UC Irvine
ICS Technical Reports

Title
Using critics to support software architects

Permalink
https://escholarship.org/uc/item/8hb1n5df

Authors

Robbins, Jason E.
Hilbert, David M.
Redmiles, David F.

Publication Date
1997

Peer reviewed

eScholarship.org

Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/8hb1n5df
https://escholarship.org
http://www.cdlib.org/

Notice: This Material -y
may be protected o
by Copyright Law
(Title 17 U.S.C.)

Using Critics to Support Software Architects

Jason E. Robbins, David M. Hilbert, David F. Redmiles
{jrobbins,dhilbert,redmiles }@ics.uci.edu

Technical Report UCI-ICS-97-18
Department of Information and Computer Science
University of California, Irvine
Irvine, California, 92697-3425
April 1997

ABSTRACT Software architectures evolve as the result of numerous, interrelated design deci-
sions. Existing approaches to analysis, however, tend to provide feedback only after numerous
design decisions have been made. As a result, they do not directly support the evolutionary nature of
the architecture design process or the software architect’s decision-making process. In this paper we
present an approach to architectural analysis stemming from previous work in domain oriented
design environments that is based on critics and criticism control mechanisms. This approach more
closely supports evolution and the needs of architects by providing feedback as individual design
decisions are being considered. We discuss the theoretical motivations for the critic-based approach,
the implementation and management of critics, support for diverse and extensible groups of critics,
and the combined use of critics and existing analysis techniques.
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ABSTRACT

Software architectures evolve as the result of numerous,
interrelated design decisions. Existing approaches to
analysis, however, tend to provide feedback only after
numerous design decisions have been made. As a result,
they do not directly support the evolutionary nature of the
architecture design process or the software architect’s
decision-making process. In this paper we present an
approach to architectural analysis stemming from previous
work in domain oriented design environments that is based
on critics and criticism control mechanisms. This approach
more closely supports evolution and the needs of architects
by providing feedback as individual design decisions are
being considered. We discuss the theoretical motivations for
the critic-based approach, the implementation and
management of critics, support for diverse and extensible
groups of critics, and the combined use of critics and
existing analysis techniques.
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INTRODUCTION

Software architectures, like the systems they model, are
products of evolutionary design processes. If architecture is
to fulfill its potential in supporting software design, it must
be accompanied by analysis techniques that take into con-
sideration the evolutionary nature of the architecture design
process as well as the cognitive needs of software architects.

Existing approaches to architectural analysis are coarse-
grained and discrete. Design decisions are entered into a
formal representation. That formal representation is fed as
input to analysis tools which produce output regarding
properties of the representation. Finally, architects interpret
the output, relate it back to design decisions embodied in the
representation, and prepare the design for another iteration.
In sum, existing approaches require the architect to suspend
the evolution of the architecture by creating a snapshot for

analysis and, consequently, to suspend or delay the
decision-making process by clustering modifications
between evaluation opportunities. This design process is
coarse-grained, operating on whole architectures as units.
The cognitive process is correspondingly coarse-grained,
dealing with clusters instead of individual decisions.

In contrast to this coarse-grained, discrete approach, we
propose a fine-grained, concurrent approach. Namely, we
advocate the use of critics to perform analysis on partial
architectural representations while architects are considering
individual design decisions and modifying the architecture.
Analysis is concurrent with decision-making so that
architects are not forced to suspend the architecture's
evolution or cluster their decisions in preparation for analysis.
Feedback from critics can be used by architects while they
are considering design decisions. Furthermore, critic
feedback is directly linked to elements of the architecture
thereby assisting architects in applying the feedback in
revising the design. We believe this approach more directly
supports the evolutionary nature of the architecture design
process and the cognitive needs of software architects.

The critic-based approach to analysis extends on-going
research by Fisher and colleagues as discussed in the related
work section. Our work in applying the approach to
software architecture has led us to investigate a variety of
new theoretical and implementation challenges. Specifically,
we discuss four challenges faced by architectural analysis
techniques intended to support software architects: (1) the
evolutionary nature of the architecture design process, (2)
the cognitive needs of architects, (3) support for diverse
analyses, and (4) trade-offs between authoritative versus
informative approaches. We then present implementation
issues of the critic-based approach to architectural analysis.
An extensive discussion section describes in detail how our
approach addresses the problems outlined above, and how
our approach is evaluated.

ARCHITECTURE DESIGN PROBLEMS

The Evolutionary Nature of Architecture Design

Software architectures are evolutionary artifacts. They are
evolutionary in that they are constructed incrementally as the
result of many interrelated design decisions made over
extended periods of time. We visualize design as a process in
which a path is traced through a space of branching design
alternatives [27]. A particular software architecture can be
thought of as a product of one of the possible paths through



Figure 1. A Sketch of a Decision Tree.
Highlighting shows the decisions contained in
one complete design.

this space (Figure 1). Choices at any point can critically
affect alternatives available later, and every decision has the
potential of requiring earlier decisions to be reconsidered.

Analysis techniques that require architects to make
numerous design decisions before feedback is provided do
not directly support the evolutionary nature of the
architecture design process. In terms of our sketch in
Figure 1, such analyses evaluate the products of relatively
complete paths through design space, without providing
much guidance at individual branching points. As a result,
substantial effort may be wasted by building upon poor
decisions before feedback is available to indicate the
existence of problems. Furthermore, when analysis is
performed only after extended design episodes, it may be
difficult to identify where exactly in the decision path the
architect initially went wrong. When substantial effort is
required to formalize details of an architecture before it can
be analyzed, fewer design alternatives will be explored, thus
reducing confidence in the design.

The Cognitive Needs of Architects

Design is a cognitively challenging activity. Much research
in cognitive science has focused on the cognitive needs of
designers in other fields, including traditional architecture.
Since software architects are clearly engaged in a complex
design task, approaches to architectural analysis should take
into account issues raised by cognitive scientists.

Schoen’s theory of reflection-in-action [31, 32] observes that
designers of complex systems do not conceive a design fully-
formed. Instead, they must construct a partial design, evalu-
ate, reflect on, and revise it, until they are ready to extend it
further. Guindon, Krasner, and Curtis noted the same effect
as part of one study of software developers [15]. Calling it
“serendipitous design,” they noted that as the developers
worked hands-on with the design, their mental model of the
problem situation, and hence their design, improved.

The cognitive theory of opportunistic design describes how
designers deviate from plans, even their own plans, in order
to minimize the cognitive cost of context switches between
design tasks [27, 36, 37, 40]. For example, if a decision
raises design issues that require a deviation from the current
process, the architect must either deviate, or mentally defer
those issues in order to continue with the current process.

While deviations from design plans may be desirable from a
cognitive perspective, they may lead designers into a variety
of difficulties as discussed in the Guindon, Krasner, and
Curtis study [15].

Finally, the theory of comprehension and problem-solving
observes that designers benefit from seeing their designs
from different design perspectives [8, 16, 23]. The use of
multiple perspectives divides the complexity of the
architecture and separates concerns [17, 21, 35]. The
availability of multiple perspectives also increases the chance
that an architect will see a simple mapping between one of
them and his or her mental model of the problem being
addressed [24]. Coordination among design perspectives
means that design elements and relationships presented in
multiple perspectives may be viewed and manipulated in any
of those perspectives. Overlap among perspectives provides
shared context and allows the architect to apply knowledge
of one perspective to another, thereby aiding understanding
of new perspectives, and new design issues [29, 30].

Support for Diverse Analyses

Diverse analyses are required to support architects in
addressing diverse design issues, such as performance,
security, fault-tolerance, and extensibility. The need for
diversity in analysis is further driven by the diversity in
project stakeholders and the potentially conflicting opinions
of experts in the software architecture field itself [12, 21].

Conflict will naturally arise in architecture design, and
analysis techniques should be capable of accommodating it.
Accommodating conflict in analysis yields more complete
support, whereas, forbidding conflict essentially prevents
architects from viewing a design issue from more than one
viewpoint.

Consider, for example, architectural styles [33, 38]. Styles
define the vocabulary of an architecture and a set of rules
that determine if an architecture is well formed.
Architectural styles provide design guidance by suggesting
constraints on design decisions. A given architecture may
nearly satisfy the rules of several diverse styles
simultaneously, and analytical feedback related to each of
those styles might be useful, even if conflicts arise.

Authoritative Versus Informative Approaches

Existing software analysis techniques are extremely
powerful for detecting well-defined properties of completed
systems, such as memory utilization, performance, and the
possibility of deadlock. These approaches adhere to what we
call the authoritative assumption: they support architectural
evaluation by proving the presence or absence of well-
defined properties. This allows them to give definitive
feedback to the architect, but may limit their application to
late in the design process, after the architect has committed
substantial effort building upon unanalyzed decisions.

Such approaches also tend to use an interaction model that
places a substantial cognitive burden on architects. For exam-
ple, architects are usually required to know of the availability
of analysis tools, recognize their relevance to particular
design decisions, explicitly invoke them, and relate their out-



put back to the architecture. This model of interaction draws
the architect’s attention away from immediate design goals
and toward the steps required to get analytical feedback.

We propose an alternative approach to architectural analysis
based on what we call the informative assumption:
architects are ultimately responsible for making design
decisions, and analysis is used to support architects by
informing them of potential problems and pending
decisions. Analyses need not go so far as to prove the
presence of problems, since formal proofs are often not
possible, or even meaningful, on partial architectures.
However, such proofs can be produced under our approach
if it is possible to produce them at all.

Because formal proofs are not required, heuristics can be
used to identify potential problems. This is valuable because
heuristic analyses can identify problems involving design
details that may not be explicitly represented in the
architecture, either because the representation abstracts
away relevant information, or because the architecture is
only partially specified. For example, if limited memory is a
design constraint, but the mapping of modules to hosts is
not explicitly represented yet, then estimating host memory
requirements cannot be done authoritatively. However,
certain features of the architecture (for instance, several
concurrently executing, communicating modules) may
suggest that memory usage is an issue the architect should
investigate before going further.

THE CRITIC-BASED APPROACH

We address the problems raised above through the use of
critics and criticism control mechanisms [11]. Critics are
agents that support decision-making by continuously and
pessimistically  analyzing partial architectures and
delivering design feedback. Criticism control mechanisms
are used to control the execution of critics and manage their
feedback. The goal is to inform the architect without
distracting from the design task at hand.

The critic-based approach supports evolution and the needs
of software architects by providing continuous feedback as
design decisions are made. Analyses can be numerous and
diverse and are implicitly invoked without requiring overt
knowledge or action on the part of the architect. In addition
to analysis of well-defined formal properties, critics deliver
design guidance based on rules of thumb, style guidelines,
empirical data, and other heuristics.

The critic-based approach is neither a replacement for, nor
incompatible with, authoritative analysis techniques. Critics
are simply an alternative way of packaging and using
analyses, and can be used in conjunction with existing tools,
as will be discussed later. Critics and criticism control
mechanisms operate within the context of a design
environment [8, 10].

The Design Environment

Figure 2 presents selected facilities of Argo, our critic-based
design environment for software architecture. The architect
uses multiple, coordinated design perspectives (Figure 3) to
view and manipulate Argo’s internal representation of the
architecture, which is stored as an annotated, connected
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Figure 2. Design Environment Facilities of Argo

Flgure 3. Two Design Perspectlves
Conceptual and Execution

graph. The various perspectives are projections, or
subgraphs, of the internal representation such that each
perspective presents only architectural elements relevant to
a limited set of related issues.



Critics monitor the partial architecture as it is manipulated,
placing their feedback in the architect’s “to do” list
(Figure 4). Argo’s process model serves the architect as a
resource in carrying out an architecture design process,
while the decision model lists issues from the process model
that the architect is currently considering. Criticism control
mechanisms use that decision model to ensure the
timeliness of feedback.

Critics

Critics deliver knowledge to inform architects of the
implications of, or alternatives to, design decisions. In the
vast majority of cases, critics simply advise the architect of
potential errors or areas needing improvement in the
architecture. Only the most severe errors are prevented
outright, thus allowing the architect to work through invalid
intermediate states of the architecture. Architects need not
know that any particular type of feedback is available or ask
for it explicitly. Instead, they simply receive feedback as
they manipulate the architecture. Feedback is often most
valuable when it addresses aspects of the architecture the
architect had not specifically chosen to analyze.

Critics encapsulate domain knowledge, such as well-
formedness of the design, hard constraints on the design,
rules of thumb about what makes a good design, industry or
organizational guidelines or style rules, and the (potentially
conflicting) opinions of domain experts. We can define a
variety of types of critics, each type delivering a specific
kind of knowledge. Correctness critics detect syntactic and
semantic flaws in the partial design. Completeness critics
detect when a design task has been started but not yet
finished. Consistency critics detect contradictions within the
design. Presentation critics detect awkward use of the
notation. Alternative critics remind the designer of
alternatives to a given design decision. Optimization critics
suggest better values for design parameters. These types
serve to aggregate critics so that they may be understood
and controlled as groups. Some critics may be of multiple
types, and new types may need to be defined, as appropriate,
for a given application domain.

We expect critics to be invented for various reasons and by
various stakeholders. Practicing architects may define critics
to capture their experience in building systems and
distribute those critics to other architects in their
organization. Researchers may define critics to support an
architectural style. Component vendors may define critics to
add value to the components that they sell, and to reduce
support costs. Critics may be implemented to speculate
about implications of a given decision based on empirical
data that indicates correlations. Also, existing literature on
architectural styles and system design provides advice that
can be made active via critics.

Some examples of architecture critics are given in Table 1.
These critics perform fairly simple analyses that are mean-
ingful for partial architectures. As the architecture becomes
more fully specified, critics may also make use of external
analysis tools for in-depth analyses (see “DISCUSSION
AND EVALUATION").

Criticism control mechanisms

Each critic performs its analysis independently of others,
checking one predicate, and delivering one piece of design
feedback. Criticism control mechanisms determine which
critics are relevant and timely to design decisions being
considered by the architect. Critics are implicitly made
runnable when the control mechanisms determine that they
are relevant and timely. Computing relevance and timeliness
separately from critic predicates allows critics to focus
entirely on identifying problematic conditions in the
product (i.e., the partial architecture) while leaving design
process issues to the criticism control mechanisms. This
separation of concerns also makes it possible to add value to
existing critics by defining new control mechanisms.

The “To Do” List

In order for the critic-based approach to scale up, design
feedback must be managed so as not to overwhelm or
distract the architect. The “to do” list user interface presents
design feedback to the architect (Figure 4). Critics post “to
do” items as a result of their analyses. The process model
posts “to do” items to remind the architect to finish tasks
that are in progress. The architect may also post “to do”
items as notes or reminders to return to deferred design
explorations. Architects may address issues in any order
they choose, and the list of items may be filtered and sorted
based on various attributes.

Each “to do” item refers back to the architecture, critics,
goals, and process model. When the architect selects an
item from the upper pane of the window in Figure 4, the
associated (or “offending”) architectural elements are
highlighted in all design perspectives and the lower pane
displays details about the open design issue and possible
resolutions. Once an item is selected, the architect may
manipulate the critic that produced that item, send email to
the expert who authored that critic, or follow hyperlinks to
more information.

The “to do” items are a potentially rich source of data for
design rationale. Items are placed on the list to identify open
issues, and removed from the list when those issues are

requests up, notifications down
Select a concrete component

not all processes assigned to hosts
Direct connection

requests up, notifications down

the following ports protocols are unsatisfied for
these services:
#getFromAbove: >> DecrementLifes

[ Done |

Figure 4. The architect’s “to do” list




Name of Critic Critic Type CD::: ;::_'; Explanation
Invalid Connection Correctness Connecting | Mandatory message signatures not satisfied by adjacent compo-
nents in the conceptual architecture
One Up One Down Correctness Connecting | Violation of C2 configuration rules
Simpler Comp. Avail. Alternative Choosing A “smaller” component will “fit" in place of what you have
Too Much Memory Consistency Resources Calculated memory requirements exceed stated goals
Need More Reuse Consistency Choosing Percentage of reusable components is below stated goals
OS Incompatibility Consistency Choosing Components have conflicting environmental requirements

Table 1. Selected Argo architectural critics

resolved. When an item is resolved, it can be appended to a
log for later use as rationale. A description of the resolution
can be entered by the architect or, in some cases, generated
automatically. We will explore this possibility further in
future research.

IMPLEMENTATION ISSUES

This section discusses the implementation of the Argo critic-
based design environment for software architecture. Our
discussion is based on two prototypes. The initial version,
coded in Smalltalk, was demonstrated at ICSE-17. The
current version is implemented in Java. First we discuss the
core elements of our approach: critics and criticism control
mechanisms. We then describe Argo’s own architecture and
the representation of architectures being designed, paying
attention to issues that affect critic authoring. Finally, we
discuss how the critic-based approach can be integrated
with external analysis tools.

Critics

In Argo, a critic is implemented as a combination of an
analysis predicate, attributes for determining relevance, and
a “to do” list item to be given as design feedback. The
stored “to do” list item contains a headline, a description of
the issue at hand, contact information for the critic’s author,
and a hyperlink to more information.

Criticism control mechanisms select critics for execution.
During execution a critic evaluates its analysis predicate and,
if appropriate, constructs a “to do” list item and posts it. We
encode critics as programming language predicates; deciding
on what languages are best for expressing critics is a topic for
future research. Table 2 presents a connection checking critic
in detail. Critics may also place annotations on architectural
elements as a side effect of critiquing. For example, once the
messages flowing across a connector have been computed,
that information can be cached in the connector.

Criticism Control Mechanisms

Criticism control mechanisms ensure relevance and
timeliness by using explicit models of the architect’s goals
and process. Argo uses a combination of different criticism
control mechanisms to determine whether each critic should
be runnable. Predefined control mechanisms check a critic’s
type against a table of runnable types, check a critic’s
decision category against the decision model, or check a
critic’s hushed state.

Attribute Value
Name Invalid Connection
Type Correctness
Decision Connecting
Category
Smalltalk [:comp | | invalidServices |
Predicate invalidServices :=
comp inputs , comp outputs
select:[:s | s isSatisfied not].
invalidServices isEmpty not. ]
Description | “The following port protocols are unsatisfied for
these services:” <<a list of ports and services>>
More Info http://www.ics.uci.edu/pub/arch/
Expert jrobbins @ics.uci.edu

Table 2. Details of the Invalid Connection Critic

Argo’s user interface allows groups of critics to be made
runnable or unrunnable by type. Architects may also “hush”
individual critics — rendering them temporarily unrunnable
— if their feedback is felt to be inappropriate or too
intrusive. If the architect does not understand a particular
critic, or believes it to be incorrect, Argo provides a way to
send structured email to the maintainer of that critic. These
control mechanisms were chosen to provide a range of
semantic depth and user effort, although new control
mechanisms may be implemented and combined with these.

Argo models the design process as a task network, where
each task is focused on design decisions of a certain type.
The architect marks each task as being done, in progress, or
future. This marking determines which decisions should be
listed in the decision model as decisions the architect is cur-
rently considering. With varying degrees of effort, Argo’s
process model, decision model, and “to do” list can be inte-
grated with full-scale process tools, such as Endeavors [5].

Argo provides a critic run-time system that selects runnable
critics and executes them in a separate thread of control.
Critics may also be triggered by specific architecture
manipulations. Another thread of control periodically re-
examines each “to do” list item and removes items that are
no longer applicable.

Design Environment Architecture
Figure 5 shows a screen shot of Argo modeling its own
architecture in the C2 style [38]. The topmost row of
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Figure 5. A Screen Shot of Argo Modeling its Own Architecture in the C2 Style
(text at right and figure at bottom are unstructured graphical annotations)

software components implements the kernel of the design
environment. The second row allows multiple, independent,
domain-oriented extensions to the kernel. Each extension
defines new facilities if needed, e.g., code generation
support in the software architecture extension. The third row
contains active design documents for the architecture being
worked on. These documents are active in that they contain
design materials (e.g., architectural elements) that carry
their own domain knowledge and behavior in the form of
critics, simulation routines, and code generation templates.
Each extension also provides shared domain-oriented active
documents containing a palette of active design materials,
reusable design templates, and supporting artifacts. Shared
active design documents can be used to share models of
software components over the Internet. Individual
architectures stored in user design documents may reference
(rather than include) code and data in the shared active
documents. The fourth row contains user interfaces for
architects to access the data and behavior of the active
documents. The fifth row of components provides I/O
needed to interact with the architect. In C2 style
architectures, components in a given row may only send
messages requesting operations upward, and messages
announcing state changes downward. Between each row of
components is a connector that broadcasts messages sent
from one side to all components on the other side.

One advantage of this design environment architecture is
that artifacts from various supporting domains may be used.
For example, domain-oriented extensions for software
architecture, design rationale, and process modeling could
be active simultaneously. Each of these supporting artifacts
may be manipulated, visualized, and critiqued. This
provides software architects with first-class supporting
artifacts for rationale and process.

In designing this architecture we have attempted to shift
away from a large, knowledge-rich design environment that
manipulates passive design materials to a smaller,
knowledge-poor design environment infrastructure that
allows the architect to interact with active design materials.
The same trend toward distributing knowledge and behavior
to the objects of interest can be observed in the general rise
of object-oriented and component-based approaches to
software design. Active design materials can be thought of
as first-class objects with local attributes and methods. The
analysis predicates of critics can be thought of as methods.

The advantages of this shift include increased extensibility,
scalability, and separation of concerns in the design
environment, and stronger encapsulation of design
materials. Extensibility is increased because each
architectural element may be packaged with its own
attributes and analyses, and thus define its own semantics,
which need not be anticipated by the design environment
builder. Scalability in the number of critics is increased
because there is no need for a central repository of critics —
critics simply travel with the design materials. Concerns are
separated because the design environment need only
provide infrastructure to support analyses packaged as
critics, and need not contain any analysis itself.
Encapsulation is enhanced because attributes needed for
analysis can be made local to the design materials, thus
allowing local name spaces and data typing conventions. All
of these are important in supporting the evolution of
architectures, design environments, and software
architecture communities over time.

In Argo, an architecture is represented as an annotated,
connected graph made up of nodes, ports, and arcs. Several
other architecture description languages (ADLs) are based
on similar underlying concepts, including the C2 ADL [19]



and ACME [14]. Figure 6 shows how critics might be
associated with architectural elements in a variation of
ACME. The C2_Component template includes a sample
critic to check a C2 style rule. The Graph_Editor component
defines an additional critic to remind architects of a previous
experience with that component. Argo defines design
material types via Smalltalk and Java classes with private
data and access methods. An ADL with that level of
encapsulation would be desirable.

Integration with External Analysis Tools

Explicit invocation of external tools scales well in terms of
machine resources, but not in terms of human cognitive
ability. We believe the cognitive burden of interacting with
external tools may be enough to prevent the effective use of
such analyses. However, we can address this issue by
combining the authoritative and informative approaches.

Existing analysis tools can be repackaged as critics by
modifying them to make pessimistic assumptions in cases
where exact information is not available in the partial
architecture. Alternatively, external batch analysis tools can
be paired with “proxy critics” that remind the architect
when those tools would be useful. For example, a critic
could watch for modifications that affect the result of the
batch analysis and check that the architecture is in a state
that can be analyzed (i.e., it has no syntax errors that would
prevent that particular analysis), and then re-run the batch
tool. Here, the critic supports the design process with
knowledge about available tools and their applicability to
the current partial architecture. Ideally, the output of
external analyses should be parsed into individual “to do”
list items and linked back to the architecture.

DISCUSSION AND EVALUATION

In this section we discuss and evaluate how well our approach
addresses the problems raised in the beginning of the paper.
The first four subsections evaluate how well the features of
Argo address the identified problems, the fourth focusing on
trade-offs between authoritative and informative approaches.
The mapping between Argo features and identified problems
is summarized in Figure 7. The last subsection deals with
empirical evaluation.

The Evolutionary Nature of Architecture Design

The evolutionary nature of the architecture design process
suggests the need for early and continuous decision-making
support. In Argo, decision-making is supported by critics
and the “to do” list.

The effectiveness of a critic in identifying design decisions
that need to be made or revised is determined by the
specificity of its predicate. The effectiveness of design
feedback is determined by the quality and relevance of the
supplied information. The critic author is responsible for
both the predicate and the information. Our approach cannot
guarantee the quality of the author’s work, but it does help
the architect take advantage of critics from various authors.

Effective decision support demands timely feedback. Critics
can positively detect issues very quickly after they are
evident in the partial design, typically within seconds of the

Template C2_Component () : Component = Component {
Ports : { top = C2_Port; bot = C2_Port; }
Properties : {

One_Up_One_Down_Critic : Critic {
Headline : “One Up One Down”;
Type : C2_Style_Rule;
Decision_Category : checking;
Analysis_Predicate :
[ (top connections size) > 1 OR (bot connections size) > 1 J;
Description : “Instead of connecting multiple message pathways to
a single port, try connecting to a single C2 connector to broadcast messages”;
Expert : “taylor@ics.uci.edu”
1

Template T_Graph_Editor( Threads_To_Spawn, Redraw_Method ) :
Component = C2_Component {

;ropenies L} |
Redraw_Responsiveness_Critic : Critic {
Analysis_Predicate :
[ Threads_To_Spawn < 2 AND Redraw_Method = Display_PS J;

Description : “The vendor claims one thread is enough, but we
found that using more than one reduced flicker;

11
gys!em Argo = configuration {
Components : {

Graph_Editor = T_Graph_Editor(3, Bitbit);
}

=
Figure 6. Specifying Active Architectural Elements

design manipulation that introduces the problem. Critics can
detect problems sooner than authoritative analysis techniques
because critics analyze partial architectures and are invoked
automatically. However, conflicts between design decisions
are often not evident until the last decision is made. Critics
can pessimistically predict design conflicts and problems
before they are evident in the partial design. Criticism control
mechanisms help trade early detection for relevance.

The Cognitive Needs of Architects

Direct manipulation editing and critics support the cognitive
needs identified by reflection-in-action. Effective reflection-
in-action depends on the architect’s ability to incrementally
enter a design, see problems in the design, and revise the
design. Direct manipulation allows the architect to enter,
visualize, and modify the architecture. The use of critics,
rather than syntax directed editors, allows the architecture to
be entered incrementally while still detecting errors. Critics
support reflection by identifying potential problems that the
architect is unable to identify because of lack of knowledge
or computational effort. The “to do” list and design
perspectives work together to focus revision by indicating
the relation between feedback and the “offending” parts of
the architecture.

The cognitive needs identified under opportunistic design are
addressed by critics, the “to do” list, and the process model.
Effective opportunistic design depends on the architect’s
ability to choose which task to do next and to defer tasks that
would be better done later. Critics help identify design tasks
that need to be (re)done, while the “to do” list gives the
architect the visibility and flexibility to (re)order tasks in
reaction to the state of the partial design. Furthermore, the
“to do” list supports deferred commitment to design details
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Figure 7. Problem-to-Feature Mapping

by reminding the architect to eventually return to deferred
tasks. Argo’s process model helps visualize the overall
process and (re)orient the architect in that process after a
design excursion. Argo primarily informs the architect of
which tasks need to be performed. Additional support could
be provided by actually estimating the degree of relation
between recent decisions and pending design tasks.

Multiple, coordinated design perspectives on the
architecture support the cognitive needs identified under
comprehension and problem solving. To be effective,
architecture design environments must support the
construction of perspectives appropriate to project
stakeholders and help architects understand the
relationships among the contents of different perspectives.
Argo supports construction of diverse perspectives with
customizable presentation graphics and incremental
formalization, as described in [29]. Argo indicates the
relationships between perspectives via visual cues such as
highlighting all presentations of an architectural element
when it is selected in any view.

Support for Diverse Analyses

Pessimism and the informative assumption together reduce
the critic author’s burden of precision, thus opening
oppertunities for critic authorship. Critic authors may write
predicates that identify potential problems, which is easier
than proving the existence of problems. Experts may author
speculative critics to test whether a specific piece of
guidance actually impacts architects’ decisions. In both
cases, the architect has the final responsibility for resolving
or ignoring the feedback produced.

The “to do” list and informative assumption together allow
the architect to make use of diverse (or even conflicting)
expert opinions and rules of thumb. For example, one critic
could advise that there are too many components at a given
level of the architectural decomposition and suggest further
hierarchical decomposition, while another might advise that

there are too many levels and suggest consolidating existing
levels. The architect would use the *“to do” list to browse all
available feedback relevant to these issues and then make a
decision.

Effective use of diverse critics by the architect also depends
on the ability to obtain and manage large numbers of critics.
In the Java version of Argo, critics are implemented as
individual classes and may be dynamically loaded over the
Internet. That allows architects to obtain critics authored by
diverse, independent experts. To manage large numbers of
critics, we associate critics with the definitions of active
design materials. Critics are loaded only when those
particular design materials are used. This limits the number
of critics that are present at a given time. Furthermore,
associating critics with design materials allows the
producers of software components to supply models of those
components with embedded critics. For example, in a
software component marketplace, an architect might
download several graph editing component models, try them
in the current architecture, consider the resulting design
feedback, and make an informed component selection.

Authoritative Versus Informative Approaches

This paper has primarily described critics that reside in a
design environment and independently perform fairly
“inexpensive” analyses. The advantage of these critics
comes primarily from the cognitive support they provide.
Architects also need “expensive” analytic support, e.g., to
detect potential deadlock situations. This subsection
evaluates the critic-based approach as a trade-off between
in-depth, authoritative analysis and informative, cognitive
support, and discusses the combination of the two. The
discussion is summarized in Figure 8.

Critics are able to support the cognitive needs of the architect
because they are integrated with the architect’s decision-
making process. This integration demands that critics be
dynamically integrated into the design environment so that
they have access to the partial architecture as it is being
manipulated and to the decision and process models. Critics
often provide only “inexpensive” analyses due to the fact
that they reside in the design environment and must perform
their analyses quickly or incrementally. However,
inexpensive analyses need not be trivial or obvious. The
value of analysis comes from its impact on the quality of the
architecture and the productivity of the architect.

Special purpose analysis tools are not limited by the
interaction requirements placed on critics. They can be used
for more computationally intensive problems, and often
require sophisticated storage and sharing of intermediate
results. The time required to perform computationally
intensive analyses introduces an unavoidable lag between
decision-making and reflection. A much larger barrier to
cognitive support is the cognitive burden that external tools
place on architects. This cognitive burden is not merely due
to user interface oversights, it stems from the lack of design
process knowledge in the external analysis tools.

For design decisions that do not interact with others, it is
feasible to combine the critic-based approach with
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authoritative analysis. This would provide answers to
difficult questions at the time when those answers are needed
most. Unfortunately, for most design issues, there are inherit
trade-offs that prevent achieving both informative and
authoritative feedback. There will always be a gap between
the making of a decision and the analysis of that decision.
That gap allows the passing of time, expenditure of effort,
and loss of cognitive context. When one decision is analyzed
in isolation, the gap may be small, but the feedback is at best
informative because that decision interacts with others that
have not been made yet. When analysis is deferred until
groups of interrelated decision have all been made, the gap is
necessarily larger, but the feedback may be more
authoritative because more interactions are known. When
analysis is deferred until after all decisions have been made,
feedback may be completely authoritative.

The use of proxy critics (as described in “Integration with
External Analysis Tools™) enables a choice of points along
the trade-off curve. With proxy critics, architects may use
authoritative tools without incurring the cognitive burden
normally associated with external analysis tools. The
external tool performs the main analysis of the architecture,
while the critic performs analysis to determine when the
main analysis should be applied. This is similar to the
separation of concerns that exists between critics and
criticism control mechanisms.

Empirical Evaluation
The preceding subsections have provided theoretical
evaluation of the critic-based approach. This subsection
outlines our current and planned empirical evaluation of
Argo as a working tool.

To evaluate Argo’s support for scalability and extensibility
we will attempt to apply the Argo design environment
infrastructure to a variety of application domains. Argo has
been used to model C2 style architectures for graphical user
interface intensive systems. A project is already underway
to apply the Argo infrastructure to object-oriented, real-time
systems design. To evaluate how well critics can capture
design expertise, we will attempt to cover the guidance
provided by other authors in these domains. Capturing C2

design expertise is fairly straight forward since C2 is
described as a set of rules that can be implemented as
critics. Heuristics on object-oriented and real-time systems
design are available from a variety of sources, e.g., [3, 26],
which provide a mixture of explicit rules, assumptions,
processes, and notations.

To evaluate Argo’s support for the cognitive needs of
architects, user testing will focus on comparing the
productivity of architects using Argo with various features
enabled or disabled. Our experiments will focus on:

» the lifespan of design errors when critics are enabled
versus disabled;

* the fraction of design errors that are eventually fixed
when critics are enabled versus disabled;

= the perceived relevance of design feedback when indi-
vidual control mechanisms are enabled versus disabled;

* the number of forgotten design ideas when a predefined
design process is strictly enforced versus provided as a
resource;

* the number of design alternatives explored when various
Argo features are enabled versus disabled; and,

* comprehension and recall of a sample design when the
architect is allowed to examine it through multiple per-
spectives versus a single perspective.

The results of these tests should give weights to the arcs in
Figure 7 so that we can measure the degree to which
identified problems are covered by Argo features. In
reaction to this information we may add or revise features.

RELATED WORK

Our focus on the cognitive needs of designers stems from
the work of Fischer and colleagues [9, 10] and is motivated
by Engelbart’s research on augmenting people’s ability to
solve design problems [5, 7]. In attempting to apply design
environments to the domain of software architecture, we
have found that the complexity of designing large software
systems introduces new challenges that call for new or
revised design environment facilities [28]. We extend
previous design environment facilities to add support for
cognitive needs identified in the cognitive theories of
reflection-in-action, opportunistic design, and
comprehension and problem solving.

The Hydra design environment [12] (for kitchen floorplans)
allows designers to specify design goals as a series of
domain-oriented questions and answers; criticism control
mechanisms in Hydra activate only critics that are relevant
to the specified goals. Argo provides a similar ability to
specify  architectural goals. The Framer design
environment [25] (for GUI window layout) models the
design process as a linear sequence of steps; criticism
control mechanisms in Framer activate only critics that are
relevant to the current step in that process model and
prevents the user from moving on to the next process step
until outstanding criticism has been resolved. Argo goes




beyond the simple process model of Framer to provide a
flexible process model that is more appropriate for software
architecture design.

Aesop [13, 33] is a tool that generates style-specific
software architecture design environments from a set of
formal style descriptions. Aesop primarily addresses
requirements of architecture representation, manipulation,
visualization, and analysis, without providing explicit
support for evolutionary design or the architect’s decision-
making process. For example, architectural manipulations
that violate style rules may fail without providing any
guidance to the architect [33]. In Aesop, most analysis is
performed by external tools that are explicitly invoked by
the designer. Other software architecture design
environments such as DaTE [4] and MetaH [39] also focus
on systems-oriented requirements rather than the architect’s
cognitive needs. Support for systems-oriented requirements
is obviously needed; we have assumed that such support
will be provided and shifted our focus to cognitive needs.

Research to date has produced a diverse set of authoritative
architectural analysis techniques. They include static
techniques — such as determining deadlock based on
communication protocols between components [2] and
checking consistency between architectural refinements [18,
20] — as well as dynamic techniques such as architecture
simulation [18]. We hope to combine this research with the
critic-based approach to produce tools that provide more
complete support for evolutionary architecture design.

SUMMARY AND FUTURE WORK

In this paper we have presented the critic-based approach to
software architecture analysis. Argo, our software
architecture design environment, follows this approach to
support architectural evolution and the architect’s decision-
making process. Critics continuously supply pessimistic
feedback to advise the architect of problematic or pending
design decisions. Criticism control mechanisms limit the
execution of critics to keep feedback relevant and timely.

We have also presented an architecture that separates
reusable design environment infrastructure from active
design materials that carry their own analyses. Doing so
makes the design environment more extensible and scalable.
Associating critics with the architectural elements suggests
a way for ADLs to increase encapsulation. Diverse analyses
are important for supporting the diverse issues arising in
architecture design, and the diverse interests of stakeholders
and the software architecture research community. The
critic-based approach supports diversity by removing any
assumption of cooperation among analysis developers, and
by decoupling the architect’s cognitive burden from the
number of available analyses.

In future work we will continue the themes of our current
research. Further identification of the cognitive needs of
architects will lead to new design environment facilities to
support those needs. We intend to explore the trade-off
between the depth and timeliness of feedback. In doing so
we will develop a methodology for integrating external
analysis tools as discussed above and investigate critics
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which, over the entire course of the design process,
accumulate shared annotations on design materials and
perform more in-depth analyses.

It is our goal to develop and distribute a reusable design
environment infrastructure that others may apply to new
application domains. Successful usage of our infrastructure
by others will serve to inform and evaluate our approach.
An initial Java version of Argo is available via http://
www.ics.uci.edw/pub/arch/.
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