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Abstract

Automated Indoor Mapping With Point Clouds

by

Jorge Chen

This dissertation examines the current state of automated indoor mapping and mod-

eling using point cloud data produced by close range remote sensing systems. The first

part looks at reality capture techniques that convert the physical form of indoor spaces

into point clouds of millions of measured points, each with an (x, y, z) coordinate value.

The second part examines methods for teasing out geometries from these point clouds

— often complicated by noise and voids — and converting them into 3D geometric mod-

els. The final part examines techniques for merging the coordinate reference systems of

these indoor maps and models with those of the outdoor world, resulting in a seamless

representation of space. Lessons learned in this study revealed that theories, techniques,

and practices in indoor mapping remain relatively elementary compared to those for the

outdoors, yet they also present significant opportunities for future research propelled by

emerging developments in remote sensing and a growing demand for indoor maps.
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Chapter 1

Mapping the Great Indoors

1.1 Research vision

This dissertation examines basic concepts and practices for automatically generat-

ing 3D maps of indoor spaces from point clouds — large collections of xyz coordinates

corresponding to the locations of surfaces. The three main areas of interest include au-

tomation (i.e., minimizing human involvement), the exploitation of point cloud data,

and the mapping and modeling of interior spaces. Unlike the thoroughly researched and

highly-developed field of outdoor mapping, indoor mapping and modeling has remained

in a relatively primitive state up until very recent times. This study covers only the

basic elements of this emerging field and provides a starting point for follow-on research

beyond the dissertation.

1.2 Why indoors?

Maps have helped people navigate and understand the world around them since pre-

historic times (Harley and Woodward 1987; Clarke 2013). Nearly all of these maps
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Mapping the Great Indoors Chapter 1

depicted the “Great Outdoors” with few exceptions, and their various forms and num-

bers have more recently proliferated with revolutions in digital computing, high speed

communications networks, air- and space-borne remote sensing, and global positioning

technology. Maps can now be made with remarkable precision and accuracy for nearly

every place on Earth with one exception . . . the “Great Indoors.” Until very recently,

indoor maps have remained in a relatively unsophisticated two-dimensional line drawing

form as they have for millennia (see Section 1.3). However, advancements in close-range

remote sensing, the processing of remotely sensed data, and computer graphics have

now significantly reduced the barriers that once prevented the creation and use of three-

dimensional indoor maps.

Growth of 3D
indoor mapping

Technology
Remote
sensing

Data
processing

Computer
graphics

Demand

Personal

Commercial

Demo-
graphics

Population
growth

Population
decline

Figure 1.1: Factors influencing the growth of 3D indoor mapping

A cursory look at current and future trends in demographics, demand for indoor map-

ping data, and technology point to significant future growth for the use of 3D indoor maps

3



Mapping the Great Indoors Chapter 1

as illustrated in Figure 1.1. Among these, demographics stands out as a notable catalyst

for growth. In a 2014 study, the United Nations estimated that the global population

will grow by about 2.3 billion people over the next four decades, representing a one-third

increase in the total population in 2015, with most of this growth occurring in newly ur-

banized areas in Asia and Africa (United Nations Population Fund 2014; United Nations

2014). This growth will fuel a boom in housing and other urban structures that “could

roughly equal the entire volume of such construction to date in world history” (National

Intelligence Council 2012). Growing populations and diminishing resources means that

more and more of these future populations will inhabit ever-larger structures that range

from high-rise apartment buildings to mega-sized shopping centers — something already

happening in many parts of China. While grand mega-structures have existed in the

past, they will become more commonplace in the future resulting in a growing need for

more effective methods of indoor navigation.

The booming population will also fuel a booming marketplace with many potential

uses for 3D indoor maps. The most obvious application will involve the extension of

location-based services (LBS) from the outdoors to the indoors, first in 2D then expanding

to 3D, for activities such as location-aware marketing, finding products within stores,

and the automated delivery of mail and packages using robots. Less obvious will be

applications in back-end activities powering that marketplace, such as the use of map-

aware autonomous robots for managing retail space and warehouse inventories.

Highly developed nations, however, will experience declining but aging populations,

which will drive a different set of needs (United Nations 2017). A declining workforce will

likely result in greater reliance on automation, not just for commerce as just mentioned

but also for care of the aged and elderly. Indoor maps can play an important role with

assistive technologies such as monitoring of the elderly — many of whom will likely live

alone due to declining birthrates — and map-enabled autonomous wheelchairs.

4
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Many elements of the third factor, indoor mapping technology, already exist for mak-

ing primitive 3D indoor maps. As mentioned earlier, these include close-range remote

sensing technology, techniques for processing the remotely sensed data, and theories and

techniques in computer graphics. Noteworthy future trends include the miniaturization

and commoditization of 3D sensors, improved methods for extracting geometric features

from sensed data, and the growing adoption of augmented reality and virtual reality

systems. This dissertation focuses on the second trend in technology — the extraction

of 3D geometric features from remotely sensed data.

1.3 A brief history of indoor maps

Utrilla et al. (2009) examined one of the earliest known outdoor maps found engraved

in Abauntz Cave, Spain, dating back to 13,660 calBP. Clarke (2013) also surveyed ancient

maps and contended that humans began mapping at a much earlier time in history,

going as far back as 55,000 calBP. This earlier date coincides with the presumed start

of worldwide human migration and the presumed development of higher functioning

cognitive abilities, which included the ability to think spatially. Figure 1.2 provides

a brief visual survey of outdoor maps through the ages. A comprehensive study on the

history of maps can be found in The History of Cartography series (Harley and Woodward

1987).

While most prehistoric and ancient maps depicted the outdoor world, archaeologists

have also unearthed maps of indoor spaces that date back to ancient times. Talbert

(2014) documented archaeological finds at ancient Girsu — an ancient Mesopotamian

city — that showed floor plans dating to c.3,000 B.C. The Forma Urbis Romae — a

massive 18.1 m by 13 m map etched in marble — served as a map of the city of Rome

during the third century A.D. with enough detail to show building interiors (Taub 1993).

5
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Indoor maps gained greater prominence during the Age of Enlightenment in Europe in

the form of architectural and technical drawings (Hewitt 1985), which coincided with the

onset of industrialization in Western societies and accompanying urbanization. In due

time, continued advancements in civil engineering would enable the construction of ever-

larger structures to accommodate these masses of people — e.g., skyscrapers, subways,

underground cities, etc. — and these large structures would often use indoor maps to

help occupants with indoor navigation. Figure 1.3 provides a brief look at historic indoor

maps through the ages.

(a) Abauntz Cave,
Spain, c.11,710 BC.

(b) Catalhoyuk,
Turkey, c.7,000 BC.

(c) World Map, Baby-
lon, c.600 BC.

(d) Anaximander’s
Map, c.575 BC.

(e) Qin Kingdom,
China, c.250 BC.

(f) Hondias World
Map, 1630.

(g) St. Denis, France,
1706.

(h) Thomas Bros.,
Los Angeles, 1947

Figure 1.2: Outdoor maps throughout history1

1a. Utrilla et al. 2009; b. Clarke 2013; c. British Museum, n.d.(b); d. Saint-Pol 2006; e. Mobojiang
2009; f. Hondius II 1631; g. Stones 2006b; h. Metcalfe, n.d.
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1.4 Defining indoor space

What differentiates indoor from outdoor space? Li (2016, 2008) writing on behalf of

the IndoorGML working group, defined indoor space as locations contrained by “architec-

tural components, such as doors, corridors, floors, walls, and stairs,” while outdoor space

faced no such constraints. Giudice, Walton, and Worboys (2010) noted that indoor space

contains regular geometries and poses challenges to conventional outdoor mapping tech-

niques, e.g., geographic (latitude-longitude) coordinates and multi-level routing. Walton

and Worboys (2010) provided another perspective based on whether spatial elements are

built or natural, their level of enclosure, and the viewability of objects within a certain

visual range.

(a) Girsu floor plan,
c.3,000 BC

(b) Ningirsu Temple
plan, c.2,150 BC

(c) Forma Urbis Ro-
mae, c.210

(d) Abbey of St. De-
nis, France, c.1700

(e) House of Parliament, England, c.1800s (f) Westfield Culver City, Google Maps, 2015

Figure 1.3: Indoor maps throughout history2
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Mapping the Great Indoors Chapter 1

Each definition touches on different aspects of indoor space, the most obvious and uni-

versal being a state of total enclosure and isolation from the outside world. Beyond that,

however, attempts to capture the nature of indoor space branch off into domain-specific

paradigms. For instance, the three sources just referenced approach the subject from the

standpoint of buildings, e.g., presence of architectural components, regular geometry, and

visual range. Walton and Worboys take this a step further by also considering suitable

coordinate reference systems and computerized routing techniques. But these definitions

quickly break down outside of the typical building context; for example, caves possess

no built-up elements nor regular geometry, the vast length of some megastructures can

exceed the limits of human vision, and large open-air courtyards and plazas straddle the

indoor-outdoor divide (Figure 1.4).

(a) Boeing Everett Factory (b) Carlsbad Caverns (c) Kyoto Imperial Palace

Figure 1.4: Spaces that defy conventional definitions of indoor space3

Figure 1.5: Alaskan Way Viaduct4

The recalcitrant nature of some indoor spaces

means that the concept of indoors has as much a

constructivist nature as it does essentialist, char-

acterized not only by definitions but also by us-

age (Davidson 2008). For instance, the Alaskan

2a. Musée du Louvre, n.d.; b. British Museum, n.d.(a); c. Lanciani 1893; d. Stones 2006a; e. Florida
Center for Instructional Technology, n.d.; f. Google 2015

3a. Jetstar Airways 2013; b. Chen 2006; c. Chen 2011
4Mabel 2008
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Mapping the Great Indoors Chapter 1

Way Viaduct running through Seattle, Washington,

shown in Figure 1.5, has many of the elements of

indoor space using the earlier definitions — built-

up structure, floors, ceilings, low walls, resistant to multi-level 2D computerized routing,

etc. — yet it is a transportation corridor that functions more as an outdoor bridge than

a building. Nonetheless, if this section of highway ever closed down, the same structure

could be converted into waterfront office space, a shopping center, or a parking garage.

Here, usage would result in a change of semantics.

Instead of attempting to put forward an authoritative definition of indoor space,

this dissertation will use the rules-of-thumb shown in Figure 1.6 to distinguish indoor

from outdoor spaces, with the added criteria that these spaces generally do not include

transportation corridors.5 The remainder of this dissertation will focus exclusively on

indoor spaces in the context of buildings.

5Even this is an imperfect definition since many people would consider a long highway tunnel as
indoor space.

9



Mapping the Great Indoors Chapter 1

Figure 1.6: Proposed definitions for indoor and outdoor spaces.

1.5 Defining indoor maps

While seemingly simple in appearance, maps represent complex instruments of lan-

guage that form a sort of spatial linguistics (National Research Council 2006). Bertin

(2010) called this a “‘language’ for the eye” and noted that graphic representation “con-

stitutes one of the basic sign systems conceived by the human mind for the purposes of

storing, understanding and communicating essential information.” Since maps — in the

language sense — transcend the indoor-outdoor divide, an understanding of the two ma-

jor schools of thought in cartography can help shape the future form and usage of indoor

maps. These two schools of thought consist of the cartography as communication and

10
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analytical cartography paradigms (Robinson and Petchenik 1975; Nyerges 1991; Kitchin,

Dodge, and Perkins 2011).

The cartography as communication paradigm emerged in the mid-twentieth century

in response to the positivist approach to mapping that accompanied the quantitative

revolution in geography and was advanced by the works of geographers such as Robinson

(1952), Board (1967), Robinson and Petchenik (1975), and Morrison (1978). It focused on

the communication process from the perspectives of both the cartographer and the map

reader, and it later expanded into the constructivist realm of human geography, exploring

issues such as place and power structures (Kitchin, Dodge, and Perkins 2011). The other

school of thought, analytical cartography, was spearheaded by Waldo Tobler and looked

at maps as tools for spatial analysis (Tobler 1959, 1976)6. Nyerges (1991) proposed that

these two cartographic concepts represented the two end points of a complementary,

rather than competing, continuum. While these concepts were originally developed for

outdoor maps, their ideas transcend the indoor-outdoor divide and can provide useful

models for understanding mapping of the indoors.

Indoor maps can thus represent tools for symbolizing the geometry of indoor spaces

for purposes of communication or spatial analysis. Another term frequently used for the

geometric representation of indoor space is indoor modeling, such as in the combined term

“indoor mapping and modeling” used by Zlatanova et al. (2013). Since models provide

representations of things in the real world, indoor maps can thus be seen as a subset of

models used for communicating or analyzing the spatial nature of indoor space in terms

of both form and usage.

6Clarke and Cloud (2000) provide a fascinating history on the appropriation of state-of-the-art car-
tographic techniques from Nazi Germany at the end of World War II.
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1.6 3D indoor maps of the future

With development still in a formative stage, indoor mapping provides many challenges

and opportunities for future research and development. One of the most intriguing and

thought-provoking areas involves mapping in all three dimensions (3D) — something

that outdoor mapping had never fully developed for practical purposes due largely to

technological limitations. However, the advent of small powerful computers, augmented

reality systems, and the miniaturization and commoditization of high-accuracy remote

sensing systems have now made true 3D mapping possible for both indoors and out.

For visualization, 3D indoor maps can function as fully immersive models or as the

source material for augmented reality systems. 3D maps can also find uses in indoor

navigation when paired with emerging indoor localization technologies; whereas indoor

positioning provides location in space, indoor maps provide the spatial context to make

location meaningful. Another potential area is in supply chain management. 3D indoor

maps coupled with other indoor technologies have the potential to fully automate ac-

tivities such as warehousing and long assembly lines using indoor map-enabled robots.

Marketing channels7 can also benefit from 3D indoor maps (Kotler and Keller 2006).

The growth of online shopping has resulted in the construction of enormous fulfillment

centers staffed mostly by humans who do the picking, sorting, and packing of orders; 3D

indoor maps can provide the spatial component for automating this entire process with

robots.

3D indoor maps can also serve important social purposes. They can be used in rescue

operations involving either very large structures or dangerous indoor environments, such

as the capsizing of the Costa Concordia cruise ship or the meltdown of the Fukushima

7I.e., the last leg of the supply chain that takes a product from manufacturing to the customer.
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Daiichi Power Plant in Japan. Indoor maps can also serve as the framework for studying

people and indoor environments as large metropolises begin to form in indoor spaces.

These ideas only represent a small fraction of the possible applications of 3D indoor

maps; the rest is only limited by the imagination.

1.7 Goal and organization of this dissertation

This dissertation explores a selection of key principles relevant to the automatic gen-

eration of 3D indoor maps and models from point clouds. These principles fall under

the three general steps of the modeling work flow consisting of point cloud acquisition,

feature extraction, and indoor-outdoor coordinate integration that form the basis of parts

two to four of this disseration (Figure 1.7), with the added constraint of working with

rectangularly shaped (cuboidal) indoor spaces.

Each part begins with a chapter covering general concepts followed by more detailed

treatment of key topics and applications with case studies, as illustrated in Figure 1.7.

Part II covers the first step of modeling, which involves taking automated measurements

of the environment using either laser scanning or photogrammetry to produce point

clouds. Its two case studies document early experiments with photogrammetry. With

the point cloud acquired, Part III examines the process for classifying points based in

terms of the structural features of a room (i.e., floor, ceiling, and walls) before converting

the point cloud into simplified geometric form, e.g., planes. Part III’s case study improves

on a previously developed approach for automatically deriving cuboidal geometric forms

from rectangular point clouds, while a separate chapter examines detailed information

on standards and file formats used for storing, processing, and displaying 3D models.

Finally, Part IV discusses the process of integrating indoor and outdoor coordinates

— a necessary step for ubiquitous global positioning and navigation. This final part
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begins with a review of spatial referencing followed by three special topics for indoors:

a proposed method for establishing indoor coordinates, a method for integrating indoor

and outdoor coordinates, and an analysis of the limits of the 3D Cartesian coordinate

system for geographic applications.

Point Cloud

Acquisition

(Part II)

Feature

Extraction

(Part III)

Referencing the

Indoor Map

(Part IV)

Figure 1.7: Organization of dissertation
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Chapter 2

Point cloud acquisition

The first step in digitally reconstructing an indoor space involves taking its measurements

(Héno and Chandelier 2014). In the not-too-distant past, this involved taking only a

handful of measurements of a room — say, of its corners or between key reference points

— which were then used to deduce its shape and form. In more recent times, powerful

computers and advanced sensors have automated the measurement process, making it

possible to capture, store, and process massive amounts of measured coordinate data

in a short period of time. These measured points collectively form a point cloud —

i.e., a collection of three-dimensional xyz coordinates corresponding to locations on solid

surfaces in a room.

Many techniques exist for performing three dimensional remote sensing1, nearly all

of which use some form of energy. Figure 2.1 divides 3D remote sensing into methods

that use either mechanical sound waves (e.g., sonar), the properties of light, or non-

visible electromagnetic energy (e.g., radar). Most remote sensing systems for building

modeling use light-based approaches, which can further be divided into light detection

1The term reality capture is sometimes used to refer to 3D remote sensing, especially for a non-
technical audience.
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and ranging (LiDAR) or image-based photogrammetric methods. Luhmann et al. (2011),

Mikhail (2001), McGlone (2013), and Renslow (2012) provide detailed technical discus-

sions on these approaches. This dissertation focuses exclusively on the use of LiDAR and

photogrammetry using structure-from-motion/multi-view stereo (SfM-MVS).

Light:
near visible

light spectrum

Trian-
gulation

Manual
surveying

Focusing

SfM-
MVS

Structured
light

Shading

Time-of-
Flight

Interfer-
ometry

Sound
Waves

Other Elec-
tromagnetic

Waves

LiDAR

Photogram
m

etry

Figure 2.1: Approaches to 3D remote sensing

2.1 Light detection and ranging (LiDAR)

LiDAR uses the properties of light to determine the distance between the measure-

ment instrument and the target. The light portion of LiDAR can use any type of light

source, but the widespread use of lasers has made LiDAR synonymous with the term

laser scanning.2 The ranging portion of LiDAR uses techniques similar to those of radar

(radio detection and ranging) and involves either directly or indirectly determining the

2However, some low-cost LiDAR sensors can also use non-laser light sources for very close range
applications.
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time-of-flight (ToF) of light as it travels from the sensor to the target and back. Other

less used terms for LiDAR include lidar (all lower case), LADAR (laser detection and

ranging), and OpDAR (optical RADAR).

2.1.1 Brief history of LiDAR

Synge (1930) published the earliest known theoretical work on LiDAR that proposed

using one hundred search lights to measure the heights of overhead clouds. Tuve, Johnson,

and Wulf (1935) modified Synge’s idea by substituting the one hundred search lights with

a pulsed light source, but their proposal was also purely theoretical. The first successful

demonstration of LiDAR is credited to Bureau (1946) who successfully used pulsed lights

to measure the heights of clouds in 1938. However, it was only after the development of

pulsed lasers in the 1960s that LiDAR became a practical method of measurement, with

initial deployments on aircraft for airborne measurements of the terrain below followed

by terrestrial applications as the instruments shrank in size.

2.1.2 Calculating distances with LiDAR

LiDAR sensors measure distance using the time it takes for light to travel from the

sensor to the target and back, with the method of determining the ToF serving as the

main differentiator between the various types of systems. The two approaches most

commonly used in remote sensing involve directly timing the ToF of pulsed lights or

indirectly deducing the ToF of frequency-modulated light, with the former often referred

to as pulsed LiDAR and the latter as phase-based LiDAR. Measurement results are often

reported as a collection of Cartesian coordinates or spherical coordinates using fixed units

of measurement that reflect each light signal’s ranging distance and orientation (Shan
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and Toth 2009; El-Omari and Moselhi 2008). Since LiDAR uses emitted light, they can

function in both lit and unlit environments.

Pulsed LiDAR

Pulsed LiDAR systems determine distance by measuring the travel time of a short

pulse of light emitted from the scanner. Since the light beam will often diverge (widen) as

it travels to the target, a single pulse will often detect multiple objects or different parts

of the same object at different depths, with the return signal showing a continuous wave

form with peaks and valleys as shown in Figure 2.2. For instance, a single LiDAR pulse

traveling through vegetation will often capture the canopy (1st return in the example),

various parts of the intermediate foliage (second return in the example), and the ground

(third return in the example) as peaks within the waveform.

Figure 2.2: Example of a return signal from an airborne LiDAR scanner pointed down
towards the ground
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The conventional approach to processing LiDAR signals involves using a discretization

algorithm that treats each peak of the wave form as a single return, as indicated by the

Xs in the example. As a result, different objects may show up as multiple returns with

the “first return” representing the object nearest the scanner. Techniques that use this

discretization method are often called discrete LiDAR, since the resulting measurements

are presented as discrete and unambiguous. Other techniques use the the entire wave

form and are referred to as full waveform LiDAR, which are more difficult to work with

and reflect actual ambiguities in the real signal. In both instances, the method for

determining distance involves multiplying the speed of light (c) by the light pulse’s travel

time (t) and dividing the product in half to account for the round-trip route (Equation

2.1); in practice, this equation is further adjusted for refraction and other factors.

Distance ≈ c× t
2

(2.1)

Phase-based

Phase-based approaches calculate distance based on a shift in phase of a light signal’s

sinusoidal wave form — detected using a technique called interferometry — as it hits

the target and returns to the measuring device (Zheng 2005; Duh 2012; Baghmisheh

2017). Two common implementations of phase-based approaches are the chirped pulse

method and the frequency-modulated continuous wave (FMCW) method. In the chirped

pulse method, the scanner sends a pulse of light with a fixed frequency (f) and finds the

ToF using the phase shift angle (φ) of the return signal. Distance is then calculated by

multiplying the derived ToF by the speed of light and dividing by two. Equations 2.2

and 2.3 show the derivation of ToF from φ, and Equation 2.4 shows the general equation

for distance.
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original signal
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Sensor Target

Figure 2.3: Chirped pulse method
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φ

2π
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1

f
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ToF ≈ rev× T =
φ

2πf
(2.3)

Distance ≈ c

2

φ

2πf
(2.4)

In the FMCW method, the scanner sends the outgoing light with a time-based fre-

quency signature and finds the ToF by comparing it with the return signature as illus-

trated in Figure 2.4. Distance is calculated by multiplying the ToF by the speed of light

and dividing by two in the same manner as with the other methods.

Comparison

Pulsed LiDAR and phase-based LiDAR each have unique capabilities and limitations.

Pulsed systems have a greater detection distance than phase-based systems, since they

can concentrate more energy into producing short bursts of light as opposed to phase-

based systems that must distribute that same energy into powering a continuous light
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Figure 2.4: Frequency-modulated continuous wave method

stream. Pulsed systems usually have a maximum range of over one kilometer3 while

many phase-based systems top out at about 200 meters at the time of writing this

dissertation. For close range work that includes indoor scanning, however, phase-based

systems generally provide superior precision and point cloud density compared to pulsed

LiDAR. The precision advantage comes from the less ambiguous nature of phase-based

timing and the density advantage comes from the ability to send multiple signals in a

constant stream of light, whereas pulsed systems require a minimum separation time

between pulses to prevent ambiguous signals. Additionally, phase-based instruments

often cost less and are more portable than pulsed LiDAR instruments.

2.2 Digital photogrammetry

Recent growth in the 3D remote sensing marketplace has resulted in a multitude of

smaller, cheaper, and faster ways to capture 3D point cloud measurements. One such

3One of the earliest experiments with laser-based LiDAR involved measuring the distance to the
Moon (Smullin and Fiocco 1962).
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family of techniques is photogrammetry, which literally means “taking measurements

from something drawn or written with light” from the Greek root words fotos (gene-

tive form of light), grámma (something drawn or written), and métron (measurements)

(McGlone 2013). At its core, photogrammetry reverses the photographic process4 by

reconstructing three-dimensional scenes using information from two-dimensional images.

Luhmann et al. (2014), McGlone (2013), and Mikhail (2001) provide detailed discussions

on how photogrammetry works, and the term digital photogrammetry describes those

techniques that can take advantage of electronically generated data. Of the various pho-

togrammetric techniques, the two most commonly used for building measurements are

structure-from-motion/multi-view stereo and structured light.

2.2.1 SfM-MVS

Structure-from-motion/multi-view stereo (SfM-MVS) has emerged as perhaps the

single most popular approach to photogrammetry due to its low cost, versatility, and

relative ease-of-use (Kersten and Lindstaedt 2012; Smith, Carrivick, and Quincey 2016;

Verhoeven 2011; Westoby et al. 2012). It has a very low entry barrier in terms of cost and

user skills and can be found in a wide range of software implementations ranging from

free open source packages to “freemium” programs to proprietary professional software

programs, all of which only require digital photographs taken with any type of digital

camera for creating 3D point clouds.

Calculating distances with SfM-MVS

SfM-MVS uses a series of overlapping 2D digital photographs to recover 3D infor-

mation via the principle of parallax, i.e. the phenomenon of how photographed objects

4Photography converts 3D information into a 2D form.
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appear to laterally shift at different rates when viewed from different laterally-shifted

vantage points (Smith, Carrivick, and Quincey 2016). However, measurements based on

conventional 2D photographs have no connection to real world distances making it neces-

sary to scale SfM-MVS models using supplemental information from other sources such

as georeferenced camera locations or measured distances between fixed ground control

points (GCPs) (Falkingham, Bates, and Farlow 2014).

The SfM-MVS workflow first uses SfM to estimate camera locations and produces

a sparse (i.e., low density) 3D point cloud of shared key points detected in the input

photographs. This information is then used by MVS to fine tune the camera parameters

and pair images together to produce the final dense 3D point cloud, which can be scaled

to the correct unit of measurement using supplemental information.

Software

Nearly all SfM-MVS software hide the complex SfM-MVS algorithms from end users,

resulting in automated or semi-automated processes in which users provide sets of over-

lapping photos and the software returns 3D point clouds. The recent proliferation of

affordable aerial drones has resulted in a growth in the number of SfM-MVS software

providers, which has driven down software prices to the point where some vendors pro-

vide SfM-MVS services for free or on a freemium basis5. Popular SfM-MVS software or

services include Agisoft Photoscan, Autodesk ReCap, Bentley ContextCapture, Bundler,

DroneDeploy, Photomodeler, and Pix4D. Some of these programs semi-automate the

SfM-MVS process by allowing users to simply upload photos and process them through

5The term freemium describes a business model that provides free basic services but charges for
premium services (Kumar 2014).

24



Point cloud acquisition Chapter 2

mediated workflows, while others provide full off-site services through their online pro-

grams.

Limitations

Image acquisition represents one of the main limitations of SfM-MVS. As a passive

remote sensing technique, photographing a scene requires an external lighting source to

illuminate the environment. This means that SfM-MVS will struggle in places with poor

lighting, e.g., dark environments or areas with excessively high light-to-dark contrast.

SfM-MVS also requires a series of photos to capture parallax — a problem in confined

spaces or poor access to overhead views of the ground. Additionally, SfM-MVS requires

texture to detect image movement and will often fail with textureless or uniformly tex-

tured surfaces, a common challenge in indoor spaces. Image resolution, camera lens dis-

tortion, and depth-of-field also impact SfM-MVS quality. When using low-cost cameras

or video recorders, a rolling shutter system (versus a full frame or mechanical shutter)

can distort images taken from moving platforms, resulting in scan-line distortions or a

“jelloing effect” that degrades point cloud quality.

SfM-MVS generated point clouds also suffer two other drawbacks. First, these point

clouds are inherently unitless making it necessary to use control points and reference

scales for proper scaling. The location of all other points are interpolated, which can

introduce a level of uncertainty to the data. Second, since SfM-MVS deduces measure-

ments based on parallax, with insufficient parallax contributing to a distorted point cloud

unless caught and fixed with control points. Finally, producing high quality point clouds

of indoor spaces using SfM-MVS often comes with a significant burden of labor, time,

and computing resources.
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2.2.2 Structured light

Structured light uses calibrated patterns of projected light to calculate distances us-

ing triangulation. Among the different types of structured light systems (see Luhmann

et al. (2014)), one popular approach pairs an infrared (IR) projector with two cameras —

one IR and one color — to produce a colorized 3D point cloud (Khoshelham and Elberink

2012). The IR camera captures the projected IR pattern and calculates distance for each

pixel by comparing it to a calibration pattern stored in memory, and the resulting point

cloud is then colorized using the image from the RGB camera. This technique, called

RGB-D (D for depth), was initially implemented in inexpensive consumer grade cameras

designed for computer games, namely, the Microsoft Xbox 360 Kinect, PrimeSense Sen-

sor, and Asus Xtion. A handful of companies soon converted these cameras into indoor

mapping platforms; one such company was Matterport, Inc., which placed three RGB-D

sensors (one facing forward and one each facing up and down) on a mechanically rotating

base.

RGB-D has the advantages of being low cost, easy-to-use, and able to operate in dark

environments due to use of emitted light. For example, the Kinect compared favorably

with LiDAR at up to 3 m (Khoshelham and Elberink 2012). However, it has several

disadvantages. First, RGB-D has a range of about 5 m, making it suitable only for

small spaces when used statically. Second, bright lights such as sunlight can obscure

the relatively weak IR signal and introduce noise to the data or even cause a break in

measurements. Third, unmodified consumer grade scanners can experience drift as they

rotate or move around when scanning larger spaces, introducing additional errors in the

data and creating improperly aligned point clouds.
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2.3 Other methods

Any type of automated or semi-automated distance measuring technique can con-

ceivably be used to produce point cloud measurements of indoor spaces, including the

use of sonar. While sonar lacks the spatial resolution of optical methods, it can provide

useful information for surfaces that optical methods traditionally struggle with, such as

windows, mirrors, and monochromatic reflective surfaces. Sonar instruments can take

the form of simple and inexpensive single beam formats or more complex forms such as

the system developed by Swiss researchers that can map an entire room with sound from

a single snap of the fingers (Dokmanić et al. 2013).

2.4 Conclusion

Among the three methods covered in this chapter, only LiDAR and structured light

have practical value for measuring indoor spaces due to their use of an internal light

source. SfM-MVS is generally impractical for indoor use due to the need for scene

preparation, external lighting, and its long processing times. However, the ability of SfM-

MVS to capture very fine details may make it suitable for modeling intricate architectural

features. While structured light provides an affordable way to scan small indoor spaces

under most lighting conditions, it also suffers from a few practical limitations that include

weak light signals subject to interference and alignment drift. LiDAR stands out as the

most promising technique due to its consistency, accuracy, precision, and speed.

Until recently, the price of 3D LiDAR scanners exceeded $30,000 USD for a basic

phase-based unit, making it prohibitively expensive for most users. Even a handheld

LiDAR, the GeoSlam ZEB1, based on the Zebedee prototype developed in Australia,

had a retail price of over $15,000 in 2015. However, rapid growth in consumer robotics
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and autonomous vehicles have led to the development of low-cost miniaturized LiDAR

sensors. In 2014, PulsedLight released what was perhaps the first consumer grade phase-

based LiDAR sensor, the LIDAR-Lite, at a price of only $90 USD and with a range of

40 m (Higgins 2015; PulsedLight 2014). Less than three years later, Scanse used a newer

version of the LIDAR-Lite — since acquired by Garmin, Inc. — to create the first low

cost 3D LiDAR scanner, the Scanse Sweep 3D, that provided panoramic scanning at up

to 40 m distances; it had a price of $400 for a self-assembly kit or $1,000 fully assembled

(Higgins 2016, 2017). Developments such as the LIDAR-Lite and Scanse Sense 3D point

to a future where the generation of high quality point clouds of indoor spaces could

become more commonplace, perhaps even contributing to a future of crowdsourcing.
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Using SfM-MVS with Google Earth

Material from this chapter was published in the AutoCarto 2016 conference proceedings

(Chen and Clarke 2016).

3.1 Introduction

3.1.1 An important limitation of SfM-MVS

Digital photogrammetry using structure-from-motion/multi-view stereo (MVS) tech-

niques provides cartographers with an economical and accessible way to measure and

model the physical environment using a simple digital camera, a handful of physical

baseline measurements, and SfM-MVS software. It can serve as an alternative to laser

scanning, which has a higher entry cost, or as a complementary technique for densifying

close-range laser scans that have superior accuracy. However, effective use of SfM-MVS

requires photographs to be taken from different vantage points, which can present prob-

lems when attempting to get images from overhead. For non-critical applications, the 3D

models in Google Earth can provide a no-cost alternative to real-world image gathering.
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This study investigated the feasibility of using Google Earth’s 3D models with SfM-MVS

software.

3.1.2 Google Earth 3D models

One workaround to the overhead imagery collection problem involves the use of Google

Earth. Google Earth, a 3D virtual globe (Goodchild et al. 2012), includes photorealistic

3D models of Earth that Google has created using a variety of reality capture tech-

niques. These 3D models include coarse resolution 2.5D topography for the entirety of

Earth and high resolution 3D models for select urban areas. Google’s early attempts

at urban modeling involved crowdsourcing with its former SketchUp software. However,

crowdsourcing produced inconsistent results prompting Google to sell SketchUp to Trim-

ble Navigation, Ltd., in 2012, and move its urban modeling and reality capture program

in-house (McClendon 2012).

Google Earth permits viewing of its 3D models from multiple perspectives, which

allows for the simulation of terrestrial, aerial, and space-based image capture. However,

the convenience of this approach comes at a cost. First, Google’s proprietary 3D models

have no measures of reliability; as a result, derived models will inherit all the inherent

uncertainties in the original Google Earth models. Second, high resolution models only

exist for areas that Google has modeled using high resolution imagery, laser scans, etc.

This means metropolitan areas such as Tokyo or New York would qualify but areas with

limited high resolution data such as Pyongyang would not.

3.2 Methodology

This study examined three test areas in Google Earth: two high resolution urban areas

and one low resolution rural area. Laser scanning data supplemented one urban area and
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the rural area for comparison purposes. The goal of this study was to test the feasibility

of using SfM-MVS to model different types of environments using Google Earth’s 3D data

and to quantify their discrepancies relative to accurate LiDAR measurements available

for UCSB and Mount Herard.

The three study areas consisted of a dense urban environment, a mixed environ-

ment, and a natural environment that had Google’s proprietary high resolution 3D mod-

els: a residential neighborhood in the Shinjuku ward in Tokyo, Japan (UTM Zone 54S

384900mE, 3949700mN); portions of the University of California, Santa Barbara (UCSB)

campus (UTM Zone 11S 239000mE, 3811900mN); and Mount Herard in Colorado (UTM

Zone 13S 456500mE, 4189190mN)1.

The SfM-MVS workflow consisted of five phases: ground control setup, image acqui-

sition, SfM-MVS processing, digital surface model (DSM) generation, and measurement

and analysis as shown in Figure 3.1. The SfM-MVS processing was performed using

Agisoft Photoscan Professional while the DSM was created using ArcGIS.

3.2.1 Ground control setup

Ground control setup involved selecting ground control points (GCPs) from Google

Earth to simulate the acquisition of GCPs in the real world. These GCPs used UTM

(WGS84) for planimetric/horizontal measurements and presumably EGM96(WGS84) for

vertical measurements (although Google does not clearly state the vertical coordinate

reference system). Horizontal measurements had centimeter precision and vertical mea-

surements had a precision of one meter. In addition to point coordinates, pairs of GCPs

were also used to create scaling distances for the SfM-MVS software.

1Note that the UTM designator uses zone bands. See Section 9.2.4.
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1. Ground Control Setup 2. Image Acquisition

3. SfM Processing 4. DSM and contour map generation
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Figure 3.1: Workflow overview

3.2.2 Image acquisition

Image acquisition involved recording video images of the ground during virtual fly-

overs of the study areas, which involved a back-and-forth sweeping configuration to ensure

image overlap (Figure 3.2). While flights at multiple altitudes and cross-paths would have

been ideal, time constraints limited flights to flight lines oriented in a single direction at

one altitude per study area: 300 m above ground level for Tokyo and UCSB and 1,000

m for Mount Herard. To make the most of these single-direction, single-altitude flight

lines, the camera was set to a 45° angle from nadir to provide simultaneous coverage of

horizontal and vertical surfaces to maximize parallax in both directions.

Microsoft Expression 4 Screen Capture software was used to capture video images of

the simulated aerial photos at a resolution of WQHD (2560x1440 pixel), which delivered

an effective 3.2 megapixel (MP) resolution (2464x1312 pixel) after accounting for the

removal of borders and non-image elements. Even though Agisoft recommended using

images with a minimum resolution of 5 MP (Agisoft LLC 2016), the study from Chapter
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Figure 3.2: Flight lines

4 showed that a minimum image resolution of 2 MP was sufficient for PhotoScan to

produce useable point clouds. The open source VLC media player was used to extract

individual still images from the videos for use in SfM-MVS.

3.2.3 Point cloud generation

The modeling workflow involved five steps in PhotoScan as shown in Figure 3.3.

First, images were aligned using structure-from-motion techniques. This process involved

detecting key points in each image using computer vision algorithms and estimating

camera lens parameters to correct image distortions. If successfully performed, the initial

image alignment placed some or all images into their correct locations and generated a

sparse point cloud of tie points. If this process failed, tie points were manually added to

the images to assist with the registration process.

The second step involved placing GCPs and scale bars in a subset of images and

further refining the alignment of all images. The software automatically estimated the

location of GCPs in all other images from a handful of manually placed GCPs. (Scale

bars were only used for Tokyo and Mount Herard.) Upon reaching a satisfactory state,

the camera parameters were calibrated one final time to optimize their parameters based

on the refined image locations.
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Figure 3.3: PhotoScan workflow

With all images correctly placed and all GCPs and scale bars established, the third

step used multi-view stereo techniques to generate a dense point cloud. At this point, the

resulting point cloud contained millions of points that collectively provided a photoreal-

istic 3D rendering of the modeled environment when converted to voxels — something

that point cloud viewers such as CloudCompare and MeshLab automatically perform.

At this point, the point cloud could be used for visualization or further processed into a

mesh model.

Generating a textured mesh of the point cloud addresses the pixelation issue and

provides a photo-realistic 3D model of the mapped environment. The last two steps of

the workflow used PhotoScan to generate a meshed surface and overlay it with image-

based texture for photorealism.

3.2.4 Digital surface modeling and contour map generation

For UCSB and Mount Herard, comparing the SfM-MVS point cloud with LiDAR

involved transforming the point measurements into a rasterized digital surface model

(DSM) and calculating the difference in elevation values between overlapping cells. The

Esri ArcGIS “LAS Dataset to Raster” tool was used for the DSM generation, with 2 m
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cells for UCSB and 30 m cells for Mount Herard. The DSM for UCSB used the maximum

elevation value per cell due to points existing along vertical features, e.g., walls; otherwise,

the edges of buildings would be located midway between ground and roof. The DSM for

Mount Herard used average elevation values.

Google Earth used UTM (WGS84) and EGM96 (WGS84) as the horizontal and ver-

tical coordinate reference systems (CRSs) but LiDAR data for Mount Herard and UCSB

used different CRSs2. With its much smaller geographic area and discernible key fea-

tures, the UCSB LiDAR data was manually transformed using key point registration in

CloudCompare. Without any salient features for manual registration, the Mount Her-

ard LiDAR data was transformed to UTM/EGM96 (WGS84) using the U.S. National

Oceanic and Atmospheric Administration (NOAA) VDatum software. Contour maps

were also generated for Mount Herard using ArcGIS to provide a qualitative assessment

of horizontal accuracy.

3.2.5 Measurements and analysis

Ideally, analysis would involve quantifying the elevation differences between the SfM-

MVS point cloud and Google Earth for all locations throughout the study areas. Un-

fortunately, Google did not make its proprietary data publicly available, which made it

necessary to use alternative approaches. These approaches involved comparing horizontal

and vertical distances between point pairs and comparing digital surface models.

2Mount Herard LiDAR used UTM (NAD83)/NAVD88 and UCSB LiDAR used SPCS CA Zone 5
(NAD83)/NAVD88.
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Horizontal and vertical distances

Horizontal distances were measured between pairs of GCPs and non-GCP random

points, with the latter accounting for the anchoring effect of GCPs in the point cloud

generation process. These measurements were separated into horizontal (planimetric)

and vertical components, instead of straight-line Euclidean distances, to prevent large

horizontal distance values from masking significant deviations in the vertical compo-

nents. Vertical distances consisted of the elevation differences between two points while

horizontal distances consisted of the Euclidean distance as shown in Equation 3.1.

Dh =

√
(x2 − x1)2 + (y2 − y1)2 (3.1)

Point clouds generated by SfM-MVS for Tokyo and UCSB contained enough detail

to place GCPs and random points on salient features, e.g., building corners, for assessing

horizontal deviations from Google Earth. Additionally, building measurements were also

performed for Tokyo and UCSB to assess small area deviations. However, the natural

features of Mount Herard made it impossible to identify sufficient numbers of unambigu-

ous points; instead, a qualitative assessment of horizontal deviation was performed using

contour maps. Differences in elevation values were calculated in ArcGIS by finding the

elevation value of the nearest neighbor in the point clouds for each individual point, while

elevation values from Google Earth were manually determined by reading the on-screen

value associated with each individual control point.

Digital surface models

DSM analysis involved applying map algebra to determine elevation differences on a

cell-by-cell basis using Equation 3.2. The UCSB assessment used a qualitative approach

due to the abundance of elements that had changed between the time of LiDAR acquisi-
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Table 3.1: Horizontal distances between pairs of points

Tokyo UCSB

Pair Type PhotoScan Google Difference Type PhotoScan Google Difference

# G/R meters meters meters % G/R meters meters meters %

1 G 112.45 113.44 -1.00 -0.9% G 167.86 166.33 1.53 0.9%

2 G 207.47 208.53 -1.07 -0.5% G 72.07 72.13 -0.06 -0.1%

3 G 143.67 145.02 -1.35 -0.9% G 122.59 122.01 0.57 0.5%

4 G 107.98 108.06 -0.08 -0.1% R 241.02 241.97 -0.95 -0.4%

5 G 120.41 121.42 -1.00 -0.8% R 218.24 219.04 -0.79 -0.4%

6 G 122.15 122.80 -0.65 -0.5% R 276.11 274.23 1.88 0.7

7 R 46.03 45.68 0.35 0.8%

8 R 89.17 89.23 -0.06 -0.1%

9 R 60.08 59.96 0.12 0.2%

tion (c.2007) and Google Earth’s data (c.2015), such as vegetation, marshlands, and the

beach. Mount Herard data was assessed using a quantitative approach involving descrip-

tive statistics, a histogram, a cumulative distribution function (CDF), and visualization

of the geographic distribution of errors.

DSMDiff = DSMSfM.MV S −DSMLiDAR (3.2)

3.3 Results

3.3.1 Horizontal measurements

Horizontal measurements for the Tokyo and UCSB data sets showed differences of

less than one percent between Google Earth and the SfM-MVS point clouds (Tables 3.1

and 3.2). In the column “Type, G/R,” G identifies distances between pairs of GCPs

while R identifies point-pair distances between random points.
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Table 3.2: Measurements of building dimensions

Tokyo UCSB

PhotoScan Google Difference PhotoScan Google Difference

Bldg Dim meters meters meters % meters meters meters %

1

L 24.3 24.5 -0.2 -0.8% 105.6 106.2 -0.6 -0.6%

W 26.1 26.4 -0.3 -1.1% 92.4 93.2 -0.8 -0.9%

H 21.0 20.1 0.9 4.5% 13.3 13.4 -0.1 -0.7%

2

L 25.8 25.7 0.1 0.5% 46.0 46.1 -0.1 -0.2%

W 27.6 27.8 -0.2 -0.8% 66.2 66.7 -0.5 -0.7%

H 5.3 5.1 0.2 4.3% 12.7 12.6 0.1 0.8%

3

L 7.9 7.9 0.0 0.0% 49.9 50.2 -0.3 -0.6%

W 12.3 12.3 0.0 0.0% 55.5 55.7 -0.2 -0.4%

H 8.3 8.1 0.2 2.5% 11.1 11.2 -0.1 -0.9%

GCPs could not be precisely located in the Mount Herard data, so visual analysis

using isolines — - i.e., contour maps — - was used to compare the SfM-MVS data to

LiDAR (Figure 3.4). Even though deviations at specific locations varied widely, anal-

ysis of the overall map showed a general conformance of horizontal positions to actual

conditions based on LiDAR, though not necessarily to Google Earth itself.

3.3.2 Vertical measurements

The SfM-MVS process produced mixed results in vertical measurements for the sam-

pled point locations. Vertical measurements in the built-up areas of Tokyo and UCSB

showed little to no deviation from Google Earth within Google Earth’s fine sub-centimeter

resolution for vertical point-to-point distances and coarse 1 meter resolution for eleva-

tions (Tables 3.2 and 3.3). However, the all-natural area of Mount Herard exhibited

significant vertical deviations with values approaching or exceeding 100 m, representing

over 10% of the overall height range for the entire modeled area.
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Figure 3.4: Contour map of Mount Herard comparing SfM-MVS to LiDAR

Table 3.3: Elevation differences between pairs of points

Tokyo UCSB Mount Herard

Pair Type PhotoScan Google Diff Type PhotoScan Google Diff Type PhotoScan Google Diff

# G/R meters meters meters G/R meters meters meters G/R meters meters meters

1 G -2 -2 0 G 0 0 0 G 119 22 97

2 G -4 -4 0 G 0 -1 1 G -72 -153 81

3 G -1 -1 0 G -1 -1 0 G -33 -53 20

4 G -2 -2 0 R 1 2 -1 G -151 -75 -76

5 G 1 1 0 R 1 1 0 G -63 -32 -31

6 G -3 -3 0 R 0 -1 1 G -89 -175 86

7 R 0 0 0 G -36 22 -58

8 R 0 1 -1 G 27 54 -27

9 R 0 0 0 R 38 149 -111

10 R 64 96 -32

11 R 25 -53 78
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Figure 3.5: Visualized elevation differences between SfM-MVS and LiDAR at UCSB
using 2 m DSM cells

3.3.3 DSM analysis

An extended time difference between the LiDAR data and Google Maps prevented use

of the UCSB DSM data for descriptive statistics. Nonetheless, a visual inspection of the

DSMs provided some insights into how well the two data sets matched. Figure 3.5 shows

the time-varying changes which would have significantly skewed results of numerical

analysis — most of these changes appeared to be due to vegetative growth, erosion, or

land subsidence. Additionally, a new building addition can be seen in the bottom left

of the figure. Removing these time-varying elements provides a more promising picture

showing that the SfM-MVS point cloud conformed to actual site conditions by +/- 1 m,

within the range of the vertical resolution of Google Earth.

The large geographic area of the Mount Herard study area allowed use of a compre-

hensive cell-by-cell comparison of the data. Figure 3.6 shows a histogram of differences

in elevation values between SFM-MVS and LiDAR. This graph shows that on average
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Figure 3.6: Elevation differences between SfM-MVS and LiDAR DSMs at Mount
Herard using 30 m DSM cells

Figure 3.7: Visualization of DSM differences between SfM-MVS and LiDAR at Mount Herard
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Table 3.4: Horizontal distances between pairs of points

Mount Herard

Pair Type Google LiDAR Difference

# G/R meters meters meters %

1 G 22 28 -6 -22%

2 G -153 -140 -13 9%

3 G -53 -46 -7 16%

4 G -75 -74 -1 1%

5 G -32 -7 -25 372%

6 G -175 -172 -3 2%

7 G 22 23 -1 -6%

8 G 54 30 24 79%

9 R 149 149 0 0%

10 R 96 122 -26 -21%

11 R -53 -27 -26 95%

SfM-MVS produced elevations values exceeding those in the LiDAR data by a mean

value of 23.9 m, although with a standard deviation of 23.6 m. Figure 3.7 shows the

geographic distribution of these elevation differences; areas with greater texture or more

topographic relief had the least amount of error while low textured or topographically

homogeneous areas had the greatest amount of error, as expected when using SfM-MVS.

3.3.4 Google versus LiDAR

Availability of LiDAR data for Mount Herard made it possible to examine errors

in Google Earth’s model compared to actual physical measurements. Table 3.4 shows

vertical distance errors between point-pairs in Google Earth and the LiDAR data for

Mount Herard using the same point-pairs shown in Table 3.3.
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3.3.5 Visual representation

Applying meshing and texture mapping to the point clouds produced models that

appeared nearly identical to the Google Earth models (Figures 3.8 to 3.10). In each

case, PhotoScan accurately captured very fine resolution elements including the shape

of small features such as trees and cars as well as model imperfections. Achieving this

level of fidelity required numerous hours of manual adjustments to remove artifacts from

misaligned images; it did not occur automatically using the automated process.

Figure 3.8: Visual comparison of Google Earth and PhotoScan models for Tokyo
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Figure 3.9: Visual comparison of Google Earth and PhotoScan models for UCSB

Figure 3.10: Visual comparison of Google Earth and PhotoScan models for Mount Herard
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3.4 Discussion

While PhotoScan successfully reconstructed Google Earth’s 3D models for all three

study areas, analysis of the resulting models showed significant variability in their accura-

cies compared to the original model and to real-world LiDAR data. The following sections

provide a discussion on the limitations of using this approach for scientific applications.

3.4.1 Information content

Since SfM-MVS relies on image content to derive 3D measurements, certain qualities

of these images can impact the quality of the final point clouds. These factors include

the quality of the camera and its images, the different views of the environment captured

by those images, and qualities of the environment itself (Agisoft LLC 2016). While the

3.2 MP resolution of the images used in this study was sufficient for PhotoScan, higher

resolution images would have likely produced higher resolution point clouds with possibly

greater levels of precision.

However, higher precision does not necessarily translate into higher accuracy. The

limited viewing angles of the aerial photos perhaps had greater influence on accuracy

than image resolution. All three case studies used single flight lines oriented in a single

direction and flown at a single altitude: 300 m above ground for Tokyo and UCSB and

1,000 m above ground for Mount Herard. Moving the “camera” along a horizontal plane

produced significantly greater parallax in the horizontal direction than the vertical direc-

tion, resulting in lower horizontal error values. Providing a wider range of perspectives

would have likely improved the quality of the models. For example, images from multiple

altitudes could have improved vertical accuracy.

Surface properties such as texture, color, and reflectiveness played an equally impor-

tant role in determining model quality. SfM-MVS does not perform well with lightly or
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untextured surfaces due to an inability to detect key points in those areas (Agisoft LLC

2016). For this reason, the built-up environments of Tokyo and UCSB with their complex

geometries and varied colors produced significantly better results than the all-natural en-

vironment of Mount Herard. At Mount Herard, areas with high topographic relief —

such as peaks and sharp ridges — produced accurate measurements (±10 m compared to

LiDAR) while smooth, rounded, and featureless valleys produced errors of up to 100 m.

Use of additional ground control points could have mitigated errors in those problematic

areas.

3.4.2 Computation

Producing the point clouds using SfM-MVS required a significant amount of comput-

ing resources on a single workstation3 and took about six hours of processing for each

of the six point clouds. Even with the available computing resources and processing

times, the software could only generate one point cloud (Tokyo) at the highest quality

level while the UCSB and Mount Herard point clouds were generated at the next lower

level (i.e., high quality) due to resource limitations. Alternative strategies for producing

large point clouds, such as processing and merging smaller areas or using distributed

computing, were not explored.

3.4.3 Errors and uncertainties

Models produced using this technique will always contain two types of errors and

uncertainties: one between the SfM-MVS point cloud and Google Earth and the other

between Google Earth and reality. Errors between the SfM-MVS model and Google Earth

3Windows workstation with Intel i7-4790 processor, 32 GB RAM, AMD R9 280 graphics card with
3 GB RAM.
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can be characterized through sampling of locations in the Google Earth software, such

as those used in this study, although the coarse resolution of vertical measurements can

introduce additional uncertainty. However, the absence of quality measures comparing

Google’s model to reality makes it impossible to characterize the second type of error

and uncertainty. The sampling of errors in Google Earth, shown in Table 3.4, showed

the degree to which Google’s model deviated from reality at Mount Herard, providing

an indication of the imperfections — - usually to an unknown degree — - that exist in

Google Earth.

3.5 Conclusion

This study demonstrated the feasibility of reconstructing Google Earth’s 3D models

using SfM-MVS software and screen images from Google Earth. While all three case stud-

ies produced point clouds and models that appeared nearly identical to Google’s, sample

measurements showed varying degrees of errors in the SfM-MVS models: the built-up

environments of Tokyo and UCSB exhibited the lowest error values while the natural

environment of Mount Herard had a wide range of error values with some exceeding 100

m. Errors in SfM-MVS modeling could be attributed to and mitigated at specific steps in

the SfM-MVS workflow. However, errors inherent in Google Earth itself were impossible

to quantify without taking actual physical measurements. The variability of SfM-MVS

errors and the unknown errors and uncertainties in Google’s models makes this technique

unsuitable for applications that require accurate measurements. Nevertheless, for many

users who have no such requirement, the technique used in this paper can provide a fast,

convenient, and affordable approach to modeling the physical world.

47



Chapter 4

Photogrammetry with inexpensive

webcams

4.1 Introduction

This study explored the feasibility of using structure-from-motion/multi-view stereo

(SfM-MVS) for deriving precise 3D indoor measurements using cameras at the lowest

end of the consumer digital camera spectrum, namely webcams. It also investigated

SfM-MVS performance for a smartphone camera and low- to mid-level consumer digital

cameras, as representative models of future miniaturized cameras. Prior studies on use

of webcams in photogrammetry have mainly centered on the areas of robotics and simul-

taneous localization and mapping (SLAM). These studies — such as those from Mansley

et al. (2010), Taylor, Boles, and Geva (2007), and Budiharto, Jazidie, and Purwanto

(2010) — produced limited-use point clouds that met the expedient needs of robotics at

the cost of completeness and precise geometric form. Only two other studies were found

to use webcams for precise mapping — Wong (2012) used webcams to map the human

head and King (2012) used them to take precise measurements of the heads of newborn
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babies. Other studies such as those from Yastikli (2007), Bhatla et al. (2012), and Klein,

Li, and Becerik-Gerber (2012) used high quality digital single lens reflex (SLR) cameras

— expensive professional or “prosumer” grade cameras with superior optics and sensors.

However, no prior study could be found on the use of SfM-MVS with low-cost consumer

grade webcams for measuring indoor spaces.

4.2 Study areas

The two areas used for this study included an office space measuring 4 m x 6 m and a

lobby area measuring 12 m x 6 m, both selected for their wide variety of physical objects

and varied lighting conditions (Figure 4.1). These spaces were in Ellison Hall at the

University of California, Santa Barbara, and were accessible at all hours of the night for

uninterrupted data collection. Physical objects in both locations such as desks, book-

shelves, windows, and memorabilia provided a basis for assessing the geometric accuracy

of the resulting point clouds, while a variety of textures and lighting conditions allowed

testing of SfM-MVS under various environmental conditions. Noteworthy textures in ei-

ther of the study areas included polished floor tiles, patterned low-pile carpeting, textured

walls, reflective white boards, and transparent windows with reflections. Photographs of

the office were taken during both day and night to explore the effects of ambient exterior

lighting; however, photos of the lobby were only taken at night due to time constraints.

According to the PhotoScan User Manual, these two study areas pushed the limits of

where SfM-MVS can operate due to the presence of untextured, shiny, or transparent

objects; numerous foreground objects; and very flat objects with low texture (Agisoft

LLC 2016).
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(a) Office, front (b) Office, back (c) Lobby, left (d) Lobby, right

Figure 4.1: Views of the two study areas

4.3 Equipment and software

Instruments used for this study included two webcams, five digital cameras, an in-

dustrial laser scanner, and a laser distance measurer (LDM). The webcams and digital

cameras were chosen to represent the spectrum of inexpensive consumer grade cameras,

while the LiDAR scanner and LDM provided baseline data for evaluating the resulting

point clouds.

4.3.1 Webcams

The two webcams used for this study were the Microsoft LifeCam Studio and the

Logitech QuickCam for Notebooks Deluxe, both chosen to represent inexpensive con-

sumer grade webcams at the high- and low-ends. The LifeCam Studio had a maximum

native high definition (HD) image resolution of 1920 x 1080 pixels, while the QuickCam

had a maximum native VGA resolution of 640 x 480. Both cameras had a market price

below $60 in 2014. Specialized high-end webcams were not considered due to their high

prices starting at around $500.
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4.3.2 Digital cameras, LiDAR, and LDM

This study used five readily-available digital cameras that represented mid-level con-

sumer grade cameras. These included the Nikon D3100 SLR, Canon PowerShot SD1000,

Google/LG Nexus 4 smartphone, Sony DSC-TX10, and Panasonic DMC-FZ28. Only

the D3100, SD1000, and Nexus 4 were used in both study areas due to equipment and

time constraints. Measurements from the Riegl LMS-Z420i light detection and ranging

(LiDAR) laser scanner and a Bosch DLR130K handheld LDM served as the comparison

baseline for evaluating SfM-MVS performance.

4.3.3 Processing hardware and software

All point cloud generation was done on a laptop computer (Intel i7-4700MQ CPU,

16 GB of RAM, and a dedicated Nvidia GeForce GTX 770M graphics card with 3 GB

of video RAM) running Microsoft Windows 7 and the PhotoScan Professional SfM-MVS

software produced by Agisoft, LLC. The Riegl RiSCAN PRO software operated the LMS-

Z420i laser scanner and provided coarse point cloud registration, while the open source

CloudCompare software was used for point cloud visualization, manual fine registration,

point cloud cleaning, and taking measurements.

4.4 Workflow

The PhotoScan SfM-MVS process involved study area preparation, photo capture,

photo alignment, point cloud generation, point cloud alignment, and data analysis (Figure

4.2). An optional step of camera lens calibration was also performed to account for the

unique properties of each camera’s lens.
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Figure 4.2: Workflow for this study

4.4.1 Camera calibration

Camera calibration corrected for imperfections in the camera’s imaging system to im-

prove photo alignment and point cloud generation. While the SfM process automatically

provided initial camera calibration during image alignment, a dedicated camera calibra-

tion procedure using Agisoft’s Lens software provided more comprehensive calibration-

level lens adjustments. The Lens software used the Brown pinhole camera distortion

model to estimate focal length (fx, fy), principal point (cx, cy), radial lens distortion

(K1, K2, K3, K4), and the tangential lens distortion (P1, P2) parameters using a series

of photos of a checkerboard calibration pattern taken at various vantage points (Agisoft

LLC 2013).

4.4.2 Reference markers and scale bars

Study area preparation involved placing reference markers and scale bars throughout

the office and lobby. While not required, reference markers can assist with generating

point clouds of challenging locations. Insufficient texture, reflective surfaces, poor illumi-
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nation, and camera noise can impede the software’s ability to detect key points in images

resulting in poor or failed alignments. Printed reference markers served as a priori con-

trol points, especially in challenging areas such as white boards and windows. These

markers took the form of coded computer-readable markers generated by PhotoScan —

printed on letter size paper (8.5 in x 11 in) with a 25 mm center point radius — as well

as uncoded markers and scale bars for manual use. Scale bars measuring 60 cm in length

with 10 cm subdivisions provided the necessary a priori external scaling information to

size the point cloud in the correct unit of measurement. In PhotoScan, point-pairs on

the scale bars — usually the end points — were manually selected to establish correct

distances in the point cloud. Figure 4.3 shows examples of an uncoded marker, a coded

marker, and a scale bar.

Figure 4.3: Types of printed targets
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4.4.3 Photo capture

Images were taken following the camera placement pattern recommended by Agisoft

(Figure 4.4), which involved moving the camera in a lateral motion along each wall while

pointed at the opposite wall. Corner photos were roughly aimed diagonally across the

room and taken in pairs in an attempt to introduce parallax at those locations; these

corner photos helped to link photos from one wall to another.

(a) For facade. (b) For room.

Figure 4.4: Recommended camera placement for indoor photogrammetry1

Multi-camera setup

Use of a custom-built camera rig shown in Figure 4.5 helped ensure spatial and

temporal consistency between the different cameras. This allowed all cameras, except

the Nikon D3100, to take images from similar positions, at similar angles, and under

similar lighting conditions at about the same point in time. The Nikon D3100 was not

attached to this rig due to its size and weight and was attached to a tripod that trailed

the camera rig.

1Agisoft LLC (2016)
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The camera rig consisted of an aluminum angle with camera attachment points,

torpedo levels, a tripod, and a tripod dolly to carry a notebook computer and facilitate

movement. Three LifeCam cameras were mounted pointing horizontally and 20 degrees

from horizontal to provide about 20% vertical overlap in the images. The LifeCam and

QuickCam were mounted in landscape mode while the other cameras were mounted in

portrait mode.

Figure 4.5: Camera mount

Image acquisition software

Software used for capturing the images included a combination of built-in camera

software and third-party software. The purpose of using third-party software was to

capture an extended range of luminance values for studying the effects of high dynamic
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Table 4.1: Cameras and camera settings

Image Auto-
Camera Software Format ISO Resolution exposure

LifeCam Studio MATLAB IMAQ JPG Auto 2.1 MP Yes
QuickCam MATLAB IMAQ JPG Auto 0.3 MP Yes
D3100 Built-In RAW, JPG 100 14.2 MP Yes
SD1000 CHDK JPG 80 7.1 MP No
Nexus 4 Camera FV-5 JPG 100 8 MP No
FZ28 Built-In JPG 100 10.1 MP Yes
TX10 Built-In JPG Auto/Multi 16.2 MP Tonemapped

range (HDR) photography in a proposed follow-on study; HDR imaging was not used

in this study with the exception of photos from the Sony TX10 using its built-in HDR

capability. Table 10.7 shows the software and settings used for capturing images from

each platform. When possible, this study used photographs taken with autoexposure

and auto white balance settings at the lowest ISO setting; where autoexposure photos

were not available, the middle exposure of bracketed shots was manually selected through

visual inspection.

Image capture

All photos taken for this study were single exposure compressed 8-bit per channel

JPEG images, a format which captured luminance data at 256 levels per RGB color,

with the exception of photos from the D3100 and TX10. While Agisoft recommended

capturing photos in an uncompressed raw format for best results, this study used com-

pressed JPEGs since most webcams and consumer cameras cannot save in raw format.

The D3100 images for the lobby consisted of two different sets of images taken on two

separate nights. The first set of images contained images with a short depth of field due to

a wide lens aperture resulting in some areas being out of focus. The second set of images

contained sharper details produced using a smaller lens aperture, but they lacked the

reference markers from the first photo session. Both image sets were combined so that the
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resulting image set included reference markers from the first session and sharper details

from the second session. These images were captured in the uncompressed Nikon raw 12-

bit format and converted to 16-bit TIFs for use in PhotoScan. The final photogrammetric

processing for the D3100 images used a combination of TIF and JPEG format images.

4.4.4 Image alignment

The PhotoScan image alignment process involved software detection of reference

markers and key points and use of SfM for initial image alignment. Prior to performing

photo alignment, PhotoScan detected coded reference markers to assist with the initial

SfM alignment step. Next, the software used computer vision to detect key points in each

image — this is where the printed markers can help — and applied SfM techniques to

estimate the positions from where each image was taken as well as the lens parameters.

This step resulted in a sparse 3D point cloud composed of key points that contained

errors due to misalignment. Manual alignment was then performed to refine the initial

alignment of individual images, which involved manually adding reference points and

removing false points caused by reflections and false detections (Figure 4.6). Additional

reference markers were added to correspond to uncoded reference markers, prominent fea-

tures, and coded reference markers that were not automatically detected by the software

(Figure 4.7).

In this study, automatic alignment produced mixed results with higher resolution im-

ages generally performing better. However, automatic alignment still proved too prob-

lematic for the challenging indoor environments, so all image alignment was performed

manually.
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(a) Misidentified marker in reflection (b) Misidentified marker

Figure 4.6: Misidentified markers

4.4.5 Point cloud generation

Upon completion of image alignment, PhotoScan generated dense point clouds using

multi-view stereo (MVS) techniques. PhotoScan provided two simple parameters for

dense point cloud generation: quality and depth filtering. Higher quality settings produce

denser and more accurate point clouds but require more processing time. Depth filtering

impacts the treatment of outlier points which may represent either noise or detailed

geometry. The PhotoScan User Manual recommended using mild filtering for scenes

with foreground details and aggressive filtering for scenes where small details have low

importance.

Photos for all cameras used the highest “ultra high” quality setting and “aggressive”

depth filtering, with the exception of the D3100 images for the lobby. Even though the

PhotoScan User Manual recommended using mild depth filtering to improve foreground

details, aggressive depth filtering was eventually used due to the presence of excessive

noise from low quality images, e.g. low resolution or poorly lit images. Insufficient RAM

memory on the workstation prevented processing of the D3100 images at “ultra high”

quality, so the next lower “high” quality setting with “aggressive” depth filtering was

used.
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(a) Photo with markers

(b) SfM points with camera positions and markers

Figure 4.7: Single photo with markers and resulting SfM sparse point cloud

4.4.6 Point cloud alignment

Point cloud alignment involved using the CloudCompare software to register the SfM-

MVS point clouds with their respective LiDAR point clouds (Figure 4.9). Each alignment

required a minimum of four manually selected pairs of points corresponding to the same

features in each point cloud, with scale adjustment disabled.
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Figure 4.8: Manual point cloud alignment in CloudCompare

4.4.7 Measurement and analysis

Cross-room distances

Cross-room measurements involved using the CloudCompare Point Picking tool to

measure linear distances between two manually selected points (Figures 4.9 and 4.10).

These measurements were then recorded in a Microsoft Excel spreadsheet for analysis.

Figure 4.9: Measuring distances in CloudCompare
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(a) Office

(b) Lobby

Figure 4.10: Locations of measurement points
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Coverage, surface relief, and point density

In addition to evaluating point-to-point distances, this study examined other quality

factors in the form of coverage, surface relief reconstruction, and point density. Coverage

examined the completeness of point clouds over certain surfaces, surface relief examined

the software’s ability to capture variations in 3D surfaces, and point density examined

the density of points produced.

Four surfaces were converted to digital surface models (DSMs) with 2.5 cm x 2.5 cm

cells using ArcGIS Desktop and the “Point to Raster” conversion tool (Figure 4.11). For

surface relief, mean out-of-plane2 point “height” was used as the z-axis in the ArcGIS tool.

The Raster Calculator tool then subtracted the LiDAR DSM values from each camera’s

DSM to produce a raster of residuals. Point density involved taking the number of points

in each cell, dividing by the cell’s area, and recording the value as the cell’s z-axis for

every cell; the mean “height” of these cells reflected the overall mean value. Coverage

involved using the “IsNull” tool on the surface relief DSM to identify voids in the raster;

statistics for the percents of occupied and empty cells was found in the resulting datasets’

properties. All three evaluations omitted the bordering cells to prevent boundary effects.

2I.e., in the direction normal to the plane.
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Table 4.2: SfM-MVS data summary, office (night)

Camera Resolution Number Quality/ Processing Number
of Images Filtering Time of Points

LifeCam Single 2.1 MP 45 Ultra / Aggressive 0h:16m:32s 5.0M
LifeCam Triple 2.1 MP 135 Ultra / Aggressive 1h:1m:47s 11.0M
QuickCam 0.3 MP 40 Ultra / Aggressive 0h:1m:18s 1.1M
D3100 14.2 MP 68 Ultra / Aggressive 6h:4m:10s 116.0M
SD1000 7.1 MP 41 Ultra / Aggressive 2h:39m:38s 15.5M
Nexus 4 8 MP 41 Ultra / Aggressive 2h:57m:17s 12.3M

Table 4.3: SfM-MVS data summary, office (day)

Camera Resolution Number Quality/ Processing Number
of Images Filtering Time of Points

LifeCam Triple 2.1 MP 144 Ultra / Aggressive N/A 11.4M
QuickCam 0.3 MP 46 Ultra / Aggressive 0h:3m:24s 1.3M
FZ28 10.1 MP 46 Ultra / Aggressive 4h:50m:9s 36.5M
TX10 16.2 MP 50 Ultra / Aggressive 3h:37m:25s 18.1M

Figure 4.11: ArcGIS ModelBuilder workflow for coverage, surface relief, and point density
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Table 4.4: SfM-MVS data summary, lobby (night)

Camera Resolution Number Quality/ Processing Number
of Images Filtering Time of Points

LifeCam Single 2.1 MP 51 Ultra / Aggressive 1h:6m:13s 4.5M
LifeCam Triple 2.1 MP 153 Ultra / Aggressive 1h:16m:56s 12.3M
D3100 14.2 MP 226 High / Aggressive 3h:35m:12s 52.3M
SD1000 7.1 MP 51 Ultra / Aggressive 2h:53m:10s 20.9M
Nexus 4 8 MP 50 Ultra / Aggressive 6h:36m:32s 13.7M

4.5 Results

(a) Office, anchor points (b) Office, non-anchor points

(c) Lobby, anchor points (d) Lobby, non-anchor points

Figure 4.12: Cross-room distance metrics
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Table 4.5: Point cloud statistics for bookshelf

Camera Coverage Point Density
(%) (pts/cm2)

LiDAR 99.6% 3
LifeCam Single Night 100.0% 26
LifeCam Triple Night 100.0% 36
QuickCam Night 99.2% 5
Nexus 4 Night 99.8% 89
SD1000 Night 99.4% 81
D3100 Night 97.7% 252
TX10 Day 100.0% 46
LifeCam Triple Day 100.0% 33
QuickCam Day 99.9% 5
Panasonic Day 100.0% 111

(a) Image (b) Nikon D3100 (c) QuickCam Night

Figure 4.13: Bookshelf point clouds
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Table 4.6: Point cloud statistics for display shelf

Camera Coverage Point Density
(%) (pts/cm2)

LiDAR 100.0% 1
LifeCam Single Night 96.3% 7
LifeCam Triple Night 99.7% 13
QuickCam Night 98.7% 1
Nexus 4 Night 58.9% 10
SD1000 Night 56.1% 13
D3100 Night 84.2% 52
TX10 Day 99.5% 9
LifeCam Triple Day 100.0% 9
QuickCam Day 100.0% 2
Panasonic Day 61.1% 16

(a) Image (b) LifeCam Triple

Night

(c) Canon SD1000

Figure 4.14: Display shelf point clouds
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Table 4.7: Point cloud statistics for whiteboard

Camera Coverage Point Density Residual
(%) (pts/cm2) STD (cm)

LiDAR 100.0% 3 Baseline
LifeCam Single Night 84.7% 8 2.7
LifeCam Triple Night 96.6% 10 3.3
QuickCam Night 90.9% 2 7.5
Nexus 4 Night 44.7% 30 2.1
SD1000 Night 54.9% 21 1.5
D3100 Night 65.6% 71 1.1
TX10 Day 64.3% 9 2.4
LifeCam Triple Day 84.0% 7 4.5
QuickCam Day 64.2% 1 7.7
Panasonic Day 26.6% 21 1.8

(a) Image (b) LifeCam Triple Night (c) Nexus 4

Figure 4.15: Whiteboard point clouds
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Table 4.8: Point cloud statistics for picture

Camera Coverage Point Density Residual
(%) (pts/cm2) STD (cm)

LiDAR 100.0% 2 Baseline
LifeCam Single Night 100.0% 15 1.5
LifeCam Triple Night 100.0% 22 0.9
QuickCam Night 100.0% 3 3.1
Nexus 4 Night 100.0% 33 0.7
SD1000 Night 100.0% 56 0.8
D3100 Night 100.0% 167 0.4
TX10 Day 100.0% 24 0.5
LifeCam Triple Day 100.0% 16 0.7
QuickCam Day 100.0% 2 0.8
Panasonic Day 100.0% 55 0.5

(a) Image (b) Nikon D3100 (c) QuickCam Night

Figure 4.16: Picture point clouds
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Table 4.9: Point cloud statistics for elevator

Camera Coverage Point Density Residual
(%) (pts/cm2) STD (cm)

LiDAR 100.0% 1 Baseline
LifeCam Single 68.7% 5 17.3
LifeCam Triple 92.5% 7 17.8
D3100 56.1% 16 9.2
SD1000 64.2% 17 26.5
Nexus 4 40.6% 12 23.0

(a) Image (b) LifeCam Triple (c) Nexus 4

Figure 4.17: Elevator point clouds
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Table 4.10: Point cloud statistics for ribbed wall

Camera Coverage Point Density Residual
(%) (pts/cm2) STD (cm)

LiDAR 100.0% 1 Baseline
LifeCam Single 99.1% 4 6.6
LifeCam Triple 100.0% 10 6.8
D3100 100.0% 34 2.4
SD1000 100.0% 32 7.7
Nexus 4 99.6% 24 18.1

(a) Image (b) Nikon D3100

(c) LifeCam Triple (d) Nexus 4.

Figure 4.18: Ribbed wall point clouds
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(a) LiDAR (b) Nikon D3100

(c) LifeCam Triple (d) LifeCam Single

(e) Canon SD1000 (f) Nexus 4

Figure 4.19: Point clouds of the lobby

71



Photogrammetry with inexpensive webcams Chapter 4

(a) LiDAR (b) Nikon D3100 (c) LifeCam Triple Night

(d) LifeCam Triple Day (e) LifeCam Single Night (f) Canon SD1000

(g) QuickCam Day (h) QuickCam Night (i) Nexus 4

(j) Panasonic FZ28 (k) Sony TX10

Figure 4.20: Point clouds of the office
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4.6 Discussion

Results of this study showed that the high resolution Microsoft LifeCam Studio web-

cam produced point clouds with accuracy and coverage values matching those produced

using more expensive digital cameras. However, the low resolution webcam (640x480

pixels) produced coarse point clouds with excessive levels of noise (low precision) and

errors in the smaller office environment and failed to produce a point cloud for the larger

lobby.

4.6.1 Data assessment

Cross-room distances

LiDAR measurements served as the baseline for assessing quality of distances mea-

surements. Six of the eight camera platforms (LifeCam Single, LifeCam Triple Night,

LifeCam Triple Day, D3100, SD1000, and TX10) produced measurements with mean

distance errors below 0.6% and precision values below 0.8% at the 95% confidence level,

or roughly 6 cm (2.4 in) accuracy and 8 cm (3.2 in) precision for a 10 m (33 ft) distance

measurement. The low resolution QuickCam webcam consistently produced measure-

ments with distance errors in excess of 7% in low light conditions and 2% in daylight,

or 70 cm and 20 cm per 10 m, respectively. The Nexus 4 produced inconsistent results

with accuracies ranging between 0.01% and 1.3% and precision values between 0.3% and

1.3%. There was insufficient data from the FZ28 to analyze its capabilities, although a

partial analysis showed accuracy and precision of around 0.1% and 0.9%, respectively.

Figure 4.12 provides a summary of these results.

The LifeCam Studio webcam (2.1 MP) produced accuracy and precision values across

both study areas that matched or exceeded the values from the traditional digital cam-

eras with larger lenses and higher resolution sensors (Table 4.11). However, the very low
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Table 4.11: Estimated distance accuracy and precision values for the LifeCam Studio
webcam with 95% CIs using t-values

Office Lobby Cumulative
(Mean Distance Error ± 95% CI in cm per 10 m)

LifeCam Studio (Single) — Night -5.3 ± 4.3 6.8 ± 5.8 1.7 ± 5.0
LifeCam Studio (Triple) — Night -0.7 ± 3.8 5.8 ± 4.1 3.1 ± 3.2
LifeCam Studio (Triple) — Day 1.9 ± 7.8 N/A 1.9 ± 7.8
Cumulative -1.4 ± 3.0 6.3 ± 3.1 2.3 ± 2.5

Table 4.12: Estimated distance accuracy and precision values for the QuickCam we-
bcam with 95% CIs using t-values

Mean Distance Error Office Lobby
(Mean Distance Error ± 95% CI in cm per 10 m)

QuickCam — Night -70.8 ± 3.2 N/A — Failed
QuickCam — Day 20.5 ± 8.1 N/A

resolution QuickCam webcam (0.3 MP) produced the highest error values by underesti-

mating office distances by 8%, and its images of the lobby failed to work in PhotoScan

(Table 4.12).

Coverage

Coverage measured the level at which a point cloud covered a surface after being

converted into a 2.5D digital surface model (DSM) with 2.5 cm x 2.5 cm grids. In

general, surfaces with greater texture — either in surface roughness or color variation

— consistently had greater coverage for all camera models with nearly 100% coverage

for highly textured surfaces (Table 4.13). Conversely, smooth surfaces, uniformly colored

surfaces, and poorly lit areas resulted in poor coverage with a high percentage of voids

and gaps, with nearly 0% coverage if the effects of printed reference markers are removed.

These results highlight the challenges posed by low texture and poor lighting conditions

for using passive methods such as SfM-MVS in indoor environments.

74



Photogrammetry with inexpensive webcams Chapter 4

Table 4.13: Coverage

Mean Coverage (%) Bookshelf Display White- Picture Elevator Ribbed
Shelf board Wall

LifeCam Studio (Single) — Night 100.0% 96.3% 84.7% 100.0% 68.7% 99.1%
LifeCam Studio (Triple) — Night 100.0% 99.7% 96.6% 100.0% 92.5% 100.0%
LifeCam Studio (Triple) — Day 100.0% 100.0% 84.0% 100.0% N/A N/A
QuickCam — Night 99.2% 98.7% 90.9% 100.0% N/A N/A
QuickCam — Day 99.9% 100.0% 64.2% 100.0% N/A N/A

Surface relief

Surface relief measurements assessed the ability of SfM-MVS to measure out-of-plane

surfaces. Since the metrics omitted voids in the DSM, the surface relief metrics provided

more accurate assessments for surfaces with higher coverage values; results with high-void

surfaces are suspect. Additionally, the use of physical reference markers skewed results

for surfaces that otherwise would have produced large voids; for example, the featureless

white board would likely have turned into a large void without the paper targets as shown

in Figure 4.14.

(a) Residuals (b) Point cloud

Figure 4.21: Marker bias on whiteboard data
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Table 4.14: Surface relief residuals

RMSE of Surface Relief (cm) Bookshelf Display White- Picture Elevator Ribbed
Compared to LiDAR Baseline Shelf board Wall

LifeCam Studio (Single) — Night N/A N/A 2.7 1.5 17.3 6.6
LifeCam Studio (Triple) — Night N/A N/A 3.3 0.9 18.8 6.8
LifeCam Studio (Triple) — Day N/A N/A 4.5 0.7 N/A N/A
QuickCam — Night N/A N/A 7.5 3.1 N/A N/A
QuickCam — Day N/A N/A 7.7 0.8 N/A N/A

Table 4.15: Mean point density

Mean Point Density Bookshelf Display White- Picture Elevator Ribbed
(Points per cm2) Shelf board Wall

LifeCam Studio (Single) — Night 26 7 8 15 5 4
LifeCam Studio (Triple) — Night 36 13 10 22 7 10
LifeCam Studio (Triple) — Day 33 9 7 16 N/A N/A
QuickCam — Night 5 1 2 3 N/A N/A
QuickCam — Day 5 2 1 2 N/A N/A

Point density

The same limitations on surface relief metrics apply to the point density metrics,

i.e. surfaces with high percentages of voids may be measuring reference targets and

boundary noise instead of the surface itself (Table 4.15). In all cases, the mean point

density value should be viewed with caution since a given surface can have a wide density

range with extreme outlier values. Nonetheless, the overall mean value can still provide

a rough indication of how different environmental conditions can impact the density of

point clouds.

Point cloud generation times

Generating point clouds in PhotoScan required a significant amount of time on the

order of hours (Figure 4.22) using a notebook computer equipped with a high-end Intel

Core i7-4700MQ quad core processor, 16 GB of RAM, and a dedicated Nvidia GeForce

GTX 770M graphics card with 3 GB of dedicated video RAM. Enabling OpenCL in

76



Photogrammetry with inexpensive webcams Chapter 4

PhotoScan reduced processing times by distributing some of the point cloud workload

to the graphics processing unit (GPU) on the video card; however, each iteration of

building a point cloud still required over two hours on average to complete. The use of a

desktop workstation with more powerful CPU and GPU processors could have shortened

processing times.

While the very low resolution QuickCam (not shown in Figure 4.23) had the shortest

processing times, it produced the most errors and failed to work in the lobby .

Figure 4.23 shows that the LifeCam Studio — a high quality, high resolution web-

cam — was a more efficient platform for creating point clouds of the office and lobby

compared to the other more capable digital cameras. LifeCam photos required less than

half the processing time of the point-and-shoot digital cameras and less than a quarter

of the processing time for the SLR camera, an instrument of choice in many close-range

photogrammetry studies to date.

4.6.2 Workflow discussion

Duration of entire workflow

While computation required a significant amount of time, the manual portions of the

PhotoScan workflow — site preparation, photo capture, and photo alignment — took

even longer. Each photo capture session required about six hours due to the number of

cameras involved, the need to capture multiple exposures for high dynamic range (HDR)

analysis, and time spent resolving technical difficulties with equipment. Manual photo

alignment, including the semi-automated and manual placement of reference markers,

required about nine hours to perform for the first photo set at each location and about

six hours for all other photo sets once the initial reference markers were set.
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Figure 4.22: PhotoScan point cloud generation times

Figure 4.23: Point cloud accuracy vs. processing times
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The total time spent on the entire workflow for each individual photo shoot was

over 50 hours, not including mobilization/demobilization times nor the time required to

correct errors and regenerate point clouds. Therefore, the entire work flow for the three

photo shoots performed for this study took over 150 hours to perform.

Reducing the camera to one LifeCam Studio webcam taking a single autoexposure

shot at each station would have reduced the workflow time to about 9 hours, i.e. 1 hour

for site preparation, 1 hour for the photo shoot, 6 hours for the manual alignment, and

1 hour for point cloud generation. Using the three-camera setup would have resulted in

a workflow time of about 12 hours.

Skill factor

As “automated” as the SfM-MVS process may have appeared, the final quality of the

resulting point cloud depended largely on non-computer human factors. These factors

included the effective planning of shooting locations, photography skills to ensure sharp

and well-exposed images, strategic placement of reference markers and scale bars, selec-

tion of marker points in the software, and understanding the order in which to manually

align photo pairs.

For example, improper planning resulted in a misaligned section of the floor in the

D3100 office point cloud due to insufficient photo coverage of that area (Figure 4.24); this

problem was mitigated through the extensive use of manually inserted reference points

and several iterations of manually aligning individual photos. In another example with

the D3100, using an overly wide camera lens aperture caused portions of photos to lose

focus, requiring a re-shoot of the entire lobby; reducing the aperture resulted in sharper

photos (Figure 4.25).
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Figure 4.24: Side view of office point cloud from D3100 photos. Note the 4.5 cm
vertical gap in the floor.

(a) Foreground and background out of focus (f/4.8 aperture)

(b) Foreground and background in focus (f/16 aperture)

Figure 4.25: Effect of lens aperture on depth of field
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Cost and alternatives

The total cost of the setup using three LifeCam Studio webcams was approximately

$850 USD, which included the cost of the webcams, mounting hardware, tripod and

dolly, and Agisoft PhotoScan Professional (educational license). Use of the commercial

PhotoScan Professional license would have increased the cost to $3,800 USD. These costs

compared favorably with terrestrial LiDAR scanners which started at about $70,000 USD

for a new instrument or $15,000 for a used one in 2014, excluding routine maintenance

costs. The webcam system also costed many times less than the portable ZEB1 handheld

LiDAR system ($22,000 in 2014).

However, other low cost alternatives existed for 3D point cloud generation at the

time of the study. Websites such as Microsoft Photosynth and AutoDesk 123D Catch

provided basic SfM-MVS services on a “freemium” basis. Additionally, structured light

solutions such as the Matterport 3D camera ($4,500) and Paracosm Scanning Kit ($2,999)

cost about the same as this study’s webcam system with a commercial license. While

the structured light solutions required minimal user involvement in data processing, the

technology at the time introduced a whole other set of limitations such as limited range

and interference with intense sunlight.

4.6.3 Study limitations and recommendations

Changes in scenery between photo captures

Since data was acquired on four separate days over the span of four months, changes in

the scenery impacted the ability to provide consistent measurements between the various

point clouds. Major changes included the repositioning of a desk with a reference marker

in the office, the repositioning of various furniture including a large conference table in
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each location, and the removal of paper reference markers between data captures (which

make it difficult if not impossible to find baseline measurement points).

Small sample sizes

The removal or movement of physical reference markers resulted in a very small

dataset for comparing photogrammetry data with LiDAR data for reference marker loca-

tions. This required estimating the location of corresponding points in the LiDAR point

cloud to match locations from photogrammetry and reduced the sample sizes to five or

fewer points for the lobby and to three points for the office.

Confidence intervals for these small datasets were determined using simple t-scores

which may have overestimated the precision but were required to capture the uncertainty

associated with the mean error value. Monte Carlo simulation was considered as an

alternative to using the t-score but was not performed in this study.

Univariate statistics

For the sake of simplicity and time, this study used simple univariate statistics to

characterize point clouds which exist in 3D space. A more rigorous approach would have

been to use multivariate spatial statistics for characterizing the nature and relationship

of the photogrammetry point clouds to the LiDAR point clouds.

Automatic camera calibration

Camera calibration allows PhotoScan to correct for distortions in photos caused by

imperfections in camera lens and imaging systems. However, the decision to disable

automatic camera calibration likely resulted in a greater amount of errors in the point

clouds in this study.
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High dynamic range (HDR) photography

One of the major challenges of taking photos during daylight hours was the extreme

contrast between bright and dark areas near windows. HDR can significantly expand the

luminance range of photos to capture details in both dark and bright areas in the same

photograph (Figure 4.26). A future study can examine the impact of HDR on close-range

photogrammetry using HDR data collected during this study.

(a) Conventional single exposure image

(b) High dynamic range image

Figure 4.26: Comparison of conventional exposure and high dynamic range images
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4.7 Conclusion

As indoor mapping and modeling becomes increasingly integrated with everyday life,

the demand for gathering measurements of indoor spaces will continue to grow. This

study explored one approach to generating point cloud measurements using simple in-

expensive webcams and a popular SfM-MVS photogrammetry software package. The

results showed that the Microsoft LifeCam Studio (a high quality mass market webcam

costing under $60 USD) rivaled more capable and more expensive digital cameras and

SLRs in producing point clouds of moderate sized rooms with accuracies and precisions

of about 1% at the 95% confidence level compared to measurements from an industrial

LiDAR scanner. Point clouds from LifeCam photos also required fifty percent less time

to generate in PhotoScan compared to point-and-shoot cameras and over seventy-five

percent less time compared to the SLR — a significant advantage considering that this

process can take hours to complete.

Although webcam photogrammetry has its advantages, it is also a very labor inten-

sive and computationally demanding process compared to LiDAR or structured light.

Additionally, visual inspection showed that point cloud surfaces from the LifeCam were

generally not as smooth as those from cameras with better lenses such as the Panasonic

FZ28 and the D3100 SLR. Another important finding from this study is that the low

resolution QuickCam webcam was able to produce a point cloud for the office (but not

the lobby) in under five minutes, but its resulting point cloud would have limited use due

to excessive noise and poor accuracy errors of 7% compared to LiDAR.

The miniaturization and commoditization of LiDAR may make LiDAR a more suit-

able technology for taking indoor measurements in the near future; however, SfM-MVS

has certain strengths that can complement LiDAR. This study demonstrated the feasi-

bility of SfM-MVS as a technique that can supplement LiDAR data in special use cases.
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Feature extraction
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A review of segmentation techniques

5.1 Overview

Point clouds made through 3D remote sensing will often produce impressive visual

renderings of the physical environment, but each individual point contains little useful

information other than coordinate values and possibly a few other quantifiable attributes.

Producing a 3D map requires using the point cloud to provide geometric and semantic

information about the physical environment through a process known as segmentation.

Many of the concepts used in the segmentation of 2D images also apply to 3D point

clouds (Héno and Chandelier 2014; Gonzalez and Woods 2002). For indoor mapping,

segmentation divides a point cloud into regions representing entities or subcomponent

parts — e.g., walls, floors, and furniture — which can later serve as the source material

for model reconstruction.

For example, Figure 5.1 shows a point cloud for part of a room inside a museum. Each

point has an identification number, coordinates, and color information, which provide no

insight into the physical make-up of the room. When examined collectively, though,

the points reveal walls, a floor, and individual furnishings, with the points segmented or
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grouped based on their context; a closer look also shows voids and errors in the data (i.e.,

noise). The goal of segmentation involves finding algorithms that can correctly classify

these points.

Figure 5.1: Some limitations of raw point cloud data for indoor mapping

5.2 Approaches to segmentation

Héno and Chandelier (2014) divided point cloud segmentation methods into geometric

and semantic approaches, as shown in Figure 5.2. Geometric approaches attempt to

group points based on geometric shapes, such as planes and cylinders, while semantic

approaches seek to extract abstract entities, such as rooms and furniture. Earlier studies

on indoor feature extraction focused almost exclusively on simple geometric and semantic

segmentation with the goals of identifying primitive indoor structural elements (e.g.,

wall, floors, ceilings, windows, and doors) from point clouds, with use cases growing

increasingly complex to include incomplete point clouds and occlusions. While these

structural elements continue to present challenges, especially in non-Manhattan world
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scenes, more recent studies have broadened the domain to include smaller elements such

as furnishings and larger elements such as entire buildings with multiple rooms.

Point Cloud
Segmentation

Geometric
(Section 5.3)

Semantic
(Section 5.4)

Figure 5.2: Héno and Chandelier (2014) model for point cloud segmentation

5.3 Geometric segmentation

Geometric segmentation algorithms generally partition a point cloud based on either

discontinuities or similarities between groups of points (Gonzalez and Woods 2002). In

image processing, the former often partitions an image based on distinct edges that show

abrupt changes in pixel values while the latter looks for regions with similar pixel values.

For these reasons, Gonzalez and Woods (2002) and Héno and Chandelier (2014) classified

these as “edge based” and “region based” approaches. Gonzalez and Woods called a

third classification method thresholding, which Héno and Chandelier called clustering,

that looks for spatial clusters of similar values, often implemented through statistical

analysis. A fourth method uses shape fitting to find the best fit for a geometric shape to

a point cloud. These four approaches can also be combined to leverage the strengths of

each individual approach.

5.3.1 Edge based methods

In 2D image processing, edge based methods detect edge pixels, or edgels, in an image

that are then linked together to form the edges of partitioned objects. These methods
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Shape Fitting
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Figure 5.3: Héno and Chandelier (2014) model for point cloud segmentation

closely approximate how humans segment images and work well with images that have

relatively high levels of contrast (Solberg 2016). However, they tend to struggle with

images that have smooth color gradients or low contrast, are sensitive to noise, and face

challenges in forming robust edges.

Unlike the pixels of a 2D image that combine to form edges, the points of a 3D

point cloud represent surfaces that can be viewed from multiple perspectives, making

edge based methods more complicated in a 3D setting. Other factors complicating use

of edge based methods include the noise and uneven distributions of points in a point

cloud (Nguyen and Le 2013). The closest application of edge based methods for point

clouds appears to be in the area of photogrammetry, specifically in RGB-D (see Section

2.2.2) or range images, where the source data for the point clouds come from 2D images

(Nguyen and Le 2013; Choi, Trevor, and Christensen 2013). Otherwise, most approaches

for segmenting indoor spaces use either the region based approach or thresholding.

5.3.2 Region based methods

Region based methods work directly on point clouds to find segments with similar

predefined properties. These can take a bottom-up approach starting with a single point

that grows into a region (i.e., the region growing method) or a top-down approach starting

with the entire point cloud data set that is divided and merged until reaching an end

state (i.e., the splitting and merging method).
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Figure 5.4: Héno and Chandelier (2014) model for point cloud segmentation

Region growing

Segmentation that uses region growing starts with a point and appends neighboring

points with similar properties — such as the direction of the normal vector — to form a

region of similar points (Nguyen and Le 2013; Solberg 2016). Region growing does not

always produce consistent results since the final regions depend on selection of the initial

seeds. In situations with no given seed points, the measured properties are computed for

every point in an image; if this results in clusters of points, the centroids of these clusters

can act as the seed points (Gonzalez and Woods 2002). Prior indoor mapping work that

used region growing usually compared a point’s estimated surface normal vector to that

of the seed point. These studies include Xiong and Huber (2010), Sanchez and Zakhor

(2012), Turner and Zakhor (2012), Stambler and Huber (2014), and Turner, Cheng, and

Zakhor (2015).

Splitting and merging

Splitting and merging repeatedly splits a point cloud using the octree structure until

reaching some criteria for all four of the smallest leaf nodes, which are then compared

with neighboring regions and merged if they have the same value (Gonzalez and Woods

2002; Solberg 2016). This process is repeated until no further merging or splitting can

be made.
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5.3.3 Thresholding

Applied to image processing, thresholding represents a method that discretizes an

image based on natural breaks — i.e., the thresholds — in the data, which can then be

used to group together similar values (Gonzalez and Woods 2002). Thresholding provides

a simple approach to segmentation as long as the number of partitions remains low.

For indoor point clouds, thresholding stands out as a favored approach due to its

simplicity and effectiveness, since any type of analysis that can generate discernible breaks

in the data can use thresholding. A rudimentary form uses histograms of coordinate values

to detect planar surfaces, such as floors, ceilings, and walls. Budroni and Boehm (2009)

swept a vertical plane both laterally and rotationally through a point cloud to detect

peaks in the histogram of points intersecting the plane; these peaks corresponded to

surfaces. In their highly cited work, Okorn et al. (2010) used the histogram approach for

detecting floors and ceilings but used two variations of the Hough transform for detecting

irregularly shaped walls. Khoshelham and Dı́az-Vilariño (2014) used an approach for

modeling multiple rooms that relied on the Manhattan world assumption and axis-aligned

point clouds for placing and merge cuboids based on histogram peaks.

A simplified form of Khoshelham and Dı́az-Vilariño (2014) technique was used in

this dissertation that involved taking histograms of points projected onto axis-aligned

orthogonal planes for detecting the floor, ceiling, and outer walls of a room. This approach

first isolates two of the three coordinate axes to produce flattened 2D projections of the

point cloud (Sinton 1978). It then plots the number of points along one axis within bins

distributed throughout the other axis. This plot reveals the 1D coordinates of walls,

floors, or ceilings as spikes in the histogram, resulting in six coordinates defining the

corner points of the room.

91



A review of segmentation techniques Chapter 5

5.3.4 Shape fitting

Shape fitting involves attempting to fit primitive shapes, such as planes, to the data

often using the random sample consensus (RANSAC) approach and classifying the near-

est points using that shape. Fischler and Bolles (1981) used RANSAC to fit 2D shapes

to images while Bolles and Fischler (1981) used to to fit cylinders to point clouds. Schn-

abel, Wahl, and Klein (2007) used this approach to segment architectural features and

Ochmann et al. (2014), Jung et al. (2014), and Kim, Kang, and Lee (2014) extended it

to indoor modeling.

5.3.5 Other methods

Other segmentation methods exist in addition to the four mentioned in this chapter.

For example, Adán and Huber (2011) supplemented room-based thresholding with radio

frequency identification (RFID) tags to distinguish clutter (i.e., furniture) from structure.

In another instance, Valero, Adán, and Cerrada (2012) and Valero, Adán, and Bosché

(2016) used projected 2D binary images instead of histograms followed by the Hough

transform to identify a room’s perimeter.

5.4 Semantic segmentation

Semantic segmentation gives meaning to the groups of points identified through ge-

ometric segmentation. For instance, points representing vertical planar surfaces can be

differentiated as walls versus the horizontal surfaces of floors and ceilings. Not sur-

prisingly, progress in indoor semantic segmentation has developed alongside geometric

segmentation. Earlier studies involved the semantic identification of primitive structural

elements — such as walls, floors, ceilings, doors, and windows — with the remainder
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grouped under the category of clutter. More recent studies have expanded the spatial

scope of semantics in both directions, with one looking at the macro-view of buildings,

rooms, and corridors while the other looks at the micro-view of segmenting what was

once formerly considered clutter, i.e., furniture, etc.

5.4.1 Structure versus clutter

Semantic segmentation developed alongside work in geometric segmentation, with

early studies seeking to identify the main elements of rooms, i.e., walls, floors, and ceilings

(Schnabel et al. 2007; Budroni and Boehm 2009; Xiong and Huber 2010). Later studies

expanded structural segmentation by adding methods for detecting openings (e.g., doors

and windows) and voids due to occlusions. Adán and Huber (2010) used the method

proposed by Okorn et al. (2010) to identify wall surfaces, applied edge segmentation to 2D

range images to identify candidate openings, and classified openings as either occupied,

empty, or occluded based on ray-tracing analysis.

5.4.2 Furniture segmentation

Further refinement of indoor point cloud segmentation sought to classify the elements

of clutter, i.e., furniture. For example, Valero, Adán, and Cerrada (2012) and Adán and

Valero (2014) used an occupied-unoccupied binarized projection of the point cloud to

segment a room’s walls and then used RFID labels attached to non-structural point

cloud groupings to identify furniture.

5.4.3 Room segmentation

Later developments in indoor point cloud segmentation also looked at the macro-

view, i.e., automatically segmenting parts of a building as a prerequisite for room-based
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segmentation. Ochmann et al. (2014) took a multi-room point cloud and used RANSAC

as proposed by Schnabel et al. (2007) for initially segmenting the structural components

of each room; they then determined room segments using an empirically derived visibility

function. Jung, Stachniss, and Kim (2017) took a different approach by first applying

binary map segmentation to a single floor, multi-room point cloud, which left an outline

of all the walls with openings for doorways. They then implemented an opening-closure

routine to close the intra-room pathways resulting in the segmentation of the entire floor

into rooms and a corridor. Armeni et al. (2016) used perhaps the simplest method for

room segmentation. They first used the histogram thresholding method to segment all

walls within an axis-aligned point cloud of an entire floor of a building. Since walls have

a certain thickness, they then looked for consecutive peaks (i.e., walls) in the histogram

separated by a certain distance to determine room segments.

5.5 Conclusion

This chapter provided a high level overview of the state of research on the segmenta-

tion of point clouds of indoor spaces. It covered the four general approaches to geometric

segmentation (edge based, region based, thresholding, and shape fitting) and considera-

tions for the semantic segmentation of the insides of buildings. While most research to

date have looked at segmentation at the room level and continue to refine those meth-

ods, more recent research has branched out in two opposite directions at the micro- and

macro-levels. The micro-level looks at segmenting clutter, which consists of all those

elements previously ignored for finding the shape of a room; these consist of such things

as furniture and equipment. The macro-level goes in the opposite direction and looks at

segmentation at the building level, with an emphasis on identifying individual rooms and

corridors. Together, these two emerging areas will improve the quality and capabilities
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of 3D indoor mapping by facilitating automation and providing the basis for multiple

levels of detail of indoor space.
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Chapter 6

Segmentation and modeling via

thresholding

6.1 Introduction

A simple and effective approach to segmenting point clouds of rectangular rooms

involves the use of thresholding with histograms, where coordinates for bins with the

highest counts represent the coordinates of boundary surfaces. This approach assumes

a Manhattan world scene with rooms consisting only of planar and orthogonal surfaces

and requires that these yet-to-be segmented “surfaces” be aligned with the Cartesian co-

ordinate axes. Budroni and Boehm (2009), Okorn et al. (2010), and Huber et al. (2010)

provided early examples of using different forms of thresholding to segment point clouds

of rooms, with several follow-on studies either applying or refining these method. In par-

ticular, Khoshelham and Dı́az-Vilariño (2014) and Dı́az-Vilariño et al. (2015) addressed

the problem of axis alignment by using directional statistics applied to an extended

Gaussian image (EGI).
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Figure 6.1: A point cloud segmentation and modeling process for a rectangular
room. Top row shows methods used by Khoshelham and Dı́az-Vilariño (2014) and
Dı́az-Vilariño et al. (2015) and bottom row shows methods used in this study.

This study provides refinements in both the EGI and histogram thresholding ap-

proaches proposed by Khoshelham and Dı́az-Vilariño (2014) and Dı́az-Vilariño et al. (2015)

as summarized in Figure 6.1. In their use of the EGI, Dı́az-Vilariño et al. used the mean

values of the EGI clusters to deduce the three orthogonal axes of the point cloud. How-

ever, the mean value has a high sensitivity to outliers which makes this approach less

than optimal. This study uses the robust statistical mode for approximating the point

cloud axes, as will be discussed later. Furthermore, Dı́az-Vilariño et al. used direct vec-

tor projections, instead of pure rotations, to re-orient the point cloud, which can lead to

imperceptible distortions in the original data. To ensure pure rotations, this study used

singular value decomposition followed by an edge-based refinement step. For floor, ceil-

ing, and wall detection, Khoshelham and Dı́az-Vilariño used a fixed histogram bin size

but smaller bin sizes require longer times to compute. An alternative method proposed

in this study uses a two-step approach with a general search using large bins followed by

small bins to pinpoint locations.
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6.2 Methodology
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Figure 6.2: Point cloud segmentation and modeling process used in this study

The overall segmentation process used in this study has five phases after calculating

normals. These consist of rough axis alignment, fine axis alignment, rough threshold-

ing, fine thresholding, and geometric modeling as illustrated in Figure 6.2. The rough

alignment phase exploits properties of the EGI as demonstrated by Khoshelham and

Dı́az-Vilariño and Dı́az-Vilariño et al. However, instead of using the mean, this study

uses the mode — a more accurate and reliable predictor of central location for this par-

ticular application. The second phase uses an image-based alignment process to refine

the initial EGI alignment; in practice, it serves only as a safeguard since the first phase

usually produces very accurate results. With the point cloud axis-aligned, the third

and fourth phases use histogram thresholding to search for and refine the locations of

floor, ceiling, and walls in the point cloud. Finally, the six coordinates derived from

thresholding are used to create the simple 3D polyhedron of the room.

For illustration purposes, this study uses the LiDAR point cloud of a room in the

UCSB Art, Design, and Architecture Museum to demonstrate each step of the process.
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This point cloud has been intentionally rotated off-axis to make the effects of the align-

ment process more obvious as well as to demonstrate the robustness of the EGI approach.

6.2.1 Phase 1: Rough axis alignment

Rough axis alignment works by estimating the orientation of a rectangular room and

then finding the rotation matrix required to align its quasi-orthogonal axes with the xyz

axes. While simple in concept, the execution is far from trivial. This process involves

calculating the normals for every point in the point cloud, plotting the unit normals in a

extended Gaussian image (EGI), clustering the EGI points into three groups, finding the

vectors that point toward the “center” of each cluster, finding the rotation matrix to align

these vectors with the xyz axes, and applying this rotation matrix to the point cloud.

Translation of the point cloud’s centroid to the origin and optional scaling precedes this

phase.

Point cloud normals

Normal calculations estimate the direction of a vector that runs orthogonal relative to

the k nearest neighbors (knn) of a point for each point in a point cloud, in which the knn

provides an estimate of the modeled surface. These vectors require post-processing to

correctly orient their directions, since a normal vector can arbitrarily point in one of two

opposing directions. In many applications, normal vectors are oriented to emanate away

from a point cloud’s centroid; for a rectangular point cloud, this results in six principal

directions. For axis alignment, however, this study requires three and only three principal

directions made possible by orienting the normals away from a false origin point located

in the −x,−y, and −z directions relative to the point cloud. For a rectangular point

cloud, this results in three quasi-orthogonal principal directions, which makes it possible
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to calculate the rotation required to align these directions with the xyz axes. Figure 6.3

shows the sample point cloud and a random sampling of its oriented normal vectors.

(a) Sample point cloud (b) Oriented normals

Figure 6.3: Sample point cloud and random sample of oriented surface normals

Extended Gaussian image

When plotted with a common origin, unit normal vectors form a distinct spherical

pattern called an extended gaussian image (EGI). Patterns in the EGI can serve as a

unique “fingerprint” for a scanned object, but more importantly, they can also provide

clues on the point cloud’s orientation (Ikeuchi 1981; Horn 1984; Brou 1984). For a per-

fectly rectangular cuboid with normal vectors oriented away from a false origin, the EGI

will show three points corresponding to the six orthogonal planar surfaces. When used

with empirical data, furniture, non-orthogonal room partitions, and errors in estimated

normal vectors will introduce noise to the EGI, as illustrated in Figure 6.4, but the six

principal planes should still produce three distinct clusters of points.

EGI clusters

Finding the three vectors corresponding to the rectangular point cloud’s axes involves

finding the locations where the normal vectors cluster together in the EGI — illustrated
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in Figure 6.4 — and then finding the “central” location within each cluster. These three

central locations point in the directions of the point cloud’s quasi-orthogonal axes1 that

will be used to find the rotations for matching the xyz axes.

Figure 6.4: Extended gaussian image of sample data clustered into three groups

Mean and median not ideal Many different approaches exist for estimating the

central location of each EGI cluster. The simplest and most straightforward involves

calculating either the mean or median of each cluster in the original Cartesian coordinate

system. Dı́az-Vilariño et al. (2015) used the k-means in their study; when using the mean,

the mean radius provides a measure of dispersion (Leong and Carlile 1998). Compared to

1The three empirically derived vectors will usually be slightly off-angle from perfectly orthogonal
axes.
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the mean for this specific use case, the median will often provide a more accurate measure

of centrality due to the mean’s sensitivity to outliers. However, neither approach provides

the optimal solution since they take into account irrelevant data. Since this process is only

concerned with the principal surfaces (i.e., floor, ceiling, and walls), normal vectors for all

other non-principal surfaces — as well as erroneous vectors — provide no informational

value and can be disregarded.

Mode as the central location Since the floor, ceiling, and walls will often have the

highest number of points in a point cloud — thus, the highest number of normal vectors

pointing in only one of three principal directions — the most reliable approach involves

using the mode, which requires performing statistical analysis on a spherical surface. A

classical approach to this problem involves discretizing the sphere using some form of

tessellation, e.g., triangles or dodecahedra, and selecting the three polyhedra with the

highest number of points, with their central coordinates representing the end points of

the three principal vectors (Ikeuchi 1981; Horn 1984; Brou 1984). However, this approach

can be computationally burdensome when working with tens of thousands to millions of

points.

This study uses a cartographic approach that projects the EGI clusters onto their

respective orthogonal planes — i.e., yz plane for the x-axis, etc. — and applies histogram

analysis to the resulting 2D points to find the location of each cluster’s mode, where the

bin with the highest number of points represents the mode. Since this first phase seeks

only a rough alignment, errors from using an orthographic projection should not adversely

impact the final results.

For the sample data, finding the mode for each of the three clusters, illustrated in

Figure 6.6, produced the unit normal vectors n1, n2, and n3 shown below. Note how

the mean (red tube) provides a poor estimate of the central location in Figure 6.6; even
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(a) View along x-axis (b) View along y-axis (c) View along z-axis

Figure 6.5: Orthographic projections of the EGI

(a) x-axis location (b) y-axis location (c) z-axis location

Figure 6.6: Histograms of the EGI clusters. Red tubes represent the mean values and
black tubes the median values.

though the median (black tube) provides a better estimate, it still deviates from the

optimal mode value in certain situations.

n1 =


0.968523

0.2075

−0.1375

 ; n2 =


−0.1725

0.965006

0.1975

 ; n3 =


0.1725

−0.1675

0.970663


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First rotation matrix, R1

The conventional rotation matrix rc for rotating the xyz vectors to match the perfectly

orthogonal point cloud axes vectors n1, n2, and n3 consists of n1, n2, and n3 arranged

in row form, with each row representing a simple projection of xyz coordinates onto ni

(Hearn, Baker, and Carithers 2010). Inverting rc by taking its transpose, i.e., r>i , does

the reverse by projecting point cloud coordinates on to the xyz axes.

n1 =


n1,x

n1,y

n1,z

 ; n2 =


n2,x

n2,y

n2,z

 ; n3 =


n3,x

n3,y

n3,z

 (6.1)

rc =


n1,x n1,y n1,z

n2,x n2,y n2,z

n3,x n3,y n3,z

 (6.2)

However, the empirically derived principal vectors may not be perfectly orthogonal, so

the direct use of Equation 6.2 will result in a distorted point cloud. Instead, the derived

vectors ni should be used to somehow find a pure rotation that best fits those vectors

with the xyz axes. A test for invertibility can show whether a matrix represents a pure

rotation matrix (r> · r = I) or contains other undesirable transformations (r> · r 6= I).

For the sample data, r>c · rc 6= I, so another approach is required to find the rotation

matrix.
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rc =


0.968523 0.2075 −0.1375

−0.1725 0.965006 0.1975

0.1725 −0.1675 0.970663

 r>c =


0.968523 −0.1725 0.1725

0.2075 0.965006 −0.1675

−0.1375 0.1975 0.970663



r>c · rc =


0.99755 0.00561123 0.00019873

0.00561123 1.00235 −0.000528596

0.00019873 −0.000528596 1.0001



Finding R1 using singular value decomposition Least squares adjustment through

singular value decomposition (SVD) provides one solution for optimally aligning the

imperfect empirically-derived axes with the xyz axes. SVD minimizes the least squares

distances between matching pairs of points while simultaneously determining the rotation

matrix (Umeyama 1991). By treating vector coordinates as points, P can represent the

source end points of the point cloud axes and Q can represent the end points of the

target xyz axes as shown in Equation 6.3. Here, the goal is to find the rotation from P

to Q.

P =


n1,x n1,y n1,z

n2,x n2,y n2,z

n3,x n3,y n3,z

 ; Q =


xx xy xz

yx yy yz

zx zy zz

 =


1 0 0

0 1 0

0 0 1

 (6.3)

The first step involves calculating the cross-covariance matrix A using Equation 6.4.

A = Q> ·P (6.4)
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Next, an SVD operation — widely available in many math processing software pack-

ages — is performed to decompose A into three matrices as shown in Equation 6.5, where

D can be interpreted as a scaling or skewing matrix.

A = U ·D ·V> (6.5)

Since the transformation involves only rotations, an identity-like matrix S, as defined

in Equation 6.9, replaces matrix D to isolate the operation to rotations only. Use of SSV D

also ensures that the rotation preserves the right-hand rule for the coordinate system,

where a value of d = 1 signifies a right-hand system.

SSV D =


1 0 0

0 1 0

0 0 d

 where d = det(U) · det(V) (6.6)

The initial 3x3 rotation matrix r1 takes the form shown in Equation 6.7, with R1

representing the 4x4 homogeneous form.

r1 = U · SSV D ·V> (6.7)

R1 =



0

r1 0

0

0 0 0 1


(6.8)

For the sample data, r1 passes the invertibility test showing that it is a pure rotation

matrix.
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r1 =


0.969155 0.204505 −0.137536

−0.175441 0.964422 0.197763

0.173086 −0.167533 0.970553



r>1 · r1 =


1 0 0

0 1 0

0 0 1



Applying the first transformation

Solving for R1 used the origin-centered EGI, which is invariant to the point cloud’s

actual location. However, applying R1 to the point cloud requires first translating the

point cloud’s centroid to the origin using T1 before applying the rotation. This study

also uses a unit conversion scaling matrix S to convert all units to meters to allow use of

a single histogram analysis algorithm.

S =



scale 0 0 1

0 scale 0 1

0 0 scale 1

0 0 0 1


(6.9)

T1 =



1 0 0 xcentroid

0 1 0 ycentroid

0 0 1 zcentroid

0 0 0 1


(6.10)
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Combining T1, S, and R1 produces the consolidated transformation matrix M1 for

initial alignment (Equation 6.11). Note that M1 leaves the point cloud at the origin

(0, 0, 0) for follow-on operations.

M1 = S ·R1 ·T1 (6.11)

For the sample data, R1, S, T1, and M1 have the values shown below, with Figures

6.7, 6.8, and 6.9 showing visualizations of initial alignment. Note that the sample data

used units of millimeters requiring a conversion factor of 0.001 to meters.

T1 =



1 0 0 −511125.28058904150854

0 1 0 −507744.26572262365594

0 0 1 −501798.16323047575226

0 0 0 1


; S =



0.001 0 0 0

0 0.001 0 0

0 0 0.001 0

0 0 0 1


;

R1 =



0.969155 0.204505 −0.137536 0

−0.175441 0.964422 0.197763 0

0.173086 −0.167533 0.970553 0

0 0 0 1



M1 =



0.000969155 0.000204505 −0.000137536 −530.181

−0.000175441 0.000964422 0.000197763 −499.244

0.000173086 −0.000167533 0.000970553 −490.427

0. 0. 0. 1


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(a) Point cloud (b) EGI

Figure 6.7: Point cloud and EGI after rough alignment

(a) View along x-axis (b) View along y-axis (c) View along z-axis

Figure 6.8: Orthographic projections of the EGI after rough alignment
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(a) xy plane

(b) xz plane (c) yz plane

Figure 6.9: Orthographic views of point cloud after rough alignment

6.2.2 Phase 2: Fine axis alignment

The second phase fine tunes the initial axis alignment by using image processing

routines applied to 2D projected images of the point cloud. A common rasterization

approach uses occupancy grids, where cells of a certain size are treated as either occupied

or unoccupied, and are often used in areas such as data reduction (Valero, Adán, and

Bosché 2016; Oesau 2015; Xiong et al. 2013), boundary tracing (Hong et al. 2015; Jung

et al. 2014), feature detection (Ochmann et al. 2016), and voxel carving (Turner 2015).
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This study uses a simpler approach by directly projecting orthographic views of the

point cloud as 2D images and exploiting the phenomenon where higher numbers of over-

lapping semi-opaque points will result in darker lines that make structural features more

salient. Line detection algorithms can then be used to find the orientations of the floor,

ceiling, and walls. While this approach remains a rasterization process at its very core,

it avoids the need for computationally burdensome grid discretization and bin counting

routines; the only two parameters consist of the opacity level and point size. Since the

process adjusts rotations one axis at a time, it involves a sequence of three rotations

along the z, y, and x axes, respectively. The component rotation matrices R2z, R2z, and

R2z comprise the second and final set of rotations.

Project image onto orthogonal planes and detect lines

Creating 2D images of the point cloud requires setting up three orthographic views by

fixing coordinate values for one axis at a time and rendering images of the plane-projected

points using software. The opacity value controls the salience of the linear features; too

high a value would result in a saturated image while too low a value a washed out image,

both of which would make line detection difficult. Figure 6.9 shows the three projected

images for the sample data using a 5% opacity value.

The three projected images are then processed through a gradient filter to highlight

areas of sharp color changes that usually correspond to the darker lines of structural

features, as illustrated in Figure 6.10. Geometric lines are then extracted by applying

the Hough transform to the gradient filtered images, as illustrated in Figure 6.11. Note

that the 3D point cloud and 2D projected images use two different coordinate reference

systems, with the former using a world-based system and the latter an image-based

system; this has no impact on calculation of rotation angles.
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Figure 6.10: Point cloud image processed through a gradient filter

Figure 6.11: Lines detected using the Hough transform

Calculate rotation angles based on line slopes

This study assumed that all floors have a horizontal orientation, all walls have a

vertical orientation, and ceilings may have irregular shapes or arbitrary orientations. As

a result, only the floor was used to measure rotational deviation from the horizontal plane

about the x and y axes while the mean value of up to four walls2 was used about the z

axis.

Performing the transformation operation

Figure 6.12 provides an overview of the process for fine rotational alignment. While

applying this process to the sample data resulted in an identity matrix — indicating that

2This depends on the success of line detection.
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the initial rough alignment produced accurate results — it still serves a useful safeguard

against inaccurate rough alignments, e.g., those produced with very noisy data.

For each axis

in z-y-x order

Project points to

orthogonal plane

Convert points

to image

Apply

gradient filter

Extract lines
Calculate rota-

tional deviation

Convert to

rotation matrix

Apply

rotation matrix

to point cloud

Figure 6.12: Coarse Registration.

6.2.3 Phase 3: Initial thresholding

This study used a basic approach to thresholding based on a method used by Khoshel-

ham and Dı́az-Vilariño (2014) with two changes. First, it adds a two-step progressive

search for the thresholds that consists of an initial low resolution histogram to quickly

identify the general vicinity of floor, ceiling, or walls, and a high resolution histogram

to pinpoint their locations. Second, it adds a search algorithm that differentiates walls

from wall-like surfaces, such as large doors.

Project point cloud onto planes

The first step of histogram analysis involves projecting the 3D point cloud onto 2D

planes, as discussed in 6.2.2. These consist of the xz, yz, and zx planes that run or-

thogonal to the y, x, and y axes, respectively. Here, the first variable of the axis-pair

describes the coordinate value for binning while the second describes the direction for

counting points. The xz and yz planes bin along the x and y axes, respectively, and
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count vertical points to identify walls; using xy and yx projections produce identical

results even though they use a slightly different counting approach. The zx plane uses

the z axis for binning and counts horizontally to identify the floor and ceiling; using the

zy plane produces identical results.

Build histogram along each axis

While building the histograms with fine resolution bins may seem ideal, this approach

may be computationally burdensome and unnecessary when dealing with hundreds of

thousands to millions of points since the goal of histogram analysis involves finding only

two bins per histogram. A potentially more efficient approach uses two passes: the first

with coarse resolution bins to identify the vicinities of structural features and a second

with fine resolution bins to pinpoint their locations.

When using coarse resolution bins, the possibility exists that intra-room partition

walls may produce bins with higher counts than the room’s actual walls, such as in

Figure 6.13, in which the highest count bin may not represent the room’s boundary wall.

This study addresses the problem by first isolating bins within a fixed distance from the

point cloud’s boundary and then selecting the bin with the highest count per feature.

This results in the selection of six coarse resolution bins. Figure 6.14 shows the six bins

for the sample data using a bin size of 50 cm.

6.2.4 Phase 4: Fine thresholding

After initial thresholding, each of the six coarse bins are partitioned into smaller

bins to pinpoint the location of the floor, ceiling, and walls. Figure 6.15 shows the fine

resolution histograms, which use a bin size of 1 cm. These six histograms produce six

coordinates that combine to describe the eight corner points of the rectangular room.
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Figure 6.13: This thoroughly scanned partition wall may have a higher point count
than the partially scanned boundary wall in the background. Note that this point
cloud shows a different room from the sample data used in this study.
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Figure 6.14: Coarse resolution histograms of the sample data using 50 cm bins

6.2.5 Phase 5: Building and placing the model

The six coordinates from fine thresholding provide all the information needed to

build a simple rectangular model of the room, but it still remains at the origin (0, 0, 0) as

illustrated by Figures 6.16a and 6.16b for the sample data. Recall that moving the point

cloud to the origin used the following transformation matrices, applied in the following

order: T1; R1; S from SVD; and R2z,R2y, and R2x from image-based alignment. Moving

the model to the point cloud’s original location requires a reverse transformation involving
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Figure 6.15: Fine resolution histograms of the sample data using 1 cm bins

the inverse matrices applied in reverse order as shown in Equation 6.12 to form the

combined matrix Mreverse, where the transpose and inverse are equivalent for the rotation

matrices. Applying Mreverse to the model places it in the point cloud’s original location

as illustrated in Figure 6.16c for the sample data.

Mreverse = T−1
1 ·R>1 · S−1 ·R>2z ·R>2y ·R>2x (6.12)
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(a) Geometric model at origin

(b) Model with point cloud at origin (c) Model placed at point cloud’s original location
and orientation

Figure 6.16: Model of rectangular room derived from point cloud

6.3 Conclusion

This chapter examined a simple implementation of histogram thresholding for iden-

tifying the floor, ceiling, and walls in the point cloud of a rectangular room based on

techniques developed by Khoshelham and Dı́az-Vilariño (2014) and Dı́az-Vilariño et

al. (2015). Whereas Dı́az-Vilariño et al. (2015) used cluster means from the EGI and

direct vector projection for the alignment, this study used the more precise method of the

statistical mode for each cluster via gridded orthographic projections and used singular

value decomposition to provide pure rotations that preserve the original shape of the
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point cloud. Once axis-aligned, the point cloud is processed using a simple histogram

approach to identify the outer boundaries of the room — i.e., floor, ceiling, and walls —

in contrast to Khoshelham and Dı́az-Vilariño (2014)’s more advanced method that also

identified interior walls. Whereas Khoshelham and Dı́az-Vilariño (2014) used fixed sized

bins, this study used a two-step process that starts with large bins to identify the general

vicinity of the boundary features followed by small bins to pinpoint their locations.

While the technique used in this study demonstrates several key concepts for seg-

menting point clouds of rooms, it has several major limitations. First, this technique

only works with rectangular rooms having orthogonal floors, ceilings, and walls; it will

not work with angled or curved structural members. Second, it only identifies the room

envelope but does not identify any type of openings such as doors and windows. Finally,

this technique works only on the point cloud of a single room; it will not segment struc-

tural features for a multi-room or multi-level point cloud. Nonetheless, the simplicity of

this technique may make it suitable for use as a teaching tool for introducing concepts

relevant to segmenting point clouds for indoor space modeling.
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Chapter 7

From point cloud to geometric

model

The modeling standards and file formats section uses material from a paper published in

the Geographical Information Systems Theory, Applications and Management (GISTAM)

2017 conference proceedings (Chen and Clarke 2017).

Chapter 5 covered point cloud segmentation, which classified the point clouds of in-

door spaces into subgroups based on geometry and semantics. This chapter reviews

automated methods for transforming those segmented indoor point clouds into geomet-

ric models followed by a review of some widely accessible file formats for the storage,

transmission, analysis, and rendering of those models. As opposed to a point cloud, a

geometric model uses a math-based geometric form that is suitable for digital process-

ing (Remondino 2003). They offer several advantages over point clouds: they have a

more compact form, can be manipulated as coherent objects, can be rendered for pho-

torealistic visualizations, and can use numerous standard formats optimized for different

applications.
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7.1 Approaches to geometric modeling

Geometric modeling usually takes a surface-based or volume-based approach that

defines shapes either implicitly or explicitly (Ganovelli et al. 2015; Tang et al. 2010). The

surfaced-based approach models only the outer shell of objects, while the volume-based

approach models objects as solid volumes. Since the shell of an object also represents

it physical boundary, the surface-based approach is often referred to as the boundary

representation or B-Rep approach. Indoor mapping applications can use both types of

representations, but models derived from point clouds often use B-Rep since current

remote sensing technology can only detect object surfaces but not what lies underneath.

Four of the most common types of B-Rep models are implicit surfaces, polygon meshes,

parametric surfaces, and subdivision surfaces, with the latter three representing explicit

methods (Ganovelli et al. 2015; Tang et al. 2010). Implicit methods imply the shape of

an object through intermediate values but inherently do not directly describe its physical

form.

7.1.1 Implicit surfaces

Implicit surfaces use intermediate descriptors rather than explicit descriptions of a

surface, making them ill-suited for generating 3D models. However, their generic nature

makes them well-suited for segmentation and object recognition, since the properties of

the point cloud can be compared to implied descriptors, such as curvature or normal

vector directions, as illustrated in Figure 7.1. The extended Gaussian image (EGI)

covered in Chapter 6 is an example of an implicit surface descriptor. Implicit surfaces

can be derived from measured objects or from libraries of models, such as a library of

furnishings for furniture recognition (Tang et al. 2010).
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(a) Curvature

(b) Spherical harmonics (c) Spin images

Figure 7.1: Examples of implicit surface descriptors from Tang et al. (2010)1

7.1.2 Explicit surfaces

Explicit surface modeling directly describe the modeled surface using polygon meshes

— e.g., lines and surfaces defined by vertices — or idealized parametric surfaces. These

methods can sometimes be combined or used as steps within a larger modeling process.

Polygon meshes

Polygon meshes partition the surface of an object into a continuous surface of con-

nected polygons, such as triangles or quadrilaterals, with the term tessellation describing

1a. Rusinkiewicz (2004); b. Kazhdan, Bolitho, and Hoppe (2006); c. Johnson et al. (1997)
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a special case where the polygons are equally sized. For point clouds, the simplest ap-

proach involves directly connecting each point with its nearest neighbors to form a series

of triangular surfaces (Marton, Rusu, and Beetz 2009). However, this naive approach can

result in excessive or insufficient point cloud densities, noise, and voids — all of which

require various post-processing measures to address. While direct meshing may work

well for visualization, it can result in irregular surfaces that have limited value for indoor

mapping and modeling.

Another approach to meshing a point cloud involves first modeling with B-Rep or

volume-based techniques to achieve a smooth surface and then meshing the resulting

surface instead of the point cloud itself to produce a smooth mesh. This approach is

often used in situations where the original model exists in parametric form but some

external requirement calls for the use of meshes. For example, in the past, the Indus-

try Foundation Classes (IFC) for building information modeling (BIM) did not support

parametric surfaces created in proprietary BIM software; these had to be converted to

mesh format for transfer as an IFC-compliant file.

Parametric surfaces

A parametric surface describes a curved 2D surface in 3D space that uses only a

small set of parameters — determined by control points in mesh form — that can often-

times model shapes not possible with other methods (Moore and Smith 2002; Ganovelli

et al. 2015). Examples range from simple shapes such as spheres, cylinders, cones, and

ellipsoids to more complex surfaces. These parameterized surfaces can take an interpo-

lation form or an approximate form, with the surface of the former passing through all

control points and the latter using the control points only as a guide. Two widely used

approximate approaches include Bézier patches and NURBS (non-uniform rational basis
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splines), with the former more closely following control points and the latter exhibiting

more gradual changes in shape.

Subdivision surfaces

Subdivision surfaces provide a compromise between the highly discrete meshes and

the smooth and continuous parametric surfaces (Ganovelli et al. 2015). As with para-

metric surfaces, subdivision surfaces use a control mesh for surface definition. However,

subdivision uses various schemes for subdividing the surface into progressively smaller

cells that can significantly loosen the geometric constraints of parametric modeling, allow-

ing the modeling of complex features using relatively small meshes (Ganovelli et al. 2015;

Botsch 2010).

7.2 Approaches to geometric modeling from indoor

point clouds

A sample of 57 publications dealing with the processing of indoor point clouds showed

that about half the papers stopped at segmentation while the other half continued with

geometric modeling using some form of B-Rep surface meshing. Of those that went

on to geometric modeling, many used some form of surface extrusion from simplified 2D

representations, others directly derived planar patches from the 3D points, and a handful

of others used other methods.

Direct from region growing

Sanchez and Zakhor (2012) used RANSAC during segmentation to deduce alpha

shapes, computed the vertices of their concave hulls, and then used split and merge to
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remove redundant vertices to the unspecified mesh. Adán and Valero (2014) and Valero,

Adán, and Bosché (2016) segmented walls, floors, ceilings, windows, and doors using

RANSAC plane fitting and directly converted these planes into quadrilateral meshes,

with the plane corners forming the vertices. For columns, they used a least-squares

best fit for a circle using a projection view on the xy-plane and extruded from floor to

ceiling using an unspecified B-Rep method. They then used ready-made mesh furniture

models from a facilities management database to match and place furniture in the model.

Mura et al. (2014) used a simple region growing method to form planar patches which

they later merged for form boundary edges. Instead of extruding the walls from the

resulting floor plan, they used a more robust statistical approach to height estimation

and represented the model using what appeared to look like a quadrilateral mesh. Dı́az-

Vilariño et al. (2015) used region growing to segment planar surfaces from which they

derived vertices for the quadrilateral mesh model. Oesau (2015) used region growing

with voxels to deduce room structure then modeled with triangular meshes.

2.5D extrusions from thresholding

Budroni (2013) first created floor plans using Okorn et al.’s thresholding method and

extruded the lines from floor to ceiling using an unspecified B-Rep method. Turner (2015)

also extruded floor plans, created during segmentation using voxel carving, from floor to

ceiling for the walls and represented all surfaces using triangular meshing applied to a

quadtree structure. They then applied texture mapping to add an element of photoreal-

ism. Ochmann et al. (2016) likewise constructed piecewise linear graphs of the walls and

extruded them from floor to ceiling using an unspecified B-Rep method.
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Other thresholding method

Khoshelham and Dı́az-Vilariño (2014) took a different approach to thresholding by

aligning cuboids with histogram peaks and converting the merged cuboids into walls

using an unspecified B-Rep method.

Wireframe

Researchers affiliated with Yonsei University used a wireframe approach to geometric

modeling, which can be seen as a variation of mesh modeling. Kim, Son, and Kim (2013)

segmented the point cloud with RANSAC and projected the resulting planes onto a hor-

izontal occupancy grid from which they traced the structures boundary and apparently

extruded for the wireframe model. Yoon, Jung, and Heo (2015) built a wireframe model

of two complex intertwined staircases by combining Okorn et al.’s method for planes and

RANSAC for all other surfaces and tracing the features to create the wireframe. Jung

et al. (2016) projected points onto horizontal and vertical planes to binary map and

performed tracing using Douglas-Peucker segmentation to form the wireframe.

True BIM modeling

Thomson and Boehm (2015) used an algorithm called RANSAC in the C++ Point

Cloud Library for producing planar patches which they later merged for final segmen-

tation. They then used this information to extrude BIM structures using IFC standard

models for walls (IfcWallStandardCase) and floors (IfcSlab) using assumed thicknesses.

This was the only instance in the 57 papers that provided a scan-to-BIM conversion for

indoor spaces. It is unlikely that these were volume-based constructive solid geometry

(CSG) models, since older versions of IFC almost exclusively supported B-Rep models.
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7.3 Modeling standards and file formats for indoor

mapping and modeling

Once geometric modeling has been finished, the resulting model must be saved in a

certain format for storage, dissemination, rendering, and analysis. This section reviews

prevailing open source and widely accessible modeling standards and data formats for

computer-aided design (CAD), building information modeling (BIM), geographic infor-

mation systems (GIS), and computer graphics (CG) systems and examines their suit-

ability for indoor mapping and modeling. Material in this section builds on the work of

Karimi and Akinci (2010), Kolbe (2009), and Zlatanova, Stoter, and Isikdag (2012).

7.3.1 Computer-aided design and geographic information sys-

tems

Computer-aided design and geographic information systems represent two distinct

approaches to making and using spatial data, each with its own set of domain-specific

applications, where each term describes a system or process rather than specific software.

Facilities-based CAD has theoretical underpinnings from architecture and civil engineer-

ing while theories that drive GIS come largely from geography, geographic information

science, and geoinformatics.

Computer-aided design

The construction and manufacturing industries developed CAD for producing elec-

tronic versions of previously hand drawn technical drawings. It was first called computer-

aided drafting and later redesignated as computer-aided design as the software and pro-

cesses grew more sophisticated (Akin 2009). Practitioners in the architecture, engineer-
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ing, and construction (AEC) industry use CAD for designing and detailing built-up in-

frastructure, which can range from small residential houses to highways. Characteristics

of AEC-based CAD include providing very fine levels of detail, use of a locally-referenced

Cartesian coordinate system for buildings, and a predominant use of 2D space even

though 3D capabilities exist in CAD.

Over the past decade, building information modeling (BIM) has emerged as the next

generation of CAD that takes advantage of advances in computing and object-oriented

processes (Barnes and Davies 2015; Succar 2009; Suermann 2009). As with CAD, BIM

describes a process rather than specific software and, like CAD, it also uses a local Carte-

sian coordinate system for spatial referencing. Three features distinguishing BIM from

CAD consist of its use of an object-oriented model, its use of databases for object manage-

ment, and its native use of 3D space. Whereas conventional CAD uses 2D line drawings

to graphically depict physical objects, BIM uses solid 3D geometries, which it can then

render into 2D CAD line drawings as needed. Another advantage of BIM over conven-

tional CAD involves the ability to capture dimensions of data beyond 3D, e.g., time,

resources, and cost. These elements make BIM suitable for use in post-construction ac-

tivities such as building maintenance and resource management, i.e., building operations.

As a result, BIM is often associated with the term AECO where the “O” can stand for

operations or owner.

Some sources treat BIM and CAD as two separate concepts while others treat BIM

as a subset of CAD. While this paper regards BIM as a form of CAD, it will refer to

the two terms separately with the understanding that CAD refers to the traditional 2D

CAD process and BIM to the 3D process.

127



From point cloud to geometric model Chapter 7

Geographic information systems

GIS emerged in the 1960s as a computer-enabled approach to analyzing land use and

rapidly expanded to other areas in the 1980s with the advent of affordable personal com-

puters. Within two decades, GIS became the de facto technology for all things geospatial,

to include the storage, manipulation, visualization, and analysis of anything with geo-

graphic information (Goodchild 2000). GIS has since taken many forms that impact

numerous aspects of modern life, such as in vehicle navigation, customizable computer

maps, and virtual globes such as Google Earth. It has also led to a massive growth in

all forms of geospatially-enabled data ranging from online government-furnished maps to

geotagged photos and social media.

Geographic information science (GIScience or GISc) — also known as geoinformatics

— provides the underpinnings for technological GIS systems, and the growth of GIS in the

1980s and 1990s fueled a parallel rise in GIScience’s prominence as a scientific discipline

(Goodchild 1992, 2000), incorporating ideas from other disciplines such as statistics,

information systems, and graphic design to explore spatially-based phenomena. In turn,

it led to both empirical and theoretic discoveries that have provided greater insights

into the geographic world, an especially important contribution in a world experiencing

climate change and major shifts in human migration and demographics. However, GIS

and GISc in their present form almost exclusively deal with the outdoor world outside

of enclosed areas such as buildings and underground facilities. Considering that most

people spend 80% to 90% of their lives indoors, GIS and GISc have much to offer in the

study of indoor worlds (Klepeis et al. 2001; Roberts 2016; Goodchild 2011).
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7.3.2 Characterizing file formats and standards for indoor use

Four properties were used to evaluate the suitability of file formats and modeling

standards for indoor applications. These four properties consisted of geometric repre-

sentation, level of abstraction, spatial referencing method, and level of detail support.

While these properties could apply equally to indoor and outdoor environments, they

were selected to specifically evaluate indoor applications in this dissertation.

Geometric representation

Geometric representation describes the method used to mathematically represent ob-

jects. Section 7.1.2 identified three primary types of boundary representations or B-Rep:

polygon meshes, parametric surfaces, and subdivision surfaces. This section adds vol-

umetric representations in the form of constructive solid geometry (CSG) and voxels

(Ganovelli et al. 2015). Whereas parametric surface modeling uses smooth 2D mathe-

matical surfaces in 3D space, CSG represents 3D objects as combinations of solid ge-

ometric primitives, such as spheres, cuboids, and cylinders. Voxels (volume elements),

another volumetric method, are the 3D equivalent of 2D rasters and provide another way

to model 3D volumes.

Abstraction level

In computer programming, abstraction describes the process of revealing only relevant

information required to run a computer program and hiding all other implementation

details to reduce clutter and prevent confusion. Abstraction level thus describes the

extent to which a program can interact with natural human language, with higher levels

indicating nearness to natural language and lower levels to machine language (Stroustrup

2014). When dealing with building models, this paper defines abstraction level as the
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Geometric
Representations

B-Rep (Surface) Volumetric

Polygon
Mesh

Parametric
Surfaces

Subdivision CSG Voxels

Figure 7.2: Methods of geometric representation

extent to which a geometric model represents an object in natural language terms. For

instance, a low level representation of a door can require the description of mesh vertex

coordinates and their red-green-blue color values while a high level representation can

involve invoking a “door” descriptor with attributes of material and dimensions, hiding

the details of mathematical implementation. High level abstraction also allows objects to

be generalized and used as templates for other objects via inheritance and polymorphism

(Ibrahim and Krawczyk 2003; Rüppel, Meissner, and Möller 1993). For example, a double

panel oak door can be an object based on a generic door class. The door itself, with all

its component parts and attributes, forms a single object, and copies of that door object

placed within a building model represent its instances.

This study uses four levels of geometric abstraction: none, low, medium, and high.

No geometric abstraction applies only to the IndoorGML standard that deals mainly with

topology. Low level abstraction describes formats and standards that support only simple

geometries without semantics, such as simple vertices, lines, and polygons. Medium level

abstraction provide more advanced capabilities — such as the grouping of geometric

shapes or limited semantics — that fall short of true object-oriented representation.
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Finally, high level abstraction represents true object-oriented capabilities with inheritance

and semantic capabilities.

Abstraction Levels

None Low Medium High

Figure 7.3: Abstraction levels

Spatial referencing support

Coordinate referencing describes the measurement system used for placing a geomet-

ric model in space, which consists of a coordinate system (i.e., measurement conventions)

and datum (i.e., starting point) that together form a unique coordinate reference sys-

tem or CRS (International Organization for Standardization 2002; Bernhardsen 2002;

Van Sickle 2010). Building and indoor space modeling usually use CRSs based on the

Cartesian coordinate system paired with a locally defined datum due to the relative ease

of working with linear measurements. However, maps of the outdoor environment use

a wide variety of systems that can include linear horizontal and vertical measurements

as well as angular geographic measurements. The International Association of Oil and

Gas Producers (IOGP) (2017) identified over 5,700 unique CRSs in the 2017 edition of

its widely referenced EPSG CRS database. With no limit to the number of available

CRSs, flexibility in accommodating different types of CRSs can play an important role

when integrating indoor with outdoor models. Thus, the level of support for coordinate

referencing provides an indication of a format or standard’s flexibility in accommodating

these different types of CRSs. Another approach to spatial referencing involves the use

of natural language descriptors in the form of geographic identifiers. Identified places
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often have associated coordinates although some ambiguity may exist with the object’s

actual location, such as when a single coordinate tuple is used to specify the location of

a large building or city.

This study evaluates whether a standard or file format supports coordinate referencing

or identifiers. It further divides the coordinate referencing category into local engineering

coordinates and Earth-based geodetic coordinates. While the term geodetic coordinates

is traditionally used to describe horizontal locations, it is loosely used here to describe

Earth based horizontal and vertical locations.

Spatial Referencing

Identifier
Engineering

CRS
Geodetic

CRS

Figure 7.4: Spatial referencing support

Level of detail

The ability for a model to have multiple levels-of-detail (LODs) describes the ability

to use different geometric forms to represent the same object at different viewing levels,

akin to preset map scales for outdoor maps (Pham, Ruas, and Libourel 2015; Tolmer et

al. 2013). However, the actual implementation of LOD varies by discipline. In computer

graphics, LOD is often associated with polygon counts where a low LOD model is a pared

down version of a high LOD model in terms of the number of vertices and faces. In BIM,

LOD takes on a completely different meaning where LOD stands for level-of-development,

rather than detail, that defines geometric form based on the level of certainty during

the design and construction process — some authors refer to this as LODt to prevent

confusion (Reinhardt and Bedrick 2016). Geometric form and LODt are only generally
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but loosely coupled in BIM. In cartography, semantics plays a greater role in determining

geometric form for multiple LODs where vastly different geometric shapes can be used

to represent the same object.

Level-of-Detail
Support

Computer
Graphics

AEC
Cartographic

(GIS)

Figure 7.5: Level-of-detail support

7.3.3 Review of BIM and GIS formats and standards

This section provides a review of open-source or widely accessible BIM and GIS for-

mats and standards that have potential relevance to 3D indoor mapping and modeling.

In many instances, standards are tightly coupled with file formats so that a modeling

standard also provides specifications for the storage and transmission of data. Addition-

ally, many other proprietary formats exist that may provide greater capabilities for indoor

mapping and modeling, but they have been omitted since they often require expensive

proprietary software.

Industry Foundation Classes (IFC)

Background Building information modeling (BIM) is a generic term that describes

processes that use 3D digital models for coordinating all aspects of work on buildings and

infrastructure throughout their lifecycles from concept to disposal (Barnes and Davies

2015; NBS 2017). Over the past decade, openBIM has increasingly gained acceptance as

the de facto set of guidelines governing the BIM process as well as the products produced

through BIM (Johnson 2015).
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Work towards openBIM began in 1995 when CAD software maker Autodesk led a

private alliance of twelve companies to develop an open and international standard for

the interchange of building industry data (buildingSMART 2016). In 1996, this group

formally became the International Alliance for Interoperability (IAI) and was renamed

buildingSMART in 2008. In its on-going efforts to make building data universally acces-

sible, buildingSMART also established partnerships with the International Organization

for Standardization (ISO) to make its standards internationally recognized and the Open

Geospatial Consortium (OGC) to integrate BIM with geospatial data.

IFC standard The concept of BIM is widely associated with IFC since it was the first

open standard published for BIM that also enabled BIM software to openly exchange

data (buildingSMART 2016). IFC provides a rich standard for representing, storing, and

transferring building, infrastructure, and site data, with a singular focus on supporting

the AECO industry. It uses a 3D object-based model for abstracting real-world entities;

can use CSG and B-rep geometric representations (buildingSMART 2015); has robust

and standardized semantics, especially when paired with the buildingSMART Data Dic-

tionary (bSDD); uses an engineering CRS, i.e., assumes a flat Earth; and supports LODt

but not LOD. IFC data can be transmitted in one of three ways (file extensions shown

in parentheses): the ISO STEP file structure (.ifc), a text file formatted using extensible

markup language, XML (.ifcXML), or a compressed file (.ifcZIP) containing a .ifc or

.ifcXML file in the main directory.

LODt for openBIM refers to the level of design refinement of building objects along

various stages of the design and construction process (Bedrick 2013) and can serve as an

indirect indication of a model’s reliability. openBIM has largely adopted LODt specifi-

cations from the American Institute of Architects (AIA), with the most recent version

of the specification, dated 2016, outlining five LODts (LOD 100, 200, 300, 400, and 500)
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following AIA protocol G202-2013 and a sixth for openBIM (LOD 350) (Reinhardt and

Bedrick 2016).

Other related openBIM standards In its present form, openBIM consists of three

basic standards: IFC, the international framework for dictionaries (IFD) implemented

as the bSDD, and information delivery manuals (IDMs) (buildingSMART 2017c). build-

ingSmart also recognizes external specifications such as the BIM Collaboration Format

(BCF). bSDD serves as the openBIM implementation of the IFD using a multi-lingual

data dictionary to provide ontologies and characteristics of objects in IFC (Petrie 2016).

IDM provides guidance on documenting processes and building information shared among

multiple organizations (Karlshøj 2011). Subsets of IFC identified using IDM are captured

in official multi-view definitions (MVDs), which provide the subset schemas (buildingS-

MART 2017b). The BCF is a recent addition to the openBIM standards that was devel-

oped to improve communication capabilities using the BIM model itself as the medium

(buildingSMART 2017a). Prior to BCF, users who wanted to communicate issues using

a BIM model needed to exchange the entire model as bulk data. BCF provides an open

format that exchanges only vital elements between different software applications.

City Geography Markup Language (CityGML)

Background CityGML serves as a standard data model and an XML-based data ex-

change format for the modeling of cities in 3D. It exists as one of several application-

specific application schemas of the Open Geospatial Consortium (OGC) Geography

Markup Language (GML) standard, an umbrella international standard for describing

real world phenomena that have geospatial properties. Similar to how openBIM and IFC

emerged from the efforts of a consortium of companies in the AECO industry, CityGML

emerged from the work of a group called the Special Interest Group 3D (SIG3D) con-
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sisting of companies, academic institutions, and government entities in Germany. In

1999, the German state of North Rhine-Westphalia established the Geodata Infrastruc-

ture North Rhine-Westphalia (GDI NRW) to create a market for realizing the potential

economic benefits of geographic information (Brüggemann and Liebig 2000). SIG3D was

formed from this initiative in May 2002 with the goals of advancing standards for the

open exchange and visualization of 3D geographic data (GDI-DE 2016). SIG3D’s work

on the open data exchange standard resulted in an early version of CityGML (Open

Geospatial Consortium 2012). OGC began examining CityGML in 2004 within its 3D

Information Management (3DIM) Working Group, which eventually led to the adoption

of CityGML as an OGC standard in 2008. SIG3D continues to play a major role in devel-

oping CityGML along with other 3DIM members including the U.S. National Institute

for Building Sciences (NIBS) and buildingSMART.

CityGML standard With its origins in GIS, CityGML has a strong focus on urban

modeling with an emphasis on buildings. CityGML uses a 3D object-based model for

abstracting real-world entities, similar to IFC; exclusively uses B-rep with standardized

semantics; supports use of both engineering and geodetic CRSs; and supports five LODs

(Buyukaslih, Isikdag, and Zlatanova 2013; Kolbe, Gröger, and Plümer 2005). When

using an engineering CRS, the CityGML 2.0 specifications recommend also identifying

an anchor point based on a geodetic CRS (Open Geospatial Consortium 2012).

LODs for CityGML closely follow the cartographic concept of LOD. CityGML has five

LODs sequentially numbered from LOD0 (most generalized) to LOD4 (most detailed).

Since the standard treats features and geometric representations separately, a single

feature can have different geometric appearances at different LODs and it can even have

different appearances based on different themes. LOD4 has particular relevance to indoor
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cartography since it provides the only LOD that reveals indoor features; building interiors

remain void and empty from LOD0 to LOD3.

Indoor Geography Markup Language (IndoorGML)

Background Whereas IFC and CityGML address 3D geometries and the semantic

aspects of buildings, the IndoorGML standard was developed for the sole purpose of

supporting indoor navigation. OGC officially approved IndoorGML as an OGC standard

in 2015 and it serves to complement, rather than supplant, other standards such as

CityGML and IFC.

IndoorGML standard IndoorGML uses a non-visual object-based model for abstract-

ing real-world entities; has minimal support for geometric representation, instead using

topological network graphs; has standardized semantics; supports use of both engineering

and geodetic CRSs; but does not have LODs (Kim, Yoo, and Li 2014; Nagel et al. 2010).

As a standard for topological modeling, IndoorGML uses non-overlapping cells to

represent indoor spaces, such as rooms. These object-based cells need neither dimension

nor spatial location, although the standard supports adding either or both as an option.

Cells can have topological relationships and can relate to geometry by linking to CityGML

or IFC. While the standard does not require geometry-based LODs, it uses the concept

of multi-layering to represent different uses of the same space. For instance, one layer

can represent pedestrian travel while another can represent wireless internet coverage.

Other CAD standards

DXF was initially released by CAD software maker Autodesk in 1982 as an open file

format to facilitate interoperability of its AutoCAD software with other CAD programs.

It provides a visualization-only approach to abstraction using simple geometric repre-

137



From point cloud to geometric model Chapter 7

sentations (e.g., points, lines, arcs/circles, polygons, etc.) with no semantics; uses an

engineering CRS; and has no support for LODs (Autodesk 2011; Ibrahim and Krawczyk

2003). Although the DXF standard uses the terms object and entity, it defines entities

as actual geometric forms (e.g., lines and hatches) and objects as non-graphical and non-

geometric properties (e.g., line types and groups) (Autodesk 2011). Autodesk’s native

DWG CAD format for its AutoCAD software shares many of the same properties as DXF

with additional support for BRep in the form of tesselation (meshes) through sweeping

and extrusion (Library of Congress 2016).

The DGN format is Bentley’s native CAD format for its Microstation software and

supports both engineering and geodetic CRSs, with no LOD capabilities and no seman-

tics, but supports points, lines (including curves), and areas in 2D/3D and extruded

B-Reps (Bentley Systems 2016).

7.3.4 Other GIS standards

Shapefile

GIS software maker Esri released the shapefile format in the 1990s as a way to rep-

resent, store, and transfer simple 2D geometric structures of geographic entities for its

once state-of-the-art ArcView GIS software (Library of Congress 2011b). Though often

associated with the .shp file extension, the shapefile format actually describes a collection

of multiple files. Shapefiles require a minimum of three files stored in the same direc-

tory: feature geometries or shapes (.shp), shape index (.shx), and attribute tables (.dbf).

They can also include various other optional files, the most relevant being the projection

file (.prj) for storing coordinate reference system specifications. Shapefiles represent real-

world entities using simple 2D and 3D vector geometries based on points, lines, polygons,

and isohedrons. Shapefile features have no topological capabilities, limited semantic ca-
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pabilities through the use of attributes, can use either engineering or geodetic CRSs

through the optional .prj file, and have no built-in capabilities for defining LOD. For 3D

representation, shapefiles use multipatch geometry, a type of B-rep representation (Esri

2008).

Geodatabase

Esri released the geodatabase format in 1999 based on an object-relational data model.

Geodatabases use objects called features to represent real world entities and can take

advantage of object-based inheritance and semantics through the use of feature classes.

In terms of geometry, the geodatabase format uses the same vector representations as

shapefiles — i.e., points, lines, polygons, and 3D multipatches — with additional support

for rasters in 2D (Library of Congress 2011a). The format currently does not support

voxels although individuals at Esri have discussed the idea (Ten Questions for Esri: 3D

Expert, Nathan Shepard 2015). For spatial referencing, the geodatabase supports both

engineering and local CRSs as well as referencing by identifiers. This format also supports

different user-defined LODs due to the separation of features and geometries. Esri has

three different implementations of the geodatabase — personal, file, and enterprise —

each with increasing sets of features and capabilities (Esri 2016). Personal geodatabases

use Microsoft Access data files to store data, file geodatabases use a directory-base file

structure, and enterprise geodatabases use database servers.

FISDM

The open source Facilities Information Spatial Data Model (FISDM) emerged in

2014 from the Building Interior Space Data Model (BISDM) released by Esri and several

other organizations in 2007 (Rich and Smith 2014). FISDM is not a standard but an

integration platform for CAD, BIM, and GIS data built on Esri’s geodatabase format
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that can fuse GIS data with CityGML, IFC, and other formats. It includes a data model,

cartographic templates, sample data interoperability kits, and sample starter kits. While

BISDM focused exclusively on interior spaces, FISDM extended those capabilities to

include exterior spaces and the outside built environment. FISDM has the same 2D and

3D capabilities of its underlying geodatabase file format.

KML

KML is an XML-based OGC international standard for providing 2D and 3D geo-

graphic visualizations in online mapping and virtual globe browsers. It was originally

developed as the Keyhole2 Markup Language for use with the Keyhole Earth Viewer,

an innovative virtual globe partially funded by the U.S. Intelligence Community and ac-

quired by Google in 2004 to become Google Earth (Garfield 2015; In-Q-Tel 2003). KML

became an official OGC international standard in 2008. KML provides a lightweight

but extendable format for representing 3D features using B-rep (Isikdag and Zlatanova

2010). Although mostly a visualization format, the KML standard provides limited abil-

ity to add user-defined attributes to features. KML exclusively uses two specific geodetic

CRSs: World Geodetic System of 1984 (WGS84) for horizontal coordinates and Earth

Gravitational Model 1996 based on the WGS84 ellipsoid for elevations (WGS84 EGM96

Geoid). It also supports user-defined levels of detail through the use of regions (Burggraf

2015).

2The KEYHOLE codeword was used by the United States government to designate highly classified
space-based intelligence during the Cold War.
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7.3.5 Other graphics formats

While many of the previously reviewed BIM and GIS formats and standards work well

for data collection, storage, and transmission, they may not provide the best performance

in terms of rendering and visualization. This section reviews open source or widely

accessible general purpose graphics formats that may be useful for visualizing models of

indoor spaces.

X3D

X3D consists of a family of open ISO standards for representing and exchanging

3D scenes and objects and is managed by the Web3D Consortium (Web3D Consortium

2017). The X3D standards emerged from an earlier standard called the Virtual Reality

Modeling Language (VRML), which had a geographic component called GeoVRML. X3D

offers a quasi-object-based capability called grouping that allows for the definition and

re-use of constructed geometries called groups. Other properties of X3D include collision

detection and the representation of multiple LODs, as well as support for both local

engineering and a limited number of geodetic CRSs (Web3D Consortium 2008). X3D

data can be presented in three forms: XML, Javascript, and Java. With its goal of

becoming the default 3D modeling language for the web, members of X3D continue to

develop a growing set of capabilities. One such effort comes from the X3D CAD working

group, which has continued to develop support for CAD models including the use of

B-rep geometries (Brutzman 2012).

SVG

SVG is an XML-based 2D graphics format supported by many modern web browsers.

Version 1.1, the latest version, supports line and area geometries (i.e., rectangle, circle,
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ellipse, and polygon) and rasters, although it still lacks support for point geometry.

Version 2, currently in draft form, has provisional mesh geometry capabilities that enable

shape distortions, but it still omits point geometry. Similar to X3D, re-usable groups can

be made in SVG, and the SVG data can link to other XML files for acquiring custom

attributes (Adams 2005; Geroimenko and Geroimenko 2006). It natively uses a Cartesian

coordinate based engineering CRS but has the flexibility to accommodate geodetic CRSs

using one of three methods: a web-based uniform resource identifier (URI), a well-known

CRS identifier, or directly defining the CRS within the xml document. SVG also supports

multiple-representation LODs (Chang, Chuang, and Wang 2004).

COLLADA

COLLADA is an XML-based ISO-adopted standard for the exchange of 3D digital

assets among different software applications (Barnes and Finch 2008; Khronos Group

2017). It uses an object-based approach for abstracting real-world entities, uses B-rep

geometric representation, supports custom semantics, and supports multiple LODs. It

supports use of a local engineering CRS and one geodetic CRS (WGS84 and WGS84-

EGM96, following KML specifications).

3D PDF

3D PDF (portable document format) provides a convenient format for delivering

3D models using widely available PDF readers. 3D models do not reside in the PDF

document itself but rather in an embedded 3D file saved in one of only two supported

formats, U3D and PRC.

The U3D format only supports the visualization of geometric models, which can have

attached attributes; however, it lacks object-based capabilities such as inheritance. U3D

only supports the use of tessellated meshes, uses a local engineering CRS, and its imple-
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mentation of LOD uses reduced polygon counts for the same geometric representation

(Klawonn 2012), instead of using multiple representations.

The ISO-adopted PRC format similarly supports visualization of models with at-

tached attributes but falls short of being truly object-based. In addition to tessellated

meshes, PRC also supports other forms of B-rep (PDF3D 2015). PRC natively uses a

local engineering CRS but some PDF implementations can provide software-based trans-

formations to a geodetic CRS.

Minecraft

Minecraft is a simple, voxel-based game that achieved the distinction of becoming

the second best selling videogame in history by 2016, behind the best-selling game

Tetris (Peckham 2016). As an open-ended game, players can explore the many worlds

of Minecraft and interact with their objects. Due to its simplicity and allure, Minecraft

has found various uses in school curriculum, community planning, and academic research

(Ertiö and Bhagwatwar 2017). Microsoft acquired Minecraft for over $2 billion USD in

2014 (Wingfield 2014).

While not a modeling standard per se, the Minecraft map format, called Anvil, allows

users to create custom worlds, called creation maps, for importing into the software. As

an example of the power of this feature, the Danish Geodata Agency released a full scale

(1:1) Minecraft map of the entire country in 2014 allowing players to explore the country

using Minecraft (Geodatastyrelsen 2014).

Minecraft uses object-oriented blocks as the most basic map element, with over 150

block types existing in the Minecraft library (Minecraft Wiki 2016). While object-

oriented in nature, the attributes and behaviors of these blocks are largely constrained

by the proprietary software program. Most blocks have a dimension of 1 meter on all

sides, although smaller blocks exist for special applications or can be specially built using
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Table 7.1: Summary of building modeling standards and file formats

Standard/Format Geometry Abstraction Spatial
Referencing

LOD Type LOD Levels

IFC M P C V N L M H I E G GISCGAE User Indoors: 6 / Total: 6

CityGML M P C V N L M H I E G GISCGAE User Indoors: 1 / Total: 5

IndoorGML N/A N L M H I E G None N/A

Shapefile M P C V N L M H I E G None N/A

Geodatabase M P C V N L M H I E G GISCGAE User User-defined

FISDM See geodatabase

DXF/DWG M P C V N L M H I E G None N/A

DGN M P C V N L M H I E G None N/A

COLLADA M P C V N L M H I E G GISCGAE User User-defined

X3D M P C V N L M H I E G GISCGAE User User-defined

SVG N L M H I E G GISCGAE User User-defined

KML M P C V N L M H I E G GISCGAE User User-defined

PDF (U3D) M P C V N L M H I E G GISCGAE User User-defined

PDF (PRC) M P C V N L M H I E G GISCGAE User User-defined

Level of support: # Full # Partial or with workaround # None

Geometry: Mesh P arametric CSG Voxels Point Line Area

Abstraction level: N None (simple geometry) L Low M Moderate H High (object-oriented)

Spatial referencing: I Identifier E Engineering CRS G Geodetic CRS

Level-of-detail type: AE AEC/BIM CG Computer graphics GIS GIS/cartographyGISUser User-defined

pixel measurements (1 block face = 16 x 16 pixels). The program uses an engineering

CRS (i.e., flat Earth), has horizontal dimensions of +/-29,999,999 blocks (i.e., meters)

from the origin, a depth limit of 64 blocks, and a height limit of 191 blocks. The software

automatically sets the LOD for the map.

7.3.6 Summary

Table 7.1 summarizes the building modeling standards and file formats covered in

this paper based on a format used by T.H. Kolbe for Billen et al. (2014).
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7.4 Evaluation of standards

Evaluation of the formats and standards looked at three areas: software accessibil-

ity, data sourcing, and indoor modeling capabilities. Software compatibility examined

practical issues of working with and sharing indoor maps, data sourcing examined the

relative importance of the formats themselves serving as a data source, and modeling

capabilities assessed capabilities and potential limitations when used for indoor mapping

and modeling.

7.4.1 Software accessibility

An open specification, vendor-neutral format allows software makers to incorporate

it into their products for cross-platform exchanges. In contrast, closed formats such as

DWG and DGN only work with proprietary software programs, such as AutoCAD and

Microstation, that may be cost prohibitive for many users. All file formats covered in

this review, except DWG and DGN, were open specification formats and had high levels

of compatibility and accessibility with various software. In particular, IFC, DXF, and

COLLADA were specifically designed as open exchange formats for maximizing com-

patibility and minimizing conflicts between different software programs. Nonetheless,

some data loss can still occur when the open format does not fully support features in

proprietary software. For example, the Autodesk Revit software for BIM supports para-

metric geometries while IFC does not; to export to IFC, Revit must convert parametric

components into meshes, which results in a loss of information.

7.4.2 Data sourcing

While this dissertation focused exclusively on point clouds, existing building designs

can also serve as convenient sources of data for creating indoor maps although they may
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contain an unknown degree of uncertainty. Among the reviewed models and formats, IFC-

based BIM models have the greatest potential use in indoor mapping due to their very

native 3D geometry, high level of detail, and rich object-oriented semantics. However,

few buildings currently have BIM models due to its relatively slow adoption in AEC. For

older structures, CAD drawings provide the next best data source followed by printed

drawings, which can be digitized through scanning or manual transcription. Most CAD

and printed drawings use a 2D line format, which require manual interpretation to convert

to 3D.

Even though CityGML has LOD4 for indoor modeling, few CityGML models actually

take advantage of the standard at that level of detail. Of the 15 publicly-accessible urban

models listed on the official CityGML website3 in 2017, only one used LOD3 and none

used LOD4. This may be due to a lack of use cases for indoor maps or lack of methods

for economically capturing the geometry of indoor spaces — the subject of this research.

Meanwhile, BIM will continue to serve as the most reliable source for detailed indoor

data driven by a commercial need in the AEC industry.

7.4.3 Suitability for indoor modeling

Indoor mapping and modeling occupies an area between BIM and GIS, where it does

not require the detailing capabilities of BIM but requires the ability to deal with finer

resolutions than traditionally provided by GIS systems as illustrated in Figure 7.4.3.

Since no such standard or format currently exists, the most suitable alternatives among

the standards and formats reviewed in this chapter are IFC, CityGML, X3D, and SVG.

IFC provides a feature-rich platform for indoor modeling that enables the modeling

of building components to the most minute detail. However, it has four potential draw-

3https://www.citygml.org/3dcities/
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Figure 7.6: Indoor mapping in the context of existing approaches to indoor modeling

backs. First, BIM works best with volumetric building components rather than surfaces,

making it necessary to make assumptions about structural features such as thicknesses

and materials of walls, floors, and ceilings, as was done by Thomson and Boehm (2015).

This adds a cumbersome and time-consuming step to the workflow, especially for non-

BIM applications. Second, IFC uses the BIM concept of LODt, which prevents effective

use of cartographic LOD in mapping applications. Finally, the feature-rich nature of IFC

also makes it a data-heavy format — made heavier with the need to specify volumetric

properties — that may impede data sharing and fast visualization. Finally, IFC has very

limited support for geodetic coordinates, although this may represent a minor drawback.

CityGML, X3D, SVG, and GIS formats provide viable alternatives to IFC. CityGML

provides the greatest level of support for the diverse requirements of indoor mapping in

terms of data generation, storage, and transmission with its support for rich semantics,

engineering and geodetic CRSs, the cartographic concept of LOD, and the ability to

extend to other GIS domains using application domain extensions (ADEs). CityGML

can also exchange data with IFC through BIM-GIS integration techniques that are ac-

tively being developed by openBIM and OGC. However, it falls short of providing full
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support for indoor mapping due to its all-or-nothing single LOD for indoor spaces, where

LOD4 shows everything indoors while LOD3 only shows the hollow shell of a building.

Nonetheless, indoor LODs may be added at a later time either through a revision of the

standard itself or an ADE once the concepts of indoor LOD have been developed.

CityGML works well for generating, storing, and transmitting indoor models, but it is

not optimized for visualization. For visualization purposes, CityGML can export to X3D,

SVG, or Esri’s geodatabase formats which can all work with most modern web browsers.

Among these, X3D has the greatest capabilities for displaying 3D indoor maps. X3D

supports rich semantics, engineering and a handful of geodetic CRSs, and cartographic

LODs. It can also display voxels, which may provide an alternative form of Minecraft-like

visualization. While the relatively mature SVG standard can provide 2D visualizations,

mature GIS formats used with web mapping servers — such as the open source OSGeo

MapServer4 or proprietary Esri ArcGIS Server — may provide a more practical solution,

especially with an intermediary format such as FISDM. Using a GIS system for 2D indoor

maps can also allow the indoor maps to seamlessly integrate with outdoor maps and take

advantage of pre-existing GIS functionality.

While relatively new and not previously covered in this chapter, the partially propri-

etary WRLD web maps5 provide a glimpse of the future of 3D indoor web mapping that

fills the gap between BIM and GIS as illustrated in Figure 7.4.3. WRLD maps focus

on 3D indoor space but place them in the context of a 3D outdoor GIS map rendered

using game engine technology. Although impressive, a closer examination shows the lim-

itations of their indoor maps and current indoor mapping technology in general. The

current state of WRLD’s indoor maps reflects the early years of Google’s 3D mapping

4http://www.mapserver.org/
5https://maps.wrld3d.com/
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efforts, when it manually built 3D models and invited the public to crowdsource models

using its SketchUp software. At the time of writing, WRLD also manually builds many

— if not most — of its indoor maps and has an on-going program for crowdsourcing.

Indoor maps that appear to have been automatically generated use simple extrusions of

floor plans for walls and lack other architectural features such as doors, windows, and

furnishings.

7.5 Conclusion

This chapter covered the process of converting segmented point clouds of indoor spaces

into geometric models and then reviewed a selection of modeling standards and formats

for model generation, storage, transmission, rendering, and analysis. While geometric

modeling itself has well-established theoretical and practical bases, the automated gener-

ation of building models from imperfect point clouds of indoor spaces remains relatively

under-developed and an area of active research. Modeling standards and file formats

present another challenge to the geometric modeling of indoor spaces. Presently, no

standard or format exists that can fully support the anticipated requirements of indoor

mapping. CityGML and IFC/BIM — which can inter-operate — provide perhaps the

most capable frameworks for indoor mapping, limited most notably by weak support

for multiple indoor cartographic LODs. However, to prevent putting the cart before

the horse, theories and concepts of indoor cartography must first be developed before

modeling standards can be established. Thus, the indoor cartography presents a poten-

tially new field of study distinct from conventional outdoor cartography, architecture,

and urban modeling.
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Chapter 8

Spatial referencing review

8.1 Overview of spatial referencing

Spatial referencing describes the process of specifying locations of objects in space.

According to Kuhn (2012), the concept of location describes a spatial relationship be-

tween objects rather than an intrinsic property, meaning that any description of location

must include an arbitrary ground truth, e.g., another object, a geographic region, or a

street network. Since location has an arbitrary nature and can be described in an infinite

number of ways, the use of standardized language in the form of a spatial reference system

(SRS) helps ensure that location descriptions remain consistent and repeatable (Inter-

national Organization for Standardization 2002; Drewes 2009; Plag 2011). However, an

SRS is purely theoretical. Realizing the SRS in the physical world requires associating

the SRS with meticulously measured physical and tangible reference objects in the real

world — such as monuments and calibration stations — that make up the spatial refer-

ence frame (SRF). Therefore, the SRS specifies the methods of describing location while

the SRF puts the SRS into practice in the physical environment.
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Georeferencing Methods

Referencing by CoordinatesReferencing by Identifiers

Figure 8.1: Georeferencing methods

In an Earth-based context, spatial referencing is also referred to as georeferencing.

Since Earth is in a constant state of motion — rotation about its axis, orbit around the

Sun, etc. — georeferencing uses Earth itself as the reference object, whether that involves

its geocenter or arbitrary locations on its surface. This chapter provides a detailed

review of the two general approaches to georeferencing: referencing by identifiers and

referencing by coordinates (Figure 8.1; Bernhardsen 2002; International Organization for

Standardization 2002).

8.1.1 Referencing by identifiers

Referencing by identifiers uses names, labels, or codes to identify locations in space

and provides a high level abstraction that the average person can more easily understand.

Examples include street addresses, postal codes, building numbers, and grids on a shop-

ping mall floor plan. Use of identifiers often requires use of a standard list of locations,

called a gazetteer, that can range from informal locally-maintained lists to internation-

ally coordinated lists (United Nations Group of Experts on Geographical Names 2017).

Advantages of identifiers over coordinates include greater simplicity, ease-of-use, and un-

derstandability. For instance, the identifier “Ellison Hall, Room 1720” provides a more

understandable description than the coordinates “34°24′55.512′′N 119°50′10.752′′W.” Dis-

advantages include ambiguities in describing physical locations and the possibility that

multiple locations can have the same name.
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Coordinate
Reference System (CRS)

Coordinate System Datum

Figure 8.2: Components of a coordinate reference system

8.1.2 Referencing by coordinates

Referencing by coordinates uses numerical measurements from some given ground

truth location and presents these measurements in the form of a list of coordinates1.

Compared to identifiers, coordinates provide unambiguous and precise descriptions of lo-

cations in space. Familiar examples include the use of latitude and longitude coordinates

for locations on Earth and (x, y) coordinates for referencing locations on graph paper.

The term coordinate reference system (CRS) describes any SRS that uses coordinate

referencing, which specifies use of a specific coordinate system and a unique datum2.

(Junkins and Garrard 1998; Becker 2011; Torge and Müller 2012). The coordinate sys-

tem specifies the methods of measurement while the datum specifies properties of the

ground truth or starting point for measurements (Drewes et al. 2007; Drewes 2009). The

remainder of this chapter will examine details of coordinate reference systems based on

ISO and OGC conventions.

1According to International Organization for Standardization (2002) and Open Geospatial Consor-
tium (2010), the singular term coordinate defines an individual measurement value in a coordinate
tuple; the term coordinate tuple defines the ordered list of coordinates for a single location in space; and
the term coordinate set defines a set of coordinate tuples for multiple locations. The size of a coordi-
nate tuple corresponds to its spatial dimension — that is, a 1-tuple coordinate represents a location in
one-dimensional space, 2-tuple coordinates represent a location in two-dimensional space, and 3-tuple
coordinates represent a location in three-dimensional space. In colloquial usage, the general term co-
ordinates is often used synonymously with coordinate tuples, such as in the expression, “What are the
coordinates for Point X?”.

2However, some organizations such as Esri use a slightly different approach to classifying reference
systems and use the term “coordinate system” to describe a CRS.
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Types of
Coordinate Systems

Linear
(Section 8.2.1)

Angular
(Section 8.2.2)

Vertical
(Section 8.2.3)

Combined
(Section 8.2.4)

Figure 8.3: Types of coordinate systems

8.2 Coordinate systems

Coordinate systems — not to be confused with coordinate reference systems — define

conventions for describing the measurement of points in space and can include elements

such as the number of spatial dimensions, names given to each of those dimensions, units

of measurement, and the directions and sequence of the coordinate axes (Open Geospatial

Consortium 2010; Maling 1992; International Organization for Standardization 2002;

Van Sickle 2010). All coordinate systems used in georeferencing fall under one of four

categories: linear systems, angular systems, vertical systems, and combined systems.

Linear systems measure distances along straight or curved lines, angular systems measure

angles, vertical systems are unique to georeferencing and measure distances from some

arbitrary surface such as mean sea level, and combined systems combine measurement

conventions from the previous three systems.

8.2.1 Linear systems

Linear systems describe the locations of points along straight or curvilinear lines

using linear units of measurement such as meters, feet, kilometers, and miles. A linear

coordinate system defines a location along a one-dimensional line using a single-valued
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coordinate (Open Geospatial Consortium 2010) — examples include the measurement

of distances along highways or pipelines. Cartesian and affine coordinate systems define

locations using measurements along two or three straight lines — axes — intersecting at

an origin. Cartesian coordinate systems have all axes intersecting at right angles while

affine coordinate systems do not. Multi-dimensional curvilinear coordinate systems also

exist and are used in map projections (Bugayevskiy and Snyder 1995) but are beyond

the scope of this paper; however, lines of latitude and longitude provide a convenient

alternative which will be covered next.

8.2.2 Angular systems

Angular systems use angular units of measurement to specify locations. In georef-

erencing, these angular measurements originate at or near Earth’s center and describe

locations on or near Earth’s surface using coordinate pairs matched to an ellipsoid — a

geometric reference surface representing the surface of Earth. Three major considerations

in using angular systems include the choice of ellipsoid parameters, the choice of the unit

of measurement, and the method for determining central angles.

Ellipsoidal model of Earth

While Earth may appear as a perfect sphere when viewed from space, its actual shape

has a slight elongation at the equator and slight flattening at the poles. The ellipsoid

— a three-dimensional equivalent to the two-dimensional ellipse or oval — provides the

simplest geometric and mathematical approximation of this shape. Its simplicity has

made it a widely adopted model in georeferencing applications such as satellite positioning

and navigation.
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An ellipsoid consists of three ellipses that are mathematically defined by three axis

values aligned with the three Cartesian coordinate planes. Ellipsoids used in georefer-

encing can have either two axis values (biaxial ellipsoid) or three axis values (triaxial

ellipsoid). A triaxial ellipsoid provides the most accurate ellipsoidal representation of

Earth since the planet actually has a slight flattening along the equatorial plane in ad-

dition to a flattening at the poles. However, triaxial ellipsoids are more mathematically

complex making them more difficult to use and compute — an important consideration

for time sensitive applications. As a result, most georeferencing applications use biaxial

ellipsoids such as the WGS 84 ellipsoid used in the Global Positioning System (GPS).

Biaxial ellipsoids have just two axis values — a single value for the x- and y-axes

on the equatorial plane and another smaller value for the z-axis running along the polar

axis. Geometrically, a biaxial ellipsoid only models flattening at the poles while forming

a perfect circle at the equator. Other names used in georeferencing for a biaxial ellip-

soid include ellipsoid of revolution, spheroid, oblate ellipsoid of revolution, and oblate

spheroid. The term spheroid implies an ellipsoid of revolution and the term oblate implies

flattening along the axis of rotation.

Units of angular measurement

In georeferencing, angular measurements are commonly expressed in degrees, al-

though grads and radians are also used (Zimmerman 1995; Van Sickle 2010). The con-

ventional unit of degree (°or deg) is based on the sexagesimal system which divides a

full circle into increments of 60: a full circle has 360 degrees (360°), one degree has 60

minutes (60′), and one minute has 60 seconds (60′′), with fractions of a second expressed

in decimal form. This system is often referred to as the degrees, minutes, seconds (DMS)

system although other variations exist such as decimal degrees (DD) and degrees decimal

minutes (DDM).
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Figure 8.4: Various forms of the ellipsoid used to model Earth

The unit of grad (superscript g or grad) is based on the metric centesimal system

which divides a full circle into increments of 100: a full circle has 400 grads (400g), one

grad has 100 centesimal minutes (100c), and one centesimal minute has 100 centesimal

records (100cc), with decimal fractions afterwards (Zimmerman 1995; Hooijberg 1997;

Van Sickle 2010). Note that a right angle (90°) has 100 centesimal minutes. Unlike

the sexagesimal system, grads are usually expressed in metric decimal notation which

facilitates addition and subtraction; for example, 80g32c45.2cc can be directly converted

to 80.32452g.
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Angular coordinates can also use the radian (rad) as a unit of measure. A radian

is defined as the angle formed by dividing the radius of a circle by its circumference, in

which a full circle has 2 rad. This property leads to the convenient conversion factors of

1° =
π

180
rad ≈ 0.0175 rad (8.1)

1 rad =
180

π
deg ≈ 57°17′44.8′′ (8.2)

Central angles for defining geographic coordinates

Any location on an ellipsoid model of Earth’s surface can be described using a pair

of angular geographic coordinates, but these coordinates can take three different forms —

geodetic, geocentric, or astronomic — depending on the method used to measure their an-

gular values (Van Sickle 2010). Geodetic and geocentric coordinates measure angles from

a point at or near the center of Earth, while astronomic coordinates indirectly derive cen-

tral angles through celestial observation. Variations in ellipsoids, angular measurements,

and datum parameters (covered in Section 8.3) means that geographic coordinates have

non-unique values; for example, two identical sets of geographic coordinates can refer to

different locations if the refer to different ellipsoids.

All geographic coordinates use the conventional form of latitude (θ) and longitude

(λ) values, which measure angles from two arbitrary orthogonal planes that bisect the

ellipsoid. Latitude describes the angle formed at or near the center of the ellipsoid

between the equatorial plane (i.e., x-y axes plane that bisects the ellipsoid) and a curved

line of latitude, which is itself formed by intersecting a parallel plane with the ellipsoid

at the point of interest (see Figure 8.5). Lines of latitude run parallel to the equatorial

plane and to other lines of latitude and are often referred to as parallels.
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(a) Point P on the ellipsoid (b) Equatorial plane defines
0° latitude, runs normal to
the rotational axis, and bi-
sects the ellipsoid

(c) A parallel plane inter-
sects point P and runs par-
allel to equatorial plane

(d) Intersection of the
planes with the ellipsoid
forms two parallel lines of
latitude

(e) Latitude (θ) defined as
the angle from the equato-
rial plane to the parallel line
intersecting P

Figure 8.5: Definition of latitude

Longitude describes the angle formed at or near the center of the ellipsoid between

two planes that run perpendicular to the equatorial plane and pass through the polar

axis (Figure 8.6d); the first plane intersects an arbitrary reference point (Figure 8.6c) and

the second plane intersects the point of interest on the surface of the ellipsoid3 (Figure

8.6b). Lines of longitude form semi-elliptical meridian lines that run from pole-to-pole

along the surface of the ellipsoid. The reference meridian or prime meridian describes

the the single meridian that coincides with the longitudinal reference plane as shown in

Figure 8.6b.

3The intersection of the reference plane and equatorial plane also defines the direction of the x-axis.
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(a) Point P on the ellipsoid. (b) 0° longitude defined by ar-
bitrary placement of a refer-
ence plane originating at the
rotation axis and perpendicu-
lar to equatorial plane; result-
ing line is the prime meridian.

(c) A second plane originating
at the rotation axis and inter-
secting point P forms a second
meridian line.

(d) Longitude (λ) of P defined
as the angle between the prime
meridian and the meridian in-
tersecting P measured along
the equatorial plane.

Figure 8.6: Definition of longitude

Three forms of geographic coordinates

Geographic coordinates can take astronomic, geocentric, or geodetic forms depending

on the method used to measure their angles; however, current usage of the term geographic

coordinates generally implies the prevailing use of geodetic coordinates (Van Sickle 2010).

Astronomic coordinates The astronomic method represents the oldest form of mea-

suring geographic coordinates; it uses Earth-based optical instruments to derive values of

latitude and longitude based on the positions of celestial objects, such as the Sun, stars,

and distant quasars. For instance, astronomic latitude can be determined by measuring
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Geographic Coordinates

Astronomic GeocentricGeodetic

Figure 8.7: Three types of geographic coordinates

the angle between the line-of-sight to Polaris and the local horizontal plane, established

through leveling of the sighting instrument. As a very distant star, Polaris will always

point in the same northern direction regardless of the instrument’s location.

Prior to the age of satellites, measuring longitude was a much more complicated task

due to the arbitrary nature of reference meridians and Earth’s constant rotation. In fact,

the timing of Earth’s rotation served as the basis for most measures of longitude since

ancient times. The earliest surviving records showed that the ancient Greeks used lunar

eclipses to measure the longitude difference between two different locations when coupled

with local observation times (Howse 1980). This would remain the dominant method for

calculating longitude until the advent of the mechanical clock during the Middle Ages.

Invention of the marine chronometer, a high-accuracy clock, in the 1700s would further

revolutionize the astronomical measurement of longitude (Howse 1980; Sobel 2007).

(a) At the North Pole (b) Between North Pole and
equator

(c) At the equator

Figure 8.8: Examples of measurements of astronomic latitude. H represents the hori-
zontal direction, which runs orthogonal to the vertical direction of gravity.
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Since gravity determines the direction of the plumb line, and thus the directions of

vertical and horizontal, astronomic coordinates relate more closely to the geoid than

the ellipsoid. However, these gravity-based measurements had historically been used

to approximate ellipsoid-based coordinates since no method existed for measuring the

ellipsoid prior to the age of satellites.

Geodetic and geocentric coordinates Unlike astronomic coordinates, geodetic and

geocentric coordinates represent true ellipsoid-based angles. For the common oblate

spheroid, the commonly used geodetic latitude represents the angle formed between the

equatorial plane and a line running normal to a tangent plane on the ellipsoid’s surface, as

designated by θ in Figure 8.9a. Note that the normal line may not intersect the geocenter,

i.e., the center of the ellipsoid, when measuring this angle. This is different from the less-

used geocentric latitude (φ in Figure 8.9a), which is measured from the geocenter. In

the case of a degenerate ellipsoid or sphere (Iliffe and Lott 2008), the spherical shape

guarantees that the normal line will always intersect the geocenter resulting in equivalent

geocentric and geodetic angles as shown in Figure 8.9b4.

Since the oblate spheroid and sphere have perfectly circular shapes along the equa-

torial plane, the normal line will always run along the same longitudinal plane (Figure

8.6c) resulting in equivalent geodetic and geocentric longitude values5.

4Note that geocentric coordinates should not be confused with spherical coordinates used in mathe-
matics, which have three values: polar angle, azimuthal angle, and distance from the center.

5In a triaxial ellipsoid, the combination of polar and equatorial flattening results in a complex situation
where the normal vector may no longer coincide with the longitudinal plane.
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(a) Ellipsoid (b) Sphere, i.e., degenerate ellipsoid

Figure 8.9: Geodetic and geocentric latitudes

8.2.3 Vertical systems

Vertical measurements have their own separate coordinate system in the context of

georeferencing, indicating the importance of height and depth for describing locations on

Earth (Open Geospatial Consortium 2010). Height refers to the distance above or below

Earth’s surface pointing in the direction of gravity, which defines the local vertical direc-

tion, with negative values indicating distances below the surface (i.e., depth). Vertical

coordinate systems commonly refer to a geoid datum (Section 8.3.2) as the baseline but

can also refer to other surfaces determined through tides, barometric pressure, or other

methods (Open Geospatial Consortium 2010). However, vertical coordinate systems do

not apply to ellipsoids since these theoretical surfaces do not model gravity.

8.2.4 Combined systems

Linear, angular, and vertical coordinate systems can be combined to form combined

coordinate systems. For instance, elements of linear and angular systems can be combined

to create polar coordinate systems, cylindrical coordinate systems, and spherical coordi-
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nate systems (Open Geospatial Consortium 2010). A commonly used combined system

involves combining a 2D Cartesian coordinate system for planimetric measurements with

a vertical coordinate system for height in the third dimension.

8.3 Datums

Coordinate systems simply define measurement conventions that have no basis in

reality. Operationalizing a coordinate system requires setting up a relationship with the

physical world by anchoring it to real locations with the use of a datum (plural form

datums), which combine to form a unique coordinate reference system (Section 8.4). The

term datum literally means “that which is given”; when used in a georeferencing context,

a datum sets the initial conditions for taking measurements such as the origin, orientation,

and scale of the coordinate system relative to Earth (Junkins and Garrard 1998; Drewes

et al. 2007; Iliffe and Lott 2008; Drewes 2009; Becker 2011; Torge and Müller 2012).

Open Geospatial Consortium (2010) lists four categories of datums: geodetic, vertical,

engineering, and image. Of these, this chapter will only examine the three most commonly

used types: geodetic datums, the geoid component of vertical datums, and engineering

datums.

8.3.1 Geodetic datums

Section 8.2.2 previously covered the ellipsoid in the context of angular measurements.

As a simplified model of Earth’s surface, the ellipsoid also serves as a datum for two-

and three-dimensional coordinate reference systems of Earth’s surface. At a minimum,

a geodetic datum must include the ellipsoid parameters and a prime meridian defini-

tion (Open Geospatial Consortium 2010), usually Greenwich based on the International

Meridian Conference of 1884 (Howse 1980). For 2D horizontal systems that use angles,
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the prime meridian defines 0° longitude. For 3D Cartesian coordinate systems, the inter-

section of the prime meridian and equatorial plane defines the direction of the x-axis. All

major geodetic datums also have definitions for anchor points and orientation relative

to Earth, such as Earth’s geocenter based on satellite measurements or locations on the

surface (Open Geospatial Consortium 2010; Van Sickle 2010).

8.3.2 Geoids

Vertical coordinate systems (Section 8.2.3) require a datum surface from which to

measure vertical heights and depth. Of the four types listed by Open Geospatial Consor-

tium (2010), the geoid stands out as the most commonly used for vertical measurements.

To understand the geoid, it helps to first understand the phenomena that a geoid at-

tempts to model: water. Water — specifically, sea level — historically served as the

most accessible and reliable method for establishing a vertical baseline from which to

make elevation and depth measurements due to its natural leveling property, making sea

level measurements the default baseline for many national surveys until recent times.

The advent of highly sensitive gravity measurement instruments — first, the gravime-

ter followed by the gravity gradiometer — revolutionized the vertical datum by augment-

ing highly varying observations of sea level with more reliable measurements of gravity,

specifically the potential energy of gravity or geopotential at a predetermined sea level

height. The ability to measure gravity anywhere in the world thus made it possible to

directly determine sea level (via the geopotential) within continental areas, whereas in

the past sea level readings had to be extended through manual surveys from coastal ar-

eas. A geoid, therefore, represents a mathematical model of this geopotential surface of

Earth and can encompass varying geographic extents from local to global. Figure 8.10g

provides an exaggerated version of the EGM2008 geoid for illustrative purposes.
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Compared to the perfectly smooth ellipsoid, the undulating geoid represents the next

best representation of the true shape of Earth, where the ‘true” shape of Earth would be

its topography. These undulations represent actual heights measured from an ellipsoid,

so every geoid must have a single parent ellipsoid. As for the mathematics, a geoid uses

high degrees and orders of spherical harmonics to provide a best fit model for empirical

geopotential data as illustrated in Figure 8.10.

(a) n = 0,m = 0 (b) n = 3,m = 0 (c) n = 3,m = 1 (d) n = 3,m = 2

(e) n = 3,m = 3 (f) n = 5,m = 2 (g) EGM2008 Geoid
n = 2, 159,m = 2, 159

Figure 8.10: Mathematical development of a geoid model using spherical harmonics
with degree n and order m

Use of a geoid as the vertical datum thus presents three different heights: the geoid

height, the ellipsoid height, and the orthometric height or elevation as illustrated in Fig-

ure 8.11. For a point A, a satellite positioning receiver will typically provide an ellipsoid

height (h) converted from Earth centered Earth fixed (ECEF) Cartesian coordinates6. El-

lipsoid heights have almost no practical value since the ellipsoid is imaginary, measurable

6http://www.ngs.noaa.gov/PUBS LIB/gislis96.html
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only from space. The geoid adjusts the ellipsoid height to a more tangible elevation value

(H) using the calculated geoid height (N) for point A’s location on Earth. Therefore,

H = h−N .

A = Measured point
H = Elevation
h = Ellipsoid height
N = Geoid height

Figure 8.11: Relationship between different height measurements

It should be noted that a geoid represents a static mathematical model, not the actual

geopotential surface itself, which is very complex and dynamic. For instance, studies by

Rodell et al. (2006), Yeh et al. (2006), and Strassberg, Scanlon, and Rodell (2007) have

shown that groundwater levels can cause gravity levels — and the geopotential surface

— to change over short time periods.

8.3.3 Engineering datums

An engineering datum provides the initial conditions for an engineering coordinate

reference system, also referred to as a local CRS, which may or may not have a direct

relationship with locations on Earth (Open Geospatial Consortium 2010). Examples

include CRSs for buildings and moving platforms such as ships and aircraft. Coordinate

transformation or conversion operations can be used to relate an engineering CRSs to a

geodetic or projected CRS, as described in the next section. The indoor mapping work

explored in this dissertation uses engineering datums.
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Coordinate Reference Systems

Geodetic Vertical Engineering Image

Derived Projected Compound

Figure 8.12: Three types of geographic coordinates

8.4 Coordinate reference systems

The pairing of a coordinate system with a datum results in a coordinate reference

system (CRS), which often assumes the classification of its parent datum (Open Geospa-

tial Consortium 2010) and provides the detailed specifications for taking measurements.

For instance, a CRS based on a geodetic datum would be considered a geodetic CRS.

In addition to the CRSs corresponding to the four main types of CRSs (i.e., geodetic,

vertical, engineering, and image), the OGC specification has also added three other com-

monly used CRSs: derived, projected, and compound. The following sections provide

further discussions on geodetic, engineering, derived, projected, and combined CRSs.

8.4.1 Geodetic CRSs

A geodetic CRS provides a two- or three-dimensional locational framework for Earth

based on an ellipsoid included within a datum. The 2D form provides horizontal locations

based on angular measurements of latitude and longitude, while the 3D form adds the

height or depth relative to the ellipsoid. The two methods for anchoring a datum (Section

8.3.1) lead to an important distinction between two types of datums and, consequently,

two types of geodetic CRSs: regional and global (Van Sickle 2010).
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Regional

Prior to the age of satellites and gravimetry, the best way to determine ellipsoid

parameters involved using extensive field measurements manually surveyed at a handful

of locations on Earth. This had the effect of optimizing the resulting ellipsoids for specific

geographic regions, but they were often adopted for other areas out of convenience.

Establishing the datum involved anchoring the ellipsoid to a fixed arbitrary location

on Earth’s surface called the principal point and orienting it to another fixed arbitrary

location using astronomic surveys. The principal point represented the initial point from

which an entire network of survey control points could be built using the coordinate

reference system. For instance, English geodesist Alexander R. Clarke developed the

Clarke 1866 ellipsoid based on land surveys in England, France, South Africa, Peru,

Lapland (northern Finland), Russia, and India, leaving out vast parts of Earth including

North America and most of Asia. However, the U.S. government used it as the basis for

the North American Datum of 1927 (NAD 27) CRS by anchoring it at a surveying point

at Meades Ranch, Kansas, and orienting it towards another point in Waldo, Kansas.

Since a regional CRS optimizes a datum for a certain geographic area, its use in other

areas may result in significant errors; for example, the NAD 27 CRS should not be used

for mapping Afghanistan.

Global

The advent of satellites and gravimetry made it possible to define geodetic datums

at a global level through direct measurements of Earth’s size, shape, gravity field, and

rotation. The anchor for a global datum exists at Earth’s geocenter with its orientation

determined by an arbitrary axis of rotation and precise measurements for the prime
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meridian. As a result, global geodetic datums — therefore, global geodetic CRSs — are

optimized for global use.

8.4.2 Engineering CRSs

An engineering CRS provides a simplified approach to measuring locations within a

small or local geographic region, where either the effects of Earth’s curvature are consid-

ered negligible (Chapter 11) or have already been accounted for (e.g., projected CRSs).

Open Geospatial Consortium (2010) divides engineering CRSs into Earth-fixed and mov-

ing platforms categories. An Earth-fixed engineering CRS uses a flat-Earth, projected

CRS (Section 8.4.4) to define its datum and provides a flexible way to relate local mea-

surements to Earth. An engineering CRS for a moving platform exists independent of

Earth but can be related to Earth-based CRSs through time-based transformations; for

this reason, OGC characterizes this as an intermediate CRS. This dissertation uses engi-

neering CRSs to define indoor measurements as discussed in greater detail in Chapters

9 and 10.

8.4.3 Derived CRSs

As numerical measurements, coordinates can be manipulated to change from one CRS

to another. Open Geospatial Consortium (2010) calls this process a coordinate operation,

which has two variations: transformation and conversion. Coordinate transformation7

involves the use of empirically derived data and a change in datum; the stochastic nature

of the empirical data means that different versions of the same transformation can exist.

7This should not be confused with geometric transformation, which involves the actual mathematical
operations.
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In contrast, conversion involves either no parameters or explicitly given parameters that

result in consistent changes. Derived CRSs involve the latter operation.

Derived CRSs are new CRSs created from the conversion of a parent or base CRS. A

simple example is the use of unit conversions. For example, the North American Datum

of 1983 (NAD 83) CRS uses units of meter. However, the imperial measurement system

still prevails in many parts of the country, requiring NAD 83 (meters) to be converted to

units of feet for many applications resulting in NAD 83 (feet).

8.4.4 Projected CRSs

Coordinate conversion can also convert geodetic CRSs from angular to linear units,

such as latitude/longitude to units of meters in 2D Cartesian coordinates. Frequent use

of this type of conversion led Open Geospatial Consortium (2010) to give this type of

derived CRS its own classification: projected CRSs. Map projections is a widely covered

topic and will not be discussed in this dissertation; further information can be found in

numerous publications including Snyder (1987), Maling (1992), Slocum et al. (2010), and

Clarke (2014).

Two widely used projected CRSs are the Universal Transverse Mercator (UTM) CRS

and the family of State Plane Coordinate System (SPCS) CRSs used in the United States.

As a projected CRS, UTM applies the Transverse Mercator map projection to 60 equal

meridinal subdivisions of one of at least three base geodetic CRSs: WGS 84 (World

Geodetic System of 1984), NAD 83, and NAD 27. Since each base geodetic CRS has a

different datum, the different versions of UTM will show different coordinate values for

the same location on Earth. As a result, UTM (WGS 84), UTM (NAD 83), and UTM

(NAD 27) represent three different CRSs, though in common usage the designation of
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the base CRS is often omitted, which can unintentionally result in conflation of the three

different systems.

Another widely used projected CRS is the United States State Plane Coordinate

System (SPCS), which actually represents a family of projected CRSs rather than a single

CRS. The U.S. Coast and Geodetic Survey — now called the U.S. National Geodetic

Survey (NGS) — established SPCS in the 1930s to provide surveyors and engineers

with easy-to-use plane maps that would eliminate the need for complicated angular to

linear conversions from the “lat/lon” of geodetic CRSs. Each state manages its own

implementation of SPCS using a pre-defined national geodetic CRS and an error limit

1
10000

. California’s implementation of SPCS — called the California Coordinate System

(CCS) — divides the state into six zones, each with its own projected CRS. All six

zones use the Lambert Conformal Conic projection, with each zone having different

specifications for the central meridian and standard parallels thus resulting in six different

CRSs for one base geodetic CRS. CCS can use NAD 27 or NAD 83 as the base geodetic

CRS, resulting in CCS27 and CCS83 with 138 different projected CRSs for the state.

8.4.5 Compound CRSs

Combining different CRSs provides another way of forming a new CRS, most often

used to form a 3D CRS from traditionally separated 2D horizontal and 1D vertical CRSs.

However, compound CRSs can not be nested, i.e., used to form other compound CRSs.

Compound CRSs that combine projected horizontal CRSs with vertical CRSs play an

important role in indoor mapping since they allow the direct conversion of 3D indoor

coordinates to 3D outdoor coordinates using the Cartesian coordinate system. Chapter

10 provides an example of this type of conversion.

8CCS27 had a separate zone for Los Angeles that later merged with Zone 5 in CCS83.

172



Spatial referencing review Chapter 8

8.5 Coordinate reference frames

While the CRS provides theoretical specifications for measurements, the coordinate

reference frame (CRF) realizes the CRS by associating key points in the CRS to actual

physical markers in the real world. These markers can range from carefully placed survey

markers to elaborate calibration stations that measure their positions with space-based

observations. In the past, the system and the frame existed separately whereby the

reference system defined the theoretical model while the reference frame represented its

physical manifestation. Modern dynamic coordinate reference systems — such as the

International Terrestrial Reference System (ITRS) — blur that distinction with their use

of continuously monitored data from reference frame locations — such as the International

Terrestrial Reference Frame (ITRF) — where the reference frame becomes an inherent

part of the reference system (National Research Council 2010).

8.6 Alternative terminologies

This chapter reviewed one framework for spatial referencing as outlined by two in-

ternational bodies — ISO and OGC. The widely referenced EPSG database of CRSs

produced by the International Association of Oil and Gas Producers (IOGP) (2017)

largely follows the conventions outlined by these two bodies. However, other organiza-

tions define the ISO/OGC terminology differently, which can lead to a significant amount

of confusion.

Esri — maker of ArcGIS, the most widely-used family of geographic information

systems (GIS) software — approaches spatial referencing in a different manner. It retains

the difference between referencing by identifiers and referencing by coordinates, calling

the former geocoding and the latter spatial referencing (as opposed to the ISO/OGC
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definition). Geocoding generally follows the ISO/OGC concept but its implementation

of spatial referencing (Esri definition) has a more restrictive definition as shown in Figure

8.13. First, Esri refers to the ISO/OGC coordinate reference system as a coordinate

system and it omits classifying (ISO/OGC) coordinate system specifications, only listing

the unit of measurement as a required property of an (Esri) coordinate system. Second,

it subsumes ellipsoid heights under the (Esri) vertical coordinate system and treats the

prime meridian as a property separate from the GCS’s datum. Finally, Esri’s GCS

represents a subset of an ISO/OGC geodetic CRS; namely, it only includes the horizontal

component (moving ellipsoid height to the vertical coordinate system) and it only covers

geographic coordinates (i.e., latitude and longitude) but not Cartesian coordinates. In

summary, the main differences between Esri and ISO/OGC include use of the term

“coordinate system” and “spatial referencing” to represent the ISO/OGC concept of a

CRS and a slightly different definition of the datum. However, Esri’s approach to defining

the datum is not unusual.

8.7 Conclusion

This chapter reviewed the multitude of ways for referencing locations in space ei-

ther through natural language identifiers or measured coordinates. On the one hand,

well-established conventions for coordinate referencing makes it possible to unambigu-

ously describe nearly any location on Earth. Yet on the other hand, this flexibility has

resulted in a dizzying array of identifiers and coordinate reference systems, with the

widely-referenced EPSG database identifying over 5,700 CRSs in 2017. Additionally, the

ISO/OGC standards are not universally followed, which can lead to identical terminol-

ogy having subtly different meanings such as with Esri’s georeferencing framework. An

understanding of the international standards coupled with awareness of how different
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Esri Geographic Referencing

Coordinate Systems /
Spatial Referencing

Geocoding

GCSPCS Vertical

Angular
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Datum
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Linear
unit
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Figure 8.13: Esri’s approach to geographic referencing
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implementations can deviate from these standards can help prevent misunderstandings

and ensure the effective communication of spatial locations.
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Chapter 9

Grid-Based Indoor Coordinate

Referencing

An abbreviated version of this chapter will be published in the Location Based Services

(LBS) 2018 conference proceedings (Chen 2018).

9.1 Introduction

Cartographer E. H. Thompson (1973) once remarked, “Grids are simply sets of

squares and. . . a square is a square is a square.” Yet the simple grid has made map

locations easier to read, use, and communicate for a wide range of applications that in-

clude shopping malls, mass transit systems, air spaces, military operations, and amuse-

ment parks. The growing adoption of 3D indoor maps and indoor navigation technology

presents an opportunity for extending the benefits of map grids indoors, beyond the sim-

ple 2D grids commonly found in shopping malls (Zlatanova et al. 2013). While some

may argue that computerized mapping has made map grids and the ideas they repre-

sent obsolete, over-reliance on automated methods may obscure the benefits of grids and
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under-utilize the inherent spatial reasoning abilities of map users (National Research

Council 2006). Map grids of indoor spaces do not compete with computerized maps;

instead, they can serve as a complementary technique for enhancing their readability as

well as providing an extra layer of robustness. This chapter presents a general framework

for developing a coordinates-based grid reference system for indoor spaces that can also

serve as a starting point for other types of indoor gridding.

9.2 Background

9.2.1 Defining the Map Grid

In its most basic form, a map grid represents a visual aid consisting of a set of

orthogonal lines overlaid on a map–usually a projected map–to partition it at regular

intervals. In a cartographic context, the term map grid implies use of straight orthogonal

lines in Euclidean space delineated using linear measurements (e.g., meters, feet, etc.);

in contrast, the term graticule represents a special case of a grid. . . one formed by three-

dimensional arcs circumscribing a round Earth with meridian lines converging at the

poles and parallel lines running locally-orthogonal to meridians and parallel with the

equator, both partitioned at regular intervals of angular units (e.g., degrees of latitude

and longitude) (Snyder 1987). This chapter addresses the former, the conventional map

grid, applied to indoor spaces.

Grid references generally follow the two broad spatial referencing conventions of ref-

erencing by identifiers (i.e., geocoding) or referencing by coordinates and can even use a

combination of both; its design limited only by the imagination and sound communication

practice (International Organization for Standardization 2002, 2003).
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(a) Grid (b) Graticule

Figure 9.1: Grid and graticule

9.2.2 Historical Perspective

Grids have existed since ancient times as an aid to map reading. The ancient Greeks

were known to have used gridded maps, with Dicaearchus credited with developing the

first at around the third century B.C., followed by Eratosthenes and Hipparchus five

decades later, and Ptolemy in the second century A.D. (Royster 2002). However, these

grids represented primitive graticules since they were based on astronomical observa-

tions. Cartographer Norman J. W. Thrower speculated that Chinese cartographers may

have also employed grids no later than the third century B.C. through interpretation of

historical written records, but more concrete evidence points to the time of Pei Hsiu and

Zhang Heng, Chinese cartographers who formally introduced a system of grids at around

the time of Ptolemy in second century A.D. (Cheng-siang 1978; Yee 1994b; Thrower

2008). As with the Greek grids, these Chinese grid systems also appeared to represent

early graticules, some of which may have combined astronomical observations with linear

terrestrial measurements (Yee 1994a).
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The earliest known gridded map from China comes from the Yuji Tu (map of the

tracks of Yu), a stone-carved map from c.1136 A.D., which had a square grid system

which ”seems to have been superimposed arbitrarily on a given area of interest” (Yee

1994b). However, the introduction of gridded systems for the planning of ancient cities1

points to the use of graticules and even actual map grids long before the earliest discovered

map grid artifact (McIntosh 2008; Fairman 1949).

Figure 9.2: Negative image of an oil rubbing of the Yuji Tu2

from China, c.1136 A.D.

Map grids saw increasing use beginning in 18th century Europe with notable ap-

plications in military operations, and they featured prominently during World Wars I

and II (Liebenberg, Demhardt, and Vervust 2016). Two grid systems that developed in

1For example, in the Indus Valley (26th century B.C.), Egypt (25th century B.C.), Babylon (17th
century B.C.), China (15th century B.C.), Greece (5th century B.C.), and Rome (4th century B.C.)

2Library of Congress (1136)
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the United States at the time of the two world wars include the Universal Transverse

Mercator (UTM) system and the Military Grid Reference System (MGRS). These two

systems, with formalized grid specifications, are still in use today and serve as models

for the indoor grid referencing framework presented in this chapter.

9.2.3 Properties of UTM and MGRS

Three notable properties of UTM and MGRS grids–as well as most cartographic

grids–include the use of eastings and northings to describe coordinates, the use of a false

origin to ensure that all grid coordinates have positive values, and the designation of a

central meridian for each grid where it attaches to the projected map at the locations

of least distortion (Snyder 1987; Buckner 1995; U.S. Geological Survey 2001). Eastings

and northings follow the Cartesian coordinate convention of measuring from left-to-right

along the x -axis and bottom-to-top along the y-axis, respectively. The false origin is

established by translating the intersection of the coordinate axis from the true origin

(Cartesian coordinates (0, 0)) to a point located on or outside of the grid boundary in

the west and south directions; this results in all grid coordinates having positive values

(Maling 1992).

The UTM system divides the surface of Earth into 60 projected map zones oriented

from south-to-north–each with a width of 6° longitude, bounded by latitudes 80°S and

84°N, and numbered from 1 to 60, moving eastward from 180°W. Over each projected zone

is overlaid an orthogonal grid centered on its central meridian (at 3° from the boundary)

with a grid datum shift of 500,000 m to the west measured from the central meridian,

resulting in a false easting coordinate of 500,000 m at the central meridian. Locations in

the northern hemisphere have a false northing of 0 m coinciding with the equator, while

southern hemisphere locations have a false northing value of 10,000,000 m at the equator.
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In 2014, the U.S. National Geospatial-Intelligence Agency (NGA) formally incorporated

MGRS zone bands (described in the next paragraph) into the UTM grid system (National

Geospatial-Intelligence Agency 2014b).

The MGRS system adapts the UTM system for military use by further dividing each

UTM zone into 20 bands labeled C through X (from south to north) at 8° intervals of

latitude, with the last band (X) having a 12° interval. This subdivision results in grid

zones, each with a unique grid zone designator (GZD) consisting of the zone number and

band, e.g., 34S (Ackeret et al. 1990). (Bands A/B and Y/Z are reserved for the southern

and northern polar regions, respectively, which use a separate polar map projection.)

Grid zones represent part of the projected map–i.e., they are not map grids–over which

a series of 100,000 meter grid squares are overlaid, each with a unique 100,000 m square

identification, and no false origin. Grid squares are sequentially stacked longitudinally

from the equator and placed side-by-side starting from the central meridian–with one

square on each side of the meridian–so that they effectively subdivide UTM grids into

grid squares.

9.2.4 Expressing UTM and MGRS Grid Coordinates

Grids for UTM and MGRS use both identifiers and measured coordinates for refer-

encing. UTM uses the following form for expressing coordinates

<GZD> <easting>mE <northing>mN

while MGRS uses this form

<GZD><square identification><MGRS easting><MGRS northing>
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where an MGRS coordinate tuple can include as little as the GZD or as much as 5 digits

each for the easting and northing to accommodate different precision requirements. For

instance, UTM 11S 238488mE 3811890mN is equivalent to MGRS 11SKU3848811890 at

1-meter precision. The MGRS coordinates can also be stated as 11SKU (100,000 meter

precision), 11SKU31 taken from 11SKU3848811890 (10,000 meter precision), etc.

Prior to standardization of UTM and MGRS expressions by NGA in 2014, UTM

coordinates could also be expressed using hemisphere designations instead of bands.

This often led to confusion between N (northern) and S (southern) hemispheres with

MGRS bands N and S. For example, the legacy expression of 34S 650000mE 6500000mN

refered to a location in the southern hemisphere but the “S” designation could also have

been interpreted as MGRS grid zone S, which exists in the northern hemisphere. While

NGA’s 2014 standardization addressed this problem, legacy UTM coordinates still exist

and some coordinate conversion software continue to use hemisphere designations; these

should be used with caution.

9.2.5 Principal Digits

Principal digits can improve the readability of large UTM coordinate values by graph-

ically emphasizing the digit or digits associated with the published grid spacing interval

(Buckner 1995; National Geospatial-Intelligence Agency 2014b). On printed maps, full

easting and northing values of grid lines are printed at least once per map, with all other

grid lines omitting trailing zeros. For instance, a grid with a 1,000 or 10,000 meter inter-

val would have principal digits at the fourth and fifth digits, e.g., 350000mE for an easting

of 350,000 mE. Subsequent grid labels would be expressed as 351mE for 351,000 mE at

1,000 m intervals or 36mE for 360,000mE at 10,000 m intervals.
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9.2.6 Reference System versus Reference Frame

Reference systems describe formal conventions used for describing locations in space

and largely consist of referencing by identifiers and referencing by coordinates, as codified

by the International Organization for Standardization (ISO) and the Open Geospatial

Consortium (OGC) (International Organization for Standardization 2002, 2003; Open

Geospatial Consortium 2010).

Referencing by identifier, also called geocoding, uses labels or codes for describing

location–e.g., street addresses, place names, or building number–which can act as surro-

gates for coordinates. In contrast, referencing by coordinates uses systems of measure-

ments to describe location; these systems, called coordinate reference systems (CRSs),

consist of a starting point parameter (datum) and measurement conventions (coordinate

system). ISO and OGC identify three types of CRSs based on the datum type: geodetic,

vertical, and engineering. Maps of indoor spaces nearly always use engineering CRSs with

the Cartesian coordinate system, but may require use of all three types for integrating

with outdoor coordinates.

Since a coordinate reference system exists only in theory, its realization in the physical

world takes the form of a reference frame. A reference frame consists of a network of

carefully placed fiducial or survey markers that conform to CRS specifications, which

then serve as the basis for other physical measurements (Junkins and Garrard 1998).

9.3 Indoor Grid Referencing

Indoor spaces and their buildings provide ideal environments for the application of

grids due to their native use of the Cartesian coordinate system. Deliberate use of a

gridding convention for buildings and indoor spaces has several advantages:
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• improved consistency & predictability in the use of indoor locational data;

• improved usability due to predictable measurement patterns among different build-

ings;

• robustness of measurements through the use of all-positive coordinate values and

the ability to accommodate future expansion of the mapped area;

• ability to directly use machine-readable coordinate values in easy-to-read form for

published maps and navigation aids (e.g., landmarks);

• improved robustness of mapping systems by providing a human-readable backup

device during system failures, e.g., loss of indoor localization signal or catastrophic

failure of the electronic map; and

• provides a common template for building other reference systems.

One advantage of grid referencing over using arbitrary unshifted coordinate values is

the ability to use the same numerical values for machine processing and human use. While

machines can accurately read and process numbers of any type, humans are susceptible

to making errors in reading numbers and performing calculations. For instance, unshifted

coordinates based on the true origin (0, 0, 0) can results in negative values that human

users can inadvertently misinterpret as positive. Land surveyors have long recognized

this shortcoming, which explains why surveying maps–such as those based on the U.S.

State Plane Coordinate Systems–use all-positive false coordinates.

Rather than attempting to change human behavior, changing the design of the co-

ordinate environment can lead to fewer errors and more accurate results. This is an

important feature of robustness–a design philosophy that seeks to minimize the impact

of environmental variation without eliminating the variations themselves (Taguchi and

Clausing 1990). Since machines can read and process numbers of any type, why not just

use the same format that humans use?
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9.3.1 Defining the Indoor Coordinate Reference System

The indoor grid uses a coordinate reference system (CRS) that includes a base CRS

and a coordinate conversion to implement the false origin.

Base CRS Conversion Indoor CRS

Datum +

Coordinate System

Translate Datum to

False Origin

Geoname Identifier

Figure 9.3: Process for establishing an indoor grid coordinate reference system

Datum

The indoor grid natively uses an engineering datum with a building-level scope and

two anchor points. The scope of an indoor space should be confined to the boundaries

of its surrounding structure in order to provide a predictable partitioning of space from

one structure to the next and to facilitate transmission of CRS data for automated

positioning applications. The datum anchor, though optional in the ISO and OGC

standards, is required for indoor grid referencing and consists of two points, assuming

that a building model exists: the principal point (b1) and the orientation point (b2). A

line from b1 to b2 establishes the direction of local north from which the local east and

up directions can be derived using the building model. Assuming that the indoor space

and the building are perfectly level (i.e., the vertical direction runs orthogonal to ground

surfaces), these points can be located anywhere in a building and do not have to be on

the same horizontal plane since that information can be derived from the building model;
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however, they should coincide with salient physical building features, e.g., easy-to-access

fiducial markers, physical survey points, or corner points.

Figure 9.4: Example of points b1 and b2

Coordinate System

The coordinate system for indoor grids consists of three orthogonal Cartesian coor-

dinate axes corresponding to the three dimensions of indoor space. Here, the axes i, j,

and k correspond to the local east, local north, and up directions, respectively, using any

standard unit of measure for all three axes. The recommended unit of measure is the

metric millimeter due to its simple divisibility by powers of ten.

Coordinate Conversion

Matching the datum with the coordinate system forms the grid’s base CRS with an

origin at (0, 0, 0) corresponding to the principal anchor point b1. Translating b1 to a false

origin ensures that all coordinates have positive values. This is done through coordinate

conversion with a datum shift in the local west, local south, and down directions. The

west and south datum shift should have identical values for consistency, while the shift

downward can have a different value.
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While the grid’s datum can be shifted by any set of values to produce the false origin,

using increments of 100,000 mm can help with readability of displayed values. A datum

shift of 500,000 mm to the west and south should suffice for most indoor spaces that have

a maximum horizontal dimension of between 500 m to 1 km, depending on the location

of b1.

(a) Horizontal grid (b) Vertical grid

Figure 9.5: Indoor grid

Global Context

An indoor grid is first and foremost associated with a building structure instead

of a single geodetic point, which has ramifications for indoor-outdoor continuity, e.g.,

navigation and location-based services. For instance, a geodetic reference point provides

insufficient information for identifying the boundaries of an underground corridor or

shopping mall with a span of one kilometer–information that can trigger the switching

of localization technologies as well as quickly establishing a position within the indoor

grid.

One solution involves using standardized geographic names, or geonames, to identify

and associate a building with an indoor grid. The geoname can thus be a part of the

indoor grid’s specification, which itself can be related to a building’s geoname. This

allows a navigation system to compare its current location relative to a building’s outer
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boundary (accessed through an online database of building models tied to geonames) and

to switch to indoor navigation when indoors, i.e., indoor localization using the building’s

indoor grid and indoor map.

Several nations already have national-level databases of geographic names, or gazetteers,

and the United Nations Group of Experts on Geographical Names (UNGEGN) continues

to work with U.N. member nations to develop and coordinate the standardization of ge-

ographic names at a worldwide level (United Nations Group of Experts on Geographical

Names 2017; Kerfoot 2009). The United States Board on Geographic Names under the

United States Geological Survey maintains geographic names for the United States.

Coordinate Reference System

The coordinate reference system for an indoor grid thus consists of the base CRS

translated to the false easting, northing, and elevation (Figure 9.3) and associated with

a building identifier. The operations used for establishing the indoor CRS can also be

used to transform the model from its native model space to grid space as described in

section 9.3.2, a useful process when using the model for computational or cartographic

purposes. Expression of a grid coordinate triple takes the form

<building ID> <local easting>mmi <local northing>mmj <local elevation>mmk

9.3.2 Aligning the Model with the Grid

Alignment of the building model with the grid involves translating and rotating the

model to match the grid’s CRS. This involves translating the model to the origin (0, 0, 0);

rotating it to match the grid’s orientation; and translating it to the false easting, northing,
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and elevation coordinates of the grid. Let b1 and b2 represent the anchor points on the

model.

b1 =


x1

y1

z1

b2 =


x2

y2

z2

 (9.1)

vH12 = bH2 − bH1 =


x2

y2

0

−

x1

y1

0

 (9.2)

v̂H12 =
vH12

‖vH12‖
=


v̂x

v̂y

0

 (9.3)

where H denotes the projection of the orientation vector onto the horizontal plane

and v̂H12 denotes the unit vector of that projection. Transformations at the origin consist

of a translation (T1) and rotation (Rz)
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t1 = −b1 =


−x1

−y1

−z1

 (or) T1 =



1 0 0 −x1

0 1 0 −y1

0 0 1 −z1

0 0 0 1


(9.4)

rz =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 =


v̂y −v̂x 0

v̂x v̂y 0

0 0 1

 (or) Rz =



v̂y −v̂x 0 0

v̂x v̂y 0 0

0 0 1 0

0 0 0 1


(9.5)

M1 = Rz ·T1 (9.6)

where t1 and rz represent the 3x3 transformation matrices, T1 and Rz the homoge-

neous 4x4 matrices, and M1 the master homogeneous matrix that can be applied to the

model to match the model to the grid at the origin (see Figure 10.3).

Figure 9.6: Rotation about vertical axis at origin (see Equation 9.6)
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Once aligned at the origin, the model can be translated to the grid’s location based

on the false origin using T2.

T2 =



1 0 0 〈false easting of b1〉

0 1 0 〈false northing of b1〉

0 0 1 〈false elevation of b1〉

0 0 0 1


(9.7)

Assembling these equations results in a master 4x4 transformation matrix (M2) that

can be applied directly to the model.

M2 = T2 ·Rz ·T1 (9.8)

As with the datum, this simplified approach assumes that the model and the actual

building are perfectly level, i.e., the vertical direction runs orthogonal to the building’s

ground surfaces.

9.3.3 Establishing the Reference Frame

Having a detailed building model can make establishing an indoor reference frame

much easier than establishing one for a geodetic CRS. The principal and orientation

anchor points serve as the most accurate and reliable points for building a network of

other reference points. In adverse situations that prevent reliable access to the anchor

points (such as over multiple floors), intermediate points can be established based on

their locations on the model; future adjustments can be made and propagated to the rest

of the network.

When the indoor grid reference frame serves as the basis for location beacons, indoor

positions will correspond to false origin grid positions that can be further tied to visual
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grid-based landmarks. This unified approach to localization–i.e., using landmarks to aug-

ment electronic maps–can enhance the effectiveness of indoor positioning and navigation

systems.

9.3.4 Indoor Grid Specifications

Using standard formats for presenting indoor grid specifications has major two advan-

tages. First, it institutes a rigorous convention for capturing details critical to building a

CRS and makes it uniform across all indoor spaces. Uniformity supports predictability

and can improve usability and levels of adoption. Second, a standard format allows spec-

ifications to be machine-readable–an important feature for automated indoor mapping,

positioning, and navigation systems.

Three related CRS standards include ISO Standard 19111 Geographic information–

Spatial referencing by coordinates, OGC Abstract Specification 08-015r2 Topic 2: Spatial

referencing by coordinates, and EPSG Publication 373-7-1 Using the EPSG Geodetic

Parameter Dataset, with the latter two standards conforming to the ISO standard. OGC

has relevance since it guides development of geospatial information across a wide cross

section of practices that include ”companies, NGOs, research organizations, agencies and

universities.” OGC oversees standards such as CityGML, IndoorGML, and KML. EPSG

has relevance since it maintains a publicly accessible database containing thousands of

CRSs that are incorporated into geospatial software, such as Esri ArcGIS, for coordinate

transformations. This initial indoor grid proposal was developed with standardization in

mind and largely conforms to the baseline ISO standard. Table 9.1 in the example below

provides the ISO parameters for a sample indoor grid CRS.
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9.4 Applications of the Indoor Grid

9.4.1 Expressing Indoor Grid Coordinates

While the use of all-positive numbers eliminates one potential source of human errors

(i.e., misinterpreting positive and negative values), the high number of digits in indoor

grid coordinates can result in values being misread by factors of 10, i.e., accidentally

dropping trailing zeros, such as misreading 500,000 as 50,000. Applying the concept of

principal digits to indoor grids can mitigate this problem.

For instance, indoor grid lines with false northings of 500000mmj and 50000mmj can

be shown on a map or physical landmark display as 500000 and 50000 using principal digits

in the fourth to sixth digits.

9.4.2 Indoor-Outdoor Transformations

One advantage of using ISO-based standards is the availability of established pro-

cesses for coordinate conversions and transformations. Transforming between indoor

coordinates and geodetic coordinates has many applications, such as rescue operations

for long underground structures and military operations. The ISO-based standards has

provisions for detailing these conversions and transformations; this is a topic of on-going

research related to material presented in this chapter.

9.4.3 Reference System Extensions

A grid-based indoor CRS can serve as a foundation for developing other types of refer-

ence systems. Examples include a geocoded system for supporting topological mapping,

such as for IndoorGML; hybrid systems that use floor identifiers (instead of nominal

elevations) to identify discrete stories while using coordinates within each floor; one-
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Table 9.1: Coordinate Reference System Specifications for the UCSB AD&A Museum

Element Name Entry Comment

Coordinate reference system type code 1 Single coordinate reference system
Coordinate reference system identifier IGRS274278B534 IGRS signifies use of indoor grid CRS

UCSB (U.S. GNIS Feature ID 274278)
UCSB AD&A Museum (Bldg. 534)

Datum identifier Engineering
Datum anchor point Principal and Ori-

entation Points
Markers located on the 1st Floor,
north wing

Coordinate system axis name j
Coordinate system axis direction local north Aligns with vector from principal to

orientation point.
Coordinate system axis unit identifier millimeter

Coordinate system axis name i
Coordinate system axis direction local east Derived from building model.
Coordinate system axis unit identifier millimeter

Coordinate system axis name k
Coordinate system axis direction up Derived from building model.
Coordinate system axis unit identifier millimeter

Coordinate operation parameter name false easting
Coordinate operation parameter value 500,000 mm 500,000 mm

Coordinate operation parameter name false northing
Coordinate operation parameter value 500,000 mm 500,000 mm

Coordinate operation parameter name false elevation
Coordinate operation parameter value 100,000 mm 100,000 mm

dimensional linear systems for long corridors, such as those used in highways; and con-

versions or transformations to geodetic coordinates. The baseline grid can serve as the

common ”language” for tying all these systems together.

9.5 Example

Table 9.1 and Figures 9.7 to 9.8 provide an example of an indoor grid reference system

for a museum located on the campus of the University of California, Santa Barbara.
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(a) Picture of museum (b) Building model (exterior) (c) Building model (interior)

Figure 9.7: UCSB Art, Design, and Architecture Museum

(a) Horizontal indoor grid (b) Vertical indoor grid

Figure 9.8: Indoor Grid Reference System for UCSB AD&A Museum

9.6 Conclusion

The concepts and techniques presented in this chapter provide a general approach to

developing a grid-based coordinate reference system for indoor spaces. Once established,

an IGRS can serve as the basis for developing other types of indoor reference systems.

Development of a standard convention for indoor grid referencing can also foster the

adoption of indoor maps and location-based services by making indoor measurements

more consistent, which can lead to greater predictability across different indoor spaces.
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Chapter 10

Georegistering building models to

point clouds using ICP

10.1 Introduction

One current challenge for indoor mapping involves the seamless integration of indoor

and outdoor maps, especially in three dimensions. Finding a convenient and accessible

solution to this problem can help realize the goal of ubiquitous mapping and navigation

by removing the metaphorical wall separating the two spaces. An ideal solution would

allow local indoor coordinates and outdoor geodetic coordinates to be transformed on-

the-fly, permitting the presentation of indoor and outdoor spaces using any choice of

coordinate reference system. However, two factors complicate this task: wide variations

exist in coordinate reference systems — i.e., the language of location — and building

models and measurements of Earth can have unknown levels of error and uncertainty.

This chapter provides a general approach to overcoming these difficulties by using build-

ing models, georeferenced point clouds, and existing geodetic transformations. Given

only three pairs of coordinate triples corresponding to three common anchor points, this
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approach translates and scales the building model (containing the indoor space) to match

its corresponding points in the georeferenced point cloud then uses an iterative closest

point (ICP) routine to refine the alignment. Error minimization in ICP minimizes imper-

fections in the building model, the point cloud, and the locations of the anchor points.

This registration process results in two 4x4 homogeneous transformation matrices —

one for transforming from building to geodetic coordinates and the other for the reverse

transformation.

10.2 Background

10.2.1 Spatial referencing

The International Organization for Standardization (ISO) and the Open Geospatial

Consortium (OGC) list two ways to describe spatial locations: referencing by identi-

fiers and referencing by coordinates (International Organization for Standardization 2002,

2003; Bernhardsen 2002). Referencing by identifiers involves using a place name (e.g.,

Eifel Tower) to describe a location associated with a geographic region, while referencing

by coordinates uses coordinate tuples corresponding to some type of coordinate reference

system (CRS), which must, at a minimum, consist of a coordinate system and a datum,

i.e., measurement starting point.1 Nearly all coordinates-based maps of indoor spaces

use the Cartesian coordinate system paired with arbitrary datums, while outdoor maps

can use a wide range of linear, angular, or vertical coordinate systems paired with various

(local) engineering, geodetic, or vertical datums. The International Association of Oil

and Gas Producers (2017) listed 5,786 different CRSs in 2017 in its widely referenced

1However, some organizations such as Esri use a slightly different approach to classifying reference
systems and use the term coordinate system to describe a CRS.
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EPSG CRS database. While the term geodetic has a specific meaning in the ISO/OGC

context, this chapter will use the term in a more generic sense to differentiate Earth-based

coordinates from building-based coordinates for indoor spaces.

Since nearly all buildings use the Cartesian coordinate system, the simplest approach

to indoor-outdoor integration involves using Cartesian coordinate-based geodetic CRSs

for the outdoor data, which means using either 2D projected systems or 3D Earth-

centered Earth-fixed (ECEF) systems. While ECEF would provide global context and

make the transformation results amenable to global navigation satellite systems, use of a

2D projection coupled with a vertical system makes more intuitive sense and can provide

a greater level of precision within a small geographic area. Orthogonal grid systems

used in 2D projected CRSs provide the horizontal coordinates (x, y) while the vertical

CRS provides the vertical z elevation coordinate to form a 3D (x, y, z) coordinate triple.2

Once the indoor-outdoor transformation has been solved, transforming the projected

coordinates into other systems can be done using transformation algorithms implemented

in a number of widely available transformation software packages, which this chapter does

not cover.

10.2.2 Affine transformation

When both indoor and outdoor CRSs use the Cartesian coordinate system, converting

coordinates from one system to the other involves applying an affine transformation (i.e.,

translation, rotation, and scaling) (Clarke 1995). Use of a constant scaling factor for all

three axes results in a special case of an affine transformation called the seven-parameter

Helmert transformation (Watson 2006; Maling 1992). For geodetic applications, the co-

2In the strictest sense, the vertical axis runs orthogonal to a geoid surface which may slightly vary
from the spheroid-based projection of the x, y coordinate plane. However, that is assumed to be negligible
for this transformation approach.
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ordinate axes follow the right-hand rule with the z-axis pointing in the vertical direction,

unlike in computer graphics, which sometimes uses the left-hand rule with a vertical

y-axis.

10.2.3 Homogeneous coordinates

Homogeneous coordinates can simplify transformation calculations by allowing mul-

tiple transformation operations to be combined into a single matrix (Hearn, Baker, and

Carithers 2010). A coordinate triple (x, y, z) for a given point pi is converted to homo-

geneous coordinates by appending a value of 1 after the z-coordinate value as shown in

Equation 10.1.

pi =



x

y

z

1


(10.1)

Translation, rotation, and scaling matrices then take the form:

T =



1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1


; R =



r1,1 r1,2 r1,3 0

r2,1 r2,2 r2,3 0

r3,1 r3,2 r3,3 0

0 0 0 1


; S =



sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1


(10.2)

Individual elements of R represent the product of multiple rotational transformations

and may not contain explicit geometric information. The order-dependent nature of

transformations means that matrix multiplication occurs from right-to-left.
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10.2.4 Coarse and fine registration

The Helmert transformation can provide error-free registration in a single step for

perfect data and perfectly corresponding anchor points, but perfect data seldom exists

in the real world. Therefore, most registration techniques employ a two-phase approach

consisting of an initial coarse registration followed by fine registration using some type

of error-minimization technique. In the first phase, coarse registration brings two sets

of point clouds into rough alignment using one of three general approaches: matching

anchor points, matching scanned targets, or matching features extracted from the point

clouds. Once roughly aligned, fine registration brings the two data sets closer together

using various techniques, with the iterative closest point (ICP) technique standing out

as the most prominent and widely used. This chapter loosely uses the term ICP to

describe both the original ICP approach proposed by Besl and McKay (1992) as well as

its variants (Rusinkiewicz and Levoy 2001).

Iterative closest point technique

The iterative closest point (ICP) technique uses matching pairs of nearest points or

surface vertices for aligning two geometric data sets, and it can work with various types

of geometries, e.g., points, lines, surfaces, etc. (Besl and McKay 1992). Conceptually,

ICP involves calculating the distances between nearest point-pairs (i.e., the residuals) and

finding a 6-DOF (degree-of-freedom) rigid transformation that minimizes a given residual

cost function. The transformation process will alter the point pair correspondences, so

the ICP algorithm repeats the point-matching and transformations until reaching some

terminating criteria, e.g., convergence of residuals, a residual threshold, or maximum

number of iterations.
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ICP has four important characteristics (Rusinkiewicz 2011; Ju 2012). First, the

concept of nearest neighbor can be implemented in a variety of ways, e.g., simple Eu-

clidean distance, shortest normal distance to a tangent line, projection, etc. Second,

no prior knowledge exists on point correspondences aside from a vague notion of their

relationships established during coarse registration. This means that point pairings will

constantly change with each iteration and that a point can potentially have more than

one nearest neighbor. It also means that the ICP process may also fail for various reasons,

e.g., spacing between the two data sets or insufficient overlap. Third, various efficient

methods exist for implementing the 6-DOF rigid transformations that optimize a cost

function, two of which include the Levenberg-Marquardt algorithm for non-linear mini-

mization and singular value decomposition (SVD) for linear minimization. Finally, ICP

optimization based on mean values — such as with least squares — is very sensitive to

outliers and may not provide a robust solution in itself.

This chapter uses Euclidean distances between the point cloud and nearest points on

the exterior of the building model, SVD for finding the residual-minimizing transforma-

tion matrix, and outlier filtering for mitigating the effects of outliers on the mean.

Singular value decomposition

Singular value decomposition, or SVD, provides an efficient and concise matrix-based

approach for aligning two sets of points (e.g., model vertices, point clouds, etc.) using

linear least squares optimization (Umeyama 1991; Marschner 2010). Given two sets of

matching points, i.e., source points P and target points Q, the goal involves finding the

3x3 rotation matrix, r, that will best align P with Q at their centroids. (Some texts
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use the capital R for the 3x3 rotation matrix, but it is used here to represent the 4x4

homogeneous R matrix.)

P =

[
p1,p2, . . . ,pN

]
; Q =

[
q1,q2, . . . ,qN

]
where pi =


xpi

ypi

zpi

 ; qi =


xqi

yqi

zqi

 (10.3)

The first step involves calculating the centroids for P and Q and then calculating the

NxN cross-covariance matrix, A, using the equations:

cP =
1

N

N∑
i=1

pi; cQ =
1

N

N∑
i=1

qi; A =
1

N

N∑
i=1

[(pi − cP )(qi − cQ)>] (10.4)

A = Q> ·P (10.5)

The next step involves finding the orthonormal matrix, r, that maximizes the trace of

r ·A and also happens to represent the optimal P-to-Q rotation matrix. A decomposes

into the following form, which can be calculated with math processing software:

A = U ·D ·V> (10.6)

The equation for r that maximizes A takes the form
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r = U · SSV D ·V> (10.7)

SSV D =


1 0 0

0 1 0

0 0 d

 (10.8)

d = det(U) · det(V)

Transforming from P to Q involves translating the centroid of P to the origin, rotating

P to match the orientation of Q at the origin, and translating the centroid of P to match

the centroid of Q. For each point pi, the transformed location is represented by p′i in

the following equation:

p′i = r · (p1 − cP ) + cQ (10.9)

Converting cP , r, cQ, and point set P into homogeneous form results in

TP =



1 0 0

0 1 0 −cP

0 0 1

0 0 0 1


; R =



0

r 0

0

0 0 0 1


; TQ =



1 0 0

0 1 0 cQ

0 0 1

0 0 0 1


(10.10)

so that equation 10.9 for a single point pi becomes

P′ = M ·P where M = TQ ·R ·TP (10.11)
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for the entire point set P, where P′ represents the best least-squares fit with Q.

Filtering outliers

SVD implicitly uses mean values for least squares optimization (Equation 10.4), but

the mean is highly sensitive to outliers with its finite sample breakdown point of 1/n

meaning that just one out of n observations can result in arbitrarily large or small re-

sults. Wilcox (2010) reviewed several robust statistical approaches for mitigating this

shortcoming, which included trimming the two tails of the distribution of residuals re-

sulting in least trimmed squares (LTS) values. For univariate residuals, he recommended

trimming 20% of the upper and lower tails but noted that the very act of trimming

negated the assumption of homoscedasticity used in calculating the variance.

For point cloud data with extraneous features (e.g., trees, parked vehicles, and side-

walks), trimming may not necessarily negate homoscedasticity early in the ICP process

since extreme outliers would correspond to irrelevant non-building features. However, it

can present a problem as the building and point cloud converge since trimming would

remove desirable leverage points. Chetverikov et al. (2002) implemented an LTS ICP

algorithm, which they called Trimmed ICP or TrICP, that a fixed proportion of residuals

in 2D data sets. Their study demonstrated the robustness of TrICP compared to using

the full set of residuals but it also showed a progressive growth in errors beyond a certain

trimming value.

Among approaches to multivariate residuals, Wilcox mentioned the relplot and min-

imum volume ellipsoid estimator as two robust approaches. The relplot represents a 2D

equivalent of the boxplot while the minimum volume ellipsoid represents a special case

of a minimum bounding volume, each aligned with the principal directions of the data

points and sized to contain a certain quantile of data.
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10.3 Methodology

Given a building model, a georeferenced point cloud of the building’s exterior, and

three anchor points between the building model and point cloud, we wish to find the 4x4

transformation matrices that will convert building coordinates into geodetic coordinates

and vice versa using pure geometry (i.e., omitting other variables such as color). This

process involves five phases: coarse registration at the origin, fine registration at the

origin, translation to the geodetic location, calculating the Helmert transformation for

the building’s anchor points between the original and final locations, and calculating the

reverse transformation.

10.3.1 Coarse registration at origin

Coarse registration involves approximating the alignment of the building model with

the georeferenced point cloud at the origin. This phase requires an a priori unit of

measurement conversion factor and the manual selection of three common anchor points

in both the point cloud and building model, which are used in a Helmert transformation

to translate, rotate, and scale the model to approximately fit the point cloud. With

perfect data, the Helmert transformation would result in perfect registration. Empirical

data, however, will result in an imperfect fit. Figure 10.1 illustrates the coarse registration

process.

Preliminaries

Let bn and en denote coordinate triples for the three anchor points in the engineering

CRS and geodetic CRS, respectively, where n = 1, 2, 3 denotes the point number and

B and E denote the coordinate sets for bn and en. Points b1, b2, and b3 and e1, e2,

and e3 thus represent the three pairs of corresponding anchor points for a total of six
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Figure 10.1: Coarse registration
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coordinate triples. A unitless intermediate CRS is introduced with axes labels (x, y, z).

The intermediate CRS has its origin at (0, 0, 0) and, by definition, contains both the

building model (engineering CRS) and point cloud (geodetic CRS) stripped of their units

of measurement as shown in Figure 10.2. Here, i, j, and k and u, v, and w define the

unit vectors of the building and point cloud in terms of (x, y, z) values.

Figure 10.2: Coarse registration of building model and point cloud

i =


ix

iy

iz

 ; j =


jx

jy

jz

 ; k =


kx

ky

kz

 ; u =


ux

uy

uz

 ; v =


vx

vy

vz

 ; w =


wx

wy

wz

 (10.12)

Find the unit vectors

Define the unit vectors i, j, and k as follows and summarized in Tables 10.1 and 10.2;

apply the same process for finding u, v, and w:

• b1 defines the origin

• vector Vj from b1 to b2 points along the secondary axis (j)

• vector VLp from b1 to b3 points in a direction along the i− j plane
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Table 10.1: Raw vectors

Engineering CRS Geodetic CRS

Origin b1 e1

First Axis Vi = Vj ×Vk Vu = Vv ×Vw

Second Axis Vj = b2 − b1 Vv = e2 − e1

Third Axis Vk = VLp ×Vj Vw = VEp ×Vv

Planar Point VLp = b3 − b1 VEp = e3 − e1

Table 10.2: Unit vectors

Engineering CRS Geodetic CRS

Origin b1 e1

First Axis i = Vi/Norm(Vi) u = Vu/Norm(Vu)

Second Axis j = Vj/Norm(Vj) v = Vv/Norm(Vv)

Third Axis k = Vk/Norm(Vk) w = Vw/Norm(Vw)

• vector Vk emanates from b1 and runs orthogonal to the i− j plane

• vector Vi runs orthogonal to Vj & Vk using the right-hand rule from j to k

• normalize Vi, Vj, and Vk to get unit vectors i, j, and k

Calculate transformations to the (x, y, z) origin

Using the unit vectors i, j, and k and u, v, and w, use Equations 10.13 to 10.15 to

find the translations and rotations to match them with the (x, y, z) axes; rotations at the

origin are illustrated in Figure 10.3. Subscripts B2O, E2O, and O2E denote building-

to-origin, geodetic-to-origin, and origin-to-geodetic transformations, respectively, while

lower-case matrix variables represent the 3x3 form and upper-case the 4x4 homogeneous

form.
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(a) Rotate α about x−axis (b) Rotate β about y−axis (c) Rotate γ about z−axis

Figure 10.3: Rotations in the order a-b-c to align the ijk axes with the xyz axes

tB2O = a1 − b1; tE2O = a1 − e1 (10.13)

rx =


1 0 0

0 c/d −b/d

0 b/d c/d

 ; ry =


d 0 −a

0 1 0

a 0 d

 ; rz =


−e f 0

−f −e 0

0 0 1

 (10.14)

Engineering CRS (rB2O): a = kx, b = ky, c = kz, d =
√
b2 + c2 =

√
k2
y + k2

z

e = i2x, f = i2ywhere i2 =


i2x

i2y

i2z

 = ry · rx · i

210



Georegistering building models to point clouds using ICP Chapter 10

Geodetic CRS (rE2O): a = wx, b = wy, c = wz, d =
√
b2 + c2 =

√
w2

y + w2
z

e = u2x, f = u2ywhere u2 =


u2x

u2y

u2z

 = ry · rx · u

rB2O = rzB2O · ryB2O · rxB2O; rO2E = rTxE2O · rTyE2O · rTzE2O (10.15)

Equation 10.16 shows the scaling matrix using the a priori unit conversion factor s

from building to point cloud units.

sB2E =


s 0 0

0 s 0

0 0 s

 (10.16)

Assembling and applying the transformation matrices

The assembled transformation matrices in Equations 10.17 and 10.18 will align the

building model with the point cloud at the origin, completing the coarse alignment. Note

that the building model is rotated a second time using RO2E to match the unrotated point

cloud so that the vertical direction always points up, which can be useful for intepreting

ICP results.

MB,coarse = RO2E · SB2E ·RB2O ·TB2O (10.17)

ME,coarse = TE2O (10.18)
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10.3.2 Fine registration at the origin

Point cloud filtering

This chapter takes a naive approach to point cloud filtering and assumes an unclas-

sified point cloud that has not been processed with a morphological filter to remove

vegetation, vehicles, and other extraneous features. Therefore, removal of undesirable

elements in the point cloud takes place with two filters. A preliminary filter — applied

prior to ICP — removes extraneous points beyond a certain distance from the build-

ing, while an ICP filter works with each ICP iteration to progressively remove irrelevant

points. The preliminary filter preserves all points within an expanded convex hull of the

building and discards all other points; it also removes all ground points surrounding the

building.

The main ICP filter uses simple trimming to remove points corresponding to the

upper 40% of nearest neighbor distances. Three simple volumetric filters that retain

60% of points (i.e., 40% trimming) are also explored (cuboid, octahedron, and ball) with

the following alignments: the cuboid faces run orthogonal to the three principal axes

(eigenvectors) of the residuals while the octahedron’s vertices align with the principal

axes.

Iterative closest point process

The ICP process takes the following form: calculate the nearest neighbor (NN), filter

the point cloud based on NN Euclidean distances, calculate the mean NN distance of the

filtered points, evaluate termination criteria, use SVD to find the optimum rotation and

translation of the building model, and iterate, as illustrated in Figure 10.4.

Iteration ceases upon reaching one of three termination criteria: convergence of resid-

ual values, reaching a mean residual threshold, or reaching a maximum number of itera-
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Figure 10.4: Fine registration with ICP
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tions. Ten ICP iterations are used to evaluate convergence and the residual threshold in

order to prevent premature termination from occasional erratic movements of the mean

residual values. Convergence involves ten consecutive iterations where the mean residuals

deviate no more than a certain threshold, such as 1 millimeter; upon convergence, the

first of the ten iterations represents the convergence point.

10.3.3 Translation to final geodetic location

Upon completion of ICP registration, the model is translated to its geodetic location

using the inverse of the translation for moving the point cloud to the origin as shown in

Equation 10.19.

TO2E = T−1
E2O (10.19)

10.3.4 Final transformation matrices

Completion of the transformation process results in one unknown matrix, Munk, in

the following chain of transformations from building to geodetic coordinates:

M′
B2E,final = TO2E · Munk · SB2E ·RB2O ·TB2O (10.20)

While Munk can be found by accumulating the translations and rotations for each ICP

iteration, a more convenient solution involves applying the Helmert transformation to the

building’s three anchor points between their original locations (B) and final locations (B′)

as described in Equations 10.21 and 10.22.
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MB2E,final = Helmert transformation from B to B′ (10.21)

ME2B,final = Helmert transformation from B′ to B (10.22)

10.4 Case studies

Three case studies demonstrate the effectiveness of this registration approach. The

first study uses a computer-generated building (i.e., rectangular box) and a point cloud

that was created by randomly sampling points from the building’s surface. The second

study adds a ground surface, trees, and random noise to the point cloud. For these

two synthetic data sets, eight key points were manually inserted into the point cloud

at locations corresponding to the buildings’s vertices; these points made it possible to

evaluate the building model’s fit based on a priori locations of the corner points —

impossible with real data. Finally, the last study uses an actual model of a building and

a point cloud from aerial LiDAR. All three case studies used 40% trimming for the ICP

filter, corresponding to retention of the 60% closest points.

10.4.1 Case Study 1: Perfect point cloud

Case Study 1 demonstrates the basic operation of ICP and shows the problems asso-

ciated with over-trimming. The goal of Case Study 1 is to find the transformation matrix

for fitting the building model in local coordinates (Figure 10.5a) to the point cloud in

UTM (WGS84) coordinates (Figure 10.5b) using the three anchor points shown in Table

10.3. Termination criteria for ICP included convergence at the fourth decimal place, a

residual threshold of 0.1 mm, and a maximum iteration count of 100.
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Table 10.3: Anchor points

Building (Engineering CRS) LiDAR (Geodetic CRS)
millimeters meters (intentionally misaligned)

First Point b1 = {500000, 500000, 505000} e1 = {238488.500, 3811890.000, 35.5}
Second Point b2 = {510000, 505000, 505000} e2 = {238488.170, 3811901.660, 34.5}
Third Point b3 = {510000, 500000, 505000} e3 = {238493.500, 3811898.160, 35.0}

(a) Building model, local coordinates (b) Point cloud, UTM (WGS84) coordinates

Figure 10.5: Building model and perfectly simulated point cloud

Figure 10.6 shows conditions before and after ICP. The gridded box in Figure 10.6a

shows the location of the building before ICP registration, with the grey arrows showing

the NN vectors pointing from the building to the point cloud and the black arrows

showing the actual (non-NN) vectors for the eight key points. Figure 10.6b shows the

result of running ICP using the entire unfiltered point cloud.
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(a) Before ICP (b) After ICP

Figure 10.6: Nearest neighbor displacements before and after ICP

Unsurprisingly, unfiltered ICP provided the best performance in terms of least number

of iterations, precision (measured by the NN displacements), and accuracy (measured by

the key point displacements), as shown in Figure 10.7 and Table 10.4. Use of the key

points provides an additional insight not possible with actual data; with perfect data,

NN underestimated the mean error by around a factor of ten for the filtered points and a

factor of five for unfiltered. This implies that NN precision metrics should be used with

caution when interpreted as a measure of accuracy.
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Table 10.4: Case Study 1 results

Time Iteration Mean NN Mean KP NN & KP
Filtering Method I T C (sec) Count Disp (m). Disp. (m) Diff. (m)

Unfiltered • 1.2 37 0.000105 0.000541 0.000435
MBV Cuboid (60%) • 16.2 100 0.001361 0.012904 0.011543
MBV Octahedron (60%) • 15.1 100 0.001432 0.013643 0.012211
MBV Ball (60%) • 440.0 100 0.001391 0.013152 0.011761
Trimming (60%) • 4.1 100 0.001390 0.013410 0.012020

(a) Mean NN Displacements (m) (b) Mean Key Point Displacements (m)

Figure 10.7: Mean NN and key point displacements versus number of iterations

The choice of filtering method had a significant influence on processing time as shown

in Figure 10.8 and Table 10.4. Without the need for pre-processing, the unfiltered data

converged in the shortest amount of time, as expected with perfect data. Simpler filters

resulted in faster processing times with similar results: trimming approached convergence

in the shortest time followed by volumetric filtering with increasing complexity (cuboid,

octahedron, and ball), which required iterative volume searches. Notably, the ball filter

had a similar shape to trimming but took over 100 times the time to process without

reaching convergence.
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(a) Mean NN Displacements (m) (b) Mean Key Point Displacements (m)

Figure 10.8: Mean NN and key point displacements versus time

A plot of the NN displacements (Figure 10.9) showed a unique spatial pattern related

to the shape of the building. Since coarse registration placed the building model into

rough alignment with the point cloud, most of the displacement vectors ran normal to one

of the model surfaces, resulting in vectors having one of six orientations (corresponding to

each of the six surfaces of the rectangular box) but with different magnitudes. Vertices

would have NN points that could point in any direction, resulting in the ”speckles”

in Figure 10.9a. As the model converges with the point cloud, a greater number of

displacement vectors will emanate from a surface resulting in fewer speckles and greater

alignment with the surface’s normal vectors (Figure 10.9b).
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(a) Before ICP (b) After ICP

Figure 10.9: Plot of residuals for all NN points

10.4.2 Case Study 2: Point cloud with outliers

Case Study 2 introduces noise and imperfections to Case Study 1’s point cloud in the

form of a ground surface, trees, and random noise as shown in Figure 10.10. The three

anchor points remain the same (Table 10.6).

(a) Computer generated environment (b) Point cloud, UTM (WGS84)

Figure 10.10: Building model with environmental noise and simulated point cloud

Figure 10.11 shows conditions before and after ICP for Case Study 2. Preliminary

filtering removed most of the points for ground and trees from the point cloud, although

a few of the closest points remained (Figure 10.11a). ICP with filtering removed nearly
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all of the non-building points allowing for a close fit between model and point cloud as

shown in Figure 10.11b using Trimmed ICP.

(a) Before ICP (b) After ICP

Figure 10.11: Nearest neighbor displacements before and after ICP

Mean displacements for all five ICP methods converged at the fourth decimal place

although unfiltered ICP produced poorer results compared to the filtered methods as

shown in Figure 10.12. Mean NN measures more closely mirrored the mean error of the

key points with differences ranging from 0.6% (Ball) to 29% (octahedron). . . far less than

differences over 300% observed in Case Study 1. However, greater correlation did not

imply greater accuracy; the cuboid (11.5% difference) had the most accurate fit at 0.9

mm mean KP error followed by trimming (6.5% difference) at 1.0 mm error. Unfiltered

ICP underestimated the actual error by 16.8%, producing a NN mean of 33.7 cm when

the actual mean error was 40.5 cm.
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Table 10.5: Case Study 2 results

Time Iteration Mean NN Mean KP NN & KP
Filtering Method I T C (sec) Count Disp (m). Disp. (m) Diff. (m)

Unfiltered • 0.7 18 0.337205 0.405401 0.068196
MBV Cuboid (60%) • 9.0 34 0.010217 0.009042 -0.001176
MBV Octahedron (60%) • 7.3 32 0.010545 0.013652 0.003107
MBV Ball (60%) • 335.6 34 0.010426 0.010486 0.000060
Trimming (40%) • 1.6 34 0.010416 0.009736 -0.000679

(a) Mean NN displacements (m) (b) Mean key point displacements (m)

Figure 10.12: Mean NN and key point displacements versus number of iterations

Similar to Case Study 1, processing times generally correlated to the complexity of

the filter, although the octahedron converged in fewer iterations compared to the cuboid

resulting in a faster processing time (Figure 10.13).
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(a) Mean NN displacements (m) (b) Mean key point displacements (m)

Figure 10.13: Mean NN and key point displacements versus time

Figure 10.14 provides visualizations of the ICP filters at the first iteration. Black

dots represent correspondences with point cloud points for the building: small dots for

those captured as inliers and large dots for those mistakenly labeled as outliers. Orange

dots represent correspondences with tree points: small dots for those correctly filtered

as outliers and large dots as those mistakenly labeled as inliers. Yellow dots with a

magenta outline represent correspondences with the ground; filtering effectively removed

all ground points.
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(a) Unfiltered (b) 40% Trimming

(c) Cuboid (d) Octahedron (e) Ball

Figure 10.14: Effects of various filters during first ICP iteration

All four filters effectively removed outliers and produced transformations resulting in

fits at around 1 cm accuracy for the 10 m x 5 m x 5 m building. Figure 10.15 shows

results for 40% trimming.
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(a) Displacement vectors at con-

vergence

(b) Building transformed and placed in point cloud

Figure 10.15: Results of trimmed ICP at 40% trimming

10.4.3 Case Study 3: Point cloud with outliers

Case Study 3 applies the registration approach to a building model and point cloud

of the Art, Design, and Architecture (AD&A) Museum at the University of California,

Santa Barbara. The building model included the interior and exterior of the build-

ing and was manually created in Trimble Sketchup using terrestrial laser scans of the

building’s interior and exterior and drone-based photogrammetry of the exterior (Figure

10.16a). The building model used a building CRS with units of millimeters and a false

origin displacement of 500,000 mm in all three directions. The point cloud came from a

high-resolution Geiger mode aerial LiDAR collection in 2016 and used the State Plane

Coordinate System, California Zone 5, with units of feet (Figure 10.16b).
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Table 10.6: Anchor points

Building (Engineering CRS) LiDAR (Geodetic CRS)
millimeters feet

First Point b1 = {517979, 499586, 499900} e1 = {6004107.469, 1977506.566, 42.807}
Second Point b2 = {490272, 499586, 499900} e2 = {6004106.031, 1977414.188, 42.866}
Third Point b3 = {517989, 511684, 499900} e3 = {6004068.369, 1977506.600, 42.982}

(a) Building model, local coordi-

nates

(b) Point cloud, State Plane

Figure 10.16: UCSB AD&A Museum building model and point cloud

Figure 10.17a shows the building model and point cloud at the origin after coarse

registration but before ICP, with lines showing displacements from the NN on the model

to the point cloud. Figure 10.17b shows the final result after ICP using a trimming filter

at 40% trimming.

(a) Before ICP (b) After ICP

Figure 10.17: Nearest neighbor displacements before and after ICP

Unfiltered ICP resulted in no meaningful improvement to the coarse registration, with

the process converging at 3.5 feet or 42 inches mean NN precision. However, all four filter-

ing methods produced significant improvements with final mean NN precisions at about
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Table 10.7: Case Study 3 results

Time Iteration Mean NN
Filtering Method I T C (sec) Count Disp (ft)

Unfiltered • 1.9 39 3.486180
MBV Cuboid (60%) • 7.8 29 0.289166
MBV Octahedron (60%) • 1.5 7 0.290259
MBV Ball (60%) • 56.0 5 0.290543
Trimming (40%) • 1.2 23 0.293741

3.5 inches (Table 10.7). As with Case Study 2, time to convergence for these methods

depended on the complexity of the filter; trimmed ICP worked the fastest followed by the

octahedron, cuboid, and ball. While the cuboid has a simpler geometry, the octahedron

took fewer iterations to converge (7 versus 29) resulting in a lower convergence time (1.5

sec verus 7.8 sec).

(a) By iteration (b) By time

Figure 10.18: Displacements by iteration and time

Figure 10.19 shows the unfiltered data and various filters at the first ICP iteration,

with black dots representing inliers and orange dots outliers. Without a priori point

classification, it was impossible to distinguish building from non-building points.
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(a) Unfiltered (b) 40% Trimming

(c) Cuboid (d) Octahedron (e) Ball

Figure 10.19: Effects of various filters during first ICP iteration

Figure 10.20 shows the final results using ICP with 40% trimming. The forward and

reverse 4x4 transformation matrices (Equations 10.23 and 10.24) make the process of

transforming CRSs simple and efficient.
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MB2E =



0.000051 −0.003280 −0.000052 6, 005, 745.94

0.003280 0.000050 0.000011 1, 975, 775.89

−0.000010 −0.000052 0.003280 −1, 565.88

0 0 0 1


(10.23)

ME2B =



4.734816 304.765314 −0.992131 −630, 585, 613.63

−304.729262 4.718605 −4.807423 1, 820, 796, 091.11

−4.791459 1.066568 304.764177 27, 146, 212.39

0 0 0 1


(10.24)
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(a) Displacement vector filter at

convergence

(b) Building model in SPCS coordinates (feet) (c) Point cloud in building coordinates (mil-

limeters)

Figure 10.20: Results of trimmed ICP at 40% trimming

10.5 Conclusion

This chapter demonstrated the effective integration of indoor and outdoor coordinate

reference systems using a two-phase semi-automated approach with a building model

and a georeferenced outdoor point cloud. The first phase performed coarse registration

using three manually-selected anchor points and the second phase performed automated

fine registration using an iterative closest point approach with filtering of residuals. The

three case studies highlighted three important considerations. First, the selected filtering

level should account for the estimated level of noise — i.e., non-building features — in
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the point cloud. Severe over-filtering can result degraded performance as both datasets

reach convergence and excessive amounts of ”good” data get removed, as demonstrated

with all four filters in Case Study 1. On the other hand, insufficient filtering can preserve

undesirable non-building points resulting in slower convergence and possibly reduced

accuracy. Two improvements to this approach can include a method for estimating

filtering levels prior to performing ICP and an adaptive filtering method that reduces

filtering levels as the model and point cloud converge. Second, the nearest neighbor

metric should be used with caution when used as an estimate of actual errors. In the

case of the perfect data set (Case Study 1), the mean NN displacements over-estimated

the actual accuracy (or under-estimated the actual errors) by 400% for the unfiltered

data and over 800% for the filtered data, with the high values partially due to the high

level of precision in the numbers. However, these differences fell to values below 30%

for the more realistic data set containing environmental noise. . . partially accounted for

due to the relatively lower precision of the numbers. Finally, possible improvements to

this approach can take advantage of the distinct geometric patterns in the residual plots.

Knowing the building’s geometry makes it possible to estimate the orientations of the

residual vectors; these vectors can be used to establish thresholds where, as the data sets

approach convergence, points with residual vectors that do not line up get discarded.
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Chapter 11

When flat Earth meets round Earth

11.1 Introduction

Virtually all building models assume a flat Earth when they use the Cartesian coordi-

nate system for coordinate referencing, but Earth itself has a round shape. While Earth’s

curvature has negligible effects on small interior spaces, it has far greater implications

for very long or wide spaces such as extremely long buildings or underground cities. In

those environments, the curvature of Earth can introduce significant vertical deviations

from the building model. This chapter examines these curvature effects by analyzing

the geometry of the ellipsoid to provide insights into the geographic limits of the flat

Earth assumption. While introductory texts on surveying give simple one-line formulas

for estimating vertical deviation, this analysis provides the full mathematical treatment

that includes insights into how vertical and horizontal deviations vary with one another.
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11.2 Simplified estimates of error

11.2.1 Vertical errors

Introductory surveying textbooks often provide simple equations for estimating the

effect of Earth’s curvature on vertical measurements. These formulas work perfectly

fine and show negligible deviations from the more rigorous approach used in this study.

However, their use of a round Earth fails to address the relevance (or irrelevance) of the

varying geometry of the ellipsoid, and they do not provide insight into horizontal and

vertical deviations vary together.

In his surveying manual for civil engineers, Cole (2017) provided Equation 11.11,

which is a simplified version of Equation 11.2 provided by Allan (2008).

C = 0.0785K2 (11.1)

where C = vertical deviation (m) and K = horizontal distance (KM)

x =
S2

2R
(11.2)

where x = vertical deviation (m), S = horizontal distance (m), R = Earth’s radius (m)

Allan derived Equation 11.2 by using geometric relationships of the triangle shown

in Figure 11.1. To arrive at Equation 11.2, he assumed the straight line S, defined by

AB′, had the same distance as the arc AB and made x2 = 0 in Equation 11.5. Using the

mean radius of Earth (R = 6,335,439 m) for R results in Cole’s equation.

1Cole actually showed the equation as C = 0.785K2, which is incorrect by a factor of 10.
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B′O2 = AO2 + S2 (11.3)

(R + x)2 = R2 + S2 (11.4)

R2 + 2Rx+ x2 = R2 + S2 (11.5)

x =
S2

R
(11.6)

Figure 11.1: Figure used by Allan (2008)

11.2.2 Horizontal errors

The Universal Transverse Mercator (UTM) and State Plane Coordinate System (SPCS)

are two widely used grid-based map projections in the United States. UTM has a maxi-

mum error limit of 1
1000

for each 100 km x 100 km grid square and the SPCS for California

has a limit of 1
10000

for any part of its state plane maps (Snyder 1987). These specifications

limit the amount of allowable horizontal error in a map due to projection distortions over

wide areas. However, these technical specifications provide no insight into the magnitude

of horizontal errors at a local geographic scale.
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11.3 Ellipsoid-based approach

11.3.1 General approach

This study uses the World Geodetic System 1984 (WGS 84) ellipsoid — a biaxial

oblate spheroid used in the Global Positioning System and many internet mapping ap-

plications — which has a semi-major axis (a) value of 6,378,137.0 m and a semi-minor

axis (b) value of 6,356,752.314245 m (National Geospatial-Intelligence Agency 2014a).

Curvature describes the degree of bending of a line in a 2D plane, so the location

where the ellipsoid surface deviates the most from a tangent plane will occur around the

point of maximum curvature. For the oblate spheroid, this occurs along a meridian line

at the end point of the major axis, a, at the equator. Since an oblate spheroid is simply

a 2D ellipse rotated about the polar axis, the solution to this problem simply involves

determining the radius of curvature at that point and using geometry to calculate the

relevant deviations. The following calculations use the cross-section of the ellipsoid at

y = 0 as shown in Figure 11.2.

Figure 11.2: Cross-section of the WGS 84 ellipsoid at y = 0
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11.3.2 Modifying the ellipse equation

Since the point of maximum curvature occurs at the equator, the horizontal direction

will run along the z-axis and the vertical along the x-axis. Re-assigning variables for the

general equation of an ellipse (Equation 11.7) and observing that the ellipse is centered

at the origin (0, 0, 0) results in Equation 11.8, with the x- and z-axes paired with the

semi-major and semi-minor axes.

(x− h)2

a2
+

(y − k)2

b2
= 1 (11.7)

x2

a2
+
z2

b2
= 1 (11.8)

Rearranging Equation 11.8 to make x a function of z results in Equation 11.9.

x = a

√
1− z2

b2
(11.9)

11.3.3 Finding the maximum curvature

Even though the first derivative of x produces the slope of the tangent line at (z, x),

the second derivative does not produce the curvature. Curvature, κ, requires use of the

curvature equation (Equation 11.10), modified here to reflect x as a function of z.

κ =
|x′′|

[1 + (x′)2]
3/2

(11.10)

Maximum curvature occurs at the point where the value of κ reaches a maximum. A

plot of κ for an ellipse based on WGS 84 parameters results in Figure 11.3, which shows

that maximum curvature occurs at the equator where z = 0.
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Figure 11.3: Plot of WGS 84 curvature at y = 0 from pole to pole

Maximum curvature has the value of 1.578523×10−7m−1 as shown in Equation 11.11.

κmax = κz=0 = 1.578523× 10−7m−1 (11.11)

11.3.4 Finding the radius of curvature

Using the radius of curvature (ρ) simplifies the geometric analysis of the ellipse. The

radius of curvature represents the equivalent radius of a circle that has the same curvature

for any point on a curve as shown in Figure 11.4 and is expressed in mathematical form as

Equation 11.12. This method is equivalent to the methods used by Allan (2008) and Cole

(2017) and produces more conservative results, i.e., larger vertical deviations, compared

to direct analysis of an ellipse at z = 0 and x = a or x = −a.

ρ =
1

κ
=

[1 + (x′)2]
3/2

|x′′|
(11.12)
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Figure 11.4: Radius of curvature, ρ, for a point on an ellipse

11.3.5 Minimum radius of curvature

Since curvature, κ, and radius of curvature, ρ, have an inverse relationship, the max-

imum curvature will result in a circle with the smallest radius. The minimum radius of

curvature occurs at the equator, z = 0, producing a minimum ρ value of 6,335,439 m as

shown in Equation 11.13.

ρmin = ρz=0 = 6,335,439 m (11.13)

This translates to the minimum circle with a radius (Rmin) having the same value as

ρmin as shown in Equation 11.14.

Rmin = ρmin (11.14)

Assessing the worst-case effects of Earth’s curvature involves finding the deviation of

a tangent line from this equivalent circle.
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11.4 Using flat Earth as a baseline

The first approach to quantifying the effects of Earth’s curvature involves placing an

observer on the flat tangent line and measuring deviations of the circular arc below as

shown in Figure 11.5. The goal of this analysis involves finding deviations of the circular

arc from the tangent line — ∆z and ∆x, respectively, keeping in mind that z represents

the horizontal direction since the observer is standing at the equator.

Figure 11.5: Measuring deviations relative to a position on the flat Earth

This analysis uses a (z, x) axis convention for clarity where the z-axis runs in the

horizontal direction and x in the vertical. The center of the circle has coordinates (0, 0),

the tangent line intersects the circle at coordinates (0, R), and the observer stands at

coordinates (D, R) corresponding to a distance D along the tangent line.

11.4.1 Equation for the vertical offset, ∆x

The vertical offset, ∆x, estimates how far the curve will deviate vertically from the

tangent plane at the observation point; that is, how far the curve would drop below the

tangent line if the observer looked straight down.
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Find the equation for z as a function of x

Equation 11.15 shows the general equation of a circle using the xz coordinate con-

vention used in this study.

(x− h)2 + (z − k)2 = R2 (11.15)

Centering the circle at the origin (h = 0, k = 0) and rearranging Equation 11.15 to

express x in terms of z results in Equation 11.16.

x =
√
R2 − z2 (11.16)

Find the equation for ∆x at various z values

The vertical deviation of the curve is simply the difference between R (i.e., the x-

coordinate at the tangent point) and the x-coordinate of the curve for any distance D

along the tangent line, calculated using Equation 11.22.

∆x = R− x = R−
√
R2 − x2 (11.17)

∆x = R−
√
R2 −D2 at z = D (11.18)

11.4.2 Equation for the horizontal offset, ∆z

The horizontal offset, z, estimates the horizontal difference between a distance D

along the curve and the same distance along the tangent plane.
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Figure 11.6: Geometric relationships for finding ∆z

Find the central angle, ∆D, for an arc L with length D

Use the arc length, L, to find its equivalent central angle, L, using Equation 11.19,

recalling that the central angle for a full circle is simply 2π radians which is found by

dividing the circumference by the radius. For any distance D along the curve, Equation

11.19 becomes Equation 11.27.

∆L =
L

R
(in radians) (11.19)

∆D =
D

R
(in radians) (11.20)
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Find the equation for z in terms of ∆D

The coordinate z can be solved using basic trigonometry.

z = R sin ∆D (11.21)

Find the equation for ∆z

The horizontal offset, ∆z, is the difference between the distance D along the tangent

line and the z-coordinate for an arc of length D. For this analysis, ∆z will always have

a positive value reflecting the extra horizontal distance introduced by the tangent line

compared to the curve.

∆z = D − z (11.22)

11.4.3 Equation for arc length offset, ∆D

The arc length offset, ∆D, describes the distance that needs to be added to arc length

D to reach a point on the curve located directly below tangent distance D as shown in

Figure 11.7. Figure 11.8 provides the geometric relationships for finding ∆D.

Figure 11.7: Overview of distance D along flat and round Earths

242



When flat Earth meets round Earth Chapter 11

Figure 11.8: Geometry of chord, C

Find the equation for the chord, C

Chord C extends from the tangent point to the point on the curve with arc length

D. Equation 11.23 provides the equation for C as a function of ∆x from Equation 11.22

using the Pythagorean theorem.

C =
√
D2 + ∆x2 (11.23)

Find the central angle, ∆L

The central angle (∆L) can be found using the law of cosines for an isosceles triangle.

cos ∆L =
2R2 − C2

2R2
(11.24)

∆L = arccos

(
2R2 − C2

2R2

)
(in radians) (11.25)
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Find the extended arc length, L, and excess distance, ∆D

The central angle and radius provide all the required information for finding arc length

L whose end point has a z-coordinate of D as shown in Equation 11.26. Subtracting the

equivalent curved distance of D from L provides the excess distance (∆D) as shown in

Equation 11.27.

L = ∆LR (11.26)

∆D = L−D (11.27)

11.4.4 Summary of deviations from the flat Earth

Table 11.1 shows the results of the flat Earth analysis for distances ranging from 100

m to 10 km. Allan’s equation provides vertical deviation values nearly identical to ones

produced using this study’s more rigorous approach. This was due to the ability to use

small angle approximations made possible by the relatively large value of R compared

to D. Cole’s equation also provides a relatively accurate estimate, although with fewer

significant digits. Therefore, as a rule-of-thumb, a model with an acceptable vertical

error of 2 cm (or less than one inch) can span approximately 1 km, i.e., spanning 500 m

in two opposite directions. . . dimensions within which most indoor spaces fall. Increasing

the acceptable vertical error to 8 cm (or slightly over three inches) results in a maximum

horizontal span of 2 km. Horizontal deviations remarkably remain negligible until hori-

zontal distances exceed 5 km, with the deviation remaining below 1 cm at a distance of

10 km. This last observation perhaps explains why grid maps such as UTM and state

plane maps can span such great horizontal distances; however, that same assumption can

not be extended to the vertical component.
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Table 11.1: round Earth deviations from flat Earth reference at different distances
along the flat surface

This Study Allan (2008) Cole (2017)

D Horizontal Curve Vertical Vertical Vertical Vertical
(m) (m) (m) (m) (m,Rmin) (m, Rmean) (m, Rmean)

100 0.00000000 0.00000395 0.00078921 0.00078921 0.00078467 0.000785
500 0.00000052 0.00001986 0.01973028 0.01973028 0.01961660 0.019625
1,000 0.00000415 0.00004050 0.07892113 0.07892113 0.07846650 0.078500
1,500 0.00001401 0.00006269 0.17757254 0.17757254 0.17655000 0.176625
2,000 0.00003322 0.00008723 0.31568452 0.31568452 0.31386600 0.314000
5,000 0.00051905 0.00032706 1.97302854 1.97302823 1.96166000 1.962500
10,000 0.00415236 0.00143270 7.89211784 7.89211292 7.84665000 7.850000

11.5 Using round Earth as a baseline

An alternative approach to assessing the effects of Earth’s curvature involves placing

the observer on the curve (i.e., ellipsoid) and observing deviations along the tangent

plane from that position as illustrated in Figure 11.9. In this case, distance D would be

measured along the arc resulting in Cartesian coordinate discrepancies of ∆z′ and ∆x′ as

shown in Figure 11.10. The prime (′) notation denotes the measurement of D along the

arc, not the tangent line, where DT denotes the distance D along the tangent line. Since

horizontal and vertical deviations are defined relative to the ellipsoid’s surface, ∆z′ and

∆x′ in the xyz coordinate system are transformed into local ijk coordinates to reflect the

observer’s perspective.

11.5.1 Find equations for offsets ∆x′ and ∆z′

Finding the xz coordinate system offsets involves finding the central angle (∆D)

using Equation 11.28 and using the value of R with the Pythagorean theorem as shown

in Equations 11.29 to find x′ and z′. ∆z′ is the difference between DT and the z coordinate
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Figure 11.9: Measuring deviations relative to a position on the round Earth

Figure 11.10: round Earth offsets, ∆x′ and ∆z′

for the arc’s end point and ∆x′ between the radius (R) and x coordinate for the arc’s

end point as shown in Equation 11.30, where DT = D.
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∆D =
D

R
in radians (11.28)

x′ = R cos ∆D; z′ = R sin ∆D (11.29)

∆x′ = R− x′; ∆z′ = D − z′ (11.30)

11.5.2 Transforming xz offsets into local ik coordinates

Transforming ∆x′ and ∆z′ into local ik coordinate values will show displacements

from the observer’s perspective on the curve. This can be done by assembling the xz

offsets in the form of a vector F (Equation 11.33) from Parc to P1 (Figure 11.10) and

projecting this vector onto ik unit vectors i and k (Equation 11.32). Since z represents

the horizontal direction, it will map to i.

F =

∆z′

∆x′

 (11.31)

i =

iz
ix

 =

sin ∆D

cos ∆D

 ; k =

jz
jx

 =

− cos ∆D

sin ∆D

 (11.32)

Assembling i and k into transformation matrix M and multiplying F by M produces

the deviation vector G in local ij coordinates.
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Table 11.2: Flat Earth deviations from round Earth reference at different distances
along the curved surface

This Study Allan (2008) Cole (2017)

D ∆i ∆k Vertical Vertical Vertical
(m) (m) (m) (m,Rmin) (m, Rmean) (m, Rmean)

100 -0.00000001 0.00078921 0.00078921 0.00078467 0.000785
500 -0.00000104 0.01973028 0.01973028 0.01961660 0.019625
1,000 -0.00000830 0.07892113 0.07892113 0.07846650 0.078500
1,500 -0.00002803 0.17757254 0.17757254 0.17655000 0.176625
2,000 -0.00006644 0.31568451 0.31568452 0.31386600 0.314000
5,000 -0.00103809 1.97302792 1.97302823 1.96166000 1.962500
10,000 -0.00830472 7.89210801 7.89211292 7.84665000 7.850000

M =

iz ix

jz jx

 (11.33)

G =

∆i

∆k

 = M · F (11.34)

11.5.3 Summary of deviations from the round Earth

Table 11.2 shows deviations when using the round Earth as a baseline. Note that

vertical deviations remain nearly identical to values found with a flat Earth baseline;

however, horizontal deviations have twice the value though still negligible. Both Allan

and Cole’s equations closely match the more rigorously derived values, as expected.

Between the flat Earth baseline and round Earth baseline, Allan’s analysis more closely

resembles the round Earth analysis since his vertical deviation runs orthogonal to the

surface of Earth.
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11.6 Conclusion

The two exercises in this chapter showed that Earth’s curvature has a significantly

greater impact on vertical measurements than on horizontal measurements. While sim-

plified formulas for finding vertical deviations can be found in introductory surveying

textbooks, they often go no further in discussing the geometry involved nor do they

relate vertical to horizontal deviations. Additionally, while maximum error limits for

mapping products such as UTM and SPCS maps provide some insights into the maxi-

mum horizontal deviations, they do so for projections of large areas. . . not smaller local

areas, such as those encountered with indoor spaces.

This study provided a simplified in-depth assessment of these deviations with a special

emphasis on comparing horizontal and vertical deviations over distance traveled along the

flat or curved surface. The vertical deviations validated the simplified formulas provided

by Allan (2008) and Cole (2017), showing that a more rigorous analysis provided marginal

— if not negligible — improvement. However, it showed a stark contrast between vertical

and horizontal deviations, with vertical deviations reaching the decimeter level between

one and two kilometers while horizontal deviations remained sub-millimeter. This single

observation can serve as a rule-of-thumb on the geographic limits of indoor maps before

the flat Earth (Cartesian coordinate) assumption begins to break down.

Aside from providing some conceptual insights, this study has limited practical value

for three reasons. First, the model of a tangent plane on a sphere — a form of orthographic

projection — is seldom used in practical mapping. The extremely large vertical deviations

at the upper limits would be mitigated by map projections while the near-zero horizontal

deviations would grow. Second, long sight distances in the real world seldom go in a

straight line; they curve slightly earthward due to diffraction. Finally, gravity’s impact

on surveying equipment will introduce gradual deviations during both the construction
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of the indoor space and follow-on surveys, moving some of the theoretical errors into the

realm of uncertainties.
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Part V

Conclusion
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Chapter 12

Concluding remarks

12.1 State of 3D indoor mapping

This dissertation reviewed the current state of research for generating 3D indoor maps

and models from point cloud data. Areas explored included the strengths and weaknesses

of SfM-MVS photogrammetry; the gridding of indoor space for the long-term sustainabil-

ity of maps; the automatic segmentation of floors, ceilings, and walls from point clouds

of rectangular rooms; indoor-outdoor CRS integration using a point cloud and a build-

ing model; and an investigation on the limits of the flat Earth assumption for indoor

spaces. The review of existing research in conjunction with studies for this dissertation

indicated that 3D indoor mapping still remains at an early stage of development. This

is especially true from a cartographic stand point that would examine issues such as

the symbolic representation of indoor spaces, multiple indoor levels-of-detail, and truly

integrated indoor-outdoor spatial referencing
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12.2 Limits of current research

A review of current methods indicated that roughly half of the studies on indoor map-

ping and modeling stopped at point cloud segmentation, indicating the difficulty posed

by heterogeneous indoor environments and hard-to-capture objects such as windows and

mirrors. Of the studies that moved beyond point cloud segmentation, many generated

2.5D geometric models by extruding footprints of projected wall segments on the floor.

However, at least one study attempted to derive greater fidelity by using an adaptive

approach. Additionally, few studies on indoor mapping and modeling provided formal

treatment of coordinate referencing.

12.3 Future opportunities in 3D indoor mapping

Many areas of opportunity exist for future research on 3D indoor mapping and mod-

eling. Point cloud segmentation and geometric modeling from point clouds will continue

to occupy an important area of research interest, especially with the use of artificial in-

telligence. These newer AI-enabled methods will prove beneficial as the availability of

3D indoor point cloud data continues to grow, fueled by a proliferation of inexpensive

and miniaturized 3D LiDAR scanners — some of which may soon fit on a smart phone.

The cartography of indoor space represents another research area that will likely have

far-reaching impacts on the usability of future indoor maps, notably with studies on in-

door LOD and indoor-outdoor coordinate integration. Nearly all research to date on 3D

indoor maps have assumed a single level of cartographic detail, as reflected by LOD 4

in CityGML. Research on indoor-outdoor CRS integration, another cartographic issue,

will also continue to provide opportunities for finding practical ways to seamlessly inte-

grate indoor and outdoor systems. Finally, the growing availability of 3D maps of indoor
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spaces will drive research on uses for those maps in such areas as smart cities, emergency

management, commerce, and augmented and virtual reality.
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