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Successfully perceiving and recognizing the actions of others is of utmost 

importance for the survival of many species. For humans, action perception is considered 

to support important higher order social skills, such as communication, intention 

understanding and empathy, some of which may be uniquely human. Over the last two 

decades, neurophysiological and neuroimaging studies in primates have identified a 
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network of brain regions in occipito-temporal, parietal and premotor cortex that are 

associated with perception of actions, also known as the Action Observation Network 

(AON). Despite growing body of literature, the functional properties and connectivity 

patterns of this network remain largely unknown. The goal of this dissertation is to 

address questions about functional properties and connectivity patterns of AON with a 

specific focus on whether this system shows specificity for biological agents. To this end, 

we collaborated with a robotics lab, and manipulated the humanlikeness of agents that 

perform recognizable actions by varying visual appearance and movement kinematics. 

We then used a range of measurement modalities including cortical EEG oscillations, 

event-related brain potentials (ERPs), and fMRI together with a range of analytical 

techniques including pattern classification, representational similarity analysis (RSA), 

and dynamical causal modeling (DCM) to study the functional properties, temporal 

dynamics, and connectivity patterns of the AON. While our findings shed light whether 

the human brain shows specificity for biological agents, the interdisciplinary work with 

robotics also allowed us to address questions regarding human factors for artificial agent 

design in social robotics and human-robot interaction such as uncanny valley, which is 

concerned with what kind of artificial agents we should design so that humans can accept 

them as social partners. 



 1 

INTRODUCTION 

Successfully perceiving and recognizing the actions of others is of utmost 

importance for the survival of many species. For humans, action perception is considered 

to support important higher order social skills, such as communication, intention 

understanding and empathy, some of which may be uniquely human (Blake and Shiffrar, 

2007). Over the last two decades, neurophysiological and neuroimaging studies in 

primates have identified a network of brain regions in occipito-temporal, parietal and 

frontal cortex that are associated with perception of actions, also known as the Action 

Observation Network (AON) or Mirror Neuron System (MNS) (Rizzolatti and Craighero, 

2004; Vangeneugden et al. 2009; 2011; 2014; Caspers et al., 2010; Nelissen et al., 2011; 

Saygin, 2012a). This system, in its classic formulation, consists of three nodes: the 

posterior superior temporal sulcus (pSTS), which serves as the visual input to the system 

by getting visual information from the dorsal and ventral pathways of the visual cortex 

(Giese and Poggio, 2003); and two sets of regions in the parietal and frontal cortices 

(Figure A). 

Among other regions in the parietal and frontal cortices such as intra-parietal 

sulcus and dorsal premotor cortex, respectively, AON includes inferior parietal lobule 

(IPL) and ventral premotor cortex (vPM) that contain neurons that discharge during both 

action execution and action observation, called mirror neurons, in the non-human primate 

brain (Rizzolatti and Craighero, 2004).   

The initial discovery of mirror neurons in the premotor cortex, which is 

classically part of the motor system has been influential in theorizing about how primates 

understand the actions of other individuals. Rizzolatti et al. (2001) proposes that the way 
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primates understand other individuals’ actions by means of motor resonance, i.e. by 

recruiting the same neural resources during action observation as of during action 

execution and has been taken as supporting evidence for the motor simulation idea in the 

embodied theories of cognition (Rizzolatti and Craighero, 2004).  

One of the most prominent models developed by Kilner et al. (2007a; 2007b) 

proposes that the AON is a predictive system, following the principles of predictive 

coding (Friston, 2010). In this framework, in contrast to the classic formulation of the 

AON, which sees action perception strictly as a feedforward process, Kilner et al. (2007a; 

2007b) propose that visual action information is processed throughout the AON by means 

of the reciprocal connections (i.e., both feedforward and feedback) between the pSTS and 

parietal cortex, and parietal cortex and the premotor cortex. 

Despite a growing body of empirical and theoretical literature, two issues remain 

unclear: 

(1) What are the functional properties of each brain region comprising this  

network? What kind of information is encoded in each region? 

(2) How is the information processed across the brain regions? What is the  

direction of information flow within the network? 

The overall objective of my dissertation research is to address specific questions under 

the umbrella of the general questions in (1) and (2) by studying the functional properties, 

temporal dynamics and connectivity patterns in the neural system that underlies visual 

processing of actions in the human brain using functional magnetic resonance imaging 

(fMRI), electroencephalography (EEG), and advanced analysis methods from computer 

science such as multivariate pattern analysis and connectivity. More specifically, the 



 3 

focus of my thesis work is whether this system shows specificity for biological agents, 

particularly for humans. This question is important because the human brain has evolved 

with biological agents over generations but we have been introduced artificial agents that 

can perform recognizable actions like humans that are not biological in nature such as 

robots in the technology era we live in. How the humans respond to these artificial agents 

could shed light about the specificity of the human brain to biological agents. This 

general question is addressed by using state-of-the-art robots, which were provided by a 

robotics lab (Intelligent Robotics Lab, Osaka University, Japan). We manipulate the 

human-likeness of observed agents that perform recognizable actions by varying the 

visual appearance and movement kinematics in a series of neuroimaging experiments 

using methods with excellent temporal and spatial resolution.  

On the other hand, the use of robots as experimental stimuli in our neuroimaging 

experiments has also allowed us to address some important questions in social robotics 

and human-robot interaction. As humanoid robots become participants in our lives in 

areas such as education, healthcare, and entertainment, we need to consider an important 

issue: How should we design artificial agents so that humans socially accept them and 

can interact with them successfully? An intuitive approach might be to make the robots as 

humanlike as possible so that they will be more familiar and tap into neural systems for 

social cognition that are already well-developed in the human brain. However, increasing 

humanlikeness does not necessarily result in increasing acceptance from humans (Pollick, 

2010). One example is the phenomenon “uncanny valley” first introduced by the robotics 

researcher Mori (1970). Uncanny valley refers to the idea that humans give positive 

responses to artificial agents as they have increasing humanlikeness but the relationship 
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between human responses and humanlikeness of the agent will not be a linear one. There 

is a point where humans start to give negative responses to a set of artificial agents who 

are almost human-like. Surprisingly, little work has been done in social robotics and 

human-robot interaction to systematically characterize what kind of artificial agents 

humans will respond positively and accept as social partners, and what kind of artificial 

agents could fall into the category of “uncanny”. It has been suggested that the social, 

cognitive, and neurosciences would be invaluable to identify design principles for the 

development of artificial agents (MacDorman and Ishiguro, 2006; Saygin et al., 2011; 

Saygin, 2012b). As such, several studies in this thesis used well-established neural 

measures to characterize how humans respond to artificial agents that deviate from 

human norms with the goal of identifying design principles in the development of 

artificial agents and informing social robotics and human-robot interaction researchers.  

In sum, this thesis on the one hand aims to understand how the human brain 

responds to agents that it did not evolve with over generations and whether those 

responses are similar to the ones for humans during perception of actions. On the other 

hand, it aims to demonstrate that decades of cognitive neuroscience research can allow us 

to address some fundamental questions in social robotics and human-robot interaction 

and can guide development of design principles for artificial agents who are increasingly 

becoming participants in the technology era we live in. In short, it attempts to show that 

artificial agents such as robots can allow us to learn about the human brain but the brain 

science can also inform social robotics.  

The rest of the dissertation is organized as follows. Chapter 1 aims to understand 

the underlying mechanism of the phenomenon uncanny valley (Urgen et al., 2015). 
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Theoretical work proposes predictive processing as a possible underlying mechanism for 

uncanny valley but no empirical work to date has directly tested it. In Chapter 1, we 

provide evidence that supports this hypothesis using event-related brain potential 

recordings from the human scalp, which indicate that uncanny valley might be explained 

by violation of one’s expectations about human norms when encountered with very 

realistic artificial human forms.  

Chapter 2 investigates the cortical EEG oscillatory patterns during action 

observation and the modulation of these patterns by the form and motion of the agent 

being observed using EEG, time-frequency analysis, and machine learning (Urgen et al., 

2013). Our results indicate that mu oscillations over sensorimotor cortex show a similar 

pattern during observation of human actions and of agents that deviate from human 

appearance and motion. On the other hand, theta oscillations over frontal cortex show 

sensitivity to the appearance of the agent observed suggesting that agents that do not look 

biological enough might results in greater memory processing demands.  

Chapter 3 investigates the representational properties of brain regions that are 

known to be involved in action perception using fMRI and a multivariate pattern analysis 

technique called representational similarity analysis (Kriegeskorte et al., 2008). Our 

results suggest that during visual action processing, pSTS pools information from the 

early visual areas to compute the identity of the agent, and passes that information to 

regions in parietal and premotor cortex that code higher-level aspects of actions, 

consistent with computational models of visual action recognition 

Chapter 4 investigates the flow of information within the action observation 

network using fMRI and an effective connectivity technique, dynamical causal modeling 
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(DCM) (Friston et al., 2003). Specifically, we investigate the influence of two nodes of 

the AON, pSTS and premotor cortex over the third node, parietal cortex and how this 

influence is affected by congruence between the appearance and motion of the observed 

agent. Our DCM results suggest that the influence on parietal node is likely through a 

feedback connection from premotor cortex during perception of actions that violate 

people’s predictions, supporting the predictive coding account of action perception 

(Kilner et al., 2007a; 2007b).  
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Figure A: Depiction of the Action Observation Network (AON) in the human brain. In 
its classical formulation, the posterior superior temporal sulcus (pSTS), serves as the 
visual input to the core nodes of the AON by getting visual information from the dorsal 
and ventral pathways of the visual cortex; and sends that information to parietal and 
premotor cortex. 
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CHAPTER 1 

Predictive Processing and Uncanny Valley: 
Evidence from Electrical Brain Activity 

 

Abstract 

Uncanny valley refers to humans’ negative reaction to almost-but-not-quite-

human agents. Theoretical work proposes predictive processing as a possible underlying 

mechanism for uncanny valley but no empirical work to date has directly tested it. Here, 

we provide evidence that supports this hypothesis using event-related brain potential 

recordings from the human scalp, which indicate that uncanny valley might be explained 

by violation of one’s expectations about human norms when encountered with very 

realistic artificial human forms. 

 

1.1 INTRODUCTION 

Our social milieu has changed tremendously in recent years, introducing us to 

social partners that are dramatically different from those the human brain has evolved 

with over many generations. Specifically, from guiding students in learning math and 

science, to helping children with autism and stroke survivors in their exercises, artificial 

human forms such as robots are rapidly becoming participants in our lives. As humanoid 

robots become participants in our lives, one important issue to consider is: How should 

we design artificial agents so that humans socially accept them and can interact with them 

successfully? An intuitive approach might be to make the robots as humanlike as possible 

so that they will be more familiar and tap into neural systems for social cognition that are 

already well-developed in the human brain. 
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However, increasing humanlikeness does not necessarily result in increasing 

acceptance (Pollick, 2010).	
   Uncanny valley is a phenomenon that refers to humans’ 

response to artificial human forms, which possess almost human-like characteristics. In 

describing the phenomenon, Mori (1970), who introduced the term, proposes that the 

relationship between humanlikeness and humans’ response to non-human agents is not a 

linear one. According to his framework, the increasing humanlikeness of an agent elicits 

positive responses from humans up to a certain point, where increasing humanlikeness 

starts to elicit negative responses, which forms a deep valley (Figure 1.1). Furthermore, it 

has been suggested that if the agent is moving, the responses will be much more 

pronounced compared to static form of the agent.  

As humanoid robots became more feasible to develop in recent years, the uncanny 

valley became a frequently discussed issue from both a theoretical and a practical 

viewpoint. MacDorman and Ishiguro (2006) contended that the social, cognitive, and 

neurosciences would be invaluable if we were to understand this intriguing phenomenon. 

Indeed, empirical studies have recently been exploring the anecdotally well-known, but 

scientifically uncharted valley. Several subjective rating studies with a range of humanoid 

stimuli claimed that the uncanny valley might be a legitimate psychological phenomenon: 

For example, MacDorman et al. (2009), Flach et al. (2012), and Seyama and Nagayama 

(2007) used computer-animated faces and asked human subjects to rate such dimensions 

as humanlikeness, eeriness, attractiveness or pleasantness. In a similar fashion, Poliakoff 

et al. (2013) recently used human, robot, and prosthetic hand stimuli and reported 

eeriness ratings that were broadly compatible with the hypothesis. Piwek et al. (2014) 

also reported evidence for the hypothesized valley for very realistic humanoid agents in a 
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study that collected social acceptability ratings with full-body computer animated agents 

as stimuli. However, their data did not support Mori’s proposal that there would be a 

more pronounced effect with moving stimuli. More broadly, some studies did not reveal 

evidence for Mori’s hypothetical curve with experimental data. Thompson et al. (2011) 

varied several motion parameters and explored how they influenced humanlikeness, 

familiarity, and eeriness ratings of human avatars, and did not find results resembling the 

hypothesized uncanny valley. The inconsistencies between the studies may be due to 

different dependent measures that were used in the ratings (e.g., likeability is a complex 

measure that is correlated with the humanlikeness dimension that is used as the x-axis of 

the Mori graph (Bartneck et al., 2009; Ho and MacDorman, 2008).  

In addition to rating studies, researchers have attempted to use less explicit 

measures such as gaze behavior to characterize the uncanny valley. Using eye-tracking 

and a parametrically varying set of avatar faces, Cheetham et al. (2013) showed that 

ambiguous avatar faces (i.e., those that are at the category boundary between human and 

avatar) required greater depth of processing in the eye and mouth regions compared with 

unambiguous avatar faces. Similarly, Matsuda et al. (2012) found that by 9-10 months of 

age, infants looked longer to highly familiar and strange faces compared with morphed 

faces near the boundary these categories. Furthermore, Steckenfinger and Ghazanfar 

(2009) reported that that monkeys looked longer at faces of monkey-like agents that were 

either of their own species or unrealistic animations compared with very realistic 

animations. Although this suggests the uncanny valley has earlier evolutionary origins, 

Lewkowicz and Ghazanfar (2012) used analyses of infants’ gaze behavior that early 
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exposure to typical human faces in development constrained uncanny valley-like 

responses.  

Although these and similar recent studies have been a good step to scientifically 

characterize the uncanny valley, the underlying mechanism remains unclear. Possible 

mechanisms that have been proposed include threat or disease avoidance, mate selection, 

and Bayesian estimation or predictive coding hypotheses (MacDorman et al., 2009; 

Moore, 2012; Saygin et al., 2012). The latter hypothesis is linked to a more general 

description of neural computational properties of the brain (Rao and Ballard, 1999; 

Friston, 2010), and therefore promises a scientifically testable framework. According to 

predictive coding, the uncanny valley is related to expectation violations in neural 

computing when the brain encounters almost-but-not-quite-human agents. A growing 

body of work has linked Mori’s hypothetical curve to the processing of conflicting 

perceptual or cognitive cues, varying whether the stimuli are compatible with the elicited 

expectations or are in violation of them (Ho and MacDorman, 2008; Cheetham et al., 

2013; Saygin et al., 2012; Mitchell et al., 2011; Cheetham et al., 2011; Nie et al., 2012; 

Tinwell et al., 2013; Yamamoto et al., 2009).  

Behavioral studies alone are insufficient to directly test and identify mechanisms 

that underlie the uncanny valley, or to distinguish between alternative theories for 

numerous reasons. First, dependent measures such as subjective ratings require overt 

responses, whereas the uncanny valley phenomenon might be better studied with covert 

responses of humans’ subjective states that may even occur outside of awareness (cf. Li 

et al., 2015). In addition, it is difficult to characterize a complex phenomenon with a 
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single measurement such as pleasantness, familiarity, or eeriness as each can imply 

different cognitive and emotional states, and captures uncanny valley curve for different 

robot characteristics (Rosenthal-von der Pütten and Krämer, 2014). Second, behavioral 

studies only provide the output of the system, and do not address what kind of 

information processing underlies the phenomenon. Although methods such as eye-

tracking or automatic attention paradigms have advantages over rating studies in this 

respect, to provide a mechanistic account of the uncanny valley, methods from social and 

cognitive neuroscience are likely to be more fruitful (Steckenfinger and Ghazanfar, 2009; 

Saygin et al., 2011; Saygin, 2012; Cheetham and Jancke, 2013; Urgen et al., 2013).  

Neuroscience methods such as neuroimaging have advantages that can help 

“demystify” the uncanny valley. First of all, there is the potential to provide valid 

dependent measures that can be used to operationalize the uncanny valley, and to situate 

it as part of a cognitive domain. Decades of cognitive neuroscience research have 

informed us about the basic functions of the human brain, perception and social 

cognition. It would be fruitful to use accumulated knowledge in these areas to inform 

robotics about how humans respond to and interact with social agents (MacDorman and 

Ishiguro, 2006; Saygin et al., 2011; Saygin, 2012). Second, neuroimaging does not 

require overt responses since brain activity can be monitored on an ongoing basis. Last 

but not least, neuroimaging provides a rich a set of data, which can be more informative 

than individual behavioral measures. Temporally sensitive methods in particular provide 

a means to understand the time course of processing in comparison to ratings or reaction 

times, which only provide the output of the system. Overall, neuroimaging research has 

the potential to reveal the underlying mechanisms of the uncanny valley phenomenon. 
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Indeed, there is now growing interest in using neuroimaging in the field. 

Cheetham et al. (2011) used functional magnetic resonance imaging (fMRI) with a face 

stimulus set along a human-avatar continuum and found that ambiguous faces at the 

category boundary of human and avatar are processed differentially than the 

unambiguous faces within each category. Behavioral studies with animated faces support 

this category conflict explanation for uncanny valley, which is in line with the prediction 

error hypothesis (Moore, 2012; Burleigh et al., 2013; Yamada et al., 2013).  Another 

example is a previous work from our lab (Saygin et al., 2012), which used fMRI and 

based on the results, proposed predictive coding as a framework for future studies on the 

uncanny valley and the underlying mechanisms. In this study, brain responses to body 

movements of agents of varying degrees of humanlikeness with and without conflicting 

perceptual cues was compared. The agents were a human with biological appearance and 

biological motion, a very human-like robot (referred to as android) with biological 

appearance but mechanical motion, and a less human-like robot with mechanical 

appearance and mechanical motion (Figure 1.2A). Notably, neural activity, especially in 

the parietal cortex differentiated the android from the other two agents. The data 

suggested, based on the functional properties of this brain region in the social cognition 

network, that the uncanny valley might be related to the violation of the brain’s internal 

predictions due to conflicting perceptual cues (appearance and motion). The human and 

robot agents exhibited congruent appearance and motion profiles (i.e. human looks 

biological, moves biologically; robot looks mechanical, moves mechanically) whereas 

the android exhibited incongruent appearance and motion (looks biological but moves 

mechanically). For the latter agent, the human appearance would elicit predictions that 
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the motion will also be; when the agent instead moves mechanically, the brain network 

processing the agent would show evidence of processing the violations. The differential 

activity measured in parietal cortex could reflect this prediction error (Kilner et al., 

2007a, 2007b; Saygin et al., 2012). 

Although Saygin et al. (2012) used neuroimaging to situate the uncanny valley 

phenomenon in the scientific context of violation of predictions and the predictive coding 

theory of neural computations, the study was not a priori designed to test this theory. 

Thus, the proposed framework ideally needs to be further validated with independent 

experiments. Furthermore, fMRI has methodological limitations, most notably due to its 

limited temporal resolution. 

Electroencephalography (EEG) is an alternative neuroimaging method that allows 

recording brain activity with electrodes located on the scalp with excellent temporal 

resolution. Importantly, a specific dependent measure derived from EEG, the N400 

event-related potential (ERP) component, is an ideal measure with which to test the 

prediction error hypothesis or the uncanny valley. N400 is a negative-going ERP, which 

peaks around 400 ms after stimulus onset, and is maximal in fronto-central regions of the 

human scalp (Kutas and Federmeier, 2011). Although the N400 is elicited in response to 

any meaningful stimulus, its amplitude is greater for semantically or contextually 

anomalous stimuli (i.e., items that violate expectations). 

In the present study, we used well-controlled stimuli, which did and did not 

violate form-motion predictions, together with electroencephalography (EEG) and a 

remarkable biomarker of human information processing, the event-related brain potential 
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N400 component to directly test this theory. We hypothesize that upon exposure to a 

human-like form, our brains predict human-like behavior, specifically human-like 

(biological) movement based on a life-long experience of conspecifics. Uncanny valley 

occurs when those predictions are not met, specifically when encountered with agents 

having human-like forms but non-human-like movements. No empirical work to date has 

tested this theory of predictive processing directly. 

We presented agents of varying humanlikeness in static and dynamic forms as we 

recorded EEG. The stimuli consisted of a real human agent with human-like appearance 

and motion (Human), a realistic robot agent with human-like appearance and non-human-

like motion (Android), and a mechanical robot with non-human-like appearance and 

motion (Robot) (Figure 1.2A). In this stimuli set, the real and mechanical agents (Human 

and Robot) had congruent appearance and motion whereas the realistic agent (Android) 

had incongruent appearance and motion. We hypothesized that the realistic agent 

(Android) would elicit a greater N400 response in dynamic form than the static form as 

its human-like form would lead to the prediction that it would move in a human-like way 

but when it did not, it would violate the brain’s predictions. On the other hand, we 

hypothesized that the N400 amplitude for the static and dynamic forms would not differ 

for Human and Robot since both possess appearance-motion congruence (Human looks 

human-like, moves in a human-like way; Robot looks non-human-like, moves in a non-

human way). Such a pattern of activity would provide direct empirical evidence for the 

predictive account of uncanny valley. 
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1.2 MATERIALS AND METHODS 

1.2.1 Participants 

Twenty right-handed adults (10 females; mean age = 23.8; SD = 4.8) from the 

student community at University of California, San Diego participated in the study. They 

had normal or corrected-to-normal vision, and no history of neurological disorders. 

Informed consent was obtained in accordance with the university’s Human Research 

Protections Program. Participants were paid $8 per hour or received course credit. One 

subject’s data was excluded due to high noise during EEG recording. 

 

1.2.2 Stimuli 

Stimuli consisted of video clips of actions performed by the humanoid robot 

Repliee Q2 (in Robotic and Human-like appearance) and by the human ‘master’, after 

whom Repliee Q2 was modeled (Figure 1.2A, also see Saygin et al. 2012 and Urgen et al. 

2013 for details about the stimuli).  

We refer to these agents as the Robot, the Android (realistic robot), and the 

Human conditions. Note that the former two are in fact the same robot. Repliee Q2 has 42 

degrees of freedom and can make face, head and upper body movements (Ishiguro, 

2006). However, the robot’s movements did not match the dynamics of biological 

motion; it is mechanical or “robotic”. The same body movements were videotaped in two 

appearance conditions. For the Robot condition, Repliee Q2’s surface elements were 

removed to reveal its wiring, metal arms and joints, etc. The silicone ‘skin’ on the hands 

and face and some of the fine hair around the face could not be removed but was covered. 

The movement kinematics for the Android and Robot conditions was identical, since 
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these conditions comprised the same robot, carrying out the very same movements. For 

the Human condition, the female adult whose face was molded and used in constructing 

Repliee Q2 was videotaped performing the same actions. She was asked to watch each of 

Repliee Q2’s actions and perform the same action naturally. All agents were videotaped 

in the same room with the same background. Video recordings were digitized, converted 

to grayscale and cropped to 400x400 pixels. Videos were clipped such that the motion of 

the agent began at the first frame of each video. 

 

1.2.3 Procedure 

Since prior knowledge can affect judgments of artificial agents differentially 

(Saygin and Cicekli, 2002), each participant was given exactly the same introduction to 

the study and the same exposure to the videos. Before starting EEG recordings, 

participants were shown each video and told whether each agent was a human or a robot, 

and the name of the action. Participants went through a practice session before the 

experiment. EEG was recorded as participants watched the images or video clips of the 

three agents performing eight different upper body actions (drinking from a cup, 

examining an object with hand, handwaving, turning the body, wiping a table, nudging, 

introducing self, and throwing a piece of paper). The videos were presented in two modes 

that we call motion alone and still-then-motion. In the motion-alone condition, 2-second 

videos were presented. In the still-then-motion condition, the first frame of the video was 

presented for 600-1000 ms (with a uniform probability jitter), and then the full video was 

played. The experiment consisted of 15 blocks. In each block, the eight videos of each 

agent were presented once in the motion-alone condition, and once in the still-then-
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motion condition. Stimuli were presented in a pseudo-randomized order ensuring that a 

video was not repeated on two consecutive trials. Each participant experienced a different 

pseudo-randomized stimuli sequence. 

Stimuli were displayed on a 19” Dell Trinitron CRT monitor at 90 Hz using 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). To prevent an augmented visual 

evoked potential at the beginning of video onset that might occlude subtle effects 

between conditions, we displayed a gray screen with a white fixation cross before the 

start of the video clip or still frame on each trial. Participants were instructed to fixate the 

fixation cross at the center of the screen for 900-1200 ms (with a uniform probability 

jitter). A comprehension question was displayed every 6-10 trials, asking participants a 

true/false question about the action in the just seen video (e.g. Drinking?), after which 

they responded with a manual key press (Yes/No response). 

 

1.2.4 EEG Recording and Data Analysis 

EEG was recorded at 512 Hz from 64 ActiveTwo Ag/AgCl electrodes (Brain 

Vision, Inc.) following the International 10/20 system. The electrode-offset level was 

kept below 25 k-Ohm. Two additional electrodes were placed above and below the right 

eye to monitor oculomotor activity (1 additional electrode was placed on the forehead as 

a ground of the eye electrodes). The data were preprocessed with MATLAB and the 

EEGLAB toolbox (Delorme and Makeig, 2004). Each participant’s data were first high-

pass filtered at 1 Hz, low-pass filtered at 50 Hz, and re-referenced to average mastoid 

electrodes behind the right and left ear. Then the data were epoched ranging from 200 ms 

preceding video or first frame onset to 700 ms after video onset, and were time-locked to 
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the onset of the video clips (motion-alone condition, see Procedures) or the first frame 

(still-then-motion condition, see Procedures) to compare the motion and still forms of the 

agents (we refer to these as motion and still conditions). Atypical epochs of 

electromyographic activity were removed from further analysis by semi-automated epoch 

rejection procedures (kurtosis and probability-based procedures with standard deviation = 

6). After preprocessing, grand average event-related brain potentials (ERP) and scalp 

topographies were computed and plotted for each condition using Brain Vision Analyzer. 

 

1.2.5 Statistical Analysis 

The time window between 370-600 ms was considered for N400 analysis based 

on the grand average ERPs across all conditions. The area under curve measure was used 

to extract the N400 values for each agent under both motion and still condition for each 

subject in frontal channels (AF3, AFz, AF4, Fz, F1, F2, F3, F4, F5, F6) since N400 for 

pictorial stimuli has a more frontal distribution (Kutas and Federmeier, 2011). After 

preprocessing, data were exported to ERPLAB (http://erpinfo.org/erplab) and area under 

curve measures were extracted by using this toolbox. We then applied paired t-tests on 

the average frontal channel activity to compare the motion and still conditions for each 

agent (Robot, Android, Human). Since we expected motion condition to be greater than 

the still condition for Android (and no effect for Human and Robot), our t-tests were one-

tailed. 
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1.2.6 Localization of EEG Activity 

For identifying the neural generators (sources) of the activity during the N400 

period, we used the LORETA method (Pascual-Marqui et al., 1994). LORETA estimates 

the distributed neural activity in the cortex based on the scalp measurements of ERP 

differences. Localization of the EEG activity was as follows: First, we computed the 

N400 differences between the static and motion conditions of each agent (Robot, 

Android, Human), and then we took the grand average of the N400 differences. We then 

applied LORETA to the N400 difference waveform in the time interval between 370-600 

ms to estimate the distributed neural activity underlying N400.  

 

1.3 RESULTS 

1.3.1 N400 component 

Our ERP results indicate that observation of all agents elicited an N400 

component regardless of the presentation mode (static or dynamic) in frontal sites (AF3, 

AFz, AF4, Fz, F1, F2, F3, F4, F5, F6) on the human scalp (Figure 1.2B shows ERPs on a 

representative frontal channel Fz). The amplitude of N400 (measured with area under 

curve between 370-600 ms averaged across all frontal sites) in the dynamic form was 

significantly greater than the static form for Android (t(18) = 2.401, p<0.05), whereas 

static and dynamic forms did not differ neither for Robot (t(18) = 0.388) nor for Human 

(t(18) = -0.346) (Figure 1.2B for ERPs, Figure 1.2C for bar graphs for the amplitude of 

N400, and Figure 1.3 for scalp maps to see the distribution of the effect on the whole 

scalp). 
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1.3.2 Source Analysis 

Our source analysis with LORETA suggests that the generator of the N400 

component is a widely distributed network including the middle and superior temporal 

areas, temporal-parietal junction, and prefrontal areas (Figure 1.4). These areas align with 

the network that has been implicated for N400 with intracranial recordings and MEG in 

humans (Kutas and Federmeier, 2011). More interestingly, the maximal source density of 

this network was identified as a region within the inferior parietal lobule (Brodman area 

40; x = -59, y = -32, z = 29, MNI coordinates) (Figure 1.4), which is the same area that 

differentiated the agent with appearance-motion incongruence (Android) from the other 

agents with appearance-motion congruence (Human and Robot) in an independent fMRI 

study from our lab with excellent spatial resolution (Saygin et al., 2012). Separate source 

analysis for each condition during the N400 interval (370-600 ms) also resulted in similar 

networks (Figure 1.5).  

 

1.4 DISCUSSION 

In the present study, we tested the predictive coding as a potential underlying 

mechanism of the uncanny valley phenomenon. To this end, we used an established 

method from cognitive neuroscience, namely EEG, specifically focusing on the event 

related brain potential N400, which has been reliably associated with violation of 

predictions. Our stimuli consisted of three agents that had different levels of 

humanlikeness in appearance and motion dimensions: a human agent with biological 

appearance and motion, an android with biological appearance and mechanical motion, 

and a robot with mechanical appearance and motion. In this design, human and robot 
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agents exhibited congruence in appearance and motion dimensions, whereas android 

agent had incongruity in appearance and motion. The agents were presented both still and 

moving, with the hypothesis that the android condition would elicit an N400 differential 

(motion-still difference) due to its incongruent appearance and motion, whereas human 

and robot agents would not, as they had congruent appearance and motion. Our results 

confirmed these predictions: the moving android elicited a greater N400 component than 

the still android, whereas no difference was found for the moving and still presentations 

of the human and robot agents. Thus, these results provides support for the hypothesis 

that uncanny valley might involve the violation of the brain’s predictions. 

Our study demonstrates the benefit of using neural dependent measures in testing 

hypotheses about uncanny valley, whose underlying mechanism has remained unknown. 

Previous research mainly has focused on behavioral ratings in studying the uncanny 

valley. While these efforts have been a good step to operationalize the uncanny valley, 

they fall short for a number of reasons. For one thing, these studies generally ask for an 

explicit (or conscious) response in a certain dimension such as humanlikeness, eeriness, 

or familiarity. However, explicit measures might be too restrictive and might not be 

sufficient to characterize the reaction of the human subjects for uncanny stimuli. 

Neuroimaging has the advantage to measure human responses implicitly without asking 

for a specific response. In the present study, N400 was used as such an implicit measure. 

For another thing, behavioral measures provide only the output of the system (one data 

point), which is not very informative about the processing stages. Neuroimaging provides 

a rich set of data, and especially the temporally sensitive methods such as EEG allows 

one to monitor the information processing during stimulus presentation. In addition, well-
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established dependent measures, such as N400 as used in this study, help one to situate 

the uncanny valley in a well-studied cognitive domain. 

The use of event-related brain potentials in the present study is complementary to 

our previous neuroimaging study of action perception that used fMRI with the same 

stimuli. Saygin et al. (2012) found differential activity in parietal cortex for the android 

compared with the human and robot, which was interpreted as supporting evidence for 

the hypothesis that uncanny valley might be due to the incongruity of appearance and 

motion in the action processing network. The N400 effect for the android in the present 

study corroborates this interpretation. Using EEG has allowed us to link the uncanny 

valley phenomenon to cognitive processing using the well-established dependent measure 

N400.  

The current study has broader implications for future research on characterizing 

the uncanny valley. First of all, the appearance-motion incongruence presented in the 

current study is one specific violation of one’s predictions. In fact, Mitchell et al. (2011) 

has shown that conflicting visual and auditory cues (appearance and voice) increase 

eeriness ratings in evaluating human and robot agents. In another study, Nie et al. (2012) 

showed that incongruent appearance and touch (non-humanlike appearance and 

humanlike touch) resulted in fear from the robot in human subjects. Based on their 

exploratory rating study with a number of robot videos, Ho and MacDorman (2008) 

suggest that uncanny valley effect might be seen for agents that have mismatches in a 

variety of dimensions. On the other hand, robots differ from humans in a variety of ways, 

not only in their physical properties such as appearance, motion, and voice, but also in the 
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way they accomplish tasks. In fact, Yamamoto et al. (2009) showed that children of 2-3-

year-old showed different behavioral patterns based on the congruity of the robot 

appearance and contingency of its behavior upon their own behavior. Similarly, it has 

been suggested that congruity of facial expressions and actions determines uncanny 

valley responses (Tinwell et al., 2013). Thus, creating broader range of violations of 

one’s predictions could allow us to understand the sensitivity of humans to deviation 

from human dimensions. 

In addition, individual differences are a recent highlighted aspect of uncanny 

valley (Walters et al., 2008; Macdorman and Entezari, in press) suggesting that people 

may show different patterns of reactions to humanoid robots, and this could well be 

studied with neural dependent measures. The role of experience and learning can also be 

studied, by testing people who have been exposed to robots or animated characters 

compared to those who have not (Chen et al., 2011). Previous research suggests that 

culture (e.g., western vs. eastern) as well as context are important factors in perceiving 

and interacting with humanoid robots (Oyedele et al., 2007). Thus, these different groups’ 

expectations from robots might differ considerably from each other, resulting in different 

brain activity patterns in general.  

In conclusion, our study demonstrates that studying the uncanny valley with 

neuroscience methods can help us not only understand the underlying mechanisms but it 

can also inform human robot interaction. Furthermore, the uncanny valley serves as a 

window into human social cognition. Studying human brain responses when viewing 

robots has allowed us to study the functional properties of the neural systems that 
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underlie agent and action processing, which are the building blocks for social interaction 

(MacDorman and Ishiguro, 2006; Saygin et al., 2011, 2012; Saygin, 2012; Urgen et al., 

2013). On the other hand, our study also gives insights about the design parameters of 

robots that will interact with humans. Based on the current data and emerging underlying 

mechanisms of the uncanny valley, we suggest the human brain’s expectations from a 

human-like agent should be considered in the design process for successful human-robot 

interaction. More broadly, we demonstrate that interdisciplinary work can not only 

improve our understanding of human-robot interaction, but also make individual 

contributions to both neuroscience and robotics. Just as perceptual illusions using 

artificial stimuli inform us about underlying mechanisms of perception (Gregory, 1980), 

studying uncanny valley using artificial agents serves as a window into human social 

cognition. 
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Figure 1.1: Hypothetical curves that depict the uncanny valley effect for static and 
moving agents in varying levels of humanlikeness. 
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Figure 1.2: Stimuli used in the ERP experiment, ERP plots for the N400 effect, and bar 
plot for the N400 effect. (A) Sample static frames from the movies used in the EEG 
experiment depicting the three agents: Robot, Android, Human. (B) ERP plots of a 
representative frontal site (Fz) for static (black line) and dynamic (red line) forms for 
each agent (Robot, Android, Human). N400 is greater for moving Android compared to 
static, whereas no such difference was found for Human or Robot. (C) Bar graphs 
representing the area under curve for N400 (370-600 ms) for each of the conditions. 
N400 is significantly greater for dynamic than static form for Android, whereas they did 
not differ for Robot or Human.  
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Figure 1.3: ERP scalp maps representing the difference between static and dynamic 
forms for each agent (Human, Android, Human) in the time interval of the N400 (370 ms 
– 600 ms). 
 

 

 



 31 

 

 

Figure 1.4: LORETA analysis in the N400 (370-600 ms) interval, all conditions 
collapsed. LORETA analysis for N400 identified a distributed brain activity including 
middle and superior temporal areas (MTG and STG), tempora-parietal junction (IPL), 
and frontal areas (IFG, MFG, Medial FG) (Difference waves of all conditions (Robot, 
Android, Human) are collapsed). The maximal source density of this network is Inferior 
parietal lobule (IPL) whose coordinates (x = -59, y = -32, z = 29, MNI coordinates) are 
depicted by the yellow diamond in the figure. 
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Figure 1.5: LORETA analysis in the N400 (370-600 ms) interval for each condition in 
the ERP experiment: The top row shows the source localization results in the static 
conditions of Robot, Android, and Human, and the bottom row shows the results in the 
dynamic conditions. 
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CHAPTER 2 

Human Cortical Oscillatory Activity during Perception of  
Human and Robot Actions 

 

Abstract 

The perception of others’ actions supports important skills such as 

communication, intention understanding, and empathy. Are mechanisms of action 

processing in the human brain specifically tuned to process biological agents? Humanoid 

robots can perform recognizable actions, but can look and move differently from humans 

and as such, can be used in experiments to address such questions. Here, we recorded 

EEG as participants viewed actions performed by three agents. In the Human condition, 

the agent had biological appearance and motion. The other two conditions featured a 

state-of-the-art robot in two different appearances: Android, which had biological 

appearance but mechanical motion, and Robot, which had mechanical appearance and 

motion. We explored whether sensorimotor mu (8-13 Hz) and frontal theta (4-8 Hz) 

activity exhibited selectivity for biological entities, in particular for whether the visual 

appearance and/or the motion of the observed agent was biological. Sensorimotor mu 

suppression has been linked to the motor simulation aspect of action processing (and the 

human mirror neuron system, MNS), and frontal theta to semantic and memory-related 

aspects. For all three agents, action observation induced significant attenuation in the 

power of mu oscillations, with no difference between agents. Thus, mu suppression, 

considered an index of MNS activity, does not appear to be selective for biological 

agents. Observation of the Robot resulted in greater frontal theta activity compared to the 

Android and the Human, whereas the latter two did not differ from each other. Frontal 
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theta thus appears to be sensitive to visual appearance, suggesting agents that are not 

sufficiently biological in appearance may result in greater memory processing demands 

for the observer. Studies combining robotics and neuroscience such as this one can allow 

us to explore neural basis of action processing on the one hand, and inform the design of 

social robots on the other. 

 

2.1 INTRODUCTION 

From dolls and statues, to modern horror and science fiction stories, humans have 

long been preoccupied with creating other entities in their likeness. Advances in 

technology now allow us to create increasingly realistic and interactive humanoid agents. 

Lifelike humanoid robots are becoming commonplace, and assistive technologies based 

on social robotics are being developed for many application domains (e.g., Kanda et al., 

2004; Coradeschi et al., 2006). Research on how humans perceive, respond to and 

interact with these agents is therefore increasingly important. However little is 

understood about human social cognition in this new, wider context. An interdisciplinary 

perspective on social robotics is needed, since this field will impact many areas of 

research, as well as issues of public concern in the near future, for example in domains 

such as education and healthcare (Billard et al., 2007; Dautenhahn, 2007; Mataric et al., 

2009). Here, we provide hypotheses and data from cognitive and social neuroscience to 

study the perception of humanoid robots. Our goal is on the one hand to improve our 

understanding of human social cognition, and on the other, to help engineers and 

designers develop robots that are well-suited to their application domains. 
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2.1.1 Action Understanding and the Brain 

Understanding the movements and actions of others is critical for survival in most 

species and for social cognition in primates. For humans, these processes are building 

blocks for important higher-order social skills, such as coordination, communication, 

intention understanding, and empathy (Blakemore & Decety, 2001; Iacoboni & Dapretto, 

2006; Knoblich et al., 2006). A prominent idea regarding how the nervous system 

achieves the goal of “understanding others” is motor simulation. According to this theory, 

an action is understood by mapping the visual representation of an observed action to the 

observers’ own motor representations (Rizzolatti et al., 2001). This view has become 

more widespread following the discovery of mirror neurons (MNs) in macaque premotor 

cortex (Di Pellegrino et al. 1992, Gallese et al. 1996, Rizzolatti et al. 1996). MNs are 

cells that fire both during the execution of an action, and during the observation of the 

same action performed by another agent, thereby providing a neural basis for motor 

resonance. For instance a mirror neuron that fires as the monkey cracks a peanut, can also 

fire as the monkey observes someone else crack a peanut. The neural network in the 

human brain supporting action and body movement processing is generally referred to as 

the mirror neuron system (MNS) – sometimes also as action observation network or 

action perception system – and corresponds to a set of areas in temporal, parietal and 

frontal cortices (Rizzolatti et al., 2001; Saygin, Wilson, Hagler, Bates, & Sereno, 2004; 

Grafton & Hamilton, 2007; Saygin, 2007; Cattaneo, Sandrini, & Schwarzbach, 2010; van 

Kemenade, Muggleton, Walsh & Saygin, 2012; Cook et al., in press). The MNS received 

considerable attention in the past two decades as a possible neural basis for action 

understanding, social cognition, empathy, and communication, and has been discussed in 
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relation to disorders affecting social functions such as autism (Iacoboni & Dapretto, 

2006). 

Although the majority of studies on human MNS have involved functional 

magnetic resonance imaging (fMRI) as a method of investigation, there is also a body of 

evidence from multiple temporally-sensitive methodologies including motor-evoked 

potentials, magnetoencephalography (MEG), and electroencephalography (EEG) that 

motor system is involved during action observation (Fadiga et al., 1995; Hari et al., 1998; 

Cochin et al., 1999; Babiloni et al., 2002 Pineda, 2005; Hari, 2006; Orgs et al., 2008; 

Kilner et al., 2009, Perry & Bentin, 2009; Press et al., 2011). EEG studies in particular 

have revealed another index of human MNS activity known as mu suppression, which 

can be measured non-invasively via electroencephalogram (EEG), with electrodes placed 

on the scalp. Mu suppression refers to an attenuation in the power of the EEG in the alpha 

frequency range (8-13 Hz) measured over sensorimotor cortex and, like mirror neuron 

activity, is observed both during action execution and action observation (Cochin et al., 

1999; Babiloni et al., 2002 Pineda, 2005; Hari, 2006; Orgs et al., 2008; Perry & Bentin, 

2009). There is a growing body of literature that has revealed the functional properties of 

the sensorimotor mu suppression. Specifically, it has been suggested that mu suppression 

might have a role in social interactive contexts in addition to passive action observation 

(Tognoli et al., 2007; Dumas et al., 2012; Naeem et al., 2012; Silas et al., 2012), and that 

sub-bands of the mu rhythm might have different functional properties (Naeem et al., 

2012). In an attempt to understand the relation between the mu suppression and the MNS, 

studies using both fMRI and EEG have argued that attenuations in the power of the EEG 

mu rhythm and fMRI activity in nodes of the MNS likely index the activity of the same 
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underlying neural populations (Arnstein et al., 2011; Braadbaart et al., 2013), although it 

is worth noting mu suppression has also been correlated with brain areas other than the 

MNS (Mizuhara & Inui, 2011).  

Although the 8-13 Hz oscillations have been the most implicated frequency band 

in EEG studies of action observation, a thorough understanding of the mechanisms of 

action observation and of the functional properties of this neural system can benefit from 

considering other dependent measures whose functional significance in cognition is well 

studied. As mentioned above, one of the most influential mechanistic explanation of 

action observation, the motor simulation framework, posits that we understand others’ 

actions by mapping the visual input of the seen action to our own sensorimotor 

representations (Rizzolatti et al., 2001). For meaningful actions, during this mapping 

process, one also needs to activate the existing semantic representations of actions, and 

compare them with the current visual input and/or the representations evoked during 

motor simulation (Baressi & Moore 1996). If there is a match between the seen action’s 

meaning and existing long-term memory representations, this can result in successful 

recognition of the action; if there is no match (e.g., in the case of actions or agents that 

have not been encountered before, and thus do not have a memory trace), the newly 

encountered item will need to be encoded into long-term memory. Thus, the entire 

process of action understanding requires the interplay of perceptual, motor, and memory 

processes. 

Although memory is an essential part of action understanding (and the processing 

of meaningful stimuli in general), most studies to date have approached the issue 

implicitly (e.g., Umilta et al., 2001). However, both human behavioral and neuroscience 
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studies (e.g., Carmo et al., 2012; Casile & Giese, 2006; Stefan et al., 2005) and robotics 

studies (e.g., Wermter & Elshaw, 2003; Ugur, Oztop, & Sahin, 2011) have highlighted a 

role for memory processes in action understanding, and there is growing interest in 

specifying the role of learning and memory in action perception and related brain systems 

(Cook et al., in press). EEG theta oscillations have been investigated in the context of 

memory processes, but have not been studied thoroughly in relation to action 

understanding. Given the crucial role of memory for action understanding within the 

motor simulation framework, we believe it is time to incorporate what we know about the 

functional significance of theta activity in studying action processing. Thus, in the current 

study, we also explored theta oscillations (4-8 Hz), which, especially at frontal sites, are 

thought to index memory encoding and retrieval in both linguistic and non-linguistic 

contexts (Hald et al., 2006; Osipova et al., 2006; Davidson & Indefrey, 2007; Bastiaansen 

et al., 2008; Shahin et al., 2009; Crespo-Garcia et al., 2010; Klimesch et al., 2010; Zion-

Golumbic et al., 2010; Atienza et al., 2011). Specifically, theta activity has been reported 

to increase during encoding of information into long-term memory, and during retrieval 

of information from long-term memory (see review Klimesch et al., 2010). Zion-

Golimbic et al. (2010) also reported that theta power increase reflects the utilization of 

information from long-term memory during processing of visual stimuli. Exploration of 

theta oscillations during action processing could be informative given the automatic 

employment of memory processing during action observation, and given that there is 

almost no work on theta oscillations in relation to action observation. 
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2.1.2 Cognitive Neuroscience and Robotics 

The cognitive neuroscience of action perception, and especially the MNS, has 

received intense interest from neuroscientists in the last two decades, and we can now use 

the accumulated knowledge in this field to study how the human brain supports human-

robot interaction. Conversely robotics can help research on the human brain by allowing 

us to test functional properties of the MNS and other brain areas that support action 

understanding.  

One question that has been of interest since the identification of the MNS is 

whether the system is selectively tuned to process the actions of biological agents. For 

example, we may ask, during perception of or interactions with robots, does the brain rely 

on the same or distinct processes as with perception of or interactions with biological 

agents? The neuroscience-based theory of motor simulation argues that a visually 

perceived body movement or action is mapped onto the perceiving agent’s sensorimotor 

neural representations, and “an action is understood when its observation causes the 

motor system of the observer to ‘resonate” (Rizzolatti et al., 2001). But what are the 

boundary conditions for ‘resonance’? What kinds of agents or actions lead to the 

simulation process? Is biological appearance important? Is biological motion? Artificial 

agents such as robots can be important experimental stimuli to test such hypotheses since 

robots can perform recognizable actions like biological agents, but can differ from 

biological agents in some other aspects (e.g., on how they appear or how they move – see 

below).  

The neuroscience literature on the perception of robots has not revealed consistent 

results (Kilner et al., 2003; Chaminade & Hodgins, 2006; Gazzola et al., 2007; Oberman 
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et al., 2007; Press et al., 2007; Chaminade et al., 2007). Some studies have reported that 

artificial agents’ actions apparently affect the observers’ own motor processing, or 

activity within the MNS, whereas others have argued that the MNS either does not 

respond, or responds weakly if the perceived actor is not human, including a clear claim 

that the MNS is only “mirror” for biological actions (Tai et al., 2004).  

Conversely, neuroscience research on human observation of and interaction with 

robots can be invaluable to social robotics researchers since an important issue in the 

growing field of personal and social robotics is how to design robots that are likely to be 

socially accepted by their human companions. Research on the neural basis of social 

cognition using robots can provide valuable insights to advance the field of robot design 

and human-robot interaction by identifying the critical qualities that a robot should have, 

and eventually to guide the building of “neuroergonomic” robots that people are 

comfortable to interact with (Saygin et al., 2011).  

 

2.1.3 Brain Activity and Robot Design 

Here, we explored human brain activity evoked by humans and robots. Robots 

can have a range of appearance and movement patterns – but at the same time, they can 

be perceived as carrying out recognizable actions. Is biological appearance or biological 

movement necessary for engaging human brain systems that support social cognition? 

Does robot perception require additional memory processing demands? Robots can allow 

us to ask such questions and to test whether particular brain systems are selective for or 

sensitive to the presence of a human, or an agent with a humanlike form, or whether they 

respond similarly regardless of the agent performing the action.   
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Given that action observation is important for imitation learning and higher-level 

social skills, we hypothesized that human-likeness of the observed agent (i.e., the degree 

of similarity between the observer and the observed agent) could be important for the 

MNS. Indeed, motor resonance theory would predict increased humanlikeness would lead 

to more effective or efficient simulation (e.g., Buccino et al., 2004, Calvo-Merino et al., 

2006; Casile et al., 2010). On the other hand, in artificial agents, human resemblance is 

not necessarily always a positive feature. The “uncanny valley” (UV) hypothesis suggests 

that as a robot is made more human-like, the reaction to it becomes more and more 

positive, until a point is reached at which the robot becomes oddly repulsive (Mori, 

1970). This phenomenon is well known to roboticists and animators, but its scientific 

understanding remains incomplete, although there is a growing body of research on the 

topic, with some recent contributions from the behavioral and neural sciences (e.g., 

Cheetham, Suter, & Jancke, 2011; Ho, MacDorman, & Dwi Pramono, 2008; Lewkowicz 

& Ghazanfar, 2012; MacDorman & Ishiguro, 2006; Saygin et al., 2012; Steckenfinger & 

Ghazanfar, 2009; Thompson, Trafton, & McKnight, 2011; Tinwell, Grimshaw, Nabi, & 

Williams, 2011). 

Most studies on the observation of robot actions had used very basic robot arms 

consisting of a stick/body and a claw, akin to rudimentary industrial robot arms, 

performing grasping or other simple movements. Therefore, the results are not sufficient 

to make conclusions regarding social humanoid robots that are being developed today. To 

overcome these limitations of previous work, we developed well-controlled stimuli based 

on state-of-the-art humanoid robots developed by an interdisciplinary team. Furthermore, 

our hypotheses, stimuli and experimental design focused on whether the seen agent had 
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biological (human-like) appearance, whether the agent’s body movements were 

biological, plus whether their appearance and movements matched (Saygin et al., 2012).  

We used human EEG cortical oscillatory activity in the alpha/mu and theta frequency 

bands as dependent measures in the present study. In addition to asking functional 

questions about action processing and social cognition, we also hope to shed new light 

onto the functional significance of these dependent measures in relation to action 

observation. For instance, are cortical theta and mu oscillations sensitive to the sensory 

properties of the stimuli, or to higher-level cognitive processes? In particular, we 

investigated whether cortical theta and mu oscillations are modulated by the 

humanlikeness of the observed agent. We characterized humanlikeness in two different 

ways: in terms of appearance and in terms of motion. Participants watched videos of 

three agents as their EEG was recorded: Human, Android, and Robot. Human had 

biological appearance and movement, Android had biological appearance and mechanical 

movement, and Robot had mechanical appearance and mechanical movement (see Figure 

2.1, Methods, and Saygin et al., 2012 for more detail).  

We hypothesized that if mu suppression is influenced by the specific visual 

properties of the seen action, we might find a difference between the actions of the 

different agents based on their differing appearance and/or motion characteristics. If on 

the other hand mu suppression reflects higher-level processes related to the meaning of 

the action, then the agents might not differ from each other since they all perform the 

same recognizable actions despite their different degrees of humanlikeness. For theta 

activity, we hypothesized that its power would be modulated by the humanlikeness of the 

observed agent, reflecting the processing demands of mapping the visual input into 
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existing semantic representations. Since in the context of action processing, people are 

more familiar with human actors than robot actors, we hypothesized memory processes 

would differ depending on the agent’s appearance. More specifically, we hypothesized 

that the power of the theta oscillations would decrease as a function of the humanlikeness 

of the observed agent, since observation of relatively unfamiliar stimuli would result in 

greater memory processing demands (Hald et al., 2006; Zion-Golumbic et al., 2010; 

Atienza et al., 2011). We thus expected that observation of the Robot would result in 

increased theta activity compared to the Human, since the humanlike appearance of the 

agent would facilitate access to semantic representations related to human action. The 

Android condition, which features humanlike appearance but nonhuman motion, 

additionally allows us to ask whether or not the humanlikeness of the motion is a 

modulator of memory processes.  

In sum, the aim of the study was three-fold. First, by manipulating various 

features of the observed agent, we aim to improve our understanding of the functional 

significance of EEG mu and theta oscillations during action observation and their relation 

to the MNS. Second, using robots as experimental stimuli in the presence of existing 

knowledge in cognitive neuroscience of action perception, we aim to inform robotics 

about how humans respond to robots of varying degrees of humanlikeness, what 

dependent measures could be used as gold-standards for social robotics research, and 

accordingly for guiding the design of robots in the long-term. Finally, the current study 

allows us to do cross-methodology comparison, as we previously reported an fMRI study 

utilizing the same agents as stimuli (Saygin et al., 2012).  

 



	
   48 

2.2 MATERIAL AND METHODS 
 
2.2.1 Participants 
 

Twelve right-handed adults (3 females; mean age = 23.4; SD = 4.7) from the 

student community at the University of California, San Diego participated in the study. 

Participants had normal or corrected-to-normal vision and no history of neurological 

disorders. We recruited only those participants who had no experience working with 

robots in order to minimize possible effects of familiarity or expertise on our results 

(MacDorman, Vasudevan, & Ho, 2009). Informed consent was obtained in accordance 

with the UCSD Human Research Protections Program. Participants were paid $8 per hour 

or received course credit.  

 

2.2.2 Stimuli 

Stimuli were video clips of actions performed by the humanoid robot Repliee Q2 

(in Robotic and Human-like appearance, Figure 2.1 right and middle images, 

respectively) and by the human ‘master’, after whom Repliee Q2 was modeled (Figure 

2.1 left image). We refer to these agents as the Robot, the Android (dressed up robot), 

and the Human conditions (even though the former two are in fact the same robot). 

Repliee Q2 has 42 degrees of freedom and can make face, head and upper body 

movements (Ishiguro, 2006). The robot’s movements are mechanical or “robotic”, and do 

not match the dynamics of biological motion. The same movements were videotaped in 

two appearance conditions. For the Robot condition, Repliee Q2’s surface elements were 

removed to reveal its wiring, metal arms and joints, etc. The silicone ‘skin’ on the hands 

and face and some of the fine hair around the face could not be removed but was covered. 
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The movement kinematics for the Android and Robot conditions was identical, since 

these conditions comprised the same robot, carrying out the very same movements. For 

the Human condition, the female adult whose face was used in constructing Repliee Q2 

was videotaped performing the same actions. All agents were videotaped in the same 

room with the same background. Video recordings were digitized, converted to grayscale 

and cropped to 400x400 pixels. Videos were clipped such that the motion of the agent 

began at the first frame of each 2-second video.  

In summary, we had three agents and varied form and motion of the observed 

agent: A Human with biological appearance and motion, an Android with biological 

appearance and mechanical motion, and a Robot with mechanical appearance and 

motion. Due to the considerable technical difficulty in developing these stimuli and 

limitations inherent to the robot systems we worked with, we did not have a fourth 

condition (i.e. an agent with a well-matched mechanical appearance and biological 

motion) that would make our experimental design 2 (motion) x 2 (appearance).  

 

2.2.3 Procedure 

Before starting EEG recordings, participants were presented with all the action 

stimuli and were informed as to whether each agent was human or robot. Since prior 

knowledge can induce cognitive biases against artificial agents (Saygin & Cicekli, 2002), 

each participant was given exactly the same introduction to the study. Participants went 

through a short practice session before the experiment.  

EEG was recorded as participants watched video clips of the three agents 

performing five different upper body actions (drinking from a cup, picking up and 
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looking at an object, hand waving, introducing self, nudging). The experiment consisted 

of 15 blocks of 60 trials with equal number of videos of each agent and action (4 

repetitions of each video in each block). Stimuli were presented in a pseudo-randomized 

order ensuring that a video was not repeated on two consecutive trials. Each participant 

experienced a different pseudo-randomized sequence of trials. 

Stimuli were displayed on a 22’ Samsung LCD monitor at 60 Hz using Python-

based Vizard (Worldviz, Inc.) software. We displayed a gray screen with a fixation cross 

before the start of the video clip on each trial. Participants were instructed to fixate the 

blue fixation cross at the center of the screen for 700-1000 ms. Then the color of the 

fixation cross was changed to green and presented for 500-700 ms to inform participants 

of the upcoming video. A comprehension question was displayed every 6-10 trials after 

the video, asking participants a true/false question about the action in the just seen video 

(e.g. Drinking?). Since participants did not know whether they would receive a question 

during video presentation, this task allowed us to direct the subjects’ attention to the 

stimuli, but not in a manner that might bias the results for any particular condition 

(behavioral performance in the task did not differ across conditions; all p values >0.1). 

Participants responded with a bimanual key press (Yes/No responses). 

 

 
2.2.4 EEG Recording and Data Analysis 
 

EEG was recorded at 512 Hz from 64 ActiveTwo Ag/AgCl electrodes (Biosemi, 

Inc.) following the International 10/20 system. The electrode-offset level was kept below 

25 k-ohm. Four additional electrodes were placed above and below the right eye, and 
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lateral to the eyes to monitor oculomotor activity. Two mastoid electrodes were placed 

behind the ears for re-referencing. The data were preprocessed with MATLAB and the 

EEGLAB toolbox (Delorme & Makeig, 2004). Each participant’s data were first high-

pass filtered at 1 Hz, low-pass filtered at 50 Hz, and re-referenced to average mastoids. 

Then the data were epoched ranging from 900 ms preceding video onset to 2000 ms after 

video onset, and were time-locked to the onset of the video clips. Atypical epochs of 

electromyographic activity were removed from further analysis by semi-automated epoch 

rejection procedures (kurtosis and probability-based procedures with standard deviation 

>/= 6). To remove eye-related artifacts, the data were decomposed by extended infomax 

ICA using the algorithm binica, and components that showed typical eye-related artifact 

characteristics were removed from the data. After preprocessing, data for each condition 

were transformed into a spectrographic image using 3-cycle Morlet wavelets in the 4-55 

Hz frequency range at a number of frontal channels (F3 and F4), central channels (C3 and 

C4 over the sensorimotor cortex), and parietal channels (P3 and P4). The frontal and 

central channels were selected since these or neighboring electrodes were consistently 

reported in the literature on theta and mu oscillations, respectively (Oberman et al., 2007; 

Hald et al., 2006; Zion-Golumbic et al., 2010). For both mu and theta oscillations, these 

are the specific regions of interest that are related to our hypotheses regarding MNS and 

memory, and posterior electrodes for each frequency band are believed to have different 

functional significance. However, for completeness, we reported also on parietal channels 

to cover the posterior parts of the scalp. The mean power of the baseline period of the 

spectrographic images was removed from the power at each time point of the 

experimental trials.  
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2.2.5 Statistical Analysis 

The spectral windows of mu and theta oscillations for statistical analyses were 

determined from the mean spectrographic images across all conditions in the 4-55 Hz 

frequency range and constrained by well-established windows of these cortical rhythms, 

which are 8-13 Hz for mu and 4-8 Hz for theta. The specific time windows for statistical 

analyses of the power of mu (8-13 Hz) and theta (4-8 Hz) oscillations were determined 

from the mean spectrographic image across all conditions, allowing us to test 

modulations in time periods of interest without introducing any bias for finding specific 

condition differences. For mu, mean alpha power in the time window of the mu 

attenuation (400-1400 ms. after stimulus onset) was extracted for each condition (Agent) 

and channel (C3: left hemisphere; C4: right hemisphere), and entered into a 3 (Agent) x 2 

(Hemisphere) repeated measures ANOVA. For theta, the mean power in the time window 

of the theta increase (150-400 ms. after stimulus onset) was extracted for each condition 

(Agent) and channel (F3: left hemisphere; F4: right hemisphere) and entered into a 3 

(Agent) x 2 (Hemisphere) repeated measures ANOVA. Although our hypotheses 

primarily related to the Agent manipulation (Robot, Android, Human), we also modeled 

Action (the five different actions) and Hemisphere (left, right) in ANOVA analyses to 

explore any modulation that may be specific to particular actions. These analyses are not 

reported since they did not reveal any action-specific effects or interactions involving 

Action, and the effects reported below for the 3x2 ANOVA did not change. Greenhouse-

Geisser correction was applied to the ANOVAs whenever indicated. P-values reported 

below are two-tailed except for the comparisons of mu and alpha power against zero, 

where our hypotheses were one-tailed (i.e., we expected a decrease in mu power and an 
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increase in theta power). Planned or posthoc t-test p-values were corrected for multiple 

comparisons. 

In addition to our hypothesis-driven ANOVAs described above, for completeness, 

we also included ANOVAs for each of theta and mu oscillations in the other channel 

locations: (C3, C4) and (P3, P4) for theta; (F3, F4) and (P3, P4) for mu. Furthermore, 

given some recent experimental evidence that sub-bands of the mu oscillations might 

have different functional properties (Naeem et al., 2012), we ran two additional 3 (Agent) 

x 2 (Hemisphere) ANOVAs for lower (8-10 Hz) and upper (10-13 Hz) bands of the mu 

oscillations at channels C3 and C4.  

 

2.2.6 Multivariate Pattern Analyses (MVPA) 

In recent years, computational methods from machine learning have been used to 

analyze neuroimaging data as an alternative to conventional analyses (Kamitani & Tong, 

2005; Haynes & Rees, 2006; Norman et al., 2006). The idea is to build a model 

(classifier) that can decode information recorded from the brain with neuroimaging. This 

is done by first training the model with a set of data labeled with class information (e.g., 

the conditions of the experiment) and allowing it to learn the patterns within the data, and 

then testing it with a separate set of data to see whether it can correctly predict unlabeled 

stimuli. Predictions with higher-than-chance accuracy indicate that there is sufficient 

information in the data that distinguishes the neural patterns corresponding to different 

conditions of an experiment. The advantage of these methods is that they are more 

sensitive to the differences between conditions since they consider the patterns of activity 

as the basic units of measurement, as opposed to an average of the activity, which may 
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discard useful information. This is important in the context of the current study since 

there are discrepancies in the mu suppression literature, which might be due to the 

information lost by using the traditional analysis (i.e. averaging technique). 

In order to explore subtle differences that may have been missed when analyzing 

mu and theta oscillations with traditional analyses as described above, we used MVPA 

using the pattern of mu activity and pattern of theta activity. We used support vector 

machines (Cortes & Vapnik, 1995) with a linear basis function and the LIBSVM software 

package (Chang & Lin, 2011) on mu oscillations at channels C3 and C4, and theta 

oscillations at channels F3 and F4 in three-way (Robot-Android-Human) and two-way 

classifications (Robot-Android, Robot-Human, Android-Human).  The data that were fed 

into the classifier were time-frequency features in the frequency range 8-13 Hz and in the 

time interval 400-1400 ms for mu, and time-frequency features in the frequency range 4-

8 Hz and in the time interval 150-400 ms for theta. The data were scaled before 

classification and 5-fold cross validation was applied in the classification procedure. The 

prediction accuracy (the number of correctly predicted trials) was used as the 

performance metric of the classifier. Each classification (Robot-Android-Human, Robot-

Android, Robot-Human, Android-Human) was run three times for each subject and the 

average prediction accuracy of these three runs are reported. Above chance performance 

(corresponding to the 95% confidence interval) was 54.37% for the two-way 

classifications, and 37.59% for the three-way classification (Muller-Putz et al., 2008).  
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2.3 RESULTS 
 
2.3.1 Mu Oscillations (8-13 Hz) 
 

In our channels of interest, C3 and C4, action observation led to an increase in 

theta power shortly after stimulus onset (see Theta results below for quantified analyses), 

followed by an attenuation in alpha power starting around 400 ms, and becoming stronger 

around 600 ms after stimulus onset (Figure 2.2). 

  For observation of all agents’ actions (Human as well as the two robot agents, 

Android and Robot), attenuation of the mu oscillations were robust and significant 

(Figure 2.3; C3: Human (Mean = -1.21, SD = 0.61), t(11) = -6.871, p<0.001;  Android 

(Mean = -1.14, SD = 0.60), t(11) = -6.642, p<0.001; Robot (Mean = -1.21, SD = 0.74), 

t(11) = -5.675, p<0.001, and C4: Human (Mean = -1.09, SD = 0.71), t(11) = -5.328, 

p<0.001; Android (Mean = -1.15, SD = 0.65), t(11) = -6.11, p<0.001; Robot (Mean = -

1.19, SD = 0.87), t(11) = -4.76, p = 0.001).  

Suppression in alpha power was also observed in frontal and parietal channels 

over the scalp with greater suppression at parietal channels. Although, we report some 

results from other channels here for descriptive purposes, given the differential functional 

significance of frontal and posterior alpha, our focus will be on the hypothesis-driven 

analyses at channels C3 and C4.  

 
 
2.3.1.1 ANOVA  
 

Our primary comparison of interest was the 3 (Agent) x 2 (Hemisphere) repeated 

measures ANOVA at central channels C3 and C4, which revealed no main effect of 

Agent (F(2, 22) = 0.151) or Hemisphere (F(1,11) = 0.163) on the power of the mu 
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oscillations (all p>0.1; Figure 2.3). There was no Agent x Hemisphere interaction 

(F(2,22) = 0.947, p>0.1). 

When we explored lower (8-10 Hz) and upper (10-13 Hz) bands of the mu 

oscillations at the same channels separately, we again found no main effects or 

interactions (Lower Mu: Agent (F(1.376, 15.136) = 0.047), Hemisphere (F(1, 11) = 

0.007), Agent x Hemisphere (F(2, 22) = 1.093); Upper Mu: Agent (F(2, 22) = 0.216), 

Hemisphere (F(1, 11) = 0.136), Agent x Hemisphere (F(2, 22) = 0.496) all p > 0.1).  

Similar 3 (Agent) x 2 (Hemisphere) repeated measures ANOVAs at frontal (F3, F4) and 

parietal channels (P3, P4) are reported here for completeness: There were no main effects 

or interactions (F3-F4: Agent (F(2, 22) = 0.210), Hemisphere (F(1, 11) = 0.110), Agent x 

Hemisphere (F(2, 22) = 1.334); P3-P4: Agent (F(2, 22) = 0.629), Hemisphere (F(1, 11) = 

1.187), Agent x Hemisphere (F(2, 22) = 0.359), all p>0.1).  

 

2.3.1.2 Multivariate Pattern Analysis (MVPA) 

Multivariate pattern analyses of the mu suppression at channels C3 and C4 were 

performed to reveal any subtle modulations in alpha power over time that may have been 

missed due to averaging in the traditional analysis. For the three-way classification 

Robot-Android-Human (R-A-H), the average performance of MVPA for all subjects was 

not above chance (33.91% for C3 and 34.28% for C4). Pair-wise classifications Robot-

Android (R-A), Robot-Human (R-H), and Android-Human (A-H) also resulted in chance-

level performance on average (50.53%, 52.11%, and 49.77%, respectively for channel 

C3, and 50.95%, 51.31%, and 50.82%, respectively for channel C4). 
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2.3.2 Theta Oscillations (4-8 Hz) 

In our channels of interests, at channels F3 and F4, action observation led to an 

increase in theta power starting at around 150 ms and lasting until about 400 ms after 

stimulus onset (Figure 2.4), followed by an attenuation in alpha power (see Mu results 

above for quantified analyses). For the Robot condition, the increase in theta was 

significant at both F3 and F4, (Figure 2.4; For F3, Mean = 0.71, SD = 1.05, t(11) = 2.322, 

p<0.01; for F4, Mean = 0.83, SD = 1.13, t(11) = 2.527, p<0.01). Observation of Android 

and Human actions also resulted in increased theta power that were either statistically 

significant or just at the cusp of significance (Figure 2.4; For F3, Human (Mean = 0.32, 

SD = 0.75), t(11) = 1.479, p = 0.054;  Android (Mean = 0.45, SD = 0.88), t(11) = 1.774, p 

= 0.05; For F4, Human (Mean = 0.37, SD = 0.68), t(11) = 1.848, p <0.05;  Android 

(Mean = 0.37, SD = 0.84), t(11) = 1.506, p = 0.053). 

Increase in the power of theta oscillations was also observed at central and 

parietal channels over the scalp. Although, we reported results from all channels here, we 

based our discussion mainly on the hypothesis-driven results at channels F3 and F4 given 

the prior literature.  

 
 
2.3.2.1 ANOVA  
 

Our main comparison of interest, a 3 (Agent) x 2 (Hemisphere) repeated measures 

ANOVA at channels F3 and F4 revealed a significant main effect of Agent (F(1.350, 

14.852) = 5.276), p<0.05, See Figure 2.5). Planned comparisons (paired t-tests) indicated 

theta oscillations were greater for the Robot condition compared with the Human 

(F(1,11) = 5.386, p<0.05) and the Android conditions (F(1,11) = 9.879, p<0.01). The 
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effect of Hemisphere (F(1,11) = 1.144, p>0.1) or the Agent x Hemisphere interaction 

(F(1,11) = 3.196, p>0.1) were not significant.  

Similar 3 (Agent) x 2 (Hemisphere) repeated measures ANOVAs at central and 

parietal channels are reported here for completeness: There was a main effect of Agent at 

central channels, but no effect of Hemisphere or interaction effect (C3-C4: Agent 

(F(1.133, 12.458) = 5.016), p<0.04, Hemisphere (F(1, 11) = 0.401), p>0.1,  Agent x 

Hemisphere (F(2, 22) = 1.819)). The Agent effect reflected increased theta for the Robot, 

like similar to that found in frontal channels (see Figure 2.4). There were no main effects 

or interactions in parietal channels (P3-P4: Agent (F(1.260, 13.860) = 2.588), 

Hemisphere (F(1, 11) = 1.078), Agent x Hemisphere (F(2, 22) = 0.908), all p>0.1). 

 
 
2.3.2.2 Multivariate Pattern Analysis (MVPA) 

 Although traditional analyses already revealed differences between agents, we 

applied multivariate pattern analyses on the theta oscillations at channels F3 and F4 for 

completeness. For the three-way classification Robot-Android-Human (R-A-H), the 

average performance of MVPA for all subjects was above chance (39.58% for C3 and 

39.53% for C4). Pair-wise classifications Robot-Android (R-A) and Robot-Human (R-H) 

resulted in above chance performance on average (58.25% and 58.33%, respectively for 

channel F3, and 57.80% and 58.61%, respectively for channel F4). Android-Human (A-

H) classification resulted in chance-performance on average (51.76% for channel F3 and 

52.16% for channel F4). These MVPA results were thus in line with the results of the 

traditional analyses.  
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2.4 DISCUSSION 
  

We investigated how the sensorimotor EEG mu rhythm that is considered to index 

human MNS activity, and the frontal theta activity that is implicated in memory processes 

are modulated by the humanlikeness of the agent being observed. Participants viewed 

three agents, a Human, and a state-of-the-art robot in two different appearances (as an 

Android and a Robot) performing the same recognizable actions. The Human had 

biological motion and appearance, whereas the Android had biological appearance and 

mechanical motion, and the Robot had mechanical motion and mechanical appearance 

(Figure 2.1). We hypothesized that any modulations of the oscillations by sensory 

features of the stimuli would be revealed as significant differences between the 

experimental conditions, based on the seen agents’ differing appearance and motion 

characteristics. Specifically if these dependent measures are sensitive to the movement 

kinematics of the seen actor, then we would expect the Human condition to be 

distinguished from the others. If they are sensitive to the appearance, then Robot would 

be distinguished from the other agents, or there will be a degree of activity that 

corresponds to the degree of humanlikeness of the appearance of the agents. If they are 

sensitive to the congruence of the movement dynamics and appearance, then Android 

would be distinguished from the other agents since this condition features a humanlike 

appearance along with nonhuman motion dynamics, whereas the other agents feature 

congruent appearance and motion (both biological, or both mechanical). If on the other 

hand these dependent measures reflect higher-level processing related to the meaning of 

the actions and are not sensitive to the visual properties of the stimuli, then the agents 

might not differ from each other since they all perform the very same actions.  
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2.4.1 Mu Oscillations 

We showed that the observation of the human agent as well as both of the robot 

agents resulted in robust and significant attenuations in the power of mu oscillations over 

the frequently reported sensorimotor areas. The magnitude of the attenuations was 

equivalent for all agents. This replicates and extends a previous mu suppression study 

that had used a simple robot hand (Oberman et al., 2007). Consistent with previous work 

on action observation, we did not find any hemispheric differences (Babiloni et al., 

2012). Overall, our results show that the human MNS is unlikely to be selective only for 

other humans, since a commonly accepted measure of human MNS activity (EEG mu 

suppression) showed robust and significant modulations also when observing robot 

actions. These data also suggest that mu suppression might not be sensitive to early 

sensory stages of action processing, since the agents’ differences in terms of their visual 

appearance and movement kinematics did not differentially affect mu power. Frontal and 

parietal sites also showed the same pattern of results as the sensorimotor channels, 

although it must be noted that alpha oscillations at these latter sites are not specifically 

linked to the MNS or action processing.  

After exploring mu suppression with traditional statistical analyses adopted from 

previous work (e.g., Oberman et al., 2007), we also explored the data using machine 

learning and multivariate pattern analyses. The pattern activity has more information than 

the average activity (over time and frequency band) used in traditional analyses so more 

subtle differences can be picked up with a more sensitive approach (see Kamitani & 

Tong, 2005; Pereira et al., 2009; Norman et al., 2006 for discussion of such issues). Our 

primary goal in applying pattern analysis on mu oscillations was to reduce concerns 
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readers may possibly have about lack of a difference between conditions being due to an 

insensitive analysis method. In other words, we wanted to pre-answer the question a 

reader may have about whether there could be subtler differences when the entire pattern 

gets taken into account, especially given that recent literature on the mu suppression field 

has started to include finer modulations (Naeem et al., 2012).	
  The fact that we did not 

find differences in the “patterns” of mu suppression with this much more sensitive 

analysis method provides strong evidence that mu suppression is also found for observing 

the actions of humanoid robots. Mu suppression patterns do not appear to be sensitive to 

the early sensory stages of action processing (as evidenced by chance level performance 

for the Robot-Android-Human classification), in particular to the appearance (as 

evidenced by chance level performance for the Robot-Android classification) or the 

movement kinematics (as evidenced by chance-level performance for the Android-

Human classification) of the observed agent.  

To be clear, there may be other systems in the brain that are modulated by sensory 

properties of the seen stimuli, or even those that are selective for processing biological 

agents. Indeed, in related work (and in the theta results here), we have reported 

perceptual and neural processes that are sensitive to the properties of the seen action such 

as humanlike appearance or motion (e.g., Urgen et al., 2012; Saygin & Stadler, 2012). 

The mu suppression results here indicate however that the human MNS does not appear 

to respond differentially to the actions of humanoid robots and humans. Although a PET 

study had claimed the human MNS is “mirror only for biological actions” (Tai et al., 

2004), several recent fMRI studies are consistent instead with our present results, and 

have reported that human MNS also responds to robot actions (e.g., Gazzola et al., 2007; 
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Saygin et al., 2012; Cross et al., 2012). In particular, Saygin et al. (2012), using very 

similar stimuli to the present study, found no difference between human and robot actions 

in premotor cortex, but showed that parietal cortex is sensitive to the congruence of the 

motion and appearance of the agent (as evidenced by significant differences in response 

to the Android). More broadly, these data are consistent with the view that the premotor 

cortex is largely insensitive to the surface properties of the stimuli depicting actions, but 

instead is more involved in computing goals and intentions (Rizzolatti et al., 2001; 

Cattaneo et al., 2010; Grafton & Hamilton, 2007). Human fMRI studies indicate that 

human premotor cortex responds to a wide range of action stimuli, including 

impoverished or simplified displays such as point-light biological motion or simple 

avatars (Saygin et al., 2004; Pelphrey et al., 2003). Since the mu rhythm appears to be 

insensitive to the visual aspects of the actions (i.e., the humanlike appearance and 

movement kinematics in the current study), cognitive and affective manipulations during 

passive action observation or social interactive contexts as evidenced by recent literature 

(Tognoli et al., 2007; Dumas et al., 2012; Naeem et al., 2012; Silas et al., 2012) would be 

more appropriate for future studies to better understand the functional properties of the 

mu rhythm. The fact that we did not find any difference between the different sub-bands 

of the mu rhythm further suggests that social interactive contexts may be suitable to study 

the functional properties of the mu rhythm (Naeem et al., 2012). 

 

2.4.2 Theta Oscillations 

For the frontal theta oscillations, we expected our meaningful stimuli to lead to 

increases in power, reflecting memory-related processing (i.e., accessing long-term 
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memory representations to process the higher-level meaning of the action stimuli). In 

particular, we hypothesized that the power would decrease as a function of the 

humanlikeness of the observed agent, since observation of relatively unfamiliar agents 

could result in greater memory processing demands (Hald et al., 2006; Zion-Golumbic et 

al., 2010; Atienza et al., 2011). More specifically, we hypothesized that observation of 

the Robot would result in greater theta activity compared to the Human, as we expected 

the humanlike appearance of the agent would facilitate access to semantic representations 

related to human action. However it was also possible biological motion would also 

influence responses, in which case we would expect the Android condition to also differ 

from the Human. 

Our analysis of the frontal theta activity indeed showed that observation of the 

Robot resulted in a significantly stronger increase in the power of theta oscillations (4-8 

Hz) compared to the agents with humanlike appearance over frontal sites; the Human and 

Android did not differ from each other. Multivariate pattern analysis of the theta 

oscillations corroborated these results. Since the Robot was distinguished from the other 

agents by its nonhuman appearance, these results suggest that frontal theta activity is 

modulated by the appearance of the agent being observed during action observation. Our 

exploratory analysis in central sites revealed a similar pattern of results with the frontal 

sites; there were no agent differences over parietal sites. 

Since theta oscillations reflect memory processes such as retrieval from long-term 

memory and encoding into long-term memory (see review Kahana et al., 2001, Klimesch 

et al., 2010), our results suggest that processing of the Robot resulted in greater demands 

on memory systems as compared to the other agents. This difference is best viewed as 
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reflecting the interplay of perceptual processing and long-term memory, particularly 

during retrieval of items from semantic memory. A robotic appearance, especially in the 

context of actions that are typical for humans, is less likely to be associated with strong 

semantic links that can aid in the mapping of the visual input onto existing 

representations from long-term memory. The difficulty of integrating the visual input 

with existing semantic knowledge could manifest itself as increased frontal theta activity 

in comparison to the conditions with humanlike appearance. For the human stimuli, 

linking the visual input with semantic representations of human actions is likely to be less 

effortful, since participants have had existing semantic representations about actions 

developed over time by seeing other humans. This interpretation is consistent with 

previous work, which has found increased theta activity during the retrieval of semantic 

information from long-term memory, and especially sensitivity to semantic congruence in 

linguistic and non-linguistic contexts (Hald et al., 2006; Davidson & Indefrey, 2007; 

Bastiaansen et al., 2008; Shahin et al., 2009; Zion-Golimbic et al., 2010; Atienza et al., 

2011; Steele et al., 2013). The similarity of the results for the Android with that of the 

Human suggests that the very humanlike appearance of the Android may have facilitated 

the activation of semantic representations about human actions, even though the motion 

of this agent was not humanlike (and was in fact the same as that for Robot), and even 

though participants knew that this agent was not a real human.  

In a recent event-related potential (ERP) study (Urgen et al., 2012), we averaged 

the EEG time-locked to the onset of actions for the Human, Android and Robot 

conditions. While all action stimuli evoked a significant negativity called the N300/N400 

component complex beginning at around 250 ms after stimulus onset over frontal 
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channels, the amplitude of this component differed significantly for the Robot condition 

compared to the other agents, a parallel to the present results. Given the timing of the 

theta oscillations observed here, and the known function of these ERP components for 

semantic processing (Sitnikova et al., 2008; Wu and Coulson, 2011; Kutas and 

Federmeier, 2011), we conclude that a humanlike appearance facilitates (or a nonhuman 

appearance impedes) access to long-term memory representations related to action. The 

link between frontal theta and ERP components related to memory processes should be 

explored in future work. Furthermore, the addition of a fourth condition which presents a 

biological motion and mechanical appearance combination (which is missing in the 

current study due to technical difficulties) in addition to the conditions in the current 

study can be studied in future research to better understand the interaction between the 

appearance and motion parameters.  

 

2.4.3 Cross-methods Comparison: EEG and fMRI with Human and Robot Action 

Stimuli 

The present study allows us to compare our EEG time-frequency results to our 

previous fMRI work with a similar stimulus set (Saygin et al., 2012). The main finding of 

our fMRI study was that parietal regions of the human cortex (specifically bilateral 

anterior intraparietal sulcus which is part of the human MNS) responded significantly 

more to the Android agent, therefore to the congruence of form and motion of the agent 

being observed. Premotor regions of the MNS did not show selectivity neither for the 

form nor for the motion of the agents. Although EEG mu activity has been found to 

correlate with fMRI activity both in premotor cortex and parietal cortex (Arnstein et al., 
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2011), the present results, along with our fMRI work (Saygin et al., 2012) suggest that 

the mu rhythm might share more functional properties with the activity of premotor 

cortex than parietal cortex.  

In the current study theta oscillations distinguished the Robot agent around 150-

400 ms after stimulus onset. Although there was a region in left lateral temporal cortex 

(the extrastriate body area) that responded significantly less to the Robot agent in the 

fMRI data, based on the functional properties of this region, this activation is more likely 

to reflect visual stimulus properties rather than the memory-related processing indexed by 

the theta oscillations in the present study, or by event related potentials (Urgen et al., 

2012). It is likely that EEG, with its milliseconds time resolution, can reveal effects that 

do not emerge in fMRI studies due to the limited time resolution of this latter method.  

 

2.4.4 Human Qualities of Social Robots 

Neuroscience research on human observation of and interaction with robots not 

only improves our understanding of the neural basis of social cognition but it can be 

invaluable to social robotics researchers. One important issue in the growing field of 

personal and social robotics is how to design robots that are likely to be socially accepted 

by their human companions. Broadly, there are two important design issues. The first is 

the visual properties of robots, i.e. how they should look on the surface. The second is the 

functional properties, i.e. how they should perform the functions they are designed to 

perform. Not only should we consider both visual properties and functional properties, 

but the combination (or interaction) of them might also be important for determining the 

eventual social acceptability of a robot. Therefore, research efforts for robotics from 
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social, behavioral and neural sciences should focus on both of these aspects. In the 

present study, we kept the functioning of the robots constant (i.e. both robots successfully 

perform various goal-directed, recognizable human actions) and manipulated the visual 

properties. Our study, together with existing neuroimaging evidence, provides some 

insight to robotics about the visual human qualities of robots that will be designed to 

interact with humans. It seems that as long as the robot performs the action successfully 

and is of a sufficiently humanoid design to do so, it will likely be processed in a similar 

way in the MNS as other people (see also, Gazzola et al, 2007; Oberman et al., 2007; 

Saygin et al., 2012). Although mu suppression has been linked to the human MNS, it and 

MNS activity in general do not appear be the right dependent measure for comparing the 

visual properties of robots with human standards. We suggest that neuroscience studies 

with mu oscillations as dependent measure might consider using cognitive and affective 

manipulations to study robot perception or human-robot interaction. It is possible that mu 

oscillations can inform design issues about the functional properties of robots, rather than 

visual properties.  

Analysis of frontal theta activity on the other hand suggests that theta oscillations 

can be used as a dependent measure to investigate responses to visual properties of 

artificial agents, in particular on the interplay between perceptual and memory processes. 

Our results showed that if the artificial agent possesses sufficient amount of human-

likeness in terms of its appearance (Android vs. Robot), it is more likely to facilitate 

access to semantic representations pertaining to the seen stimuli (here, actions). If the 

seen agent is rather different from a human in terms of its visual appearance (as in the 

case of the Robot), it will result in greater processing demands in the observer. Our 
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results suggest that movement kinematics might not be as important as the appearance in 

influencing the mapping process of the visual input to the existing long-term memory 

representations.  

In general, future social, behavioral and neuroscience research on the perception 

of robots should distinguish the two dimensions, i.e. visual properties and functional 

properties (and an interaction of the two) when studying the social acceptability of robots. 

This would result in a more systematic study of the design issues about social robots and 

enable determination of the right dependent measures to be used as gold standards in 

human-robot interaction and robot design. This research in turn will inform social and 

cognitive neuroscience about the neural basis of the social skills humans have. Our study 

demonstrates that this interdisciplinary work is useful and fruitful, and progress in this 

direction will improve our understanding in both fields.  
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Figure 2.1: Still frames from the videos used in the experiment depicting the three 
actors: Human, Android, and Robot. 
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Figure 2.2: Time-frequency plots for the three conditions (Human, Android, Robot) at 
channel C3 (left) over somatosensory cortex (collapsed across actions). Plots for the right 
hemisphere (C4) were very similar and are not shown. The frequency-axis is log-spaced. 
The zero point on the time-axis indicates the onset of the action movies. Scaling unit is 
dB. Shortly after the onset of the action videos, we observed an increase in the theta 
frequency band (see also Figure 2.4), followed by an attenuation in the alpha frequency 
band that started around 400 ms, and grew stronger around 600 ms. 
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Figure 2.3: Attenuation in the power (in dB unit) of the mu (8-13 Hz) oscillations for the 
three conditions (Human, Android, Robot) plotted at each channel C3 and C4 over left 
and right somatosensory cortex, respectively. Error bars indicate the standard error of the 
mean. For both C3 and C4, all conditions led to statistically significant attenuation in mu 
power (all p’s<0.05, see Results). There were no significant differences between agents 
(Human, Android, Robot) or hemispheres (C3, C4). 
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Figure 2.4: Time-frequency plots for the three conditions (Human, Android, Robot) at 
channel F3 (left) over frontal cortex (collapsed across actions). Plots for the right 
hemisphere (F4) were very similar and are not shown. The frequency-axis is log-spaced. 
The zero point on the time-axis indicates the onset of the action movies. Scaling unit is 
dB. Shortly after the onset of the stimuli, there was an increase in theta power, followed 
by a reduction in alpha power (see also Figure 2.2). 
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Figure 2.5: Power in the theta frequency range (4-8 Hz, in dB unit) for the three 
conditions (Human, Android, Robot) plotted at channels F3 and F4 (over left and right 
frontal regions, respectively). Error bars indicate the standard error of the mean. All 
conditions led to significant increase in theta power (all p’s≤ 0.05, see Results). The 
Robot condition led to significantly increased theta power in comparison to Android 
conditions (F3: p<0.05; F4: p<0.05) and Human (F3: p=0.059; F4: p<0.05) (* indicates 
p<0.05 except the comparison marked in light gray * p = 0.059). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   75 

REFERENCES 
 
Arnstein, D., Cui, F., Keysers, C., Maurits, N.M.  and Gazzola, V. (2011). Mu 
suppression during action observation and execution correlates with BOLD in dorsal 
premotor, inferior parietal, and SI cortices. Journal of Neuroscience, 31 (40), 14243–
14249. 

Atienza, M., Crespo-Garcia, M., & Cantero, J. L. (2011). Semantic congruence enhances 
memory of episodic associations: role of theta oscillations. Journal of Cognitive 
Neuroscience, 23(1), 75–90.  

Babiloni C, Babiloni F, Carducci F, Cincotti F, Cocozza G, Del Percio C, Moretti 
DV, Rossini PM (2002). Human cortical electroencephalography (EEG) rhythms during 
the observation of simple aimless movements: a high-resolution EEG study. Neuroimage, 
17 (2), 559-572. 

Barresi, J. and Moore, C. (1996). Intentional relations and social understanding. 
Behavioral and Brain Sciences, 19, 107-154. 

Bastiaansen, M. C. M., Oostenveld, R., Jensen, O., & Hagoort, P. (2008). I see what you 
mean: theta power increases are involved in the retrieval of lexical semantic information. 
Brain and Language, 106(1), 15–28.  

Billard, A., Robins, B. Nadel, J. Dautenhahn, K. (2007). Building Robota, a mini-
humanoid robot for the rehabilitation of children with autism. Assist Technol. 19, 37-49. 
 
Blakemore, S.J., and Decety, J. (2001). From the perception of action to the 
understanding of intention. Nature Reviews Neuroscience, 2:561–66. 
 
Braadbaart, L., Williams, J. H., & Waiter, G. D. (2013). Do mirror neuron areas mediate 
mu rhythm suppression during imitation and action observation? International Journal of 
Psychophysiology. 89, 99-105. 
 
Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., et al. (2004). 
Neural circuits involved in the recognition of actions performed by nonconspecifics: an 
FMRI study. Journal of Cognitive Neuroscience, 16(1), 114-126. 
 
Calvo-Merino, B., Grezes, J., Glaser, D.E., Passingham, R.E., Haggard, P. (2006). Seeing 
or doing? Influence of visual and motor familiarity in action observation. Current 
Biology, (16), 1905-1910. 

Carmo, J. C., Rumiati, R. I., & Vallesi, A. (2012). Understanding and imitating 
unfamiliar actions: distinct underlying mechanisms. PloS One, 7(10). 



	
   76 

Casile, A. and Giese, M.A. (2006). Nonvisual motor training influences biological 
motion perception. Current Biology, 16, 69-74. 
 
Casile, A., Dayan, E., Caggiano, V., Hendler, T., Flash, T. & Giese, M. A. (2010). 
Neuronal encoding of human kinematic invariants during action observation. Cerebral 
Cortex, 20 (7), 1647-1655.  
 
Cattaneo, L., Sandrini, M., and Schwarzbach, J. (2010). State-Dependent TMS reveals a 
hierarchical representation of observed acts in the temporal, parietal, and premotor 
cortices. Cerebral Cortex, 20(9), 2252-2258. 
 
Chaminade, T., & Hodgins, J. K. (2006). Artificial agents in social cognitive sciences. 
Interaction Studies, 7(3), 347-353. 
 
Chaminade, T., Hodgins, J., & Kawato, M. (2007). Anthropomorphism influences 
perception of computer-animated characters' actions. Social Cognitive and Affective 
Neuroscience, 2(3), 206-216. 
 
Chang, C. and Lin, C. (2011). LIBSVM: a library for support vector machines. ACM 
Transactions on Intelligent Systems and Technology, 2:27:1--27:27. Software available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm. 
 
Cheetham M., Suter P., Jancke L. (2011). The human likeness dimension of the “uncanny 
valley hypothesis”: behavioral and functional MRI findings. Frontiers in Human 
Neuroscience, 5:126. 
 
Cochin, S., Barthelemy, C., Roux, S., & Martineau, J. (1999). Observation and execution 
of movement: similarities demonstrated by quantified electroencephalography. European 
Journal of Neuroscience, 11(5), 1839-1842. 

Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (in press). Mirror Neurons  : From 
origin to function. Behavioral and Brain Sciences. 

Coradeschi, S. Ishiguro, H., Asada, M., Shapiro, S.C., Thielscher, M., Breazeal, C., 
Mataric, M.J. and Ishida, H. (2006). Human-inspired robots. IEEE Intelligent Sys. 21, 74-
85. 
 
Cortes, C. and Vapnik, V.N. (1995). Support-vector networks. Machine Learning, 20. 
 
Crespo-Garcia, M., Cantero, J. L., Pomyalov, a, Boccaletti, S., & Atienza, M. (2010). 
Functional neural networks underlying semantic encoding of associative memories. 
NeuroImage, 50(3), 1258–70. 
 



	
   77 

Cross, E., Liepelt, R., Hamilton, A., Parkinson, J., Remsey, R., Stadler, W. & Prinz, W. 
(2012). Robotic movement preferentially engages the action observation network. Human 
Brain Mapping, 33 (9), 2238-2254. 
 
Dautenhahn, K. (2007). Socially intelligent robots: dimensions of human-robot 
interaction. Philos. Trans. R. Soc. Lond. B Biol. Sci., 362, 679-704.  

Davidson, D. J., & Indefrey, P. (2007). An inverse relation between event-related and 
time-frequency violation responses in sentence processing. Brain Research, 1158, 81–92.  

Delorme, A. & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of 
single-trial EEG dynamics including independent component analysis. Journal of 
Neuroscience Methods, 134(1), 9-21. 
 
Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. 1992. Understanding 
motor events: a neurophysiological study. Experimental Brain Research, 91:176–80. 
 
Dumas, G., Martinerie, J., Soussignan, R., & Nadel, J. (2012). Does the brain know who 
is at the origin of what in an imitative interaction?. Frontiers in Human Neuroscience, 
6:128.  
 
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during 
action observation: a magnetic stimulation study. Journal of Neurophysiology, 73(6), 
2608-2611. 
 
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the 
premotor cortex. Brain, 119, 593-609. 
 
Gazzola, V., Rizzolatti, G., Wicker, B. & Keysers, C. (2007). The anthropomorphic 
brain: the mirror neuron system responds to human and robotic actions. Neuroimage, 
35(4), 1674-1684. 
 
Grafton, S. T., & Hamilton, A. F. (2007). Evidence for a distributed hierarchy of action 
representation in the brain. Human Movement Science, 26(4), 590-616. 
 
Hald, L.A., Bastiaansen, M.C.M., & Hagoort, P. (2006). EEG theta and gamma responses 
to semantic violations in online sentence processing. Brain and Language, 96(1), 90–105. 
 
Hari, R., Forss, N., Avikainen, S., Kirveskari, E., Salenius, S., & Rizzolatti, G. (1998). 
Activation of human primary motor cortex during action observation: a neuromagnetic 
study. Proceeding of National Academy of Sciences, 95(25), 15061-15065. 
 
Hari, R. (2006). Action–perception connection and the cortical mu rhythm. Progress in 
Brain Research, 159, 253-260. 
 



	
   78 

Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in humans. 
Nature Reviews Neuroscience, 7(7), 523-534. 
 
Ho, C.-C., MacDorman, K. F., & Dwi Pramono, Z. A. D. (2008). Human emotion and the 
uncanny valley: a GLM, MDS, and Isomap analysis of robot video ratings. Proceedings 
of the 3rd ACM/IEEE international conference on human-robot interaction. Amsterdam, 
The Netherlands: ACM. 
  
Iacoboni, M. & Dapretto, M. (2006). The mirror neuron system and the consequences of 
its dysfunction. Nature Reviews Neuroscience, 7(12), 942-951. 
 
Ishiguro, H. (2006). Android science: conscious and subconscious recognition. 
Connection Science, 18(4), 319-332. 

Kahana, M. J., Seelig, D., & Madsen, J. R. (2001). Theta returns. Current Opinion in 
Neurobiology, 11(6), 739–44.  

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the 
human brain. Nature Neuroscience, 8(5), 679-685. 
 
Kanda, T., Ishiguro, H., Imai, M. and Ono, T. (2004). Development and evaluation of 
interactive humanoid robots. Proc. IEEE, 92, 1839-1850. 
 
Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of 
observed biological movement on action. Current Biology 13(6), 522-525. 
 
Kilner, J. M., Marchant, J. L., & Frith, C. D. (2009). Relationship between activity in 
human primary motor cortex during action observation and the mirror neuron system. 
PLoS ONE, 4(3), e4925. 

Klimesch, W., Freunberger, R., & Sauseng, P. (2010). Oscillatory mechanisms of process 
binding in memory. Neuroscience and Biobehavioral Reviews, 34(7), 1002–14.  

Knoblich, G., Thornton, I.M., Grosjean, M., Shiffrar, M., eds. (2006). Human Body 
Perception from the Inside Out. New York: Oxford Univ. Press 
 
Kutas, M. and Federmeier, K.D. (2011). Thirty Years and Counting: Finding Meaning in 
the N400 Component of the Event-Related Brain Potential (ERP). Annual Review of 
Psychology, 62, 621-647. 
 
Lewkowicz D. J. and Ghazanfar A. A. (2012). The development of the uncanny valley in 
infants. Developmental Psychobiology, 54, 124–132.  
 
MacDorman, K. F., & Ishiguro, H. (2006). The uncanny advantage of using androids in 
cognitive and social science research. Interaction Studies, 7(3), 297-337. 



	
   79 

MacDorman, K. F., Vasudevan, S. K., & Ho, C.-C. (2009). Does Japan really have robot 
mania? Comparing attitudes by implicit and explicit measures. AI & Society, 23(4), 485-
510. 
 
Mataric, M., Tapus, A., Winstein, C. and Eriksson, J. (2009). Socially assistive robotics 
for stroke and mild TBI rehabilitation. Stud. Health. Technol. Inform, 145, 249-262. 
 
Mizuhara, H. and Inui, T. (2011). Is mu rhythm an index of the human mirror neuron 
system? A study of simultaneous fMRI and EEG. In R. Wang, F. Gu (eds), Advances in 
Cognitive Neurodynamics (II) (123-127). Springer Netherlands. 
 
Mori, M. (1970). The uncanny valley. Energy, 7(4), 33-35. 
 
Muller-Putz, G.R., Scherer, R., Brunner, C. Leeb, R., and Pfurtscheller, G (2008). Better 
than random: A closer look on BCI results. International Journal of Biomagnetism, 
10(1), 52-55.  
 
Naeem, M., Prasad, G., Watson, D. R., & Kelso, J. A. (2012). Electrophysiological 
signatures of intentional social coordination in the 10–12 Hz range. Neuroimage, 59(2), 
1795-1803. 
 
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: 
multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424-430. 
 
Oberman, L. M., McCleery, J. P., Ramachandran, V. S. & Pineda, J. A. (2007). EEG 
evidence for mirror neuron activity during the observation of human and robot actions: 
Toward an analysis of the human qualities of interactive robots. Neurocomputing, 70, 
2194-2203. 
 
Orgs, G., Dombrowski,J., Heil, M. and  Jansen-Osmann, P. (2008). Expertise in dance 
modulates alpha/beta event-related desynchronization during action observation. 
European Journal of Neuroscience. 27(2), 3380-3384. 

Osipova, D., Takashima, A., Oostenveld, R., Fernández, G., Maris, E., & Jensen, O. 
(2006). Theta and gamma oscillations predict encoding and retrieval of declarative 
memory. Journal of Neuroscience, 26(28), 7523–31. 

Pelphrey, K.A., Mitchell, T.V., McKeown, M. J., Goldstein, J., Allison, T., McCarthy, G. 
(2003). Brain activity evoked by the perception of human walking: controlling for 
meaningful coherent motion. Journal of Neuroscience, 23(17), 6819–25. 

Pereira, F., Mitchell, T. and Botvinick, M. (2009). Machine learning classifiers and 
fMRI: A tutorial overview. Neuroimage, 45 (1), 199-209.  
 



	
   80 

Perry, A. & Bentin, S (2009). Mirror activity in the human brain while observing hand 
movements: a comparison between EEG desynchronization in the mu-range and previous 
fMRI results. Brain Research, 1282, 126-132. 
 
Pineda, J. (2005). The functional significance of mu rhythms: Translating “seeing” and 
“hearing” into “doing”. Brain Research Reviews, 50 (1), 57-68. 
 
Press, C., Gillmeister, H., & Heyes, C. (2007). Sensorimotor experience enhances 
automatic imitation of robotic action. Proc Biol Sci, 274(1625), 2509-2514. 
 
Press, C., Cook, J., Blakemore, S. J. & Kilner, J. M. (2011). Dynamic modulation of 
human motor activity when observing actions. Journal of Neuroscience, 31(8), 2792-
2800. 
 
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the 
recognition of motor actions. Cognitive Brain Research, 3(2), 131-141. 
 
Rizzolatti, G., Fogassi, L. and Gallese, V. (2001). Neurophysiological mechanisms 
underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 
661-670.  
 
Saygin, A. P., & Cicekli, I. (2002). Pragmatics in human-computer conversations. 
Journal of Pragmatics, 34(3), 227-258. 
 
Saygin, A. P., Wilson, S. M., Hagler, D. J., Jr., Bates, E., & Sereno, M. I. (2004). Point-
light biological motion perception activates human premotor cortex. Journal of 
Neuroscience, 24(27), 6181-6188. 
 
Saygin, A. P. (2007). Superior temporal and premotor areas are necessary for biological 
motion perception. Brain, 130 (9), 2452-2461. 
 
Saygin, A. P., Chaminade, T., Urgen, B.A., & Ishiguro, H. (2011). Cognitive 
neuroscience and robotics: A mutually beneficial joining of forces. In L. Takayama (Ed.), 
Robotics: Systems andScience. Los Angeles, CA. 
 
Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J. & Frith, C. (2012). The thing that 
should not be: predictive coding and the uncanny valley in perceiving human and 
humanoid robot actions. Social Cognitive and Affective Neuroscience, 7(4), 413-422. 
 
Saygin, A. P., & Stadler, W. (2012). The role of appearance and motion in action 
prediction. Psychological Research, 76, 388-394. 

Shahin, A. J., Picton, T. W., & Miller, L. M. (2009). Brain oscillations during semantic 
evaluation of speech. Brain and Cognition, 70(3), 259–66.  



	
   81 

Silas, J., Levy, J. P., & Holmes, A. (2012). Sensitivity of ‘mu’rhythm modulation to the 
relevance of an observed movement but not to goal congruency. International Journal of 
Psychophysiology, 85(2), 168-173. 
 
Sitnikova, T., Holcomb, P.J., Kiyonaga, K.A. & Kuperberg, G.R. (2008). Two 
neurocognitive mechanisms of semantic integration during the comprehension of visual 
real-world events. Journal of Cognitive Neuroscience, 20(11), 2037-2057. 

Steckenfinger, S. A., & Ghazanfar, A. A. (2009). Monkey visual behavior falls into the 
uncanny valley. Proceedings of the National Academy of Sciences of the United States of 
America, 106(43), 18362-18366. 

Steele, V. R., Bernat, E. M., van den Broek, P., Collins, P., Patrick, C. J. & Marsolek, C. 
J. (2013). Separable processes before, during, and after the N400 elicited by previously 
inferred and new information: Evidence from time–frequency decompositions. Brain 
Research, 1492, 92-107. 

Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., Ungerleider, 
L., et al. (2005). Formation of a motor memory by action observation. Journal of 
Neuroscience, 25(41), 9339–46. 

Tai, Y. F., Scherfler, C., Brooks, D. J., Sawamoto, N., & Castiello, U. (2004). The human 
premotor cortex is 'mirror' only for biological actions. Current Biology, 14(2), 117-120. 
 
Thompson, J. C., Trafton, J. G. & McKnight, P. (2011). The perception of humanness 
from the movements of synthetic agents. Perception, 40(6), 695–704. 
 
Tinwell, A., Grimshaw, M., Abdel-Nabi, D., Williams, A. (2011). Facial expression of 
emotion and perception of the uncanny valley in virtual characters. Computers in Human 
Behavior, 27 (2), 741–749. 

Tognoli, E., Lagarde, J., DeGuzman, G. C., & Kelso, J. S. (2007). The phi complex as a 
neuromarker of human social coordination. Proceedings of the National Academy of 
Sciences, 104(19), 8190-8195. 

Ugur, E., & Erol, S. (2011). Unsupervised learning of object affordances for planning in a 
mobile manipulation platform. Robotics and Automation (ICRA) IEEE International 
Conference. 

Umiltà, M., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. 
(2001). I know what you are doing: A neurophysiological study. Neuron, 31(1), 155–65 

Urgen, B.A., Plank, M., Ishiguro, H., Poizner, H., Saygin, A.P. (2012). Temporal 
dynamics of action perception: The role of biological appearance and motion kinematics. 
34th Annual Conference of Cognitive Science Society, Sapporo, Japan.  



	
   82 

van Kemenade, B. M., Muggleton, N., Walsh, V. & Saygin, A.P. (2012). Effects of TMS 
over premotor and superior temporal cortices on biological motion perception. Journal of 
Cognitive Neuroscience, 24(4), 896-904. 

Wermter, S., & Elshaw, M. (2003). Learning robot actions based on self-organising 
language memory. Neural networks, 16(5-6), 691–9.  

Wu, Y.C. and Coulson, S. (2011). Are depictive gestures like pictures? Commonalities 
and differences in semantic processing. Brain and Language, 119(3), 184-195.  

Zion-Golumbic, E., Kutas, M., & Bentin, S. (2009). Neural dynamics associated with 
semantic and episodic memory for faces  : Evidence from multiple frequency bands. 
Journal of Cognitive Neuroscience, 22(2), 263–277. 

 
 
 

	
  



83 

CHAPTER 3 

Visual Action Population Codes in the Human Brain:  
Multivariate Pattern Analysis of fMRI Responses in Brain Areas involved in Visual 

Processing of Actions 
 

Abstract 

Over the last two decades neurophysiological and neuroimaging studies have 

identified a network of brain regions in occipito-temporal, parietal, and frontal cortex that 

are involved in visual processing of actions. What remain unclear are the neural 

computations and representational properties in each area. In this study, we investigated 

the representational content of human brain areas in the action observation network using 

fMRI and representational similarity analysis. Observers were shown video clips of 8 

different actions performed by 3 different agents (actors) during fMRI scanning. We then 

derived two indices from the representational similarity matrices for each region of 

interest (ROI): Agent decoding index and action decoding index, which reflect the 

presence of significant agent and action information, respectively. We found significant 

agent decoding in early visual areas and category sensitive cortical regions including FFA 

and EBA, as well as in the core nodes of the action observation network. However, agent 

decoding index varied across ROIs and was strongest in the right posterior superior 

temporal sulcus (pSTS), and was significantly greater than the indices in ROIs in the 

parietal and frontal cortex. On the other hand, although we found significant action 

decoding in all visual areas as well as the core action observation network, the strength of 

action decoding was similar across ROIs. On the other hand, the representational 

structure of action types varied across ROIs as revealed by hierarchical clustering, 
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indicating that action-related information changes along the levels of the cortical 

hierarchy. These results suggest that during visual action processing, pSTS pools 

information from the early visual areas to compute the identity of the agent, and passes 

that information to regions in parietal and frontal cortex that code higher-level aspects of 

actions, consistent with computational models of visual action recognition. 

 

3.1 INTRODUCTION 

Action perception is one of the most important skills primates have, which is 

considered to be the building block of several higher level social skills such as 

communication, intention understanding and empathy (Blake and Shiffrar, 2007). 

Systems and cognitive neuroscience research in the last two decades have identified a 

dedicated system known as action observation network (AON) or mirror neuron system 

(MNS) in the primate brain that processes other individuals’ actions (Rizzolatti and 

Craighero, 2004; Iacoboni and Dapretto, 2006; Vangeneugden et al., 2009; 2011; 2014; 

Nelissen et al., 2011). In its classical formulation, this system consists of areas in the 

occipito-temporal, parietal, and frontal cortices, namely posterior superior temporal 

sulcus (pSTS), inferior parietal lobule (IPL), and premotor cortex, respectively.  

Among the nodes of the action observation network, pSTS is considered to be the 

area that gathers information from the visual cortex, which processes low-level visual 

stimulus features. Computational modeling suggests that pSTS integrates form and 

motion information from the ventral and dorsal pathways of the visual system, 

respectively, which constitute the two important cues in a perceived moving agent (Giese 

and Poggio, 2003). This information is then passed to the parietal and frontal nodes of the 
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action observation network, which process high-level aspects of actions. Despite recent 

progress, we still lack a full understanding of the representations in each of these areas 

and how they differ from each other.  

It is important to note that earlier studies exclusively focused on action 

observation network, more specifically on the brain areas that are considered to contain 

mirror neurons, and visual cortex has largely been neglected although it is well 

established that face and body stimuli, which make up an agent recruit areas in category-

sensitive cortex such as EBA (Downing et al., 2001) and FFA (Kanwisher et al., 1997) as 

well as early visual areas. Furthermore, earlier studies generally focused on a specific 

region in the action observation network such as pSTS, parietal cortex or ventral 

premotor cortex mostly due to the limitations of the univariate analysis, which requires a 

lot of trials per condition, and thus experimenters had to use a small number of 

conditions, which would target a single region of interest.  

In the present study, we addressed both of these limitations in an fMRI 

experiment with human subjects. First of all, we extend the investigation to all areas that 

are involved in visual processing of actions reported by experimental research and 

computational modeling (Giese and Poggio, 2003; Caspers et al., 2010). These areas 

include the classic action observation network as well as early visual cortex and category-

sensitive cortex (Figure 3.1).  

Second, we took advantage of representational similarity analysis (Kriegeskorte et 

al., 2008), a multivariate pattern analysis technique, which is ideal for condition-rich 

experiments. We scanned human subjects with fMRI by visually displaying a database of 

videos consisting of three agents and eight different actions, making up 24 different 
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stimuli, and perform representational similarity analysis to make inferences about the 

representational properties of areas that process actions with respect to agent and action 

type as well as how the representations change along the different regions of the cortical 

hierarchy. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Participants 

27 subjects (12 females, 15 males) from the undergraduate and graduate student 

community at the University of California, San Diego participated in the study. Data of 4 

subjects were not included in the data analysis due to large head movements (3 subjects) 

and technical problems in data acquisition (1 subject). The subjects had normal or 

corrected-to-normal vision and no history of neurological disorders. Informed consent 

was obtained in accordance with UCSD Human Research Protections Program. The 

subjects were paid $25 for 1.5 hours participation in the study.  

 

3.2.2 Stimuli 

Stimuli were video clips of actions performed by 3 agents: the humanoid robot 

Repliee Q2 in two different appearances (robotic and human-like appearances) and by the 

human ‘master’ after whom Repliee Q2 was modeled. We call these agents Robot, 

Android, and Human, respectively (also see Saygin et al. 2012 and Urgen et al. 2013 for 

additional details about the stimuli). The robot’s movement kinematics was mechanical 

differing from dynamics of biological motion. All the agents performed 8 different 

actions. The actions were comprised of a variety of transitive, intransitive, and 
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communicative actions. Transitive actions included drinking from a cup, grasping an 

object, throwing a paper, and wiping a table; intransitive actions included nudging and 

turning to the right; and communicative actions included handwaving and talking (for 

introducing herself).  

 

3.2.3 Procedure 

 Each participant was given exactly the same introduction to the study and the 

same exposure to the videos. Before starting fMRI scans, subjects were shown each video 

and were told whether each agent was a human or a robot (and thus were not uncertain 

about the identity of the agents during the experiment). We recorded fMRI BOLD 

response as subjects watched 2 sec video clips of the three agents performing eight 

different body actions (drinking from a cup, grasping an object, handwaving, talking, 

nudging, throwing a paper, turning to right, wiping a table). The experiment had a block 

design in which blocks consisted of video clips of one agent type (Human, Android, or 

Robot, see Figure 3.2). The experiment had 18 stimuli blocks (6 Human, 6 Android, 6 

Robot) and they were presented in a pseudo-randomized order ensuring that all order 

combinations were presented (i.e. H-A-R, H-R-A, A-H-R, A-R-H, R-H-A, R-A-H). 

Presentation of three blocks of the agents was always followed by a rest block in which 

subjects fixated a cross for a time interval varying between 8.1 sec and 13.5 sec. Each 

block had 9 trials (8 different actions and repetition of a randomly chosen action once) 

with 0.1 sec inter-stimulus interval in between the trials. Each subject was presented a 

different order of blocks and of stimuli within each block. Subjects performed a 1-back 
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task throughout the experiment by pressing a button whenever a movie was repeated in a 

block.  

 

3.2.4 Localizers 

In order to study the functional properties of several brain regions that are 

involved during visual action processing, we took a region of interest (ROI) approach and 

conducted localizer experiments. These areas include extra-striate body area (EBA), 

known to respond selectively to pictures of human bodies in contrast to other object 

categories (Downing, 2001); and fusiform face area (FFA), known to respond selectively 

to pictures of human faces in contrast to other object categories (Kanwisher et al., 1997).  

EBA localizer: The localizer experiment to identify the functional area EBA 

consisted of blocks of pictures of human bodies and chairs (as an object category). There 

were 8 blocks for each stimulus type (body or chair). Presentation of two stimuli blocks 

was always followed by a rest block in which subjects fixated a cross at the center of the 

screen for a time interval varying between 14 sec and 18 sec. Each stimulus block 

consisted of 28 trials with 200 ms inter-stimulus interval in between the trials and 500 ms 

stimulus presentation. Subjects performed a 1-back task throughout the experiment by 

pressing a button whenever a stimulus was presented in each block.   

FFA localizer: The localizer experiment to identify the functional area FFA 

consisted of blocks of pictures human faces and houses (as an object category). There 

were 8 blocks for each stimulus type (face or house). Presentation of two stimuli blocks 

was always followed by a rest block in which subjects fixated a cross at the center of the 

screen for a time interval varying between 14 sec and 18 sec. Each stimulus block 
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consisted of 28 trials with 200 ms inter-stimulus interval in between the trials, and 500 

ms stimulus presentation. Subjects performed a 1-back task throughout the experiment by 

pressing a button whenever a stimulus was presented in each block. 

 

3.2.5 Image acquisition, preprocessing and first-level analysis 

 We scanned our subjects at the Center for fMRI at UC San Diego using the 3T 

scanner.  

 Main Experiment: First, the fMRI data of each subject were pre-processed with 

standard procedures including motion correction, slice-time correction, normalization, 

and smoothing using the SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Then, 

two different first-level analyses were done using general linear model (GLM). In the 

first analysis, each agent type (Human, Android, Robot) as well as the rest blocks 

(fixation) were modeled as a separate condition and beta images were generated for these 

conditions. This analysis was done to identify the overall activity patterns and determine 

the ROIs of the action observation network. In the second analysis, each trial of all 

stimulus types was modeled separately and beta images corresponding to each trial were 

generated for each voxel. This analysis was done to prepare the single trials for 

Representational Similarity Analysis. Motion parameters generated in the preprocessing 

stage were used as regressors in both analyses.  

Localizer scans: For each localizer experiment (EBA, FFA), the fMRI data of 

each subject were pre-processed with standard procedures including motion correction, 

slice-time correction, normalization, and smoothing. Then, using general linear model, 

beta images corresponding to each condition were generated for each voxel. The 
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conditions corresponded to body and chair pictures in the EBA localizer, and face and 

house pictures in the FFA localizer. The condition differences were assessed at each 

voxel, and the voxels that showed reliable differences between conditions (p < 0.001 

uncorrected) were used to identify the functional regions of interest (ROI) for each 

individual subject.  

 

3.2.6 Identification of ROIs 

We identified the ROIs of the action observation network by contrasting the 

overall activation patterns for all stimuli conditions compared to fixation (p < 0.001 

uncorrected) using the first first-level analysis for each subject (described in Main 

Experiment section above). This contrast resulted in activation in early visual cortex, 

pSTS, parietal cortex and frontal cortex consistent with prior literature. Then, we chose 

the central voxel of the activation in the each of these areas and extracted a sphere ROI 

with a certain radius that covers the activation pattern. We did this for all subjects. As a 

result of this procedure, most of the subjects ended up having overlapping ROIs in each 

area of interest. However, several subjects had larger activation patterns, and using the 

central voxel approach resulted in these subjects having non-overlapping ROIs with the 

rest of the subjects. In order to cover the same areas and be consistent across subjects, we 

reduced the size of the ROIs of these subjects. This was done by moving the central voxel 

of the activation towards the +-15 mm of the average coordinates observed in the other 

subjects. This procedure is essentially similar to an AND operation for the activation in a 

certain area (e.g. parietal cortex) in all subjects to find the common areas of activation. 
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3.2.7 Representational similarity analysis (RSA) 

 In order to study the functional properties of the brain regions involved in action 

processing, and investigate the representational structure of the brain regions for actions, 

we used representational similarity analysis (Kriegeskorte et al., 2008). This technique 

allows researchers to quantify how similar the neural patterns that correspond to different 

conditions of an experiment within a certain brain region. In addition, application of 

clustering methods (e.g. multi-dimensional scaling) on the similarity measures allows one 

to study the representational structure of the particular brain region. Moreover, 

comparison of the similarity structures across brain regions allows one to study how 

neural representations change along the cortical hierarchy. With this method, it is also 

possible to compare the similarity of the neural representations with that of the stimuli, 

especially for visual cortex.  

We calculated neural similarity matrices in each region of interest (ROI) for each 

subject by taking the correlation distance between all pairs for stimuli using the beta 

images derived in the first-level analysis in SPM8, which resulted in a 24 x 24 matrix. 

We computed the grand average similarity matrix by taking the average of all subjects for 

each ROI. To quantitatively compare the representations in each ROI, we derived two 

indices from the representational similarity matrices for each region of interest (ROI): 

Agent decoding index and action decoding index, which reflect the presence of 

significant agent and action information, respectively. Agent decoding index was 

calculated by subtracting the average off-diagonals from the average diagonals in the 

representational similarity matrix (Figure 3.5A). Action decoding index was calculated 

by subtracting the off-diagonals from the average diagonals in the representational 
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similarity matrices (Figure 3.6A). We then ran 8 (ROI) X 2 (hemisphere) repeated-

measures ANOVA on the Agent decoding index and Action decoding index to see 

whether the ROIs differ in terms of their agent and action discriminability. In order to 

closely examine the agent and action differences in each ROI, we constructed smaller 

representational similarity matrices only for agents by collapsing across actions (3 x 3 

matrix since there are 3 agents) and only for actions by collapsing across agents (8 x 8 

matrix since there are 8 actions) for each subject, and took the grand average of both 

matrix types separately across subjects. We then applied hierarchical clustering on the 

grand average dissimilarity matrices (1 – similarity matrix) to examine the similarity 

patterns for agents and actions. All the steps in representational similarity analysis were 

done using custom scripts in MATLAB (http://www.mathworks.com/products/matlab/). 

 

3.3 RESULTS 

3.3.1 Brain areas involved in visual processing of actions 

Main Experiment: The visual stimuli in the main experiment resulted in activation 

in the early visual cortex (EVC), lateral occipital cortex (LOC), pSTS, parietal cortex, 

and frontal cortex, which were identified by running the GLM and contrast between all 

video stimuli and fixation in the main experiment (p < 0.001 uncorrected) (Figure 3.3 and 

Table 3.1).  

Then, we extracted a sphere ROI that covered the activation pattern in each of 

these ROIs. We identified all ROIs in 17 subjects so the rest of the analysis included 

these subjects. The coordinates of the central voxels and the sizes of the spheres are 
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provided in Table 3.2 for the ROIs in the visual cortex (EVC and LOC), and Table 3.3 for 

the ROIs that form the core nodes of the Action Observation Network. 

Localizers: In EBA localizer, the contrast between images of body and chair 

stimuli resulted in activation patterns in EBA consistent with the coordinates of this area 

reported in the literature (Downing et al., 2001). Similarly, in FFA localizer, the contrast 

between images of faces and houses resulted in activation patterns in areas consistent 

with what is reported in the literature (Kanwisher et al., 1997). We then extracted a 

sphere ROI with a certain radius that covered the activation pattern in EBA and FFA (the 

coordinates of the central voxels and the sizes of the spheres are provided in Table 3.2 for 

each ROI).  

 

3.3.2 Representational similarity analysis in the visual cortex and core nodes of the 

AON 

The main structure of the representational similarity matrices (RSMs) is shown in 

Figure 3.4A, and the RSM for each region that was involved in visual processing of 

actions was shown in Figure 3.4B. RSA allows one not only to examine the 

representational structure within an ROI but it also allows one to examine how 

representations change along the cortical hierarchy across ROIs. Our RSA revealed that 

the ROIs in the visual cortex (EVC, LOC, EBA and FFA), and the core nodes of the 

AON (pSTS, parietal cortex, and premotor cortex) have qualitatively different 

representational patterns during perception of human and robot actions.  
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We then quantified some of the effects in the RSMs by computing Agent 

decoding index and Action decoding index, which are measures of significant agent 

information and action information, respectively.  

 

3.3.3 Agent and Action Information in the ROIs 

3.3.3.1 Agent decoding index 

We computed the Agent decoding index by subtracting the across agent 

similarities from within agent similarities. This is done by subtracting the average off-

diagonals (white entries) from the average diagonals (black entries) in the RSMs as 

shown in Figure 3.5A. An index that is significantly greater than zero reflects the 

presence of significant agent information. 

All ROIs showed significant agent decoding (>0, one-sample t-test, p<0.0001), 

indicating that all ROIs could discriminate agents (Figure 3.5B). However, the strength of 

the discriminability changed across ROIs. It was strongest for pSTS and weakest for the 

ventral premotor cortex. 8 (ROI) x 2 (hemisphere) repeated measures ANOVA on the 

Agent decoding index showed a main effect of ROI (F(7,112) = 2.16, p<0.05). Post-hoc 

comparisons showed that ventral premotor cortex (M = 0.044, SD = 0.005) had 

significantly lower agent decoding index than all ROIs including LOC (M = 0.064, SD = 

0.006) (t(16) = -2.0, p<0.05), EBA (M = 0.053, SD = 0.006) (t(16) = -1.8, p<0.05), FFA 

(M = 0.060, SD = 0.008) (t(16) = -2.0, p<0.05), pSTS (M = 0.063, SD = 0.008) (t(16) = -

2.5, p<0.05), dorsal premotor cortex (M = 0.058, SD = 0.006) (t(16) = -2.1, p<0.05), 

except parietal cortex (M = 0.052, SD = 0.005) (t(16) = -1.2, p = 0.1). More importantly, 

one of the core nodes of the AON, pSTS had significantly higher agent discriminability 
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than the other code node ventral premotor cortex (t(16) = -2.5, p<0.05). pSTS had 

marginally significant different from the other core node parietal cortex (t(16) = -1.7, p = 

0.06). Other effects observed were LOC had significantly higher agent decoding index 

than the parietal cortex (t(16) = -2.4, p<0.05), and EBA had significantly lower agent 

decoding index than pSTS (t(16) = 1.9, p<0.05). There was not an effect of hemisphere 

(F(1,16) = 0.015, p = 0.9) or ROI x hemisphere interaction (F(7,112) = 0.76, p = 0.6).  

 

3.3.3.2 Action decoding index 

We computed the Action decoding index by subtracting the across action 

similarities from within action similarities. This is done by subtracting the average off-

diagonals (white entries) from the average diagonals (black entries) in the RSMs as 

shown in Figure 3.6A. An index that is significantly greater than zero reflects the 

presence of significant action information. 

All ROIs showed significant action decoding (>0, one-sample t-test, p<0.0001), 

indicating that all ROIs could discriminate actions (Figure 3.6B). However, the strength 

of the discriminability did not appear to change across ROIs. 8 (ROI) x 2 (hemisphere) 

repeated measures ANOVA on the Action decoding index did not show main effect of 

ROI (F(7,112) = 1.5, p = 0.2), of hemisphere (F(1,16) = 0.67, p = 0.4), or interaction 

effects (F(7,112) = 0.39, p = 0.9).  
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3.3.3.3 Representational geometry of agent and action information in the brain 

regions that are involved in visual processing of actions 

After determining the discriminability of agents and actions in the ROIs of the 

AON, we further investigated the representational structure in each of these ROIs using 

agent-specific and action specific representational similarity matrices and hierarchical 

clustering. The basic aim of this approach was to identify which agents and actions show 

more similarities to each other. To this end, we constructed smaller similarity matrices 

for agents by collapsing across actions, and for actions by collapsing across agents. We 

then computed the dissimilarity matrix (1-similarity matrix) and applied hierarchical 

clustering on the dissimilarity matrices. 

Agents: The representational similarity matrices and corresponding dendrograms 

(output of the hierarchical clustering) for agents were shown in Figure 3.7. As expected, 

we found that Human and Android had more similar neural representations in EVC 

compared to Robot since action clips with the Robot had a significantly different low-

level visual differences than the other two agents. In LOC, EBA, and dorsal premotor 

cortex, we found that Human and Robot had more similar neural representations than that 

of Android. On the other hand, the neural representations of Human and Android were 

more similar to each other than Robot in FFA, pSTS, parietal cortex, and ventral 

premotor cortex.  

Actions: The representational similarity matrices and corresponding dendrograms 

(output of the hierarchical clustering) for actions were shown in Figure 3.8. Our results 

show that although action discriminability did not change across ROIs as evidenced by 

the Action decoding index (see previous section), different ROIs have different 
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representational structures and appear to discriminate actions based on different 

principles as can be clearly seen from the structure of dendrograms.  

 

3.4 DISCUSSION 

Although the last two decades of research has identified the brain regions that are 

involved in visual processing of action, the functional properties of these regions have 

remained largely unknown. In the present study, we investigated the functional properties 

of the brain regions that are involved in visual processing of actions using fMRI and 

representational similarity analysis. More specifically, we examined the representational 

properties of each region based on the agent and action type. This was novel because only 

a handful of human neuroimaging studies have focused on what aspects of an action each 

region was sensitive to (Jastorff et al., 2009; 2010; Saygin et al., 2012). Furthermore, 

unlike the previous studies on action observation, we extended our ROIs to visual cortex 

including early visual cortex and the category-sensitive cortex, which have been 

neglected in prior research. The motivation for doing that is to understand the neural 

processing during action perception starting from the visual cortex to the core nodes of 

the AON, similar to computational modeling approaches, which aim to provide a 

complete mechanism (Giese and Poggio, 2003). This was possible by means of 

employing the multivariate pattern analysis technique, representational similarity analysis 

(Kriegeskorte et al., 2008), which required a rich set of stimuli, instead of few stimuli 

required by univariate analysis techniques that could address questions restricted to a 

small number of brain regions. Although multivariate pattern analysis has been applied in 

many domains of cognitive neuroscience, its use in the action perception domain is 
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relatively new (Filimon et al., 2014) and has been suggested to be a fruitful approach to 

improve our understanding of the action observation network (Oosterhof et al., 2013). 

Our findings suggest that all brain regions that are involved in visual processing 

of actions including the regions in the visual cortex and the core nodes of the AON can 

discriminate between agents during visual perception of actions. However, the 

discriminability of agents differs across ROIs. As one goes higher in the visual cortex, the 

discriminability of agents increased, and it was highest in the pSTS, which is one of the 

core nodes of the AON that receives visual input from the visual cortex. Interestingly, the 

discriminability of agents decreased as one goes higher in hierarchy in the core nodes of 

the AON, i.e. from pSTS to ventral premotor cortex. This finding suggest that during 

visual processing of actions, pSTS might compute the identity of the agent based on the 

form and motion information it gets from the ventral and dorsal pathways of the visual 

system, and passes that information to the other core nodes of the AON that code for 

some higher level aspects of actions. This is consistent with a recent hypothesis that 

pSTS represents agent information during visual perception of actions (Orban, in press).  

The representational geometry analysis that examined how agents were 

discriminated from each other, and the neural similarity of agents, showed that different 

regions had different representational patterns. In EVC, as expected agents that had 

similar low-level visual properties had similar neural representations. The neural 

representations of Human and Android were more similar to each other compared to 

Robot. In other nodes of the visual cortex including LOC and EBA, it appears that the 

congruence between the appearance and motion of the agent matters since the agents that 

had congruent appearance and motion (Human and Robot) had more similar neural 
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representations than the agent that had incongruent appearance and motion (Android). 

The results for EBA were especially interesting since it is known to be sensitive to human 

bodies in contrast to other objects (Downing et al., 2001). Based on the functional 

properties of EBA, one could hypothesize that the agents that had more similar human-

like bodies (Human and Android) would have more similar neural representations 

compared to the agent that had a less human-like body (Robot). The finding that Human 

and Robot had more similar representations suggests two alternative explanations. The 

first is that EBA might not be a region that is purely sensitive to visual form but rather 

might be involved in integration of form and motion information. The second alternative 

can be framed in terms of the predictive coding account of action perception (Kilner et 

al., 2007a; 2007b). In this account, every node in the cortical hierarchy sends a prediction 

error signal to the node in the lower node in the hierarchy. In the present study, it may be 

possible that due to the incongruence of appearance and motion information the Android 

had, there was a prediction error signal sent from a higher level in the hierarchy to EBA.  

On the other hand, in FFA, as expected the agents that had more similar human-like 

faces, Human and Android, had more similar neural representations compared to Robot, 

which has a less human-like face.  

In the core nodes of the AON including pSTS, parietal cortex, and the ventral 

premotor cortex, the agents that had similar human-like appearance (Human and 

Android) had more similar neural representations compared to the agent that had less 

human-like appearance. The only node that had a different representational geometry was 

the dorsal premotor cortex in which the agents that had congruent appearance and motion 

(Human and Robot) had similar neural representations than the agent that had 
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incongruent appearance and motion (Android). These results suggest that the core nodes 

of the AON except dorsal part of the premotor cortex have similar neural representations 

for agents that have similar human-like appearances compared to the agents that have less 

human-like appearances. Given the lack of evidence for similar neural representations 

based on motion suggest that in the core nodes of the AON, there is less sensitivity to the 

nature of the motion (biological vs. non-biological), and more sensitivity to human-like 

appearance or any other higher level processing based on human-like appearance.  

Our findings about representation of different actions suggest that all brain 

regions that are involved in visual processing of actions including the regions in the 

visual cortex and the core nodes of the AON can discriminate between actions during 

visual perception of actions. The strength of discriminability of actions did not 

significantly differ across ROIs although it was strongest in the parietal cortex, which is 

hypothesized to have dedicated parts for different actions (Orban, in press). However, the 

representational geometry analysis that examined how actions were discriminated from 

each other revealed that different regions had different representational patterns, 

consistent with recent findings (Jastorff et al., 2010).  

In conclusion, our study investigated the representational properties of the brain 

regions that are involved in visual processing of actions in the human brain with respect 

to the agent and action information in an observed action. Our findings suggest that 

different brain regions have different representational properties. More specifically, it 

appears that pSTS might compute the identity of the agent based on the form and motion 

information it gets from the ventral and dorsal pathways of the visual system, and passes 

that information to the other core nodes of the AON that code for some higher level 
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aspects of actions, consistent with computational models of action perception (Giese and 

Poggio, 2003).  
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Figure 3.1: Human brain areas that are involved in visual perception of actions, 
including areas in the visual cortex and core nodes of the AON. Areas in the visual cortex 
include early visual cortex (EVC), lateral occipital cortex (LOC), extrastriate body area 
(EBA), and areas in the ventral cortex including fusiform gyrus (FFA). Areas in the 
classical formulation of the Action Observation Network include posterior superior 
temporal sulcus (pSTS), inferior parietal lobule (IPL), and dorsal (dPM) and ventral 
(vPM) premotor cortex. 
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Figure 3.2: Experimental design of the fMRI study. It has a block design in which blocks 
consisted of video clips of one agent type (Human, Android, or Robot presented in a 
pseudo-randomized order with a rest block after each agent type is presented once. Each 
block consists of eight different actions and repetition of a randomly chosen action once, 
separated by ISI. 
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Figure 3.3: Whole brain GLM analysis with the contrast All Agents (Human, Android, 
Robot) – Fixation (p < 0.001, cluster threshold k = 5 voxels) across all subjects. The 
contrast revealed activation in early visual areas extending dorsally to lateral occipital 
cortex (LOC), and ventrally to inferior temporal cortex, pSTS, parietal cortex, and 
premotor cortex dorsally and ventrally in both hemispheres. See the coordinates in Table 
3.1. 
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Figure 3.4: The structure of the representational similarity matrix, and the RSMs for 
each ROI of the AON. (A) The structure of the representational similarity matrices 
(RSM) for all ROIs. The RSMs are 24x24 matrices corresponding to pair-wise similarity 
of 3 agents (Robot, Android, Human), and 8 actions (Drink, Grasp, Handwave, Talk, 
Nudge, Throw Paper, Turn, Wipe). Each entry in the RSMs indicates the similarity of 
each pair of 24 stimuli. The similarity metric is Pearson’s correlation. Note that the 
diagonals of RSMs indicate the similarity of each stimulus with itself and therefore are 1. 
(B) The RSMs of all ROIs that are involved in visual processing of actions. The ROIs 
including Early Visual Cortex (EVC), Lateral occipital cortex (LOC), pSTS, Parietal, 
Dorsal Premotor, and Ventral Premotor were all extracted for each individual subject 
from the All Agents-Fixation contrast in the whole brain GLM analysis (see Figure 3.3). 
EBA and FFA regions were extracted based on the EBA and FFA localizer scans. Top 
row shows the ROIs in the visual cortex and the bottom row shows the core nodes of the 
Action Observation Network. 
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Figure 3.5: Agent Decoding Index across ROIs of the AON. (A) Computation of Agent 
Decoding Index from the representational similarity matrices. It is computed as the 
difference between the average of within agent similarities and across agent similarities. 
(B) Agent Decoding Index across ROIs. All ROIs had significant agent information 
(Agent Decoding Index > 0) evidenced by a one sample t-test (p<0.0001). In visual 
cortex (EVC, LOC, EBA, and FFA), Agent Decoding Index gradually increased from 
EVC to higher level visual areas including LOC and FFA suggesting that the 
discrimination of agents becomes stronger as one goes higher in the visual cortex. It was 
strongest at pSTS, which is one of the core nodes of the Action Observation Network that 
receives visual information from the visual cortex. In the core nodes of the Action 
Observation Network, Agent Decoding Index gradually decreased from pSTS to Ventral 
Premotor cortex suggesting that discrimination of agents becomes weaker as one goes 
higher in the hierarchy of the Action Observation Network. Agent Decoding Index at 
pSTS was significantly higher in Parietal cortex and Ventral Premotor cortex (p<0.05). 
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Figure 3.6: Action Decoding Index across ROIs of the AON. (A) Computation of Action 
Decoding Index from the representational similarity matrices. It is computed as the 
difference between the average of within action similarities and across action similarities. 
(B) Action Decoding Index across ROIs. All ROIs had significant action information 
(Action Decoding Index > 0) evidenced by a one sample t-test (p < 0.0001). In visual 
cortex (EVC, LOC, EBA, and FFA), Action Decoding Index did not differ between ROIs 
suggesting that discrimination of actions is similar in the visual cortex. In the core nodes 
of the Action Observation Network (pSTS, Parietal Cortex, and Premotor Cortex), it was 
strongest in the Parietal Cortex. It gradually increased from pSTS to Parietal Cortex and 
then decreased from Parietal Cortex to Premotor Cortex, suggesting that discrimination of 
actions becomes stronger as one goes from pSTS to Parietal Cortex but decreases as one 
goes from Parietal to Premotor Cortex. However, there was no main effect of ROI for the 
Action Decoding Index. 
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Figure 3.7: The representational similarity matrices (RSMs) and dendrograms only for 
Agents (Robot, Android, Human) after collapsing by actions in all ROIs. The top row 
shows the RSMs and dendrograms for the visual cortex, and the bottom row shows the 
RSMs and dendrograms for the core nodes of the Action Observation Network. There 
were two main representational geometries that emerged across ROIs: In EVC, FFA, 
pSTS, Parietal Cortex, and Ventral Premotor Cortex, Human and Android had more 
similar neural representations than Robot, whereas in LOC, EBA, and Dorsal Premotor 
Cortex, Human and Robot had more similar neural representations than Android. 
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Figure 3.8: The representational similarity matrices (RSMs) and dendrograms only for 
Actions (Drink, Grasp, Handwave, Talk, Nudge, Throw Paper, Turn, Wipe) after 
collapsing by agents in all ROIs. The top row shows the RSMs and dendrograms for the 
visual cortex, and the bottom row shows the RSMs and dendrograms for the core nodes 
of the Action Observation Network. Although Action Decoding Index did not different 
between ROIs (see Figure 3.6), each ROI had a different representational geometry as 
can be seen from the RSMs and dendrograms, suggesting that although ROIs did not 
differ in their discriminability of actions based on Action Decoding Index, they 
discriminated actions based on different features. 
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Table 3.1: MNI Coordinates of the peak voxels of the brain regions involved in visual 
processing of actions based on the All Agents-Fixation contrast in the whole brain GLM 
analysis (Figure 3.3). 
 

 
                   MNI coordinates 

             x             y              z 
 

Anatomical Name 
Brodmann 
Area 

-34 -92 0 
 

Middle occipital gyrus (left) BA 17 
-26 -92 -10 

 
Inferior occipital gyrus (left) BA 18 

-48 -80 -2 
 

Middle occipital gyrus (left) BA 19 

      
48 -74 -2 

 

Inferior temporal gyrus 
(right) BA 19 

40 -84 -8 
 

Inferior occipital gyrus 
(right) BA 19 

22 -94 -6 
 

Sub-gyral (right) BA 18 

      42 2 56 
 

Middle frontal gyrus (right) BA6 
50 34 34 

 
Middle frontal gyrus (right) BA9 

46 10 30 
 

Inferior frontal gyrus (right) BA9 

      
-34 -58 50 

 

Superior parietal lobule 
(left) BA39 

      
38 -56 52 

 

Inferior parietal lobule 
(right) BA40 

32 -68 28 
 

Sub-gyral (right) BA39 

      -44 0 56 
 

Middle frontal gyrus (left) BA6 
-42 -2 38 

 
Middle frontal gyrus (left)) 

 -60 6 32 
 

Inferior frontal gyrus(left) BA6 

      -6 12 50 
 

Medial frontal gyrus (left) BA6 

      28 -6 -22 
 

Amygdala (right) 
 

      -12 26 60 
 

Superior frontal gyrus (left) BA6 

      8 -22 68 
 

Medial frontal gyrus (right) BA6 

      38 -26 58 
 

Precentral gyrus (right) BA4 
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Table 3.2: Average MNI coordinates of the central voxels of the ROIs in the visual 
cortex together with the size of the spheres. The values in parenthesis indicate the 
standard deviation.  
 

 VISUAL CORTEX 

 Left Right 

 x   y   z Sphere 
size 

(radius 
in mm) 

Anatomical 
name 

x   y   z Sphere 
size 

(radius 
in mm) 

Anatomical 
name 

EVC -23 -95 -1 
(4  3  4) 

8 (1) Middle 
Occipital 

Gyrus 

22 -95 2 
(3  2  5) 

8 (1.5) Middle 
Occipital 

Gyrus 
LOC -47 -76  3 

(3   4   5) 
   7 (0.9) Middle 

Occipital 
Gyrus 

50 -72 -1 
(2  4  4) 

8 (0.5) Middle 
Occipital 

Gyrus 
EBA -48 -73 8 

(3  6  7) 
4 (0.5) Middle 

Temporal 
Gyrus 

53 -68 3 
(3  6  5) 

4 (0.7) Middle 
Temporal 

Gyrus 
FFA -42 -51 -19 

(3  7  5) 
4 (0.4) Fusform 

Gyrus 
45 – 48 -22 

(2  6  3) 
4 (0.5) Fusiform 

Gyrus 
 
 
Table 3.3: Average MNI coordinates of the central voxels of the ROIs in the core Action 
Observation Network together with the size of the spheres. The values in parenthesis 
indicate the standard deviation. 
 

 CORE NODES OF ACTION OBSERVATION NETWORK 

 Left Right 

 x   y   z Sphere 
size 

(radius in 
mm) 

Anatomical 
name 

x   y   z Sphere 
size 

(radius in 
mm) 

Anatomical 
name 

pSTS -50 -53 7 
(5  9  4) 

4 (0.9) Superior 
Temporal 

Gyrus 

53 -46 8 
(5  7  4) 

4 (0.8) Superior 
Temporal 

Gyrus 
Parietal -31 -55 

47 
(4  5  7) 

4 (1.5) Inferior 
Parietal 
Lobule 

35 -54 49 
(6  5  6) 

5 (0.8) Superior 
Parietal 
Lobule 

Dorsal 
Premotor 

-43 -2 48 
(4  3  6) 

4 (0.8) Precentral 
gyrus 

45 3 48 
(5  5  6) 

4 (0.7) Middle 
Frontal 
Gyrus 

Ventral 
Premotor 

-44 7 28 
(4  7  5) 

4 (0.5) Inferior 
Frontal 
Gyrus 

46 9 27 
(5  9  4) 

4 (0.7) Inferior 
Frontal 
Gyrus 
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CHAPTER 4 

Effective Connectivity in the Action Observation Network:  
Modulations by Agent Characteristics 

 

Abstract 

Visual perception of actions is supported by a network brain regions in the 

occipito-temporal, parietal, and premotor cortex in the human brain, known as Action 

Observation Network (AON). What remains largely unknown is the communication and 

direction of flow of information between these regions during perception of actions. 

According to predictive coding account of action perception, parietal regions of this 

network has reciprocal connections between the occipito-temporal regions such as pSTS 

and premotor cortex, and this network as a whole is not purely a feedforward system but 

rather has feedback connections through which prediction error signals are communicated 

between different regions. In the present study, we investigated the influence of two 

nodes of the AON, pSTS and premotor cortex over the third node, parietal cortex and 

how this influence was affected by a mismatch between the appearance and motion of an 

observed agent while performing an action, which hypothetically generates a prediction 

error, using fMRI and Dynamical Causal Modeling (DCM). Our DCM results suggest 

that the influence on parietal node is likely through a feedback connection from premotor 

cortex during perception of actions that violate people’s predictions.  

 

4.1 INTRODUCTION 

Over the last two decades, neurophysiological and neuroimaging studies in 

primates have identified a network of brain regions in occipito-temporal, parietal and 
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frontal cortex that are associated with perception of actions, known as the Action 

Observation Network (AON, Rizzolatti & Craighero, 2004; Iacoboni & Dapretto, 2006). 

Although the brain regions that are involved in the processing of actions have been 

identified, the communication between these regions has remained largely unknown. Our 

knowledge of the anatomical connectivity patterns in the action observation network 

comes primarily from non-human primates. In the macaque monkey, area F5 of the 

premotor cortex and area PF of the inferior parietal lobule (two key nodes of the AON 

that contain mirror neurons) have reciprocal connections (Luppino, et al., 1999). PF also 

has reciprocal connections with a portion of the posterior superior temporal sulcus 

(pSTS) that is sensitive to biological movements (Seltzer & Pandya, 1994). Analogous 

connectivity patterns have been proposed in the human brain (Rushworth et al., 2006). 

These anatomical findings have allowed researchers to develop models for functional 

connectivity within the AON. 

One of the most prominent models developed by Kilner et al. (2007a; 2007b) 

proposes that the AON is a predictive system, following the principles of predictive 

coding (Friston, 2010). In this framework, in contrast to the classic formulation of the 

AON, which sees action perception strictly as a feedforward process, Kilner et al. (2007a; 

2007b) propose that visual action information is processed throughout the AON by means 

of the reciprocal connections (i.e., both feedforward and feedback) between the pSTS and 

parietal cortex, and parietal cortex and the premotor cortex (Figure 4.1). In this 

framework, incoming information is compared with predictions at each level of the AON.  

There is in fact recent experimental evidence that provides support for predictive 

coding account of action perception.  Kilner et al. (2004), using event-related brain 
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potentials, found that during action observation, the human brain generated a motor-

preparation-like negative potential when the action was in a predictable context; no such 

potential was found when observation occurred within an unpredictable context. In a 

monkey neurophysiology study, Maranesi et al. (2014) provide direct evidence for 

predictive activity of mirror neurons and therefore it is considered to be a foundational 

step in supporting the predictive coding account of action understanding (Urgen and 

Miller, 2015). In another study, using an fMRI-adaptation paradigm, Saygin et al. 

(2012) found that the parietal node of the AON showed more adaptation to mis-

predictable actions (via an agent who showed a mismatch between appearance and 

motion) than to corrently-predictable ones (via agent who shows a match between 

appearance and motion). The authors interpreted the differential adaptation in the parietal 

cortex for the mis-predictable actions as reflecting prediction error signals generated due 

to a mismatch between the appearance and movement of the observed actor.  

Due to the activation-based analysis in Saygin et al. (2012), it could not be 

determined whether the influence on parietal cortex came as feedforward (bottom-up) 

modulation from earlier visual areas via pSTS, or as feedback (top-down) modulation 

from premotor cortex in AON in the mismatch condition. The current study aims to 

reveal where that influence to parietal cortex might be generated from. Is it a top-down 

signal from premotor cortex or a bottom-up signal from pSTS? To address this question, 

we studied the effective connectivity patterns in the action observation network of the 

human brain and their modulation by the agent characteristics using functional magnetic 

resonance imaging (fMRI) and dynamical causal modeling (DCM) (Friston et al., 2003). 

Specifically, we investigated the influence of two nodes of the AON, pSTS and premotor 
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cortex over the third node, parietal cortex and how this influence was affected by 

congruence between the appearance and motion of the observed agent. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Participants 

27 subjects (12 females, 15 males) from the undergraduate and graduate student 

community at the University of California, San Diego participated in the study. Data of 4 

subjects were not included in the data analysis due to large head movements (3 subjects) 

and technical problems in data acquisition (1 subject). The subjects had normal or 

corrected-to-normal vision and no history of neurological disorders. Informed consent 

was obtained in accordance with UCSD Human Research Protections Program. The 

subjects were paid $25 for 1.5 hours participation in the study. All ROIs of interest for 

DCM analysis were identified in 18 subjects so those subjects were included in the DCM 

analysis.  

 

4.2.2 Stimuli 

Stimuli were video clips of actions performed by 3 agents: the humanoid robot 

Repliee Q2 in two different appearances (robotic and human-like appearances) and by the 

human ‘master’ after whom Repliee Q2 was modeled. We call these agents Robot, 

Android, and Human, respectively (also see Saygin et al. 2012 and Urgen et al. 2013 for 

additional details about the stimuli). The robot’s movement kinematics was mechanical 

differing from dynamics of biological motion. All the agents performed 8 different 

actions. The actions were comprised of a variety of transitive, intransitive, and 
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communicative actions. Transitive actions included drinking from a cup, grasping an 

object, throwing a paper, and wiping a table; intransitive actions included nudging and 

turning to the right; and communicative actions included handwaving and talking (for 

introducing herself).  

 

4.2.3 Procedure 

 Each participant was given exactly the same introduction to the study and the 

same exposure to the videos. Before starting fMRI scans, subjects were shown each video 

and were told whether each agent was a human or a robot (and thus were not uncertain 

about the identity of the agents during the experiment). We recorded fMRI BOLD 

response as subjects watched 2 sec video clips of the three agents performing eight 

different body actions (drinking from a cup, grasping an object, handwaving, talking, 

nudging, throwing a paper, turning to right, wiping a table). The experiment had a block 

design in which blocks consisted of video clips of one agent type (Human, Android, or 

Robot, see Figure 3.2). The experiment had 18 stimuli blocks (6 Human, 6 Android, 6 

Robot) and they were presented in a pseudo-randomized order ensuring that all order 

combinations were presented (i.e. H-A-R, H-R-A, A-H-R, A-R-H, R-H-A, R-A-H). 

Presentation of three blocks of the agents was always followed by a rest block in which 

subjects fixated a cross for a time interval varying between 8.1 sec and 13.5 sec. Each 

block had 9 trials (8 different actions and repetition of a randomly chosen action once) 

with 0.1 sec inter-stimulus interval in between the trials. Each subject was presented a 

different order of blocks and of stimuli within each block. Subjects performed a 1-back 
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task throughout the experiment by pressing a button whenever a movie was repeated in a 

block.  

  

4.2.4 Image acquisition, preprocessing and first-level analysis 

 We scanned our subjects at the Center for fMRI at UC San Diego using the 3T 

scanner. First, the fMRI data of each subject were pre-processed with standard 

procedures including motion correction, slice-time correction, normalization, and 

smoothing using the SPM8 software. Then, two different first-level analyses were done 

using general linear model (GLM). In the first analysis, each agent type (Human, 

Android, Robot) as well as the rest blocks (fixation) were modeled as a separate 

condition and beta images were generated for these conditions. This analysis was done to 

identify the overall activity patterns and determine the ROIs of the action observation 

network. In the second analysis, we defined two conditions: The first condition was 

defined as actions, and consisted of all three agents (Human, Android, Robot). The 

second condition was defined as the mismatch condition, and consisted of the agent 

Android, as it featured a mismatch between appearance and motion of the agent. This 

second analysis was done to investigate the modulations in the action observation 

network. Motion parameters generated in the preprocessing stage were used as regressors 

in both analyses.  

 

4.2.5 Identification of ROIs 

We identified the ROIs of the action observation network by contrasting the 

overall activation patterns for all stimuli conditions compared to fixation (p < 0.001 
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uncorrected) using the first first-level analysis for each subject (described in Section 4.2.5 

above). This contrast resulted in activation in visual cortex, pSTS, parietal cortex and 

premotor cortex consistent with prior literature. Then, we chose the central voxel of the 

activation in the each of these areas except visual cortex (since it was not included in the 

DCM analysis) and extracted a sphere ROI that covers the activation pattern. We did this 

for all 18 subjects for whom we identified all ROIs of interest. As a result of this 

procedure, most of the subjects ended up having overlapping ROIs in each area of 

interest. The ROI time series data was then extracted using eigenvariate (threshold of 

p<0.05) with a 4 or 5 mm radius of the sphere depending on the range of the activation 

pattern.  

 

4.2.6 Specification of network models 

Dynamical causal modeling (DCM) is an effective connectivity technique to 

estimate the directed functional connectivity, also known as effective connectivity 

patterns between different regions of interest with fMRI (Friston et al., 2003; Penny et al., 

2004). The basic idea behind DCM is that it treats the brain as a deterministic non-linear 

system which is open to perturbations by external stimuli and which produces outputs. In 

this framework, the modeling approach infers hidden (unobserved) states from measured 

BOLD data via a generative model. This is done by formalizing the interaction between 

the hidden states in neurophysiologically plausible differential equations and 

transforming them into BOLD signal via a hemodynamic forward model.   

DCM consists of two stages: Model specification and estimation, and model 

selection. In the model specification and estimation stage, several model architectures are 
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specified based on the known anatomy between brain regions of interest and researcher’s 

hypothesis about how the connections might be influenced by experimental 

manipulations. It then estimates three parameters: 1) Intrinsic connections between brain 

regions, 2) How the intrinsic connections are modulated by experimental manipulations, 

3) The extrinsic input strength into the system. In the model selection stage, Bayesian 

Model Selection (BMS) procedure is used to determine the most likely model that 

generated the observed data. In this procedure, each model architecture in the model 

space tested by the researcher is given a probability for explaining the observed data. The 

model that has the highest probability is then considered to be the “winning” or the most 

optimal model, and the parameter estimates determined in the first stage for that model 

are reported.  

To test our hypothesis, we constructed three models that consisted of the main 

three ROIs of the AON, namely pSTS, the parietal node, and the premotor node 

(specified in Section 4.2.5). To constrain the model space, in each of these models, the 

intrinsic connections between the ROIs were informed by the known anatomical 

connections between the regions. As such, pSTS and the parietal node, and the parietal 

node and the premotor node had reciprocal connections between each other. In all 

models, pSTS was considered to be the node where the visual input entered the system, 

and all intrinsic connections were modulated by the observation of actions (Figure 4.2A). 

In other words, the observation of actions was assumed to evoke activity in pSTS first 

(input to the system), and then subsequently propagated to parietal and premotor cortex 

based on the known anatomical connections. After the first feedforward flow of 
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information from a lower area to a higher area, feedback from a higher area to a lower 

area occurred in the models.  

The three models differ with regard to which connections are modulated by the 

mismatch condition (Figure 4.2B). The first model posits that influence on parietal cortex 

activity is through connections from pSTS to parietal cortex, i.e., a bottom-up modulation 

(Model 1). The second model posits that the influence on parietal cortex is through 

feedback from premotor cortex, i.e., a top-down modulation (Model 2). A third 

possibility is that the influence would be expressed through both pSTS and premotor 

cortex connections (Model 3). 

To identify the winning model, i.e. the model that explains that data best, 

Bayesian Model Selection (BMS) was used. This method determines a probability for 

each model, known as the exceedance probability, which is the probability that a model is 

more likely than any other model tested in the model space. 

 

4.3 RESULTS 

4.3.1 Brain Regions that are involved in Visual Processing of Actions 

 In order to identify the brain regions that were involved in visual processing of 

actions, we ran the contrast between the observation of all agents (Human, Android, 

Robot) and the fixation condition. This contrast revealed the activation in early visual 

cortex extending dorsally to lateral occipital cortex (LOC) and ventrally to the inferior 

temporal cortex, as well as the core areas for action observation network, namely pSTS, 

parietal regions in the anterior part of the intra-parietal sulcus (AIP) and inferior and 
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superior parts of the parietal lobe, and dorsal and ventral parts of the premotor cortex, all 

bilaterally (p<0.001) (Figure 4.3, also see Table 3.1 in Chapter 3 for the coordinates).  

 In order to deal with the expansion of model space with increasing number of 

ROIs and constrain the model space used in the effective connectivity analysis, we 

extracted ROIs from pSTS, parietal, and premotor cortex in each subject, and excluded 

the areas in early visual areas. The coordinates of the central voxels of the ROIs averaged 

over subjects are displayed in Table 4.1. 

 

4.3.2 Effective Connectivity with DCM and Model Selection with BMS 

 The DCMs were created using the ROIs listed in Table 4.1, namely pSTS, the 

parietal node (AIP), and the premotor node (ventral premotor cortex). The intrinsic 

connections were reciprocal between pSTS and the parietal node, and the parietal node 

and the ventral premotor cortex. The input into the system was considered to come from 

pSTS. Action observation was considered to modulate all intrinsic connections (defined 

by the action condition, see Section 4.2.5), and the mismatch condition was considered to 

modulate either the pSTS-parietal connection (Model 1), premotor-parietal connection 

(Model 2), or both of these connections (Model 3).  

 BMS analysis on the three DCMs has shown that Model 2 was the winning 

(optimal) model in both hemispheres, whose probability was 0.43 in the left and 0.50 in 

the right (Figure 4.4). The next best model was Model 1 whose probability was 0.32 on 

the left, and 0.36 on the right. The least likely model, Model 3 had a probability of 0.25 

on the left, and 0.14 on the right. 
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The intrinsic connection strengths between the ROIs in the winning model, Model 

2, are listed in Table 4.2, and results for right hemisphere are shown in Figure 4.5. 

Importantly, all connection strengths were found to be greater than 0 by a one-sample t-

test (p<0.0001, one sample t-test). Also, the reciprocal connections between the pSTS and 

the parietal node were estimated to be stronger than the other three connections both in 

the left and the right hemisphere. 

The modulatory effect of observation of actions in Model 2 is shown in Table 4.3 

and results of the right hemisphere are shown in Figure 4.6 together with the modulatory 

effect of mismatch condition and the input strength. Modulatory effects of actions on all 

four connections were found to be greater than 0 by a one-sample t-test (p<0.0001). The 

connection between pSTS and the parietal node appeared to be modulated most strongly. 

The modulatory effect of the mismatch condition on the premotor-parietal connection 

was 0.0003 on both hemispheres. The input strength was -0.0058 on the left hemisphere, 

and -0.0057 on the right hemisphere.  

 

4.4 DISCUSSION 

 In the current study, we aimed to estimate the effective connectivity patterns 

between the core nodes of AON and how these connections were modulated by the 

characteristics of the agent observed. Our study was primarily motivated by the findings 

of Saygin et al. (2012), who reported that the parietal node of the AON (intra-parietal 

sulcus) showed differential activity during observation of actions which were performed 

by an agent who possessed a mismatch between appearance and motion (a biological 

appearance but mechanical motion) compared to other agents who possessed a match 
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between appearance and motion (biological appearance and motion or mechanical 

appearance and motion). Within the predictive coding account of action perception 

(Kilner et al. 2007a; 2007b), one question that has been of interest to us was whether that 

differential activity was a top-down effect from premotor cortex or a bottom-up effect 

from pSTS. The current study addressed this question using fMRI and DCM. 

 We constructed three models to test our hypothesis in both hemispheres for each 

subject. First of all, informed by well-known anatomy, in all these models, we 

constructed reciprocal intrinsic connections between pSTS and parietal node, and the 

parietal node and the premotor node. The input into the system was considered to enter 

from pSTS, which was a reasonable assumption given the anatomical connectivity of 

pSTS between dorsal and ventral pathways of the visual system. In addition, in all these 

models, we assume that observation of actions modulate all intrinsic connections. We 

when constructed the three models that correspond to our hypotheses: A model in which 

the connection from pSTS to parietal cortex was modulated, a second model in which the 

connection between the premotor cortex and the parietal cortex was modulated, and a 

third model in which both connections were modulated by the mismatch condition (the 

agent that exhibited an incongruence between appearance and motion). Our results show 

that the most likely model that best explains the data is a model in which the connection 

between the premotor cortex to the parietal cortex was modulated, which indicates a top-

down influence.  

 Examination of the parameter estimates of the optimal model shows that all of the 

intrinsic connections were different from 0, confirming the well-known anatomy between 

these regions. The strongest intrinsic connectivity was between pSTS and the parietal 
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node. All of these intrinsic connections were modulated significantly by the observation 

of actions, although the strongest modulation was in the pSTS-parietal node connection. 

Although the model in which premotor to parietal connection was modulated by the 

mismatch condition was the optimal model based on the BMS, it must be noted that the 

modulatory strength of mismatch was weak in both hemispheres. 

 These results provide support for the predictive coding account of action 

perception (Kilner et al., 2007a; 2007b). It appears that the human brain processes actions 

within the AON via both feedforward and feedback connections. During the observation 

of actions, which were performed by an agent who exhibit a mismatch between 

appearance and motion, the premotor node of the AON seems to send a feedback signal 

to the parietal node in the lower part of the hierarchy, which might indicate a prediction 

error signal.  

However, several caveats must be noted. First of all, BMS is a Bayesian 

approach, which assigns a probability to each model tested in the model space of the 

researcher, and having a winning model does not preclude the possibility that the other 

models are not likely. In our study, that the probability of the winning model is around 

0.5, which is not very high relative to the other competing models tested. Second, 

although significant, the modulatory effect of the mismatch condition was found to be 

weak. These suggest that it is worth expanding the model space by adding more nodes 

(e.g. visual areas or even prefrontal areas that are known to influence premotor activity) 

when constructing the models of the AON.  
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Figure 4.1: Anatomical connectivity between the core nodes of the AON. 
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Figure 4.2: DCM models tested in the model space. (A) The DCM model that forms the 
basis for all tested models in the model space in (B). There are reciprocal intrinsic 
connections between pSTS and parietal node, and the parietal node and the premotor 
node informed by anatomy (red arrows). The input to the system is assumed to enter to 
the AON through pSTS since pSTS gets information from the visual cortex (blue dashed 
arrow). All the intrinsic connections are modulated by observation of actions (dashed 
blue lines). (B) The model space that consists of three models that correspond to our 
hypothesis about how the mismatch condition might modulate the intrinsic connections. 
Model 1 tests a bottom-up modulation from pSTS to parietal node, Model 2 tests a top-
down modulation from premotor node to parietal node, and Models 3 tests both a bottom-
up and a top-down modulation. 
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Figure 4.3: Whole brain GLM analysis with the contrast All Agents (Human, Android, 
Robot) – Fixation (p < 0.001, cluster threshold k = 5 voxels) across all subjects. The 
contrast revealed activation in early visual areas extending dorsally to lateral occipital 
cortex (LOC), and ventrally to inferior temporal cortex, pSTS, parietal cortex, and 
premotor cortex dorsally and ventrally in both hemispheres. See the coordinates in Table 
3.1 in Chapter 3. 
 
 
 

 

Figure 4.4: The exceedance probability of each model in the model space. Image on the 
left shows the results of the model testing in the left hemisphere, and the one on the right 
shows the results of the right hemisphere. In both hemispheres, Model 2 has the highest 
probability. 
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Figure 4.5: Intrinsic connection strengths in the winning model, Model 2 across subjects 
(only right hemisphere is shown for display purposes). The mean values are also listed in 
Table 4.2. All connection strengths were significantly different from 0 (with a one-
sample t-test, p<0.0001). 
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Figure 4.6: Modulatory connection strengths in the winning model, Model 2 across 
subjects (only right hemisphere is shown for display purposes). The mean values for 
action modulations for both hemispheres are also listed in Table 4.3. Modulations by 
actions are shown by the blue dashed lines. Modulation by the mismatch condition is 
shown by the red dashed line. All connection strengths were significantly different from 0 
(with a one-sample t-test, p<0.0001). 
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Table 4.1: The MNI coordinates of central voxels of the ROIs used in the DCM analysis 
averaged across subjects. pSTS: posterior superior temporal sulcus, STG: superior 
temporal gyrus, MTG: middle temporal gyrus, IPL: inferior parietal lobule, IFG: inferior 
frontal gyrus. Values in parenthesis under x, y, z coordinates indicate the standard error 
of the mean. 
 
 Average MNI coordinates of the central voxels of ROIs  

in DCM analysis 
 Left hemisphere Right hemisphere 

Node names 
in DCM 

x    y    z 
(Standard 

error of mean) 

Anatomical 
name/Brodmann 

Area 

x    y    z 
(Standard 

error of mean) 

Anatomical 
name/Brodmann 

Area 
pSTS -50  -53  7 

 (1    2   1) 
STG/BA 39 53  -44  8 

(1    2   1) 
MTG/BA 22 

Parietal cortex -37  -42  44   
 (1    1    1) 

IPL/BA7 37  -42  47 
 (1    1    1) 

Subgyral/BA 7 

Premotor 
cortex 

-44  6  29 
 (1    1    1) 

IFG/BA 6 47  9  28 
 (1    2   1) 

IFG/BA 44 

 
 
 
 
Table 4.2: The parameters of the intrinsic connectivity that begins with the endogenous 
activity of actions in the winning model (Model 2) in both hemispheres. The values in the 
table indicate the mean connection strength across all subjects. 
 
 FROM 

TO  Left hemisphere Right hemisphere 

 pSTS Parietal Premotor pSTS Parietal Premotor 

pSTS -0.4962 0.0382 - -0.4964 
 

0.0342 - 

Parietal 0.2016 -0.4994 0.0069 0.2168 -0.4994 0.0071 

Premotor - 0.0449 -0.5000 - 0.0461 -0.5000 
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Table 4.3: The parameters of the modulatory activity of actions in the winning model 
(Model 2) in both hemispheres. The values in the table indicate the mean connection 
strength across all subjects. 
 
 FROM 

TO  Left hemisphere Right hemisphere 

 pSTS Parietal Premotor pSTS Parietal Premotor 

pSTS - 0.0095 - - 0.0077 - 

Parietal 0.0798 - 0.0005 0.0850 - 0.0005 

Premotor - 0.0121 - - 0.0121 - 
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CONLCUSION 

The overall objective of this dissertation research was to study the functional 

properties, temporal dynamics and connectivity patterns in the neural system that 

underlies visual processing of actions, i.e. Action Observation Network in the human 

brain. More specifically, the focus of this thesis work was whether this system shows 

specificity for biological agents, particularly for humans. To this end, we used a variety 

of imaging modalities with excellent spatial and temporal resolution including functional 

magnetic resonance imaging (fMRI) and electroencephalography (EEG), respectively, 

together with a variety of analytical techniques such as pattern classification, 

representational similarity analysis and dynamical causal modeling.  

Although studying the basic functional properties and connectivity patterns of the 

Action Observation Network has improved our understanding about this system, it has 

also allowed us to address questions regarding human factors in artificial agent design in 

social robotics and human-robot interaction such as uncanny valley, which is concerned 

with what kind of robots we should design so that humans can easily accept them as 

social partners.  

In Chapter 1 we aimed to understand the underlying mechanism of the 

phenomenon uncanny valley (Urgen et al., 2015). Theoretical work and recent empirical 

work (Saygin et al., 2012a) propose predictive processing as a possible underlying 

mechanism for uncanny valley but no empirical work to date has directly tested it. Using 

event-related brain potentials, specifically N400, we provide evidence that supports this 

hypothesis, which indicate that uncanny valley might be explained by violation of one’s 
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expectations about human norms when encountered with very realistic artificial 

human forms.  

In Chapter 2, we investigated the temporal dynamics of the Action Observation 

Network and its modulation by form and motion of the observed agent using EEG time-

frequency analysis, and machine learning (Urgen et al., 2013). Our results indicate that 

mu oscillations over sensorimotor cortex show a similar pattern during observation of 

human actions consistent with prior literature. However, we found that it also shows a 

similar pattern for agents that have varying human-like form and motion. On the other 

hand, theta oscillations over frontal cortex show sensitivity to the form of the agent 

observed suggesting that agents that do not look biological enough might results in 

greater memory processing demands.  

In Chapter 3, we investigated the representational properties of brain regions that 

are known to be involved in action perception using fMRI and a multivariate pattern 

analysis technique called representational similarity analysis (Kriegeskorte et al., 2008). 

Our results suggest that different regions that are involved in visual processing of actions 

have different representational properties. Early visual areas seem to compute the low-

level visual properties of the video stimuli, areas in the ventral stream such as FFA seem 

to be sensitive to the form of the agent, and areas such as LOC and EBA seem to be 

sensitive to the match between form and motion of the observed agent. The latter results 

were surprising, as EBA is known to be sensitive to human body forms. These results 

suggest that EBA might be involved in integration of form and motion rather than pure 

form processing. On the other hand, core nodes of the Action Observation Network have 

more similar representational patterns for agents that have biological form compared to 
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the one that has less mechanical form. Among these nodes, pSTS seems to pool 

information from the visual cortex to compute the identity of the agent, and pass that 

information to regions in parietal and premotor cortex that code higher-level aspects of 

actions, consistent with computational models of visual action recognition (Giese and 

Poggio, 2003).  

In Chapter 4, we investigated the flow of information within the Action 

Observation Network using fMRI and an effective connectivity technique, dynamical 

causal modeling (DCM) (Friston et al., 2003). Specifically, we investigated the influence 

of two core nodes, pSTS and premotor cortex over the third node, parietal cortex and how 

this influence was affected by congruence between the appearance and motion of the 

observed agent. Our DCM results suggest that the influence on parietal node is likely 

through a feedback connection from premotor cortex during perception of actions that 

violate people’s predictions, supporting the predictive coding account of action 

perception (Kilner et al., 2007a; 2007b). 

In sum, we had two aims in the set of studies that were presented in this 

dissertation. First of all, we used artificial agents as experimental tools to probe the 

human brain and investigate whether it shows specificity for agents that it has evolved 

with over many generations. On the other hand, we aimed to inform social robotics about 

what kind of artificial agent we should make. To this end, we used ERPs to study the 

mechanisms of uncanny valley, cortical EEG oscillations to study the temporal dynamics 

of the core action observation network, and its modulation by nonhuman agents, fMRI 

with state-of-the-art pattern analysis to study the representational properties of each 

region, and DCM to understand the connectivity patterns in this network. 
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So, what did we learn about the human brain using artificial stimuli? First of 

all, we show that different areas in the cortical hierarchy in the Action Observation 

Network have different representational properties consistent with prior computational 

work.  Early stages of visual processing are sensitive to human-like form (Chapter 3). 

Relatively later stages of processing is sensitive to match between form and motion 

(Chapter 3), and this sensitivity seems to emerge as early as around 400 ms (Chapter 1), 

and it is possibly mediated by a top-down influence from premotor cortex to parietal 

cortex (Chapter 4). On other hand, the temporal dynamics over the sensorimotor system 

seems to be similar for nonhuman agents as for human agents (Chapter 2).  

Next we could ask: What could our basic cognitive neuroscience findings teach to 

robotics? First of all, it seems like it may be a good idea to make robots that have human-

like form as the core nodes of the Action Observation Network show more similar 

responses to agents that have human-like form (Chapter 3). However, one needs to be 

aware of uncanny valley, whose underlying mechanism might be expectation violations 

(Chapter 1). So, it might be a good idea to make robots that do not violate people’s 

expectations. However, what kind of expectations in addition to form-motion match that 

has been studied in this dissertation, and to what degree is the question to be further 

investigated in future research. In general, integrating cognitive sciences into the 

prototyping stage might be useful and fruitful for social robotics. 

In conclusion, this thesis on the one hand aims to understand how the human 

brain responds to agents that it did not evolve with over generations and whether those 

responses are similar to the ones for humans during perception of actions. On the other 

hand, it aims to demonstrate that decades of cognitive neuroscience research can allow us 
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to address some fundamental questions in social robotics and human-robot 

interaction and can guide development of design principles for artificial agents who are 

increasingly becoming participants in the technology era we live in. In short, it has 

demonstrated that artificial agents such as robots can allow us to learn about the human 

brain but the brain science can also inform social robotics (Saygin et al., 2011; Saygin 

2012b; Urgen et al., 2013).  
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