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ARTICLE OPEN

Statistical uncertainty quantification to augment clinical
decision support: a first implementation in sleep medicine
Dae Y. Kang1, Pamela N. DeYoung1, Justin Tantiongloc2, Todd P. Coleman3 and Robert L. Owens 1✉

Machine learning has the potential to change the practice of medicine, particularly in areas that require pattern recognition (e.g.
radiology). Although automated classification is unlikely to be perfect, few modern machine learning tools have the ability to assess
their own classification confidence to recognize uncertainty that might need human review. Using automated single-channel sleep
staging as a first implementation, we demonstrated that uncertainty information (as quantified using Shannon entropy) can be
utilized in a “human in the loop” methodology to promote targeted review of uncertain sleep stage classifications on an epoch-by-
epoch basis. Across 20 sleep studies, this feedback methodology proved capable of improving scoring agreement with the gold
standard over automated scoring alone (average improvement in Cohen’s Kappa of 0.28), in a fraction of the scoring time
compared to full manual review (60% reduction). In summary, our uncertainty-based clinician-in-the-loop framework promotes the
improvement of medical classification accuracy/confidence in a cost-effective and economically resourceful manner.

npj Digital Medicine           (2021) 4:142 ; https://doi.org/10.1038/s41746-021-00515-3

INTRODUCTION
The practices of machine learning and artificial intelligence have
seen rapid implementation in many facets of today’s society,
spanning multiple fields from industrial automation, smart energy
and transportation, the internet of things, and medicine1. In recent
years, there have been many machine learning algorithms for
classification and inference leading to automated interpretation of
clinical data and generation of decision support tools2. As
medicine trends towards data-driven practices fueled by aggrega-
tion of health and physiologic data points with increased
frequency—through the likes of passive monitoring via consumer
wearables and initiatives such as the All of Us research program—
such analytical methods have become necessary for scalable
interpretation and exploration of these data. Recent examples
demonstrating the promise of machine learning tools in medicine
are Google’s classification of cardiovascular risk from retinal
images3 and Apple’s watch-based classification of atrial fibrilla-
tion4. Each of these examples (and many others) seek to
characterize and identify clinically relevant adverse health out-
comes from stores of data acquired both in and out of the
hospital, in an attempt to build a prospective classifier for
anticipating human health decline.
Generally, classification algorithms work by utilizing a mean-

ingful subset of raw data as features to best categorize the data
into classes of interest. In the case of a probabilistic classifier, a
simple way to determine the most appropriate class given the
data is to choose the class that maximizes the algorithm’s
mathematical argument—the class with the highest likelihood.
The result is a classification/label of the data (or estimate of a
latent state from which the data were observed) provided in an
automated fashion. This basic method of classification can be
performed through a variety of machine learning methods—
supervised and unsupervised. Though the field of machine
learning has progressed in methods of classification, clustering,
regression, etc., its measures of success tend to focus on the

accuracy of classification: did the algorithm get the answer correct,
possibly compared to some known ground truth? There exist many
methods for assessing the correctness/incorrectness of an
algorithm; but when the algorithm is incorrect, in general we do
not ascertain how incorrect it might be, or how uncertain the
output was to begin with. The same thinking is useful even when
an algorithm is correct compared to the truth—how correct was
the algorithm during classification? In practice, knowledge of
some underlying classification or categorization uncertainty may
be useful to better understand how such algorithms work, do not
work, and how best to implement their outputs in an interactive
framework that would allow for manual review of areas of
uncertainty.
Generally, a total measure of uncertainty can be broken down

into two components: epistemic uncertainty (that which is
knowledge-based, model-driven, systematic, reducible) and alea-
toric uncertainty (that which is data-based, statistical, random, or
irreducible in nature)5. Furthermore, aleatoric uncertainty can be
constant (homoscedastic) or vary as a function of the data
themselves (heteroscedastic)6. The field of uncertainty quantifica-
tion has seen a proliferation of research characterizing and
leveraging these different aspects of uncertainty through novel
implementations using Monte Carlo dropout, variational auto-
encoders, Bayesian neural networks, deep learning ensembles,
and uncertainty-aware model architectures7. To date, much of this
work has been demonstrated on deep learning and reinforcement
learning frameworks, with fewer implementations demonstrated
using more “traditional” machine learning methods that generally
outperform on smaller datasets.
Uncertainty as a metric has been used in many ways—most

notably in the form of entropy, a central tenet in information
theory8 and statistics9, with applications as diverse as monitoring
infection disease outbreaks10, natural language processing11, and
genomic sequence analysis12. Within the context of medicine,
pairing uncertainty measures with a label or action has been
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applied to applications in radiology/nuclear medicine13 and more
recently in the classification of diabetic retinopathy14. Still, the
narrative for machine learning in medicine could improve through
incorporation of algorithm uncertainty with each clinical estimate.
In this sense, algorithmic outputs could have more subtlety.
Instead of only a “statement” or firm decision (possibly rivaling the
manual equivalent across a large dataset), there could be
“estimates” accompanied by a notion of “doubt.” Ultimately, such
an approach would serve to add error bars around algorithms and
their decisions, allowing clinicians to find confidence in algorithms
and enabling a consensus-based approach to medical decision-
making. Put another way, such an approach may allow completely
automated review of data judged to be of high certainty/low
uncertainty, while drawing manual review to areas of low
certainty/high uncertainty.
To this end, we describe a novel methodology by which a

notion of “uncertainty” can be derived from the conventional
outputs of modern probabilistic classifiers and re-incorporated as
a mechanism for feedback in decision support. We used
automated sleep staging as a toy example of this methodology,
wherein epoch-by-epoch sleep architecture was estimated using
two machine learning algorithms. Along with sleep stage
estimates, we used the algorithms’ conditional posterior prob-
abilities to calculate multiple measures of uncertainty (e.g.
posterior variance, Renyi entropy) at each classification epoch.
We determined the utility of labeling “uncertain” epochs based on
their Shannon entropy, by which uncertain epochs were high-
lighted to allow targeted clinician-in-the-loop review by an expert
and the accuracy of subsequent “clinician+ algorithm” results
were re-evaluated. The result was a method allowing insight to
algorithm performance a priori—without the need to ascertain
algorithm correctness to ground truth beforehand—and a
mechanism to determine whether an arbitrary classification
output should be flagged for further review. If generalized, this
method can provide uncertainty measures as a means to inform

decision making, classification performance, and online algorithm
training in any area of medicine.
Kompa et al.15 provide an overview of the advantages to

communicating uncertainty when using machine learning meth-
ods within the context of medical decision making. In particular,
they argue that decision-making tools should have the ability to
say “I don’t know” and seek additional human expertise. Such an
approach has been used by Abdar et al.16 to classify skin lesion as
benign, malignant, or “I don’t know”. Similarly, Filos et al.17 expand
this application to the case of screening for diabetic retinopathy.
They also argue not only that uncertainty could be used to
determine the need for expert opinion, but that the degree of
uncertainty could be used to prioritize those needing more rapid
human review. While automated sleep staging has advanced
considerably to levels approaching human expert decision
making, discrimination between certain sleep stages (e.g. wake
and N1) or accuracy for specific patients, especially those with
common sleep fragmenting disorders such as obstructive sleep
apnea (OSA), remains problematic18. Thus, high-throughput sleep
analysis requires both automated analysis and the ability to
pinpoint studies that require human expert clinician review.

RESULTS
Automated scoring and epochs with uncertainty
Subject data such as Apnea-Hypopnea Index, number of epochs/
% of total overnight sleep study to be reviewed by clinician, and
Cohen’s Kappa are shown in Table 1. For Cohen’s Kappa, four
different scoring methods were implemented: (1) initial auto-
mated estimate, (2) automated+manual review, (3) automated+
clinically relevant review, and (4) automated+ substitution.
To observe the maximum theoretical possible benefit provided

by algorithm-based uncertainty quantification and manual review,
we substituted uncertain epochs with the sleep stages in
corresponding epochs of the ground truth scoring. In this manner,

Table 1. Subject data (e.g. AHI), per-subject accuracies, epochs reviewed, scoring time and accuracies.

Cohen’s Kappa agreement to ground truth

Subject AHI
(events/h)

# of epochs targeted
for review (% of study)

Review
time (min)

Automated Automated+
review

Automated+ clinically
relevant review

Automated+
substitution (best)

4 0 222 (20%) 16 0.63 0.66 0.70 0.77

5 1 194 (26%) 33 0.71 0.73 0.77 0.87

15 1 181 (26%) 15 0.62 0.63 0.66 0.80

6 2 276 (25%) 21 0.55 0.54 0.60 0.68

19 2 123 (18%) 16 0.70 0.76 0.79 0.91

3 2 186 (28%) 29 0.67 0.70 0.76 0.85

17 2 389 (22%) 28 0.49 0.48 0.54 0.62

18 3 122 (21%) 18 0.73 0.74 0.79 0.88

20 3 208 (28%) 23 0.64 0.64 0.67 0.80

16 3 173 (38%) 23 0.63 0.71 0.76 0.89

12 7 581 (51%) 31 0.25 0.36 0.40 0.64

13 14 384 (39%) 32 0.38 0.48 0.53 0.74

14 14 507 (53%) 32 0.29 0.35 0.47 0.75

8 19 353 (72%) 30 0.48 0.47 0.67 0.90

2 22 248 (46%) 35 0.63 0.51 0.63 0.93

10 28 312 (45%) 37 0.55 0.57 0.64 0.90

11 33 386 (48%) 33 0.48 0.47 0.53 0.83

9 60 258 (81%) 40 0.55 0.15 0.70 0.95

7 83 278 (49%) 28 0.54 0.46 0.57 0.85

1 94 400 (62%) 28 0.40 0.40 0.56 0.96
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we assumed that any type of manual review would result in the
exact scores provided by the full-PSG scoring, and would indicate
the best possible increase in Cohen’s Kappa agreement through
scoring intervention via manual review. These automated+
substitution results are illustrated in Fig. 1a, for all 20 subjects,
stratified by their OSA severity class, along the % of each
respective study marked for uncertainty review. We found that
perfect correction of uncertain epochs would shift the median K
value significantly (0.55→ 0.85; p= 7.2e−9), as compared to initial
automated estimates, and that manual review would provide
relatively diminishing returns for decreasing % of study to review.
We also found that agreement values trended downward with
increases in % of study to review, implying that algorithm
uncertainty is associated with overall decreased classification
accuracy. Interestingly, using OSA severity stratification, we
observed that the studies requiring the least manual review were
all HN subjects, and that there is an observable relationship
between increased % of study to review and increased OSA
severity class.
Surprisingly, manual review did not uniformly result in the

expected increase in Cohen’s Kappa agreement, perhaps reflect-
ing uncertainty even between human scorers. Therefore, we
restricted review to epochs that were (1) uncertain and (2) had
clinical relevance—e.g. the truth was between stage REM vs. N3,
as opposed to stage W vs. N1, which is historically difficult to score
correctly, even between experts. These automated+ clinically
relevant review results, alongside the other three scoring
methods, are illustrated in Fig. 1b. We observed only mild
increases in agreement after raw manual review in some study
nights, yielding a decrease in agreement compared to initial
automated estimates. After restricting review to those epochs that
are uncertain between clinically relevant stages, we observed a
statistically significant increase in the group median, compared to
the initial automated estimate group, accompanied by a rebound
of those study nights that decreased in agreement during raw
manual review.

DISCUSSION
We built a framework allowing specific, targeted intervention by a
clinician when an automated algorithm suspects uncertainty in its
own classification. The goal of this work was not to build an
accurate classifier, per se, but to demonstrate that an imperfect
decision support tool (which is often the case) can benefit greatly
from the inclusion of uncertainty information. Thus, we can use
“clinician-in-the-loop” decision making to improve medical
classification accuracy/confidence in a cost-effective and econom-
ically resourceful manner. The novelty of our proposed method
includes: (1) the use of uncertainty; (2) the quantification of

uncertainty derived from the data itself alone, and (3) an example
of how this information can be used to minimize clinician time
and resources while improving accuracy. Most similar to the
methods we describe here, prior work demonstrated entropy
quantification in HMM Viterbi sequences19,20 showing that
uncertainty through entropy could be quantified for the entirety
of a latent sequence of states given observed data and model.
Later work expanded on this work, showing that local (epoch)
uncertainty could be calculated in a computationally efficient
manner in Markov processes21. Our method is a more direct way
to calculate these values on an epoch-by-epoch basis. Although
we focus on an example of such “augmented intelligence” in sleep
medicine, this method can be applied more broadly in health care.
Overall, the primary advantage of the model described here is

the ability to automatically identify epochs of data that present
difficulties to the algorithm, which can then be marked for review
by an expert. This enables efficient and expedient processing of
studies while maintaining the quality required to trust study
scoring. Additionally, the model operates directly on the output
set of probabilities—which are typical of machine learning
classification algorithms—to provide an uncertainty measure for
each epoch scored. Thus, this approach can be generalized to any
other model designed to classify epochs of data into one of any
class labels, so long as the class probabilities add to unity. A
disadvantage of the proposed approach is the defined use of the
entropy threshold. Certainly, this threshold may vary based on the
nature of the problem to be classified or scored, complexity of the
data, and extent of model training. Here, the entropy threshold of
1 bit was designed using an understanding of typical sleep stage
scoring uncertainty. For other applications, domain expertise will
be needed in setting or tuning a threshold value applicable to the
model designed and problem at hand. Another limitation is that
while the classification algorithm and uncertainty tagging is
completely automated, this approach as described requires expert
manual review of uncertain epochs. While there are applications
where expert perspective is warranted, other settings may require
higher throughput (i.e. less manual review) and would need to
accept less accuracy. Potentially, complete automation of uncer-
tainty scoring can be accomplished by a simple rule to select the
second-most likely class in the uncertain epoch, as indicated by
the model, therefore eliminating the need for manual interven-
tion. A more sophisticated approach may be to design a new
machine learning model specifically for vetting and re-scoring
epochs labeled “uncertain.”
Flagging uncertain epochs was performed by simply thresh-

olding uncertainty values for each epoch in a night’s sleep. The
threshold was determined by the value of entropy or variance
corresponding to the probabilities of two stages being equally
likely, with the remaining three essentially zero-valued. As we

Fig. 1 Scoring agreement between ground truth and algorithm. a Idealized results for improvement in agreement between ground truth
and algorithm estimate+ targeted manual review, assuming perfect manual review. b Paired agreement values across different hypnograms.
Red diamonds=median agreement within each group. Significance determined via paired samples t test.
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have shown, this is an easy way to implement uncertainty
quantification and decision support that is also easy to under-
stand. That being said, more sophisticated methods can be
employed to provide uncertainty information. For example,
Bayesian methods can make use of stage-specific probability
distributions of uncertainty alongside prior (expected) information
related to the stages and uncertainty values separately. More
recently, dropout is a method gaining traction for quantifying
uncertainty in neural networks, requiring Monte Carlo sampling of
the predictive posterior while dropping out neurons from the full
network22. This methodology is similar, though it simply requires
the single calculation of any uncertainty measure discussed from
the vector of probabilities at the output during testing.
The metric used to quantify uncertainty, and the cut-off values

used, could certainly vary. A variety of other entropy measures
that obey basic axioms of uncertainty measures exist23. Similarly,
whether to review uncertainty from granular data (e.g. epochs) or
across an entire data set (e.g. whole night recording) likely
depends on the clinical question and need for accuracy. For
example, if the clinical question is the presence/absence of
obstructive sleep apnea, extremely accurate five-stage classifica-
tion of sleep may not be needed. Instead, wake vs. sleep or wake
vs. non REM vs. REM sleep may be sufficient. Similarly, a precise
estimate of the apnea hypopnea index may not be needed, but
rather accurate classification of no disease (AHI < 5/h), mild (AHI 5
−15/h), or moderate to severe (AHI < 15/h) disease may be
sufficient, given both the night to night variability in AHI and that
small differences in AHI do not typically affect clinical decision
making.
Interestingly, one of the problems we encountered in our

approach was the realization that assessment of sleep via PSG is
far from a true “gold standard.” Despite the application of a
uniform scoring standard, human scorers fail to achieve identical
scoring, with classification between certain stages of sleep such as
wake vs. N1 particularly troublesome. Our automated scoring
system also struggled with these distinctions and uncertainty was
often high for these epochs. However, manual review did not
uniformly improve scoring agreement with the gold standard
since human review is equally fraught with uncertainty. Even big
(er)-data approaches fall short of perfect agreement with gold
standard criteria. For example, Sun et al.24 published work
detailing the use of ~1000 features and a feed-forward neural
network model for automated sleep staging. As a study employing
a plethora of biosignals, the study still only achieved Cohen’s
kappa= 0.68 agreement with gold standard manual scoring. Thus,
even brute-force approaches to machine learning may not
accelerate the accuracy—and therefore complete reliance on—
medical classifiers to perfection so quickly. As such, in the interim,
use of uncertainty is one method towards augmented clinical
scoring and classification. One approach has been by Younes and
colleagues who have developed an automated sleep scoring
system which can be used to indicate if certain sleep studies
require manual editing25–27. However, the review rules were not
fully automated in that manual review is often based on
expectations for a “good” night of sleep, and raw thresholding.
Such analysis may miss rare abnormalities of sleep architecture,
such as narcolepsy. Future work is needed to investigate the
appropriate tolerance level of uncertainty (optimal threshold for
flagging/prompting manual review), and applications beyond
clinical labeling such as quick screening/diagnosis of obstructive
sleep apnea.
Generating and utilizing uncertainty information can be done a

priori, that is, without the eyes of manual review. An algorithm can
be designed to score sleep architecture in real time, or score a
whole night of sleep after the recording is done, and accompany
initial estimates and uncertainty of sleep architecture before any
manual scoring or review is required. Uncertainty can be assessed
at the epoch level, or for a whole night of sleep. The latter may be

useful in a rapid hypnogram-based diagnostic tool for sleep
apnea, as one expects sleep apnea severity to be correlated with
increasingly fragmented sleep, a bane of current automated sleep
staging algorithms. Another example of use would pertain to not
solely assessing for OSA, but also ruling it out by the use of
uncertainty measures that may ultimately lead to an alternative
diagnosis such as narcolepsy.
The instantiation of uncertainty quantification here is shown for

sleep staging but can be amenable to implementation in other
facets of digital medicine necessitating uncertainty measures. All
that is required is a set of class probabilities given observations
and a model structure, which is the standard output of many
modern probabilistic algorithms. Uncertainty-based feedback as
outlined seems particularly useful for classification beyond binary
classes, since binary classification (healthy vs. disease) can be
performed by utilizing the min-entropy, a Renyi entropy pertain-
ing to the negative log of the largest class probability. In practice,
using the min-entropy for multi-class classification ignores the
probabilities of all other classes (e.g. classes that are not the most
likely, but that still may be probable for that specific epoch of
classification).
This method of clinician-in-the-loop classification can also be

extended to the arena of consensus-based learning and classifica-
tion, whereby multiple groups tackle a classification problem by
offering opinions of a label, each weighted by their specific
expertise/knowledge of the task at hand20. As originally presented
to our clinicians, we included labels for “certain” epochs and did
not include the label for “uncertain” epochs—these epochs were
presented to clinicians without any label. Our framework could be
altered in several ways. For example, the epoch could be labeled
with the most probable output, or it could be labeled with the two
most likely outputs, e.g. wake vs. N1 sleep. In this latter case, the
clinician could determine whether they need to review and decide
between these two possibilities, depending on the clinical
question. With such a method, the clinician can work more
collaboratively with the algorithm. While there is value to
developing a more collaborative framework, more research is
required to determine the effects/influence of knowing an
algorithm’s decision before a clinical decision making.
One the one hand, the abundance of data likely to be

generated by wearable technologies will overwhelm existing
capabilities of human review. On the other hand, beyond the
concept of perfect machine learning classification, practitioners in
medicine still maintain the ultimate decision-making power:
clinical course is not determined solely by perfect classification,
but rather by a number of other factors including such computer-
aided analyses, from which clinicians make an informed decision.
Clinical procedure is not (and perhaps will never be) at the stage
where computers will fully take the wheel—at this time it is
prudent to foster tools for enabling clinical decision support,
rather than attempt to replace clinician decision making entirely.
Our clinician-in-the-loop framework with automated scoring and
targeted manual review of areas of uncertainty is one method to
balance the data deluge challenge with allowing clinicians to
make final decisions. Additionally, this approach provides
important context. A step towards combining novel methods of
miniaturized sensing (e.g. home sleep test using single-channel
EEG) with automated algorithms can enable human-in-the-loop
computing to have both the clinician and algorithm collaborate
on clinical tasks for improving workflow/operations in a time/cost-
efficient manner. Clinicians often weigh the results from different
tests (history, physical examination, laboratory, imaging) together
to come to a decision. Increasing the input to the clinician from a
single test from binary “yes or no”, to “yes, no, or uncertain” may
aid in this decision process. Finally, it is impossible to anticipate all
clinical scenarios. An ideal clinical support algorithm must perform
robustly, and also know when it cannot.
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Areas for future work include what level of uncertainty is
needed for clinical and research applications. For example, for the
majority of clinical practice, accurate determination of wake vs.
sleep may be adequate as this determination informs the
diagnosis of OSA. In more select cases, such as studies undertaken
for the diagnosis of narcolepsy, reliable identification of sleep
onset and REM sleep are needed. In this latter case, more human
oversight might be needed to confirm the diagnosis. Quantifica-
tion of uncertainty may better highlight where greater diversity of
subjects such as those with more advanced age, those with
chronic diseases, or on medications that affect EEG/sleep will be
needed as sleep staging becomes increasingly automated in the
future, while most algorithms rely on training sets from young and
healthy participants.
In summary, measures of uncertainty can be used to target

uncertain epochs of algorithm-classified health data for manual
review, thereby combining the speed and precision of automated
methods with nuanced pattern recognition via manual scoring.
Low levels of uncertainty can be used as a decision boundary for a
priori screening of (in this case) confident automated sleep
staging, indicating nights of sleep requiring more targeted manual
scoring attention. A notion of quantified uncertainty in physiologic
estimation is a novel method not established. The implementation
of such methods could augment future estimation/prediction
algorithms, and advance the utility of probabilistic digital
medicine.

METHODS
Participants and data
The study was approved by the UCSD Human Research Protections
Program (#160127), and all subjects provided written, informed consent.
Data from 40 subjects were gathered from subjects recruited for full in-lab
PSG at UC San Diego. Of the 40 study nights, 15 were healthy normals
(HN), 8 mild OSA, 8 moderate OSA, and 9 severe OSA. PSG data were
recorded using Spike2 software. For each subject, raw single-channel EEG
(F3-A2) was derived from full PSG recordings. Single-channel EEG was
originally sampled at 250 Hz. Time series EEG data were bandpass filtered
between 0.1 and 50 Hz using a zero-phase forward−backward filter
(Python, SciPy module). As discussed in a previously published study, time-
frequency features of sleep EEG in each epoch of duration 30 s were
constructed via multitaper spectrogram, and a non-parametric likelihood
model for each of the five sleep stages was constructed via kernel density
estimation28. Twenty subjects (5 healthy normals, 5 mild, 5 moderate,
5 severe OSA) were used for training the model. Twenty subjects (10
healthy normals, 3 mild, 3 moderate, 4 severe OSA) were used for testing.
Also, a multilayer perceptron model neural network classifier (hidden
layers of size [32, 64, 32], relu activation, and default parameters as

specified in Scikit-learn 0.19.2) was trained and implemented for
single-channel automated sleep staging. We employed our data in this
algorithm in the same fashion as with the HMM.
After whole-night sleep hypnograms were estimated on a 30-s basis, the

a posteriori probabilities of being in any of the five states were calculated
for each epoch using the forward−backward algorithm for hidden Markov
models. Similarly, softmax probabilities for the neural network were
calculated to obtain epoch-specific probabilities of being in any of the five
states. With these probabilities, we calculated the variance and Renyi
entropy values (for α= 1, 2, and infinity, corresponding to Shannon
entropy, collision entropy, and min entropy, respectively) of the probability
distributions in each 30-s epoch. For an epoch with probabilities p= [p1,…
p5], the Reny entropy is given by Eq. (1):

Sα pð Þ ¼ 1
1� α

log2
X5

i¼1

pαi

 !
(1)

with α= 1 being the Shannon entropy as a special case in Eq. (2):

S pð Þ ¼
X5

i¼1

�pi log2 pi

 !
(2)

This results in a “time series” of uncertainty values related to the
algorithms’ estimate of the sleep stage at each corresponding epoch. Since
the number of states is N= 5 for the sleep staging problem, the per-epoch
value of Shannon entropy S lies between 0 (absolute certainty) to 2.32 bits
(absolute uncertainty). We specified the threshold of uncertainty at
Sthreshold= 1 bit, pertaining to a scenario where two of the possible states
are equally likely and all other states are unlikely to occur (e.g. p= [~0, ~0,
~0, ~0.5, ~0.5]). For any epoch where Sepoch > Sthreshold, the epoch was
marked for targeted manual review by a Registered PSG Technician
(RPSGT) who was blinded to the initial manual or automated scoring. The
time needed for manual review was recorded by the technician.

Implementation details
A clinician-in-the-loop workflow—quantifying epoch-by-epoch algorithm uncer-
tainty in sleep staging. Figure 2 illustrates a set of conceptual frameworks
using a machine learning algorithm for medical classification followed by an
option to quantify uncertainty in the algorithm output. If uncertainty is not
quantified, the algorithm output is returned to the patient and/or clinician
without indication of performance. Conversely, if uncertainty is quantified,
highly uncertain outputs can be marked or tagged for manual review by a
clinician. This pathway allows for a resource-efficient, targeted review of
specific outputs or data, as opposed to brute-force, exhaustive review of all
algorithm outputs. In this manner, a clinician has the opportunity to agree
with the algorithm if he/she feels it is correct, or the clinician can disagree with
the algorithm and amend the output. From the lens of uncertainty
quantification, the former is somewhat of a false-negative as the algorithm
marked the output as highly uncertain, but was in fact correct, while the latter
represents a true-negative in that the algorithm correctly identified the output
as uncertain, allowing for correction at the level of manual review. After
review, there is an opportunity to feedback these corrected results into the

Fig. 2 Generalized workflow diagram for clinician (human) in-the-loop classification. With measures of uncertainty, data can be reviewed
by expert clinicians or used for further algorithm training.
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algorithm for further supervised learning, by which the algorithm training and
classification process can continue in a clinician-informed manner.
The algorithm employed in this work provided single-channel automated

estimates of overnight sleep architecture (Fig. 3a). Underlying the epoch-by-
epoch classification of sleep stages in the algorithm is a set of probabilities
pertaining to the conditional likelihood of a sleep stage given the data and
algorithm model (Fig. 3b). The value of Sepoch was calculated for each epoch
and subject to a threshold Sthreshold= 1 bit to generate the labels for targeted
review by an RPSGT.

A deconstructed class confusion matrix and class distributions of per-epoch
Shannon entropy. To assess the accuracy of uncertainty classification, we
created a confusion matrix illustrating the percentage of all epochs in
which the algorithm was certain (Sepoch < Sthreshold) about its sleep stage
estimate (Table 2). We observed that of those epochs scored with certainty,
stages W (87%) and N2 (90%) were most accurately classified compared to
the ground truth. For the remaining three stages (REM, N1, and N3), we
found the algorithm estimated these epochs with certainty, but fell short in
accuracy (73, 60, and 65%, respectively). However, these numbers are
comparatively good considering the task of single-channel automated
sleep scoring and the fact that these stages are often the root of
discrepancies in inter-rater agreement29–31.
Similarly and conversely, we analyzed the percentage of all epochs for

which the algorithm was uncertain (Sepoch > Sthreshold) (Table 3). We
observed that the algorithm seemed most uncertain about epochs that
are incorrectly scored as stages W, N1, and N2 when they are most often
stages N1, N2, and N2, respectively. In a sense, the diagonal of the
uncertain confusion matrix can be considered as the false-negative rate—
the algorithm marked these epoch estimates as uncertain, but actually
correctly classified the sleep stage when compared to the ground truth.
Another way to interpret this uncertain matrix is that the algorithm
correctly marked uncertain estimates in REM and N3 staging that would
lead to a different stage 75 and 76% of the time, respectively. Viewing the
data this way, the off-diagonal values of the uncertain matrix represent
second-chance opportunities for correct classification available during

manual (or further automated review) of algorithm-marked uncertain
epochs.
To further understand algorithm uncertainty quantification, we gener-

ated histograms and probability distribution functions of the per-epoch
Shannon entropy using all 17,426 epochs. Figure 4a illustrates the
distribution of entropy values for both correct (11,645 epochs) and
incorrect (5781 epochs) epochs, along with corresponding kernel density
estimation (KDE) fits. We observed that epochs correctly classified
demonstrated a left-leaning distribution and lower overall values of
entropy (0.63 ± 0.55 bits), compared to those incorrectly classified (1.07 ±
0.51 bits) which appeared to be more evenly distributed along the domain
of possible entropy values. Stratifying these results further into distribu-
tions for specific sleep stages (Fig. 4b−g), we found that stages W, REM,
and N3 demonstrated similar distribution features—correct epochs with
entropy values close to 0 bits (W: 2899 epochs, 0.38 ± 0.46 bits; REM: 1901
epochs, 0.44 ± 0.47 bits; N3: 1395 epochs, 0.18 ± 0.31 bits) and incorrect
epochs extending outward toward and past 1 bit of entropy (W: 703
epochs, 1.25 ± 0.44 bits; REM: 419 epochs, 1.35 ± 0.39 bits; N3: 234 epochs,
0.85 ± 0.44 bits). Interestingly, stages N1 and N2 (Fig. 4e, f) appeared to
exhibit the most overlap in correct distributions (N1: 1609 epochs, 1.32 ±
0.30 bits; N2: 3841 epochs, 0.79 ± 0.47 bits) vs. incorrect distribution (N1:
1613 epochs, 1.11 ± 0.46 bits; N2: 2812 epochs, 0.98 ± 0.54 bits). This
implies that the algorithm’s certainty in its own estimate for these stages is
much less clear and could possibly lead to an increase in false targeting
and/or decreased true targeting for manual review, relative to the
aforementioned stages.

Enabling targeted manual review of uncertain epochs. Using the uncer-
tainty framework described, we sought to assess the utility of clinician-in-
the-loop manual review of targeted epochs. Each of the 20 test study
nights were automatically scored and assessed by the algorithm for single-
channel sleep stage estimates and uncertainty. In each study night,
uncertain epochs in the initial automated estimates were targeted for
manual review by an RPSGT, while the remainder of the (certain)
automated estimates were unmodified. Specifically, the RPSGT was

Fig. 3 Generation of hypnogram with underlying uncertainty. a Automated hypnogram estimate for an HN subject. b Probabilities
determining the estimated sleep stages. c Raw algorithm uncertainty values before thresholding. Sthreshold pertains to the Shannon entropy
cutoff (1 bit).

Table 2. Certain sleep stage classification confusion matrix.

Wake REM N1 N2 N3 True stage

Wake 87% 1 8 4 0

REM 5 73% 10 12 0

N1 9 1 60% 30 0

N2 0 1 5 90% 4

N3 0 1 0 34 65%

Certain estimate

Values in bold represent uncertainty algorithm true-positive rate.

Table 3. Uncertain sleep stage classification confusion matrix.

Wake REM N1 N2 N3 True stage

Wake 44% 5 34 16 1

REM 15 25% 27 33 0

N1 10 7 51% 32 0

N2 2 5 19 70% 4

N3 1 5 3 67 24%

Uncertain estimate

Values in bold represent false-negative rate.
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allowed to observe the uncertain epochs along with all PSG channels (e.g.
flow, EEG, oximetry) before, during, and after the targeted epoch to arrive
at a review decision: agree with the algorithm’s estimate, or change it to
one of the other four sleep stages. After manual review of all uncertain
epochs, these combined automated+manual review estimates and the
initial automated estimates were evaluated for agreement against the

ground truth via Cohen’s Kappa (K)32.
An example of these data in an HN subject is illustrated in Fig. 5. Each

study had full-PSG scoring (Fig. 5a), which was used as ground truth in
comparison to initial automated estimates (Fig. 5b). Uncertain epochs
targeted for manual review were indicated by a binary sequence of 1’s and
0’s—where 1’s represent “uncertain” and 0’s represent “certain” epochs

Fig. 4 Entropy distribution plots for all and per-stage distributions using HMM-based classification. a Shannon entropy distribution+
correctness for all stages. b Shannon entropy distribution per class. Shannon entropy distribution and correctness for stage: c W (3602
epochs), d REM (2320 epochs), e N1 (3222 epochs), f N2 (6653 epochs), and g N3 (1629 epochs).
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after thresholding by Sepoch values by Sthreshold= 1 bit. Manual review of
only the uncertain epochs resulted in automated+manual review
estimates (Fig. 5c). In this specific study night, the initial automated
estimate had a K= 0.70 (substantial agreement) when compared to
ground truth. After a 16-min manual review of only 18% of the study (123
epochs), Cohen’s Kappa increased to K= 0.76. During manual review, we
observed that the reviewer was able to rectify algorithm misclassification
of stage REM to stage W during uncertain epochs in the first hour of the
study. Similarly, the reviewer was able to correct misclassification of stage
N1 to stage N2 just shy of hours four and five of the study.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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