
UC Irvine
UC Irvine Previously Published Works

Title
Fast SVM Training Using Approximate Extreme Points

Permalink
https://escholarship.org/uc/item/8hb9097x

Authors
Nandan, Manu
Khargonekar, Pramod P
Talathi, Sachin S

Publication Date
2014

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8hb9097x
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Fast SVM training using approximate extreme points

Fast SVM Training Using Approximate Extreme Points

Manu Nandan mnandan@ufl.edu
Department of Computer and Information Science and Engineering
University of Florida
Gainesville, FL 32611, USA

Pramod P. Khargonekar ppk@ece.ufl.edu
Department of Electrical and Computer Engineering
University of Florida,
Gainesville, FL 32611, USA

Sachin S. Talathi talathi@ufl.edu

Department of Pediatrics, Division of Neurology

Department of Biomedical Engineering

Department of Neuroscience

University of Florida

Gainesville, FL 32611, USA

Editor:

Abstract

Applications of non-linear kernel Support Vector Machines (SVMs) to large datasets is
seriously hampered by its excessive training time. We propose a modification, called the
approximate extreme points support vector machine (AESVM), that is aimed at overcoming
this burden. Our approach relies on conducting the SVM optimization over a carefully
selected subset, called the representative set, of the training dataset. We present analytical
results that indicate the similarity of AESVM and SVM solutions. A linear time algorithm
based on convex hulls and extreme points is used to compute the representative set in
kernel space. Extensive computational experiments on nine datasets compared AESVM
to LIBSVM (Chang and Lin, 2001b), CVM (Tsang et al., 2005) , BVM (Tsang et al.,
2007), LASVM (Bordes et al., 2005), SVMperf (Joachims and Yu, 2009), and the random
features method (Rahimi and Recht, 2007). Our AESVM implementation was found to
train much faster than the other methods, while its classification accuracy was similar to
that of LIBSVM in all cases. In particular, for a seizure detection dataset, AESVM training
was almost 103 times faster than LIBSVM and LASVM and more than forty times faster
than CVM and BVM. Additionally, AESVM also gave competitively fast classification
times.

Keywords: support vector machines, convex hulls, large scale classification, non-linear
kernels, extreme points

1. Introduction

Several real world applications require solutions of classification problems on large datasets.
Even though SVMs are known to give excellent classification results, their application to
problems with large datasets is impeded by the burdensome training time requirements.

1

ar
X

iv
:1

30
4.

13
91

v1
 [

cs
.L

G
]

 4
 A

pr
 2

01
3

Nandan, Khargonekar, and Talathi

Recently, much progress has been made in the design of fast training algorithms (Fan et al.,
2008; Shalev-Shwartz et al., 2011) for SVMs with the linear kernel (linear SVMs). However,
many applications require SVMs with non-linear kernels for accurate classification. Training
time complexity for SVMs with non-linear kernels is typically quadratic in the size of the
training dataset (Shalev-Shwartz and Srebro, 2008). The difficulty of the long training
time is exacerbated when grid search with cross-validation is used to derive the optimal
hyper-parameters, since this requires multiple SVM training runs. Another problem that
sometimes restricts the applicability of SVMs is the long classification time. The time
complexity of SVM classification is linear in the number of support vectors and in some
applications the number of support vectors is found to be very large (Guo et al., 2005).

In this paper, we propose a new approach for fast SVM training. Consider a two class
dataset of N data vectors, X = {xi : xi ∈ RD, i = 1, 2, ..., N}, and the corresponding target
labels Y = {yi : yi ∈ [−1, 1], i = 1, 2, ..., N}. The SVM primal problem can be represented
as the following unconstrained optimization problem (Teo et al., 2010; Shalev-Shwartz et al.,
2011):

min
w,b

F1(w, b) =
1

2
‖w‖2 +

C

N

N∑
i=1

l(w, b, φ(xi)) (1)

where l(w, b, φ(xi)) = max{0, 1− yi(wTφ(xi) + b)}, ∀xi ∈ X

and φ : RD → H, b ∈ R, and w ∈ H, a Hilbert space

Here l(w, b, φ(xi)) is the hinge loss of xi. Note that SVM formulations where the penalty
parameter C is divided by N have been used extensively (Schölkopf et al., 2000; Franc and
Sonnenburg, 2008; Joachims and Yu, 2009). These formulations enable better analysis of
the scaling of C with N (Joachims, 2006). The problem in (1) requires optimization over
N variables. In general, for SVM training algorithms the training time will reduce if the
size of the training dataset is reduced.

In this paper, we present an alternative to (1), called approximate extreme points support
vector machines (AESVM), that requires optimization over only a subset of the training
dataset. The AESVM formulation is:

min
w,b

F2(w, b) =
1

2
‖w‖2 +

C

N

M∑
t=1

βtl(w, b, φ(xt)) (2)

where xt ∈ X∗,w ∈ H, and b ∈ R

Here M is the number of vectors in the selected subset of X, called the representative set
X∗. The constants βt are defined in (10). We will prove in Section 3.2 that:

• F1(w∗1, b
∗
1)− F2(w∗2, b

∗
2) ≤ C

√
Cε, where (w∗1, b

∗
1) and (w∗2, b

∗
2) are the solutions of (1)

and (2) respectively

• Under the assumptions given in corollary 4, F1(w∗2, b
∗
2)− F1(w∗1, b

∗
1) ≤ 2C

√
Cε

• The AESVM problem minimizes an upper bound of a low rank Gram matrix approx-
imation of the SVM objective function

2

Fast SVM training using approximate extreme points

Based on these results we claim that solving the problem in (2) yields a solution close
to that of (1). As a by-product of the reduction in size of the training set, AESVM is also
observed to result in fast classification. Considering that the representative set will have
to be computed several times if grid search is used to find the optimum hyper-parameter
combination, we also propose fast algorithms to compute Z∗. In particular, we present
an algorithm of time complexity O(N) and an alternative algorithm of time complexity
O(N log2

N
P) to compute Z∗, where P is a predefined large integer.

The main contributions of this work can be summarized as follows:

• Theoretical: Theorems 1 and 2, and Corollaries 3 to 5 give rationale for the use of
AESVM as a computationally less demanding alternative to the SVM formulation.

• Algorithmic: The algorithm DeriveRS, described in Section 4, computes the represen-
tative set in linear time.

• Experimental: Our extensive experiments on nine datasets of varying characteristics,
illustrate the suitability of applying AESVM to classification on large datasets.

This paper is organized as follows: in Section 2, we briefly discuss recent research on
fast SVM training that is closely related to this work. Next, we provide the definition of
the representative set and discuss properties of AESVM. In section 4, we present efficient
algorithms to compute the representative set and analyze its computational complexity.
Section 5 describes the results of our computational experiments. We compared AESVM
to the widely used LIBSVM library, core vector machines (CVM), ball vector machines
(BVM), LASVM, SVMperf, and the random features method by Rahimi and Recht (2007).
Our experiments used eight publicly available datasets and a data set on EEG from an
animal model of epilepsy (Talathi et al., 2008; Nandan et al., 2010). We conclude with a
discussion of the results of this paper in Section 6.

2. Related Work

Several methods have been proposed to efficiently solve the SVM optimization problem.
SVMs require special algorithms, as standard optimization algorithms such as interior point
methods (Boyd and Vandenberghe, 2004; Shalev-Shwartz et al., 2011) have large memory
and training time requirements that make it infeasible for large datasets. In the following
sections we discuss the most widely used strategies to solve the SVM optimization problem.
We present a comparison of some of these methods to AESVM in Section 6. SVM solvers
can be broadly divided into two categories as described below.

2.1 Dual optimization

The SVM primal problem is a convex optimization problem with strong duality (Boyd and
Vandenberghe, 2004). Hence its solution can be arrived at by solving its dual formulation

3

Nandan, Khargonekar, and Talathi

given below:

max
α

L1(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj) (3)

subject to 0 ≤ αi ≤
C

N
and

N∑
i=1

αiyi = 0

Here K(xi,xj) = φ(xi)
Tφ(xj), is the kernel product (Schölkopf and Smola, 2001) of the

data vectors xi and xj , and α is a vector of all variables αi. Solving the dual problem is
computationally simpler, especially for non-linear kernels and a majority of the SVM solvers
use dual optimization. Some of the major dual optimization algorithms are discussed below.

Decomposition methods (Osuna et al., 1997) have been widely used to solve (3). These
methods optimize over a subset of the training dataset, called the ‘working set’, at each al-
gorithm iteration. SVMlight (Joachims, 1999) and SMO (Platt, 1999) are popular examples
of decomposition methods. Both these methods have a quadratic time complexity for linear
and non-linear SVM kernels (Shalev-Shwartz and Srebro, 2008). Heuristics such as shrink-
ing and caching (Joachims, 1999) enable fast convergence of decomposition methods and
reduce their memory requirements. LIBSVM (Chang and Lin, 2001b) is a very popular im-
plementation of SMO. A dual coordinate descent (Hsieh et al., 2008) SVM solver computes
the optimal α value by modifying one variable αi per algorithm iteration. Dual coordinate
descent SVM solvers, such as LIBLINEAR (Fan et al., 2008), have been proposed primarily
for the linear kernel.

Approximations of the Gram matrix (Fine and Scheinberg, 2002; Drineas and Mahoney,
2005), have been proposed to increase training speed and reduce memory requirements of
SVM solvers. The Gram matrix is the NxN square matrix composed of the kernel products
K(xi,xj), ∀xi,xj ∈ X. Training set selection methods attempt to reduce the SVM training
time by optimizing over a selected subset of the training set. Several distinct approaches
have been used to select the subset. Some methods use clustering based approaches (Pavlov
et al., 2000) to select the subsets. In Yu et al. (2003), hierarchical clustering is performed
to derive a dataset that has more data vectors near the classification boundary than away
from it. Minimum enclosing ball clustering is used in Cervantes et al. (2008) to remove data
vectors that are unlikely to contribute to the SVM training.

Random sampling of training data is another approach followed by approximate SVM
solvers. Lee and Mangasarian (2001) proposed reduced support vector machines (RSVM),
in which only a random subset of the training dataset is used. They solve a modified
formulation of the L2-SVM that minimizes the l2-norm of ξ instead of its l1-norm. Bordes
et al. (2005) proposed the LASVM algorithm that uses active selection techniques to train
SVMs on a subset of the training dataset.

A core set (Clarkson, 2010) can be loosely defined as the subset of X for which the
solution of an optimization problem such as (3) has a solution similar to that for the entire
dataset X. Tsang et al. (2005) proved that the L2-SVM is a reformulation of the minimum
enclosing ball problem for some kernels. They proposed core vector machine (CVM) that
approximately solves the L2-SVM formulation using core sets. A simplified version of CVM
called ball vector machine (BVM) was proposed in Tsang et al. (2007), where only an

4

Fast SVM training using approximate extreme points

enclosing ball is computed. Gärtner and Jaggi (2009) proposed an algorithm to solve the
L1-SVM problem, by computing the shortest distance between two polytopes (Bennett and
Bredensteiner, 2000) using core sets. However, there are no published results on solving
L1-SVM with non-linear kernels using their algorithm.

Another method used to approximately solve the SVM problem is to map the data
vectors into a randomized feature space that is relatively low dimensional compared to the
kernel space H (Rahimi and Recht, 2007). Inner products of the projections of the data
vectors are approximations of their kernel product. This effectively reduces the non-linear
SVM problem into the simpler linear SVM problem, enabling the use of fast linear SVM
solvers. This method is referred as RfeatSVM in the following sections of this document.

2.2 Primal optimization

In recent years, linear SVMs are finding increased use in applications with high-dimensional
datasets. This has led to a surge in publications on efficient primal SVM solvers, which are
mostly used for linear SVMs. To overcome the difficulties caused by the non-differentiability
of the primal problem, the following methods are used.

Stochastic sub-gradient descent (Zhang, 2004) uses the sub-gradient computed at some
data vector xi to iteratively update w. Shalev-Shwartz et al. (2011) proposed a stochastic
sub-gradient descent SVM solver, Pegasos, that is reported to be among the fastest linear
SVM solvers. Cutting plane algorithms (Kelley, 1960) solve the primal problem by succes-
sively tightening a piecewise linear approximation. It was employed by Joachims (2006)
to solve linear SVMs with their implementation SVMperf. This work was generalized in
Joachims and Yu (2009) to include non-linear SVMs by approximately estimating w with
arbitrary basis vectors using the fix-point iteration method (Schölkopf and Smola, 2001).
Teo et al. (2010) proposed a related method for linear SVMs, that corrected some stability
issues in the cutting plane methods.

3. Analysis of AESVM

As mentioned in the introduction, AESVM is an optimization problem on a subset of the
training dataset called the representative set. In this section we first define the representa-
tive set. Then we present some properties of AESVM. These results are intended to provide
theoretical justifications for the use of AESVM as an approximation to the SVM problem
(1). We denote the cardinality of a set S by |S|.

3.1 Definition of the representative set

The convex hull of a set X is the smallest convex set containing X (Rockafellar, 1996) and
can be obtained by taking all possible convex combinations of elements of X. Assuming X
is finite, the convex hull is a polygon. The extreme points of X, EP (X), are defined to be
the vertices of the convex polygon formed by the convex hull of X. Any vector xi in X can
be represented as a convex combination of vectors in EP (X):

xi =
∑

xt∈EP (X)

πitxt, where 0 ≤ πit ≤ 1, and
∑

xt∈EP (X)

πit = 1

5

Nandan, Khargonekar, and Talathi

We can see that functions of any data vector in X can be computed using only EP (X)
and the convex combination weights {πit}. The design of AESVM is motivated by the
intuition that the use of extreme points may provide computational efficiency. However,
extreme points are not useful in all cases, as for some kernels all data vectors are extreme
points in kernel space. For example, for the Gaussian kernel, K(xi,xi) = φ(xi)

Tφ(xi) = 1.
This implies that all the data vectors lie on the surface of the unit ball in the Gaussian kernel
space and therefore are extreme points. Hence, we introduce the concept of approximate
extreme points.

Consider the set of transformed data vectors:

Z = {zi : zi = φ(xi),∀xi ∈ X} (4)

Here, the explicit representation of vectors in kernel space is only for the ease of under-
standing and all the computations are performed using kernel products. Let V be a positive
integer that is much smaller than N and ε be a small positive real number. For notational
simplicity, we assume N is divisible by V . Let Zl be subsets of Z for l = 1, 2, ..., (NV), such
that Z = ∪

l
Zl and Zl ∩ Zm = ∅ for l 6= m, where m = 1, 2, ..., (NV). We require that the

subsets Zl satisfy |Zl| = V,∀l and

∀zi, zj ∈ Zl, we have yi = yj (5)

Let Zql denote an arbitrary subset of Zl. Next, for any zi ∈ Zl we define:

f(zi,Z
q
l) = min

µi
‖zi −

∑
zt∈Zql

µitzt‖2 (6)

s.t. 0 ≤ µit ≤ 1, and
∑
zt∈Zql

µit = 1

Consider the collection of subsets

Zε := {Zql : max
zi∈Zl

f(zi,Z
q
l) ≤ ε}

A set of approximate extreme points of Zl is denoted by Z∗l , and is defined as follows 1

Z∗l ∈ argmin
Zql ∈Zε

|Zql | (7)

It can be seen that µit for zt ∈ Z∗l are analogous to the convex combination weights πit for
xt ∈ EP (X). The representative set Z∗ of Z is the union of the sets of approximate extreme
points of its subsets Zl.

Z∗ =

N
V∪
l=1

Z∗l

1. The properties derived for AESVM in Section 3.2 are valid for any Zql . The requirement for the smallest
Zql is made only for the sake of a computationally simpler AESVM problem

6

Fast SVM training using approximate extreme points

The representative set has properties that are similar to EP (X). Given any zi ∈ Z, we
can find Zl such that zi ∈ Zl. Let γit = {µit for zt ∈ Z∗l and zi ∈ Zl, and 0 otherwise}. Now
using (6), we can write:

zi =
∑
zt∈Z∗

γitzt + τi (8)

Here τi is a vector that accounts for the approximation error f(zi,Z
q
l) in (6). From (6)-(8)

we can conclude that:

‖τi‖2 ≤ ε ∀ zi ∈ Z (9)

Since ε will be set to a very small positive constant, we can infer that τi is a very small
vector. The weights γit are used to define βt in (2) as:

βt =
N∑
i=1

γit (10)

For ease of notation, we refer to the set X∗ := {xt : zt ∈ Z∗} as the representative
set of X in the remainder of this paper. For the sake of simplicity, we assume that all
γit , βt,X, and X∗ are arranged so that X∗ is positioned as the first M vectors of X, where
M = |Z∗|.

3.2 Properties of AESVM

Consider the following optimization problem.

min
w,b

F3(w, b) =
1

2
‖w‖2 +

C

N

N∑
i=1

l(w, b,ui) (11)

where ui =

M∑
t=1

γitzt, zt ∈ Z∗,w ∈ H, and b ∈ R

We use the problem in (11) as an intermediary between (1) and (2). The intermediate
problem (11) has a direct relation to the AESVM problem, as given in the following theorem.
The properties of the max function given below are relevant to the following discussion:

max(0, A+B) ≤ max(0, A) +max(0, B) (12)

max(0, A−B) ≥ max(0, A)−max(0, B) (13)

N∑
i=1

max(0, ciA) = max(0, A)

N∑
i=1

ci (14)

for A,B, ci ∈ R and ci ≥ 0.

Theorem 1 Let F3(w, b) and F2(w, b) be as defined in (11) and (2) respectively. Then,

F3(w, b) ≤ F2(w, b) ,∀w ∈ H and b ∈ R

7

Nandan, Khargonekar, and Talathi

Proof Let L2(w, b,X∗) = C
N

M∑
t=1
l(w, b, zt)

N∑
i=1
γit and L3(w, b,X∗) = C

N

N∑
i=1
l(w, b,ui), where

ui =
M∑
t=1
γitzt. From the properties of γit in (6), and from (5) we get:

L3(w, b,X∗) =
C

N

N∑
i=1

max

[
0,

{
1− yi(wT

M∑
t=1

γitzt + b)

}]
(15)

=
C

N

N∑
i=1

max

[
0,

M∑
t=1

γit
{

1− yt(wT zt + b)
}]

Using properties (12) and (14) we get:

L3(w, b,X∗) ≤ C

N

N∑
i=1

M∑
t=1

max
[
0, γit

{
1− yt(wT zt + b)

}]
=
C

N

M∑
t=1

max
[
0, 1− yt(wT zt + b)

] N∑
i=1

γit

= L2(w, b,X∗)

Adding 1
2‖w‖

2 to both sides of the inequality above we get

F3(w, b) ≤ F2(w, b)

The following theorem gives a relationship between the SVM problem and the intermediate
problem.
Theorem 2 Let F1(w, b) and F3(w, b) be as defined in (1) and (11) respectively. Then,

− C

N

N∑
i=1

max
{

0, yiw
T τi
}
≤ F1(w, b)− F3(w, b) ≤ C

N

N∑
i=1

max
{

0,−yiwT τi
}

∀w ∈ H and b ∈ R, where τi ∈ H is the vector defined in (8).

Proof Let L1(w, b,X) = C
N

N∑
i=1
l(w, b, zi), denote the average hinge loss that is minimized

in (1) and L3(w, b,X∗) be as defined in Theorem 1. Using (8) and (1) we get:

L1(w, b,X) =
C

N

N∑
i=1

max
{

0, 1− yi(wT zi + b)
}

=
C

N

N∑
i=1

max

{
0, 1− yi(wT (

M∑
t=1

γitzt + τi) + b)

}

8

Fast SVM training using approximate extreme points

From the properties of γit in (6), and from (5) we get:

L1(w, b,X) =
C

N

N∑
i=1

max

{
0,

M∑
t=1

γit(1− yt(wT zt + b))− yiwT τi

}
(16)

Using (12) on (16), we get:

L1(w, b,X) ≤ C

N

N∑
i=1

max

[
0,

M∑
t=1

γit
{

1− yt(wT zt + b)
}]

+
C

N

N∑
i=1

max
{

0,−yiwT τi
}

= L3(w, b,X∗) +
C

N

N∑
i=1

max
{

0,−yiwT τi
}

Using (13) on (16), we get:

L1(w, b,X) ≥ C

N

N∑
i=1

max

[
0,

M∑
t=1

γit
{

1− yt(wT zt + b)
}]
− C

N

N∑
i=1

max
{

0, yiw
T τi
}

= L3(w, b,X∗)− C

N

N∑
i=1

max
{

0, yiw
T τi
}

From the two inequalities above we get,

L3(w, b,X∗)−C
N

N∑
i=1

max
{

0, yiw
T τi
}
≤ L1(w, b,X) ≤ L3(w, b,X∗)+

C

N

N∑
i=1

max
{

0,−yiwT τi
}

Adding 1
2‖w‖

2 to the inequality above we get

F3(w, b)− C

N

N∑
i=1

max
{

0, yiw
T τi
}
≤ F1(w, b) ≤ F3(w, b) +

C

N

N∑
i=1

max
{

0,−yiwT τi
}

Using the above theorems we derive the following corollaries. These results provide the
theoretical justification for AESVM.
Corollary 3 Let (w∗1, b

∗
1) be the solution of (1) and (w∗2, b

∗
2) be the solution of (2). Then,

F1(w∗1, b
∗
1)− F2(w∗2, b

∗
2) ≤ C

√
Cε

Proof It is known that ‖w∗1‖ ≤
√
C (refer Theorem 1 in Shalev-Shwartz et al. (2011)). It

is straight forward to see that the same result also applies to AESVM, ‖w∗2‖ ≤
√
C . Based

on (9) we know that ‖τi‖ ≤
√
ε. From Theorem 2 we get:

F1(w∗2, b
∗
2)− F3(w∗2, b

∗
2) ≤ C

N

N∑
i=1

max
{

0,−yiw∗T2 τi
}
≤ C

N

N∑
i=1

‖w∗2‖‖τi‖

≤ C

N

N∑
i=1

√
Cε = C

√
Cε

9

Nandan, Khargonekar, and Talathi

Since (w∗1, b
∗
1) is the solution of (1), F1(w∗1, b

∗
1) ≤ F1(w∗2, b

∗
2). Using this property and

Theorem 1 in the inequality above, we get:

F1(w∗1, b
∗
1)− F2(w∗2, b

∗
2) ≤ F1(w∗1, b

∗
1)− F3(w∗2, b

∗
2)

≤ F1(w∗2, b
∗
2)− F3(w∗2, b

∗
2) ≤ C

√
Cε (17)

Now we demonstrate some properties of AESVM using the dual problem formulations
of AESVM and the intermediate problem. The dual form of AESVM is given by:

max
α̂

L2(α̂) =

M∑
t=1

α̂t −
1

2

M∑
t=1

M∑
s=1

α̂tα̂sytysz
T
t zs (18)

subject to 0 ≤ α̂t ≤
C

N

N∑
i=1

γit and

M∑
t=1

α̂tyt = 0

The dual form of the intermediate problem is given by:

max
ᾰ

L3(ᾰ) =
N∑
i=1

ᾰi −
1

2

N∑
i=1

N∑
j=1

ᾰiᾰjyiyju
T
i uj (19)

subject to 0 ≤ ᾰi ≤
C

N
and

N∑
i=1

ᾰiyi = 0

Consider the mapping function h : RN → RM , defined as

h(ᾰ) = {α̃t : α̃t =

N∑
i=1

γitᾰi} (20)

It can be seen that the objective functions L2(h(ᾰ)) and L3(ᾰ) are identical.

L2(h(ᾰ)) =

M∑
t=1

α̃t −
1

2

M∑
t=1

M∑
s=1

α̃tα̃sytysz
T
t zs

=

N∑
i=1

ᾰi −
1

2

N∑
i=1

N∑
j=1

ᾰiᾰjyiyju
T
i uj

= L3(ᾰ)

It is also straight forward to see that, for any feasible ᾰ of (19), h(ᾰ) is a feasible point of
(18) as it satisfies the constraints in (18). However, the converse is not always true. With
that clarification, we present the following corollary.
Corollary 4 Let (w∗1, b

∗
1) be the solution of (1) and (w∗2, b

∗
2) be the solution of (2). Let α̂2 be

the dual variable corresponding to (w∗2, b
∗
2). Let h(ᾰ2) be as defined in (20). If there exists

an ᾰ2 such that h(ᾰ2) = α̂2 and ᾰ2 is a feasible point of (19), then,

F1(w∗2, b
∗
2)− F1(w∗1, b

∗
1) ≤ 2C

√
Cε

10

Fast SVM training using approximate extreme points

Proof Let (w∗3, b
∗
3) be the solution of (11) and ᾰ3 the solution of (19). We know that

L3(ᾰ2) = L2(α̂2) = F2(w∗2, b
∗
2) and L3(ᾰ3) = F3(w∗3, b

∗
3). Since L3(ᾰ3) ≥ L3(ᾰ2), we get

F3(w∗3, b
∗
3) ≥ F2(w∗2, b

∗
2)

But, from Theorem 1 we know F3(w∗3, b
∗
3) ≤ F3(w∗2, b

∗
2) ≤ F2(w∗2, b

∗
2). Hence

F3(w∗3, b
∗
3) = F3(w∗2, b

∗
2)

From the above result we get

F3(w∗2, b
∗
2)− F3(w∗1, b

∗
1) ≤ 0 (21)

From Theorem 2 we have the following inequalities:

−C
N

N∑
i=1

max
{

0, yiw
∗T
1 τi

}
≤ F1(w∗1, b

∗
1)− F3(w∗1, b

∗
1) (22)

F1(w∗2, b
∗
2)− F3(w∗2, b

∗
2) ≤ C

N

N∑
i=1

max
{

0,−yiw∗T2 τi
}

(23)

Adding (22) and (23) we get:

F1(w∗2, b
∗
2)− F1(w∗1, b

∗
1) ≤ R+

C

N

N∑
i=1

[
max

{
0,−yiw∗T2 τi

}
+max

{
0, yiw

∗T
1 τi

}]
(24)

where R = F3(w∗2, b
∗
2)−F3(w∗1, b

∗
1). Using (21) and the properties ‖w∗2‖ ≤

√
C and ‖w∗1‖ ≤√

C in (24):

F1(w∗2, b
∗
2)− F1(w∗1, b

∗
1) ≤ C

N

N∑
i=1

[
max

{
0,−yiw∗T2 τi

}
+max

{
0, yiw

∗T
1 τi

}]
≤ C

N

N∑
i=1

‖w∗2‖‖τi‖+ ‖w∗1‖‖τi‖

≤ C

N

N∑
i=1

2
√
Cε = 2C

√
Cε

Now we prove a relationship between AESVM and the Gram matrix approximation
methods mentioned in Section 2.1.
Corollary 5 Let L1(α), L3(ᾰ), and F2(w, b) be the objective functions of the SVM dual
(3), intermediate dual (19) and AESVM (2) respectively. Let zi, τi, and ui be as defined
in (4), (8), and (11) respectively. Let G and G̃ be the NxN matrices with Gij = yiyjz

T
i zj

and G̃ij = yiyju
T
i uj respectively. Then for any feasible ᾰ, α,w, and b:

11

Nandan, Khargonekar, and Talathi

1. Rank of G̃ = M,L1(α) =
N∑
i=1
αi − 1

2αGαT , L3(ᾰ) =
N∑
i=1
ᾰi − 1

2 ᾰG̃ᾰT , and

Trace(G− G̃) ≤ Nε+ 2
M∑
t=1

zTt

N∑
i=1

γitτi

2. F2(w, b) ≥ L3(ᾰ)

Proof Using G, the SVM dual objective function L1(α) can be represented as:

L1(α) =
N∑
i=1

αi −
1

2
αGαT

Similarly, L3(ᾰ) can be represented using G̃ as:

L3(ᾰ) =

N∑
i=1

ᾰi −
1

2
ᾰG̃ᾰT

Applying ui =
M∑
t=1
γitzt, ∀zt ∈ Z∗ to the definition of G̃, we get:

G̃ = ΓAΓT

Here A is the MxM matrix comprised of Ats = ytysz
T
t zs, ∀zt, zs ∈ Z∗ and Γ is the NxM

matrix with the elements Γit = γit . Hence the rank of G̃ = M and intermediate dual
problem (19) is a low rank approximation of the SVM dual problem (3).

The Gram matrix approximation error can be quantified using (8) and (9) as:

Trace(G− G̃) =
N∑
i=1

[
zTi zi − (

M∑
t=1

γitzt)
T (

M∑
s=1

γiszs)

]

=
N∑
i=1

[
τTi τi + 2

M∑
t=1

γitz
T
t τi

]
≤ Nε+ 2

M∑
t=1

zTt

N∑
i=1

γitτi

By the principle of duality, we know that F3(w, b) ≥ L3(ᾰ), ∀w ∈ H and b ∈ R, where
ᾰ is any feasible point of (19). Using Theorem 1 on the inequality above, we get

F2(w, b) ≥ L3(ᾰ), ∀w ∈ H, b ∈ R and feasible ᾰ

Thus the AESVM problem minimizes an upper bound (F2(w, b)) of a rank M Gram matrix
approximation of L1(α).

Based on the theoretical results in this section, it is reasonable to suggest that for small
values of ε, the solution of AESVM is close to the solution of SVM.

12

Fast SVM training using approximate extreme points

4. Computation of the representative set

In this section, we present algorithms to compute the representative set. The AESVM
formulation can be solved with any standard SVM solver such as SMO and hence we do
not discuss methods to solve it. As described in Section 3.1, we require an algorithm to
compute approximate extreme points in kernel space. Osuna and Castro (2002) proposed
an algorithm to derive extreme points of the convex hull of a dataset in kernel space.
Their algorithm is computationally intensive, with a time complexity of O(N S(N)), and
is unsuitable for large datasets as S(N) typically has a super-linear dependence on N. The
function S(N) denotes the time complexity of a SVM solver (required by their algorithm),
to train on a dataset of size N. We next propose two algorithms leveraging the work by
Osuna and Castro (2002) to compute the representative set in kernel space Z∗ with much
smaller time complexities.

We followed the divide and conquer approach to develop our algorithms. The dataset is
first divided into subsets Xq, q = 1, 2, .., Q, where |Xq| < P , Q ≥ N

P and X = {X1,X2, ..,XQ}.
The parameter P is a predefined large integer. It is desired that each subset Xq contains
data vectors that are more similar to each other than data vectors in other subsets. Our
notion of similarity of data vectors in a subset, is that the distances between data vectors
within a subset is less than the distances between data vectors in distinct subsets. This
first level of segregation is followed by another level of segregation. We can regard the first
level of segregation as coarse segregation and the second as fine segregation. Finally, the
approximate extreme points of the subsets obtained after segregation, are computed. The
two different algorithms to compute the representative set differ only in the first level of
segregation as described in the following sections.

4.1 First level of segregation

We propose the methods, FLS1 and FLS2 given below to perform a first level of segregation.
In the following description we use arrays ∆′ and ∆′2 of N elements. Each element of ∆′

(∆′2), δi (δ2
i) , contains the index in X of the last data vector of the subset to which xi

belongs. It is straight forward to replace this N element array with a smaller array of size
equal to the number of subsets. We use a N element array for ease of description.

1. FLS1(X′, P)

For some applications, such as anomaly detection on sequential data, data vectors are
found to be homogeneous within intervals. For example, the atmospheric conditions typ-
ically do not change within a few minutes and hence weather data is homogeneous for a
short span. For such datasets it is enough to segregate the data vectors based on its position
in the training dataset. The same method can also be used on very large datasets without
any homogeneity, in order to reduce computation time. The complexity of this method is
O(N ′), where N ′ = |X′| .

2. FLS2(X′, P)

When the dataset is not homogeneous within intervals or it is not excessively large we
use the more sophisticated algorithm, FLS2, of time complexity O(N ′ log2

N ′

P) given below.
In step 1 of FLS2, the distance di in kernel space of all xi ∈ X′ from xj is computed as
di = ‖φ(xi) − φ(xj)‖2 = k(xi,xi) + k(xj ,xj) − 2k(xi,xj). The algorithm FLS2(X′, P), in

13

Nandan, Khargonekar, and Talathi

[X′,∆′] = FLS1(X′, P)

1. For outerIndex = 1 to ceiling(|X
′|

P)

2. For innerIndex = (outerIndex - 1)P to min((outerIndex)P ,|X′|)
3. Set δinnerIndex = min((outerIndex)P, |X′|)

effect builds a binary search tree, with each node containing the data vector xk selected in
step 2 that partitions a subset of the dataset into two. The size of the subsets successively
halve, on downward traversal from the root of the tree to the other nodes. When the size of
all the subsets at a level become ≤ P the algorithm halts. The complexity of FLS2 can be
derived easily when the algorithm is considered as an incomplete binary search tree building
method. The last level of such a tree will have O(N

′

P) nodes and consequently the height

of the tree is O(log2
N ′

P). At each level of the tree the calls to the BFPRT algorithm (Blum
et al., 1973) and the rearrangement of the data vectors in steps 2 and 3 are of O(N ′) time
complexity. Hence the overall time complexity of FLS2(X′, P) is O(N ′ log2

N ′

P).

[X′,∆′] = FLS2(X′, P)

1. Compute distance di in kernel space of all xi ∈ X′ from the first vector xj in X′

2. Select xk such that there exists |X
′|

2 data vectors xi ∈ X′ with di < dk, using the
linear time BFPRT algorithm

3. Using xk, rearrange X′ as X′ = {X1,X2}, where X1 = {xi : di < dk,xi ∈ X′} and
X2 = {xi : xi ∈ X′ and xi 6∈ X1}

4. If |X
′|

2 ≤ P
For i where xi ∈ X1, set δi = index of last data vector in X1.

For i where xi ∈ X2, set δi = index of last data vector in X2.

5. If |X
′|

2 > P

Run FLS2(X1, P) and FLS2(X2, P)

4.2 Second level of segregation

After the initial segregation, another method SLS(X′, V,∆′) is used to further segregate each
set Xq into smaller subsets Xqr of maximum size V , Xq = {Xq1 ,Xq2 ,,XqR}, where V is

predefined (V < P) and R = ceiling(
|Xq|
V). The algorithm SLS(X′, V,∆′) is given below.

In step 2.b, xt is the data vector in Xq that is farthest from the origin in the space of the
data vectors. For some kernels, such as the Gaussian kernel, all data vectors are equidistant
from the origin in kernel space. If the algorithm chooses al in step 2.b based on distances in
such kernel spaces, the choice would be arbitrary and such a situation is avoided here. Each
iteration of the For loop in step 2 involves several runs of the BFPRT algorithm, with each

14

Fast SVM training using approximate extreme points

run followed by a rearrangement of Xq. Specifically, the BFPRT algorithm is first run on P
data vectors, then on P −V data vectors, then on P −2V data vectors and so on. The time
complexity of each iteration of the For loop including the BFPRT algorithm run and the
rearrangement of data vectors is: O(P +(P −V)+(P −2V)+ ..+V)⇒ O(P

2

V). The overall

complexity of SLS(X′, V,∆′) considering the Q For loop iterations is O(N
′

P
P 2

V) ⇒ O(N
′P
V),

since Q = O(N
′

P).

[X′,∆′2] = SLS(X′, V,∆′)

1. Initialize l = 1

2. For q = 1 to Q

(a) Identify subset Xq of X′ using ∆′

(b) Set al = φ(xt), where xt ∈ argmax
i

‖xi‖2,xi ∈ Xq

(c) Compute distance di in kernel space of all xi ∈ Xq from al

(d) Select xk such that, there exists V data vectors xi ∈ Xq with di < dk, using the
BFPRT algorithm

(e) Using xk, rearrange Xq as Xq = {X1,X2}, where X1 = {xi : di < dk,xi ∈ Xq}
and X2 = {xi : xi ∈ Xq and xi 6∈ X1}

(f) For i where xi ∈ X1, set δ2
i = index of last data vector in X1, where δ2

i is the ith

element of ∆′2

(g) Remove X1 from Xq

(h) If |X2| > V

Set: l = l + 1 and al = xk

Repeat steps 2.c to 2.h

(i) If |X2| ≤ V
For i where xi ∈ X2, set δ2

i = index of last data vector in X2

4.3 Computation of the approximate extreme points

After computing the subsets Xqr , the algorithm DeriveAE is applied to each Xqr to compute
its approximate extreme points. The algorithm DeriveAE is described below. DeriveAE uses
three routines. SphereSet(Xqr) returns all xi ∈ Xqr that lie on the surface of the smallest
hypersphere in kernel space that contains Xqr . It computes the hypersphere as a hard
margin support vector data descriptor (SVDD) (Tax and Duin, 2004). SphereSort(Xqr)
returns data vectors xi ∈ Xqr sorted in descending order of distance in the kernel space
from the center of the SVDD hypersphere. CheckPoint(xi,Ψ) returns TRUE if xi is an
approximate extreme point of the set Ψ in kernel space. The operator A\B indicates a
set operation that returns the set of the members of A excluding A ∩ B. The matrix X∗qr
contains the approximate extreme points of Xqr and βqr is a |X∗qr | sized vector.

15

Nandan, Khargonekar, and Talathi

[X∗qr , βqr] = DeriveAE(Xqr)

1. Initialize: X∗qr = SphereSet(Xqr) and Ψ = ∅
2. Set ζ = SphereSort(Xqr\X∗qr)
3. For each xi taken in order from ζ, call the routine CheckPoint(xi,X

∗
qr ∪Ψ)

If it returns FALSE, then set Ψ = Ψ ∪ xi

4. For each xi ∈ Ψ, execute CheckPoint(xi,X
∗
qr ∪ {Ψ\xi})

If it returns FALSE, set X∗qr = X∗qr ∪ xi

5. Initialize a matrix Γ of size |Xqr |x|X∗qr | with all elements set to 0

Set µkk = 1 ∀xk ∈ X∗qr , where µij is the element in the ith row and jth column of Γ

6. For each xi ∈ Xqr and xi 6∈ X∗qr , execute CheckPoint(xi,X
∗
qr)

Set the ith row of Γ = µi, where µi is the result of CheckPoint(xi,X
∗
qr)

7. For j = 1 to |X∗qr |

Set βjqr =
|Xqr |∑
k=1

µkj

CheckPoint(xi,Ψ) is computed by solving the following quadratic optimization problem:

min
µi

p(xi,Ψ) = ‖φ(xi)−
|Ψ|∑
t=1

µitφ(xt)‖2

s.t. xt ∈ Ψ, 0 ≤ µit ≤ 1 and

|Ψ|∑
t=1

µit = 1

where ‖φ(xi) −
|Ψ|∑
t=1
µitφ(xt)‖2 = K(xt,xt) +

|Ψ|∑
t=1

|Ψ|∑
s=1

µitµ
i
sK(xt,xs) − 2

|Ψ|∑
t=1
µitK(xi,xt). If the

optimized value of p(xi,Ψ) ≤ ε, CheckPoint(xi,Ψ) returns TRUE and otherwise it returns
FALSE. It can be seen that the formulation of p(xi,Ψ) is similar to (6). The value of µi

computed by CheckPoint(zi,Ψ0), is used in step 6 of DeriveAE.
Now we compute the time complexity of DeriveAE. We use the fact that the optimization

problem in CheckPoint(xi,Ψ) is essentially the same as the dual optimization problem of
SVM given in (3). Since DeriveAE solves several SVM training problems in steps 1,3,4,
and 6, it is necessary to know the training time complexity of a SVM. As any SVM solver
method can be used, we denote the training time complexity of each step of DeriveAE that
solves an SVM problem as O(S(Aqr))

2. Here Aqr is the largest value of X∗qr ∪Ψ during the
run of DeriveAE(Xqr). This enables us to derive a generic expression for the complexity of
DeriveAE, independent of the SVM solver method used. Hence the time complexity of step 1
is O(S(Aqr)). The time complexity of steps 3, 4 and 6 are O(V S(Aqr)), O(Aqr S(Aqr)), and

2. For SMO based implementations, such as the implementation we used for Section 5, S(A) = O(A2)

16

Fast SVM training using approximate extreme points

O(Aqr S(Aqr)) respectively. The time complexity of step 2 is O(V |Ψ1|+ V log2V), where
Ψ1 = SphereSet(Xqr). Hence the time complexity of DeriveAE is O(V |Ψ| + V log2V +
V S(Aqr) + Aqr S(Aqr)). Since |Ψ1| is typically very small and Aqr ≤ V , we denote the
time complexity of DeriveAE by O(V log2V + V S(Aqr)).

4.4 Combining all the methods to compute X∗

To derive X∗, it is required to first rearrange X, so that data vectors from each class
are grouped together as X = {X+,X−}. Here X+ = {xi : yi = 1,xi ∈ X} and X− =
{xi : yi = −1,xi ∈ X}. Then the selected segregation methods are run on X+ and
X− separately. The algorithm DeriveRS given below, combines all the algorithms defined
earlier in this section with a few additional steps, to compute the representative set of
X. The complexity of DeriveRS 3 can easily be computed by summing the complexities
of its steps. The complexity of steps 1 and 6 is O(N). The complexity of step 2 is O(N)
if FLS1 is run or O(N log2

N
P) if FLS2 is run. In step 3, the O(NPV) method SLS is run.

In steps 4 and 5, DeriveAE is run on all the subsets Xqr giving a total complexity of

O(N log2V + V
Q∑
q=1

R∑
r=1

S(Aqr)). Here we use the fact that the number of subsets Xqr is

O(NV). Thus the complexity of DeriveRS is O(N(PV + log2V)+V
Q∑
q=1

R∑
r=1

S(Aqr)) when FLS1

is used and O(N(log2
N
P + P

V + log2V) + V
Q∑
q=1

R∑
r=1

S(Aqr)) when FLS2 is used.

[X∗,Y∗, β] = DeriveRS(X,Y,P,V)

1. Set X+ = {xi : xi ∈ X, yi = 1} and X− = {xi : xi ∈ X, yi = −1}

2. Run [X+,∆+] = FLS(X+,P) and [X−,∆−] = FLS(X−,P), where FLS is FLS1 or
FLS2

3. Run [X+,∆+
2] = SLS(X+,V,∆+) and [X−,∆−2] = SLS(X−,V,∆−)

4. Using ∆+
2 , identify each subset Xqr of X+ and run [X∗qr , βqr] = DeriveAE(Xqr)

Set N+∗ = sum of number of data vectors in all X∗qr derived from X+

5. Using ∆−2 , identify each subset Xqr of X− and run [X∗qr , βqr] = DeriveAE(Xqr)

Set N−∗ = sum of number of data vectors in all X∗qr derived from X−

6. Combine in the same order, all X∗qr to obtain X∗ and all βqr to obtain β

Set Y∗ = {yi : yi = 1 for i = 1, 2, .., N+∗; and yi = −1 for i = 1 + N+∗, 2 +
N+∗, .., N−∗ +N+∗}

3. We present DeriveRS as one algorithm in spite of its two variants that use FLS1 or FLS2, for simplicity
and to conserve space.

17

Nandan, Khargonekar, and Talathi

5. Experiments

We focused our experiments on an SMO (Fan et al., 2005) based implementation of AESVM
and DeriveRS. We evaluated the classification performance of AESVM using the nine
datasets, described below. Next, we present an evaluation of the algorithm DeriveRS,
followed by an evaluation of AESVM.

5.1 Datasets

Nine datasets of varied size, dimensionality and density were used to evaluate DeriveRS and
our AESVM implementation. For datasets D2, D3 and D4, we performed five fold cross
validation. We did not perform five fold cross-validation on the other datasets, because
they have been widely used in their native form with a separate training and testing set.

D1: KDD’99 intrusion detection dataset4- This dataset is available as a training set of
4898431 data vectors and a testing set of 311027 data vectors, with forty one features
(D = 41). As described in Tavallaee et al. (2009), a huge portion of this dataset is
comprised of repeated data vectors. Experiments were conducted only on the distinct
data vectors. The number of distinct training set vectors was N = 1074974 and the
number of distinct testing set vectors was N = 77216. The training set density =
33%.

D2: Localization data for person activity5 - This dataset has been used in a study on
agent-based care for independent living (Kaluza et al., 2010). It has N = 164860
data vectors of seven features. It is comprised of continuous recordings from sensors
attached to five people and can be used to predict the activity that was performed by
each person at the time of data collection. In our experiments we used this dataset
to validate a binary problem of classifying the activities ’lying’ and ’lying down’ from
the other activities. Features 3 and 4, that gives the time information, were not used
in our experiments. Hence for this dataset D = 5. The dataset density = 96%.

D3: Seizure detection dataset- This dataset has N = 982863 data vectors, three features
(D = 3) and density = 100%. It is comprised of continuous EEG recordings from rats
induced with status epilepticus and is used to evaluate algorithms that classify seizure
events from seizure-free EEG. An important characteristic of this dataset is that it
is highly unbalanced, the total number of data vectors corresponding to seizures is
minuscule compared to the remaining data. Details of the dataset can be found in
Nandan et al. (2010), where it is used as dataset A.

D4: Forest cover type dataset6- This dataset has N = 581012 data vectors and fifty four
features (D = 54) and density = 22%. It is used to classify the forest cover of areas
of 30mx30m size into one of seven types. We followed the method used in Collobert
et al. (2002), where a classification of forest cover type 2 from the other cover types
was performed.

4. http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
5. http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity
6. http://archive.ics.uci.edu/ml/datasets/Covertype

18

http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity
http://archive.ics.uci.edu/ml/datasets/Covertype

Fast SVM training using approximate extreme points

D5 : IJCNN1 dataset 7- This dataset was used in IJCNN 2001 generalization ability chal-
lenge (Chang and Lin, 2001a). The training set and testing set have 49990 (N =
49990) and 91701 data vectors respectively. It has 22 features (D = 22) and training
set density = 59%

D6 : Adult income dataset 8- This dataset derived from the 1994 Census database, was used
to classify incomes over $50000 from those below it. The training set has N = 32561
with D = 123 and density = 11%, while the testing set has 16281 data vectors. The
data is pre-processed as described in Platt (1999).

D7 : Epsilon dataset 9- This is a dataset that was used for 2008 Pascal large scale learning
challenge and in Yuan et al. (2011). It is comprised of 400000 data vectors that are
100% dense with D = 2000. Since this is too large for our experiments, we used
the first 10% of the training set giving N = 40000. The testing set has 100000 data
vectors.

D8 : MNIST character recognition dataset 10- The widely used dataset (Lecun et al., 1998)
of hand written characters has a training set of N = 60000, D = 780 and density =
19%. We performed the binary classification task of classifying the character ’0’ from
the others. The testing set has 10000 data vectors.

D9 : w8a dataset 11- This artificial dataset used in Platt (1999) was randomly generated
and has D = 300 features. The training set has N = 49749 with a density = 4% and
the testing set has 14951 data vectors.

5.2 Evaluation of DeriveRS

We began our experiments with an evaluation of the algorithm DeriveRS, described in
Section 4. The performances of the two methods FLS1 and FLS2 were compared first. We
ran DeriveRS on D1, D2, D4 and D5 with the parameters P = 104, V = 103, ε = 10−3, and
g = [2−4, 2−3, 2−2, ..., 22], first with FLS1 and then FLS2. For D2, DeriveRS was run on the
entire dataset for this particular experiment, instead of performing five fold cross-validation.
This was done because, D2 is a small dataset and the difference between the two first level
segregation methods can be better observed when the dataset is as large as possible. The
relatively small value of P = 104 was also chosen considering the small size of D2 and D5.
To evaluate the effectiveness of FLS1 and FLS2, we also ran DeriveRS with FLS1 and FLS2
after randomly reordering each dataset. The results are shown in Figure 1.

For datasets D1 and D5, FLS2 gave smaller representative sets in a shorter duration
than FLS1. As expected, for the relatively homogeneous dataset D2, FLS1 and FLS2 gave
similar results, with FLS2 giving slightly larger representative sets. Dataset D4 was seen to
have much smaller representative sets with FLS1 than with FLS2. The results of DeriveRS
obtained after randomly rearranging the datasets, indicate the utility of FLS2. For all the

7. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
8. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
9. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

10. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
11. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

19

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Nandan, Khargonekar, and Talathi

Figure 1: Performance of variants of DeriveRS with g = [2−4, 2−3, 2−2, ..., 22], for datasets
D1, D2, D4, and D5. The results of DeriveRS with FLS1 and FLS2, after ran-
domly reordering the datasets are shown as Random+FLS1 and Random+FLS2,
respectively

datasets, the results of FLS2 after random reordering was seen to be significantly better
than the results of FLS1 after random rearrangement. Hence we can infer that the good
results obtained with FLS2 are not caused by any pre-existing order in the datasets. After
D2 and D4 were randomly rearranged a sharp increase was observed in representative set
sizes and computation times for DeriveRS with FLS1. This indicates the importance of
dataset homogeneity to the performance of FLS1. The results indicated for randomized
experiments on DeriveRS are the averages of five repetitions.

Next we investigated the impact of changes in the values of the parameters P and
V on the performance of DeriveRS. All combinations of P = {104, 5x104, 105, 2x105} and
V = {102, 5x102, 103, 2x103, 3x103} were used to compute the representative set of D1. The
computations were performed for ε = 10−3 and g = 1. The method FLS2 was used for the
first level segregation in DeriveRS. The results are shown in Table 1. As expected for an

algorithm of time complexity O(N(log2
N
P + P

V + log2V) +V
Q∑
q=1

R∑
r=1

S(Aqr)), the computation

time was generally observed to increase for an increase in the value of V or P . It should be
noted that our implementation of DeriveRS was based on SMO and hence S(Aqr) = O(A2

qr).
In some cases the computation time decreased when P or V increased. This is caused by a

decrease in the value of O(
Q∑
q=1

R∑
r=1

A2
qr), which is inferred from the observed decrease of the

20

Fast SVM training using approximate extreme points

size of the representative set M (M ≈
Q∑
q=1

R∑
r=1

Aqr). A sharp decrease in M was observed

when V was increased. The impact of increasing P on the size of the representative set was
found to be less drastic. This observation indicates that DeriveAE selects fewer approximate
extreme points when V is larger.

M
N x100% (Computation time in seconds)

P V = 102 V = 5x102 V = 103 V = 2x103 V = 3x103

104 10.7(27) 6.1(67) 5.1(131) 4.5(258) 4.3(338)

5x104 9.9(78) 5.3(72) 4.4(130) 3.9(249) 3.7(351)

105 9.8(142) 5.2(83) 4.3(134) 3.7(242) 3.5(352)

2x105 9.8(254) 5.1(104) 4.2(144) 3.7(240) 3.4(355)

Table 1: The impact of varying P and V on the result of DeriveRS

As described in Section 5.3, we compared several SVM training algorithms with our
implementation of AESVM. We performed a grid search with all combinations of the SVM
hyper-parameters C ′ = {2−4, 2−3, ..., 26, 27} and g = {2−4, 2−3, 2−2, ..., 21, 22}. The hyper-
parameter C ′ is related to the hyper-parameter C as C ′ = C

N . We represent the grid in
terms of C ′ as it is used in several SVM solvers such as LIBSVM, LASVM, CVM and
BVM. Furthermore, the use of C ′ enables the application of the same hyper-parameter grid
to all datasets. To train AESVM with all the hyper-parameter combinations in the grid,
the representative set has to be computed using DeriveRS for all values of kernel hyper-
parameter g in the grid. This is because the kernel space varies when the value of g is
varied. For all the computations, the input parameters were set as P = 105 and V = 103.
The first level segregation in DeriveRS was performed using FLS2. Three values of the
tolerance parameter ε were investigated, ε = 10−3, 10−4 or 10−5.

The results of the computation for datasets D1 - D5, are shown in the Table 2. The
percentage of data vectors in the representative set was found to increase with increasing
values of g. This is intuitive, as when g increases the distance between the data vectors in
kernel space increases. With increased distances, more data vectors xi become approximate
extreme points. The increase in the number of approximate extreme points with g causes
the rising trend of computation time shown in Table 2. For a decrease in the value of ε,
M increases. This is because, for smaller ε fewer xi would satisfy the condition: optimized
p(xi,Ψ) ≤ ε in CheckPoint(xi,Ψ). This results in the selection of a larger number of
approximate extreme points in DeriveAE.

The results of applying DeriveRS to the high-dimensional datasets D6-D9 are shown in
Table 3. It was observed that M

N was much larger for D6-D9 than for the other datasets.
We computed the representative set with ε = 10−3 only, as for smaller values of ε we expect
the representative set to be close to 100% of the training set. The increasing trend of the
size of the representative set with increasing g values can be observed in Table 3 also.

21

Nandan, Khargonekar, and Talathi

M
N x100% (Computation time in seconds)

ε Dataset g = 1
24

g = 1
23

g = 1
22

g = 1
2 g = 1 g = 21 g = 22

10−3

D1 1.5(98) 1.9(104) 2.4(110) 3.2(119) 4.3(132) 5.9(148) 8.1(168)
D2 1.2(7) 1.5(8) 2(9) 2.8(11) 4.1(15) 6(18) 9.2(23)
D3 0.6(37) 0.6(37) 0.6(36) 0.6(36) 0.5(37) 0.6(37) 0.6(39)
D4 4.3(45) 6.4(57) 9.4(74) 13.9(103) 20.7(139) 30.7(178) 44.8(216)
D5 4.5(7) 8.3(9) 14(11) 21.8(14) 31.8(18) 43.7(21) 54.9(22)

10−4

D1 3(136) 4(159) 5.3(191) 7.2(240) 9.9(297) 13.3(362) 17.4(435)
D2 2.8(12) 3.8(18) 5(27) 6.8(37) 9.3(44) 13.5(44) 19.9(82)
D3 0.5(36) 0.6(37) 0.6(38) 0.7(39) 0.8(41) 0.9(43) 1.1(47)
D4 13.5(135) 18.3(211) 24.9(300) 34.2(400) 47.7(493) 63.5(513) 74.4(445)
D5 20.1(16) 27.9(22) 37.4(27) 47.6(31) 57.3(34) 66(34) 74(34)

10−5

D1 7(316) 9.3(425) 12.2(552) 15.7(726) 19.6(926) 24.2(1112) 28.9(1235)
D2 6.2(59) 7.8(87) 9.8(98) 13(109) 18.3(138) 25.6(187) 34.3(235)
D3 0.7(39) 0.8(42) 0.9(45) 1.1(50) 1.4(59) 1.7(73) 2.2(100)
D4 30.7(607) 39.5(814) 51.9(1051) 66(1171) 75.1(1044) 77.8(839) 78.4(649)
D5 43.3(50) 51.8(58) 60.3(62) 67.7(63) 73.8(59) 78.7(52) 81.8(44)

Table 2: The percentage of the data vectors in X∗ (given by M
N x100) and its computation

time for datasets D1-D5

M
N x100% (Computation time in seconds)

Dataset g = 1
24

g = 1
23

g = 1
22

g = 1
2 g = 1 g = 21 g = 22

D6 69.3(19) 70.4(19) 73.4(19) 80.3(14) 83.9(9) 84(8) 87.9(8)

D7 84.4(1077) 84.6(1089) 84.9(1069) 85.6(1085) 86.9(1079) 89.9(1032) 94.7(818)

D8 90(131) 96.6(94) 98.8(78) 99.5(72) 100(70) 100(71) 100(63)

D9 60.8(34) 62.9(36) 67(30) 70.8(21) 72.7(16) 75.2(14) 76.7(15)

Table 3: The percentage of data vectors in X∗ and its computation time for datasets D6-D9
with ε = 10−3

5.3 Comparison of AESVM to SVM solvers

To judge the accuracy and efficiency of AESVM, its classification performance was compared
with the SMO implementation in LIBSVM, ver. 3.1. We chose LIBSVM because it is a state-
of-the-art SMO implementation that is routinely used in similar comparison studies. To
compare the efficiency of AESVM to other popular approximate SVM solvers we chose CVM,
BVM, LASVM, SVMperf, and RfeatSVM. A description of these methods is given in Section
2. We chose these methods because they are widely cited, their software implementations
are freely available and other studies (Shalev-Shwartz et al., 2011) have reported fast SVM
training using some of these methods. LASVM is also an efficient method for online SVM

22

Fast SVM training using approximate extreme points

training. However, since we do not investigate online SVM learning in this paper, we did not
test the online SVM training performance of LASVM. We compared AESVM with CVM
and BVM even though they are L2-SVM solvers, as they has been reported to be faster
alternatives to SVM implementations such as LIBSVM.

The implementation of AESVM and DeriveRS were built upon the LIBSVM implemen-
tation. All methods except SVMperf were allocated a cache of size 600 MB. The parameters
for DeriveRS were P = 105 and V = 103, and the first level segregation was performed
using FLS2. To reflect a typical SVM training scenario, we performed a grid search with
all eighty four combinations of the SVM hyper-parameters C ′ = {2−4, 2−3, ..., 26, 27} and
g = {2−4, 2−3, 2−2, ..., 21, 22}. As mentioned earlier, for datasets D2, D3 and D4, five fold
cross-validation was performed. The results of the comparison have been split into sub-
sections given below, due to the large number of SVM solvers and datasets used.

5.3.1 Comparison to CVM, BVM, LASVM and LIBSVM

First we present the results of the performance comparison for D2 in Figures 2 and 3.
For ease of representation, only the results of grid points corresponding to combinations of
C ′ = {2−4, 2−2, 1, 22, 24, 26} and g = {2−4, 2−2, 1, 22} are shown in Figures 2 and 3. Figure
2 shows the graph between training time and classification accuracy for the five algorithms.
Figure 3 shows the graph between the number of support vectors and classification accuracy.
We present classification accuracy as the ratio of the number of correct classifications to the
total number of classifications performed. Since the classification time of an SVM algorithm
is directly proportional to the number of support vectors, we represent it in terms of the
number of support vectors. It can be seen that, AESVM generally gave more accurate
results for a fraction of the training time of the other algorithms, and also resulted in less
classification time. The training time and classification times of AESVM increased when ε
was reduced. This is expected given the inverse relation of M to ε shown in Tables 2 and
3. The variation in accuracy with ε is not very noticeable.

Figures 2 and 3 indicate that AESVM gave better results than the other algorithms
for SVM training and classification on D2, in terms of standard metrics. To present a
more quantitative and easily interpretable comparison of the algorithms, we define the five
performance metrics given below. These metrics combine the results of all runs of each
algorithm into a single value, for each dataset. For these metrics we take LIBSVM as a
baseline of comparison, as it gives the most accurate solution among the tested methods.
Furthermore, an important objective of these experiments is to show the similarity of the
results of AESVM and LIBSVM. In the description given below, F can refer to any or any
approximate SVM algorithm such as AESVM, CVM, LASVM etc.

1. Root mean squared error of classification accuracy, RMSE: The similarity of the
solution of F to LIBSVM, in terms of its classification accuracy, is indicated by:

RMSE =

(
1

RS

R∑
r=1

S∑
s=1

(CLrs − CFrs)2

)0.5

Here CLrs and CFrs are the classification accuracy of LIBSVM and F respectively, in
the sth cross-validation fold with the rth set of hyper-parameters of grid search.

23

Nandan, Khargonekar, and Talathi

0.4 0.5 0.6 0.7 0.8
−2

0

2

4

6

8

10

12
lo

g(
T

ra
in

in
g

tim
e)

Classification accuracy

AESVM, ε = 10−3

AESVM, ε = 10−4

AESVM, ε = 10−5

CVM
BVM
LASVM
LIBSVM

Figure 2: Plot of training time against classification accuracy of the SVM algorithms on D2

2. Expected training time speedup, ETS: The expected speedup in training time is indi-
cated by:

ETS =
1

RS

R∑
r=1

S∑
s=1

TLrs
TFrs

Here TLrs and TFrs are the training times of LIBSVM and F respectively.

3. Overall training time speedup, OTS: It indicates overall training time speedup for
the entire grid search with cross-validation, including the time taken to compute the
representative set. The total time taken by DeriveRS to compute the representative
set for all values of g is represented as TX∗. For methods other than AESVM, TX∗ = 0.

OTS =

R∑
r=1

S∑
s=1

TLrs

R∑
r=1

S∑
s=1

TFrs + TX∗

24

Fast SVM training using approximate extreme points

0.4 0.5 0.6 0.7 0.8
6

7

8

9

10

11

12
lo

g(
N

um
be

r
of

 s
up

po
rt

 v
ec

to
rs

)

Classification accuracy

AESVM, ε = 10−3

AESVM, ε = 10−4

AESVM, ε = 10−5

CVM
BVM
LASVM
LIBSVM

Figure 3: Plot of classification time, represented by the number of support vectors, against
classification accuracy of the SVM algorithms on D2

4. Expected classification time speedup, ECS: The expected speedup in classification
time is indicated by:

ECS =
1

RS

R∑
r=1

S∑
s=1

NLrs
NFrs

Here NLrs and NFrs are the number of support vectors in the solution of LIBSVM and
F respectively.

5. Overall classification time speedup, OCS: The overall speedup in classification time
is indicated by:

OCS =

R∑
r=1

S∑
s=1

NLrs

R∑
r=1

S∑
s=1

NFrs

The results of the classification performance comparison on datasets D1-D5, are shown in
Table 4. It was observed that for all tested values of ε, AESVM resulted in large reductions
in training and classification times when compared to LIBSVM for a very small difference

25

Nandan, Khargonekar, and Talathi

Metric Dataset AESVM
ε = 10−3

AESVM
ε = 10−4

AESVM
ε = 10−5

CVM BVM LASVM

RMSE
(x102)

D1 0.28 0.16 0.21 0.44 0.6 0.12
D2 2.56 1.81 1.19 26.59 24.06 2.18
D3 0.16 0.10 0.05 0.33 0.39 55.2
D4 1.08 0.82 0.74 9.4 9.44 −
D5 0.99 0.39 0.23 0.74 0.84 0.13

ETS

D1 451.5 145 41.7 8.9 28.6 0.8
D2 1614.7 289.6 62.8 0.7 0.8 0.2
D3 28012.3 14799.3 7573.8 60.4 76.8 0.9
D4 103.1 13.8 3.4 8 6.6 −
D5 40.2 5 2 0.3 0.5 0.6

OTS

D1 92.1 34.2 9.5 6.2 21.6 0.8
D2 148.6 45.5 14.3 0.5 0.5 0.1
D3 968.5 800.6 514.4 23.9 22.8 0.5
D4 11.9 4.1 2.2 6.2 4.4 −
D5 5.2 2.5 1.5 0.2 0.3 0.5

ECS

D1 4.8 3.6 2.8 1.2 2 1.1
D2 35.9 15.5 7.9 4.7 5 1
D3 48.7 25.8 13.4 0.4 0.6 0.6
D4 8.4 3.3 1.8 12.4 12.1 −
D5 4.3 1.9 1.4 0.8 1 1

OCS

D1 3.8 3.1 2.5 1.1 1.9 1
D2 23.4 10.9 6.1 4.5 4.4 1
D3 32.2 16.1 9 0.3 0.5 0.2
D4 5.4 2.7 1.7 12 10.7 −
D5 2.8 1.8 1.4 0.8 1 1

Table 4: Performance comparison of AESVM (with ε = 10−3, 10−4, 10−5), CVM, BVM,
LASVM and LIBSVM on datasets D1-D5

in classification accuracy. Most notably, for D3 the expected and overall training time
speedups were of the order of 104 and 103 respectively, which is outstanding. Comparing
the results of AESVM for different ε values, we see that RMSE generally improves by
decreasing when ε decreases, while the metrics improve by increasing when ε increases. The
increase in ETS and OTS is of a larger order than the increase in RMSE when ε increases.

Comparing AESVM to CVM, BVM and LASVM, we see that AESVM in general gave
the least values of RMSE and the largest values of ETS, OTS, ECS and OCS. In a
few cases LASVM gave low RMSE values. However, in all our experiments LASVM took
longer to train than the other algorithms including LIBSVM. We could not complete the
evaluation of LASVM for D4 due to its large training time, which was more than 40 hours
for some hyper-parameter combinations. It was also found that LASVM sometimes resulted

26

Fast SVM training using approximate extreme points

in a larger classification time than the other algorithms including LIBSVM. CVM and BVM
generally gave high vales of RMSE.

Table 4 compares the classification accuracy of CVM, BVM, LASVM and AESVM to
the exact SVM solution given by LIBSVM. Another method to compare the algorithms is in
terms of the maximum classification accuracy, and the mean and standard deviation of the
classification accuracies, without using LIBSVM as a reference point. Such a comparison
for datasets D1-D5, is given in Table 5. The five algorithms under comparison were found
to give similar maximum classification accuracies except for D2 and D4, where CVM and
BVM gave significantly smaller values. Another interesting result is that for D3, the mean
and standard deviation of accuracy of LASVM was found to be widely different from the
other algorithms. For all the tested values of ε the maximum, mean and standard deviation
of the classification accuracies of AESVM were found to be similar.

Accuracy DatasetAESVM
ε = 10−3

AESVM
ε = 10−4

AESVM
ε = 10−5

CVM BVM LASVM LIBSVM

Maximum
(x102)

D1 93.4 93.8 93.6 94.1 94.4 94.3 93.9
D2 77.1 77.2 77.8 70.3 67.1 78.1 78.2
D3 99.9 99.9 99.9 99.9 99.9 99.9 99.9
D4 68.3 68.3 68.3 63.7 62.3 − 68.2
D5 98.7 98.8 98.9 99 99.1 99.2 99

Mean,
standard
deviation
(x102)

D1 92.2, 0.7 92.3, 0.8 92.3, 0.8 92.7, 0.8 92.6, 0.9 92.5, 0.8 92.4, 0.8
D2 72.3, 3.6 73.2, 3.7 73.6, 3.7 52.2, 0.8 54.6, 0.7 73.5, 0.5 74.1, 3.5
D3 99.8, 0 99.8, 0.1 99.8, 0.1 99.8, 0.2 99.8, 0.2 69.3, 29.9 99.8, 0.1
D4 61.3, 3.1 61, 3.1 61, 3.1 55.5, 3.1 54.9, 3.4 − 60.6, 3.2
D5 96, 2.5 96.3, 2.6 96.5, 2.6 96.6, 2.5 97, 2 97, 2 96.6, 2.4

Table 5: Comparison of classification accuracies of AESVM (with ε = 10−3, 10−4, 10−5),
CVM, BVM, LASVM and LIBSVM on datasets D1-D5

Next we present the results of performance comparison of CVM, BVM, LASVM, AESVM,
and LIBSVM on the high-dimensional datasets D6-D9. As described in Section 5.2, De-
riveRS was run with only ε = 10−3 for these datasets. The results of the performance
comparison are shown in Tables 6 and 7. CVM was found to take longer than 40 hours to
train on D6, D7 and D8 with some hyper-parameter values and hence we could not complete
its evaluation for those datasets. BVM also took longer than 40 hours to train on D7 and it
was also not evaluated for D7. AESVM consistently reported ETS, OTS, ECS and OCS
values that are larger than 1 unlike the other algorithms. Similar to the results in Table
4, LASVM and BVM resulted in very large RMSE values for some datasets. The results
in Table 7 are similar to Table 5, with similar maximum accuracies for all algorithms and
significantly lower mean and higher standard deviation of accuracy for BVM and LASVM
on some datasets.

27

Nandan, Khargonekar, and Talathi

Metric Dataset AESVM
ε = 10−3

CVM BVM LASVM

RMSE
(x102)

D6 0.21 - 7.8 0.85
D7 1.37 - - 2.37
D8 0.02 - 17.55 0
D9 0.15 1 0.89 27.5

ETS

D6 1.8 - 0.6 0.8
D7 1.4 - - 0.9
D8 1.1 - 4.7 1
D9 1.6 1.4 17.5 0.6

OTS

D6 1.5 - 0.6 0.5
D7 1.2 - - 0.7
D8 1.1 - 2.6 0.9
D9 1.3 1.2 16.9 0.5

ECS

D6 1.2 - 1.5 1
D7 1.16 - - 1
D8 1 - 3.2 1
D9 1.2 1.8 4.9 2.3

OCS

D6 1.1 - 1.5 1
D7 1.1 - - 1
D8 1 - 2.6 1
D9 1.1 1.9 5.2 1.1

Table 6: Performance comparison of AESVM (with ε = 10−3), CVM, BVM, LASVM and
LIBSVM on datasets D6-D9

Accuracy DatasetAESVM
ε = 10−3

CVM BVM LASVM LIBSVM

Maximum
(x102)

D6 85.2 - 85.2 85 85.1
D7 88.3 - - 88.4 88.6
D8 99.7 - 99.7 99.7 99.7
D9 99.3 99.5 99.5 99.5 99.5

Mean,
standard
deviation
(x102)

D6 81.3, 2.8 - 80.2, 8.9 81.1, 2.9 81.4, 2.8
D7 85.3, 5.7 - - 85.2, 6.2 85.7, 4.8
D8 92.3, 3.6 - 88.5, 18.1 92.3, 3.6 92.3, 3.6
D9 98.7, 0.8 98.9, 0.8 98.9, 0.8 85.5, 23.9 98.8, 0.8

Table 7: Comparison of classification accuracies of AESVM (with ε = 10−3), CVM, BVM,
LASVM and LIBSVM on datasets D6-D9

28

Fast SVM training using approximate extreme points

5.3.2 Comparison to SVMperf

SVMperf differs from the other SVM solvers in its ability to compute a solution close to
the SVM solution for a given number of support vectors (k). The algorithm complexity
is directly proportional to the parameter k, but with a decrease in k the approximation
becomes worse and the difference between the solutions of SVMperf and SVM increases.
We used a value of k = 1000 for our experiments, as it has been reported to give good
performance (Joachims and Yu, 2009). SVMperf was tested on datasets D1, D4, D5, D6, D8
and D9, with the Gaussian kernel 12 and the same hyper-parameter grid as described earlier.
The results of the grid search are presented in Table 8. The results of our experiments on
AESVM (with ε = 10−3) and LIBSVM are repeated in Table 8 for ease of reference. The
maximum, mean and standard deviation of classification accuracies are represented as max.
Acc., mean Acc., and std. Acc. respectively.

Dataset Solver RMSE
(x102)

ETS OTS ECS OCS max. Acc.
(x102)

mean Acc.
(x102)

std. Acc.
(x102)

D1
AESVM 0.28 451.5 92.1 4.8 3.8 93.4 92.2 0.7

SVMperf 0.74 3.7 0.9 6.8 6.8 94 92.7 0.5
LIBSVM 93.9 92.4 0.8

D4
AESVM 1.08 103.1 11.9 8.4 5.4 68.3 61.3 3.1

SVMperf 2.14 3.1 1.2 186.8 186.8 68.1 61.8 2.7
LIBSVM 68.2 60.6 3.2

D5
AESVM 0.99 40.2 5.2 4.3 2.8 98.7 96 2.5

SVMperf 0.26 0.2 0.1 5.8 5.8 99 96.7 2.4
LIBSVM 99 96.6 2.4

D6
AESVM 0.21 1.8 1.5 1.2 1.1 85.2 81.3 2.8

SVMperf 9.39 1.1 0.9 20 20 85.2 79.6 10.7
LIBSVM 85.1 81.4 2.8

D8
AESVM 0.02 1.1 1.1 1 1 99.7 92.3 3.6

SVMperf 54.2 37.6 23.8 49 49 99.9 55.7 42.3
LIBSVM 99.7 92.3 3.6

D9
AESVM 0.15 1.6 1.3 1.2 1.1 99.3 98.7 0.8

SVMperf 22.6 1.2 0.9 21.3 21.3 99.2 86.1 18.8
LIBSVM 99.5 98.8 0.8

Table 8: Performance comparison of SVMperf, AESVM (with ε = 10−3), and LIBSVM

SVMperf was found to generally give higher RMSE values than AESVM. In particular,
for the high dimensional datasets (D6, D8 and D9), the RMSE values were significantly
higher. The training speedup values of SVMperf are much lower than AESVM except for
D8. As expected, the classification time speedups of SVMperf are significantly higher than
AESVM. The maximum accuracies of all the algorithms were similar. However, the mean

12. We used the software parameters ’-t 2 -w 9 –i 2 –b 0 –k 1000’ as suggested in the author’s website

29

Nandan, Khargonekar, and Talathi

and standard deviation of accuracies of SVMperf were very different from AESVM and
LIBSVM for the high dimensional datasets D6, D8 and D9.

5.3.3 Comparison to RfeatSVM

Rahimi and Recht (2007) proposed a promising method to approximate non-linear kernel
SVM solutions using simpler linear kernel SVMs. This is accomplished by first projecting
the training dataset into a randomized feature space and then using any SVM solver with the
linear kernel on the projected dataset. We concentrated our experiments on investigating
the accuracy of the solution of RfeatSVM and its similarity to the SVM solution. LIBSVM
with the linear kernel was used to compute the RfeatSVM solution on the projected datasets.
We used LIBSVM, in spite of the availability of faster linear SVM implementations, as it
is an exact SVM solver. Hence only the performance metrics related to accuracy were used
to compare the performance of AESVM, LIBSVM and RfeatSVM. The random Fourier
features method, described in Algorithm 1 of Rahimi and Recht (2007), was used to project
the datasets D1, D5, D6 and D9 into a randomized feature space of dimension E. The results
of the accuracy comparison are given in Table 9. We used a smaller hyper-parameter grid
of all twenty four combinations of C ′ = {2−4, 2−2, 1, 22, 24, 26} and g = {2−4, 2−2, 1, 22} for
our experiments. The results reported in Table 9 for AESVM and LIBSVM were computed
for this smaller grid.

We used the same number of dimensions (E) of the randomized feature space for D1 and
D6 as in Rahimi and Recht (2007). The RMSE values for RfeatSVM were significantly
higher than AESVM for most datasets, especially for D1 and D6. The maximum accuracy
for RfeatSVM was found to be much less than AESVM and LIBSVM for all datasets. The
time taken to compute the randomized feature space is not reported because it was found
to be negligibly small. Another important observation was that the projected datasets
were found to be almost 100% dense. The training time of SVM solvers are typically
linearly proportional to the density of the dataset and hence a highly dense dataset can
take a significant training time even with fast linear SVMs. Dense datasets also have large
memory requirements.

5.4 Performance with the polynomial kernel

To validate our proposal of AESVM as a fast alternative to SVM for all non-linear kernels,
we performed a few experiments with the polynomial kernel, k(x1,x2) = (1 + xT1 x2)d. The
hyper-parameter grid composed of all twelve combinations of C ′ = {2−4, 2−2, 1, 22} and
d = {2, 3, 4} was used to compute the solutions of AESVM and LIBSVM on the datasets
D1, D4 and D6. The results of the computation of the representative set using DeriveRS
are shown in Table 10. The parameters for DeriveRS were P = 105, V = 103 and ε = 10−3,
and the first level segregation was performed using FLS2. The performance comparison of
AESVM and LIBSVM with the polynomial kernel is shown in Table 11. Like in the case
of the Gaussian kernel, we found that AESVM gave results similar to LIBSVM with the
polynomial kernel, while taking shorter training and classification times.

30

Fast SVM training using approximate extreme points

Dataset Solver RMSE
(x102)

max. Acc.
(x102)

mean Acc.
(x102)

std. Acc.
(x102)

Original
density
%

Density af-
ter projec-
tion %

D1
AESVM 0.24 93.6 92.2 0.9
RfeatSVM
(E = 100)

56.18 37.8 36.1 1.3 33 100

LIBSVM 93.6 92.3 0.9

D5
AESVM 0.9 98.6 95.7 2.8
RfeatSVM
(E = 100)

5.3 94.7 91.6 1.4 59 100

LIBSVM 98.9 96.2 2.7

D6
AESVM 0.16 85.1 81.2 2.9
RfeatSVM
(E = 1000)

4 81.6 78 2.2 11 100

LIBSVM 85 81.3 3

D9
AESVM 0.15 99.3 98.6 0.8
RfeatSVM
(E = 1000)

0.6 98.7 97.4 0.6 4 95.8

LIBSVM 99.5 98.8 0.9

Table 9: Performance comparison of RfeatSVM, AESVM (with ε = 10−3), and LIBSVM.
The density of the datasets before and after projecting into randomized feature
spaces are also shown

M
N x100% (Computation time in seconds)

Dataset d = 2 d = 3 d = 4

D1 6.6(410) 14.2(1329) 22.5(3696)

D4 30.3(752) 57.7(1839) 76.5(2246)

D6 69(20) 69.7(21) 70.4(22)

Table 10: Results of DeriveRS for the polynomial kernel

6. Discussion

AESVM is a new problem formulation that is almost identical to, but less complex than, the
SVM primal problem. AESVM optimizes over only a subset of the training dataset called
the representative set, and consequently, is expected to give fast convergence with most
SVM solvers. In contrast, the other studies mentioned in Section 2 are mostly algorithms
that solve the SVM primal or related problems. Methods such as RSVM also use different
problem formulations. However, they require special algorithms to solve, unlike AESVM.
In fact, AESVM can be solved using many of the methods in Section 2. As described in
Corollary 5, there are some similarities between AESVM and the Gram matrix approxi-

31

Nandan, Khargonekar, and Talathi

Dataset Solver RMSE
(x102)

ETS OTS ECS OCS max. Acc.
(x102)

mean Acc.
(x102)

std. Acc.
(x102)

D1
AESVM 0.15 31.2 2 3.1 3.1 94 93.5 0.4
LIBSVM 94.1 93.5 0.4

D4
AESVM 2.04 3.3 1.5 2 1.9 64.3 60.8 2.5
LIBSVM 64.5 60.7 2.5

D6
AESVM 0.6 2.7 1.9 1.5 1.5 84.5 80.5 2.5
LIBSVM 84.6 81 2.3

Table 11: Performance comparison of AESVM (with ε = 10−3), and LIBSVM with the
polynomial kernel

D1 D2 D3 D4 D5 D6 D7 D8 D9
0

10

20

30

40

50

60

R
M

S
E

 x
 1

0
2

Datasets

AESVM, ε = 10−3

CVM
BVM
LASVM

SVMperf

RfeatSVM

Figure 4: Plot of RMSE values for all SVM solvers

mation methods discussed earlier. It would be interesting to see a comparison of AESVM,
with the core set based method proposed by Gärtner and Jaggi (2009). However, due to the
lack of availability of a software implementation and of published results on L1-SVM with
non-linear kernels using their approach, the authors find such a comparison study beyond
the scope of this paper.

The theoretical and experimental results presented in this paper demonstrate that the so-
lutions of AESVM and SVM are similar in terms of the resulting classification accuracy. A
summary of the experiments in Section 5, that compared an SMO based AESVM implemen-

32

Fast SVM training using approximate extreme points

D1 D2 D3 D4 D5 D6 D7 D8 D9

40

50

60

70

80

90

100

M
ax

im
um

 A
cc

ur
ac

y
x

10
2

Datasets

AESVM, ε = 10−3

CVM
BVM
LASVM

SVMperf

RfeatSVM
LIBSVM

Figure 5: Plot of maximum classification accuracy for all SVM solvers

tation, CVM, BVM, LASVM, LIBSVM, SVMperf and RfeatSVM, is presented in Figures 4
to 7. It can be seen that AESVM typically gave the lowest approximation error (RMSE),
while giving highest overall training time speedup (OTS). AESVM also gave competitively
high overall classification time speedup (OCS) in comparison with the other algorithms ex-
cept SVMperf. It was found that the maximum classification accuracies of all the algorithms
except RfeatSVM were similar. RfeatSVM, and in some cases CVM and BVM, gave lower
maximum classification accuracies. Though the results of RfeatSVM illustrated in Figures
4 and 5, were computed for a smaller hyper-parameter grid (refer Section 5.3.3), we believe
it indicates the overall performance of the method. Apart from the excellent experimen-
tal results for AESVM with the Gaussian kernel, AESVM also gave good results with the
polynomial kernel as described in Section 5.4.

The algorithm DeriveRS was generally found to be efficient, especially for the lower
dimensional datasets D1-D5. For the high dimensional datasets D6-D9, the representative
set was almost the same size as the training dataset, resulting in small gains in training
and classification time speedups for AESVM. In particular, for D8 (MNIST dataset) the
representative set computed by DeriveRS was almost 100% of the training set. A similar
result was reported for this dataset in Beygelzimer et al. (2006), where a divide and conquer
method was used to speed up nearest neighbor search. Dataset D8 is reported to have
resulted in nearly no speedup, compared to a speedup of almost one thousand for other
datasets when their method was used. Their analysis found that the data vectors in D8 were
very distant from each other in comparison with the other datasets 13. This observation can

13. This is indicated by the large expansion constant for D8 illustrated in Beygelzimer et al. (2006)

33

Nandan, Khargonekar, and Talathi

D1 D2 D3 D4 D5 D6 D7 D8 D9
0

50

100

150
↑OTS value of AESVM for D3 is 968.5

O
ve

ra
ll

T
ra

in
in

g
T

im
e

S
pe

ed
up

Datasets

AESVM, ε = 10−3

CVM
BVM
LASVM

SVMperf

Figure 6: Plot of overall training time speedup (compared to LIBSVM) for all SVM solvers

explain the performance of DeriveRS on D8, as data vectors that are very distant from each
other are expected to have large representative sets. It should be noted that irrespective
of the dimensionality of the datasets, AESVM always resulted in excellent performance in
terms of classification accuracy. There seems to be no relation between dataset density and
the performance of DeriveRS and AESVM.

The authors will provide the software implementation of AESVM and DeriveRS upon
request. Based on the presented results, we suggest the parameters ε = 10−3, P = 105

and V = 103 for DeriveRS. A possible extension of this paper is to apply the idea of the
representative set to other SVM variants and to support vector regression (SVR). It is
straightforward to see that the theorems in Section 3.2 can be extended to SVR. It would
be interesting to investigate AESVM solvers implemented using methods other than SMO.
Modifications to DeriveRS using the methods in Section 2 might improve its performance
on high dimensional datasets. The authors will investigate improvements to DeriveRS and
the application of AESVM to the linear kernel in their future work.

Acknowledgments

Dr. Khargonekar acknowledges support from the Eckis professor endowment at the Uni-
versity of Florida. Dr. Talathi was partially supported by the Children’s Miracle Network,

34

Fast SVM training using approximate extreme points

D1 D2 D3 D4 D5 D6 D7 D8 D9
0

10

20

30

40

50
↑OCS value of SVMperf for D4 is 186.8

O
ve

ra
ll

C
la

ss
ifi

ca
tio

n
T

im
e

S
pe

ed
up

Datasets

AESVM, ε = 10−3

CVM
BVM
LASVM

SVMperf

Figure 7: Plot of overall classification time speedup (compared to LIBSVM) for all SVM
solvers

and the Wilder Center of Excellence in Epilepsy Research. The authors acknowledge Mr.
Shivakeshavan R. Giridharan, for providing assistance with computational resources.

References

K. P. Bennett and E. J. Bredensteiner. Duality and geometry in SVM classifiers. In
Proceedings of the Seventeenth International Conference on Machine Learning, pages 57–
64, 2000.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proceedings
of the 23rd international conference on Machine learning, ICML ’06, pages 97–104, 2006.

M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7:448–461, August 1973.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and
active learning. Journal of Machine Learning Research, 6:1579–1619, December 2005.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

J. Cervantes, X. Li, W. Yu, and K. Li. Support vector machine classification for large data
sets via minimum enclosing ball clustering. Neurocomputing, 71:611–619, January 2008.

35

Nandan, Khargonekar, and Talathi

C. C. Chang and C. J. Lin. IJCNN 2001 challenge: Generalization ability and text decoding.
In Proceedings of International Joint Conference on Neural Networks, volume 2, pages
1031 –1036, 2001a.

C. C. Chang and C. J. Lin. LIBSVM: a library for support vector machines. Software
available at http: // www. csie. ntu. edu. tw/ ~ cjlin/ libsvm , 2001b.

K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transaction on Algorithms, 6(4), September 2010.

R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for very large scale
problems. Neural Computing, 14(5):1105–1114, 2002.

P. Drineas and M. W. Mahoney. On the Nyström method for approximating a gram matrix
for improved kernel-based learning. Journal of Machine Learning Research, 6:2153–2175,
December 2005.

R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order information
for training support vector machines. Journal of Machine Learning Research, 6:1889–
1918, 2005.

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874, June
2008.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.
Journal of Machine Learning Research, 2:243–264, 2002.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support vector ma-
chines. In Proceedings of the 25th international conference on Machine learning, ICML
’08, pages 320–327, 2008.

B. Gärtner and M. Jaggi. Coresets for polytope distance. In Proceedings of the 25th annual
symposium on Computational geometry, pages 33–42, 2009.

J. Guo, N. Takahashi, and T. Nishi. A learning algorithm for improving the classification
speed of support vector machines. In Proceedings of the 2005 European Conference on
Circuit Theory and Design, volume 3, pages 381 – 384, 2005.

C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In Proceedings of the 25th international
conference on Machine learning, pages 408–415, 2008.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 2006.

T. Joachims. Making large-scale support vector machine learning practical. In Advances in
kernel methods, pages 169–184. MIT Press, 1999.

T. Joachims and C. N. J. Yu. Sparse kernel SVMs via cutting-plane training. Machine
Learning, 76:179–193, September 2009.

36

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Fast SVM training using approximate extreme points

B. Kaluza, V. Mirchevska, E. Dovgan, M. Lustrek, and M. Gams. An agent-based approach
to care in independent living. In Proceedings of AmI’2010, 2010.

J. Kelley. The cutting-plane method for solving convex programs. Journal of the Society
for Industrial and Applied Mathematics, 8(4):703–712, 1960.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278 –2324, 1998.

Y. J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In Proceedings
of the SIAM International Conference on Data Mining, 2001.

M. Nandan, S. S. Talathi, S. Myers, W. L. Ditto, P. P. Khargonekar, and P. R. Carney.
Support vector machines for seizure detection in an animal model of chronic epilepsy.
Journal of Neural Engineering, 7(3), 2010.

E. Osuna and O. Castro. Convex hull in feature space for support vector machines. In Pro-
ceedings of the 8th Ibero-American Conference on AI: Advances in Artificial Intelligence,
IBERAMIA 2002, pages 411–419, 2002.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to
face detection. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 130 –136, 1997.

D. Pavlov, D. Chudova, and P. Smyth. Towards scalable support vector machines using
squashing. In Proceedings of the sixth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 295–299. ACM, 2000.

J. C. Platt. Fast training of support vector machines using sequential minimal optimization.
In Advances in kernel methods, pages 185–208. MIT Press, 1999.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, 2007.

R. T. Rockafellar. Convex Analysis. Princeton University Press, 1996.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. MIT Press, 2001.

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207–1245, May 2000. ISSN 0899-7667.

S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set
size. In Proceedings of the 25th international conference on Machine learning, ICML ’08,
pages 928–935, 2008.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-
gradient solver for SVM. Mathematical Programming, 127:3–30, March 2011.

37

Nandan, Khargonekar, and Talathi

S. S. Talathi, D. U. Hwang, M. L. Spano, J. Simonotto, M. D. Furman, S. M. Myers, J. T.
Winters, W. L. Ditto, and P. R. Carney. Non-parametric early seizure detection in an
animal model of temporal lobe epilepsy. Journal of Neural Engineering, 5:85–98, 2008.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the KDD CUP
99 data set. In Proceedings of the 2009 IEEE Symposium Computational Intelligence for
Security and Defense Applications, pages 53–58, 2009.

D. Tax and R. Duin. Support vector data description. Machine Learning, 54(1):45–66,
2004.

C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized
risk minimization. Journal of Machine Learning Research, 11:311–365, 2010.

I. W. Tsang, J. T. Kwok, P. Cheung, and N. Cristianini. Core vector machines: Fast SVM
training on very large data sets. Journal of Machine Learning Research, 6:363–392, 2005.

I. W. Tsang, A. Kocsor, and J. T. Kwok. Simpler core vector machines with enclosing balls.
In Proceedings of the 24th international conference on Machine learning, ICML ’07, pages
911–918, 2007.

H. Yu, J. Yang, and J. Han. Classifying large data sets using SVMs with hierarchical clus-
ters. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 306–315, 2003.

G. X. Yuan, C. H. Ho, and C. J. Lin. An improved GLMNET for l1-regularized logis-
tic regression. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 33–41, 2011.

T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the twenty-first international conference on Machine learn-
ing, ICML ’04, 2004.

38

	1 Introduction
	2 Related Work
	2.1 Dual optimization
	2.2 Primal optimization

	3 Analysis of AESVM
	3.1 Definition of the representative set
	3.2 Properties of AESVM

	4 Computation of the representative set
	4.1 First level of segregation
	4.2 Second level of segregation
	4.3 Computation of the approximate extreme points
	4.4 Combining all the methods to compute X*

	5 Experiments
	5.1 Datasets
	5.2 Evaluation of DeriveRS
	5.3 Comparison of AESVM to SVM solvers
	5.3.1 Comparison to CVM, BVM, LASVM and LIBSVM
	5.3.2 Comparison to SVMperf
	5.3.3 Comparison to RfeatSVM

	5.4 Performance with the polynomial kernel

	6 Discussion

