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Abstract  

 

Innovative Methodology and Applications of Diffusion-tensor and Hyperpolarized 13C Magnetic 

Resonance Imaging in Pediatric Brain Development 

 

Yiran Chen 

 

Pediatric magnetic resonance imaging (MRI) emerged as an independent research area from 

adult MRI, due to distinct brain structure and development trajectory, and different responses to 

brain injuries or diseases in pediatric subjects. This dissertation discussed a few unexplored but 

important areas in pediatric brain MRI, including diffusion tensor imaging (DTI) and 

hyperpolarized 13C spectroscopic imaging.  

 

DTI is adversely affected by subject motion, which is a common problem among unsedated 

pediatric subjects. It is necessary to discard the corrupted images before diffusion parameter 

estimation. However, the consequences of rejecting those images were not well understood. We 

investigated the effects of excluding one or more volumes of diffusion weighted images by 

analyzing the changes in diffusion parameters. Based on the full set of diffusion images, we 

generated incomplete sets in three different ways: random, uniform and clustered rejections. 

Different rejection methods resulted in very different variations in DTI parameters, and 

sometimes the resulting accuracy depended on the relative orientation of the underlying fibers 

with respect to the excluded directions. In practice, if diffusion data is excluded, it is important to 
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note the number and location of directions rejected, in order to make a more precise analysis of 

the results. 

 

Structural changes during early brain development have been studied using conventional MRI 

methods, but metabolic changes remain unrevealed. Hyperpolarized 13C spectroscopic imaging 

has recently been used to dynamically image metabolism in vivo. This technique provides the 

capability to investigate metabolic changes in mouse brain development over multiple time 

points. We used hyperpolarized 13C-1 labeled pyruvate to analyze its conversion into lactate 

during early brain development in normal and hypoxic-ischemic (HI) injured brains. The 

produced lactate level decreased linearly with increasing age in normal brains, but no pattern was 

observed in HI brains. This technique was also able to detect HI injury at a very early stage 

within a very short amount of time, which was hardly discovered otherwise. It can be a potential 

marker for HI diagnosis and progression tracking.   
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吾生也有涯，而知也无涯。以有涯随无涯，殆已；以而为之者，殆而已矣。	

–	庄子	（公元前 369年	–	前 286年）	

	

	

	

Human life is limited, but knowledge is limitless. To drive the limited in pursuit of 

the limitless is fatal; and to presume that one really knows is fatal indeed! 

– Chuang Tzu (369 BC – 286 BC) 

– Translated by Yutang Lin
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Chapter 1 : Background 
 

1.1 Background of MRI  

 

The human body can be considered to be made of three main tissue types: fluids – cerebrospinal 

fluid (CSF), synovial fluid, edema; water-based tissues – muscle, brain, cartilage, kidney; and 

fat-based tissues – fat, bone marrow [1]. Each of these is shown as different contrast in 

conventional MR proton imaging, which depends on the concentration and physical properties of 

hydrogen atoms. The most commonly used for imaging are: spin-lattice relaxation time (T1) and 

spin-spin relaxation time (T2) that will be depicted as different image contrast by varying 

acquisition parameters such as repetition time (TR), echo time (TE) and flip angle (α) in a 

gradient echo (GE) or spin echo (SE) sequence. 

 

A neonatal brain displays a reversed image contrast as compared to an adult brain (Figure 1.1), 

due to different water content in the grey and white matters during brain development. 

 

Besides standard T1- and T2-weighted images, there are many other types of images contrast by 

different designs of the pulse sequence such as changing excitation pulses, gradients, TR and TE. 

Among these special types of image contrasts, diffusion-weighted imaging (DWI) has been the 

most widely practiced image contrast in both adult and pediatric MR in clinical and research 

settings. 
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Figure 1.1: Comparison of a neonatal brain and an adult brain. 

Note that the image contrast in both T1- and T2-weighted images is altered between the two 
groups [2].  
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1.2 Diffusion-weighted imaging 

 

Diffusion encoding was first introduced by Stejskal and Tanner [3] as applying a pair of 

diffusion gradients along the same axis both before and after the 180° refocusing pulse in a T2-

weighted spin-echo sequence (Figure 1.2). Different image contrast is created by free water 

diffusion along the same axis of the applied diffusion gradient, thus differentiating tissue types 

with different water content and properties.  

 

 

Figure 1.2: A conventional spin-echo diffusion sequence. 

 

The diffusion-weighted signal can be described as: 

𝑆 = 𝑆!𝑒!!"#∙! 

where 𝑆!  is the signal intensity without diffusion gradients, ADC is apparent diffusion 

coefficient, and b, or b-value, is described as: 

𝑏 = 𝛾! 𝐺 𝑡! 𝑑𝑡!
!

!

!

𝑑𝑡
∆

!
=  𝛾!𝐺!𝛿!(∆−

𝛿
3) 
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where 𝛾 is the gyromagnetic ratio, G is the amplitude of the diffusion gradient, 𝛿 is the duration 

of the diffusion gradient, and ∆ is the temporal spacing between the diffusion gradients. 

 

Moseley et al. first applied DWI on cerebral ischemic cats and discovered that DWI was able to 

detect brain injury at a much earlier stage (45 min after onset) than T2-weighted images (2-3 

hour postocclusion). This was regarded a milestone of the applications of DWI and further 

advanced the implementation of DWI as a standard imaging protocol for clinical diagnosis of 

neurological injuries or diseases.  

 

A few mathematical models have been developed from DWI for injury detection and 

microstructure analysis. The most commonly used is diffusion tensor imaging (DTI). As we 

know that DWI contrast is generated by free water diffusion along the same axis of the applied 

diffusion gradient, while structures such as membrane and myelin hinder the free water diffusion 

and force directionality of water movement, then different orientations of the structure with 

respect to the diffusion gradient will create different image contrasts. Thus, by applying diffusion 

gradients along distinct directions, we are able to obtain difference image contrasts of the same 

structure. Moreover, the more anisotropic the structure is, the more prominent the difference 

between each DW image will be. DTI is build upon this concept. It requires at least 6 non-

colinear diffusion-encoding gradients, usually evenly distributed on an electrostatic sphere. The 

diffusion tensor, D, which is a representation of the scale and orientation of the diffusion 

ellipsoid associated with the underlying microstructure of a voxel, can be evaluated as: 

𝑆
𝑆!
= 𝑒! !!,!!!,!!!!,!,!!!!,!,!  

where 𝑏!,! = 𝛾!𝐺!𝐺! 𝛿!(∆−
!
!
) . 
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This orientation of the structure is represented by the diffusion tensor D, and a number of tensor 

parameters can be estimated from D. By diagonalizing D,  

𝑅 ∙ 𝐷 ∙ 𝑅! =
𝜆! 0 0
0 𝜆! 0
0 0 𝜆!

 

we get matrix R, which has each of its columns as an eigenvector (V1, V2, V3) of the system, and 

its corresponding eigenvalues, 𝜆! , 𝜆!  and 𝜆! , in descending order of magnitude. The 

eigenvectors represent the orientation of the diffusion ellipsoid in 3 orthogonal axes, and the 

eigenvalues represents the lengths of each of the eigenvectors, respectively. The eigenvector 

associated with 𝜆! is the primary eigenvector (V1), which indicates the greatest water diffusion 

direction.  

 

𝜆! is defined as axial diffusivity (AD) -  the diffusivity along the direction of V1, and the mean of 

𝜆! and 𝜆! is radial diffusivity (RD) - the diffusivity on the transverse plane orthogonal to V1. The 

mean of the 3 eigenvalues is mean diffusivity (MD). The franctional anisotropy (FA) is a 

normalized value from the 3 eigenvalues as: 

𝐹𝐴 =
𝜆! − 𝜆! ! + 𝜆! − 𝜆! ! + 𝜆! − 𝜆! !

2 𝜆!! + 𝜆!! + 𝜆!!
 

 which measures the degree of directionality of diffusivity. 

 

The primary eigenvector implies the main orientation of the microstructure. By following its 

orientation, we can perform tractography to reveal fiber connectivity. This can be done as a 

whole brain to express the global connectivity or as an individual region or between two regions 
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to express local connectivity. Any brain abnormality that alters the fiber path from the normal 

connection may be related to the associated functional imparity.  

 

With the development of other non-Gaussian diffusion models that are able to resolve crossing 

fibers, higher angular resolution with increasing number of diffusion directions are needed. 

While it leads to higher SNR as well as improved fiber orientation model, it comes at a cost of 

longer scan time. The added scan time often proves to be a challenge for specific groups of 

patients such as newborns. Often, sedation is not consented by the patients’ parents, leading to 

motion corrupted images. The corrupted diffusion-weighted images will need to be excluded as 

removing the entire volume in the diffusion-encoding direction. This results variations in DTI 

parameters and its effect is discussed in Chapter 2.  

 

Diffusion protocols, in general, are 2D sequences due to the fact that 3D sequences take much 

longer time than 2D ones. DTI scans has long acquisition time as total scan time is proportional 

to the number of diffusion-encoding directions. However, mouse brains have very small size (an 

adult brain has approximately 7mm x 10mm x 13mm in each dimension), a 2D sequence may 

fail to capture some important but small structures. Thus, 3D sequence is more desired than a 2D 

sequence to achieve higher resolution. In order to perform DTI scans on a subject in vivo with 

limited scan time, a fast imaging sequence is required. On clinical scanners of 3T and 1.5T, 

echo-planar imaging (EPI) is commonly applied for DTI scans. However, most of the rodent 

studies are conducted at much higher field strength, varying from 7T to 14T, in order to achieve 

higher SNR. The tradeoff is excessive susceptibility artifacts at high field, resulting 

uncorrectable EPI images.  
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A GRASE sequence is able to compensate the long scan time from a 3D sequence and the 

distortions from multi-echoes by combining gradient and spin echoes. An example of a GRASE 

sequence is as follows: 

 

 

Figure 1.3: An example of 3D GRASE sequence.  

 

Since GRASE has multiple spin echoes and multiple gradient echoes between the spin echoes, it 

will produce both T2 and off-resonance effects. The standard phase encode ordering, which 

interleaving each echo along one phase encode direction, has both T2 and off-resonance effects 

in that phase encode direction (Figure 1.4). This may potentially increase ringing or ghosting 

artifacts produced by oscillating signal amplitude changes. A separate off-resonance and T2 

effects (SORT) phase encode ordering can be applied to reduce such artifacts [4]. It separates the 
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gradient echoes from different spin echoes into different phase encode lines in a phase encode 

direction (Figure 1.5). By doing this, the T2 and off-resonance effects will be distributed into 

different phase encode directions.  

 

 

Figure 1.4: A standard phase encode ordering. 

It has both T2 and off-resonance effects in that phase encode direction [4]. 
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Figure 1.5: A SORT phase encode ordering. 

It has T2 and off-resonance effects distributed into different phase encode directions [4]. 
 

1.3 MRI applications of normal murine brain development 

 

There are a few advantages of MRI studies using murine models. First, higher field strength can 

be used, which leads to higher SNR. Second, since scan time is not a major restriction for murine 

studies, so higher resolution can be achieve for a closer look at the underlying microstructures. 

Third, human disease or injury models can be modeled to murine to investigate their progression 

and treatment response using MRI. A large part of this dissertation will focus on MRI 

applications on murine early brain development, both normal and injured (hypoxic-ischemia).  
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A few studies have made thorough investigations on normal murine brain development from ex 

vivo MRI. Calabrese et al. [5] established first magnetic resonance histology (MRH) atlas of the 

developing rat brain (Figure 1.6). 5 male rats were imaged at each time point from postnatal day 

0 (P0) to P80 with decreasing temporal frequency. They were able to achieve isotropic spatial 

resolution of 25 µm for 3D T1-weighted images and 50 µm for 6-direction DTI in all cases. They 

analyzed changes of 26 sub-cortical structures and were able to show different developmental 

trajectories of these structures.  
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Figure 1.6: A high-resolution developing mouse brain atlas. 

It contains multiple time-points from P0 to P80 with T2-weighted and DTI images [5].  
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Chuang et al. [6] conducted a study of mice from embryonic day 12 (E12) to P80 with different 

subject number at each time point. Their 6-direction 3D DTI scans had resolution ranged from 80 

µm isotropic of embryonic samples to 125 µm isotropic of adult brains. Unlike the above-

mentioned study, which performed volumetric analysis on T-1weighted images, this study used a 

T2-weighted image with same FOV and resolution as the diffusion acquisition for volumetric 

analysis of 8 major white matter structures with addition to whole brain, neocortex, cerebellum 

and hippocampus. One observation from these two studies is that rats generally have a longer 

development trajectory than mouse, as rats have most of its structures reach maximum volume 

after P40 and some are still developing at P80, while most of structures of mice reach their 

volume plateau around P20 (Figure 1.7). It is important to take this difference in account for 

future murine brain development studies because sometimes researchers regard the results from 

either of these species as a general observation for murine.  
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Figure 1.7: Volume analysis of the whole brain and its substructures during early brain 
development of mice. 

Global and local structures reached peak volume around P20 [6].  
 

With the development of 3D GRASE, Wu et al were able to perform in vivo mouse DTI 

experiments. An isotropic resolution of 125 µm on 12-direction diffusion was obtained within 

1.5 to 2.5 hours depending on the brain size. Compare with the previous 6-direction DTI in 24 

hours, this study has accomplished huge improvement in diffusion resolution and scan time. This 

has enabled potential future studies on longitudinal investigation of local structures due to its 

high resolution and short acquisition time in vivo. 
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Another group [7] has developed spatial-temporal mouse atlas on everyday from P1 to P11. 

Image contrast has always been a challenge for neonatal brain scans because many structures are 

still undeveloped or under development and subtle or mild myelination has made the difficulty to 

separate the structures. In this study, their manganese-enhanced T1-weighted imaging has greatly 

improved image contrast in neonatal brains, and been able to identify and quantify more 

structures and nuclei in cerebrum and cerebellum compared to previous murine MRI studies 

(Figure 1.8).  
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Figure 1.8: Manganese-enhanced T1-weighted image of developing mouse brain. 

It depicted much better contrast than previous studies without manganese-enhancement. Many 
substructures were able to be identified with manganese-enhancement [7].  
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1.4 MRI applications of hypoxic-ischemic mouse brains 

 

The validity of T2- and DW-weighted images as markers for HI injury detection has been 

justified by various studies based on histology results. Albensi el al. [8] demonstrated high 

correlation between lesion extent of hyperintensity on T2-weighted images measured 72 hours 

post-HI and lesioned area on histology. Wang el al. [9] showed evidence of correlation between 

lesion size based on ADC map 1-2 hour post-HI and final irreversible infarct volume based on 

histology.  

 

One greatest advantage of MRI is its noninvasiveness, which provides the feasibility of studying 

multiple time points on the same subject for investigation of the longitudinal injury progression. 

Aden el al. [10] have shown T2-weighted and T2 changes at various time points from 3 hours to 

5 days post HI. Hyperintensity on both T2-weighted and T2 images was observed as global 

injury of almost the entire ipsilateral hemisphere at 3 hours to more localized injury at 5 days 

(Figure 1.9).   
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Figure 1.9: Injury progression from 3 hours to 5 days post HI on T2-weighted, T2 and 
ADC maps. 

The contrast of T2 map starts to reverse 6 hours post HI, and the contrast of ADC starts to 
reverse 24 hours post HI [10]. 
 

Tuor el al. [11] conducted MRI of rats in a chamber after right carotid artery incision and 

recovery, while the chamber was infused with humidified 8% oxygen and 0.1-0.5% isoflurane 

for 2 hours from the start of MRI. They showed T2-weighted hyperintensity was observed from 

45 minutes of HI (Figure 1.10). They also demonstrated an injury recovery right after HI (shown 

as normal intensity on T2-weighted images) and then hyperintensity again from 23 min post HI 

(Figure 1.11). Their analysis about areas of injury in specific regions indicated an increase in 

areas of hyperintensity during HI, a decline with reperfusion, and a subsequent increase over 

different times depending on the region.  
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Figure 1.10: Diffusion-weighted images after the start of hypoxia on a P7 rat. 

Diffusion-weighted images at 33 min (A), 60 min (B), and 85 min (C), and T2-weighted images 
at 20 min (D), 47 min (E), and 72 min (F) after the start of hypoxia [11]. 
 

 

Figure 1.11: Diffusion-weighted images post HI of a P7 rat. 

Diffusion-weighted images at 12 min (A), 33 min (B), 66 min (C), and 21 h (D), and T2-
weighted images at 23 min (E), 48 min (F), 76 min (G), and 21 h (H) post HI [11]. 
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Cortex, hippocampus and striatum are commonly recognized as the major areas of injury. 

Studies have also looked for more regional information on the injury. Qiao el al. [12] has 

distinguished the size and localization of injury based on the injury level. They concluded that 

white matter damage prevailed in mild injury from 45 min hypoxia, while moderate injury from 

90 min hypoxia produced comparable damages in both white and grey matters.  

 

Due to advancement of oscillating gradient diffusion MRI and 3D GRASE, better contrast and 

higher resolution can be achieved to measure small regional changes. Aggarwal et al. [13] 

presented layer-specific contrasts of hippocampus, and found significant lower ADC in the 

pyramidal (Py) and granule (GrDG) layers in response to HI (Figure 1.12). 

 

 

Figure 1.12: High-resolution 3D MRI showed hippocampal substructural changes in 
response to HI. 

ADC was lower in ipsilateral Py and GrDG layers of hippocampus, which were drawn manually 
from high-resolution 3D T2-weighted MRI [13]. 
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1.5 Development of dynamic nuclear polarization (DNP) and its applications in vivo  

 

1H Magnetic Resonance Spectroscopy (MRS) offers the ability to examine metabolic properties 

during normal brain maturation [14-16] and HI injury [17-19] but it only provides steady state 

information of metabolites due to relatively low metabolic concentrations and the long 

acquisition time. 13C spectroscopy provides yet another perspective, allowing investigation of 

metabolic exchange and labeled neurotransmitters such as glutamate, GABA and aspartate in the 

developing murine brain [20-22]. Sensitivity of 13C is low because its natural abundance is only 

about 1% in living organisms, so experiments are done with enriched metabolic compounds. 

Even with enriched 13C, most of the 13C MRI studies require a long scan time, which most 

common in cultured cells and extracted tissues [23-26], restricting the feasibility of longitudinal 

experiments to study long-term responses after the injury during brain development. in vivo 

studies require infusion of metabolites for minutes or even hours [27, 28], which makes it very 

difficult for neonatal mice with small blood volumes. The long scan time also means that 

measurements are only indicative of stable metabolic conversions, instead of gauging rapidly 

changing dynamic conversion after injury or treatment. 

 

In 2003, Ardenkjær-Larsen et al. [29] introduced a new method to dynamically quantify 

metabolism using hyperpolarized 13C, which enabled an entirely different avenue to study 

metabolism in vivo, in real time. DNP has been proven to increase 13C NMR signal more than 

10,000 fold, allowing investigation of 13C metabolic exchanges in vivo [30].  It requires a free 

radical (unpaired electron) to be added to the sample and the high electron spin polarization is 

transferred to the nuclear spins by microwave radiation in solid state. After the nuclear spins of 



	 	
	 	 	

21	

the sample are hyperpolarized under a 3.35 Tesla magnet at 1.2 Kevin, a pressurized, high 

temperature solution is injected into the sample to make a PH-neural solution, to be collected and 

ready to inject into in vivo animals or in vitro cells, while preserving its nuclear polarization. 

 

Golman et al. [31] first demonstrated the feasibility of DNP on in vivo rabbits. Once a 

hyperpolarized substrate is injected into a living mammal, real-time 13C metabolic imaging is 

performed to study metabolism by following the substrate as it participates in a biochemical 

process. However, the hyperpolarization of the nuclear spins return to thermal equilibrium after a 

very short time at room temperature. Therefore, a metabolite must be carefully chosen in order to 

visualize the metabolic pathway within this time period. Hyperpolarized 13C-1 labeled pyruvate 

has been used to track in vivo metabolism in animals [32, 33] and human [34, 35]due to its rapid 

delivery and uptake by the cells in various organs, and its quick conversion into lactate, alanine 

and/or carbon dioxide through various metabolic pathways (Figure 1.13). 

 

 

Figure 1.13: Simplified overview of the main metabolic pathways of pyruvate. 

Alanine, acetyl-CoA and lactate are produced by different pathways from pyruvate. [32]. 
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Golman et al. [32] applied dynamic imaging with very short (~ 8 second) temporal resolution 

hyperpolarized 13C-1 labeled pyruvate’s real-time conversion into different substrates in rats 

(Figure 1.14 and Figure 1.15).  

 

 

Figure 1.14: Dynamic spectra of pyruvate metabolic pathways of a rat detected by MRI. 

Spectra with 3-second time interval after the injection of 13C-1 labeled pyruvate (B) from the 
lower part of a rat (A). (C) The formation of bicarbonate can be seen when adding all spectra 
[32]. 
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Figure 1.15: Dynamic intensity maps of pyruvate and its substrates. 

The time course of the build-up of lactate and alanine in the imaged slice of the rat [32]. 
 

The innovation of hyperpolarized 13C has advanced its applications on cancer diagnosis, due to 

its high sensitivity compared to traditional MR methods. Park et al. [33] showed clear 

distinctions on hyperpolarized 13C images on tumor progression before and after treatment 

between the control and treatment groups, while conventional T1-post-Gd MRI fail to recognize 

the difference. 
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Most of the current hyperpolarized 13C applications are on cancer diagnosis and all have showed 

promising results on detecting metabolic change in cancer tissues. This dissertation will focus on 

a new area of application, which is metabolic change during early brain maturation in normal 

mice in Chapter 3 and in mice with hypoxic ischemia in Chapter 4.   
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Chapter 2 : Effects of rejecting diffusion directions on tensor-

derived parameters 

 

2.1 Introduction 

 

As discussed in Chapter 1.2, diffusion tensor imaging (DTI) is a powerful non-invasive tool to 

inspect brain microstructure and abnormalities and has been widely used in neonatal 

applications. The resultant scalar parameters such as fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (AD), radial diffusivity (RD) are used in the evaluation of brain injury 

[36, 37], tumors [38], neurodegenerative and white matter diseases [39, 40] in general. Primary 

eigenvectors (V1), derived from the tensor model, commonly serve as the basis for fiber 

tractography, which uses these orientation estimates to reconstruct streamlines that are assumed 

to represent the underlying white matter architecture [41, 42]. 

 

In order to achieve the most accurate estimate of the diffusion tensor, many studies have 

investigated various diffusion weighting direction schemes. Jones, Horsfield [43] proposed the 

minimization of potential energy of electrostatic repulsion by points on the sphere, and Skare, 

Hedehus [44] analyzed the dependence of noise on the condition number of the transforming 

matrix to the approach of using minimum condition number. The optimal number of encoding 

directions has also been discussed extensively. Papadakis, Murrills [45] evaluated variations of 

signal-to-noise ratio (SNR) and suggested that minimum of 18 to 21 uniform diffusion directions 

were needed for robust tensor estimation. However, Hasan, Parker [46] represented that no 
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significant advantage could be achieved by using more than six encoding directions as long as 

they were icosahedral, and later Batchelor, Atkinson [47] demonstrated that the icosahedral 

schemes was rotationally invariant so that noise was independent of fiber orientation or the 

relative orientation of the tensor with respect to the laboratory frame.  

 

The quality of the diffusion-weighted images can be affected by artifacts introduced by subject 

motion, respiration or cardiac pulsation. While such artifacts can be diminished by applying 

“navigator echoes” [48] or cardiac gating [49, 50], these techniques are generally not employed 

due to added complexity in the acquisition and a longer scan time. In the absence of these 

techniques, and especially in the severe cases such as non-sedated pediatric subjects or subjects 

with tremor, rejection of selected diffusion weighted images corrupted by motion is often 

preformed as a post-processing step before estimating the tensor. The rejection can be done by 

discarding the entire “volumes” (certain diffusion directions) of diffusion-weighted images [51, 

52], or by automatic exclusion of outliers during the tensor estimation [53]. However, the 

consequence of rejecting diffusion-weighted images has not yet been carefully considered. In 

this chapter, we investigated the effect of discarding one or more sets of diffusion weighted 

images on the final results by analyzing the changes in the parameters such as FA, MD, AD, RD 

and V1. Both accuracy and precision of these parameters were evaluated for various diffusion 

rejection schemes as described in Methods section. 
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2.2 Methods 

  

The study was approved by the Committee on Human Research (CHR) of the University of 

California, San Francisco. Written informed consent was obtained from all participants.  

 

Six healthy adults (right-handed, aged between 24 and 31, all female) were scanned on a 3T GE 

MR scanner using a spin echo (SE) echo planar imaging (EPI) DTI sequence with TR/TE=17 

s/90 ms, FOV=25.6 cm×25.6 cm, 128×128 matrix, slice thickness of 2 mm, 30 directions using 

Jones30 scheme as shown in Table 2.1 [43] with b=1000 s/mm2. Sixty-six contiguous slices were 

acquired to cover the entire brain. One b0 volume was acquired. The total scan time was about 9 

minutes. 

 

Table 2.1: Jones30 gradient scheme 

Index Gx Gy Gz 

1 0 1 0 

2 0.986 0.166 0 

3 0.664 -0.11 0.74 

4 -0.419 0.901 -0.11 

5 -0.601 -0.169 0.781 

6 -0.386 -0.815 0.433 

7 0.366 0.656 0.66 

8 0.8 0.582 0.143 

9 0.259 0.9 0.35 
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Index Gx Gy Gz 

10 -0.698 0.693 0.178 

11 -0.924 0.357 -0.14 

12 -0.488 0.543 -0.683 

13 -0.396 -0.525 0.753 

14 0.689 -0.639 0.341 

15 -0.013 -0.33 -0.944 

16 -0.783 -0.524 0.335 

17 -0.065 0.609 -0.791 

18 -0.233 0.22 -0.947 

19 -0.91 -0.004 -0.415 

20 0.627 -0.511 -0.589 

21 0.737 0.414 0.535 

22 0.139 -0.679 -0.721 

23 -0.296 0.884 0.362 

24 0.432 0.262 0.863 

25 0.185 0.088 -0.979 

26 -0.907 0.294 0.302 

27 -0.089 0.887 -0.453 

28 -0.443 0.257 0.859 

29 0.867 0.086 -0.491 

30 0.504 0.863 -0.025 
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Each diffusion volume was co-registered with the b0 volume using the FSL eddy-correct 

tool[54] and structures outside the brain were removed using BET tool [55]. Diffusion tensor 

parameters were estimated using dtifit function from FSL. Three rejection schemes were applied 

to the fully acquired set of 30 directions: random rejection, uniform rejection and clustered 

rejection, which are described in detail below.  

 

2.2.1 Random rejection 

 

Rejections of 1 to 24 randomly selected directions from the total of the 30 directions were 

performed. For each rejection, FA, MD, AD, RD and V1 maps were generated and compared 

with reference maps generated from all 30 volumes. The angle α  between the primary 

eigenvectors of the remaining data and the reference data at each point was calculated using: 

α = cos!!(V1!"# ∙ V1!"#) 

where V1!"# represents the primary eigenvector of the subsampled dataset resulting after the 

rejection was applied and V1!"#  is the primary eigenvector of the reference dataset. The 

calculated α was between −90° and 90°. As V1 represents the orientation and not the direction 

of the largest eigenvalue, angles were constrained to be non-negative. A map of α was computed 

voxel by voxel for each number of rejected directions. 

 

At each level of data reduction (ranging from 1 to 24 rejected directions), 100 different sub-

sampled data sets were generated by eliminating data corresponding to different directions 

picked at random. The mean and standard deviation of FA (FA!"#$, FA!"#), MD (MD!"#$, 
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MD!"#), AD (AD!"#$, AD!"#) and RD (RD!"#$, RD!"#) were calculated for each voxel. In order 

to visualize the change in V1, the cone of uncertainty in each voxel was generated for each 

number of rejections[56], and the angle of the cone was taken at the 95% confidence level of α 

over the 100 iterations.  

 

2.2.2 Uniform rejection 

 

The Jones30 diffusion scheme is based on minimum potential energy of electrostatic repulsion 

by points on the sphere, which results uniformly distributed points on the sphere[43]. Uniform 

rejection describes a data reduction that will result in the remaining points to be uniformly 

arranged on the sphere. Here we investigated 15, 20 and 24 rejections, resulting in 15, 10 and 6 

remaining directions as proposed by Landman, Farrell [57].  

 

2.2.3 Clustered rejection 

 

It has been demonstrated in the results that the remaining vectors evenly distributed on a sphere 

is the optimal rejection scheme (see Results). In contradistinction to this effect, we were also 

interested in the outcomes if all of the rejected directions are close to each other and concentrated 

in a particular angular region. Here we performed rejections of diffusion encoding directions 

close to one of the main axes of the MRI scanner space.  

 

For each of the x, y and z axes, which represent the left-right (LR), anterior-posterior (AP) and 

superior-inferior (SI) directions respectively, we rejected 1 to 24 directions closest to the axis. 
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For each number of rejections, we calculated FA and α maps. Since the rejections are orientation 

dependent, but α only shows the degree of change in V1, it does not specify in which direction 

the change is. Therefore, we employed φ and θ to explore V1 change in the x-y plane and 

towards the z-axis, where φ is the angle difference between V1!"# and V1!"# in the x-y plane and 

θ is the angle difference between V1!"# and V1!"# towards the z-axis.  

 

2.2.4 Comparison between protocols with different acquisition parameters 

 

The accuracy and precision of DTI parameters are affected by the SNR, and the SNR depends on 

the diffusion acquisition parameters such as the number of b0 volumes involved in tensor 

estimation, b-value, and the number of diffusion directions. In order to evaluate the influence of 

different acquisition parameters on the effects of rejecting diffusion directions, we performed the 

following comparisons on FA and V1 for random rejections: (1) comparison between one b0 

volume, two b0 volumes and four b0 volumes with b=1000 s/mm2 and 30 directions, where four 

b0 volumes was expected to yield the best SNR theoretically by the optimal ratio of number of 

diffusion directions to the number of b0 volumes as about 7 to 1 [43]; (2) comparison between 

b=600 s/mm2, b=1000 s/mm2 and b=2000 s/mm2 with one b0 volume and 30 directions, and we 

expected a higher b-value would result in a lower SNR; (3) comparison between 15 directions, 

30 directions and 55 directions based on the equally distribution of points on a sphere by 

electrostatic repulsion [43] with one b0 volume and b=1000 s/mm2, where more directions would 

result in a higher angular resolution, and consequently, a higher SNR. All the other acquisition 

parameters were kept the same: TR/TE=17 s/90 ms (except TE=91.4 ms for b=2000 s/mm2), 
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FOV=25.6 cm×25.6 cm, 128×128 matrix, slice thickness of 2 mm with sixty-six contiguous 

slices.  

 

2.2.5 ROI analysis 

 

Region of interest (ROI) analysis was performed to evaluate the effect of rejecting diffusion 

directions. In order to compare the effects of random rejections and uniform rejections on areas 

of different FA values, four ROIs were chosen on the reference FA map in the genu of corpus 

callosum (GENU), splenium of corpus callosum (SPL), posterior limb of the internal capsule 

(PLIC), and the optic radiation (OR), representing white matter regions with high, medium and 

low FA, respectively (Figure 2.1a). Gray matter regions in caudate nucleus (CN) (Figure 2.1b) 

and putamen (PU) (Figure 2.1a), and one cerebrospinal fluid region in the lateral ventricles (LV) 

(Figure 2.1b) were chosen as well. Each region was visually homogeneous with a fixed volume 

of 28𝑚𝑚×8𝑚𝑚×4𝑚𝑚. As shown in Figure 2.1a, GENU and SPL had high FA values in the 

range of 0.85, PLIC had medium FA values around 0.6, OR had low FA values around 0.4, and 

PU had very low FA values around 0.2. For each number of rejections, mean FA and mean α of 

these three ROIs after random and uniform rejections were compared with the reference images. 

 

Two additional regions, anterior limb of the internal capsule (ALIC) and descending 

corticospinal pathways within the corona radiata (CR), were drawn to analyze the effects of the 

clustered rejections (Figure 2.1c and 2.1d). In conjunction with GENU, these ROIs cover 

bundles of white matter fibers orientated primarily along three orthogonal imaging directions: 

LR, AP and SI. 
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Figure 2.1: FA and color FA map of one subject’s brain with ROIs drawn for FA and V1 
analysis. 

Red represents left-right (LR) orientation of the primary eigenvector (V1), green represents 
anterior-posterior (AP) orientation, and blue represents superior-inferior (SI) orientation. (a) 
Genu (GENU) and splenium (SPL) of corpus callosum have FA around 0.85, posterior limb of 
internal capsule (PLIC) has FA around 0.6, optic radiation (OR) has FA around 0.4, and putamen 
(PU) has FA around 0.2. (b) Caudate nucleus (CN) and lateral ventricle (LV) in MD map. (c) 
Anterior limb of internal capsule (ALIC) is in AP part of internal capsule. (d) Descending 
corticospinal projections within corona radiata (CR) in the motor tract that runs along the SI 
direction.  
 

Mean and standard deviation of FA, MD, AD, RD and α for each ROI were computed among the 

six subjects. 

 

2.3 Results 

 

2.3.1 Random rejections and uniform rejections 

 

All six adults showed similar results. As the number of randomly rejected directions increased, 

the overestimation of both FA and V1 increased (Figure 2.2). Lower FA regions were affected 
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more than the higher FA regions (Figure 2.2). However, very little change was observed on both 

FA and V1 for uniform rejections, except the low FA regions (Figure 2.3). 

 

Figure 2.2: FA, color FA and 𝛂 maps of the same subject as in Figure 2.1 after random 
rejections. 

Comparison between the reference and incomplete data after 5, 15 and 24 random rejections with 
the reference for one of the subjects. FA!"#$ is the mean FA over 100 iterations. Color FA 
shows the color-coded FA map in one of the 100 iterations. Mean α is the mean angle change in 
V1 over 100 iterations.  
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Figure 2.3: FA, color FA and 𝛂 maps of the same subject as in Figure 2.1 after uniform 
rejections. 

Comparison between the reference and incomplete data after 15, 20 and 24 uniform rejections 
with the reference for one of the subjects. 
 

The comparison of the effects of random rejections and uniform rejections are shown in Figure 

2.4 and Figure 2.5. For random rejections, not only the mean values of FA, AD and RD became 

more deviated from the reference values, their standard deviations also increased when the 

number of rejections became larger. More dramatic changes were observed in low FA regions 

compared to high FA regions. In general, FA and AD increased with higher number of 

rejections, and RD decreased with higher number of rejections. However, the mean value of MD 

remained unchanged regardless of the number of rejections. Its standard deviation increased with 
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greater number of rejections. In contrary, uniform rejections caused very insignificant changes of 

those parameters, and the changes were again, larger in low FA regions than in high FA regions 

and increased with the number of rejections. 

 

 

Figure 2.4: Comparison of diffusion parameters between random rejections and uniform 
rejections for white matter regions. 

Comparison of FA, MD, AD and RD between random rejections and uniform rejections for 
GENU, SPL, PLIC and OR. The mean and standard deviation of random rejections were 
calculated from 6 subjects for each ROI. 
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Figure 2.5: Comparison of diffusion parameters between random rejections and uniform 
rejections for grey matter regions. 

Comparison of FA, MD, AD and RD between random rejections and uniform rejections for CN 
and PU, and a cerebrospinal fluid region, LV. The mean and standard deviation of random 
rejections were calculated from 6 subjects for each ROI. 
 

From the cones of uncertainty of GENU, PLIC and OR shown in Figure 2.6, one could easily 

observe the growing overestimation of V1 with increasing number of rejections. This effect was 

more dominant in low FA regions than high FA regions. Especially in OR (with FA around 0.4), 

one voxel showed severely ill-defined V1 even with 5 random rejections, and while 20 random 

rejections were performed, the changes of many voxels were depicted as almost or absolutely flat 

cones. 
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Figure 2.6: Cones of uncertainty for GENU, PLIC and OR with 5, 15 and 20 number of 
random rejections for the same subject as in Figure 2.1. 

 

2.3.2 Clustered rejections 

 

The results of clustered rejections showed the largest changes in FA and V1, comparable to the 

worst cases of random rejections. The comparison between random rejections and clustered 

rejections is presented in Figure 2.7, showing that the changes of both FA and V1 in the case of 

clustered rejections strongly deviated from the mean of random rejections, and even more from 

the reference.  
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Figure 2.7: Comparison of FA and 𝛂 between random rejections and clustered rejections 
for GENU, ALIC and CR. 

The mean and standard deviation are calculated from 6 subjects for each ROI. 
 

However, not all clustered rejections resulted in significant changes in AD and RD. As one can 

see from Figure 2.8, when the number of rejections was below 20, rejecting LR cluster did not 

cause a significant difference in AD and RD for GENU, though other clustered rejections still 

caused great overestimation of AD and RD for all the ROIs. 
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Figure 2.8: Comparison of AD and RD between random rejections and clustered rejections 
for GENU, ALIC and CR. 

For each ROI, random rejections depict the mean and standard deviation from 6 subjects, and 
clustered rejections depict the mean from 6 subjects. 
 

As it had been suggested that too many rejections might completely alter the tensor orientation 

(see Discussion) so that it becomes meaningless to evaluate the parameters (see Discussion), thus 

we only showed the results of φ and θ for up to 12 rejections near each of the axes for GENU, 

ALIC and CR in Figure 2.9. GENU and ALIC contain fibers predominantly oriented in LR and 

AP, respectively. Rejecting SI directions showed very small θ (less than 4 degree) but largest φ 

(Figure 2.9). Moreover, rejecting LR and AP showed about the same changes of θ and φ for 

GENU and ALIC. Although, all three clustered rejections had similar effect on the angle changes 

in CR (Figure 2.7), the changes of θ (from 0 to 25 degree) were much greater compared to 

GENU (from 0 to 5 degree) and ALIC (from 0 to 12 degree) (Figure 2.9), which means that 
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clustered rejections deviated the resultant fiber orientations away from z-axis more in SI-oriented 

fibers than other fibers.   

 

 

Figure 2.9: φ and θ changes for V1 of GENU, ALIC and CR from 1 to 12 clustered 
rejections near each axis. 

The angle changes are calculated from the mean of the 6 subjects.  
 

2.3.3 Comparison between protocols with different acquisition parameters 

 

The comparison of changes in FA and V1 showed very similar results for different number of b0 

volumes (Figure 2.10).  
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Figure 2.10: Comparison between one, two, and four b0 volumes with b=1000 s/mm2 and 
30 directions. 

 

From Figure 2.11, we observed that the mean values of FA differed for different b-values, 

though the differences were small. Not much difference in standard deviations of FA was 

observed. Different b-values did not result in any significant difference in the change in V1. 
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Figure 2.11: Comparison between b=600 s/mm2, b=1000 s/mm2 and b=2000 s/mm2 with one 
b0 volume and 30 directions. 

 

Figure 2.12 demonstrates that the total number of the acquired diffusion directions had a great 

influence on FA and V1. The more directions were acquired, the more consistent the values of 

FA and V1 would be, at the same number of rejections. The values of FA and V1 became very 

variable with the increasing number of rejections for the 15-direction case; on the other hand, 

very little change was observed in FA and V1 for the 55-direction case, even up to 24 rejections. 

If one looks at the changes in FA and V1 in terms of the number of the remaining directions 

instead of the number of the rejected directions, the results demonstrated consistency. Thus, for 

example, the results for the 15-directions case are systematically shifted 15 directions to the left 

compared to the 30-directions case (Figure 2.12).   
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Figure 2.12: Comparison between 15 directions, 30 directions and 55 directions based on 
the equally distribution of points on a sphere by electrostatic repulsion with one b0 volume 
and b=1000 s/mm2. 

 

2.4 Discussion 

 

It is important to understand the consequences of rejecting diffusion images for a more consistent 

analysis of tissue properties, such as water diffusivity, anisotropy and connectivity. In this 

chapter, we investigated the effects of discarding one or more diffusion directions on FA, MD, 

AD, RD and V1.  

 

There are several approaches to rejection of diffusion data. One can review images directly and 

reject the volumes with corrupted images. This is manually intensive but results in accurate 

rejection. Another way is an automated rejection by voxel-wise analysis [52]. When a certain 
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number of pixels deviate from the corresponding mean pixel value for all diffusion directions by 

three standard deviations, the direction might be excluded from the tensor calculation. This 

threshold for the number of pixels deviating from the mean was set empirically, and depended 

upon the head size. Robust estimation of tensors by outlier rejection (RESTORE) has been 

proposed to reject the outliers during tensor estimation [53]. Instead of rejecting the entire 

volume, this technique only rejects the outliers among all diffusion directions in each voxel. 

Thus, each voxel may end up with different diffusion directions included in the tensor 

estimation.  

 

Our results demonstrated that an accurate estimation of the mean diffusivity could be 

consistently obtained with relatively small number of diffusion remaining directions.  

 

From the results of random rejections (Figure 2.4 & Figure 2.5), one could easily observe that 

the overestimations of FA, AD and RD got larger with increasing number of rejections. This is 

mainly due to the decreased signal-to-noise ratio (SNR) resulting from a smaller number of 

diffusion directions included in the tensor estimation. Therefore the mean FA, AD and RD was 

more deviated from the reference values and the uncertainties in FA, AD and RD (as seen from 

standard deviations) were greater with less remaining diffusion directions (Figure 2.4 & Figure 

2.5). Since the mean value of MD remains consistent with the reference and the standard 

deviation was very small, one could possible infer that the change in MD was very insignificant, 

especially when the number of rejections was below 15. 
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The changes in FA, MD, AD and RD were also consistently correlated with each other. 

Generally increasing AD and decreasing RD with greater number of rejections (Figure 2.4 & 

Figure 2.5) would result an overall unchanged in MD. Furthermore, increasing AD and 

decreasing RD would cause the tensor to be more elongated, or more anisotropic, which 

corresponds to greater FA, and this coincided with our results as well.  

 

In the case of uniform data reductions, changes in FA were only observed in low FA regions 

(Figure 2.3). This effect is not specific to the uniform rejection scheme and was also observed in 

lower FA regions for random rejections, as one can see from the comparison among GENU, 

PLIC and OR (Figure 2.4). Since the lower FA regions are more isotropic than the higher FA 

regions, the tensors can be depicted as more round-shaped in lower FA regions (the three 

eigenvalues are similar to each other). Any change in the estimation of a round-shaped tensor 

will result in a stronger influence on the orientation than of an oval-shaped tensor, because the 

eigenvectors of a round-shaped tensor can be easily interchanged [58]. 

 

In contradistinction to the uniform rejection, the results of the clustered rejection were strongly 

overestimated. This demonstrates that more uniformly distributed rejections lead to smaller 

overestimations of the tensor-derived parameters. Conversely, the closer they are to each other 

(clustered), the larger the overestimations. Based on the results of the clustered rejections, one 

could suggest that the angle changes in V1 depend on the orientation of the rejected diffusion 

directions with respect to the orientation of the underlying white matter fiber (Figure 2.9). This 

further demonstrates the importance of uniformly distributed diffusion directions to the accuracy 

of tensor estimation, which also confirms with previous reports [47, 59]. 
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Among the general trend with strongly overestimated results for clustered rejections, an 

exemption one could observe from Figure 2.8 was that rejecting LR directions did not cause a 

significant change in AD and RD of GENU when the number of rejections is less than 20. As 

GENU is oriented in LR, one might interpret it as follows: rejecting directions that were parallel 

to the underlying fibers in the ROI would result little change in AD and RD. However, our 

results of clustered rejections for ALIC and CR did not show the same effect, except that 

rejecting an SI cluster (which was parallel to CR) had less effect on AD of CR than other 

clusters. This might be due to the fact that ALIC and CR had lower FA than GENU, and SNR 

plays greater influence on lower FA regions than higher ones, which makes changes in the 

former less predictable or stable. In addition, the alignment of the underlying fibers can be more 

variable in those regions. Applying gradient parallel to the orientation of highly anisotropic 

regions would result very little alteration in the overall direction of water molecules’ flow. This 

explains why rejecting directions that were parallel to the underlying fibers in GENU would 

result little change in AD and RD, but it was not the case for other less anisotropic regions. 

 

Whereas the scalar values of FA are often regarded as a marker for white matter integrity, V1 is 

usually used for tractography. Any change in those values would alter the results of investigation 

of the brain characteristics. It would complicate the interpretation of changes in FA values since 

they may increase or decrease unpredictably after diffusion direction rejection. Any shift in the 

orientation of V1 may completely redirect the streamline pathways, which would make the final 

result of tractography meaningless. Hence, when diffusion rejections are required before tensor 
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estimation, it is important to access the number of rejections and where on the sphere the rejected 

diffusion directions were located, in order to account for the accuracy of the evaluation. 

 

One thing noticeable in Figure 2.4 is that for uniform rejections, very little change in FA, AD 

and RD was observed, even with only 6 remaining directions in low FA region. Therefore, it is 

recommended to access the locations of the corrupted directions before proceeding to tensor 

estimation. If they are distributed relatively uniformly, rejecting those directions may not 

increase uncertainty in parameter estimation; if a few directions are grouped in one location, one 

may consider rejecting more directions to make the remaining ones more uniform, thus 

maintaining the accuracy of the tensor-derived parameters. However, reducing the number of 

diffusion directions will decrease SNR in the reconstructed diffusion tensor images, and 

consequently, affect the accuracy of the parameters. Such trade-off should be considered 

depending on SNR of the acquired diffusion weighted images.  From our results with reasonable 

clinical scan parameters, in case of evaluating scalar values such as FA and diffusivities, 

rejecting until only six uniformly distributed directions remaining still provided relatively valid 

results. As one can see from Figure 2.4, if the number of rejections is less than 10, it is not 

necessary to reject more directions to achieve six uniform directions. While the number of 

rejections is more than 10, unless the remaining directions are approximately uniform, we 

suggest rejecting until six uniform directions remaining in order to make a more precise 

measurement. However, in the extreme case that a few directions are close to each other so that it 

is impossible to achieve uniform distribution, one may consider to exclude the whole data set for 

further analysis since the results from such highly corrupted data will be quite inaccurate. 
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We have also investigated the influence of diffusion acquisition parameters on the effects of 

diffusion rejections. The number of b0 volumes did not cause any significant difference in the 

changes of FA and V1 (Figure 2.10). Thus, in order to shorten the total scan time to avoid any 

additional motion, one b0 volume is suggested in clinical settings for patients with uncontrolled 

motions (unless additional b0 volumes are deliberately used for the purposes of motion 

correction). Higher b-values reduce the SNR and we expected the changes of FA and V1 to be 

more sensitive to rejections. Our results showed that different b-values caused differences in the 

mean FA, but not in the mean V1 changes (Figure 2.11). Whereas the accuracy of FA depended 

on the b-value, the standard deviations of FA were not significantly different, which indicates 

that the precision of FA after rejection was similar for different b-values. Figure 2.12 

demonstrates that the accuracy and precision of FA and V1 are dependent on the number of the 

remaining diffusion directions, which is the difference between the number of the acquired and 

rejected directions. This is consistent with the previously proposed theoretical framework [60], 

as the more diffusion directions remain, the higher is the SNR (proportional to the square root of 

the number of diffusion directions). However, if more directions are initially acquired, there are 

more possibilities to reject corrupted directions and still maintain the overall equal distribution of 

the remaining directions, which would lead to more stable estimations of the tensor-derived 

parameters. On the other hand, since more motion is expected if the subject is in the scanner for a 

longer time, it might not very efficient to acquired more than 30 diffusion weighted images and 

then reject more directions afterwards. To summarize our results, the changes of tensor-derived 

parameters were predominantly defined by the number of remaining diffusion directions and by 

their location, both, with respect to a uniform distribution on a unit sphere and the underlying 

tissue orientation. 
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In this work, we only evaluated the effects of rejecting diffusion directions on the second-order 

diffusions tensor, which is the most commonly used simplified model in diffusion imaging. DTI 

assumes Gaussian diffusion of water, which is not a realistic assumption in human tissues. It 

only represents the averaged result per voxel, and any intra-voxel information cannot be 

retrieved. Other techniques such as q-ball imaging [61], spherical deconvolution [62], 

generalized diffusion tensor [63], and diffusion spectrum imaging [64], can potentially resolve 

sub-voxel information such as crossing fibers. New parameters have been proposed along with 

these higher-order models to describe anisotropy and fiber orientation, such as fractional multi 

fiber index [65], and fiber orientation distribution function [66, 67], respectively. Effects of 

rejecting diffusion directions on these parameters might be different from the second-order 

tensor parameters, especially in low FA regions. Low FA regions can result either from an 

isotropic underlying microstructure or from numerous crossing fibers. Since DTI cannot 

differentiate these two types of low FA regions, rejecting diffusion directions will show similar 

consequences in both cases. However, if higher-order models are used to reveal more 

sophisticated tensor glyphs, rejecting diffusion directions might only affect some of the 

components but not alter the overall anisotropy or directionality. Thus, if any other methods are 

applied beyond DTI, a more complex analysis should be considered to evaluate the effects of 

rejecting diffusion directions.  
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Chapter 3 : Pyruvate to lactate metabolic changes during 

neurodevelopment measured dynamically using hyperpolarized 13C 

imaging in juvenile murine brain 

	

3.1 Introduction  

 

Most of MRI studies of normal brain maturation use conventional methods such as T1- and T2-

weighted and DTI to assess morphological and microstructural changes, and subsequently, their 

inference on anatomical growth and functional segregation. These methods have been widely 

applied for over a decade in brain development studies, but little has been shown on dynamic 

metabolic changes during development. From this chapter onwards, we are going to demonstrate 

the aforementioned technique of DNP (Chapter 1.5) as an emerging method to study metabolic 

pathway dynamically in vivo during normal and hypoxic-ischemic injured brain development.  

 

In this chapter, we applied DNP using 13C-1 labeled pyruvate to investigate the changes in 

pyruvate to lactate conversion over the course of mouse brain maturation, and combined this 

with T2-weighted MRI to obtain voxel-based volume changes in relation to maturation in mouse 

brain. 
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3.2 Methods 

 

3.2.1 Experimental procedure 

 

Eight normal mice were scanned starting on postnatal day 18 and repeated every 10 days. A few 

time points were delayed due to technical issues. Mice were anesthetized with 1.5% isoflurane 

and 1 L/min oxygen during scans. A catheter was inserted into the tail vein for proceeding 

injection of hyperpolarized pyruvate. During the experiment, 0.3mL of mixed saline and heparin 

was injected into the mouse every 15 minutes to prevent blood clot. All experiments were 

conducted on a vertical 14.1T (Agilent) 600WB NMR spectrometer with 55mm 1000mT/m 

gradients. A 38mm diameter 1H and 13C dual-tuned coil was used, where 1H frequency was for 

main field shimming and T2-weighted anatomical imaging, and 13C coil was used for 

hyperpolarized 13C spectroscopic imaging.  

 

48µL of C1 labeled 13C pyruvate was polarized using an Oxford HypersenseTM DNP instrument 

at 3.5T under 1.5K for an hour. Before injecting into the mouse, the hyperpolarized 13C-1 

pyruvate was mixed with 4.5mL of NaOH buffer, which resulted a 160mM pyruvate solution 

with pH~7.5. The dissolution mixture was then injected into the tail vein through a catheter over 

a span of 12 seconds. The total volume injected was 300 µL with 150 µL into the mouse and 150 

µL left in the catheter. 
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3.2.2 Data acquisition 

 

13C spectroscopic imaging. Data were acquired on a 24mm×24mm×5mm slice centered on the 

brain, with 2D chemical-shift imaging. Center-out k-space trajectory was used with 7x7 phase 

encoding (zero-filled to 8x8). 128 spectral points were acquired with 2500 Hz bandwidth. The 

acquisition was started simultaneously with the pyruvate injection and repeated every 4s (3s 

acquisition time with 1s delay between each repetition) for a total of 60s (or 15 repetitions) with 

constant flip angle of 10°.  

 

T2-weighted anatomical imaging. A 2D fast spin echo (FSE) sequence was applied for 

anatomical imaging with TR/TE=1.3s/12ms, and 8 echo train length with 12 ms echo spacing. 

The field of view was 30mmx30mm with 256 frequency and phase encodes, resulting in a 

0.12mmx0.12mm in-plane resolution. The slice thickness was 1mm, and 10 slices were acquired 

without gap, covering most of the brain. The total scan time was 11 minutes. 

 

3.2.3 Data processing 

 

13C spectroscopic imaging. A 5Hz Lorentzian apodization was applied to each free-induction 

decay before Fourier transforming the data. After Fourier transformation, each voxel could be 

referred to a 15-time-point spectrum (Figure 3.1a). The peak height of pyruvate and lactate at 

each time point for each voxel were measured. Then we chose the six voxels matching the 

location from the T2-weighted anatomical image (Figure 3.1b), and averaged signal intensities 

among the six voxels for pyruvate and lactate separately. The pyruvate signal intensity depended 
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on the polarization level, which varied between experiments, and consequently, the lactate signal 

intensity was affected, due to a linear relationship between pyruvate and lactate [68]. In order to 

compare lactate signal at different ages, we normalized the data by dividing lactate signal by the 

total carbon signal in the slab at each time point. We recorded the 5 highest intensities of 

normalized lactate in each scan for every mouse.  

 

 

Figure 3.1: Dynamic spectra of pyruvate metabolic pathway and its overlay on T2-
weighted image of a mouse brain. 

The 15-time-point dynamic spectrum (a) is depicted for a voxel. The six voxels matched with the 
brain (b) were chosen for 13C analysis. 
 

T2-weighted anatomical imaging. To investigate brain volume changes through maturation, we 

used linear co-registration between the brains of two consecutive scans (i.e., 1st to 2nd, 2nd to 3rd, 

and so on) for each individual mouse (Figure 3.2). To achieve this, we first manually masked the 

brain mask of the 1st scan from non-brain tissues and parts including other organs of the head, the 

feet and water tubes running under the mouse to keep its body temperature. Then we linearly 

registered the 2nd scan to the 1st brain mask. This process subsequently created a brain mask of 

the 2nd scan by transforming the mask of the 1st scan. In the same manner, we registered the 3rd 

scan to the 2nd scan to create the brain mask of the 3rd scan, and so on. Multiplication of the three 
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scaling parameters (in x, y, and z-axes) in the transformation matrix measured brain volume 

changes.  

 

 

Figure 3.2: Linear registration scheme between subsequent scans within each subject. 

The multiplication of the 3 scaling parameters T1, T2 and T3 from the resultant transformation 
matrix was used for volume change calculation. 
 

3.2.4 Kinetic modeling 

 

The hyperpolarized 13C-pyruvate was converted into lactate rapidly in the brain, allowing us to 

investigate real-time change of this metabolic process. To quantify the rate of this change, we 

applied the kinetic model from Zierhut et al [69] to fit the pyruvate and lactate signal over time. 

We averaged the peak height of pyruvate and lactate separately from the six voxels in the brain 

for each time point, and then we could obtain a curve of signal build up and decay for pyruvate 

and lactate individually (Figure 3.3).  
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The model was first fit into the pyruvate curve: 

𝑀!"# 𝑡 =

𝑟𝑎𝑡𝑒!"#
𝑘!"#

1− 𝑒!!!"# !!!!""#$!% , 𝑡!""#$!% ≤ 𝑡 < 𝑡!"#

𝑀!"# 𝑡!"# 𝑒!!!"# !!!!"# ,                                     𝑡 ≥ 𝑡!!"   
 

 

where 𝑀!"# 𝑡  is the pyruvate signal at time t, and 𝑡!"# is the time when pyruvate signal reaches 

the highest value. The parameters estimated from the fitting are: 𝑟𝑎𝑡𝑒!"#, the rate of pyruvate 

injection; 𝑘!"#, the rate of pyruvate signal decay, which is !
!! !"#

, where 𝑇! !"# is the T1 constant 

of hyperpolarized pyruvate at 14T field strength; and 𝑡!""#$!%, the time when pyruvate arrives in 

the brain. Then we used these estimated parameters to fit into the lactate curve: 

𝑀!"# 𝑡

=

𝑘!"𝑟𝑎𝑡𝑒!"#
𝑘!"# − 𝑘!"#

1− 𝑒!!!"# !!!!""#$!%
𝑘!"#

−
1− 𝑒!!!"# !!!!""#$!%

𝑘!"#
,                𝑡!""#$!% ≤ 𝑡 < 𝑡!"#

𝑀!"# 𝑡!"# 𝑘!"
𝑘!"# − 𝑘!"#

𝑒!!!"# !!!!"# − 𝑒!!!"# !!!!"# +𝑀!"# 𝑡!"# 𝑒!!!"# !!!!"# ,      𝑡 ≥ 𝑡!"#  
  

 

where  𝑀!"# 𝑡  is the lactate signal at time t. We could estimate 𝑘!"#, the rate of lactate decay, 

and 𝑘!", the conversion rate from pyruvate to lactate from this fitted model. The conversion rate, 

𝑘!", is another parameter besides normalized lactate level to imply metabolic rate in maturation. 
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Figure 3.3: Dynamic data of pyruvate and lactate and kinetic model fitting. 

Dynamic data of the averaged peak height of pyruvate (x) and lactate (*) from six voxels in the 
brain. Kinetic models were fitted to pyruvate (−) and lactate (−). 
 

3.2.5 Statistical analysis 

 

To examine the association between age and the lactate level, pyruvate to lactate conversion rate 

or brain volume, we used a mixed effect linear model on the 5 highest intensities of normalized 

lactate, the pyruvate to lactate conversion rate, and the volume scaling separately using SurfStat 

(http://www.math.mcgill.ca/keith/surfstat/) [70]. This model permitted multiple measurements 

per subject while controlling for between-subject variation, thus increasing statistical power. We 

tested linear and nonlinear polynomial fitting. 

 

In addition, we recorded body weight for each experiment, because body weight can also be an 

empirical indicator of maturation besides brain volume. The body weight was measured before 

experiment since the injection of hyperpolarized pyruvate would change the total body weight.  
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3.3 Results 

 

By plotting the normalized lactate level versus age for each individual mouse, we observed 

significant decrease in normalized lactate signal with increasing age using a mixed effect model 

on the normalized lactate intensities (t=-3.84; p=0.001) (Figure 3.4). 

 

 

Figure 3.4: Linear fitting of the mixed effect model to the peak normalized lactate level 
against age. 

 

We plotted the estimated pyruvate to lactate conversion rate, 𝑘!", against age for each individual 

mouse (Figure 3.5). Linear fitting resulted in the highest significance when we evaluated the 

mixed effect model on 𝑘!". Similar to lactate level, 𝑘!" also decreased with increasing age (t=-

2.11; p=0.044).  
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Figure 3.5: Linear fitting of the mixed effect model to the pyruvate to lactate conversion 
rate, Kpl, against age. 

 

Analysis of linear regression on brain volume changes (i.e., multiplication of 3D scaling factors) 

showed no relationship between volume and age (t=0.82; p>0.4). However, total body weight 

increased with age (Figure 3.6) even though the global brain volume did not change after P18. 

Body weight almost doubled from P18 to P30, and the rate of weight growth slowed down after 

P30 (Figure 3.6). It follows an exponential growth (t=5.07; p=0.000025). 
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Figure 3.6: The plot of body weight against age for each individual subject, with general 
exponential fitting. 

 

3.4 Discussion 

 

Our 13C metabolic imaging results demonstrated that pyruvate to lactate conversion was higher at 

younger age, and decreased linearly with increasing age. At a young age, brain and body 

consume more energy for brain development and body growth. Lactate can be used as an energy 

fuel for brain activation [71-79], and thus, its production is higher at younger age to support 

neuronal and other functional needs. It has been shown in cultured cells that both neurons and 

astrocytes utilize lactate as a source of energy and a precursor of lipids [80] and these results 

further were supported by 13C MR studies [24-26]. Moreover, the utilization of lactate by 

oligodendrocytes is three times higher than that by neurons and astrocytes [81]. The combination 

of these published findings suggests that lactate is greatly used for lipogenesis during myelin 

synthesis and may support a further explanation that long-lasting microstructural changes can 
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occur in relation to brain maturation even at the stage where macroscopic volume growth stops, 

which is demonstrated in our results. 

 

In this work, the analysis of total body weight showed that the mouse continued to grow after 

P18 and the rate of growth slowed down after P30. Our volumetric analysis based on T2-

weighted images, on the other hand, did not show a significant change of overall brain volume 

after P18. This is consistent with findings of a previous high-resolution ex vivo T2-weighted 

MRI study that global and local volumes of mouse brain remained constant in size after P18 

[82]. This may imply that the mouse brain reaches its maximum volume earlier than the whole 

body does. Another study has, however, shown that the lipid composition of myelin and 

microsomal fractions of mouse brain appeared to greatly increase from P14 to P24 and continued 

growing until P47 [83]. Protein composition of mouse brain myelin also continues to increase 

until P300, with the highest rate of increase between P20-P25 and decreasing rate of increase 

afterwards [84]. Although there is cross-subject variation in determining maturation stage [85], 

these published findings together with our result suggest that the microstructural growth of the 

mouse brain may continue even after adolescence although its total volume did not change. 

 

In addition to total lactate level, pyruvate to lactate conversion rate is another parameter to 

measure the degree of metabolic change during brain development. The higher the conversion 

rate, the faster the metabolism takes place, and consequently, more lactate is produced within a 

limited amount of time. The maximum reaction rate of pyruvate, 𝑉!"#, is a more accurate and 

commonly recognized parameter to measure the rate of metabolism than the pyruvate to lactate 

conversion rate. If we can vary the concentration of pyruvate, we will get different kpl from 
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different pyruvate concentration. Based on the different conversion rates and pyruvate 

concentrations, we can apply Michaelis-Menten kinetics model to estimate the maximum 

reaction rate of pyruvate, 𝑉!"#: 𝐾!" =
!!"# !"#
!!! !"#

, where 𝑝𝑦𝑟  is the concentration of pyruvate 

and 𝐾! is the Michaelis constant which refers to the concentration of pyruvate at half 𝑉!"#. 

However, the main obstacle of achieving this is that the mouse is too small to receive multiple 

shots of pyruvate within one experiment at young age. This can be improved by reducing the 

dead volume of saline and heparin in the catheter. We are working on a technical solution to 

divert the dead volume before injection through a custom-built cog system for this purpose. With 

minimal dead volume, we will be able to perform multiple experiments at a younger age when 

brain volume is still growing and access the correlation between metabolic rate and brain growth. 

 

A notable strength of the current work lies in the longitudinal in vivo MRI imaging, yielding 

multiple measurements per individual. Our analysis was based on the global measurement of 

brain metabolism and volume. Although regional metabolism may be important to understand 

pattern of brain development, low resolution in the hyperpolarized 13C acquisitions is a major 

technical challenge, limiting the ability for regional analyses. The hyperpolarized substrate 

returns to polarization at thermal equilibrium very quickly after taken out of the polarizer. 

Moreover, T1 of hyperpolarized substrate is shorter at the higher field strength of our 14T animal 

scanner as compared to lower fields such as 1.5T or 3T. Nevertheless, we achieved a very 

important advance in obtaining a dynamic spectroscopic image, where the acquisition was 

repeated every 4 seconds for a total of 60 seconds. The image spatial resolution of 3mm x 3mm 

was the highest we could achieve within 4 seconds by current technique. There is a tradeoff 

between temporal resolution and spatial resolution. With future improvement in the MRI pulse 
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sequence, we will be able to reach comparable 13C spectroscopic image resolution with 

anatomical image resolution, enabling the analysis of brain local changes in metabolism and 

volume from a young age to P18 and later ages.  

 

Our work demonstrates the effectiveness of hyperpolarized 13C MRI to examine the dynamic 

metabolic changes of pyruvate to lactate conversion during brain maturation, suggesting other 

substrates can be used in the same manner to explore dynamic changes of other metabolic 

pathways. In our kinetic modeling, we neglected the oxidation from lactate to pyruvate by 

assuming its rate was negligible. Sometimes it is important to consider the lactate to pyruvate 

conversion rate, especially at very young age or with brain abnormalities such as hypoxia or 

hypoglycemia, in which lactate is utilized as substitute for glucose as energy source [86]. In the 

future, we plan to evaluate this by injecting hyperpolarized lactate into the mouse to estimate its 

conversion rate to pyruvate [87]. This can also be measured by using Metabolic Activity 

Decomposition Stimulated-echo Acquisition Mode (MAD-STEAM), which results a more robust 

and accurate modeling fitting with both conversion rates of pyruvate to lactate and lactate to 

pyruvate simultaneously [88, 89].  

 

Overall, our longitudinal study using hyperpolarized 13C MR spectroscopic imaging is the first to 

show in vivo dynamic changes of pyruvate to lactate conversion in the brain during normal brain 

maturation. The results from normal brain studies can serve as a baseline for future metabolic 

studies of injured developing brain such as hypoxic ischemic encephalopathy.   
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Chapter 4 : A metabolic study of hypoxic ischemia during mouse 

brain development using hyperpolarized 13C 

 

4.1 Introduction 

 

As we introduced in Chapter 1, the majority of the MRI studies on HI animals were based on 

structural images, such as T1-weighted, T2-weighted and diffusion tensor imaging[10, 11, 90]. 

The hypothesis of energy failure has been broadly recognized as the main causal event of HI. 

Few MR studies have focused on the metabolic properties of HI using 1H or 31P 

spectroscopy[17-19]. Since we have demonstrated the feasibility of DNP to study metabolic 

changes during normal brain development in the previous chapter, we would like to further 

explore its application to study injury detection and progression during brain development. In 

this chapter, we applied DNP using 13C-1 labeled pyruvate to investigate the changes in pyruvate 

to lactate conversion in HI mice across brain maturation in vivo, in order to establish a biomarker 

to detect HI at a very early stage and examine long-term metabolic exchanges during early brain 

development. 
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4.2 Methods 

 

4.2.1 Hypoxic ischemia 

 

P10 male and female CD1 mice were subjected to HI injury as previously described in the Rice-

Vannucci model[91]. All procedures were approved by the Institutional Animal Care and Use 

Committee at the University of California San Francisco, in accordance with National Institutes 

of Health guidelines for the Care and Use of Laboratory Animals. Ligation of the left common 

carotid artery was performed as the follows: animals were anesthetized with 3.5% isoflurane. A 

midline neck incision was done in order to separate and permanently ligate the left common 

carotid artery via electrical coagulation. After the procedure pups were allowed 1 hour recovery 

with the dam. Global hypoxia was induced by placing the pups in chambers submerged in a 

water bath at 37°C into which a hypoxic atmosphere of 10% O2 / 90% N2 was introduced via 

inlet and outlet tubing controlled by a flow meter. After 60 minutes, pups were returned to the 

dam. 

 

4.2.2 MRI experiment procedure 

 

A total of 13 mice received HI. They were scanned at P10 (2-5 hours post HI), P17 and P31. 

Some dates were slightly shifted or missing due to scanner availability, technical issues or 

animal mortality. A total of 6 sham mice were also scanned at the same time points. These time 

points were chosen based on previous literature comparing human and murine brain maturation 
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stages, where P10 on mice is equivalent to human newborn, P17 on mice is equivalent to human 

adolescence, and P31 on mice is equivalent to human adult [6, 85]. 

 

Mice were anesthetized with 1.5% isoflurane and 1 L/min oxygen during scans. A catheter was 

inserted into the tail vein for proceeding injection of hyperpolarized pyruvate. During the 

experiment, 0.3mL of mixed saline and heparin was injected into the mouse every 15 minutes to 

prevent blood clots. All experiments were conducted on a vertical 14.1T (Agilent) 600WB NMR 

spectrometer with 55mm 1000mT/m gradients. A 38mm diameter 1H and 13C dual-tuned coil 

was used, where 1H frequency was for main field shimming and T2-weighted anatomical 

imaging, and 13C coil was used for hyperpolarized 13C spectroscopic imaging.  

 

48µL of C1 labeled 13C pyruvate was polarized using an Oxford HypersenseTM DNP instrument 

at 3.5T under 1.5K for an hour. Before injecting into the mouse, the hyperpolarized 13C-1 

pyruvate was mixed with 4.5mL of NaOH buffer, which resulted a 160mM pyruvate solution 

with pH~7.5. The dissolution mixture was then injected into the tail vein through a catheter over 

a span of 12 seconds. The total volume injected was 300 µL with 150 µL into the mouse and 150 

µL left in the catheter. 

 

4.2.3 Data acquisition 

 

13C spectroscopic imaging 

Data were acquired on a 24mm×24mm×5mm slice centered on the brain, with 2D chemical-shift 

imaging. Center-out k-space trajectory was used with 8x8 phase encoding. 128 spectral points 
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were acquired with 2500 Hz bandwidth. From our previous hyperpolarized 13C-1 pyruvate study 

on young mouse brains with the same experimental procedure in Chapter 3, pyruvate signal 

reaches its peak at around 12 to 16 seconds after the beginning of injection[92]. In this work, our 

acquisition was started 10 seconds after the pyruvate injection so the first time point coincides 

with when pyruvate is at its highest level. The acquisition was repeated every 5s (4s acquisition 

time with 1s delay between each repetition) for a total of 75s (or 15 repetitions) with constant 

flip angle of 10°.  

 

T2-weighted anatomical imaging 

A 2D fast spin echo (FSE) sequence was applied for anatomical imaging with 

TR/TE=1.3s/12ms, and 8 echo train length with 12 ms echo spacing. The field of view was 

30mmx30mm with 256 frequency and phase encodes, resulting in a 0.12mmx0.12mm in-plane 

resolution. The slice thickness was 1mm, and 10 slices were acquired without gap, covering most 

of the brain. The total scan time was 11 minutes. 

 

4.2.4 HI injury level score 

 

We scored HI injury for each subject at P17 based on the T2-weighted images. Some subjects 

were missing scans at either P10 or P31 due to technical problems or animal expiration, but all 

subjects were scanned at P17. The injury at P10, which was depicted as hypointensity, extended 

almost to the entire ipsilateral hemisphere and had very little contrast or localization (Figure 1); 

therefore, it was difficult to score. The injury pattern at P31 was similar to the injury at P17. 
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Our scores were based on the 3 major injury areas: cortex, hippocampus and deep gray matter 

nuclei. Each area was scored rostral to caudal by progressively increasing numerical scores, 

which denoted either lack of injury, mild, moderate or severe damage. More specifically, each 

area was scored from 0-3 based on the following: 0 for no injury observed, 1 for mild focal 

hyperintensity, 2 for moderate larger hyperintensity that expanded to adjacent areas and 3 for 

cystic infarction. The total score was the sum of the 3 areas and ranged from 0 to 9.  

 

4.2.5 Data processing and analysis 

 

Voxel shift was performed on the 2D grid to locate one voxel on the left hemisphere and one 

voxel on the right hemisphere (Figure 4.1). The area under the peak of pyruvate and lactate was 

recorded for each of the 15 time points for the construction of the dynamic curves (Figure 4.2).  

 



	 	
	 	 	

69	

 

Figure 4.1: T2-weighted images overlaid with 13C spectroscopic imaging with matching 
orientation at P10, P17 and P31 of a representative subject. 

A slight hypointensity on the T2 weighted image and a significant reduction of pyruvate delivery 
in the spectra (blue arrowhead) can be observed few hours after HI at P10. The reduction persists 
throughout P17 and P31 but is less pronounced. 
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Figure 4.2: Pyruvate and lactate signals from the start of acquisition (10 second) to the end 
of acquisition (85 second) with 5-second interval. 

Pyruvate signal depicts decay over time. Lactate signal has a slight build-up due to its conversion 
from pyruvate, and then decay.  
 

Pyruvate delivery 

The area under the pyruvate curve and the lactate curve were taken from a voxel on each of the 

hemispheres. The pyruvate signal intensity depended on the polarization level, which varied 

between experiments. In order to examine the effect of HI on pyruvate delivery into the brain, we 

compared the absolute pyruvate level between the two voxels chosen on each of the 

hemispheres. The pyruvate signal difference between two hemispheres was calculated as 

𝐷𝑖𝑓𝑓!"# =
!"#!!!"#!
!"#!!!"#!

, where 𝑃𝑦𝑟! is the area under the pyruvate curve for the right hemisphere 

and 𝑃𝑦𝑟!  is calculated the same for the left hemisphere. We conducted student t-test for 

comparing 𝐷𝑖𝑓𝑓!"# between HI and Sham groups at each age.  
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Lactate to pyruvate ratio  

The lactate signal intensity was affected by the amount of pyruvate delivery, due to a linear 

relationship between pyruvate and lactate[68]. Therefore, in order to observe changes of lactate 

conversion due to HI, we compare the lactate to pyruvate ratio between the two voxels chosen on 

each of the hemispheres. The difference in lactate to pyruvate ratio were calculated as 

𝐷𝑖𝑓𝑓!"#$% =
!"#$%!!!"#$%!
!"#$%!!!"#$%!

, where 𝑅𝑎𝑡𝑖𝑜! is the ratio of the area under the lactate curve to the 

area under the pyruvate curve for the right hemisphere and 𝑅𝑎𝑡𝑖𝑜! is calculated the same for the 

left hemisphere. We conducted student t-test for comparing 𝐷𝑖𝑓𝑓!"#$% between HI and Sham 

groups at each age.  

 

Normalized lactate level in the brain 

In our previous work on utilizing hyperpolarized 13C-1 pyruvate on normal brain maturation in 

Chapter 3, we have found that the metabolic conversion from pyruvate to lactate slows down as 

the brain ages from P18 [92]. In this chapter, we have an additional time point at P10. This 

allows us to examine the metabolic conversion changes from newborn (P10) to adolescence 

(P17), and from adolescence to adult (P31). In order to have comparable results as the previous 

chapter, we use the same analysis by choosing the 3 voxels inside the brain and get the 

normalized lactate level, which is the average lactate signal in the 3 voxels divided by the total 

13C signal. We plotted the normalized lactate level against age for each subject to examine its 

longitudinal change.  

 

We combined the HI subjects with mild injuries (scores = 0 to 2) with the sham operated subjects 

to quantify the longitudinal change of normalized lactate level in the brain. The reason of 
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combining these two groups will be explained in the Results. We conducted mixed effect linear 

model on normalized lactate level vs. age from P10 to P17 and from P17 to P31 separately using 

SurfStat, which permitted multiple measurements per subject while controlling for between-

subject variation (http://www.math.mcgill.ca/keith/surfstat/) [70].  

  

4.3 Results 

 

Figure 4.1 shows the T2-weighted image and spectra after voxel shift for a representative HI 

subject at each age. One can observe a slight hypointensity on T2-weighted image and a 

significant reduction of pyruvate delivery in the spectra on the injured hemisphere a few hours 

after HI at P10. At P17 and P31, there is hyperintensity in the injured hemisphere. There is 

slightly less pyruvate delivery on the injured side than the contralateral side, but the difference is 

not obvious and needs further clarification. 

 

HI injury level score 

The HI injury level scores of all the subjects are shown in Table 4.1. Our subjects were either 

not, mildly injured (score = 0 to 2) or severely injured (score = 6 to 9). 
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Table 4.1: HI injury scores for each subject at P17 

Mouse # Cortex Hippocampus Deep gray Total 

1 3 3 0 6 

2 0 0 0 0 

3 0 2 0 2 

4 3 3 1 7 

5 3 2 2 7 

6 3 2 2 7 

7 3 3 3 9 

8 0 1 0 1 

9 0 0 0 0 

10 0 0 0 0 

11 3 3 3 9 

12 3 2 1 6 

13 3 3 3 9 

 

Pyruvate delivery 

Figure 4.3(a) shows the plot of 𝐷𝑖𝑓𝑓!"# against age for each subject. All HI subjects have 

positive values of 𝐷𝑖𝑓𝑓!"# at P10, which can be interpreted as less pyruvate delivered to the left 

hemisphere (ipsilateral) than the right hemisphere (contralateral). The difference between the two 

hemispheres shrinks at P17 as 𝐷𝑖𝑓𝑓!"# values approach zero. There is almost no difference 

between the two hemispheres at P31 since 𝐷𝑖𝑓𝑓!"# values are nearly nullified. However, no 

differences are observed in the Sham group, as all subjects have all 𝐷𝑖𝑓𝑓!"# values around zero 
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at each age. Figure 4.3(b) shows the Student t-test results between HI and sham groups at each 

age, with p<0.01 at P10, p<0.05 at P17 and no statistical significance at P31.  

 

 

Figure 4.3: Comparison of 𝑫𝒊𝒇𝒇𝒑𝒚𝒓 between HI and sham at different ages. 

(a) 𝐷𝑖𝑓𝑓!"# plotted again age for each subject in HI (n = 13) and sham (n = 6) groups.  
(b) Student’s t-test for 𝐷𝑖𝑓𝑓!"# between HI and sham groups at each age time point. 
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Lactate to pyruvate ratio 

Although the left hemisphere has a lower pyruvate level, its lactate to pyruvate ratio is higher at 

P10 (Figure 4.4a) for most of the subjects, as indicated by negative 𝐷𝑖𝑓𝑓!"#$%values. Again, this 

difference between two hemispheres shrinks and diminishes as the brain matures to P17 and P31. 

There is no difference shown on the sham group in terms of lactate to pyruvate ratio. To further 

confirm our observation, Figure 4.4(b) shows the Student t-test results with p<0.01 at P10, 

p<0.05 at P17 and no statistical significance at P31 between HI and Sham groups.  

 

 

Figure 4.4: Comparison of 𝑫𝒊𝒇𝒇𝒓𝒂𝒕𝒊𝒐 between HI and sham at different ages. 

(a) 𝐷𝑖𝑓𝑓!"#$% plotted again age for each subject in HI (n = 13) and sham (n = 6) groups.  
(b) Student’s t-test for 𝐷𝑖𝑓𝑓!"#$% between HI and sham groups at each age time point. 
 



	 	
	 	 	

76	

Normalized lactate level in the brain 

Figure 4.5 shows the plot of normalized lactate level against age for each subject. A general 

pattern for sham subjects can be discerned as the normalized lactate increases from P10 to P17 

and decreases from P17 to P31. However, this pattern is not consistent in the HI group. Figure 

4.6 shows the same plot as Figure 4.5 but colored the HI subjects into 2 subgroups based on their 

HI injury level scores. The subjects with mild injury (score = 0 to 2) depict the same normalized 

lactate level change across age as the sham subjects, while most of the other subjects with severe 

injury (score = 6 to 9) do not preserve the same pattern. 

 

 

Figure 4.5: Comparison of normalized lactate level again age between HI and sham. 

Normalized lactate level again age for each subject in (a) HI (n = 13) and (b) sham (n = 6) 
groups.  
 

 

 

 



	 	
	 	 	

77	

 

Figure 4.6: Comparison of normalized lactate level again age between HI and sham. 
Subjects with injury score between 0 and 2 are highlighted. 

(a) Normalized lactate level again age for each subject in HI group with subgroups separated by 
injury scores (score=0-2: n=8; score=6-9: n=5). (b) Normalized lactate level again age for each 
subject in sham group. 
 

Thus, HI subjects with mild injuries were combined with sham subjects to quantify longitudinal 

change of normalized lactate level. A mixed effect linear model was employed separately from 

P10 to P17 and from P17 to P31, and an increase in normalized lactate from P10 to P17 (t=3.02; 

p<0.01) and a decrease from P17 to P31 (t=-5.16; p<0.01) were observed (Figure 4.7). 
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Figure 4.7: Normalized lactate level again age of sham subjects and HI subjects with mild 
injury. 

HI subjects with mild injury (score = 0 to 2) combined with sham subjects (n = 11). A mixed-
effect linear model was fitted separately from P10 to P17 and from P17 to P31.  
 

4.4 Discussion 

 

From the injury scores in Table 1 and T2-weighted images in Figure 1, we could only observe 

non-localized injury on the ipsilateral hemisphere 2 to 5 hours after HI surgery, which was 

depicted as hypointensity throughout the entire hemisphere. Previous MRI murine studies have 

shown evidence of intensity on T2-weighted images on the ipsilateral hemisphere 3 to 24 hours 

post HI, which was interpreted as cystic infarction in the hyperintensity area[10]. At P17 and 

P31, the injury becomes localized and shown as hyperintensity spreading in parts or all of the 

cortex, hippocampus and deep gray regions. Since the injury shown at P10 has different contrast 
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from that at P17 and P31, we can infer that cystic infarction has not yet developed at the area at 

P10, but rather inflammation. It has been documented that the inflammation by neutrophil 

accumulation in brain blood vessels peaks at 4 to 8 hours after reperfusion in neonatal HI 

rats[93], and that it can lead to further brain injury and cell death.  

 

From both visual observation as shown in Figure 1 and statistical analysis in Figure 4.3(b) it is 

apparent that there is prominent reduction of pyruvate delivery to the ipsilateral hemisphere at 

P10. The lack of blood flow from vascular damage right after HI hinders the pyruvate delivery to 

the ipsilateral hemisphere. However, the lactate to pyruvate ratio is higher on the ipsilateral 

voxel, suggesting higher conversion to lactate as a source of energy. Oxygen supply is also 

deprived due to the constricted blood flow into the ipsilateral hemisphere, ultimately resulting to 

less availability of glucose to be oxidized for energy. Thus, aerobic glycolysis must be 

compensated with anaerobic for energy production. Our results support this assumption, as 

lactate is the end product of anaerobic glycolysis.  

 

The difference between ipsilateral and contralateral hemisphere in pyruvate delivery and lactate 

to pyruvate ratio decreases during brain maturation, with smaller difference at P17. The brain 

usually returns to the normal aerobic metabolism about 1 h after HI. The high lactate to pyruvate 

ratio at P10 is derived from the aftermath of anaerobic glycolysis. Thus, at that point (~2 to 5 

hours after HI), the brain could still be depending on anaerobic metabolism if the damage is too 

much for the restored aerobic glycolysis to function properly at the damage site. At P17, there is 

tissue loss due to irreversible infarction, and what remains should be functional with aerobic and 
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minimal anaerobic glycolysis, and therefore, less difference in lactate to pyruvate ratio between 

the hemispheres. 

 

Even though the T2-weighted images show ipsilateral cystic infarction at P31, there is no 

statistical significance in 𝐷𝑖𝑓𝑓!"# and 𝐷𝑖𝑓𝑓!"#$% between HI and Sham group. This may suggest 

that the non-injured regions on the ipsilateral hemisphere compensate for the injured regions in 

blood flow and energy consumption, and result in negating any differences in pyruvate delivery 

and lactate to pyruvate ratio from the contralateral hemisphere.  

 

One limitation of this work is that the voxel size was 3 x 3 x 5 mm3 that we were only able to 

place one voxel on each hemisphere, which means that the ipsilateral measurement also included 

normative brain tissue. Low spatial resolution has been a technical challenge in hyperpolarized 

13C studies, especially dynamic measurements with short acquisition time (4 second TR). 

Moreover, T1 of hyperpolarized substrate is shorter at the higher field strength of our 14T animal 

scanner as compared to lower fields such as 1.5T or 3T. Therefore, there is a tradeoff between 

spatial resolution and temporal resolution. With future advancements in acquisition techniques, 

higher spatial resolution may be achievable. With smaller voxels, we will become able to 

distinguish localized injury from its surrounding non-injured area and make more comprehensive 

interpretation on 13C substrates uptake and conversion. 

 

Our previous chapter of utilizing hyperpolarized 13C on normal brain maturation starting from 

P18 [92]. In this chapter, we had one more time point, P10, so it covers the maturation stages 

from newborn to adolescence and to adult in human equivalence. Although the HI group does 
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not show the same general trend of lactate production as the sham group in Figure 4.5, when the 

HI mice were divided into two distinct subgroups based on the injury score as shown in Figure 

6(a), it became clear that the HI subgroup with mild injury (score = 0 to 2) exhibits the same 

trend as the sham group. When these two groups are combined as shown in Figure 4.7, there is a 

statistically significant decrease from P17 to P31 in this group. This is consistent with our 

previous findings of a decreasing pyruvate to lactate conversion starting at P18. Furthermore, 

Figure 4.7 shows a statistically significant increase in lactate production from P10 to P17, which 

might suggest increased utilization of lactate as a source of energy. A previous in situ study has 

shown that the expression of the monocarboxylate transporter (MCT1 and MCT2) mRNAs, upon 

which lactate delivery and utilization in the brain depends, starts increasing from P0, peaks at 

P15, decreases at P30 and stabilizes after that[71]. Both this finding and our work agree on the 

lactate utilization in normal brain maturation, which increases from neonatal to adolescence and 

drops after weaning. The HI subgroup with high injury scores (6 to 9) does not show a general 

increase of lactate production from P10 to P17 or a general decrease of lactate production from 

P17 to P31, which may due to serious interruptions on the metabolic pathway by the HI injury. 
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Future Directions 
 

Overall, this dissertation has discussed a few unexplored but important areas of MRI 

methodology and applications in pediatric brain development. First, while DTI has been 

extensively utilized in pediatric MRI studies, motion artifacts remain a common problem and the 

resulting effects of rejecting diffusion parameters remains rarely investigated. Few previous 

works on comparing various diffusion encoding schemes were based on simulated data or 

phantom scans. Our work evaluated uncertainty and bias of rejecting diffusion parameters based 

on simulations on complete clinical data. This provides an insight to researchers on making 

decisions and interpreting the results in their future DTI studies involving unsedated pediatric 

patients. With severe motion artifact and inevitable diffusion volume rejection, it is worthwhile 

noting the distribution of the rejected directions, to account for any bias generated in the final 

results. 

 

Hyperpolarized 13C MRI is an innovative and fast growing field with most of its applications in 

cancer metabolism research. We first applied this technique to early brain development in both 

normal and hypoxic ischemia model, where research was based on conventional T1-, T2-

weighted, DTI and proton spectroscopy for over a decade. Our work introduces a new 

perspective of investigating metabolic related injuries or diseases during brain development, with 

the ability to quantify in vivo real-time metabolic conversion in a short time. The part of work on 

normal brain development will serve as a baseline for longitudinal studies of injury or disease 

models. The other part of work on hypoxic ischemia provides the feasibility of injury detection at 

a very early stage due to its short scan time to reveal dynamic metabolic exchange. It is also able 

to track injury progression of metabolic changes during brain development in a longer term. This 
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work can be continued to explore the response of metabolic changes after hypothermia treatment 

for hypoxic ischemia. It can potentially be an effective marker to recognize the responders and 

non-responders immediately after the treatment, which provides valuable information for 

clinicians to quickly pursue other types of treatment for the non-responders in order to achieve 

better chance of survival or outcome.  
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