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Symposium

Rethinking Remapping: Circuit Mechanisms of Recovery
after Stroke

Baruc Campos,1p Hoseok Choi,2p Andrew T. DeMarco,3,7p Anna Seydell-Greenwald,3,4p Sara J. Hussain,5p

Mary T. Joy,6p Peter E. Turkeltaub,3,4p and William Zeiger1p
1Department of Neurology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California 90095, 2Department of
Neurology, Weill Institute for Neuroscience, University of California–San Francisco, San Francisco, California 94158, 3Center for Brain Plasticity
and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, 4MedStar National Rehabilitation Hospital,
Washington, DC 20010, 5Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of
Texas at Austin, Austin, Texas 78712, 6The Jackson Laboratory, Bar Harbor, Maine 04609, and 7Department of Rehabilitation Medicine,
Georgetown University Medical Center, Georgetown University, Washington, DC 20057

Stroke is one of the most common causes of disability, and there are few treatments that can improve recovery after stroke.
Therapeutic development has been hindered because of a lack of understanding of precisely how neural circuits are affected by stroke,
and how these circuits change to mediate recovery. Indeed, some of the hypotheses for how the CNS changes to mediate recovery,
including remapping, redundancy, and diaschisis, date to more than a century ago. Recent technological advances have enabled the
interrogation of neural circuits with ever greater temporal and spatial resolution. These techniques are increasingly being applied across
animal models of stroke and to human stroke survivors, and are shedding light on the molecular, structural, and functional changes
that neural circuits undergo after stroke. Here we review these studies and highlight important mechanisms that underlie impairment
and recovery after stroke. We begin by summarizing knowledge about changes in neural activity that occur in the peri-infarct cortex,
specifically considering evidence for the functional remapping hypothesis of recovery. Next, we describe the importance of neural popu-
lation dynamics, disruptions in these dynamics after stroke, and how allocation of neurons into spared circuits can restore functional-
ity. On a more global scale, we then discuss how effects on long-range pathways, including interhemispheric interactions and
corticospinal tract transmission, contribute to post-stroke impairments. Finally, we look forward and consider how a deeper under-
standing of neural circuit mechanisms of recovery may lead to novel treatments to reduce disability and improve recovery after stroke.

Introduction
Stroke is one of the most common neurologic disorders and is
the second leading cause of death worldwide (Vos et al., 2020;
Tsao et al., 2023). Many stroke survivors are left with permanent
disability; and outside of rehabilitation (physical, occupational,
and speech/language), there are few therapies (e.g., vagus nerve
stimulation) that can improve recovery after stroke. The trajec-
tory of recovery after stroke is dynamic, with many patients
exhibiting improvement over time, particularly early on follow-
ing injury, but often extending into the chronic phase of recov-
ery. The development of therapeutics to improve recovery has
been hindered by a limited understanding of how circuits within
the CNS are affected by stroke and how they change throughout

recovery. Over the years, many hypotheses have been advanced
to explain how strokes lead to impairment and what CNS
changes might underlie recovery. One of the most widely cited is
the remapping hypothesis. This hypothesis has its origins in the
late 19th century theory of “vicariation,” which suggested that,
after a focal lesion, a spared part of the CNS reorganizes, and
over time, subsumes the function(s) lost to damage (Finger,
2010). Some modern formulations of the remapping hypothesis
extend this idea to the neuronal level, with spared neurons, typi-
cally in areas adjacent or functionally related to the damaged
region, changing their activity to encode information previously
encoded by those destroyed by stroke (Murphy and Corbett,
2009). In its most basic conceptualization, the remapping hy-
pothesis implies that ischemia leads to irreversible damage, and
recovery proceeds as spared circuits remap to take on new func-
tionality (Fig. 1A).

Aside from remapping, other theories have been advanced to
explain impairment and recovery after stroke, including redun-
dancy and diaschisis. Redundancy hypotheses suggest that func-
tions within the CNS are normally duplicated or distributed
across brain regions, with stroke temporarily disrupting a partic-
ular function and the degree of recovery dictated by the extent of
the redundant areas that are spared (Finger, 2010). Diaschisis, on
the other hand, refers to a state of disconnection because of a
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loss of long-range connections to spared areas, which leads to
dysfunction in areas of the CNS distant from the stroke (Finger
et al., 2004). Diaschisis may resolve, contributing to recovery, or
persist, contributing to long-term impairments. Both redun-
dancy and diaschisis suggest that the initial impairment results
from a combination of irreversible focal damage because of is-
chemia plus dysfunction of spared areas. Recovery then pro-
ceeds as disrupted long-range connections to spared areas and/
or functionality of redundant circuits are restored, with irre-
versible damage because of the ischemic core setting a ceiling
for potential recovery (Fig. 1B). In reality, all of these mecha-
nisms may coexist and jointly contribute to impairment and re-
covery (Fig. 1C).

Although the hypotheses for stroke recovery have origins dec-
ades, if not centuries ago, considerable debate still exists about
precisely how neural circuits change after stroke and throughout
recovery. Recent technological advances have enabled the study
of neural circuits with ever greater temporal and spatial resolu-
tion, both in humans and across animal models, and it is now
possible to test long-held hypotheses more directly than ever
before. This review highlights work across multiple species,
using diverse approaches, to understand the circuit mecha-
nisms underlying impairment and recovery after stroke. We
first consider contemporary evidence for remapping and other
theories of recovery in animal models and humans, focusing on
the peri-infarct cortex. Then we consider how factors such as
the dynamics of neuronal ensembles and long-range connectiv-
ity, contribute to recovery. Finally, we discuss approaches for
translating knowledge of neural circuit changes after stroke
into treatments to reduce disability and improve recovery.

Functional remapping in the peri-infarct cortex
Peri-infarct regions are often considered likely sites for remap-
ping as they may contain neurons and circuits subserving a simi-
lar function, or having similar long-range connectivity, to those
in the ischemic core. As such, the peri-infarct cortex has been
extensively studied, with rodent models of stroke often used to
investigate changes at the molecular and cellular levels. These
studies have revealed evidence of changes within peri-infarct
regions that could potentially support remapping. Structurally,
neurons in the peri-infarct cortex undergo axonal sprouting,
dendritic remodeling, and dendritic spine turnover (Jones and
Schallert, 1994; Stroemer et al., 1995; Brown et al., 2007, 2010;
S. Li et al., 2010; Mostany et al., 2010). These structural changes
are driven by a specific transcriptional program in peri-infarct
neurons after stroke (S. Li et al., 2010) and might facilitate syn-
apse formation and circuit reorganization. Functionally, macro-
scopic imaging studies of intrinsic signals or voltage sensors have

demonstrated changes in cortical activity patterns after stroke
that could be consistent with remapping (Winship and Murphy,
2008; Brown et al., 2009). Perhaps the most direct evidence for
peri-infarct remapping, however, comes from Winship and
Murphy (2008) who performed acute two-photon in vivo cal-
cium imaging of sensory-evoked neuronal activity in layer 2/3
(L2/3) of the forelimb and hindlimb somatosensory (S1) cortex
following photothrombotic strokes targeting the forelimb map
(Winship and Murphy, 2008). In animals imaged 1-2months af-
ter stroke, they found a small increase in the number of neurons
in hindlimb S1 responding to stimulation of the contralateral
forelimb compared with control animals (without stroke). These
data suggest that direct remapping of neuronal function may be
possible after stroke, at least in certain circumstances.

In contrast, accumulating evidence suggests against large-
scale remapping of the peri-infarct cortex as a general mecha-
nism of recovery. Zeiger et al. (2021) tested this directly using
two-photon calcium imaging to longitudinally record neuronal
activity in the peri-infarct S1 whisker barrel field after a photo-
thrombotic stroke targeting a single barrel (Zeiger et al., 2021).
Sensory-evoked activity was reduced in spared neurons after
stroke, with gradual return to baseline, but there was no signifi-
cant remapping up to 2 months after stroke. Furthermore, forced
use of the whisker corresponding to the infarcted barrel led to
increased reliability of sensory-evoked responses in spared neu-
rons but still did not lead to remapping. Other recent studies
have also found reduced activity in peri-infarct regions for pro-
longed periods after stroke (Neumann-Haefelin and Witte,
2000), including in spared pyramidal neurons (Kokinovic and
Medini, 2018; He et al., 2020), interneurons (Motaharinia et al.,
2021), and even excitatory thalamocortical inputs (Tennant et
al., 2017). In addition, mechanisms of experience-dependent
plasticity operant in the healthy brain are actually impaired in
the peri-infarct cortex. For example, in the S1 whisker barrel
field, whisker-trimming induced recruitment of L2/3 neurons
to the spared whisker and cortical map expansion are blocked
in peri-infarct cortex (Jablonka et al., 2007, 2012; Zeiger et al.,
2021). Likewise, in the visual cortex (V1), visual sensory learn-
ing and ocular dominance plasticity after monocular depriva-
tion are blocked (Greifzu et al., 2011; Akol et al., 2022). One
important factor contributing to reduced activity and impaired
plasticity mechanisms within the peri-infarct cortex is increased
inhibition (Clarkson et al., 2010; Alia et al., 2016), which results
in an imbalance between excitation and inhibition (Joy and
Carmichael, 2021). Together, these data suggest that dysfunc-
tion of spared peri-infarct regions contributes to impairment
after stroke, and that restoration of functionality within peri-
infarct circuits, perhaps by overcoming excessive inhibition,

Figure 1. Hypothetical models of recovery. A, Remapping hypothesis. Upon stroke onset, irreversible injury (in red) leads to an acute loss of function. Over time, remapping (in green) results
in some recovery of function. Dotted red line indicates a complete lack of recovery in the absence of remapping. B, Redundancy and diaschisis hypotheses. Upon stroke onset, irreversible injury
at the ischemic core is combined with reversible dysfunction in local or distant “spared” areas (in blue), leading to loss of function. Over time, restoration of function in spared areas results in
some recovery, with a ceiling imposed by the irreversible injury (dotted red line). C, Combined models. Loss of function occurs as in B, with recovery attributable to restoration of function in
spared areas and remapping, enabling recovery greater than predicted by the initial irreversible component of injury.
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may lead to some recovery over time in the absence of any
remapping.

The role of the peri-infarct cortex has also been investigated
extensively in humans. Because this work often utilizes fMRI, it
is important to consider how stroke and remapping mechanisms
might manifest in the BOLD signal, which is only a proxy for
neuronal activity. To ensure interpretability, it is important to
evaluate the fMRI signal elicited (1) during a specific task relative
to a close comparison condition and (2) with respect to activa-
tion from a healthy group. With these principles in mind, one
might predict remapping to be associated with supranormal
task-specific activation in peri-infarct cortex or elsewhere that
exceeds that observed in a control group. In motor stroke recov-
ery, it has been suggested that recovery relies on functional take-
over by peri-infarct sensorimotor (Teasell et al., 2005) or
primary motor cortices (Xerri et al., 1998; Jaillard et al., 2005).
However, direct comparison to healthy individuals has found
subnormal, rather than supranormal, activation in peri-infarct
tissue (Cramer et al., 2006). Nevertheless, the motor stroke find-
ings have informed models of aphasia recovery, which will be the
focus of the following section. Such models stipulate that, when
language tissue is damaged, alternative peri-infarct processors
may become recruited to support outcomes, especially around
small lesions (Heiss and Thiel, 2006; Thompson and den
Ouden, 2008). A variation on this account is that upregulated
peri-infarct activation may reflect spare functional capacity
that is typically downregulated under healthy conditions to
save energy (Stefaniak et al., 2020). In line with this idea, sev-
eral studies have found increased peri-infarct activity associ-
ated with improved long-term outcomes in spontaneous
stroke aphasia recovery (Heiss et al., 1999; Warburton et al.,
1999; Szaflarski et al., 2011). However, these studies have not
systematically considered lesion characteristics (Stefaniak et al.,
2020), so heterogeneity in effects may relate to individual lesion
size and location of available peri-infarct tissue. Treatment studies
have also found that increased peri-infarct activity following treat-
ment was related to performance gains (Meinzer et al., 2008;
Fridriksson et al., 2012). However, because these studies have not
compared patient activation to control subjects, they cannot
clearly establish that increases in peri-infarct activity represent ei-
ther recruitment of new tissue for language or supranormal
recruitment of typical language regions because of plasticity.

Alternatively, treatment-related increases in peri-infarct activ-
ity may reflect normalization of function in language tissue that
became dysfunctional because of network effects of the nearby
lesion. Studies of spontaneous stroke aphasia recovery have
found an acute reduction in left-hemisphere language activity,
followed by subacute supranormal activity, and finally a chronic
normalization of activity that is associated with good outcomes
(Saur et al., 2006). DeMarco et al. (2022) recently examined pre-
dictions regarding peri-infarct plasticity by contrasting activity
elicited by two independent language tasks in two different
cohorts of chronic patients with left-hemisphere stroke and
matched controls. Consistent with Cramer et al. (2006), peri-
infarct tissue was associated with subnormal, rather than supra-
normal, activity. Moreover, no brain regions exhibited selec-
tively increased activity in peri-infarct cortex, nor was peri-
infarct recruitment observed around small lesions. The degree
of network disruption correlated with lesion size, but notably,
disrupted language activity accounted for some behavioral
aphasia impairment independent of lesion size. Together,
these results support an alternative interpretation of peri-
infarct recruitment: strokes to the language network produce

network-wide disruptions with decreased language activity,
and recovery is supported by normalization of peri-infarct activity
in spared language processors. In addition to normalization of lan-
guage processing, previous reports of peri-infarct plasticity may
also reflect increased engagement of alternative left-hemisphere
processors regardless of their proximity to the lesion. This is sup-
ported by the regional analysis finding that certain processors
were engaged above control levels, but that in every case, these
were either regions distant from the lesion or regions that were
recruited regardless of their proximity to the lesion.

Several types of processes might underlie the recruitment
measured as increases in alternative left-hemisphere processors.
For instance, the increased activation might relate to compensa-
tory plasticity (Takeuchi and Izumi, 2013), the use of compensa-
tory strategies relying on spared ability (Saur et al., 2006), or
network-specific changes, such as increased reliance on “domain
general” processes (Geranmayeh et al., 2014; DeMarco et al.,
2018). The finding of increased activity in posterior superior
frontal lobe and parietal lobe shows consistent localization with
a domain general dorsal attention/salience network (Fedorenko
et al., 2013). Previous work has found increased left-hemisphere
activity in patients with aphasia during language processing,
but a common region exhibiting increased activation would be
unlikely to be perilesional since perilesional tissue would be in
different places for different individuals (Brownsett et al., 2014;
Geranmayeh et al., 2014). Thus, greater activation observed in
these regions might relate to compensatory increased reliance
on domain-general processing for language tasks. In summary,
these findings suggest that, while peri-infarct cortex activation
similar to healthy individuals is an independent predictor of be-
havioral language performance, the mechanisms at play to
support normalization and recovery may also extend through-
out the relevant brain network, in this case critical language
regions, and perhaps to nonlinguistic regions as well.

Neural population dynamics and functional allocation
Thus far, we have focused primarily on the magnitude of activity
in the peri-infarct cortex as a surrogate for recovery of function.
However, behavior is generated by temporal patterns of activity
across populations of neurons, and the dynamics thus produced
encode function. This phenomenon, where population dynamics
encode function, is perhaps best understood in the motor system,
where neural dynamics underlying motor tasks have been exten-
sively studied (Baker, 2007; Shenoy et al., 2013). Spiking activity
(i.e., firing of action potentials) across neurons in motor circuits
is time-locked to specific epochs of movement, such as move-
ment direction, reach, and grasp, and also in planning of move-
ments, where behavior is modulated by cofiring of task-specific
neurons (Georgopoulos et al., 1982; Murthy and Fetz, 1992,
1996; Baker et al., 1997; Donoghue et al., 1998; Hatsopoulos et
al., 1998; N. Li et al., 2015; Suresh et al., 2020; Ariani et al.,
2022). Importantly, spatiotemporal firing patterns, driven by
inputs from and to cortical (Omlor et al., 2019; Terada et al.,
2022) and subcortical targets (Sauerbrei et al., 2020; Wolff et al.,
2022) and the resultant dynamics are critical for task execution.
Synchronization of neural activity across populations of neu-
rons gives rise to rhythmic patterns of activity, or neural oscilla-
tions, at different frequencies. These rhythmic patterns exist
during planning of movements and show characteristic changes
during and after movement. For example, desynchronization of
b -oscillations (13-30Hz) and postmovement rebound of b -oscil-
lations are well-defined features of movement in the motor cortex
(M1) (Pfurtscheller et al., 1996; Baker et al., 1997, 2003; Donoghue

Campos et al. · Circuit Mechanisms of Recovery after Stroke J. Neurosci., November 8, 2023 • 43(45):7489–7500 • 7491



et al., 1998; McFarland et al., 2000; Witham et al., 2007; Little et
al., 2019). These dynamics arise from, and depend on, structural
and functional connectivity within motor networks.

After stroke, neuronal populations show shifting patterns in
connectivity strength within the motor network that extend to
different cortical (Silasi and Murphy, 2014; Siegel et al., 2016;
Latifi et al., 2020) and subcortical targets (Tennant et al., 2017;
Guo et al., 2021; Favaretto et al., 2022). Movement-related popu-
lation dynamics are disrupted, including changes in low-fre-
quency oscillations (,4Hz) (Ramanathan et al., 2018; Bönstrup
et al., 2019; Guo et al., 2021), b -oscillations (Wu et al., 2016;
Espenhahn et al., 2020), and g -oscillations (30-59Hz) (Hazime
et al., 2021; J. Zhou et al., 2022). Accordingly, it has also been
shown that there is an initial depression in network connectivity
(Grefkes et al., 2008; Lim et al., 2014), followed by either increased
connectivity in certain brain regions (Bauer et al., 2014; Grefkes
and Fink, 2014; Cramer et al., 2019; Bice et al., 2022) or lack of
connectivity in other regions (Siegel et al., 2016; Soleimani et al.,
2023). Recovery follows normalization of network activity to pre-
stroke levels (Ramanathan et al., 2018; Rocha et al., 2022), and this
normalization extends to spatiotemporal firing patterns, includ-
ing recovery of movement-related oscillations across cortical
(Nudo et al., 1996; Ramanathan et al., 2018) and subcortical tar-
gets (Tennant et al., 2017; Guo et al., 2021). In other words, res-
toration of function likely results not only from restoration of
excitability within neuronal circuits, but more importantly,
recapitulation of the dynamics of neural activity normally oper-
ant in motor circuits in the healthy brain (Ramanathan et al.,
2018; Guo et al., 2021).

Restoration of activity, despite the loss of neurons in a net-
work caused by stroke, suggests a restructuring of information
within surviving neurons. Mechanistically, functional alloca-
tion may play an important role in this process (Fig. 2).
Functional allocation refers to selective integration of a neu-
ron into a circuit by virtue of its molecular profile or cellular
excitability. Allocation has been studied in various systems of
development (Lodato et al., 2011; Ye et al., 2015), sensory
processing (Marshel et al., 2019; Edmondson et al., 2022), and
during learning (Biane et al., 2016; Park et al., 2016; Lavi et al.,
2023). Examples of allocation range from integration of inhib-
itory neurons into local excitatory circuits based on extrinsic
cues from pyramidal neurons (Lodato et al., 2011), allocation
of information to sensory (Huber et al., 2008) or visual circuits
in perception (Marshel et al., 2019; Miller et al., 2022), and the
selection of highly excitable neurons during formation of new
memories (Park et al., 2016; Lavi et al., 2023). After stroke,
loss of neurons and metabolic constraints require networks to
use efficient coding (Mimica et al., 2018; Glanz et al., 2021;
Koay et al., 2022), whereby neurons that maximize informa-
tion transfer are selected for allocation to promote recovery.
The attributes for allocation are cellular excitability and molec-
ular programs that support excitability. Allocative processes
have been implicated in spontaneous recovery after stroke, pri-
marily arising from endogenous rewiring. Such adaptations
result in reemergence of network connectivity with existing or
new synaptic partners and can lead to compensated forms of
motor behavior (Whishaw, 2000; Siegel et al., 2016; Jones,
2017). However, targeting allocation using the same cellular
principles demonstrated in learning and memory (Josselyn and
Tonegawa, 2020), namely, selective integration of neurons that
efficiently encode information for a particular stimulus, could
promote true recovery rather than compensation. Indeed, stud-
ies have shown that manipulation of genes that drive such

allocation in memory formation improves functional motor re-
covery in mice (Caracciolo et al., 2018; Joy et al., 2019). In sum-
mary, functional allocation offers a mechanism of remapping
within existing stroke-disrupted networks by selective integration
of excitable neurons with synchronized activity, restoring excit-
ability and normal dynamics, resulting in recovery of function.

Disruptions in long-range pathways after stroke
The effects of stroke are not isolated to peri-infarct regions, and
changes at more distant sites, such as diaschisis, likely play an
important role in post-stroke disability and recovery as well. In
particular, we will focus on two well-studied long-range path-
ways within the CNS: interhemispheric interactions and the de-
scending corticospinal tract (CST). The most well-studied form
of interhemispheric interaction is interhemispheric inhibition
(IHI). In the motor system, neural activity in one hemisphere
can inhibit CST output of homologous regions in the contralat-
eral hemisphere (Ferbert et al., 1992). Such IHI is of cortical ori-
gin (Ferbert et al., 1992; Di Lazzaro et al., 1999) and depends on
integrity of the corpus callosum (Meyer et al., 1995). After stroke,
decreased excitability of the ipsilesional motor cortex (iM1) is
thought to reduce the inhibitory influence of iM1 onto the con-
tralesional M1 (cM1), leading to cM1 hyperexcitability and
increased inhibition from cM1 to iM1, thus interfering with vol-
untary movement of the paretic limb (Fig. 3A,B) (Boddington
and Reynolds, 2017). Supporting this idea, Murase et al. (2004)
reported that, in neurotypical adults, IHI transitions to excitation
during the shift from movement preparation to execution. In
chronic stroke survivors, this transition was absent and IHI from
the cM1 to iM1 persisted during both movement preparation
and execution. The magnitude of this abnormal IHI correlated
with muscle weakness and finger tapping speed, suggesting that
exaggerated IHI may underlie poststroke motor impairments
(Murase et al., 2004). If so, then one might expect elevated IHI
from the cM1 to iM1 to decrease over time, facilitating motor re-
covery. However, a recent longitudinal study found the opposite:
IHI increased as motor recovery proceeded, and these increases
correlated with behavioral markers of better motor recovery (Xu
et al., 2019). These findings were reinforced by a recent study in
chronic stroke survivors showing that increased IHI negatively
correlated with impairment (i.e., more IHI corresponded to less
impairment) (Mirdamadi et al., 2023), suggesting that abnormal
IHI does not causally underlie post-stroke motor impairment.
Instead, abnormal IHI may result from disuse of the paretic limb
(King et al., 2022), overuse of the nonparetic limb (Avanzino et
al., 2011), or maladaptive upregulation of uncrossed cortico-
reticulospinal pathways (Ellis et al., 2012; Karbasforoushan et al.,
2019).

In aphasia, increased right-hemisphere activation has some-
times been found in fMRI studies of people whose language was
disrupted by a left-hemisphere stroke (Turkeltaub et al., 2011) or
by a virtual lesion (Hartwigsen et al., 2013). As in the motor sys-
tem, this contralesional hyperexcitability has been ascribed to
decreased IHI from the lesioned hemisphere, and hypothesized
to interfere with recovery by leading to overinhibition of perile-
sional tissue that might otherwise subserve language recovery
(Martin et al., 2004). Evidence in favor of this hypothesis comes
from studies showing associations between right-hemisphere
activation and naming errors (Postman-Caucheteux et al., 2010),
correlation between a reduction of right-hemisphere overactiva-
tion and aphasia treatment success (Richter et al., 2008), and
beneficial effects of inhibitory stimulation to the right hemi-
sphere on aphasia recovery (Naeser et al., 2005; Hamilton et al.,
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2010). However, there is little direct evidence that IHI explains
these findings, and there is also evidence that increased right-
hemisphere activation may be compensatory and that its inhibi-
tion by experimental means or a second stroke is detrimental
(Kinsbourne, 1971; Turkeltaub et al., 2012; Turkeltaub, 2015).
Thus, as for motor recovery (Xu et al., 2019; Mirdamadi et al.,
2023), the role of IHI in aphasia is still in question (Gainotti,
2015).

Another instance in which IHI has been proposed to play a
role in stroke-induced disability is spatial neglect. Spatial neglect
is characterized by asymmetric spatial performance (e.g., failure
to detect or move toward stimuli on the contralesional side) that
is not explained by a basic sensory or motor deficit, and it is
more common, severe, and persistent after right-hemispheric
injury (Stone et al., 1993; Ten Brink et al., 2017). It has been pro-
posed that each hemisphere has a contralateral attention bias,

and that the hemispheres inhibit one another through transcal-
losal IHI (Kinsbourne, 1970). Unilateral lesions may produce
neglect of contralateral space because the damaged hemisphere is
impaired both in its ability to direct attention to the contrale-
sional side and in its ability to inhibit the opposing hemisphere’s
attentional bias toward the ipsilesional side. Neglect may be less
severe and persistent after left-hemisphere lesions either because
of the right hemisphere’s dominant role for attention (Robertson
et al., 1998; Husain and Rorden, 2003) and/or because the right
hemisphere can allocate attention to both sides of space, which
allows it to compensate for left-hemisphere lesions (Heilman
and Van Den Abell, 1980; Mesulam, 1999). Support for the IHI
hypothesis of spatial neglect includes a case study in which
neglect caused by a right parietal lesion resolved after a second
infarct to the left frontal cortex (Vuilleumier et al., 1996), func-
tional neuroimaging evidence for a link between normalization

Figure 2. Functional allocation in neural circuits after stroke. A, Stroke causes loss of connectivity and reduction in spiking activity and synchronization. Shaded region represents stroke. Red
represents pyramidal neurons in layers 2/3 and 5 in peri-infarct cortex. Green represents inputs from the thalamus. Blue represents output to the striatum. Gray pyramidal neurons indicate
those with dampened activity after stroke from loss of structural connectivity and reduction in spine densities and axonal boutons. Time series plot above represents reduction in movement-
related spiking activity (shaded region) with the trace of the population average shown below. B, Enhancing excitability within neuronal circuits either through neurostimulation (blue device
on left) time-locked to task onset or with genetic modulations of CCR5 or CREB allows selective integration of excitable neurons into a functional motor circuit. Yellow represents allocated neu-
rons. Functional allocation leads to restoring connectivity through increased spine densities, spiking activity, and synchronization.
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of left-hemisphere hyperactivation and spontaneous recovery
from neglect (Corbetta et al., 2005), and several studies inducing
a temporary shift in attention contralateral to excitatory and ipsi-
lateral to inhibitory neurostimulation in neurologically healthy
adults (Dambeck et al., 2006; Sparing et al., 2009; Giglia et al.,
2011; Szczepanski and Kastner, 2013). In a cat model, neglect
induced by unilateral cortical lesions temporarily resolved af-
ter deactivation of contralesional cortex or superior colliculus
(Rushmore et al., 2006). Evidence regarding the use of neuro-
stimulation to restore interhemispheric balance and treat
neglect in humans is growing (Fig. 3C), albeit not unequivocal
(e.g., Oliveri et al., 2001; Yi et al., 2016; Yang et al., 2017;
Zebhauser et al., 2019; Veldema et al., 2020).

Outside of interhemispheric interactions, descending path-
ways reflect another form of long-range connectivity that is
crucially involved in stroke recovery. In humans, the CST is
the primary descending system responsible for voluntary, dex-
terous, goal-directed movements; lesions that disrupt it pro-
duce hemiparesis. In humans and nonhuman primates, the
CST is highly specialized and includes monosynaptic connec-
tions between layer V pyramidal neurons in M1 and a moto-
neurons in the spinal cord (Lemon, 2008). Stroke commonly
disrupts the CST, either directly (Puig et al., 2011) or through
secondary degeneration of descending axons (i.e., Wallerian
degeneration) (Yu et al., 2009; DeVetten et al., 2010). However,
up to 85% of stroke survivors have residual CST projections
from the lesioned hemisphere to a motoneuron pools innervat-
ing paretic upper extremity muscles (Stinear et al., 2017). The
presence and functional integrity of these projections are a
strong predictor of upper extremity motor recovery (Stinear
et al., 2007, 2017), raising the possibility that improving synap-
tic transmission along this pathway could enhance recovery.
In this way, stroke-related weakness shares a common substrate
(i.e., decreased CST transmission) with incomplete spinal cord
injury (Christiansen and Perez, 2018), where neurostimulation
aimed at strengthening cortical-corticospinal and corticospi-
nal-motoneuronal synaptic transmission has shown promise
for promoting motor recovery (Bunday and Perez, 2012; Long

et al., 2017; Jo et al., 2023). Neurostimulation targeting cortico-
spinal-motoneuronal synaptic transmission may also benefit
post-stroke CST transmission and paretic hand muscle activa-
tion (Urbin et al., 2021), but large-scale trials have not yet been
conducted. Future work should focus on developing a detailed
mechanistic understanding of how residual CST transmission
recovers after stroke and implementing targeted interventions
that potentiate synaptic transmission at remaining corticospinal
connections (Fig. 3D). In summary, changes in long-range
pathways frequently occur after stroke and likely contribute to
multiple types of post-stroke disability. Normalization of these
pathways then may also be important for recovery, either alone
or in conjunction with restoration or remapping of more local
peri-infarct circuits.

Next generation approaches to restoring neural circuits to
promote recovery
Mechanisms governing post-stroke impairment and recovery are
clearly multifaceted, involving changes that span from individual
neurons, to local neuronal ensembles, and to long-range connec-
tions affecting distributed networks. A common theme through-
out this review is that dysfunction extends beyond the infarct
core and contributes to post-stroke disability, and that normal-
ization or restoration of the activity of “spared” neurons, circuits,
and pathways likely contributes to recovery of function after
stroke. We suggest the following simplified model summarizing
these ideas. In the healthy brain, individual neurons are situated
in local microcircuits, with long-range excitatory and inhibitory
inputs, as well as local and long-range outputs (Fig. 4A). Proper
functionality results from population dynamics, with network-
wide oscillations from coordination of spiking activity of individ-
ual neurons into ensembles. After stroke, neurons in the infarct
core are destroyed, connectivity is disrupted, excitation/inhibi-
tion balance shifts, network oscillations are impaired, and the ac-
tivity of spared neurons in peri-infarct and more distant regions
(diaschisis) is disrupted (Fig. 4B). Over time, many of these
changes normalize to some extent and the function of spared
neurons and circuits is restored, although often incompletely

Figure 3. Long-range pathways important for post-stroke impairment and recovery. A, In the healthy brain, excitatory (arrows) and inhibitory (lines with dots) outputs of the two hemi-
spheres are balanced. B, After a unilateral lesion directly disrupting some of one hemisphere’s excitatory and inhibitory outputs, the remaining perilesional outputs are suppressed by increased
IHI from the disinhibited contralesional hemisphere. C, Inhibitory stimulation (red lightning bolt) of the intact hemisphere may help restore interhemispheric balance (e.g., to alleviate spatial
neglect). D, In the motor system, excitatory stimulation (yellow lightning bolt) of CST projections from the lesioned hemisphere to alpha motoneurons in the spinal cord may upregulate
remaining perilesional outputs and improve paretic motor behavior, irrespective of changes to interhemispheric balance.

7494 • J. Neurosci., November 8, 2023 • 43(45):7489–7500 Campos et al. · Circuit Mechanisms of Recovery after Stroke



(Fig. 4C). Structural changes and engagement of plasticity pro-
grams may allow functional allocation of spared neurons into
established networks, enabling true remapping and potentiating
recovery of function (Fig. 4D). This framework suggests that re-
covery is a dynamic process occurring across stages over time,
with multiple potential avenues of intervention to promote re-
covery after stroke.

As summarized above, the balance between excitation and inhi-
bition shifts after stroke, impairing the function of spared neurons
and circuits. In rodents, several studies have demonstrated that
shifting this balance toward greater excitation can promote restora-
tion of neuronal activity and/or remapping. Pharmacologically,
both reducing GABAergic inhibition (Clarkson et al., 2010;
Alia et al., 2016) and promoting excitatory neurotransmission
via AMPARs (Clarkson et al., 2011) promote recovery after
stroke. Optogenetic tools have also been used to increase excita-
tion in a cell- and region-specific manner after stroke to pro-
mote recovery, including direct stimulation of peri-infarct
excitatory neurons (Cheng et al., 2014; Conti et al., 2022) and
stimulation of excitatory thalamocortical inputs (Tennant et al.,
2017). More recently, cell-specific chemogenetic stimulation of
vasoactive intestinal peptide inhibitory interneurons was shown
to improve recovery after stroke, likely through disinhibition of
peri-infarct circuits (Motaharinia et al., 2021). A recent Phase 2

trial in humans tested the effects of an oral GABAA a5 antago-
nist that reduces tonic inhibition on disability after ischemic
stroke but unfortunately found no significant improvement
compared with placebo (Chabriat et al., 2020). There are a
number of possible explanations for this outcome, but future
interventions will likely need to be more precisely targeted to
manipulate the excitation/inhibition balance in the right areas
of the CNS and at the right times during recovery. Proper tim-
ing will be particularly crucial to avoid exacerbating acute phase
excitotoxicity (Lai et al., 2014), while capitalizing on adaptive
plasticity mechanisms upregulated in the subacute phase after
stroke. Optogenetic and chemogenetic approaches targeting
specific neuronal subpopulations in defined regions may offer
one potential avenue to do so in the future (Sahel et al., 2022),
although significant work still needs to be done to translate
these technologies to patients recovering from stroke.

In addition to generally promoting excitability of neurons,
studies of neural population dynamics after stroke suggest that it
may be important to coordinate this activity precisely as well
(Ganguly et al., 2022). Noninvasively modulating oscillatory dy-
namics offers one potential approach (Storch et al., 2021). In
nonhuman primates, electrical stimulation of peri-infarct cortex
can drive changes in low-frequency oscillations and g -oscilla-
tions acutely after stroke (J. Zhou et al., 2022). During recovery,

Figure 4. A simplified model of neural circuit changes after stroke and during recovery. A, In the healthy brain, neurons subserving two distinct functions (yellow and blue triangles) are situ-
ated in local microcircuits, with long-range excitatory and inhibitory inputs (top, green and red lines, respectively), and axonal outputs (middle, thin yellow and blue lines). Neural oscillations
coordinate population activity and synchronize spiking in functional ensembles. B, After stroke (red hatched circle), neurons in the ischemic core are lost. Spared neurons may lose synaptic con-
nectivity (loss of dendritic spines), excitation/inhibition balance shifts, neural oscillations are disrupted, and neuronal activity is impaired (depicted as pale coloration of neurons and reduced
spiking activity). C, During recovery, the infarct core contracts due to gliosis, and activity in spared neurons and circuits is (partially) restored, with normalization of synaptic connectivity, excita-
tion/inhibition balance, neural oscillations, and neuronal activity. D, Engagement of plasticity mechanisms, either endogenously or via therapeutic interventions, may allow allocation of spared
neurons (depicted as color change from blue to yellow) into networks subserving the functionality lost to stroke, resulting in remapping and better recovery.
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stimulation can entrain ensembles of neurons to cofire, lead-
ing to enhanced behavioral performance (Khanna et al.,
2021). Likewise, stimulation of peri-infarct cortex in rodents can
improve low-frequency oscillation dynamics and improve recov-
ery (Ramanathan et al., 2018). In humans, transcranial magnetic
stimulation (TMS) is a noninvasive brain stimulation technique
that can activate and induce plastic changes within neural circuits
supporting motor, language, and cognitive abilities. However,
these techniques produce highly variable effects, even when
applied in the nonlesioned brain (Ridding and Ziemann, 2010;
López-Alonso et al., 2014; Ziemann and Siebner, 2015). Such
variability likely contributes to the conflicting results of recent
post-stroke TMS trials (Hao et al., 2013; Müri et al., 2013;
Smith and Stinear, 2016; Nyffeler et al., 2019; Lefaucheur et al.,
2020). TMS interventions therefore require further optimiza-
tion to reach their therapeutic potential; and delivering TMS
specifically coupled to brain activity patterns, termed brain
state-dependent TMS, offers one potential approach. For example,
in the healthy human motor system, TMS interventions best
improve CST transmission and motor learning when coupled to
specific phases of EEG-defined sensorimotor rhythms that corre-
spond to strong CST activation (Zrenner et al., 2018; Baur et al.,
2020; Hussain et al., 2021). These findings have led to the initia-
tion of a multisite clinical trial that will combine standard rehabili-
tation with repeated application of m phase-coupled iM1 TMS in
subacute stroke (Lieb et al., 2023) to determine whether this
dynamically informed approach to neurostimulation can improve
motor recovery. However, post-stroke sensorimotor rhythm gen-
erating circuits may be disrupted in a heterogeneous manner that
depends on lesion pattern, the amount of perilesional remapping,
and motor impairment level (Cramer et al., 2003; Griffis et al.,
2019), complicating efforts to couple neurostimulation with “nor-
mal” sensorimotor rhythms. An alternative approach involves
identifying personalized whole-brain EEG activity patterns
during which each stroke survivor’s residual CST is best acti-
vated (Metsomaa et al., 2021; Hussain and Quentin, 2022),
and then coupling TMS interventions to these patterns (Khatri
and Hussain, 2023). Translating these approaches outside of the
motor system will, however, require additional work to obtain reli-
able readouts of TMS-induced activation of recovery-relevant cir-
cuits. With continued development, this approach may lead to
personalized brain state-dependent TMS interventions that are
fully customized to each stroke survivor’s pattern of brain activ-
ity, residual CST engagement, and stage of recovery.

Modulating excitability of neurons after stroke might offer
one avenue to drive their functional allocation into new neuronal
ensembles. However, it may also be possible to drive functional
allocation genetically. There are distinct molecular programs that
are activated in allocated neurons after stroke that mirror those
involved in functional allocation during memory formation in
the healthy brain. Supporting this idea, machine learning models
applied to gene expression datasets can predict, and hence clas-
sify, samples from animals with functional motor recovery from
animals with deficits (M.T.J., unpublished data) based on expres-
sion of gene sets normally expressed in functionally allocated
neurons during memory formation in the healthy brain. The
best studied of these genes are the transcription factor, CREB
(cAMP Response Element Binding Protein) (Y. Zhou et al., 2009;
Park et al., 2016) and the GPCR CCR5 (C-C Chemokine
Receptor-5) (M. Zhou et al., 2016; Shen et al., 2022). Gene
expression profiles of neurons with CCR5 or CREB perturba-
tions after stroke show overrepresentation of gene sets that are
normally expressed in neurons allocated to a memory trace

(M.T.J., unpublished data). Furthermore, both overexpression
of CREB (Caracciolo et al., 2018; Bechay et al., 2022) or downregu-
lation of CCR5 (Joy et al., 2019; Wu et al., 2023) improves func-
tional motor recovery in mouse models of stroke. Stroke patients
that are carriers for a loss-of-function mutation in CCR5 show bet-
ter outcomes compared with control patients (Joy et al., 2019).
Forcing allocation through CREB overexpression in cortical
neurons in peri-infarct cortex promotes recovery (Caracciolo
et al., 2018), and inactivation of the same neurons leads to a
loss of recovery, demonstrating the necessity of these allo-
cated neurons. While gene therapy approaches still face sig-
nificant translational hurdles for clinical use, clinical trials
targeting CCR5 pharmacologically are already underway (clinical
trial identifiers NCT04789616, NCT04966429). Thus, genetic
manipulation of functional allocation (Fig. 2B) represents a novel
molecular approach to restoring neural circuits and promoting
recovery.

Historical hypotheses, such as remapping, redundancy, and
diaschisis, have driven research into stroke recovery for over a
century. In some ways, these early ideas, made in the infancy of
neuroscience, have held up remarkably well and still hold rele-
vance for current research. However, as advances in neuro-
science techniques allow for the study of the structure and
function of neural circuits with ever greater precision, our under-
standing of the complexity and dynamics of the changes that
occur in the CNS after stroke has deepened as well. While this
complexity does not always fit neatly into historical models, it
does offer promising new avenues for investigation and, more
importantly, suggests novel next generation approaches toward
reducing disability and improving recovery after stroke.
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