameters ¢; and

¢o by using spherical coordinates

ro = cos(¢q)cos(¢g) (5.48)
rp = sin(¢y)cos(¢z) (5.49)
ro = sin(¢y) . (5.50)

To summarize, we need to optimize over the four initial condition variables 07, 0o, ¢,

and ¢9, from which the initial condition can be reconstructed by

w = cos(¢p)cos(¢s) , (5.51)
T = sin(¢y)cos(¢s)eT (5.52)
C = sin(¢y)ei . (5.53)
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With [ = 0 as discussed above, our goal is now to find the total derivative of G with

respect to

¢
¢2
o
p=| (5.54)
Oc

k

mo
and then employ its gradient in a gradient-based optimization algorithm such as BFGS
or nonlinear conjugate gradient, which is available in Matlab through the fminunc()
function.

We calculate the gradient using the adjoint method, adapted from Gunzburger [68]

and described in the following. We begin by defining a Lagrangian functional L
tend dq
L=G+ / ChE (— — A(t)q) dt , (5.55)
0 dt
where it is helpful to rewrite G as
G = q(tena)" d(tena) - (5.56)

In (5.55)), we define

Alt) = Re(B(t)) —Im(B(t)) (5.57)
Im(B(#))  Re(B(t))
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with
—PrK?+ 2Sk(mg — Skt)K_2 PTK_2(]€2 + l2) —P?”K_Q(kQ + l2)
B(t) = -1 —K? 0
—R}! 0 —7 K% +i(mg — Skt)V,
(5.58)

according to the system of ODEs in ([5.36). The vector q and its initial condition q(0)

are defined as

Re(w(t)) cos(¢1) cos(¢2)
Re(T'(t)) sin(¢) cos(¢) cos(67r)
ot) = Re(C(t)) | o(0) = sin(¢s) cos(f¢) | (5.50)
Tm(w(t)) 0
Im(7°(t)) sin(¢y) cos(¢p) sin(fr)
Im(C(t)) sin(¢s) sin(6¢)

In (5.55)), the Lagrange multiplier g™ can be chosen freely because we always enforce

dq
5 ~ABa=0. (5.60)

Because constraint (5.60)) is always satisfied, we have

dL _ dG

—=—. 5.61
i~ dp (5.61)

Our goal now is to find this gradient dL/dp in such a way that we will not have to
calculate dq/dp, except at ¢ = 0, which is easily done using ([5.59). We begin with

dL _ 9G _ dq(le) 0G| / t“’d(q+>T(d dq A(t)d—q—wq) dt (5.62)

dp ~ 9q(fena) dp ap dpdt ~dp dp
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and use integration by parts on the term containing dq/d¢

[T - (@)
(o),

“ﬂdq)dq
—~ — dt . 5.63
/0 ( dt dp (5.63)

t=tend

We substitute ((5.63) into ((5.62))

dL pda(0) G [t L L dAQ)
o - q(0)” b + oD /0 (a’) “ap & de
end o d_q
-/ ( ) + (@) A(t)) 2

|:( dp tend ( )
and pick q* so that there is only dependence on dq/dp at ¢ = 0. This yields
oG \"
T(tend) = — = —2q(tend) , 5.65
¥ (ta) =~ (Gris ) = =2t (5.69
as well as an ODE for g™
dg* o T -+

dt

which we integrate from t = t.,q to t = 0. In combination with the fact that G’ has no

explicit dependence on p, this yields the gradient

1 oY [0 . (5.:67)

The method used to calculate the gradient is now as follows. For a given initial condition

q(0), k£ and mg, we integrate (5.60) in time from ¢ = 0 to ¢ = teq. We then use the
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result q(tenq) to calculate q* (tenq) using (5.65). With gt (fena) as an initial condition,
we integrate (5.66) from ¢ = tenq to ¢ = 0. We then use q(t), q*(¢) and q(0) along with

(5.59) to evaluate (5.67). We validated equation ([5.67)) using finite differences applied to
direct compuations of G using (5.38)).

5.4 Results

Figure shows a representative set of optimization results for the fingering insta-
bility, with Pr = 7, 7 = 100, R, = 2 and V}, = 0. It compares the case S = 0.1 with
its no-shear counterpart. For the no-shear case, the dotted lines demonstrate the excel-
lent agreement between the optimization results for large t.,q and corresponding linear
stability results. For small times t.,q < 5, on the other hand, the optimization results
deviate strongly from the linear stability results. In the following, we will first examine
the reasons for this transient phenomenon in more detail, and then proceed to discuss
the effects of Pr, 7, R, and V, on the fingering and-settling driven instabilities in the

presence of shear.

5.4.1 Initial growth and the Orr mechanism

The initial fast growth seen in figure occurs when £ — 0 and my — 0. It is present
with and without shear, and as we will see below, it also exists for the settling-driven

instability, cf. figure[5.8] In this limit, the system of ODEs (5.36] reduces to

w 0 Pr —Pr w
ol - -
9 - | _ 5.68
5l T 1 0 0 T , (5.68)
C ~R;' 0 0 C
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Figure 5.2: Optimized gain G and corresponding k and mg as a function of the
time interval [0, tenq] for the fingering instability. The other parameters are Pr = 7,
7 =100, R, = 2 and V}, = 0. The dotted lines correspond to linear stability results
for the maximum growth rate and corresponding k-value, in the absence of shear.
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Figure 5.3: The optimally growing solution for tepq = 3 with Pr =7, 7 = 100, R, = 2,
Vp =0and S = 0. a) the gain G, and b) the solution components. Here the solution
is real.

so that S no longer appears. The fast initial growth occurs when T and C initially have
opposite signs, so they act in phase on the density field, as higher T and lower C both
reduce the overall density. As a result w grows strongly, which in turn will cause T and C
to move in the same direction until they eventually are of the same sign and sufficiently
large for the transient growth to decay. A representative example is shown in figure |5.3|
which displays the overall gain and individual solution components as functions of time
for the optimal solution with fe,q = 3 and the same parameters as in figure [5.2] At first,
T and C have opposite signs, which causes w to become negative. This negative w causes
both T and C to increase. Since R, > 1, w affects T more strongly than C. When T
and C cross, w stops growing and begins to decay. The overall gain continues to increase
until the point where w = 0, at which point T and C would begin to decrease.

This transient growth mechanism relies on the existence of density gradients, and it
occurs whether or not shear is present. This is in contrast to the Orr mechanism [69],
which requires shear and does not depend on density gradients. The Orr mechanism

is related to the tilting of the plane perturbation vorticity wave by the background
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shear. If this wave is initially tilted against the shear, its vorticity contours are relatively
close together. As m decreases with time due to the shear and the perturbation wave
tilts into an upright position, the vorticity contours separate. Since the strength of the
perturbation vorticity wave is conserved during this tilting process, the kinetic energy
of the associated perturbation velocity field increases. As the background shear tilts the
wave past the upright position, the perturbation vorticity contours come closer together
again, and the associated kinetic energy decreases. The maximum gain due to this
inviscid Orr mechanism can be found by considering the relationship between vorticity

and vertical velocity, which can be derived from the definition of vorticity and continuity

ow
— =Vw. 5.69
e w (5.69)
By substituting the time dependent plane wave ([5.28]) into this equation, we obtain
ik -
- w .
k2 + (mo — Skt)2

W= (5.70)
The maximum w will occur when ¢ = mq/(Sk), i.e. when m = 0 and the wave is vertical.

The associated maximum gain is

" ol M (1)

G

where G, differs from G in (5.38)) in that G, only contains w and not T and C , and the
second equality reflects the fact that the vorticity of a fluid element is conserved over
time. If my # 0, this means that the inviscid Orr mechanism would result in infinite gain
as the optimizer chooses smaller and smaller k£, which is the same limit that drives the
transient growth mechanism described earlier. At this point one may wonder why the

gain does not become infinite for cases with shear as k — 0. To answer this question, we
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need to consider the time it takes for shear to tilt the wave into the upright position

mo
t = — 72
Sk’ (5:72)

which is the time it takes for the vertical wavenumber m to decrease from my initially to
0. We can make my as small as we like, but in order to get infinite gain, £ must approach
0 faster. This means that as k — 0, the time until the infinite gain is realized becomes
infinite. At this point, it becomes helpful to include the effects of viscosity. Since viscous
forces would have an infinite amount of time to dampen the Orr mechanism, it is not
immediately obvious whether infinite gain can be achieved in the presence of viscosity.
We begin by considering the ODE for w in an unstratified two-dimensional case with

viscosity
dw
dt

(o s sy o 2580 )

. 5.73
K2+ (mo — Skt)2 ) (5.73)
This ODE can be obtained from (5.36]) by neglecting T and C. The analytical solution

18

w(t) = w(0) exp {— /0 t Pr(k* + (mo — Skt')?) dt’] exp { /0 t kg?izz - ?}ZZ/;? dt’}
(5.74)

We know from our analysis of the inviscid problem that the maximum value of the second
exponential is (k? +m3)/k* and occurs when ¢t = mg/(Sk). This value is the square root
of the maximum gain from ([5.71]). We can evaluate the first integral, which expresses the

influence of viscosity, at t = mg/(Sk) to complete the expression

w(gk) (3k*mg + m3)Pr k* +m3
70 exp 39k o (5.75)

This expression for the growth of the viscous Orr mechanism was also derived by Craik
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& Criminale [66]. If we take the limit of (5.75)) as & — 0 with my > 0, we see that the
gain will become zero because the exponential decay dominates. However, if we choose

a relation between k and mg of the form
k= Cm{ (5.76)

where C' and n are constants, and substitute that into ([5.75)), we obtain

w(gr) (3C2mZ" 2 +1)Pr] C?m2" % +1
P T 350me O

(5.77)

The rightmost fraction in this equation shows us that if we wish to obtain infinite gain
as mg — 0, we need to choose n > 1, but this would mean that infinite time would be
required to realize that infinite gain, seen in . Alternatively, we can choose n = 1
and have an arbitrarily large gain as C' — 0. However, shows that after choosing
n = 1 and substituting £ = C'my, infinite time is required to produce the infinite gain as
C — 0. Either way, as long as n < 3, the exponential term will approach one as my — 0.
Consequently, viscosity will not prevent the Orr mechanism from producing infinite gain,
but infinite time will also be required to produce the infinite gain.

If we choose n = 1, we can construct a function that gives the maximum gain from
the inviscid Orr mechanism as a function of t.,4. Setting & = Cmyg in (5.72) gives
C' = 1/(Stena)- This is the C-value that corresponds to the wave with k& and mg that the

Orr mechanism can tilt into a fully upright position by time t..q. Setting £ = Cmg and

C' = 1/(Stena) in (b.71]) gives

Gop = (1+5%2 )% . (5.78)

end

In this paper, we study the effects of shear by setting S = 0.1. This means that the Orr
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mechanism will require a long time to produce large gain as £ — 0 and my — 0, even in
the absence of viscosity. For the times that we considered, the growth of the settling or
fingering instability was always larger than the growth of the Orr mechanism as k — 0
and my — 0. We note that this does not imply that the Orr mechanism is generally

irrelevant, as there are cases when it can enhance the gain caused by the instability. This

will be discussed in sections [5.4.2] and (5.4.3]

5.4.2 Effect of shear on the fingering instability

To study the gain of the fingering instability with and without shear, we analyze the
case of Pr =7, 7 =100, R, = 2 and V, = 0, for S = 0 and 0.1, respectively. Figure
shows the optimal gain G as a function of time t..q, along with the k- and mg-values
that produce this gain. Without shear, the optimally growing mode has m = mg = 0
and produces roughly exponential growth beyond the transient phase. The growth rate
and most amplified k-value from linear stability theory [5], also shown in figure , agree
closely with the gain obtained from the present analysis. Since the mode with m = 0
has no dependence on z, it is commonly referred to as the “elevator mode.” With shear,
the gain is smaller and my > 0. Larger times t.,q result in larger initial values myq, so
that the flow can spend most of the time interval over which the gain is evaluated near
m = 0, where the fingering instability experiences maximum growth. Having mg > 0
also allows for the Orr mechanism to provide some additional growth. Since for [ = 0 the
shear reduces the gain of modes with k£ > 0, the discussion at the beginning of section
suggests that for the fingering case with shear optimal growth will occur for £ = 0 and
[ > 0, which corresponds to a salt sheet. This is consistent with previous work on the

interaction of the fingering instability with shear [50] 40, 41, [49].
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Figure 5.4: Ratio of sheared optimal gain with S = 0.1 to unsheared optimal gain for
the fingering instability. Unless noted otherwise in the legend, the parameter values
are Pr=7,7=100, R, =2 and V}, = 0.

Influence of 7 and R,

To determine how the damping effect of shear on the fingering instability depends on
7 and R,, we calculate the optimal growth for the base case parameters and varying 7-
and R,-values, for both S = 0 and 0.1. Figures and b show the ratio of the sheared

to the unsheared gain as a function of f.,q for different 7- and R,-values. Increasing 7
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from 10 to 1,000 slightly increases the damping influence of shear. Similarly, lower values
of R, are affected somewhat more strongly by shear than higher values. Since lower 7
and higher R, correspond to weaker unsheared fingering, we can summarize these trends
by stating that weaker fingering generally is affected less by the presence of shear.

These trends can be understood on the basis of the linear stability results for the case
without shear. Figure shows these linear stability results for a) the base case, b) the
base case but with 7 = 10, and c) the base case but with R, = 3. Without shear, as
tena — 00 the optimal growth will approach the fastest growing linearly unstable mode, as
seen in figure [5.2l. When shear is added, the vertical wavenumber m becomes a function
of t, with m(t) = mo— Skt. The values that m takes between ¢t = 0 and t,q are drawn as
solid lines in figure 5.5l By approximating the growth of the sheared solution as locally
exponential in time, we obtain

4G
5 = 20(0G (5.79)

where G is the gain and o(t) the instantaneous growth rate from the linear stability
analysis at (k,m(t)). The factor of 2 arises because the gain is the sum of the squares
of the solution components. Taking the ratio of this approximation to the linear growth

rate for the unsheared growth yields a damping coefficient

D(tena) = % — exp {2 ( /O ot = o dt)} . (5.80)

Figureshows D(tena = 40) against the actual damping at te,q = 40 evaluated from the
optimization calculations. Equation reproduces the correct trend for the strength
of the damping, which suggests that the trends of figure [5.4h-b are due to the fact that
those parameter combinations for which o depends more weakly on (k,m) are damped

less by shear.
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Figure 5.5: The unsheared case S = 0: linear stability analysis growth rate vs. hor-
izontal wavenumber k and vertical wavenumber m for the parameter combinations:
(a) base case of Pr =7, 7 = 100, R, = 2 and V,, = 0, (b) decreased 7 = 10, (c)
increased R, = 3, and (d) decreased Pr = 0.05. The shading is logarithmic, and the
maximum growth rates are marked with an X. The horizontal black lines represent
the paths of the non-modal optimal growth from ¢ = 0 to tepnq for S = 0.1 according
to m = mgy — Skt. (a-c): teng = 40, (d) and teng = 25.
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Figure 5.6: Actual damping G(S)/Ggs—¢ for S = 0.1 as a function of predicted damping
(5.80)) from assuming locally exponential growth as m(t) = mgo — Skt changes over
time. The correct trend is recovered for all parameter combinations, although the

predictions are a factor of 2-3 too small. Values of 7 are 10, 30, 100, 300 and 1000.

Values of R, are 1.6, 1.8, 2, 2.5 and 3. Values of Pr are 0.2, 1, 7 and 50.

The effects of transient growth may still play a role in the imperfect agreement of
figure , but they do not dominate the overall trends as 7 and R, are varied. In
the presence of shear, transient growth affects the solution at all times since the local
eigenmodes constantly change as a result of the time dependence of m(t). In addition,
the Orr mechanism provides a boost of w as m crosses zero, and subsequently causes
extra damping of w as m moves away from zero.

According to (5.80)), smaller values of 0 — 0,4, reduce the damping effect of shear.
Figures and b show the dependence of ¢ — 0,4, o0 k (for m = 0) and on m (for
k = kpaz). Here kg, is the k-value for which 0,,,, occurs. Even though figure

indicates that 7 = 10 is damped less than 7 = 1,000, ¢ is reduced more for 7 = 10 along

both of the paths shown in figures and b. This apparent contradiction is resolved
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by the fact that for 7 = 10 the optimized growth path proceeds along a reduced value
k < Kz, as seen in figure [5.5b. Although o is reduced less for 7 = 10 along this path
with k& < Kypnee, this would not be hypothesized from figure 5.7p. The fact that o is
reduced more for 7 = 10 along m = 0 as k is reduced makes it difficult to produce a

physical explanation why o is reduced less along the optimal path for 7 = 10.

Influence of Pr

Figure |5.4c shows that shear has less of a damping effect on flows with with smaller
Pr-values, and even produces additional transient growth when Pr = 0.05. As indicated
by figure [5.6], the general trend can once again be explained in terms of linear stability
analysis growth rates, with the exception of Pr = 0.05. Figure shows that ¢ is more
sensitive to m for high than for low Pr, which is consistent with the fact that high Pr
flows get damped more. This allows us to formulate a physical argument for why there
is less damping by shear when Pr is small.

We recall that the fingering instability is both driven and damped by diffusion, in
the following sense. Deviations from the base state in both 7" and C' contribute to
vorticity generation. Since 7' is stably stratified, the T-related vorticity is stabilizing.
Correspondingly, since C' is unstably stratified, the C-related vorticity has a destabilizing
influence. As the relative importance of diffusion grows with increasing k or m, the larger
diffusivity of 1" causes the T-vorticity to be damped more than the C-vorticity, resulting
in a net increase in destabilizing vorticity. In addition, as k is increased independently
of m, the (1,2) and (1,3) terms in show that vertical velocity generation grows
proportionally to k?/(k? + m?). This effect is influential since the interaction of the
vertical velocity with the background 7T- and C-gradients drives the instability.

When Pr is reduced, vertical velocity generation and diffusion are both reduced.

As the top row coefficients in ([5.36)) show, this results in smaller overall vertical velocity
134



Two-component instabilities and shear Chapter 5

0.0

—0.15H — +=10
- - 7 =1000

-0.7 . —0.20 . . .
-2 -1 0 1 2 -0.50 —-0.25 0.00 0.25 0.50

k - kmaczz

0 — Omazx

—-0.30

Figure 5.7: (a) 0 — 0pqs as a function of m for k = kyyq., where o0p4, is the maximum
growth rate and ky,q, is the value of k where 0,4, occurs. (b) 0 — 0pnqs as a function
of k with m = 0. (¢) 0 — o0 pnas as a function of m with k = ky4, for two values of Pr.
In (a) and (b), o is more sensitive to k and m when 7 = 10 compared to 7 = 1000.
Other parameters are Pr =7, R, = 2 and V}, = 0. In (c), o is more sensitive to m
when Pr = 7. The other parameters are 7 = 100, R, = 2 and V,, = 0.
growth on the left hand side. To compensate, it becomes relatively more advantageous to
increase the double-diffusive effect by increasing |m/|. Increasing |m| accomplishes three

things. Firstly, it increases the importance of diffusion, which decreases the growth rate.

Secondly, because of increased diffusion, there is also a stronger double-diffusive effect,
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which enhances the growth rate. Thirdly, it decreases the vertical velocity production
terms (1,2) and (1,3) in (5.36]), which decreases the growth rate. The overall effect of
increasing |m/| is to decrease the growth rate. When Pr is small, increasing |m| decreases
the vertical velocity generation terms less relative to the changes in the other terms in
, reducing the influence of one of the reasons why increasing |m| lowers the growth
rate. The fact that the overall growth rate is less sensitive to m when Pr is small causes
shear to affect the solution growth less when Pr is small.

For Pr = 0.05 the sheared case grows more strongly than the unsheared one, as
a result of the Orr mechanism. The solid black line in figure [5.5d indicates that for
Pr = 0.05 and tenqg = 25 we have m(tepq) = 0. This means that the Orr mechanism
growth is at its strongest for t = tenq when Pr = 0.05. The Orr mechanism can play
a more prominent role in determining the optimal growth when Pr is low because this
implies low viscosity. The reduced damping effect of viscosity on the Orr mechanism is
reflected by the exponential term in ([5.75)). Equation (5.75)) can also provide an estimate
of the maximum gain from the Orr mechanism alone. Towards this end, if we assume
that T and C are constant in time, the maximum gain from the Orr mechanism would
be about one third the result of squared. For the present case with Pr = 0.05 and
tena = 25, this evaluates to about 9, which is consistent with the results in figure|5.5d. For
Pr = 0.2, the estimate is reduced to about 1.25, meaning that the Orr mechanism would
provide much less of a boost. For Pr > 0.2, optimal growth is achieved by having m(t)
spend roughly equal amounts of time on either side of zero, as seen in figure 5.5 Since
this path for m(t) is twice as long, larger k can be accommodated with dm/dt = —Sk.
Because these larger k-values produce stronger growth, their overall growth is higher

without relying on the Orr mechanism.
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5.4.3 Effect of shear on the settling instability

In order to investigate the effect of shear on the settling-driven instability [5], we set
7 = 1 to eliminate any double-diffusive effects. For the case of Pr =7, R, =2and V, = 1,
figure shows that shear dampens the settling-driven instability, just as it dampens
the fingering instability. Recall that the streamwise salt sheets discussed above in the
context of the double-diffusive instability were oriented vertically, since the unsheared
instability favors the m = 0 mode. For the settling-driven instability the situation is
quite different. Since now m # 0 for the unsheared case, the “particle sheets” will be
tilted in the spanwise direction. The linear stability analysis of [5] furthermore showed
that the unsheared case favors two equally unstable modes with opposite wave slopes
for the settling-driven instability. DNS simulations by the same authors indicated that
both of these modes are present, resulting in a criss-cross pattern of waves. Hence we
predict that in a three-dimensional flow with shear acting in the x, z-plane the initially
dominant settling-driven instability mode will have the shape of this criss-cross pattern in
the y, z-plane, while being invariant in the z-direction. This will give rise to “tube-like”
structures, rather than sheets. In the following sections we examine the quantitative

effect of shear on various aspects of the settling-driven instability.

Influence of V,

To determine how the effect of shear depends on the setlling velocity, which acts as
proxy for the particle size, we calculate the maximum gain with S = 0 and 0.1, and for
V, = (1,1.25,1.5,1.75,2). The ratio of the sheared to the unsheared gain displayed in
figure demonstrates that the effect of shear on the settling-driven instability increases
with V,.

In order to explain this trend, we first review the mechanism behind the settling
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Figure 5.8: Optimized gain G and corresponding k£ and mg as a function of time
interval [0, teng] for the settling instability. The other parameters are Pr =7, 7 = 1,
R, = 2 and V}, = 1. The dotted lines indicate linear stability results for maximum
growth rate and corresponding (k,m), in the absence of shear.
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driven instability as originally discussed in Alsinan et al.[5]. Again we have stabilizing T-
and destabilizing C-vorticity. Since temperature contributes more strongly to the density,
and the overall background density gradient is stable, the T-vorticity will outweigh the
C-vorticity if the T- and C-perturbations have the same phase and diffuse at the same
rate (7 = 1), so that the system will be stable. When V,, > 0, on the other hand, a
phase shift is introduced between the 7- and C-perturbations, so that the stabilizing
T-vorticity does not outweigh the destabilizing C-vorticity everywhere. This provides
the conditions for an instability to develop.

Based on this explanation, it would be fair to wonder why V,, > 0 is needed for
this instability to occur. In principle, a phase offset can be introduced in the initial
perturbations of 7" and C', so that the T-vorticity does not stabilize the flow everywhere
even when V, = 0. But as we know from linear stability analysis, the resulting flow
is still stable. The reason for this is that, even though an initial phase shift produces
some transient growth, the resulting flow acts in such a way as to gradually reduce the
phase offset between the T- and C-perturbations, so that these perturbations decay for
long times. This is illustrated in figure [5.10, which shows the gain G' and phase angle
¢ between the T- and C-perturbations as functions of time for a case with V, = 0,
7 =1, k = 0.08, m = 0.2 and an initial phase angle of #(0) = —n/4. The traditional
linear stability analysis, such as applied by Alsinan et al.[5], captures only the long-term
behavior.

We can further examine the source of this phase angle decay by considering an inviscid
case without diffusion of either scalar, and in the absence of settling. In this scenario,
the phase angle will decay initially, overshoot zero, reach a new maximum of opposite
sign, decay again and overshoot zero to return to the initial position, only to restart the
oscillation. Since there is no viscosity or diffusion, this oscillation is undamped. When

viscosity and diffusion are added, the oscillations become damped with a viscous decay
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Figure 5.10: (a) Gain, as defined in (5.38)), and (b) phase angle between temperature

and particle perturbations as functions of time for Pr =7, 7 =1, R, =2, V, = 0 and

initial § = —m /4. There is initial, transient growth that decays as the phase angle

decays without any sustained driving force to maintain it.
rate of —(k* + m?), according to the eigenvalues of the matrix in (5.36) with S = 0,
V, = 0 and 7 = 1. The two oscillatory eigenmodes with phase offset between 7" and
C each decay with a rate of —(1 + Pr)(k* + m?)/2. This demonstrates that if k or
m are increased for the settling-driven instability, not only will viscous forces dampen
the instability, but the phase offset which drives the instability will also have a stronger
natural decay and therefore tend to be smaller.

The settling velocity V), thus provides the mechanism that sustains the phase shift
between the T- and C-perturbations, against its natural reduction in the absence of
settling. We can get an idea of how strong the effect of V,, is by examining the rate of
change of the phase angle between 7" and C' when the C' wave is settling with speed V.

iketimz+ot in order to obtain a vertical phase speed of

Assuming a plane wave of form e
V, at x=const. we require o;/m = V},, where the imaginary part of o; of the growth rate
also represents the rate of change of the phase offset. Thus, the driving force for the

phase offset is seen to be proportional to V,m.

For a given V, with 7 = 1, the growth of the settling instability is then governed
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by a balance of three mechanisms: a) the phase offset, governed by the balance of wave
settling with strength V,m and phase offset decay with strength (1 + Pr)(k* +m?)/2,
b) viscosity and diffusion, proportional to k% 4+ m?, which dampen the perturbations,
and c) k?/(k* + m?), which affects the strength of the vertical velocity generated by the
perturbations, according to . A smaller k implies an effectively weaker influence of
viscosity along with a larger phase offset, but also weaker velocity generation, and thus
can result in very slow growth.

Figures and b show the linear stability growth rates for V,, = 1 and 2, in the
absence of shear. When V), increases, for m ~ const. we can increase k and still have a
sufficiently strong driving force V,,m to maintain the phase offset, even though its natural
decay increases. This larger k increases the effect of viscosity, but also the generation of
vertical velocity. This allows modes with larger £ to be unstable when V,, increases, so
that the instability is shifted towards larger k, as seen in figures and b.

We are now in a position to explain why the damping effect of shear is more pro-
nounced for larger V,,. As for the fingering instability, this can be understood in terms of
the linear stability growth rates for unsheared flows. In order to produce optimal growth,
the values of (k, m) should remain inside the linearly unstable region as m decreases with
time. Figures and b indicate that this is indeed the case for V,, = 1 and 2. These
figures also show that for larger V,, the maximum growth for the unsheared flow occurs
at higher k. Recall that with shear m(t) = my — Skt, so that m decreases more quickly
for higher k£, which means the flow spends less time in the unstable region. Consequently,
the optimal growth with shear is found for k-values somewhat below the maximum un-
sheared gowth, for which the flow gets to spend more time in the unstable region. For
V, = 2 and shear, k decreases farther below the unsheared optimal £ than for V,, =1, so

that the growth is reduced more strongly.
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Figure 5.11: Linear stability growth rate vs. horizontal wavenumber k& and vertical
wavenumber m in the absence of shear, for parameters (a) base case of Pr =7, 7 =1,
R, =2and V, =1, (b) increased V), = 2, (c) decreased R, = 1.5 and (d) decreased
Pr = 0.05. Shading is logarithmic. The maximum growth rates are marked with an
X. The horizontal black lines represent the paths of the non-modal optimal growth
when S = 0.1 and tepng = 100 (a-c), and teng = 60 (d), as m = mo — Skt.
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R, V, 0]
2 1 042
2 2 050

1.5 1 0.30

Table 5.1: Phase angle (radians) between temperature and particle concentration
waves for the most unstable mode from linear stability analysis. Other parameters
are Pr="7and 7 =1.

Influence of R,

Figure shows that lower values of R, are affected more strongly by shear than
higher values. Figures and c indicate that when R, is decreased, the linear insta-
bility of the unsheared flow responds similarly to when V], is increased, and the unstable
region shifts toward larger k. To keep m in the unstable region over time for smaller R,
when shear is present, k needs to be reduced further below its unsheared maximum than
for larger R,, so that the growth is dampened more strongly.

The only remaining question is why for smaller R, the instability shifts to larger
k. Decreasing R, increases the strength of the destabilizing C-vorticity relative to the
stabilizing T-vorticity. This means that less phase offset is required to generate an
instability for smaller R,. Hence the instability shifts toward larger k-values, which
generate more vorticity and faster growth, as long as k is not so large that viscosity
becomes dominant or the phase offset too small. This relationship is reflected by table
which shows that, compared to the base case of R, = 2 and V, = 1, reducing R,
to 1.5 decreases the phase offset between the temperature and particle concentration
perturbations for the most unstable mode. By contrast, holding R, = 2 constant and
increasing V,, to 2 drives the phase offset to larger values. This is consistent with the

arguments of the previous section.
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Influence of Pr

Figure [5.9¢ indicates that the strength of the shear’s damping effect depends on
Pr in a non-monotonic fashion. The damping is most pronounced for Pr = 1, while it
decreases for both smaller and larger Pr-values. Consistent with our earlier observations,
for Pr = 0.05 shear even causes additional growth for a range of t.,q. We note that for
some Pr-values the settling instability grows quite slowly, so that for t.,q < 60 the initial
transient growth mechanism is responsible for the maximum gain. Our interest, on the
other hand, focuses on the effect of shear on the settling instability, so that we choose
the range of teq in figure as [60, 120] instead of [0, 100].

The reduced damping when Pr is increased from 1 can be explained on the basis of
arguments from the earlier sections. Recall that the strength of the natural phase offset
decay is (1+ Pr)(k*+m?)/2. This means that increasing Pr-values will result in smaller
phase offsets and maximum growth rates for lower k-values. Although this is not shown
in figure [5.11, we confirmed that as Pr increases from 1 to 7 to 50, the k-value of the
fastest growing mode in the linear stability analysis decreases from 0.140 to 0.0557 to
0.0279. As before, a lower k for the unsheared instability leads to less damping in the
presence of shear, as m = mg — Skt is able to remain inside the linearly unstable region
for longer times.

When Pr is decreased from 1, the reduced damping results from a combination of
effects. Firstly, the k-value of the fastest growing linearly unstable mode decreases from
0.140 for Pr =1, to 0.111 for Pr = 0.05. Velocity generation increases with k, but this
effect is multiplied by Pr. When Pr becomes very low, increasing k£ no longer results in
as large of an increase in velocity generation relative to the other terms in . While
velocity diffusion also decreases with decreasing Pr, shows that the overall growth

of the velocity wave in the time derivative scales with Pr. It is important to keep in
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mind that while velocity diffusion decreases, scalar diffusion does not decrease. If this
seems surprising, it is because of the way we have scaled the problem. The length scale is
a diffusive scale based on the temperature diffusivity. Hence for a constant problem size,
varying Pr means changing the viscosity of the fluid, not the diffusivity of the scalars.
Since scalar diffusion is constant as Pr is decreased and velocity generation is less effective
at large k for low Pr, it becomes relatively more costly for the instability to have a higher
k. As k becomes smaller, the phase offset decay decreases. Consequently, the effect of
diffusion can be further reduced by making m smaller as well, since less driving from the
settling is needed to maintain the phase offset. In turn, smaller m results in stronger
velocity production, which scales with k?/(k? + m?), as mentioned earlier. The overall
effect of making Pr very small is to shift the unsheared instability toward slightly smaller
k and significantly smaller m, as seen in figure [5.114d.

This leads to the second reason why damping is decreased for smaller Pr-values.
Recall that the Orr mechanism produces maximum gain for m = 0 at ¢t = t.,q. Because
for Pr = 0.05 the instability is located closer to m = 0 than for Pr = 1, as seen in
figure 5.11d, it becomes easier for the Orr mechanism to have an impact, as m does not
have to spend much time outside of the region of instability in order to reach zero. This
is also illustrated in figure [5.11d, which shows the range of m-values over time for the
optimally growing solution with t.,q = 60 and Pr = 0.05. For the fingering instability
the unstable region extends all the way to m = 0, as seen in figure [5.5] Nevertheless,
the Orr mechanism is weaker for the fingering instability than for the settling-driven
instability, since k£ is much larger for the fingering case. Equation indicates that
this limits the growth due to the Orr mechanism. Equation furthermore shows
that the viscous decay of the Orr mechanism is reduced for smaller Pr, which further
enhances its importance. For Pr = 0.05 and t.,q = 60, the estimate from section [5.4.2

of the maximum gain due to the Orr mechanism yields about 400. This suggests that,
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even though shear may dampen the settling-driven instability, the Orr mechanism may
still result in enhanced overall growth for small Pr-values, consistent with figure |5.9c.
For Pr = 0.2, the estimate yields a gain from the Orr mechanism alone of about 90.
In summary, for Pr < 1 a further decrease of Pr will result in less damping, because
the instability is located at lower k and the Orr mechanism will contribute more to its

growth, thereby leading to the larger gains seen in figure [5.9k.

5.5 Discussion and Conclusions

The present investigation assesses the effects of shear on double-diffusive fingering
and on the recently identified settling-driven instability by means of a transient growth
analysis. Towards this end, it employs Kelvin waves within a linearized framework, so
that the evolution of time-dependent waveforms in uniform shear can be considered. This
approach allows us to eliminate the effects of boundaries and of shear-driven instability
modes, so that the influence of shear on the above-mentioned instabilities can be analyzed
in isolation.

Consistent with previous analyses by other authors, we find that shear dampens
the fingering instability. Our analysis furthermore shows that shear also dampens the
settling-driven instability mode. For both of these, the shear damping is stronger for
parameter combinations that produce larger unsheared growth. These trends can largely
be explained in terms of instantaneous linear stability results for the unsheared case.
As the vertical wavenumber m(t) changes with time, the path of (k, m(t)) taken by the
tilting Kelvin wave results in lower average growth as compared to the maximum growth
rate of the unsheared case. For both instabilities, low Pr-values result in less damping
and an increased importance of the Orr mechanism. This stronger influence of the Orr

mechanism can be traced to the smaller viscosity at lower Pr. For the settling-driven
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instability, lower Pr-values furthermore move the region of linear instability closer to
m = 0, which strengthens the ability of the Orr mechanism to reinforce the instability.
Although shear dampens the growth of both the double-diffusive and the settling-
driven instabilities, substantial growth may still occur during the linearized phase, as
seen in figures [5.2] and [5.8] so that initially small perturbations can become sufficiently
large for nonlinear effects to take over. This is consistent with the findings of Radko
et al.[49] and Smyth & Kimura [41]. We expect a similar situation for the settling-
driven instability, for which the shear dampening effect is of the same order, as seen in
figures and [5.90 However, this scenario will have to be analyzed in more depth by

means of nonlinear simulations.
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2D flow solver

A.1 Boussinesq

The two dimensional Boussinesq flow solver solves

Ow 9 ey
a—i—u Vw = —V w—Zan : (A.1)
aCn . 1 2
5 tu Ve, = Penv Cn (A.2)
V3 = —w, (A.3)

where w is the vorticity, u = (u, v) is the veloctiy vector, Re is the Reynolds number, ¢,
is the nth concentration field, «,, is the coefficient for the influence of ¢, on fluid density,
Pe,, is the Péclet number for nth concentration field and ¢ is the streamfunction. The

vorticity is defined as

v  Ou
—— = A4
" Or oy’ (A.4)
and the streamfunction can be used to calculate velocity using
0 0
_ W __ N (A.5)

—a—y, v a[L‘
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Equations (A.1))-(A.2) are advanced in time using known values for v and v. When new
values of u and v are needed, for example during a Runge-Kutta substep, (A.3)) is used

to find %, which can be used to obtain velocities using (A.5]).

A.1.1 Horizontal Discretization

The code uses a pseudospectral Fourier method in the z-direction. The type of
Fourier series selected is dependent on the desired boundary conditions for the left and

right walls. If periodic boundaries are desired, (A.6]) is used:
N./2—1
q= Z (jkGQWzkx/Lw 7 (A6)
k=0

where ¢ is one of (w,c,,u,v), i = v/—1 and L, is the length of the domain in the a-
direction. The maximum frequency is the Nyquist frequency when the domain is sampled
with N, evenly spaced grid points. If slip walls with no scalar flux are desired, cosine
and sine series are used:

p wkx e kx
q= dkCOS(Lx>’ q:zqksin(Lx> . (A.7)

k=1

Cosine series are used for ¢, and v, while sine series are used for ¥, w and u. From this
point on, periodic boundaries and thus Fourier series defined in (A.6)) are assumed, but
only minor modifications are necessary to switch to slip boundaries.

Equations for the time evolution of @, and ¢, can be found by taking the appropriate
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Fourier transform of (A.1))-(A.2)). The result is:

—_—

o0y, Oow Oow 1 Am2k? 9%y
= = —(u— ) (v ) + o (- +
ot oz ), dy ), Re L? 0y?
2mik |
- ; anL_xck,n ) (A8)
0és. " oc, "o, 1 Ar2)? ey
moo_ [, Cn ) Y — % ’ ) A.
ot (u oz )k (U oy )k + Pe, ( L2 Chn F oy? ) (A.9)

The nonlinear terms are calculated using the pseudospectral method. This means that
once we have a solution for wy and ¢, at a certain time, we use it to calculate u, v,
Ow/0x, Ow/0y, Oc,/0x and Jc, /dy in physical space. The z-derivatives are calculated
by multiplying by 2mik/L, in Fourier space and then performing an inverse FFT. The
y-derivatives are calculated in Fourier space using the compact finite difference schemes
discussed below before being converted into physical space using an inverse FFT. After all
of the derivatives have been obtained in physical space, we calculate the convective terms
in physical space and then use a FFT to transform the result back into Fourier space. This
method is computationally efficient, but the primary drawback is that aliasing from the
higher modes can lead to inaccuracy in the solution. In practice, we have found that any
negative impact from this can be eliminated by using enough Fourier modes. Viscosity
and diffusion naturally limit the magnitude of the higher Fourier modes, reducing the
effects of aliasing. As long as the solution is adequately resolved by the Fourier modes,

the higher modes are very weak and the effects of aliasing are minimal.

A.1.2 Vertical Discretization

The code uses compact finite differences [35] to discretize the y-direction. A centered,
Sth-order scheme was selected for the interior of the domain. A centered 4th-order scheme

was used for grid points one grid point away from the boundary and a one-sided 4th-order
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scheme was used on the boundaries. The compact finite schemes used by the code can

be written

Alf/ = Blf, (AlO)

Af" = Bof | (A.11)

where A;, By, As and By are matrices and f is a vector containing the discretized function
values. If A; or A, is the identity matrix, the scheme is reduced to a traditional finite
difference scheme, also referred to as an explicit finite difference scheme. The elements
of the matrices can be obtained using the formulas from Lele [35]. As an example, the

first derivative on the interior points is calculated using

fi+1 _fifl fi+2_fi72
1 40 25
Of—g, B_%v CL—2—7, b_5_4 (A13)

This demonstrates the main advantage of compact finite differences over traditional finite
differences. Eigth-order convergence is achieved with a stencil size of two grid points on
either side of the central point. With traditional finite differences, a stencil size of four
grid points on either side of the central point would be required to achieve 8th-order
convergence. The smaller stencil size allows for higher order centered schemes to be used
closer to the boundary, reducing the error there. Compact finite difference schemes also
are generally more accurate on small scales relative to the grid spacing than traditional
finite difference schemes [35], leading to greater overall accuracy, even if the rate of
convergence is the same. These benefits come with the added cost of needing to solve a

pentadiagonal matrix to find the values of the derivative. However, as we will see when
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discussing the time discretization, we would have to solve a pentadiagonal matrix for the
second derivative even if a traditional finite scheme is used. There is still a small extra

cost associated with using compact finite differences for the first derivative.

A.1.3 Time Discretization

The timestepping is done with a hybrid scheme [70] that uses Crank-Nicholson for
the diffusion terms and a low-storage 3rd order Runge-Kutta method [14] for everything
else. The timestepping process will be described here for vorticity , but the same
process can be used for the scalar concentration fields with minor changes to account for
the different equation (|A.9)).

We begin by combining all terms on the right hand side of except the diffusion
term, by setting

—_—

. ) ) 2mik .
fe=— (ua—C;}) — <Ua—Z) — Zan%%n , (A.14)
k [, x

and using this along with the compact finite difference scheme (A.11)) to get

dop 1 ([ ArK
dt  Re

= ol A;lBg> o + £ (A.15)

The vectors @y, and f; contain discretized points as a function of y. The dependence of
the solution on z is contained in the different Fourier modes k. The governing equations
are nonlinear, and the Fourier modes interact with each other through the nonlinear
terms in f k-

The low-storage Runge-Kutta scheme used here requires storage for two solutions —
one to store the current solution and one to store a time derivative. Before a timestep

begins, the solution storage contains the solution at time level n and the time derivative
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storage is unused. Using a superscript to denote time level, w; to denote the discrete
values of the k-th Fourier mode as a function of y, and g, to denote the time derivative
storage for the Runge-Kutta scheme, the outline of how to advance the solution from
time level n to time level n 4 1 is as follows. It begins by storing the time derivative at
time level n:

g, < . (A.16)

The solution is then advanced to time level n 4+ 1/3 using a forward Euler step for the
f-term and a Crank-Nicholson step for the diffusion term. After multiplying through by

Ajg, the equation to be solved is:

(14 2B 8t e

I2Re ORe 2|¥k
2m2k2(At/3) At/3 At
— (1= TR g, 2 b - Pl (AL
K T2 Re ) ¥ DRe 21“’”3&“ (A.17)

We note here that if an explict finite difference scheme was used, which would be equiv-
alent to having As equal to the identity matrix, we would still need to solve a matrix to
advance the solution. Without using compact finite differences, solving a pentadiagonal
matrix here would only afford us 4th-order accuracy, instead of the 8th-order accuracy
we enjoy with compact finite differences. If 8th-order accuracy was desired using an ex-

plicit finite difference scheme, the matrix we would need to solve would have four more

~n+1/3

diagonals, nearly doubling the computational cost. The solution w, is calculated in
place and overwrites wj’. The next step is to update g:

A~ 5 A n+1/3 A

8k _§gk+fk: : (A.18)
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We then step from time level n + 1/3 to n 4 3/4 with the same process as before:

21.2
Kl | 20k (5At/12))A2 B 5At/1282} e

L2Re 2Re F
212k?(5At/12) 5At/12 ] a1 15AL,
(- A A e B

We note that (A.18)) shows that g, contains an approximation to 4/9 of a derivative,
which when multiplied by 15At/16 produces an approximation for the change in the

f-terms over a time step of size 5At/12. We then update g, once more,

. 153 3/4
- gt/ A2
gL < 128gk + 1, ) (A.20)

and use this to move the solution to time level n + 1,

[(1 N 27r2k2(At/4))A At/432] o

L2Re > 2Re

21.2

I2Re oRe 2@k T g Beo

which completes the timestep process.

A.1.4 Poisson Equation

The discretized Poisson equation (A.3)), after multipling through by As, is

Am2k? “ R
(-5 A B2 ) b= i (A22)

This means 1& can be found from @ by solving N, pentadiagonal matrices, where N, is

the number of Fourier modes.
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A.2 Non-Boussinesq

Since the non-Boussinesq version of the code uses many of the same numerical tech-
niques as the Boussinesq version, only the differences are highlighted here. The non-

Boussinesq version of the code solves

Dw 19pDu  10pDuv 1 s 1 dp
e i v 2 P A.23
Dt pOy Dt pdx Dt +pRev “ (1 —0)pox ( )
Dp 1,
-~ —_ A.24
Dt PeV P ( )
Vi = —w (A.25)

where D/Dt = 9/0t + u - V is the material derivative, o € [0, 1] is the density ratio and
p € |o,1] is the density. There are two major differences from the Boussinesq case. The
first is that all of the terms in the w-equation are now nonlinear. Because of this, the
low-storage Runge-Kutta scheme is used for all terms, and there is no hybrid scheme with
the Crank-Nicholson method. After these equations are transformed into Fourier space,
all nonlinear terms are calculated in physical space using the pseudospectral method as
described for the Boussinesq case. The second major difference is the presence of u and
v time derivatives on the right hand side of the equation for w. We discretize these
time derivatives with forward differences, meaning that an iterative method is required
to step forward in time. For a forward Euler timestep, which could be a substep
in a Runge-Kutta method, w is advanced using guesses for du/dt and dv/0t. The new
value of w is used to find the new u and v, which are then used to make better guesses

for Ou/0t and Ov/0t. This process is repeated until convergence.
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Figure A.1: Vertical slice (top-left) and horizontal slice (top-right) data layouts for
N, processors, numbered (0,1, ..., N, — 1). The bottom part shows the memory order
inside one processor domain in the vertical slice layout. Data is arranged into sub—
columns, with row-major ordering inside each sub-column. The memory order when

the data is in the horizontal slice layout is row-major.

A.3 Parallelization and Performance Considerations

Our code is parallelized with MPI. Two data layouts, illustrated in the top of fig-

ure [A.1] are used during the calculations. In the top right of that figure, each processor

owns a slice of the data that spans the entire domain in the horizontal direction. This

data layout is used for calculating forward and inverse Fourier transforms. Fourier trans-

forms are done using FFTW [71], widely recognized as a leading library for the efficient

computation of FFTs. Although FFTW provides functionality to perform a distributed

memory FFT, even load balancing among the processors is only achieved if the number

of Fourier modes is even divisible by the number of processors squared. Since this is a

fairly restrictive condition, we chose to do the FFTs with all of the data required for each
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FFT on the same processor, so that no communication is required between processors
during the computation of the FFTs. After finishing the FFTs, the code transposes the
data to the layout shown in the top left of figure [A.Il In this layout, each processor
owns a slice of data that spans the entire domain in vertical direction. This vertical slice
layout is used when the code needs to solve a pentadiagonal matrix for timestepping,
finding derivatives or solving the Poisson equation. This strategy of transposing the data
between the two layouts described is not new and is used internally by FFTW when
performing a two dimensional FFT.

When the data is in the vertical slice layout, the data elements within each processor
are not arranged in a pure column-major fashion, as might be expected from a transpose
operation. The memory order of the data elements within one processor domain is
shown in the bottom of figure The data is arranged into row-major sub-columns
that are generally 16 or 32 double-precision floats wide. This data layout has many
benefits for overall code performance compared to a pure columnwise layout. To begin,
the transpose process that switches the overall layout from horizontal slices to vertical
slices and vice-versa is slightly cheaper. Once the data is in the vertical layout, the
sub-column arrangement also allows for vectorization of the computations. This means
that two or even four operations can be done for the price of one, depending on the
CPU. When solving a pentadiagonal matrix, the sub-column layout also allows the CPU
to make use of out-of-order execution. In a pure column-major layout, each step of the
solution of a pentadiagonal matrix depends on the previous step, so each mathematical
operation must wait for the previous one to finish before beginning. This is known as
a dependency chain. In the sub-column layout we use, multiple pentadiagonal matrices
can be worked on at once. While the CPU is waiting for a mathematical operation on
one matrix to complete, it can begin working on a mathematical operation on a different

matrix, breaking the dependency chain.
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At this point, one might wonder why sub-columns are better than simply putting the
data into a row-major layout inside each vertical slice. The answer has to do with CPU
caches. When solving a pentadiagonal matrix using the Thomas algorithm, as is done
often in our code, the data access pattern travels up a column during the forward elimi-
nation phase, and then travels back down the column during the backsubstitution phase.
Solving fewer matrices at once increases the fraction of each matrix that can be stored
in cache and used for speedy computation in the backsubstitution phase. Solving fewer
matrices at once, however, does not preclude the pure row-major format from being used.
The benefits of using sub-columns over a pure row-major format are better prefetching
and eliminated cache thrashing. As a CPU loads data from different memory locations,
it keeps track of these locations and looks for patterns. If it can find a pattern, it will
predict what parts of memory will be demanded by future loads and begin loading them
into CPU cache prematurely. The easiest pattern to predict is purely sequential access,
and this pattern provides the best prefetching performance. Although the memory access
pattern generated when solving pentadiagonal matrices in the sub-column format is not
sequential, it more closely resemebles sequential access compared to if a pure row-major
format had been used. The second benefit of the sub-column format is eliminated cache
thrashing. When data is loaded from memory into CPU cache, there are only a certain
number of cache addresses that are allowed to be used. The cache addresses allowed
are determined by the memory address of the data. Since the number of processors and
the number of grid points in each direction are usually powers of two, if the data was
arranged in a pure row-major format, each row would be competing for the same cache
addresses on most CPUs. This would drastically reduce the effective size of the cache,
and is known as cache thrashing. Cache thrashing can be eliminated by bringing each row
of data for the matrices being solved simultaneously closer together in memory, which is

what the sub-column format does.
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In summary, smaller sub-columns make better use of CPU cache and larger sub-
columns make better use of CPU vectorization and out-of-order operation. The ideal
performance is achieved by choosing a moderate sub-column width, which is usually

smaller than the number of columns owned by each processor.
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Appendix B

Additional vorticity model
calculations

B.1 Extension of the non-Boussinesq vorticity model

to 3D flows

The steady-state Euler equation can be written in conservative form as
V.(puu)+Vp = pg. (B.1)

We define L as the z-component of the curl of (B.1]). We take y as the vertical direction
so that g = (0, —g,0), and denote the velocity components by uw = (u,v,w). Then we

can write L =V - q, where

L 9p + 0z (uvp) + 0. (vwp) + 10, [p(v* — u?)]
A=\ ¢ | = —9y(uvp) — 0, (uwp) + L0, [p(v? —u?)] | - (B.2)
q: O

Here q is arbitrary up to a gauge transformation, so that we can add the curl of any
vector field to q and still have L = V - q. We have used this choice so that ¢, = 0.
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If the system is two-dimensional or periodic in the spanwise direction, then on apply-
ing the divergence theorem there is no boundary in the z-direction, so that there will be
no contribution from ¢.. If side walls are present, we need to integrate ¢. on the walls.
However, the integral is zero, so that again there is no contribution.

Now consider ¢, on the basal and top surfaces where v = 0. Using the continuity

equation,

gy = —updyv — 0, (uwp) — 10, (pu*) = upd,w — 9, (uwp) — 2ud,p . (B.3)

When we integrate with respect to z, the 0,(uwp) term will be zero whether the system
is periodic or has sidewalls. All of these terms are likely to be small in the limit of time
averaging, low diffusion and high Reynolds number. This follows for the upd,w term
in the periodic case through symmetry arguments, although in the presence of sidewalls
there may be some mean contribution.

Finally, we have the g, term to consider. The y-integration of 19,(pv?) will be zero,
since v vanishes on the top and basal surfaces. Integration of 0,(vwp) in z results in zero
for both periodic boundaries and sidewalls (w = 0). With these simplifications, ¢, can

be written as

G = gp + Ou(uvp) — 39, (pu?) . (B4)

In the same manner as in section [2.2.2] we assume that the integration in y and z of

O (uvp) is zero. Then

@ = gp — 20,(pu?) | (B.5)

so that we recover the same result for three dimensions as we had in two dimensions.
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B.2 Vorticity flux deviations for the primitive vari-
able approach

An equation corresponding to (2.41)) for the vorticity approach will now be derived
for the primitive variable approach in two dimensions. We start with the conservative

equations

O (pu) + 0x(pu?) + 0, (puv) + 0,P — uV?u = 0, (B.6)

O (pv) + Bp(puv) + 0y (pv*) + 9, P — pV*v +pg = 0. (B.7)

Taking the z-component of the curl, dividing by p;U? and integrating over BCDE gives

1
Ef + — -ndl+ E, =0 B.8
o Rl E =0, (B.5)

where
gp + Oy (puv) + L0, (p(v? — u?
q= (puv) + 50 (p( ) ’ (B.9)
—0,(puv) + 20, (p(? )
and U, = /g(1 — o) H is the buoyancy velocity. The terms E; and E7 are given by

E;:/ V* % (9,(p*u*)) dA* (B.10)

* ]' * * * *
EH:—E//V x (V*2u*)dA* . (B.11)
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Integrating the second term in (B.8)), and using the fact that v = 0 on the top and bottom

walls, as well as uc = up, gives

1
%q -ndl = / —u?0,pdx —|—/ gpdy +/ O (puv) dy
DE+BC 2 EB+CD EB+CD

1 1

The vorticity flux is defined as

Q = / (0,0 — Oyu) dy
EB

1
= / u@xvdy—/ ~0,(u*) dy
EB EB 2

1
= / ud,vdy — §(U2B —uy) . (B.13)
EB
Consequently,
1 1 1 1
—5ppup ¥ 5peup = Spp(up —up) + up(ps — pp)
1
= ppf)— pE/ udyv dy + §UQB(pE — pB) - (B.14)
EB

Substituting (B.14]) into (B.12) gives

1
j{q -ndl = / —u?0,pdx + / gpdy +/ O (puv) dy
DE+BC 2 EB+CD EB+CD

1
+pe) — pE/ ud,v dy + §u%(pE —pB) - (B.15)
EB
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We can divide by p;U? and substitute this back into (B.8). Since pr = p; for a top

current,

1 f A~ ]' *2 * * p* *
—— ¢ q-ndl = / —u™0p* dx +/ dy
p1Up DE+BC 2 EB+cp 1l —0
+/ O (pru™v™) dy* + Q° — / w0, v* dy*
EB+CD EB

]‘ * *
+§u32(1 — %) . (B.16)

The second integral on the RHS can be evaluated piecewise

p* * 1 * *
dy* = 1—-h")4+0oh" -1
/EB-I-CDl_U 1—0(( ) )
1
= h(oc—1
("o~ 1)
.
= Q. (B.17)

We can define the error in this piecewise evaluation such that

/ - Py =E:— QL (B.18)
EB+CD 1 — 0

Substituting (B.18]) into (B.16)) and then employing this in (B.8|) gives an equation for
Q:
Q" = Qp—-Ec—E - E, - E,

1 1
—Eu*g(l —pg) — / éu*Zamp* dz* + / u 0, v dy” | (B.19)
DE+BC EB
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where

Er = / Ox(p uv*)dy” . (B.20)
EB+CD

Although (B.19) contains some terms that are very similar to those in (2.41)), it is gen-
erally more complicated, so that in chapter [2| of this work we chose to evaluate the

deviations from the model using the vorticity approach.
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Derivation of energy budget

We begin by taking the dot product of (3.5 and velocity u to obtain

1

Making use of the continuity equation ([3.4) gives a transport equation for u?/2

Integrating over the area of the domain and making use of continuity and the divergence

theorem yields

u? u?\ . 1 0 [u?

- / pus dA (C.3)

Because of the no mass flux and free slip boundary conditions, the mechanical energy

balance simplifies to

2
00/%dA+/pU2dA+%/(ajui) (Oju;) dA=0 . (C.4)
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We define gravitational potential energy as

E,= /p:vgdA .

The time derivative of £, is

dE, dp Dp / / Dp
= —/dA = \V4 — 1 dA = dA — dA .
T / 2 /$2( u- p—l-]:t) pu2dA + xQDt

By rearranging this, we obtain

dE, Dp
A=—F_ A.
/qud dt / 2pr ¢

By substituting (C.7)) into (C.4]), we arrive at

(90/ 2 a4 dt / *Dt A+ Re / (Oju:) (Oyui) d 0

Integrating in time, one obtains

/—dA—i—E //a;g dAdt—i——//auZ (Oju;) dA dt = const.
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