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ABSTRACT OF THE DISSERTATION

Infrared and Ultraviolet Physics at Three Energy Scales
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Professor Aneesh Manohar, Chair

This dissertation covers three topics in particle physics phenomenology at

three distinct energy scales: first, a discussion of thrust as an event shape variable

and how it is useful in studying fragmentation at the GeV scale; second, an explo-

ration into the (lack of) cancellation of electroweak large logarithms at the TeV

scale; and third, a calculation of the renormalization group evolution of baryon

number violating operators in the standard model effective field theory, relevant

at energies well above the electroweak scale. The three topics are introduced as

manifestations of infrared and ultraviolet physics in the context of effective field

theories.
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Chapter 1

Introduction

A thesis in particle physics phenomenology usually includes in its intro-

duction a summary of the field content of the Standard Model and those fields’

properties. I will not do that here. It is assumed that anyone reading this the-

sis, or even someone skimming the introduction to this thesis, has heard of the

particles that comprise the underlying theory and knows as much about them as

he/she sees fit. The purpose of this introduction is twofold: first, I would like

to give an overview of Effective Field Theory (EFT) and stress its importance in

physics; second, I would like to remind the reader of the two types of divergences

encountered in perturbative quantum field theory (QFT): those of infrared (IR)

origin and those of ultraviolet (UV) origin. It is with this general background that

I can best unify the disparate topics that constitute this thesis.

1.1 Effective Field Theories

Effective field theory is a framework for understanding relevant physics at

different energy scales. From Ref. [1],

The basic premise of effective theories is that dynamics at low energies
(or large distances) does not depend on the details of the dynamics
at high energies (or short distances). As a result, low energy physics
can be described using an effective Lagrangian that contains only a few
degrees of freedom, ignoring additional degrees of freedom present at
higher energies.

1



2

This idea is one that physicists have been using for several hundred years: Kepler

could describe the motion of the planets without knowing the internal structure of

the sun or planets, Newton could describe motion at low velocities without know-

ing special relativity, etc. The concept was made more quantitative by Lev Landau

with his introduction of the order parameter, further developed in condensed mat-

ter systems by Leo Kadanoff and Michael Fisher through their use of effective

actions, and formulated in its modern understanding by the late Ken Wilson (also

giving our intuition behind the renormalization group).

Enrico Fermi and his four-point interaction, introduced in 1934 as a model

to explain beta-decay, is arguably the most well-known particle physics EFT. In

addition to the model’s simplicity, it is especially instructive when studied in the

context of Weinberg’s SU(2) × U(1) electroweak interaction. We review qualita-

tively some important features of the four-fermion interaction and its history in the

following subsection. Subsection 1.1.2 introduces Soft-Collinear Effective Theory

(SCET), an EFT developed in the past 15 years to describe relevant degrees of

freedom in collider physics events involving jets.

1.1.1 Fermi Interaction as an EFT

When Fermi first proposed his four-point interaction, the neutrino had al-

ready been proposed by Pauli to explain the conservation of energy in β-decay,

and the positron had already been proposed by Paul Dirac as a consequence of

the negative-energy solution of the Dirac Equation. Fermi combined these two

concepts with his four-point interaction. He laid the groundwork for the later dis-

coveries of beta-capture and of the V − A tensor structure of the operator, and

more generally proposed the idea that electron number is not conserved (in the

strict sense, only counting electrons and not neutrinos).

As described above, Fermi’s theory was formulated using a “bottom-up”

approach to physics; it is a constructive theory (as opposed to a “principle” the-

ory1) able to explain already-observed phenomena. Despite the theory’s great

1This classification of theories is due to Einstein, who regarded his own theory of relativity
as a “principle” theory.
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W−

d

u νe

e−

⇐⇒ ⊗

d

u νe

e−

Figure 1.1: The interaction governing β-decay in the Standard Model (left), and
in Fermi’s Interaction (right). The latter emerges from the former at energy scales
much less than the mass of the W boson.

success, it was known to be incomplete — cross-sections calculated using Fermi’s

interaction grow as the square of the CM energy, and therefore the theory violates

unitarity. By a simple argument using dimensional analysis and Fermi’s constant

(the constant of proportionality multiplying the four-fermion operator, with units

of 1/energy2), one can show that the theory breaks down at energy-scales of or-

der 100GeV. The fact that the W -boson (the mediator particle responsible for

muon decay, with mass 80.4GeV) was discovered 50 years after the four-fermion

interaction was proposed shows the predictive power of EFTs to infer dynamics at

short-distance scales despite not knowing the full theory.

The model of electroweak interactions developed by Glashow, Salam, and

Weinberg explained that the 4-fermion interaction, upon closer examination, is

actually comprised of two 3-point interactions among two fermions and one gauge

boson, the latter of which is the emergent mass eigenstate of a SU(2)×U(1) gauge

symmetry after spontaneous symmetry breaking. The details can be found in any

QFT book. Knowing this, Fermi’s model can be reinterpreted as an effective field

theory using a “top-down” approach: the 4-point interaction emerges after inte-

grating out the gauge bosons as dynamical degrees of freedom (i.e., in Figure 1.1,

Fermi’s interaction emerges when zooming out of the full-theory interaction dia-

gram). This describes another way EFTs are useful: calculations using the full

SU(2)× U(1) theory are often complicated and unnecessary, and Fermi’s interac-

tion is an excellent approximation to calculate any process at energies much less

than the electroweak scale.

The SU(2) × U(1) theory is known as a “renormalizable” theory, whereas
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Fermi’s theory is “non-renormalizable.” What is meant by this is that the former

requires only a finite number of operators appearing in the Lagrangian to cancel

UV-divergences appearing in the theory (so-called “counterterms”), whereas the

latter requires an infinite number of counterterms. For a long time, particle physi-

cists insisted that a theory be renormalizable. One argument for this is that a

non-renormalizable theory has an infinite number of counterterms (requiring an

infinite number of parameters) and therefore has no predictive power. Another ar-

gument is that the theory should be valid at very high energy scales Λ (if it is truly a

fundamental theory), and the operators making the theory non-renormalizable are

very heavily suppressed at energies much less than Λ. In fact, such operators are

known as “irrelevant operators” — irrelevant at low energies. This demonstrates

the inherent bias for a “top-down” approach to physics.

A “bottom-up” approach is not inferior to a “top-down” approach. Non-

renormalizable theories can be valid descriptions of physics, and can help us infer

high-energy new physics from a low-energy EFT. Effective field theory allows for

this statement to be quantitative: the infinite number of counterterms arising from

a non-renormalizabe theory are often suppressed by some small parameter (which

depends on the problem at hand). Therefore, an EFT can be useful without being

exact; the Standard Model, itself likely an effective field theory (assuming some

new physics at energy scales much higher than the electroweak scale), has done

very well and has predictive power despite not being valid at arbitrarily large

energies.

1.1.2 Soft-Collinear Effective Theory (SCET)

Soft-Collinear Effective Theory (SCET) [2–5] was developed as an effective

theory able to parameterize both collinear and soft degrees of freedom in processes

involving energetic jets. The theory was an extension of Large Energy Effective

Theory (LEET) [6] and Heavy Quark Effective Theory (HQET) [7–9]. The wide

success of the theory has been due to its applicability to myriad processes, including

inclusive and exclusive heavy meson decays, hard scattering processes, and jet-

production. Originally used to describe QCD effects, it has also been extended
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to incorporate electroweak effects, and a summary of those results is given in

Appendix C.

The wide applicability of SCET is also what makes the theory relatively

difficult for the uninitiated. The small power-counting parameter used in SCET,

λ ≪ 1, depends on the process studied, and is often defined in terms of the

kinematics of some final state of interest. This is unusual: most EFTs use mass

dimensions as their power-counting parameter(s), and therefore one can deduce

the relative importance of an operator from dimensional analysis alone. SCET

is not so nice in this regard. Nevertheless, SCET can systematically describe

relevant degrees of freedom in a hierarchy of energy scales (Q ≪ λQ ≪ λ2Q) while

simultaneously resumming large logarithms for many different scenarios, and is

consequently an essential tool for collider physics.

Another crowning achievement of SCET is its ability to provide a framework

for factorization theorems. In processes described by SCET, there is a “hard”

interaction at some scale Q, “collinear” degrees of freedom with virtuality ∼ λQ

(one for each jet), and “soft” degrees of freedom2 with virtuality ∼ λ2Q (which

could be O(ΛQCD) or not, depending on the process). SCET provides a set of

Feynman rules for these distinct sectors which propagate relatively freely from one

another. The ability to consistently isolate the relevant physics at each scale is a

great triumph of SCET.

Chapter 2 focuses on the computation of the “hard” coefficient for the

process e+e− → qq̄g. The finite piece is extracted from the NLO computation, and

the result is used to improve the SCET calculation with factorization structure

given in Eq. 2.89. Chapter 3 focuses on the need for SCETEW by looking at the

importance of large logarithms in high-energy (10− 100TeV) colliders.

2There is a actually a distinction between “soft” and “ultrasoft” modes (SCETII vs. SCETI);
for the purposes of this thesis, “soft” will be used to refer to “ultrasoft” modes with momentum
scaling pµ ∼ Q(λ2, λ2, λ2) in light cone coordinates. This is called SCETI.
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1.2 Infrared and Ultraviolet Infinities

Ultraviolet infinities are discussed at length in standard second-quarter /

second-semester quantum field theory classes in the context of the renormalization

group and calculations involving loop diagrams. The fact that masses and coupling

constants change with the energy scale at which they are evaluated is a consequence

of these kinds of high-energy infinities, and the systematics of obtaining finite,

physical (i.e., measurable) quantities from the theory were devised by Feynman,

Schwinger, and Tomonaga. The decades after this formulation saw a generalization

of these concepts in the construction of effective field theories, introduced in the

previous section.

In addition to UV divergences, there are also low-energy infinities which

appear in QFT calculations, so-called infrared divergences. These IR divergences

are often not covered in detail in a standard one-year introductory sequence to

quantum field theory. However, there are a variety of reasons why it is important

to explore the nature of infrared divergences:

⋆ It is inconsistent to look at loop-corrections of internal gauge bosons without

taking into account initial and final-state radiation associated with these medi-

ator particles.

⋆ Their understanding is intimately related to the optical theorem through the

appearance of on-shell virtual particles. Infrared divergences cancel in a unitary

theory by the Kinoshita-Lee-Nauenberg (KLN) theorem, and the optical theorem

is a consequence of unitarity.

⋆ Calculations using dimensional regularization, by far the dominant regulator

in perturbative field theory calculations, are sometimes deceivingly simple and

hide physical effects. For example, scaleless integrals vanish in dimensional reg-

ularization; upon further inspection, it becomes evident that the zero result is

actually a cancellation between an ultraviolet infinity and an infrared infinity.

⋆ They emphasize the important role that kinematics and experimental observ-

ables play — not everything can be deduced from matrix elements alone. In
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particular, infrared divergences only cancel at the cross-section level, and not at

the amplitude level.

As noted in the last point, the infrared divergence at the amplitude level

in a loop calculation involving virtual (internal) particles is cancelled by a cor-

responding infrared divergence in the real radiation at the kinematic level. The

former occurs because of a divergent integral over arbitrarily small momenta of

internal particles, whereas the latter occurs because of a divergent phase-space

integral over the initial- or final-state kinematics. Because the two contributions

appear at different stages of the computation, it is necessary to include an infrared

regulator to handle these infinities.

For over 30 years, the regularization procedure of choice has been dimen-

sional regularization, obtained by changing the dimension of spacetime from d = 4

dimensions to d = 4 − 2ǫ dimensions, with d < 4 to regulate UV infinities and

d > 4 to regulate IR infinities. This regulation procedure is favored over most

because (1) it is relatively easy computationally, (2) it is able to handle both IR

and UV divergences, and (3) it respects gauge invariance in intermediate stages of

the computation. This thesis will also look at two other kinds of (IR) regulators.

First, in Chapter 2 we’ll see that a cut on the event-shape variable thrust can serve

as an IR regulator. Second, in Chapter 2 we’ll also see that the real radiation cross

section of (dijet + 1 hadron) events can be computed using a gluon mass as an

infrared regulator (setting the unphysical mass to zero later in the computation).

This calculation will be relevant for Chapter 3, where we’ll look at a toy SU(2)

theory with a massive gauge boson (i.e., the mass of the W± or Z boson). Here

the regulator is the physical gauge boson mass.

1.3 Thesis Outline

Chapter 2 will be the first of two chapters focusing primarily on infrared

divergences. In it we review a very common and important calculation (e++e− →
qq̄g), write the result in terms of the event-shape variable thrust, and extract a

piece of this calculation to augment the SCET computation of the same process.
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The purpose of the calculation is to improve accuracy in the determination of

fragmentation functions from Belle data.

Chapter 3, the second chapter focusing on infrared divergences, looks at

the real emission of electroweak gauge bosons in TeV-scale processes (specifically,

top/bottom quark production). We show that electroweak large logarithms often

do not cancel in final states probed at the LHC and therefore should be resummed

using SCETEW. The large logarithms appear because the experimental signatures

of such events are inherently exclusive.

Chapter 4 shifts the focus over to ultraviolet divergences in the calculation

of the Yukawa contribution to the anomalous dimension matrix of baryon number-

violating (BNV) operators in the Standard Model effective field theory. In addition

to presenting the result of the computation, we also discuss the flavor structure of

the operators and discuss their importance under some simplifying hypotheses.



Chapter 2

Fragmentation with a Cut on

Thrust

The Belle experiment at KEK in Japan uses the 10.52GeV center-of-mass

e+e− collider to probe flavor physics and CP violation. The data can also be used to

study light-parton “fragmentation,” which refers to the process by which a parton

(a quark, antiquark, or gluon) hadronizes into the color-singlet hadron seen in the

final state. Because the energy of the collider is such that many bottom-quarks

are produced near resonance, the data is contaminated by large contributions from

heavy quarks, and the study of light-parton fragmentation requires the removal of

these events. To eliminate the large contamination, a cut on the event-shape

variable thrust is used, and in doing so we can probe “dijet” events of the form

e+ + e− → 2j + h (where h refers to the observed hadron). By focusing on these

events and by using a factorization theorem in SCET applied to fragmentation,

we can infer the non-perturbative fragmentation functions from the Belle data.

Furthermore, the calculations demonstrate that there exist correlations between

the thrust cut and the momentum fraction of the observed hadron, effects not

previously taken into account by the Belle collaboration.

The organization of this chapter is as follows: first, thrust is introduced,

and its relationship to Soft-Collinear Effective Theory (SCET) is explained. Next,

the next-to-leading order (NLO) piece of the e+ + e− → q + q̄ + g cross-section

is calculated, giving the singular and the non-singular pieces of the NLO result

9
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and relating the result to thrust and fragmentation functions. Finally, I’ll state

how this is combined with the resummed SCET calculation to extract information

about fragmentation functions.

This chapter is based on work in Ref. [10], of which I was co-author. The

material presented here concentrates on my contribution to the work, which in-

volved the calculation of the NLO pieces of the computation e+ + e− → q + q̄ + g.

The computation will be presented twice: first, using a gluon mass as an infrared

regulator (and an intermediate result will be relevant for the next chapter of the

dissertation); and second, using dimensional regularization to modify the infrared

divergences. Most of the results are well-known, but details of the calculation are

included here for completeness and to review fully the IR structure of the process.

The result will be used to extract the nonsingular part of the NLO computation,

which plays a role in the τ & 0.2 regime.

2.1 Thrust and SCET

Thrust is a global event-shape variable1 originally defined as follows [11]:

T ≡ max
t̂

∑
i |t̂ · ~pi|∑
i |~pi|

, (2.1)

where the sum runs over all final-state particles and momenta are taken in the

center-of-mass frame (actually, Ref. [11] defines thrust as half this quantity, but

the physics community settled on T shortly afterwards and the above was the

predominant definition of thrust in the 1980’s). The axis t̂∗ that maximizes the

ratio above is called the thrust axis. The maximum value of T occurs for “pencil-

like” / “jet-like” events where all final-state particles lie on the same axis, in

which case T = 1. The minimum value of T depends on the number of final-

state particles, but can be as low as 1/2 for a large number of particles spherically

distributed. Starting in the 1990’s, the term “thrust” started to refer to the related

variable τ , where

τ ≡ 1− T = 1−max
t̂

∑
i |t̂ · ~pi|∑
i |~pi|

. (2.2)

1A variable related to the geometry of the final-state of the particle physics event.
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We will use the term “thrust” throughout this chapter to refer to both T and τ ;

results of calculations will generally be written in terms of τ .

This chapter will often deal with how thrust relates to the final state qq̄g.

For this 3-body case, if a unique particle carries the maximum 3-momentum, this

particle also defines the thrust axis. For the case where pi = pj > pk (i 6= j 6= k),

the thrust axis is perpendicular to the particle with 3-momentum pk.

Thrust is defined for final-state particles, for which fragmentation / hadroniza-

tion have already occurred. For events with center of mass energy Q ≫ ΛQCD,

a differential cross section in thrust can be calculated at the partonic level with

perturbative QCD. The wide separation of scales allows for SCET to be a useful

tool, and the kinematic regimes for which SCET is useful correspond to the regions

of final-state phase space where τ → 0. Intuitively, this is clear: for a three-body

final state with τ ≪ 1, at least one of the following two statements must be true.

⋆ One particle has very small energy (“soft”)

⋆ All particles lie roughly on the thrust axis (“collinear”)

These are exactly the scenarios for which large logarithms appear in calculations,

and SCET gives a good framework for resumming the large logarithms in these

situations.
√
τ is used as the small parameter usually called λ in SCET, since a

soft particle of energy p0s ≪ Q gives thrust τ = O(p0s/Q) (furthermore, we’re using

SCETI, where the momentum scaling of the soft particles is pµs ∼ λ2Q).

We now pause the discussion of the effective theory, and concentrate on the

leading order and NLO computations. We resume the discussion in Sec. 2.5 after

the reader is throughly tired of the “basic” computation.

2.2 Leading Order Calculation; Notation

The leading order (LO) tree-level unpolarized cross section e+e− → qq̄ does

not require an infrared regulator. The calculation arises from the single diagram

of Figure 2.1, which gives the matrix element T = gµν [(4πiαEM)/s] v̄+γ
µu−ū1γ

νv2.

We’ve adopted the notation ui ≡ u(pi) (and similar with u → v), p± is the momen-

tum of the incoming e±, p1 is the momentum of the outgoing quark, and p2 is the
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γ

e−

e+ q

q

Figure 2.1: Tree-level contribution to e+e− → qq. Amplitude: T .

momentum of the outgoing antiquark. The coupling αEM is electromagnetic, as

only the photon gives an appreciable contribution to the cross-section at the GeV

scale. The Mandalstam variable s gives the square of the center-of-mass energy of

the two electrons. The tree-level / “Born” cross section comes from the phase-space

integral over the spin-summed amplitude-squared (averaged over initial spins):

|M0|2 ≡
1

4

∑
{

spins
colors

}

|T |2 = 1

4

16π2α2
EMNc

s2
Tr
{
/p+γµ/p−γν

}
Tr
{
/p1γ

µ
/p2γ

ν
}

=
4π2α2

EMNc

s2

[
32
[
(p+ · p1)(p− · p2) + (p+ · p2)(p− · p1)

]]

(2.3)

Notice |M0|2 does not factorize into the product of two traces, which is also true

for the NLO calculation (there we will exploit the QED Ward identity to sim-

plify the computation of traces). Also notice that we are ignoring the masses

of all fermions. Overall, the tree-level / “Born” cross section e+e− → qq̄ can

be computed in the CM frame by assigning momentum via pµ∓ = E(1, 0, 0,±1),

pµ1 = E(1, sin θ, 0, cos θ), and pµ2 = E(1,− sin θ, 0,− cos θ), where E =
√
s/2 is the

energy of one particle in the CM frame. This gives:

σ0 =
1

2s

∫
dΠ2|M0|2 =

1

2s

1

16π

∫
|M0|2d cos θ

=
4πα2

EMNc

s3

∫ 1

−1

E4
[
(1 + cos θ)2 + (1− cos θ)2

]
d cos θ

=
4πα2

EMNc

3s
.

(2.4)

Nc is the number of colors for the given final state dirac quark q.
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The next two sections will each present the NLO calculation of e+ + e− →
q + q̄ + g. In both cases, q refers to the virtual photon momentum (and qµ =

(
√
s, 0, 0, 0) in the CM frame), p3 refers to the momentum of the outgoing gluon,

and k refers to the momentum of the virtual gluon. The relevant diagrams are

shown in Figures 2.2–2.4.

2.3 NLO Calculation with a Gluon Mass

2.3.1 Virtual Diagram Amplitudes V and W

First we calculate the vertex amplitude V of Figure 2.2 in d = 4 − 2ǫ

dimensions. Let CF be the 2nd Casimir Invariant for SU(3) (so that TATA = CF1),

let the overall momentum (and the momentum of the timelike virtual photon) be

q (so that q2 = s, the CM energy squared), and let the virtual gluon momentum

be k going downwards in Figure 2.2. Integrals are expressed in Minkowski space,

before Wick-rotating to a Euclidean measure; the relevant formulae are taken from

Ref. [12] and summarized in Appendix A. Giving the gluon a mass M to control

infrared divergences,

V = v̄+γµu−
−i

q2
(−4παEM)ū1µ

2ǫ

∫
ddk(igγνTA)

i(/k + /p1)

(k + p1)2 + iǫ
γµ

i(/k − /p2)

(k − p2)2 + iǫ

× (igγνT
A)

−i

k2 −M2
v2 (2.5)

V = CF (4παEM)
g2

s
v̄+γµu−ū1µ

2ǫ

∫
ddkγν

/k + /p1
(k + p1)2 + iǫ

γµ
/k − /p2

(k − p2)2 + iǫ

× γν
1

k2 −M2
v2 (2.6)

Define I such that V = CF (4παEM)(g
2/s)v̄+γµu−ū1Iv2:

I = µ2ǫ

∫
ddk

γν(/k + /p1)γ
µ(/k − /p2)γν

(k2 −M2)(k + p1)2(k − p2)2

= 2!

∫
dxdydz δ(1− x− y − z) µ2ǫ

∫
ddk

N

D3

(2.7)
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γ

e−

e+ q

q

Figure 2.2: Vertex contribution to e+e− → qq(g). Amplitude: V .

γ

e−

e+ q

q

γ

e−

e+ q

q

Figure 2.3: Wavefunction renomalization diagrams for e+e− → qq(g). Amplitude:
W = Wq +Wq̄ (Wq and Wq̄ for the left and right diagrams, respectively).

γ

e−

e+ q

q

γ

e−

e+ q

q

Figure 2.4: Real radiation diagrams for e+e− → qqg. Amplitude: R = Rq + Rq̄

(Rq and Rq̄ for the left and right diagrams, respectively).
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Eq. (2.7) comes from the Feynman parameterization in Appendix Eq. (A.1). N and

D as defined at the end of Eq. (2.7) (which are intended to stand for “numerator”

and “denominator,” respectively) are given by:

N = −2(/k − /p2)γ
µ(/k + /p1) + 2ǫ(/k + /p1)γ

µ(/k − /p2)

=

[
−2(1− ǫ)γµ2− d

d

]
ℓ2 − 2sγµ

[
1− (z + y) + zy(1− ǫ)

]

D = x(k2 −M2) + y(k + p1)
2 + z(k − p2)

2 + iǫ

= k2 + 2yk · p1 − 2zk · p2 − xM2 + iǫ = ℓ2 −∆+ iǫ

(2.8)

where

ℓ ≡ k + yp1 − zp2 and ∆ ≡ −2yzp1 · p2 + xM2 = −syz + (1− y − z)M2

(2.9)

(note s = (p1+p2)
2 is the Mandelstam variable). Using Eq. (A.2), we can evaluate

the integral. Implicit in the formula is that fact that when ∆ is negative, we

evaluate the logarithm according to the prescription ∆− iǫ.

I = γµΓ(ǫ)
i

(4π)d/2

∫

y+z<1

dydz

(
µ2

∆

)ǫ
[
− 2(1− ǫ)

2− d

2

+ ǫ
2s

∆

(
1− (z + y) + zy(1− ǫ)

)]

I = γµ

[
1

ǫ
+O(ǫ)

]
i

(4π)2

∫

y+z<1

dydz

(
µ̃2

∆

)ǫ
[
− 2(1− ǫ)(−1 + ǫ)

− ǫ
2

yz − (1− y − z)β
(1− (z + y) + zy(1− ǫ))

]

I = γµ

[
1

ǫ
+O(ǫ)

]
2i

(4π)2

∫

y+z<1

dydz
[
1− ǫ ln(s/µ̃2) +O(ǫ2)

]

×
[(
1− ǫ ln (−yz + (1− y − z)β)− 2ǫ+O(ǫ2)

)
− ǫ

1− (z + y) + yz(1− ǫ)

yz − (1− y − z)β

]

(2.10)

We have defined β ≡ M2/s > 0, and µ̃ ≡ 4πe−γµ2 (and γ ≈ 0.5772 is the Euler-

Mascheroni constant). The following integrals over the Feynman parameters use

branch cuts consistent with the prescription above:
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∫

y+z<1

dydz
1− (z + y) + yz(1− ǫ)

yz − (1− y − z)β
=

5

2
+ 2iπ − π2

6
+ 2 ln β + iπ ln β

+
1

2
ln2 β +O(ǫ, β)

∫

y+z<1

dydz
[
ln (−yz + (1− y − z)β)

]
= −3

2
− 1

2
iπ +O(β)

(2.11)

Thus,

I = γµ1

ǫ

i

(4π)2
+ γµ 2i

(4π)2

∫

y+z<1

dydz

[
− ln

(
(−yz + (1− y − z)β

)
− ln(s/µ̃2)

− 2− 1− (z + y) + yz(1− ǫ)

(yz − (1− y − z)β)1+ǫ

]

I = γµ i

(4π)2

[
1

ǫ
+

π2

3
− 4− ln(s/µ̃2)− 4 ln β − ln2 β − 3iπ − 2iπ ln β

]

(2.12)

V = CF (4παEM)
g2

s
v̄+γµu−ū1Iv2

V = iCF
αsαEM

s
v̄+γµu−ū1γ

µv2

[
1

ǫ
+

π2

3
− 4− ln

(
s

µ̃2

)
− 4 lnβ − ln2 β

− 3iπ − 2iπ ln β
]

(2.13)

The wavefunction renormalization diagrams of Figure 2.3 are also required.

Note the following integral, which is evaluated similar to the above:

(−ig)2CF

∫
ddk

(2π)d
−i

k2 −M2

γµi(/p + /k)γµ

(p+ k)2
= iCF/p

αs

4π

[
1

ǫ
+ ln

(
µ̃2

M2

)
− 1

2

]
(2.14)

(p is the momentum of the fermion which contains the virtual gluon). The wave-

function renormalization contribution is therefore

W = −iCF
αsαEM

s
v̄+γµu−ū1γ

µv2

[
1

ǫ
+ ln

(
µ̃2

M2

)
− 1

2

]
(2.15)
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Adding this to the virtual gluon amplitude V , we see that the 1/ǫ and µ̃

dependence cancels and

V +W = iCF
αsαEM

s
v̄+γµu−ū1γ

µv2

[
π2

3
− 7

2
− 3 lnβ − ln2 β − 3iπ − 2iπ lnβ

]

(2.16)

More generally, the cancellation of the ultraviolet regulator ǫ and mass scale µ̃

is a consequence of the conservation of the QED vector current; the QED vector

current is not renormalized.2

2.3.2 Real Radiation Diagram Amplitude R

R =
−4παEM

s
(v̄+γµu−)(−ig)

[
ū1ǫ
∗
ν(p3)γ

ν
i(/p1 + /p3)

(p1 + p3)2
γµTAv2

+ ū1γ
µ
−i(/p2 + /p3)

(p2 + p3)2
ǫ∗ν(p3)γ

νTAv2

]

(2.17)

Note s = (p1+ p2 + p3)
2 = 2(p1 · p2 + p1 · p3 + p2 · p3) +M2. Simplifying the above,

and using the abbreviations a = 2p1 · p2, b = 2p1 · p3, and c = 2p2 · p3,

R =
−4gπαEM

s(b+M2)(c+M2)
(v̄+γµu−)ǫ

∗
ν(p3)ū1

[
(c+M2)(2pν1 + γν

/p3)γ
µ

− (b+M2)γµ(2pν2 + /p3γ
ν)

]
TAv2

(2.18)

2.3.3 Spin-Summed Amplitudes Squared

We now need to sum over final spins and average over initial spins of the

amplitudes squared and do the analog of Eq. (2.3) separately for the virtual (2-

body final state) and real (3-body final state) amplitudes.

2There are some subtleties to this point, as explained in Ref. [13]



18

At NLO, the virtual diagram interferes with the tree level diagram when

taking the square of the qq̄ amplitude. Thus, we need to compute

|M|2qq̄ ≡
1

4

∑
{

spins
colors

}

|T + (V +W )|2 = 1

4

∑

{spins}

∑

{colors}

{
T ∗T + 2Re

[
T ∗(V +W )

]}

≡ |M0|2 + |MV+W |2

(2.19)

Note the (V +W )∗(V +W ) term can be ignored at the order we’re interested in.

We’ve already computed |M0|2 in Eq. (2.3). The interference sum from the virtual

gluon is

|MV+W |2 = |M0|2
αsCF

2π

[
π2

3
− 7

2
− 3 ln β − ln2 β

]
(2.20)

We also need to compute

|M|2qq̄g ≡
1

4

∑

{spins}

∑

{colors}

∑

{polarizations}

|R|2 =
∑

{all}

RR∗

=
1

4

∑

{all}

16g2π2α2
EMCF

s2(b+M2)2(c+M2)2
ǫ∗ν(p3)ǫβ(p3)(v̄+γµu−ū−γαv+)ū1

×
[
(c+M2)(2pν1 + γν

/p3)γ
µ − (b+M2)γµ(2pν2 + /p3γ

ν)
]
v2v̄2

×
[
(c+M2)γα(2pβ1 + /p3γ

β)− (b+M2)(2pβ2 + γβ
/p3)γ

α
]
u3

=
−16π3αsα

2
EMCFNc

s2(b+M2)2(c+M2)2
LµαH

µα

(2.21)

where

Lµα = Tr
[
/p+γµ/p−γα

]
= 4

[
p+µp−α + p+αp−µ −

s

2
gµα

]

Hµα = (c+M2)2Tr
[
/p1(2p

ν
1 + γν

/p3)γ
µ
/p2γ

α(2p1ν + /p3γν)
]

+ (b+M2)2Tr
[
/p1γ

µ(2pν2 + /p3γ
ν)/p2(2p2ν + γν/p3)γ

α
]

− (b+M2)(c+M2) Tr
[
/p1γ

µ(2pν2 + /p3γ
ν)/p2γ

α(2p1ν + /p3γν)
]

− (b+M2)(c+M2) Tr
[
/p1(2p

ν
1 + γν

/p3)γ
µ
/p2(2p2ν + γν/p3)γ

α
]

(2.22)
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The Ward identity for the virtual photon gives qµLµα = qµHµα = 0. This fact,

combined with the fact that the 3-body phase space integral over Hµα gives a

function only of q2 (defined to be H = H(q2)), allows us to write

Hµα =

(
gµα − qµqα

q2

)
H (2.23)

LµαH
µα = 4

[
2p+ · p− − d

2
s− 2(q · p+)(q · p−)

q2
+

1

2
s

]
H = (4− 2d) sH (2.24)

gµαLµα = 4s(1− d/2) (2.25)

gµαHµα = (d− 1)H (2.26)

Looking at Eqs. (2.24) – (2.26), we can make the replacement

LµαH
µα → 1

d− 1

[
gµαLµα

]
·
[
gρσH

ρσ
]

(2.27)

Using this replacement, the traces in Hµα are easier to evaluate:

gµαH
µα = (c +M2)2[−8aM2 + 8bc] + (b+M2)2[−8aM2 + 8bc]

− (b+M2)(c+M2)[−16a2 − 32aM2 − 16a(b+ c)]

1

s4
gµαH

µα = 8(1− x1)(1− x2)(x
2
1 + x2

2)

+ 8β
[
− 2 + 4(x1 + x2)− 3(x2

1 + x2
2)− 4x1x2 + 2(x2

1x2 + x2
2x1)

]

xi is the momentum fraction of particle i (e.g. x1 = 2p1 · q/s) and
∑

i xi = 2. Note

that by exploiting the dot product (i.e. (q − x3)
2 = (p1 + p2)

2, etc.),

a = s(1− x3 + β) = s(x1 + x2 − 1 + β)

b = s(1− x2 − β)

c = s(1− x1 − β)

(2.28)
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Overall then, to O(β),

|M|2qq̄g =
1

4

∑

{all}

|R|2

=
512π3αsα

2
EMCFNc

3s

[
x2
1 + x2

2

(1− x1)(1− x2)

+ β
−2 + 4(x1 + x2)− 3(x2

1 + x2
2)− 4x1x2 + 2(x2

1x2 + x2
2x1)

(1− x1)2(1− x2)2

]

(2.29)

2.3.4 Phase-Space Integrals, Total Cross-Section

By combining Eqs. (2.4) and (2.20), the total virtual NLO cross section (in

the CM frame) is straighforward:

σV+W = σ0
αsCF

2π

[
π2

3
− 7

2
− 3 ln β − ln2 β

]
(2.30)

The qq̄g cross section requires an integral over three-particle phase space:

σR =
1

2s

∫ (
d3p1
(2π)3

1

2E1

)(
d3p2
(2π)3

1

2E2

)(
d3p3
(2π)3

1

2E3

)
|M|2qq̄g

× (2π)4δ4
(
q − (p1 + p2 + p3)

)

(2.31)

We can write d3p3/(2E3) = d4p3 δ
+ (p23 −M2) and perform the d4p3 integral by

using the energy-momentum delta function, leaving us with

σR =
1

2s

1

(2π)5

∫ (
d3p1
2E1

)(
d3p2
2E2

)
|M|2qq̄g δ+

(
(q − p1 − p2)

2 −M2
)

(2.32)

By using p1 · p2 = E1E2 − p1 · p2 = x1x2(s/4)(1− cos θ12) (where θ12 is the angle

between p1 and p2), we may write

σR =
1

2s

1

(2π)5

∫ (
d3p1
2E1

)(
d3p2
2E2

)
|M|2qq̄g

× δ+
{
s
(
1− β − x1 − x2 +

x1x2

2
(1− cos θ12)

)}

(2.33)
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There are six integrals left to do, but we can perform four of the integrals by

exploiting the delta function and the isotropy of the problem (reflected in the fact

that the amplitude is a function only of x1 and x2). We can change the d3p1 and

d3p2 measures to spherical coordinates, and perform the integral over the solid

angle of particle 1 (giving a factor of 4π). Next, we can perform one integral over

the azimuthal angle of particle 2, giving a factor of 2π. This gives

σR =
1

s

1

(2π)3

∫
dE1dE2E

2
1E

2
2 d cos θ12

4E1E2
|M|2qq̄g δ+

{
s
(
· · ·+ x1x2

2
(1− cos θ12)

)}

=
1

s

1

(2π)3

∫
dE1dE2E1E2

4
|M|2qq̄g

2

sx1x2

(
note Ei = xi

√
s

2

)

=
1

256π3

∫
dx1dx2|M|2qq̄g

(2.34)

The kinematics of the three-body final state are such that 2
√
β ≤ x3 ≤ 1+β,

x1 ≤ 1− β, and x2 ≤ 1− β. This leads to the real-radiation cross section

σR =
2αaα

2
EMCFNc

3s

∫ 1−β

0

dx1

∫ 1− β

1−x1

1−β−x1

dx2

[
x2
1 + x2

2

(1− x1)(1− x2)

+ β
−2 + 4(x1 + x2)− 3(x2

1 + x2
2)− 4x1x2 + 2(x2

1x2 + x2
2x1)

(1− x1)2(1− x2)2

]

= σ0
αsCF

2π

[
5− π2

3
+ 3 ln β + ln2 β

]

(2.35)

Putting everything together, the total cross section up to NLO is

σ0 + σ1 = σ0 + σV +W + σR = σ0

(
1 +

3αsCF

4π

)
(2.36)

2.3.5 Cross-Section and Thrust

Here we will restrict final-states to those that have thrust T ≤ T c, where T c

is a thrust cut that regulates the infrared divergence. To find σR(T
c), we may take

the expression for σR in the previous section and change the limits of integration

to functions of T c; we can set β = 0 as it is no longer needed. The cross section

becomes (changing to the other thrust variable τ c ≡ 1− T c):
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σR(T
c) =

4πα2
EMNc

3s

αsCF

2π

∫ T c

2−2T c

dx3

∫ T c

2−T c−x3

dx4

[
x2
3 + x2

4

(1− x3)(1− x4)

]

= σ0
αsCF

2π

[
− 8− π2

3
+ 15T c − 9

2
(T c)2 + 6(1− 2T c)Tanh−1

(
3− 2

T c

)

+ 2 ln2
(
−1 +

1

T c

)
+ 4Li2

(
−1 +

1

T c

)]

σR(τ
c) = σ0

αsCF

2π

[
5

2
− π2

3
+ 3 ln(τ c) + 2 ln2(τ c) +O(τ c)

]

dσR(τ
c)

dτ c
= σ0

αsCF

2π

1

τ c(1− τ c)

[
3− 9τ c − 3(τ c)2 + 9(τ c)3

−
(
4− 6τ c + 6(τ c)2

)
ln

(
1− 2τ c

τ c

)]

(2.37)

2.3.6 Fragmentation and Quark Momentum Fraction

The differential cross section over the momentum fraction z of the quark is

determined by taking Eq. (2.35) with the replacement x1 → z. The superscript q

on σ refers to the fact that we’re looking at the cross-section of the quark — the

variable z is the momentum fraction of the quark. The next subsection will look

at dσg
R/dz.

dσq
R

dz
= σ0

αsCF

2π
θ(1− (z + β))

∫ 1− β
1−z

1−β−z

dx2

[
z2 + x2

2

(1− z)(1 − x2)

+ β
−2 + 4(z + x2)− 3(z2 + x2

2)− 4zx2 + 2(z2x2 + x2
2z)

(1− z)2(1− x2)2

]

= σ0
αsCF

2π

θ(1− (z + β))

2(1− z)

[
− 2− z2 + 2(1 + z2) ln (z(1 − z))

− 2(1 + z2) ln β +
5

4
δ(1− (z + β))

]

(2.38)
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The above was obtained by doing the integral in Mathematica then series

expanding in β. When keeping only terms up to and including O(β0), the delta

function piece δ(1− (z + β)) needs to be put in by hand in order to reproduce the

correct overall cross section for σq
R. Note that the step-function θ will be used in

this and future subsections to emphasize the physical bounds of parameters.

In order for the plus distributions to be well-defined at z ≈ 1 (that is, in

order to include the appropriate delta functions δ(1−z) to cancel the β-dependence

in the virtual diagrams), we will replace z → z − β:

dσq
R

dz
= σ0

αsCF

2π

θ(1− z)

2(1− z + β))

[
− 2− z2 + 2(1 + z2) ln

(
z(1− z + β)

)

− 2(1 + z2) ln β
]

(2.39)

Note the following identities to replace the z → 1 divergences with plus

distributions and delta functions:

−1− z2/2− (1 + z2) ln β

(1− z + β)
=

(−1− z2/2− (1 + z2) lnβ

(1− z + β)

)

+

+

(
3

4
+ 3 ln β + 2 ln2 β

)
δ(1− z)

=
−1− z2/2− (1 + z2) ln β

(1− z)+

+

(
3

2
ln β + 2 ln2 β

)
δ(1− z)

(1 + z2) ln(1− z + β)

(1− z + β)
=

(
(1 + z2) ln(1− z + β)

1− z + β

)

+

+

(
7

4
− ln2 β

)
δ(1− z)

= (1 + z2)

(
ln(1− z)

1− z

)

+

− (ln2 β)δ(1− z)

(2.40)

Most of the β-dependent pieces (all but those that explicitly multiply the split-

ting function) explicitly cancel with those of the virtual+wavefunction diagram

contribution:

dσq
V+W

dz
= σV +W δ(1− z) = σ0

αsCF

2π

[
π2

3
− 7

2
− 3 lnβ − ln2 β

]
δ(1− z) (2.41)
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Note

−1− z2/2

(1− z)+
= −3

2

1

(1− z)+
+

1

2
+

z

2
(2.42)

Pqq(z) =

(
1 + z2

1− z

)

+

=
1 + z2

(1− z)+
+

3

2
δ(1− z) (2.43)

Putting everything together, we have

dσq
1

dz
= σ0

αsCF

2π

{
− Pqq(z) ln β + (1 + z2)

[(
ln(1− z)

1− z

)

+

+
ln z

1− z

]

− 3

2

1

(1− z)+
+

1

2
+

z

2
+

(
π2

3
− 7

2
+

5

4

)
δ(1− z)

}

(2.44)

We must subtract the fragmentation function from this to obtain the par-

tonic dσ̂q
1/dz. The reason for this will be explained in Eq. (2.78). From Eq. (3.29)

of Ref. [14], the fragmentation function with a gluon mass is given by

Dq
q,1(z, β) =

αsCF

2π
θ(z)

[
Pqq(z)

(
ln

µ̃2

M2
− ln z

)
−
(
π2

3
− 9

4

)
δ(1− z)

− 2(1− z)θ(1 − z)

]

(2.45)

This leaves us with the result

dσ̂q
1

dz
= σ0

αsCF

2π

{
Pqq(z) ln

s

µ̃2
+ (1 + z2)

[(
ln(1− z)

1− z

)

+

+ 2
ln z

1− z

]

− 3

2

1

(1− z)+
+

5

2
− 3z

2
+

(
2π2

3
− 9

2

)
δ(1− z)

}

(2.46)

2.3.7 Fragmentation and Gluon Momentum Fraction

The computation of dσ̂g
1/dz is similar to previous subsection, except we need

only look at the real emission diagram, as this is the only one that contributes to
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first order in αs. Note that the phase space integrand must have the replacement

x1 → 2− x2 − x3 and the limits of integration change accordingly.

dσg
R

dz
= σ0

αsCF

2π
θ(1− (z − β))

∫ 1

2

(
2−z+

√
z2−4β

)

1

2

(
2−z−

√
z2−4β

) dx2

[
same integrand as Eq. (2.38)

with z → 2− x2 − z

]

= σ0
αsCF

2π

θ(1− (z − β))

z

[
− 4z2 + (2− 2z + z2)(4 ln z − 2 ln β)

]

= σ0
αsCF

2π

[
θ(1− z)(−4z) + Pgq(z)(4 ln z − 2 lnβ)

]

(2.47)

where we’ve used the fact that the splitting function is Pgq(z) = θ(1−z)1+(1−z)2

z
=

θ(1 − z)2−2z+z2

z
. We must subtract twice the fragmentation function (for a quark

and antiquark) from this to obtain dσ̂g
1 . From Eq. (3.29) of Ref. [14], the fragmen-

tation function with a gluon mass is given by:

Dg
q,1(z, µ) =

αsCF

2π
θ(z)

{[
ln

µ̃2

M2
− ln(1− z)

]
Pgq(z)− 2θ(1− z)z

}
(2.48)

Combining terms, we get

dσ̂g
1

dz
= σ0

αsCF

2π
Pgq(z)

[
2 ln

s

µ̃2
+ 2 ln(1− z) + 4 ln z

]
(2.49)

2.3.8 Fragmentation with a Thrust Cut

We can also look at the differential cross sections over momentum fractions

z given a thrust cut τ c on the final state. Again, the thrust cut regulates the

IR-divergence, and so we can set β = 0. For the quark,

dσ̂q
1(T ≤ T cut)

dz
= σ0

αsCF

2π
θ(T cut − z)θ(z + 2T cut − 2)

∫ T c

2−T c−z

dx2

[
z2 + x2

2

(1− z)(1 − x2)

]

dσ̂q
1(τ ≥ τ c)

dz
= σ0

αsCF

2π
θ(1− z − τ c)θ(z − 2τ c)

[
z2 − 4z + 8τ c − 2zτ c

2(1− z)

+ Pqq(z) ln
z − τ c

τ c

]

(2.50)
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For the gluon,

dσ̂g
1(T ≤ T cut)

dz
= σ0

αsCF

2π
θ(T cut − z)θ(z + 2T cut − 2)

∫ T c

2−T c−z

dx2

[
· · ·
]

dσ̂g
1(τ ≥ τ c)

dz
= σ0

αsCF

2π
θ(1− z − τ c)θ(z − 2τ c)

[
4τ c − 2z + Pgq(z) ln

z − τ c

τ c

]

(2.51)

where the [· · · ] in Eq. (2.51) is the same integrand as in Eq. (2.50), but with the

replacement x2 → 2 − x2 − z. Eqs. (2.50) and (2.51) agree with the calculations

performed in Refs. [15–17].

2.4 NLO Calculation with Dimensional Regular-

ization

This section will redo the computations done in the previous section, now

using dimensional regularization (in d = 4−2ǫ dimensions) to regulate the infrared

divergences. Many of the equations in the previous section which were β-dependent

(divergent in the β → 0 limit) will be replaced with their analogous ǫ-dependent

counterparts (divergent in the ǫ → 0 limit). The splitting functions and physical

differential cross sections will remain the same, but the fragmentation functions

and other intermediate results are regulator-dependent and will be different here

than in the previous section.

2.4.1 Virtual Diagram Amplitudes V and W

Following the same conventions as in the previous section, the virtual dia-

gram is given by Eqs. (2.7)-(2.8) but with β = 0 (no gluon mass). At this point

in the computation, ǫ is regulating both UV and IR-divergences, where ǫ > 0 is

required to regulate the UV divergences (i.e., d < 4) and ǫ < 0 is required to

regulate the IR divergences (i.e., d > 4). In what follows, however, ǫ is understood

to be positive; a discussion of the UV and IR pieces of the computation will follow

shortly.
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Write I = I1 + I2, where I1 is the part of I resulting from N1 and I2 is the

part of I resulting from N2. The analogous computation leading up to Eq. (2.12)

here gives

I1 = γµ i

(4π)2

[
1

ǫ
+ 1 + Ls

]

I2 = γµ i

(4π)2

[
− 2

ǫ2
+

2Ls − 4

ǫ
− 9 +

π2

6
+ 4Ls − L2

s

] (2.52)

where Ls ≡ ln (−s/µ̃2 − i0+). We can omit the imaginary pieces with the foresight

that they will not contribute to the overall cross section (as in the previous section),

with the caveat that the L2
s piece has real part ln2(s/µ̃2) − π2. Note the integral

I2 necessarily only contains IR-divergences, as this was the piece that involved an

integral over (ddℓ)/ℓ6, which converges as |ℓ2| → ∞ for d = 4. Therefore, even

though the ǫ pieces of I2 above are positive, we can think ǫ as being a negative

regulator for the integral and then redefining the regulator after the integration to

a positive quantity. The integral I1 is an integral over (ddℓ)ℓ2/ℓ6 and ostensibly

contains both ultraviolet and infrared divergences; it turns out that the only diver-

gence is ultraviolet. This can be seen by knowing that the ultraviolet divergence

must match the UV divergence in Eq. (2.12). Adding the two together, and giving

subscripts to keep track of the origin of the two infinities, gives

I = γµ i

(4π)2

[
1

ǫUV
− 2

ǫ2IR
+

2Ls − 4

ǫIR
− 8 +

π2

6
+ 3Ls − L2

s

]
(2.53)

in agreement with Eq. (17) of Ref. [18].

The contribution from the wavefunction renormalization diagrams in di-

mensional regularization, analogous to Eq. (2.14) in the previous section, gives /p

times a scaleless integral and is therefore zero in dimensional regularization. How-

ever, the integral (over (ddℓ)/ℓ4) includes UV and IR diverges which cancel: the

UV divergence is the same as before, and from that we can infer the IR diver-

gence is equal and opposite to this. Thus, the total wavefunction renormalization

contributes a piece

W = −iCF
αsαEM

s
v̄+γµu−ū1γ

µv2

[
1

ǫUV
− 1

ǫIR

]
(2.54)



28

Adding this to the virtual amplitude, the 1/ǫUV pieces cancel, and

V +W = iCF
αsαEM

s
v̄+γµu−ū1γ

µv2

[
− 2

ǫ2IR
+

2Ls − 3

ǫIR
− 8 +

π2

6
+ 3Ls − L2

s

]

(2.55)

V +W = iCF
αsαEM

s
v̄+γµu−ū1γ

µv2

[
− 2

ǫ2IR
+

2 ln(s/µ̃2)− 3

ǫIR
− 8 +

7π2

6

+ 3 ln(s/µ̃2)− ln2(s/µ̃2)

]

(2.56)

where Eq. (2.56) omits the imaginary pieces, which do not contribute to the phys-

ical cross section.

2.4.2 Real Radiation Diagram Amplitude R

The amplitude R for the real radiation diagrams is given by Eq. (2.18)

under the limit M2 → 0:

R =
−4gπαEM

s
(v̄+γµu−)ǫ

∗
ν(p3)ū1

[
2pν1 + γν/p3
2p1 · p3

γµ − γµ
2pν2 + /p3γ

ν

2p2 · p3

]
TAv2 (2.57)

2.4.3 Spin-Summed Amplitudes Squared

We now need to sum over final spins and average over initial spins of the

amplitudes squared.

The discussion above and leading to Eq. (2.20) applies here, and the anal-

ogous quantity here is

|MV+W |2 = |M0|2
αsCF

2π

[
−2

ǫ2IR
+
2 ln(s/µ̃2)− 3

ǫIR
− 8 +

7π2

6
+ 3 ln(s/µ̃2)− ln2(s/µ̃2)

]

(2.58)

We also need to compute

|M|2qq̄g ≡
1

4

∑

{spins}

∑

{colors}

∑

{polarizations}

|R|2 = 1

4

∑

{all}

RR∗

=
−16π3αsα

2
EMCFNc

s2b2c2
LµαH

µα

(2.59)
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where Lµα and Hµα are defined as in Eq. (2.22) with M2 → 0. The calculation is

nearly identical to Eqs. (2.23) to (2.28), but care must be taken in trace identities

in d = 4 − 2ǫ. The result is not just Eq. (2.29) with the replacement β → 0, but

modified to

|M|2qq̄g =
1

4

∑

{all}

|R|2 = 512π3αsα
2
EMCFNc

(3− 2ǫ)s

[
x2
1 + x2

2 − ǫx2
3

(1− x1)(1− x2)

]
(1− ǫ)2 (2.60)

It is still the case that x1 + x2 + x3 = 2, and so the above is a function of x1 and

x2 alone.

2.4.4 Phase-Space Integrals, Total Cross-Section

|MV+W |2 has no dependence on the particular kinematics of the final state,

and the integral over the d-dimensional, two-body phase space (with flux factor)

simply gives

σV+W = σd
0

αsCF

2π

[
− 2

ǫ2IR
+

2 ln(s/µ̃2)− 3

ǫIR
− 8 +

7π2

6
+ 3 ln(s/µ̃2)− ln2(s/µ̃2)

]

(2.61)

where σd
0 is the tree-level cross section in d-dimensions (this is given explicitly in

Eq. (2.71))

In d-dimensions, the three-body phase space integrals are modified. Here

we generalize the derivation in subsection 2.3.4:

σR =
1

2s

∫ (
dd−1p1
(2π)d−1

1

2E1

)(
dd−1p2
(2π)d−1

1

2E2

)(
dd−1p3
(2π)d−1

1

2E3

)
|M|2qq̄g

× (2π)dδd
(
q − (p1 + p2 + p3)

)

(2.62)

We can write dd−1p3/(2E3) = ddp3 δ (p
2
3) and perform the ddp3 integral by using

the energy-momentum delta function, leaving us with

σR =
1

2s

1

(2π)2d−3

∫ (
dd−1p1
(2π)d−1

1

2E1

)(
dd−1p2
(2π)d−1

1

2E2

)
|M|2qq̄g δ

(
(q − p1 − p2)

2
)

(2.63)
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By using p1 · p2 = E1E2 − p1 · p2 = x1x2(s/4)(1− cos θ12) (where θ12 is the angle

between p1 and p2), we may write

σR =
1

2s

1

(2π)2d−3

∫ (
dd−1p1
(2π)d−1

1

2E1

)(
dd−1p2
(2π)d−1

1

2E2

)
|M|2qq̄g

× δ
{
s
(
1− x1 − x2 +

x1x2

2
(1− cos θ12)

)} (2.64)

There are 2d − 2 integrals left to do, but we can perform 2d − 4 of the integrals

by exploiting the delta function and the isotropy of the problem (reflected in the

fact that the amplitude is a function only of x1 and x2). We can change the dd−1p1

and dd−1p2 measures to spherical coordinates, and perform d−2 integrals over the

solid angle of particle 1. When d = 4 (n = 3), this is simply 4π, but in general

this must be derived from the volume / surface area of an (n− 1)-sphere:

Vn(R) =
πn/2

Γ(n/2 + 1)
Rn Sn−1(R) =

nπn/2

Γ(n/2 + 1)
Rn−1 =

2πn/2

Γ(n/2)
Rn−1 (2.65)

This gives a “solid-angle” of 2πd/2−1/2/Γ(d/2− 1/2). Next, we can perform d− 3

integrals over all angles of particle 2 other than a polar angle θ1 (describing the

angle between particles 1 and 2). For this we need the volume element of the

(n−2)-sphere in terms of the angles of the generalized spherical coordinate system:

dSn−2
V = rn−2 sinn−3 θ1 sin

n−4 θ2 · · · sin θn−3 drdθ1 · · · dθn−2
= sinn−3 θ1 dθ1rdSn−3

V
(2.66)

(where θi ∈ [0, π] for i = 1, . . . , n − 3 and θn−2 ∈ [0, 2π)). The integral over the

d− 3 remaining angles of particle 2 gives a factor 2πd/2−1/Γ(d/2− 1), and we can

combine the two gamma functions with the identity Γ(d/2 − 1/2) Γ(d/2 − 1) =

23−d
√
π Γ(d− 2). So far, this gives

σR =
1

2s

4πd−3/2

(2π)2d−323−d
√
πΓ(d− 2)

∫
dE1dE2E

d−2
1 Ed−2

2 d cos θ1
4E1E2

|M|2qq̄g sind−4 θ1

× δ
{
s
(
1− x1 − x2 +

x1x2

2
(1− cos θ1)

)}

(2.67)

The delta function gives

cos θ1 = 1− 2

x1x2
(x1 + x2 − 1) =⇒ sin2 θ1 =

4(1− x1)(1− x2)(1− x3)

x2
1x

2
2

(2.68)
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σR =
1

2s

4πd−3/2

(2π)2d−323−d
√
πΓ(d− 2)

∫
dE1dE2E

d−2
1 Ed−2

2

4E1E2
|M|2qq̄g

×
[
4(1− x1)(1− x2)(1− x3)

x2
1x

2
2

](d−4)/2

=

(
4πµ4

s

)2ǫ
1

Γ(2− 2ǫ)

1

256π3

∫
dx1dx2|M|2qq̄g

3∏

i=1

1

(1− xi)ǫ

(2.69)

where, again, x3 = 2− x1 − x2, and xi ≡ 2Ei/
√
s.

Plugging Eq. (2.60) into the above,

σR =
512π3αsα

2
EMCFNc

(3− 2ǫ)s

(
4π

s

)2ǫ
1

Γ(2− 2ǫ)

1

256π3
(1− ǫ)2

×
∫

dx1dx2

3∏

i=1

1

(1− xi)ǫ

[
x2
1 + x2

2 − ǫx2
3

(1− x1)(1− x2)

]

= σd
0

αsCF

21−2ǫπ1−ǫΓ(1− ǫ)

(
µ2

s

)ǫ ∫
dx1dx2

3∏

i=1

1

(1− xi)ǫ

[
x2
1 + x2

2 − ǫx2
3

(1− x1)(1− x2)

]

(2.70)

Eq. (2.70) used the fact that the tree-level cross section is modified in dimensional

regularization to (Eq. (20.A.86) of Ref. [19])

σd
0 = σ0 µ

2(4−d)

(
4π

s

)(4−d)/2
3
√
π(d− 2)2

2dΓ(d/2 + 1/2)
(2.71)

This can be obtained by deriving the 2-body phase space in d-dimensions and

combining with the hadronic and leptonic components of the spin-summed ampli-

tude squared. The appropriate factors of µ have been inserted, (1) to make σd
0

have dimensions of 1/(energy)2−ǫ (the dimensions of cross-section in d = 4 − 2ǫ

dimensions), and (2) for the rest of the expression to be dimensionless. With

∫ 1

0

dx1

∫ 1

1−x1

dx2

[
x2
1 + x2

2 − ǫ(2− x1 − x2)
2

(1− x1)1+ǫ(1− x2)1+ǫ(x1 + x2 − 1)ǫ

]

=
6(1− 2ǫ)(2− (2− ǫ)ǫ)Γ(2 − ǫ)Γ(−ǫ)2

Γ(4− 3ǫ)

(2.72)

and replacing µ2 → eγµ̃2/(4π) for MS, we obtain

σR = σd
0

αsCF

2π

[
2

ǫ2IR
+

3− 2 ln(s/µ̃2)

ǫIR
+

19

2
− 7π2

6
− 3 ln(s/µ̃2) + ln2(s/µ̃2)

]

(2.73)
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This gives the well-known, previously-obtained result σd
0 + σd

1 = σd
0

(
1 + 3αsCF

4π

)
.

2.4.5 Cross-Section and Thrust

The following relations hold between the angles:3

cos θij = cos(θi − θj) =
xixj − 2xi − 2xj + 2

xixj

cos(θi − θ) = cos(θi − θj + θj − θ) = cos θij cos(θj − θ) + sin θij sin(θj − θ)

One can use sin θij = ±
√

cos2 θij . The sign is arbitrary, but sin θ12 and sin θ13

should have opposite signs. In addition, the thrust axis is always along the direction

with the largest xi; assuming x1 > x2, x3:

T =
1

2
(x1 − x2 cos θ12 − x3 cos θ13) = x1 (2.74)

The phase-space for T ≤ T cut corresponds to the requirement that xi ≤ T cut:

2− 2T ≤ x1 ≤ T, 2− T − x1 ≤ x2 ≤ T. (2.75)

T cut regulates all IR divergences, and so we can simply set ǫ = 0 in the phase-space

integral

σR(T ≤ T cut) = σd
0

αsCF

2π

∫ T

2−2T

dx1

∫ T

2−T−x1

dx2

[
x2
1 + x2

2

(1− x1)(1− x2)

]

= σd
0

αsCF

2π

[
4Li2

(
1− T cut

T cut

)
+ 2 ln2 1− T cut

T cut

+ (6T cut − 3)

(
ln

1− T cut

T cut
− ln

2− T cut

T cut

)

− 9

2
(T cut)2 + 15T cut − 8− π2

3

]

σR(τ ≥ τ c) = σd
0

αsCF

2π

[
2 ln2 τ c + 3 ln τ c +

5

2
− π2

3
+O(τ c)

]

(2.76)

3Some of the following results on fragmentation using dimensional regularization are taken
from Wouter Waalewjin’s notes, unpublished.
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where τ = 1 − T and τ c ≡ 1 − T cut. This reproduces Eq. (2.37), which was

previously obtained with a gluon mass IR regulator. The differential cross section

in τ c is the same as before, also in Eq. (2.37). At this point, we will drop the

superscript d on the tree-level cross section in d-dimensions.

2.4.6 Fragmentation and Parton Momentum Fractions

The factorization theorem for the production of a hadron h with momentum

fraction z, up to ΛQCD/Q power corrections, is

dσh

dz
=

∑

i={q,q̄,g}

∫
dx

x

dσ̂i

dx
Dh

i

(z
x

)
(2.77)

Replacing h by a quark or a gluon, we find at one-loop order that

dσq
1

dz
=

∫
dx

x

[
dσ̂q

0

dx
Dq

q,1

(z
x

)
+

dσ̂q
1

dx
Dq

q,0

(z
x

)]

=

∫
dx

x

[
σ0δ(1− x)×

(
− 1

ǫIR

)
αsCF

2π
Pqq

(z
x

)
+

dσ̂q
1

dx
δ
(
1− z

x

)]

= −σ0
1

ǫIR

αsCF

2π
Pqq(z) +

dσ̂q
1

dz

dσg
1

dz
=

∫
dx

x

[
2
dσ̂q

0

dx
Dg

q,1

(z
x

)
+

dσ̂g
1

dx
Dg

g,0

(z
x

)]

= −σ0
1

ǫIR

αsCF

π
Pgq(z) +

dσ̂g
1

dz

(2.78)

The factor of 2 in front of the Dg
q term arises because there is a quark and anti-

quark contribution (working with a single quark flavor). Subscripts 0 and 1 refer

to the order of αs. We used the fact that in pure dimensional regularization

Dq
q(z) = δ(1− z) +

αsCF

2π
Pqq(z)

(
1

ǫUV
− 1

ǫIR

)

Dg
q (z) =

αsCF

2π
Pgq(z)

(
1

ǫUV

− 1

ǫIR

)

Dg
g(z) = δ(1− z) +O(αs)

(2.79)

Pji ≡ Pj←i is the splitting function from parton i to parton j [20]:

Pqq(z) =

(
1 + z2

1− z

)

+

=
1 + z2

(1− z)+
+

3

2
δ(1− z)

Pgq(z) = θ(1− z)
1 + (1− z)2

z

(2.80)
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When we calculate dσq
1/dz, we should reproduce these IR divergences, such

that we are left with a finite dσ̂q
1/dz:

dσq
R

dz
=

σ0 αsCF

21−2ǫπ1−ǫΓ(1− ǫ)

(
µ2

s

)ǫ ∫ 1

1−z

dx2

[
z2 + x2

2 − ǫ(2− z − x2)
2

(1− z)1+ǫ(1− x2)1+ǫ(z + x2 − 1)ǫ

]

=
σ0 αsCF

21−2ǫπ1−ǫΓ(1− ǫ)

(
µ2

s

)ǫ
[ √

π Γ(−ǫ)

22(1−ǫ)Γ(3/2− ǫ)

2(1 + z2) + ǫ(−5z2 + 4z − 4)

(1− z)1+ǫz2ǫ

+
2(1− z)2 + ǫ(2z − 3) + ǫ2)

(1− ǫ)(2− ǫ)(1− z)1+ǫzǫ

]

=
σ0 αsCF

2πΓ(1− ǫ)

(
eγµ̃2

s

)ǫ
1

(1− z)1+ǫ

[
−1

ǫ
(1 + z2) + 2(1 + z2) ln z +

3

2
z2 − 4z + 1

+ ǫ

(
− 2(1 + z2) ln2 z + (−2z2 + 6z − 1) ln z +

(5
2
+

π2

6

)
z2 − 6z +

π2

6

)]

=
σ0 αsCF

2πΓ(1− ǫ)

(
eγµ̃2

s

)ǫ
{

2

ǫ2
δ(1− z) +

1

ǫ

[
3 δ(1− z)−

(
1 + z2

1− z

)

+

]

+ (1 + z2)

[(
ln(1− z)

1− z

)

+

+
2 ln z

1− z

]

+
1

(1− z)+

[
3

2
z2 − 4z + 1

]
+ δ(1− z)

(
7

2
− π2

3

)}

= σ0
αsCF

2π

{
2

ǫ2
δ(1− z) +

1

ǫ

[(
3− 2 ln(s/µ̃2)

)
δ(1− z)−

(
1 + z2

1− z

)

+

]

+

(
ln2(s/µ̃2)− π2

6

)
δ(1− z)− 3 ln(s/µ̃2)δ(1− z)

+

(
1 + z2

1− z

)

+

ln(s/µ̃2) + (1 + z2)

[(
ln(1− z)

1− z

)

+

+
2 ln z

1− z

]

+
1

(1− z)+

[
3

2
z2 − 4z + 1

]
+ δ(1− z)

(
7

2
− π2

3

)}

(2.81)

where we used the plus distribution identity in Eq. (B.2).
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We must also add the virtual contribution:

dσq
V+W

dz
= σ0

αsCF

2π

[
− 2

ǫ2
+

2 ln(s/µ̃2)− 3

ǫ
− 8 +

7π2

6
+ 3 ln(s/µ̃2)− ln2(s/µ̃2)

]

× δ(1− z)

(2.82)

Adding the virtual and real contributions, most of the ǫ → 0 divergences

cancel, except for a 1/ǫ pole multiplying the Altarelli-Parisi splitting function:

dσq
1

dz
= σ0

αsCF

2π

{(
−1

ǫ
+ ln

s

µ̃2

)
Pqq(z) + (1 + z2)

[(
ln(1− z)

1− z

)

+

+ 2
ln z

1− z

]

− 3

2

1

(1− z)+
+

5

2
− 3z

2
+

(
2π2

3
− 9

2

)
δ(1− z)

}

dσ̂q
1

dz
= σ0

αsCF

2π

{
Pqq(z) ln

s

µ̃2
+ (1 + z2)

[(
ln(1− z)

1− z

)

+

+ 2
ln z

1− z

]

− 3

2

1

(1− z)+
+

5

2
− 3z

2
+

(
2π2

3
− 9

2

)
δ(1− z)

}

(2.83)

This reproduces the same result found using a gluon mass as the IR-regulator.

Doing the same calculation for the gluon (with only a real radiation contri-

bution, so that dσg
1/dz = dσg

R/dz) gives:

dσq
1

dz
=

σ0 αsCF

21−2ǫπ1−ǫΓ(1− ǫ)

(
µ2

s

)ǫ ∫ 1

1−z

dx2

[
(2− z − x2)

2 + x2
2 − ǫz2

(z + x2 − 1)1+ǫ(1− x2)1+ǫ(1− z)ǫ

]

=
σ0 αsCF

2πΓ(1− ǫ)

(
eγµ̃2

s

)ǫ
1 + (1− z)2

z

[
− 2

ǫ
+ 2 ln(1− z) + 4 ln z

]

= σ0
αsCF

2π

1 + (1− z)2

z

[
− 2

ǫ
+ 2 ln(s/µ̃2) + 2 ln(1− z) + 4 ln z

]

(2.84)

Subtracting off the divergent piece as per Eq. (2.78), we again obtain

dσ̂g
1

dz
= σ0

αsCF

2π
Pgq(z)

[
2 ln

s

µ̃2
+ 2 ln(1− z) + 4 ln z

]
(2.85)
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2.4.7 Fragmentation with a Thrust Cut

The differential cross section describing the production of a hadron h with

momentum fraction z with a cut on thrust is given by a factorization theorem very

similar to Eq. (2.77):

dσh(τ ≥ τ c)

dz
=

∑

i={q,q̄,g}

∫
dx

x

dσ̂i(τ ≥ τ c)

dx
Dh

i

(z
x

)
(2.86)

Recall from the analogous computation using a gluon mass that the IR regulator

is not required anymore at this stage of the computation: the thrust cut regulates

the divergence. Thus the computations for dσ̂q
1(τ ≥ τ c)/dz and dσ̂g

1(τ ≥ τ c)/dz

are exactly the same as in Eqs. (2.50) and (2.51).

All of the above cross sections with thrust cuts give cross sections for τ ≥
τ c, so that τ c regulates the infrared divergence and we are left with finite cross

sections. However, to remove the b-quark contamination from on-resonance Belle

data we actually want to keep events with τ ≤ τ c! The easiest way to calculate

the fragmentation cross section with this thrust cut at NLO is

dσh(τ ≤ τ c)

dz
=

dσh

dz
− dσh(τ ≥ τ c)

dz
(2.87)

The first term on the right hand side of Eq. (2.87) is calculated via Eq. (2.77)

(with the partonic dσi/dz calculated in that subsection), and the second term is

given by Eq. (2.86).

2.5 Factorization Structure of Fragmentation

We return to the discussion of SCET and its relationship to e+ + e− →
q + q̄ + g. The factorization formula we need is similar to Eq. (2.86), focusing on

τ ≤ τ c events as required to remove the b-quark contamination [14, 21]:

dσh(τ ≤ τ c)

dz
=

∫ τc

0

dτ
d2σh

dτ cdz
=

∑

j=g, u, ū, d...

∫ 1

z

dx

x
Dh

j (x, µ̃) Cj

(
τ c,

z

x
,Q2, µ̃

)
(2.88)

Q =
√
s is the center-of-mass energy, Dh

j (x, µ̃) is the unpolarized fragmentation

function for parton j hadronizing into h (with h carrying a fraction x of the energy
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Figure 2.5: A schematic of the various subprocesses in e+e− → dijet + h: The
(green) vertex denotes the hard interaction H , the (blue) jets are described by J
and Jij (the latter for the jet in which the hadron is observed), the fragmentation
j → h is described by the fragmentation function Dh

j and the effects of the (orange)

soft radiation are contained in S.

of the parent parton j), and Cj is a coefficient describing the partonic event. The

fragmentation functions Dh
j are non-perturbative and describe the long-distance

hadronization event, whereas the Cj coefficients describing the short-distance par-

tonic event are calculable in SCET and contain large logarithms of τ c and (1− z).

The coefficients Cj are calculable in SCET. Schematically,

Cj

(
τ c, Q2,

x

z
, µ̃
)
=

∑

qq̄=uū, dd̄...

σq
0 H(Q2)⊗

[
Jqj(τ

cQ2, x/z)⊗ Jq̄(τ
cQ2)

+ Jq(τ
cQ2)⊗ Jq̄j(τ

cQ2, x/z)
]

⊗ Sc
τ

(
(τ c)2Q2

){
1 +O

[ Λ2
QCD

(1− z)τ cQ2
,
(ΛQCD

τ cQ

)2]}
+ Cns

j

(
τ c, Q2,

x

z
, µ̃
)

(2.89)

Cj is factored into a “hard” coefficient H , “collinear” jet functions4 J and J , and

a “soft” function S. These pieces describe physics at the various energy scales

in the problem: the hard coefficient describes the e+e− → qq̄ event, the collinear

jet functions describe the showering of the jet, and the soft function describes

interactions between the jets; the process is depicted in Figure 2.5. These occur at

scales Q,
√
τ cQ, and τ cQ, respectively. Jqj also depends on the fractional energy

carried off by parton j (which later hadronizes to h) relative to the energy of its

parent quark or antiquark. Quark and hadron masses are treated as negligible;

4J is the jet function usually encountered in SCET, while J is a perturbatively-calculable coef-
ficient which, when convoluted with a fragmentation function, gives a “fragmenting jet function”
G. For more information, see Ref. [21], which introduced the fragmenting jet function.
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these lead to corrections O(m2
i /(τ

cQ2)) and O(m2
h/(z

2Q2)), respectively.

The hard, collinear, and soft pieces of Eq. (2.89) are given to NNLL in

Ref. [14] and references within. Taken together, the pieces resum (singular) large

logarithms, but they do not accurately give Cns
j , the nonsingular (as τ → 0)

contribution to Cj in Eq. (2.88). A thrust cut τ c cannot be too low, as (1) we want

to have as many events as possible, and (2) we require that τ cQ ≫ ΛQCD so that

the soft scale in SCET is still much larger than the hadronization scale ΛQCD. In

fact, a thrust-cut of τ c = 0.2 will get rid of≈98% of the b-quark contamination [22],

allowing us to probe light-quark fragmentation. It is for this reason we need to

extract the non-singular contribution Cns
j .

2.5.1 Nonsingular Contribution at NLO

The nonsingular contribution to Eq. (2.89) may be obtained from taking

the NLO computation and subtracting the singular portion of Cj in Eq. (2.89).

To obtain the NLO differential cross section in z and τ c for a given hadron h (i.e.,

d2σh/(dτ cdz) in Eq. (2.88)), take Eqs. (2.50) and (2.51), differentiate with respect

to τ c, convolute with the fragmentation function Dh
i , and sum over patrons i.

Figure 2.6 plots the total differential cross section for h = π+ as a function

of τ c for z = 0.2 and z = 0.8. We use the HKNS Fragmentation Functions [23],

and have set µ̃ = Q. The total NLO cross section is given by

d2σπ+

dzdτ
=

∑

i=g, u, ū, d...

∫ 1−τc

Max{2τc, z}

dx

x

d2σi(τ c)

dxdτ
Dπ+

i

(z
x
, µ̃
)

+ θ(2τ c − z)
1

x

dσi(τ c)

dx
Dπ+

i

(z
x
, µ̃
) ∣∣∣∣∣

x→2τc

− 1

x

dσi(τ c)

dx
Dπ+

i

(z
x
, µ̃
) ∣∣∣∣∣

x→1−τc

(2.90)

The terms on the second line of Eq. (2.90) appear because the theta-functions in

Eqs. (2.50) and (2.51) give delta-functions when differentiating with respect to τ c.

Figure 2.6 also gives the nonsingular contribution to the full NLO differen-

tial cross section. The nonsingular portion is finite as τ → 0, providing a check on

our result. Note there is a kinematic threshold at NLO for (τ c)∗ = Min{1/3, 1−z};
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for τ ≥ (τ c)∗, the singular and nonsingular portions cancel in this region because

the total differential cross section vanishes.

2.5.2 Correlations Between τ and z

As noted at the beginning of this section, the ingredients to Eq. (2.89) were

largely calculated in Ref. [14] and references within. When also taking into account

the NLO non-singular contribution, the resummation of threshold logarithms of

(1 − z) as in Ref. [24], and the leading nonperturbative correction to the soft

function S given in Ref. [25], we find the correlations between τ c and z as shown

in Figure 2.7. These correlations are in agreement with those found in Pythia,

and they are much more pronounced than at NLO. These correlations must be

taken into account when extracting the fragmentation functions from Belle data;

a framework for how to do so working in moment space is outlined in Section IV

of Ref. [10].

2.6 Conclusions

We have gone through the NLO computation of the (differential) cross-

section for e+e− → qq̄g, focusing separately on virtual and real radiation diagrams

to explore the IR behavior of such a process. It was seen that we could do this

computation with various regulators to control IR divergences, and we showed how

the IR regulator could be replaced with a cut on the event-shape variable thrust.

Even with such a replacement, particular IR divergenes remained, but they could

be described in terms of “splitting functions” (described via plus distributions)

which are well-behaved in the calculation of any physical process.

Next, we took our NLO result (at the partonic level) and applied it to

observables actually seen in the final state (after hadronization occurs). The

hadronization process is well-described using Soft-Collinear Effective Theory (SCET),

and we used our NLO result to extract the non-singular contribution to the dif-

ferential cross-section in the dijet limit (τ → 0). When taking into account other

corrections to the SCET calculation, correlations could be seen between the thrust
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cut and the momentum fraction of the observed hadron. These correlations need to

be taken into account when using Belle data to extract the fragmentation functions

from the observed dijet + hadron final-state data.

Portions of Chapter 2 are reprints of material as it appears in Phys. Rev.

D 87, 074013 (2012). A. Jain, M. Procura, B. Shotwell, and W. J. Waalewijn.

The dissertation author was co-author of this paper.
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Figure 2.6: The cross section for e+e− → dijet+π+ atQ = 10.52 GeV, differential
in the momentum fraction z and thrust τ , and separated into its singular and
nonsingular contribution. Since these separate pieces can be negative, absolute
values are plotted.
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Figure 2.7: Correlations between the thrust cut τ ≤ τ c and the observed mo-
mentum fraction z in the cross section of e+e− → dijet + π+ for Q = 10.52 GeV.
Curves and bands are plotted relative to the case τ c = 0.2. A cut on thrust changes
the shape in z. Top panel: our NNLL+NLO results with perturbative uncertainty
bands. The result at NLO (dotted lines) contains negligible correlations. As input
we use the HKNS fragmentation functions Dπ+

i [23] at NLO. Bottom panel: the
same observable using Pythia.



Chapter 3

Electroweak Large Logarithms

We study electroweak Sudakov corrections in high energy scattering, and

the cancellation between real and virtual Sudakov corrections. Numerical results

are given for the case of heavy quark production by gluon collisions involving the

rates gg → tt̄, bb̄, tb̄W, tt̄Z, bb̄Z, tt̄H, bb̄H . Gauge boson virtual corrections are re-

lated to real transverse gauge boson emission, and Higgs virtual corrections to

Higgs and longitudinal gauge boson emission. At the LHC, electroweak correc-

tions become important in the TeV regime. At the proposed 100TeV collider,

electroweak interactions enter a new regime, where the corrections are very large

and need to be resummed.

3.1 Introduction

Electroweak corrections grow with energy due to the presence of Sudakov

double logarithms αW ln2 s/M2
W , and are already relevant for LHC analyses with in-

variant masses in the TeV region. The corrections arise because of soft and collinear

infrared divergences from the emission of electroweak bosons. The infrared singu-

larities are cutoff by the gauge boson mass, and lead to finite αW ln2 s/M2
W correc-

tions. Unlike in QCD, the electroweak logarithms do not cancel even for totally

inclusive processes, because the initial states are not electroweak singlets [26–28].

In this paper, we discuss the cancellation (or lack thereof) between real and

virtual corrections. We will use gg → tt̄, bb̄ as an explicit numerical example. In

43
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this process, the initial state is an electroweak singlet, so the total cross section

does not contain αW ln2 s/M2
W corrections. This allows us to compare the elec-

troweak corrections in this process to the more familiar case of αs corrections to

the R ratio for e+e− → hadrons. Even though electroweak Sudakov corrections

cancel for the total cross section, they do not cancel for interesting experimen-

tally measured rates, and are around 10% for invariant masses of ∼ 2TeV. Some

earlier work related to our paper can be found in Refs. [29–32]. Electroweak cor-

rections to processes involving electroweak-charged initial states, such as Drell-Yan

production, qq → WW , or qq → tt, are larger than for gg → tt.

At present, omitted electroweak corrections are the largest error in many

LHC cross section calculations, and are more important than higher order QCD

corrections. Furthermore, the resummed electroweak corrections to all hard scat-

tering processes at NLL order are known explicitly [33–35], and have a very simple

form, so they can be incorporated into LHC cross section calculations. Recently,

there has been interest in building a hadron collider with an energy of around

100TeV. For such a machine, electroweak corrections are no longer small, and

resummed corrections must be included to get reliable cross sections. The numer-

ical plots in this paper go out to
√
ŝ = 30TeV to emphasize the importance of

electroweak corrections at future machines.

We will make one simplification in this paper, by computing electroweak

corrections in a pure SU(2)W gauge theory, neglecting the U(1) part. The reason

is that in the Standard Model (SM), after spontaneous symmetry breaking, there

is a massless photon. Electromagnetic corrections produce infrared divergences

which are not regularized by a gauge boson mass. Instead they have to be treated

by defining infrared safe observables, as done for QCD. Initial state infrared correc-

tions can be absorbed into the parton distribution functions (PDFs). To implement

this consistently requires electromagnetic corrections to be included in the parton

evolution equations. These additional complications are separate from the main

point of the paper, and can be avoided by using the SU(2)W theory.

The numerical results will be given for an SU(2)W gauge theory with αW

equal to the Standard Model value α/ sin2 θW . We will treat W 1,2 as the SM W
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bosons, and W 3 as the SM Z0, and use the notation L ≡ ln s/M2
W .

The structure of electroweak corrections is discussed in Sec. 3.2, and a

summary of the SCETEW results for computing these is given in Appendix C. The

cancellation of real and virtual electroweak corrections is discussed in Sec. 3.3 for an

example where one can do the full computation analytically, and Sec. 3.4 discusses

the cancellation for heavy quark production, where the rates have to be computed

numerically. Some subtleties for an unstable t-quark are discussed in Sec. 3.4.3.

The implications of electroweak corrections for experimental measurements is given

in Sec. 3.5.

3.2 Electroweak Logarithms

Electroweak radiative corrections have a typical size of order αW/π ∼ 0.01.

However, in some cases, the radiative corrections have a Sudakov double loga-

rithm, (αW/π)L2, and become important. The regime where this happens is high

energy, s ≫ M2
W , where one can apply soft-collinear effective theory (SCET) [2–5].

The electroweak version of SCET (SCETEW) was developed in a series of pa-

pers Refs. [33–41], and has important differences from the QCD case, namely the

presence of a broken gauge symmetry, massive gauge bosons, and multiple mass

scales MZ , MW , MH and mt. The effective theory is a systematic expansion in

M2
W/s, and at leading order, all (M2

W/s)n power corrections are omitted. The

neglect of these power corrections greatly simplifies the computation, and the elec-

troweak corrections have an elegant universal form. We are in the lucky situation

where the theory simplifies in the regime where the electroweak corrections are

important. Electroweak corrections have been computed by many groups by other

methods [26–28, 42–60].

It is instructive to compare the SCET result with the vastly more difficult

conventional fixed order approach to computing electroweak corrections. At fixed

order one gets an expansion
∑

n,r cn,rα
n
WLr with r ≤ 2n, which breaks down at

high energies. Furthermore, one has to do a very difficult multi-scale computation

(with scales s, MZ , MH , mt) for each new process being considered. The fixed
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order results are available only for a few cases, and often with the approximation

that MW = MZ = MH . In contrast, the SCET result, Eq. (C.2) has a simple

form where all the pieces are known, so each new process can be computed by

multiplying the appropriate factors, which are all known in closed form. The

reason the fixed order calculation is much harder, of course, is that it includes the

M2
Z/s power corrections, which then have to be expanded out. The M2

Z/s power

corrections are negligible in the region where electroweak corrections are large and

experimentally important. We summarize the SCETEW results in Appendix C.

More details can be found in Refs. [33–40].

An explicit numerical analysis comparing fixed order and SCETEW results

is given in Sec. 3.3.

3.3 Cancellation of Real and Virtual Corrections

Recall the familiar example of the total cross section for e+e− → hadrons,

which has an expansion in αs(Q
2), with no large logarithms. At one-loop, the

virtual correction to e+e− → qq is infrared divergent, as is the e+e− → qqg real

radiation rate, but the sum of the two is infrared finite, and gives the correction

to the ratio of the e+e− total cross section to its tree-level value, R = 1 + αs/π.

The electroweak corrections to gg → qq have a similar cancellation. Rather

than study this process, we first start with the simpler case of J → qq, where

Jµ = qγµPLq is an external gauge invariant current that produces the doublet

qL = (t, b)L, where we treat t and b as massless quarks. The main reason for doing

this is to avoid complicated phase space integrals for real radiation, and fermion

mass effects, and because it is closely related to the familiar QCD case of R. The

gg → qq case with qL = (t, b)Lwill be studied numerically in Sec. 3.4.

The total cross section for J → qq can be written as the imaginary part of

the vacuum bubbles Π(Q2) in Fig. 3.1. Π(Q2) at Euclidean Q2 is infrared finite.

Thus the analytic continuation to Minkowski space is also infrared finite, and the

sum of the real and virtual rates, which is equal to the imaginary part of Π(Q2),

is infrared finite.
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Figure 3.1: Graphs contributing to the αW correction to the J → qq̄ rate.

⊗

Figure 3.2: Virtual correction to J → qq.

The virtual correction to J → qq is given by the graph in Fig. 3.2 and

wave-function graphs, which gives the vertex form-factor

FV =1 +
CFαW

4π

{
−7

2
+ 2r̃ − (3− 2r̃) ln r̃

+ (1− r̃)2
[
2Li2(r̃)− ln2 r̃ + 2 ln r̃ ln(1− r̃)− 2π2

3

]}

(3.1)

at Euclidean momentum transfer q2 = −Q2 < 0, with

r̃ =
M2

W

Q2
, (3.2)

where MW is the gauge boson mass.1 Analytically continuing to time-like q2 =

s > 0,

r =
M2

s
= −r̃, ln r̃ = ln r − iπ, (3.3)

1Eq. (12) of Ref. [33] is incorrect near threshold.



48

⊗ ⊗

Figure 3.3: Real radiation from J → qqW .

gives

FV =1 +
CFαW

4π

{
−7

2
− 2r − (3 + 2r) ln r

+ (1 + r)2
[
2Li2(−r)− ln2 r + 2 ln r ln(1 + r) +

π2

3

]

+ iπ
[
(3 + 2r) + 2 (1 + r)2 (ln r − ln(1 + r))

]}
(3.4)

which for s → ∞ is

FV =1 +
CFαW

4π

{
− ln2 r − 3 ln r +

π2

3
− 7

2
+ iπ (2 ln r + 3)

}
(3.5)

The SCETEW computation gives radiative corrections to the Jqq operator neglect-

ing M2/s power corrections, and gives precisely Eq. (3.5), when expanded out to

order αW [36].

The one-loop virtual correction to the Jqq cross section is (neglecting power

corrections)

σV = σ0

[
|FV |2 − 1

]

= σ0
CFαW

2π

{
− ln2 r − 3 ln r +

π2

3
− 7

2

}
(3.6)

where σ0 is the tree-level cross section. The − ln2 r and −3 ln r terms lead to large

corrections at high energy.

The real radiation J → qqW arises from the graphs in Fig. 3.3, and is

σR =
CFαW

2π
σ0

{
5(1− r2) + (3 + 4r + 3r2) ln r

+ (1 + r)2
[
ln2 r − 4 ln r ln(1 + r)− 4 Li2 (−r)− π2

3

]}
. (3.7)
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Expanding in r gives

σR =
CFαW

2π
σ0

{
ln2 r + 3 ln r − π2

3
+ 5 + . . .

}
. (3.8)

The total radiative correction is

σT = σR + σV

=
CFαW

2π
σ0

{
3

2
− 2r − 5r2 + (2 + 3r)r ln r

− 2(1 + r)2 [ln r ln(1 + r) + Li2 (−r)]

}
(3.9)

and as r → 0 gives

σT =
3CFαW

4π
σ0 . (3.10)

The ln2 r and ln r terms cancel between σR,V . The correction to R in QCD is given

by Eq. (3.10) with the replacement αW → αs and CF → 4/3.

The real and virtual corrections are shown in Fig. 3.4. Also shown is the

virtual correction computed using the SCETEW result of Eq. (C.2). The SCETEW

and exact calculations for the virtual correction have only very small differences,

which are below 1% for E > 2MW ∼ 160 GeV, and < 0.5% by 400GeV, whereas

the real and virtual corrections each exceed 5% by the time E > 15MW ∼ 1.2

TeV. This shows that in the regime where the electroweak corrections are relevant

at the LHC, the SCETEW computation is sufficiently accurate. The figure also

shows that the large real and virtual electroweak corrections cancel in the total

cross section.

The above calculation demonstrates the usual cancellation of the L2 and

L terms between real and virtual graphs for the total cross section summed over

all final states. This cancellation is not guaranteed to hold if the cross section is

modified by restrictions on the final state. One can impose phase space restrictions

on the kinematics of the emitted gauge boson. Consequences of doing so were

studied in detail in Ref. [31], and lead to incomplete cancellation of the logarithms if

the phase space cuts restrict the soft or collinear radiation. One can also investigate

the possibility that, because electroweak charge is an experimental observable, one
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Figure 3.4: Plot of the real and virtual corrections to J → qq̄. Plotted are the
exact virtual correction (solid blue), the virtual corrections using SCETEW (dashed
blue), real radiation (red), exact total rate (black) and the total rate using the
SCETEW virtual correction (dashed black).

can separate the total cross section (J → tt, bb, ttZ, bbZ, tbW−, btW+) into sub-

processes tagged by the final state particles, without restricting phase space. This

is useful because the different channels have different experimental signatures, and

are often measured separately [61]. The second possibility is studied below, and

is complementary to the non-cancellation of logarithmic terms due to phase space

restrictions, and due to electroweak non-singlet initial states [26–28].

The real and virtual cross sections are modified if one does not sum over

all final states. In the simple example we are considering with degenerate fermions

and bosons, the only change is that Eqs. (3.6,3.8) are modified by the replacement

of the group theory factor NCF (N = 2) by GV and GR, which need not be equal,

so that the total cross section

σT =
αW

2π
(GR −GV ) σ̂0

{
ln2 r + 3 ln r + . . .

}
(3.11)

can have large corrections at high energy. The dependence of the cross section on

ln2 r + 3 ln r is characteristic of the IR structure of a vector current [18].
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To study this non-cancellation, we tabulate the group theory factors GV,R

in Table 3.1 for some possible choices of final state, for an SU(N) gauge theory.

In Eq. (3.11), σ0 = Nσ̂0 is the total tree-level rate, so that σ̂0 is N -independent.

The different cases are:

1. Any fermion with or without any gauge bosons, i.e. the full inclusive rate.

2. Any fermion but no gauge boson, e.g. tt̄, bb̄, but not tt̄Z, bbZ, tb̄W−, bt̄W+.

3. Specify one fermion with or without any gauge bosons, e.g. t+X , with X = t̄,

t̄Z, b̄W−.

4. Specify one fermion and no gauge bosons, e.g. t+X , with X = t̄.

5. Specify both fermions (labeled by i, j) with or without any gauge bosons,

e.g. i = j = 1 is ttX , i = 1, j = 2 is tbX , etc.

6. Specify both fermions and require no gauge bosons. Same as the previous

case but X cannot contain gauge bosons.

One can see that for cases 1 and 3, the logarithmic terms are absent, while

for all other cases, the logarithms survive and give rise to large corrections at high

energies.

3.4 Heavy Quark Production

In this section, we study the real and virtual corrections to heavy quark pro-

duction via gluon fusion, gg → qq̄. The tree-level graphs are given in Fig. 3.5. The

real radiation is computed by numerical integration using the parton-level event

generator MadGraph5 aMC@NLO [62]. The virtual corrections use the SCET

results of Ref. [34]. Since the real emission rate is a fixed order result, the virtual

correction is expanded out to order αW to study the real-virtual cancellation.

The gg → qq̄ total cross-section has a t-channel singularity for forward

scattering, and a u-channel singularity for backward scattering, from the graphs

in Fig. 3.5. To avoid these singularities, we impose rapidity cuts. We require the
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Table 3.1: Group theory factors for real and virtual emission for an SU(N) gauge
theory. CF = (N2 − 1)/(2N). The different cases are described in the text.

Case GR GV GR −GV

1 NCF NCF 0

2 0 NCF −NCF

3 CF CF 0

4 0 CF −CF

5 1
2
− 1

2N
δij CF δij

1
2
− N

2
δij

6 0 CF δij −CF δij

Figure 3.5: Tree-level graphs for gg → qq̄. The first and second graphs have
singularities for forward and backward scattering, respectively.
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particle with highest transverse momentum to have |η| < 1 or |η| < 3. We will

refer to these as |η| < 1, 3 cuts, respectively. We also require that the particle

with second highest pT satisfy |η| < 5. These cuts allow for collinear and soft W

emission from energetic quarks, but avoid the forward and backward singularities.

They are applied to both the gg → qq̄ and gg → qq̄W rates.

The scattering cross section can depend on the collision energy s = E2
CM,

the rapidity cut η, and the particle masses {M}. If the cross section is infrared

finite as {M} → 0, then it cannot contain ln s/M2 terms. The Sudakov logarithms

are a sign that the cross section is divergent in the massless limit. In the gg → qq̄

case, the real and virtual corrections have Sudakov logarithms which cancel in the

total rate.

We study the gg → qq̄, qq̄W rates for three cases:

1. q = u, d

2. q = t, b with mb=100GeV and mt = 173GeV

3. q = t, b with mb=4.7GeV and mt = 173GeV.

Case (1) allows us to explain the structure of the gauge corrections without worry-

ing about mass effects and Higgs corrections. Case (2) also involves Higgs radiative

corrections, but has a stable t quark since mt < mb +mW . Finally case (3) is the

physical case with an unstable t, which can decay via t → bW decay.

The virtual corrections can be computed from the results in Ref. [34] (in-

cluding also the yb terms), and are obtained by averaging the electroweak cor-

rections for left- and right-handed quarks. The virtual corrections to the cross

sections are

σV (gg → tt) = σ0,t {vW + 3vt + vb}

σV (gg → bb) = σ0,b {vW + vt + 3vb} (3.12)
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where

vW =
CFαW

4π

[
−L2 + 3L

]
,

vt = − y2t
32π2

L,

vb = − y2b
32π2

L (3.13)

σ0,t = σ(gg → tt̄), and σ0,b = σ(gg → bb̄) are the corresponding tree-level rates,

CF = 3/4 for SU(2), and yt,b are the quark Yukawa couplings. The corrections

for u, d quarks are given by yt,b → 0. The tree-level cross section σ0 depends on

the η cut. The virtual rates depend on the η cut in the same way as the tree-level

rates. The reason is that the virtual electroweak corrections for gg → qq̄ do not

depend on the kinematic variables (such as the scattering angle) in this case, so

the radiative correction is an overall multiplicative factor. In other cases, such as

qq → qq̄, the virtual electroweak corrections depend on kinematic variables, and

have to be integrated over phase space. The gauge radiative corrections have both

L2 and L terms, whereas the Higgs radiative corrections are linear in L.

3.4.1 u, d Quark Production

The tree-level processes are gg → uū and gg → dd̄, and the real radiation

processes are gg → uūZ, gg → dd̄Z, gg → ud̄W− and gg → dūW+. Since we are

working in an SU(2)W theory (with Z = W 3), custodial SU(2) implies that the

σ(uū) = σ(dd̄), and σ(ud̄W−) = σ(dūW+) = 2σ(uūZ) = 2σ(dd̄Z).

Figure 3.6 shows the real and virtual corrections to the uū, dd̄ production

rate, as a function of ECM, for |η| < 1, 3 cuts. All rates have been normalized

by dividing by the tree-level gg → uū rate for the corresponding η cut. This

removes the overall 1/s dependence of the cross sections. The graph clearly shows

that the virtual and real cross sections become large at high energy, and the L2

dependence is reflected in the quadratic shape of the curves. The virtual correction

is independent of the η cut, and as is typical of Sudakov effects, is negative. The real

correction depends on the η cut. The L2, L corrections arise from soft and collinear

radiation; the real radiation kinematics for the final state quarks in gg → qq̄W is
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Figure 3.6: Plot of real and virtual corrections to gg → qq̄ for q = u, d. All rates
have been normalized to the tree-level gg → uū rate. The virtual correction to
gg → qq̄ is shown as blue dots. The gg → qq̄W real emission rate as a function
of ECM for |η| < 1, 3 cuts are shown as red and purple squares, respectively. The
αW correction to the total rate with |η| < 1 and |η| < 3 cuts are shown as red and
purple diamonds, respectively.
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similar to that for the tree-level gg → qq̄ process. As a result, the L2, L terms do

not depend on the η cut, and only the constant L0 term does. This is reflected in

the figure by the fact that the difference in cross sections between the two values

of the η cut remains constant as ECM is changed.

The L2, L terms cancel in the total cross section, as is evident by the curves

for the total rate becoming horizontal for large energy, and only the constant terms

survive. The electroweak corrections to the total cross section are at the 10% level.

At partonic center-of-mass energies of about one TeV, the individual corrections

from the real and virtual corrections are also at the 10% level, but they rise quickly

as ECM is increased.

For a 100 TeV machine, partonic center-of-mass energies can exceed 10TeV,

and the corrections become large (factors of 2). For most experimentally relevant

processes there is never a complete cancellation of the logarithms (since one is

typically not measuring a totally inclusive rate, and furthermore the initial state

is not an SU(2) singlet), the resummed expressions are needed.

The cancellation between real and virtual corrections is

3σ(ud̄W ) + 2vWσ(uū) → 0 (3.14)

using the isospin relations mentioned earlier and Eqs. (3.12,3.13), where→ 0 means

that the L2, L dependence cancels, but there can be constant terms left over.

It is important to note that for initial states that are not electroweak sin-

glets, such as for qq̄ → qq̄, the real and virtual corrections have different L2, L

dependence, and the large corrections persist in the total cross section. This

non-cancellation persists even at the hadron level. The pp → tt̄ rate has large

corrections from the qq̄ → qq̄ channel, since the u and d quark distributions in the

proton are not the same.

3.4.2 t, b Quark Production with mb = 100GeV

We now consider the case of gg → tt̄, bb̄ for mt = 173GeV and mb = 100

GeV. An unphysical bmass has been chosen, so that the t → bW decay is forbidden.

The case of unstable top is discussed in Sec. 3.4.3. The virtual corrections for tt̄
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Figure 3.7: Plot of real and virtual corrections to gg → qq̄ for q = t, b for
mb = 100GeV with an |η| < 1 cut. All rates have been normalized to the tree-
level gg → uū rate. The points are: virtual correction gauge corrections (blue
dots), virtual Higgs corrections (brown dots), tb̄W− (red squares), tt̄Z (orange
squares), bb̄Z (green squares), tt̄H (cyan squares) and bb̄H (purple squares).
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Figure 3.8: Plot of the real and virtual corrections to gg → qq̄ for q = t, b for
mb = 100GeV with an |η| < 1 cut. The virtual corrections are blue dots, the
total real emission rate is shown as red squares, and the total radiative correction
is shown as black diamonds. All rates are normalized to the gg → uū rate. The
total rate levels off beyond 30TeV.
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and bb̄ production are given in Eq. (3.12). The real rates are computed using

MadGraph5 aMC@NLO. All rates are divided by the corresponding gg → uū

rate to remove an overall 1/s normalization factor. The tree-level rates gg → tt̄

and gg → bb̄ are essentially equal to gg → uū except very close to tt̄ threshold, so

each of these tree-level rates are 1 in the normalization of the plot, and have not

been shown.

The real and virtual corrections are shown in Fig. 3.7 for the |η| < 1 cut.

The |η| < 3 plots are very similar, with a small offset from the |η| < 1 curves, as

for the u, d case in Fig. 3.6. The tb̄W− emission rate is the sum of the rates for

transversely and longitudinally polarized gauge bosons. The rate for transversely

polarized gauge bosons at high energies is the same as that for ud̄W− produc-

tion, since fermion mass effects are power suppressed. The rate for longitudinally

polarized gauge bosons is the same as for emission of the unphysical scalar (by

the equivalence theorem), and is related to the Higgs emission rate. The real and

virtual rates can be written in terms of the ud̄W− rate and the rate σS to emit a

scalar with unit Yukawa coupling,

σ(tb̄W−) → σ(ud̄W−) + 2(y2t + y2b )σS

σ(tt̄Z) → 1

2
σ(ud̄W−) + 2y2t σS

σ(bb̄Z) → 1

2
σ(ud̄W−) + 2y2bσS

σ(tt̄H) → 2y2tσS

σ(bb̄H) → 2y2bσS

σV (tt̄) → (vW + 3vt + vb)σ(uū)

σV (bb̄) → (vW + vt + 3vb)σ(uū) (3.15)

The σ(ud̄W−) terms in σ(tb̄W−), etc., are for transverse W and Z emission and

the σS terms are for longitudinal W and Z emission.2 One can verify that the real

emission curves in Fig. 3.7 satisfy Eq. (3.15), so that five curves are given in terms

of two quantities, σ(ud̄W−) determined already in Sec. 3.4.1, and σS. The Higgs

2Remember that Z = W 3 since we are in a pure SU(2)W theory. Otherwise, the Z rates
would have additional factors of 1/ cos2 θW .
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emission curves σ(tt̄H), σ(bb̄H) are linear, which means they contain L terms but

no L2 terms.

The sum of all the real radiation rates, as well as the total cross section,

are shown in Fig. 3.8. The total cross section levels out at high energy (we have

verified this by continuing the plot to even higher center of mass energies), which

shows numerically that the L2 and L terms cancel between the real and virtual

corrections. The total real emission rate is

σR = 2σ(tb̄W−) + σ(tt̄Z) + σ(bb̄Z) + σ(tt̄H) + σ(bb̄H)

→ 3σ(ud̄W−) + 8(y2t + y2b )σS (3.16)

and the total virtual rate is

σV = σV (tt̄) + σV (bb̄) = (2vW + 4vt + 4vb) σ(uū) (3.17)

The cancellation σR + σV → 0 implies that

3σ(ud̄W−) + 8(y2t + y2b )σS + (2vW + 4vt + 4vb) σ(uū) → 0. (3.18)

The gauge and Higgs parts cancel separately. The gauge part cancels using

Eq. (3.14), and

8(y2t + y2b )σS + (4vt + 4vb) σ(uū) → 0. (3.19)

From Eq. (3.13), we see that vt,b are linear in L, which explains the linearity of the

Higgs emission cross section σS .

3.4.3 t, b Quark Production with mb = 4.7GeV

Finally, we study the case of a physical b quark with mb = 4.7GeV and

an unstable t quark. The virtual corrections are still given by Eq. (3.12). There

is, however, an important change in the tb̄W− decay rate because the process

gg → tt̄ followed by t̄ → b̄W− contributes to this rate. The tb̄W− differential

decay rate has a singularity when (pb̄+pW−)2 = m2
t , and the cross section diverges

when integrated over final state phase space. The standard way to resolve this
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Figure 3.9: Same as Fig. 3.7, but for mb = 4.7GeV.
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Figure 3.10: Same as Fig. 3.8, but for mb = 4.7GeV.
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Figure 3.11: Graphs that are summed in the narrow width approximation. In
Eq. (3.20), only the imaginary part of each loop is included.

singularity is to regulate it by the t-quark width using the replacement (the narrow

width approximation, which is what is used in MadGraph5 aMC@NLO)

1

p2 −m2
t + iǫ

→ 1

p2 −m2
t + imtΓt

(3.20)

for the t-quark propagator, where Γt is the t-quark width. This is equivalent to

summing a class of diagrams, the imaginary parts of W corrections to the t-quark

propagator, shown in Fig. 3.11. This is not gauge invariant, and also formally

mixes different orders in the αW expansion, since the t-quark width is O(αWmt).

The cut in the second graph of Fig. 3.1 is the same cut as occurs in summing the

imaginary parts of Fig. 3.11, and the two cuts cannot be treated separately, as is

done in the narrow width approximation.

If the t → bW− decay is kinematically forbidden, the tbW− real emission

rate is order αW . When the decay is kinematically allowed, the tbW− rate becomes

order 1. The reason is that in the resonance region, the rate is enhanced by a factor

of 1/Γt. The total tbW
− rate includes what, in the kinematically forbidden case, is

the O(1) tt̄ rate. Once the tbW− decay is kinematically allowed, the approximation

Eq. (3.20), while getting the correct O(1) rate, does not get the correct O(αW )

piece.

To understand how the infrared divergence cancellation occurs for an un-

stable t quark, consider the simpler case of tt̄ production by a current J , as in

Sec. 3.3. The αW correction to the total rate can be computed from the imagi-

nary part of the vacuum polarization graphs in Fig. 3.1. The vacuum polarization

Π(q2) has no singularities for Euclidean q2 even if mt > mb +mW , so the analytic

continuation to timelike q2 does not either. The imaginary part for timelike q2 is

given by the real emission and virtual correction cuts shown in Fig. 3.1, so the two

contributions combined have no infrared divergence.
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Figure 3.12: Phase space region for tb̄W production for ECM = 500GeV. The
vertical band is the region where (mt − 5Γt)

2 ≤ m2
bW ≤ (mt + 5Γt)

2. The axes are
in (TeV)2.

The graphs in Fig. 3.1 are all order αW , and their total gives the O(αW )

correction to the total rate. The graphs are computed with the t-quark propagator

on the l.h.s. of Eq. (3.20), rather than the narrow width approximation on the r.h.s.

The real emission graph is singular because the t → bW− decay is kinematically

allowed. A careful calculation shows that the virtual correction is also singular,

and the sum is finite. The cancellation can be checked using the l.h.s. of Eq. (3.20)

with the iǫ term acting as a regulator. The real and virtual graphs each have a

piece proportional to 1/ǫ, which cancels in the sum.

The tb̄W− rate can be computed by adding the rates for two regions: A,

which is a small region around where the t-quark is on-shell, and A′, which is

the rest of phase space. In terms of the final state phase space variables m2
bW =

(pb+pW )2, m2
tW = (pt+pW )2 needed for three-body decay, A is the regionm2

t−∆ ≤
m2

bW < m2
t +∆, and A′ is the remaining region. The phase space region is shown

in Fig. 3.12, with A the region within the vertical band, and A′ outside. For a

stable t-quark, the vertical band moves outside the allowed phase space region, and

there is no singularity in the phase space integral. For an unstable t-quark, the
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rate is non-singular in region A′, and can be computed by the propagator on the

l.h.s. of Eq. (3.20). To correctly compute the O(αW ) terms, one must also use the

propagator on the l.h.s. of Eq. (3.20), rather than the narrow width approximation

on the r.h.s., for the integral over the singular region A.

The region A contribution has a singular 1/ǫ piece that must be subtracted,

keeping only the finite O(αW ) part. The 1/ǫ singular part of the rate becomes the

O(1) contribution in the narrow width approximation, and the subleading O(αW )

is, unfortunately, not given correctly by the narrow width approximation.

The phase space integral of the decay distribution over A has the form

I =

∫ m2
t+∆

m2
t−∆

dm2
bW

f(m2
bW )

(m2
bW −m2

t )
2 + ǫ2

(3.21)

where the denominator is from the absolute value squared of the propagator in

Eq. (3.20), f contains all non-singular factors in the decay distribution, and ∆ is

the width of the integration region. Expanding around m2
t ,

f(m2
bW ) = f0 + (m2

bW −m2
t )f1 + (m2

bW −m2
t )

2f2 + . . . (3.22)

gives

I =
π

ǫ
f0 + 2∆f2 + . . . (3.23)

The first term is the singular 1/ǫ piece that must be subtracted, and the remaining

terms are the finite O(αW ) terms. Relative to the contribution from region A′,

they are smaller by a factor ∆, i.e. the width of the vertical band relative to the

width of the full phase space region. Since we are only interested in the O(αW )

contribution to the rate, we can get a good estimate of this by simply using the

contribution from region A′, and ignoring A. The O(αW ) term from A is a small

correction, since the size of A is much smaller than A′. A practical way to do

this in MadGraph5 aMC@NLO is to use the $t tag, which excludes a region

of width 15Γt around the on-shell t-quark.

The results of this computation are shown in Figs. (3.9,3.10), and are very

similar to those for mb = 100GeV. The main difference is the Yukawa correction

is smaller, since yb is now almost zero. The entire discussion of Sec. 3.4.2 holds,

and will not be repeated again.
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3.5 Discussion and Conclusions

We have presented the electroweak radiative corrections to gg → tt̄, gg →
bb̄ production in Sec. 3.4. The individual processes that contribute have large

electroweak corrections that depend on L2 and L, but these cancel in the total

rate. The virtual corrections are around −10% for ECM ∼ 2TeV, and grow with

energy.

The electroweak corrections to the individual processes are relevant for mea-

surements at the LHC. For example, suppose one is interested in measuring the tt̄

production rate. The virtual corrections to tt̄ contribute to this rate. If one has a

perfect detector, then one can exclude the real emission final states tb̄W , tt̄Z, bb̄Z,

tt̄H , bb̄H . In this case, the cross section is given by the blue dots in Fig. 3.9, and

there are large electroweak radiative corrections. In a more realistic case, there will

be some leakage from the real radiation processes into the tt̄ channel. For example

tt̄Z with Z → νν̄ could be mistaken for tt̄, or tt̄Z with Z → qq̄, where the Z

decay products cannot be separated from the t-quark decay jets. If some fraction

of the real radiation is included, then there will be some cancellation with the

electroweak corrections to the virtual rate, so that the overall electroweak correc-

tion is somewhat smaller. A realistic calculation of the measured rates is beyond

the scope of this work. To do such a calculation requires taking the corrections

discussed in this paper, integrating over the gluon PDFs, and then putting the

parton processes through a showering algorithm and detector cuts. In addition,

one should also include the quark production rates qq̄ → tt̄, which were included

in the analysis of Ref. [63]. As noted earlier, the electroweak corrections to qq̄ → tt̄

do not cancel even for the totally inclusive rate. It should be clear that even in a

complete calculation, the electroweak corrections do not cancel, and a significant

correction remains.

The electroweak radiative corrections start to become measurable at LHC

energies, and their importance grows with energy. We have numerically studied

the gg → tt̄ process in this paper. Most processes have much larger electroweak

corrections than this process, because they typically contain more particles with

electroweak interactions. (The gluon does not have electroweak interactions at
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leading order.) The corrections for qq̄ → tt̄ are approximately twice as large, be-

cause the initial and final states both have electroweak interactions. Processes such

as qq̄ → WW which involve electroweak gauge bosons have even larger corrections,

since the group theory factor CF = 3/4 is replaced by CA = 2 in the amplitude.

The effective theory method breaks the electroweak correction into the high-

scale matching C, the running γ and the low-scale matching D. The L2 term arise

from γ, and the L terms from γ and D. All terms are known to NLL order, as are

the most important terms at NNLL order (see appendix).

In addition to the electroweak corrections, there are of course, QCD correc-

tions, which are much larger, and have been included in existing calculations and

implemented in Monte Carlo code. The QCD and electroweak corrections factor

in A and DL to two-loop order and in B, D0 and C to one-loop order [33, 38],

so that the total radiative correction to NLL order can be written as the product

RQCDREW . RQCD has been included in existing calculations, so the electroweak

corrections can be included to NLL order simply by reweighing the QCD results

by REW. This has to be done before integrating over the final state phase space,

since REW can depend on kinematic variables such as scattering angles. One com-

plication is that REW depends on the helicities of the partons, since the weak

interactions are chiral.

The experimental energy reach at the LHC is high enough that electroweak

corrections should be included in measurements that are approaching 10% accu-

racy. Recently, there have been studies of a possible 100TeV hadron collider. At

these high energies, the electroweak corrections are large, and must be resummed

to have reliable cross sections.

Chapter 3, in full, is a reprint of the material as it appears in Phys. Lett.

B 740 179 (2015). A. Manohar, B. Shotwell, C. Bauer, and S. Turczyk. The

dissertation author and the Ph.D. committee chair were the principal investigators

and co-authors of this paper.



Chapter 4

Baryon Number Violation

We calculate the one-loop anomalous dimension matrix for the dimension-

six baryon number violating operators of the Standard Model effective field the-

ory, including right-handed neutrino fields. We discuss the flavor structure of the

renormalization group evolution in the contexts of minimal flavor violation and

unification.

4.1 Introduction

The baryon asymmetry of the universe hints at baryon number violating

(BNV) interactions beyond the Standard Model (SM) of particle physics. Baryon

number is an accidental symmetry of the SM violated by quantum effects [64], and

there is no fundamental reason why it cannot be violated in extensions of the SM.

Indeed, well-motivated theories like grand unified theories [65–67] violate baryon

number at tree level through the exchange of very massive gauge bosons.

There has been no direct experimental observation of baryon number viola-

tion to date. The large lower bound for the lifetime of the proton [68,69] requires

that the scale of baryon number violation M /B be much greater than accessible

energy scales, and, in particular, much greater than the SM electroweak scale MZ .

The decay of baryons (such as the proton) can then be computed using an Effective

Field Theory (EFT) formalism. In the model-independent treatment of EFT, the

SM Lagrangian is extended by higher dimensional non-renormalizable operators

68
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(d ≥ 5) suppressed by inverse powers of the new physics scale.

The leading order BNV operators arise at dimension d = 6. The most

general dimension-six Lagrangian can be cast in 63 independent operators [70–

74]. Out of these 63 operators, 59 operators preserve baryon number, and the

complete set of one-loop renormalization group equations for these 59 operators

was recently computed in Refs. [75–78]. In the present work, we focus on the

four BNV operators [72–74], and we extend the one-loop renormalization group

evolution (RGE) analysis to these remaining dimension-six operators.

The four BNV operators can be written1 as [74]

Qduqℓ
prst = ǫαβγǫij(d

α
pCuβ

r )(q
iγ
s Cℓjt ) ,

Qqque
prst = ǫαβγǫij(q

iα
p Cqjβr )(uγ

sCet) ,

Qqqqℓ
prst = ǫαβγǫilǫjk(q

iα
p Cqjβr )(qkγs Cℓlt) ,

Qduue
prst = ǫαβγ(d

α
pCuβ

r )(u
γ
sCet) ,

(4.1)

where C is the Dirac matrix of charge conjugation, q and ℓ are the quark and

lepton left-handed doublets, and we use u, d and e for up-type, down-type, and

charged lepton right-handed fermions. Greek letters denote SU(3)c color indices

and Roman letters from i to l refer to SU(2)L indices. Roman letters towards the

end of the alphabet p-w refer to flavor (generation) indices and take on values from

1, . . . , ng = 3.

In this work, we also will accommodate neutrino masses for the light neutri-

nos by including singlet fermions N (right-handed neutrinos) under the SM gauge

group. Including singlet N fields, two additional dimension-six BNV operators can

be constructed:

QqqdN
prst = ǫαβγǫij(q

iα
p Cqjβr )(dγsCNt) ,

QuddN
prst = ǫαβγ(u

α
pCdβr )(d

γ
sCNt).

(4.2)

The singlet neutrinos N , in contrast to the SM fermions, are allowed a Majorana

mass MN by the SM gauge symmetry. MN can range from a very high scale as in

the standard type-I seesaw model [79–82] to the Dirac neutrino limit for which it

vanishes — see Ref. [83] for a general parametrization in terms of light masses and

1The connection with the basis of Ref. [72] is given in Appendix D.
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mixing angles. Even in the case of a very high Majorana mass scale MN , näıve

estimates of proton decay and light neutrino masses imply that MN < M /B. This

hierarchy of scales implies that an EFT with the operators in Eq. (4.2) holds in

the energy regime MN < µ < M /B. Below the scale MN , one integrates out the N

fields, matching onto the EFT containing only the four operators of Eq. (4.1), and

drops the terms of Eq. (4.2) in the renormalization group equations.

We will use the conventions of Ref. [75], generalized to include singlet

fermions N at energies above MN . Specifically, for µ > MN , the Ld≤4 SM La-

grangian includes a Majorana mass term MN for the N fermions as well as Yukawa

couplings YN for the N and ℓ fermions to the electroweak Higgs doublet H . For

µ < MN , the N fields are integrated out of the EFT, and Ld≤4 reduces to the

conventional SM Lagrangian.

Baryon number is an (anomalous) symmetry that is preserved by the one-

loop renormalization group equations, so the dimension-six BNV operators only

mix among themselves. The gauge contribution to the anomalous dimensions of

Eq. (4.1) was computed in Ref. [74], and we agree with those results. In addition,

we compute the anomalous dimensions of Eq. (4.2), and the Yukawa terms. We

also classify the operators in terms of representations of the permutation group,

which diagonalizes the gauge contributions to the anomalous dimension matrix.

4.2 Results

The one-loop anomalous dimension matrix of the BNV operators decom-

poses into a sum of gauge and Yukawa terms. The gauge anomalous dimension

matrix of the operators in Eq. (4.1) was computed in Ref. [74]. The gauge terms

for Eq. (4.2) have not been computed previously. The Yukawa terms are generated

by the diagram in Fig. 4.1, where all the fermion lines are incoming, because of the

chiral structure of the BNV operators. The gauge coupling dependence is obtained

from an analogous diagram with the scalar replaced by a gauge boson.

The calculation is done using dimensional regularization in d = 4−2ǫ dimen-

sions in a general ξ gauge. Cancellation of the gauge parameter ξ provides a check
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Figure 4.1: The one-loop Yukawa renormalization graph.

on the calculation. The sum of the hypercharges yi of the four fermions for each

operator is constrained to be equal to zero for the ξ-dependence to cancel. Further-

more, the number of colors Nc = 3 for the operator to be SU(3) gauge invariant.

The RGE for the operator coefficients L =
∑

i C
iQi are (Ċ ≡ 16π2µ dC/dµ):

Ċduqℓ
prst =− Cduqℓ

prst

[
4g23 +

9

2
g22 − 6(ydyu + yqyl)g

2
1

]
− Cduqℓ

vrwt(Yd)vs(Y
†
d )wp

− Cduqℓ
pvwt(Yu)vs(Y

†
u )wr +

{
2Cduue

prwv + Cduue
pwrv

}
(Ye)vt(Yu)ws

− 2CqqdN
swpv (YN)vt(Y

†
u )wr +

{
2CuddN

rpwv + CuddN
rwpv

}
(YN)vt(Yd)ws

+
{
2Cqqqℓ

vwst + 2Cqqqℓ
wvst − Cqqqℓ

vswt − Cqqqℓ
wsvt + 2Cqqqℓ

svwt + 2Cqqqℓ
swvt

}
(Y †d )vp(Y

†
u )wr

+ 2Cqque
wsrv(Y

†
d )wp(Ye)vt + Cduqℓ

vrst (YdY
†
d )vp + Cduqℓ

pvst (YuY
†
u )vr

+
1

2
Cduqℓ

prvt (Y
†
uYu + Y †d Yd)vs +

1

2
Cduqℓ

prsv (Y
†
NYN + Y †e Ye)vt

(4.3)

Ċqque
prst =− Cqque

prst

[
4g23 +

9

2
g22 − 6(y2q + yuye)g

2
1

]
− Cqque

pwvt(Yu)vr(Y
†
u )ws

− Cqque
rwvt(Yu)vp(Y

†
u )ws +

1

2
Cduqℓ

vspw(Y
†
e )wt(Yd)vr +

1

2
Cduqℓ

vsrw(Y
†
e )wt(Yd)vp

− 1

2

{
2Cduue

vwst + Cduue
vswt

}
[(Yd)vp(Yu)wr + (Yd)vr(Yu)wp]

+
1

2

{
−2Cqqqℓ

prwv − 2Cqqqℓ
rpwv + Cqqqℓ

pwrv + Cqqqℓ
rwpv − 2Cqqqℓ

wprv − 2Cqqqℓ
wrpv

}
(Y †u )ws(Y

†
e )vt

+
1

2
Cqque

vrst (Y
†
uYu + Y †d Yd)vp +

1

2
Cqque

pvst (Y
†
uYu + Y †d Yd)vr

+ Cqque
prvt (YuY

†
u )vs + Cqque

prsv (YeY
†
e )vt

(4.4)
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ĊqqdN
prst =− CqqdN

prst

[
4g23 +

9

2
g22 − 6y2qg

2
1

]
− CqqdN

vrwt (Y
†
d )vs(Yd)wp − CqqdN

vpwt (Y
†
d )vs(Yd)wr

− 1

2
Cduqℓ

swrv(Y
†
N)vt(Yu)wp −

1

2
Cduqℓ

swpv(Y
†
N)vt(Yu)wr

+
1

2

{
2CuddN

vwst + CuddN
vswt

}
[(Yu)vp(Yd)wr + (Yu)vr(Yd)wp]

+
1

2

{
2Cqqqℓ

prwv + 2Cqqqℓ
rpwv − Cqqqℓ

pwrv − Cqqqℓ
rwpv + 2Cqqqℓ

wprv + 2Cqqqℓ
wrpv

}
(Y †d )ws(Y

†
N)vt

+
1

2
CqqdN

vrst (Y †uYu + Y †d Yd)vp +
1

2
CqqdN

pvst (Y †uYu + Y †d Yd)vr

+ CqqdN
prvt (YdY

†
d )vs + CqqdN

prsv (YNY
†
N)vt

(4.5)

Ċqqqℓ
prst =− Cqqqℓ

prst

[
4g23 + 3g22 − 6(y2q + yqyl)g

2
1

]
− 4

{
Cqqqℓ

rpst + Cqqqℓ
srpt + Cqqqℓ

psrt

}
g22

− 4Cqque
prwv(Ye)vt(Yu)ws + 4CqqdN

prwv (YN)vt(Yd)ws

+ 2Cduqℓ
vwst [(Yd)vp(Yu)wr + (Yd)vr(Yu)wp]

+
1

2
Cqqqℓ

vrst (Y
†
uYu + Y †d Yd)vp +

1

2
Cqqqℓ

pvst (Y
†
uYu + Y †d Yd)vr

+
1

2
Cqqqℓ

prvt(Y
†
uYu + Y †d Yd)vs +

1

2
Cqqqℓ

prsv(Y
†
NYN + Y †e Ye)vt

(4.6)

Ċduue
prst =− Cduue

prst

[
4g23 − 2

(
2ydyu + 2yeyu + y2u + yeyd

)
g21
]

+ 4Cduue
psrt

(
(yd + ye)yu − y2u − yeyd

)
g21

+ 4Cduqℓ
prwv(Y

†
u )ws(Y

†
e )vt − 8Cqque

vwst(Y
†
d )vp(Y

†
u )wr

+ Cduue
vrst (YdY

†
d )vp + Cduue

pvst (YuY
†
u )vr + Cduue

prvt (YuY
†
u )vs + Cduue

prsv (YeY
†
e )vt

(4.7)

ĊuddN
prst =− CuddN

prst

[
4g23 − 2

(
2yuyd + y2d

)
g21
]
+ 4CuddN

psrt

(
yuyd − y2d

)
g21

+ 4Cduqℓ
rpwv(Y

†
d )ws(Y

†
N)vt + 8CqqdN

vwst (Y
†
u )vp(Y

†
d )wr

+ CuddN
vrst (YuY

†
u )vp + CuddN

pvst (YdY
†
d )vr + CuddN

prvt (YdY
†
d )vs + CuddN

prsv (YNY
†
N)vt

(4.8)

A non-trivial check on these equations is provided by the custodial symme-

try limit (Yu(N) → Yd(e), g1 → 0). In order to respect the custodial symmetry, the



73

BNV operator coefficients have to satisfy certain relations given in appendix A,

and the RGE flow should preserve these relations. Remarkably, the construction

of custodial invariant operators is compatible with U(1)Y invariance.

The structure of the anomalous dimensions can be clarified by studying the

symmetry properties of the BNV operators. The operators Qqque and QqqdN are

symmetric in the two q indices [74],

Qqque
prst = Qqque

rpst , QqqdN
prst = QqqdN

rpst . (4.9)

The operator Qqqqℓ satisfies the relation [74],

Qqqqℓ
prst +Qqqqℓ

rpst = Qqqqℓ
sprt +Qqqqℓ

srpt . (4.10)

Qqqqℓ has three q indices, and so transforms like ⊗ ⊗ , which gives one

completely symmetric, one completely antisymmetric, and two mixed symmetry

tensors. Eq. (4.10) implies that one of the mixed symmetry tensors vanishes. The

allowed representations of the BNV operators are shown in Table 4.1.

The coefficients Cduue
prst and CuddN

prst can be decomposed into the symmetric

and antisymmetric combinations,

C
duue (±)
prst =

1

2

[
Cduue

prst ± Cduue
psrt

]
,

C
uddN (±)
prst =

1

2

[
CuddN

prst ± CuddN
psrt

]
. (4.11)

The coefficient Cqqqℓ
prst can be decomposed into terms with definite symmetry under

permutations,

Cqqqℓ
prst = Sqqqℓ

prst + Aqqqℓ
prst +M qqqℓ

prst +N qqqℓ
prst , (4.12)

where Sqqqℓ
prst is totally symmetric in (p, r, s), Aqqqℓ

prst is totally antisymmetric in (p, r, s),

and M qqqℓ
prst and N qqqℓ

prst have mixed symmetry.

A convenient choice of basis is

Sqqqℓ
prst =

1

6

[
Cqqqℓ

prst + Cqqqℓ
sprt + Cqqqℓ

rspt + Cqqqℓ
psrt + Cqqqℓ

srpt + Cqqqℓ
rpst

]
,

Aqqqℓ
prst =

1

6

[
Cqqqℓ

prst + Cqqqℓ
sprt + Cqqqℓ

rspt − Cqqqℓ
psrt − Cqqqℓ

srpt − Cqqqℓ
rpst

]
,

M qqqℓ
prst =

1

3

[
Cqqqℓ

prst − Cqqqℓ
rspt − Cqqqℓ

rpst + Cqqqℓ
srpt

]
,

N qqqℓ
prst =

1

3

[
Cqqqℓ

prst − Cqqqℓ
sprt + Cqqqℓ

rpst − Cqqqℓ
srpt

]
. (4.13)
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Table 4.1: Flavor representations of the BNV operators, and their dimensions.
There are 273 operators in Eq. (4.1) and 135 in Eq. (4.2), for a total of 408 ∆B = 1
operators with complex coefficients. One coefficient can be made real by a phase
rotation of fields proportional to baryon number.

dim SU(ng)q SU(ng)u SU(ng)d SU(ng)l SU(ng)e SU(ng)N

Qduqℓ
prst n4

g 1 1

Qqque
prst

1

2
n3
g(ng+1) 1 1 1

QqqdN
prst

1

2
n3
g(ng+1) 1 1 1

Qqqqℓ
prst

1

6
n2
g(ng+1)(ng+2) 1 1 1 1

1

3
n2
g(n

2
g−1) 1 1 1 1

1

6
n2
g(ng−1)(ng−2) 1 1 1 1

Qduue
prst

1

2
n3
g(ng+1) 1 1 1

1

2
n3
g(ng−1) 1 1 1

QuddN
prst

1

2
n3
g(ng+1) 1 1 1

1

2
n3
g(ng−1) 1 1 1
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The coefficient M qqqℓ
prst is obtained by first anti-symmetrizing Cqqqℓ

prst in (p, r), and

then symmetrizing in (p, s). Likewise, N qqqℓ
prst is obtained by first anti-symmetrizing

in (p, s), and then symmetrizing in (p, r). Eq. (4.10) implies that N qqqℓ
prst vanishes.

The gauge contributions to the anomalous dimensions respect the flavor

symmetry of the operators. With the decomposition Eq. (4.13), the gauge contri-

bution to the anomalous dimension matrix diagonalizes,

Ċ
duue (±)
prst = −

[
4g23 +

(
2± 20

3

)
g21

]
C

duue (±)
prst + . . .

Ċ
uddN (±)
prst = −

[
4g23 +

(
2

3
± 4

3

)
g21

]
C

uddN (±)
prst + . . .

Ṡqqqℓ
prst = −

[
4g23 + 15g22 +

1

3
g21

]
Sqqqℓ
prst + . . .

Ȧqqqℓ
prst = −

[
4g23 − 9g22 +

1

3
g21

]
Aqqqℓ

prst + . . .

Ṁ qqqℓ
prst = −

[
4g23 + 3g22 +

1

3
g21

]
M qqqℓ

prst + . . . . (4.14)

The “ · · ·” refers to the Yukawa contributions, which can mix different permutation

representations.

4.3 Discussion

The renormalization group equations presented here have an involved flavor

structure; to better understand the generic features, we turn now to certain sim-

plifying hypotheses and models that produce a simple subclass of BNV operators.

4.3.1 Minimal Flavor Violation

The SM has an SU(3)5 flavor symmetry for the q, u, d, l, and e fields, broken

only by the Higgs Yukawa interactions. The symmetry is preserved if we promote

the Yukawa coupling matrices to spurions that transform appropriately under the

flavor group. Minimal flavor violation (MFV) [84, 85] is the hypothesis that any

new physics beyond the SM preserves this symmetry, so the Yukawa coupling

matrices are the only spurions.
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Dimension-six BNV operators do not satisfy näıve minimal flavor violation

because of triality. The argument proceeds as follows: under every SU(3)i flavor

transformation, each BNV operator transforms as a representation of SU(3)i with

ni upper indices andmi lower indices. All BNV operators satisfy
∑5

i=1(ni−mi) ≡ 1

(mod 3). No combination of Yukawa matrices (or other invariant tensors) can

change this into a singlet, as they all have (n−m) ≡ 0 (mod 3).

In extensions of the MFV hypothesis to account for massive neutrinos [86–

88], a Majorana mass term introduces a spurion with (n − m) ≡ 2 (mod 3).

This in turn allows for the implementation of MFV, as pointed out in Ref. [89].

Note also that if the Yukawa spurions are built out of objects with simpler flavor-

transformation properties [90], a variant of minimal flavor violation is possible

without Lepton number violation.

Finally, there is the possibility that the fermion fields do not each separately

have an SU(3) flavor symmetry, but that some transform simultaneously [91]. The

latter is an attractive option that is realized in Grand Unified Theories (GUTs),

and we explore this possibility in the next subsection.

4.3.2 Grand Unified Theories

The Georgi-Glashow SU(5) theory [65] places uc, q, and ec in a 10 repre-

sentation of SU(5), and dc and l in a 5. In the context of the type-I seesaw, N is

a 1. The flavor group in this case cannot be that of putative MFV since the fields

in each SU(5) representation must transform simultaneously. The flavor symme-

try is instead SU(3)3 = SU(3)10 ⊗ SU(3)5̄ ⊗ SU(3)1, where each SU(3) stands

for transformations in flavor space of the corresponding SU(5) representation [91].

The fermions and spurions then fall into the representations

uc, q, ec ∼ (3, 1, 1) , Yu ∼ (6̄, 1, 1) ,

dc, l ∼ (1, 3, 1) , Yd, Y
T
e ∼ (3̄, 3̄, 1) ,

N c ∼ (1, 1, 3) , YN ∼ (1, 3̄, 3̄) ,

MN ∼ (1, 1, 6) ,

(4.15)

where the right-handed neutrino Majorana mass MN also needs to be promoted to
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a spurion. Note that the triality argument given previously does not apply to the

Yukawa matrices in this scenario. With the SU(5) GUT in mind, we will relabel

the Yukawas Yu → Y10, (Yd, Y
T
e ) → Y5, and YN → Y1.

The operators transform as

Qduqℓ ∼ (3⊗ 3̄, 3⊗ 3̄, 1),

Qqqqℓ ∼ (3⊗ 3⊗ 3, 3, 1),

QuddN ∼ (3̄, 3̄⊗ 3̄, 3̄),

Qduue ∼ (3̄⊗ 3̄⊗ 3̄, 3̄, 1),

QqqdN ∼ (3⊗ 3, 3̄, 3̄),

Qqque ∼ (3⊗ 3̄⊗ 3⊗ 3̄, 1, 1), (4.16)

which now can be combined with Yukawa couplings to build up invariant terms

in the Lagrangian. Explicitly, the coefficients of the operators in terms of Yukawa

matrices up to second order are

Cduqℓ ∼ 1⊕ Y †10Y10 ⊕ Y †5 Y5 ,

Cqqqℓ ∼ Y10 ⊗ Y5 ,

CuddN ∼ Y †5 ⊗ Y †1 ,

Cduue ∼ Y †10 ⊗ Y †5 ,

CqqdN ∼ Y10 ⊗ Y †1 ,

Cqque ∼ 1⊕ Y10Y
†
10 ⊕ Y10 ⊗ Y †10 . (4.17)

Notice that only Cduqℓ and Cqque can be constructed out of flavor singlets.

These are the only two operators that can be generated by integrating out heavy

gauge bosons in the context of SU(5) or, in general, by flavor-blind SU(5) invariant

dynamics. In addition, these are the only two coefficients that remain in the limit

Y5, Y1 → 0 (Yd, Ye, YN → 0).

To close this section, let us comment on the implications for supersym-

metric GUTs in our framework. BNV dimension-five operators are produced by

integrating out GUT particles in supersymmetric theories in the absence of selec-

tion rules like R-parity [92–94]. Below the supersymmetry breaking scale, these
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will translate into the operators Qqqqℓ, Qduue and QuddN in terms of the SM EFT

Lagrangian, being only suppressed by one power of the BNV scale: 1/(M /BMSUSY).

A feature of this scenario is that, as a result of the supersymmetric origin of the

operators, all diagonal entries in flavor vanish [93], so that proton decay would re-

quire a strange particle. The renormalization group equations presented here only

apply in the regime µ < MSUSY since they depend on the spectrum of the theory,

and we have assumed only dynamical SM particles. See Ref. [95] for a RGE study

of BNV effects in the context of supersymmetry.

4.3.3 Magnitude of Effects

In this subsection, we simplify the RGE to estimate the magnitude of run-

ning a BNV operator coefficient from the GUT scale to the electroweak scale.

Working in the context of a MFV GUT discussed in Sec. 4.3.2, we set Yd =

Ye = YN = 0, assuming top-Yukawa dominance. In that limit, the only two

non-vanishing operators are Qduqℓ
prst and Qqque

prst , whose RGE equations decouple. The

coefficients of these two operators are given by appropriate combinations of Y10

which transforms as the symmetric representation, 6̄.

As an example, we focus on Qduqℓ
prst , whose coefficient takes on a simple form:

Cduqℓ
prst = Cduqℓ

rs δpt, where Cduqℓ
rs = f(Y †10Y10)rs , (4.18)

and f(0)rs ∝ δrs. The RGE of this coefficient becomes

Ċduqℓ
rs →

[
1

2
Y †10Y10 − 4g23 −

9

2
g22 −

11

6
g21

]

rw

Cduqℓ
ws . (4.19)

We can now choose the basis Y10 = Yu = diag(0, 0, yt), where yt is the top-

quark Yukawa coupling and lighter up-type quark masses are neglected. With this

simplification, Cduqℓ
rs is a diagonal matrix. Setting MGUT ≈ 1015GeV, the Cduqℓ

coefficients at the electroweak and GUT scales are related by

Cduqℓ
33 (MZ) ≈ (2.26)(0.96)Cduqℓ

33 (MGUT) ,

Cduqℓ
22 (11)(MZ) ≈ (2.26)Cduqℓ

22 (11)(MGUT) . (4.20)
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The first factor in parentheses comes from the gauge contribution alone, is domi-

nated by the QCD coupling, and is common to all flavor coefficients. The second

factor is the extra correction from including the Yukawa contribution, with only

the top entry sizeable. Whereas the gauge contribution to the RGE enhances

the Cduqℓ
rs coefficient at lower energy scales, the Yukawa contribution gives a small

suppression.

The Yukawa-induced running will in general be negligible for the lightest

generation coefficients and processes like proton or neutron decay are unaffected.

The Yukawa running gives a small correction for heavier generations. Note that

the relatively small correction from Yukawa running compared to gauge-induced

running stems from the different numerical coefficients of the anomalous dimension,

since g3 ∼ yt. For example, in Eq. (4.19), the color and SU(2)L gauge contributions

have each a pre-factor ∼ 8 times that of the Yukawas. These numerical factors

cannot be estimated and require the explicit computation presented here.

The Yukawa running studied in this section have the most impact in heavy

flavor BNV transitions, which are searched for experimentally [96, 97]. In this

regard, the fact that W boson exchange below the electroweak symmetry-breaking

scale produces flavor mixing is relevant. In particular, at two-loop order, proton

or neutron decay is sensitive to BNV operators with arbitrary flavor. Even though

a two-loop effect, this places a strong bound on heavy flavor BNV. Discussions of

heavy BNV transitions taking into account these effects can be found in Refs. [98–

100].

4.4 Conclusions

In this chapter, we have included the Yukawa contribution to the anomalous

dimension matrix of baryon number violating operators and have thus completed

the one-loop renormalization group evolution. Together with the computation

of Refs. [75–77], this completes the anomalous dimension matrix for the totality

of dimension-six operators of the SM. We included right-handed neutrinos and

therefore two new BNV operators, and classified all the operators under flavor
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symmetry. None of the operators satisfies SU(3)5 minimal flavor violation, but it

is possible to impose a weaker grand unified theory variant of MFV. The Yukawa

coupling corrections only give small corrections to the operator evolution.

Chapter 4, in full, is a reprint of the material as it appears in Phys. Lett.

B 734 302 (2014). R. Alonso, H.-M. Chang, E. Jenkins, A. Manohar, and B.

Shotwell. The dissertation author was co-author of this paper.



Appendix A

Dimensional Regularization

Formulae

The following integrals (Eq. (A.1) – (A.2)) come from Chapter 1 of Ref. [12].

“Feynman Parameterization” often refers to the formula (M ≡
∑n

i=1mi)

1

am1

1 · · · amn
n

=
Γ(M)

Γ(m1) · · ·Γ(mn)

∫ 1

0

dx1x
m1−1
1 · · ·

∫ 1

0

dxnx
mn−1
n

δ

(
1−

n∑
i=1

xi

)

[x1a1 + · · ·+ xnan]M

(A.1)

A very useful formula for integrals in Dimensional Regularization is

∫
ddℓ

(2π)d︸ ︷︷ ︸
≡ ddℓ

(ℓ2)α

(ℓ2 −∆)β
=

i

(4π)d/2
(−1)α+β(∆)α−β+d/2 Γ(α+ d/2)Γ(β − α− d/2)

Γ(d/2)Γ(β)

(A.2)

For example, for d = 4− 2ǫ and β − α− 2 = 0, the integral gives:

µ2ǫ

∫
ddℓ

(2π)d
(ℓ2)α

(ℓ2 −∆)β
=

i

(16π2)

(
1

ǫ
− log

(
∆

4πe−γµ2

)
+ 1−

β−1∑

n=1

1

n
+O(ǫ)

)

(A.3)

where β ∈ Z and β ≥ 2.
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Appendix B

Plus Distributions

The Plus Distribution f(x)+ on x ∈ [0, 1] is defined to have the following

properties:

1. f(x)+ = f(x) for all x such that f(x) is finite.

2.

∫ 1

0

f(x)+ = 0.

Plus distributions, like delta-function distributions, serve as integral transforms;

often they are used to make a kernel out of a non-integrable function f(x). One

can manipulate terms involving plus distributions to extract or absorb divergences

via delta-functions. For example,

∫ 1

0

1 + z2

(1− z)+
dz =

∫ 1

0

1 + z2 − 2 + 2

(1− z)+
dz = −

∫ 1

0

(z + 1)dz + 0 = −3

2
(B.1)

This implies

(
1 + z2

1− z

)

+

=
1 + z2

(1− z)+
+

3

2
δ(1− z) (used in Eq. (2.80)).

In addition, the following plus distribution identity is used in Chapter 2:

1

(1− z)1+ǫ
= −1

ǫ
δ(1− z) +

1

(1− z)+
− ǫ

(
ln(1− z)

1− z

)

+

+O(ǫ2) (B.2)
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Appendix C

Summary of SCETEW Results

We now summarize the results of Refs. [33–40] for the electroweak correc-

tions.

1. At a high scale µh of order s, the scattering amplitudes are matched onto

SU(3) × SU(2) × U(1) gauge invariant local operators Oi with coefficients

Ci which can be computed perturbatively in a power series in α(µh). The

calculations in Refs. [33–40] include QCD as well as electroweak corrections,

so α denotes any of the three gauge coupling constants in the Standard Model

(SM). As an example, for g(p1) + g(p2) → q(p3) + q(p4), the operators are

O1 = q̄4q3A
A
2 A

A
1

O2 = dABC q̄4T
Cq3A

A
2 A

B
1

O3 = ifABC q̄4T
Cq3A

A
2 A

B
1 . (C.1)

which give the possible color structures of the amplitude. The subscripts

1, 2, 3, 4 label the different particle momenta.

2. The coefficients Ci are evolved using renormalization group equations (RGE)

down to a low scale µl of order MW . The anomalous dimensions can be

computed in the unbroken SU(3)× SU(2)× U(1) theory.

3. At the scale µl, the W , Z, H and t are integrated out. This calculation must

be done in the broken theory. A single gauge invariant operator breaks up
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into different components because the weak interaction symmetry is broken.

For example, each of the operators Oi in Eq. (C.1) breaks up into an SU(3)

invariant gg → tt and gg → bb operator.

4. The operators in the theory below µl are then used to compute the scattering

cross sections.

The final result is that the scattering amplitudes M can be written as

M = exp [DC(µl, LM, n̄ · p)] dS(µl, LM)

× P exp

[∫ µl

µh

dµ

µ
γ(µ, n̄ · p)

]
C(µh, LQ) (C.2)

Eq. (C.2) gives the scattering amplitude in resummed form. Explicit formulæ for

all the pieces can be found in Ref. [34].

The high-scale matching C(µh, LQ) is an n dimensional column vector with a

perturbative expansion in αi(µh), with i = 1, 2, 3 being the U(1), SU(2) and SU(3)

couplings. It also depends on LQ = ln s/µ2
h, which is not a large logarithm if one

picks µ2
h ∼ s. For Eq. (C.1), n = 3 since there are 3 gauge invariant amplitudes.

The SCET anomalous dimension γ(µ) is an n × n anomalous dimension

matrix which can be written as the sum of a collinear and soft part

γ(µ, n̄ · p) = γC(µ, n̄ · p) + γS(µ) (C.3)

where the collinear part is diagonal

γC(µ, n̄ · p) = 1

∑

r

[
Ar(µ) ln

2Er

µ
+Br(µ)

]
(C.4)

and linear in log n̄r ·pr = Er, the energy of the parton, to all orders in perturbation

theory [18,33]. The sum on r is over all partons in the scattering process, and Ar(µ)

and Br(µ) have a perturbative expansion in αi(µ). γS at one-loop order is

γS(µ) = −
∑

〈rs〉,i

αi(µ)

π
T (i)
r · T (i)

s ln
−nr · ns + i0+

2
(C.5)

where the sum is over all parton pairs 〈rs〉, and nr = (1,nr) is a null vector in the

direction of parton r for each incoming parton, and nr = −(1,nr) for each outgoing

parton. T
(i)
r is the gauge generator for the ıth gauge group acting on parton r.
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The low-scale matching has a collinear part DC and a soft part dS. The

soft part dS is an m × n matrix, where m is the number of amplitudes produced

after SU(2) × U(1) breaking. In gg → qq, if q is an electroweak doublet of left-

handed quarks (t, b)L, then starting with the operators in Eq. (C.1) gives m = 6

operators after SU(2)× U(1) breaking, where q4q3 → t4t3, or q4q3 → b4b3. If q in

Eq. (C.1) is an electroweak singlet, such as bR or tR, then m = 3. dS(µ, LM) has

an expansion in αS,W,EM(µl), and can depend on electroweak scale masses and µl

via dimensionless ratios such as MW/MZ and LM = lnMZ/µl. The logarithms are

small if one chooses µl ∼ MZ .

The collinear matching DC is an m×m diagonal matrix given by

[DC(µ, n̄ · p, LM)]ii =
∑

r

[
Jr(µ, LM) ln

2Er

µ
+Hr(µ, LM)

]
(C.6)

and Jr and Hr are functions of αS,W,EM(µl), and can depend on electroweak scale

masses and µl via dimensionless ratios such as MW/MZ and LM = lnMZ/µl. The

sum on r is over all particles in operator Oi produced after electroweak symmetry

breaking, and DC is linear in ln n̄ · p to all orders in perturbation theory [18, 33].

The exponent contains at most a double-log given by integrating the Ai

terms in the collinear anomalous dimension. The low-scale matching contains a

single-log term. This a new feature of SCETEW first pointed out in Ref. [36]. One

can show that the low-scale matching contains at most a single-log to all orders

in perturbation theory [34, 36]. As a consequence, resummed perturbation theory

remains valid even at high energy, because αn ln s/M2
W ≪ 1 for large enough n.

Ai, γS, and Ji are related to the cusp anomalous dimension.

The log term in the matching Eq. (C.6) is needed for proper factorization

of scales. A typical Sudakov double-log term at one loop has the form (dropping

the overall α)

ln2 Q2

M2
= ln2 Q

2

µ2
h

+

[
ln2 Q

2

µ2
l

− ln2 Q
2

µ2
h

]
+

[
ln2 M

2

µ2
l

− 2 ln
Q2

µ2
l

ln
M2

µ2
l

]
(C.7)

The first term is the high-scale matching C, the second term arises from integrating

the lnQ2/µ2 anomalous dimension from µh to µl, and the third term is the low-

scale matching D. The existence of the log term in the matching also follows from
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the consistency condition that the theory is independent of µl. Since changes in

the running between µh and µl contain a single log from the anomalous dimension,

there must be a single log in the matching. What is non-trivial is that Eq. (C.2)

only requires a single-log in the matching to all orders in perturbation theory [34,

36].

The resummed electroweak corrections can be grouped as LL, NLL, etc., in

the usual way, and the precise definition for SCETEW can be found in Ref. [33]. All

terms needed for a NLL computation are known, so all processes can be computed

to resummed NLL order. Refs. [34,35] computed the one-loop dS and C terms, for

all 2 → 2 processes.

The three-loop cusp anomalous dimension A and two-loop non-cusp anoma-

lous B are known, except for the scalar Higgs contributions, which are numerically

small. The two-loop contribution to DC is not known. The NNLL results are

known, with the exception of these terms.



Appendix D

Operator Relations and Custodial

Symmetry

Refs. [71, 72] split the Qqqqℓ operator into two operators

Q
qqqℓ (1)
prst = ǫαβγǫijǫkl(q

iα
p Cqjβr )(qγks Cllt) ,

Q
qqqℓ (3)
prst = ǫαβγ(τ

Iǫ)ij(τ
Iǫ)kl(q

iα
p Cqjβr )(qγks Cllt) ,

(D.1)

where τ I is an SU(2)L generator. These operators can be written in terms of

Qqqqℓ
prst [74]

Q
qqqℓ (1)
prst = −(Qqqqℓ

prst +Qqqqℓ
rpst) ,

Q
qqqℓ (3)
prst = −(Qqqqℓ

prst −Qqqqℓ
rpst) ,

(D.2)

Q
qqqℓ (1)
prst and Q

qqqℓ (3)
prst are symmetric and antisymmetric in the first two flavor in-

dices, respectively, and transform as symmetric plus mixed, and antisymmetric

plus mixed representations under permutation of the three q indices. Since there

is only one mixed symmetry tensor in Qqqqℓ by Eq. (4.10), the mixed symmetry

tensors in Qqqqℓ (1,3) are the same, and the two operators are not independent.

The custodial SU(2)L×SU(2)R symmetry is preserved in the SM for g1 → 0

and Yu(N) → Yd(e). It can be implemented in the BNV operators by arranging

the right-handed fermions in doublets, qR = (uR, dR)
T and ℓR = (NR, eR)

T . By

construction, Qqqqℓ is already custodial invariant and the five remaining operators
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are grouped into the custodial SU(2) invariant combinations

ǫijǫkl(q
i
R pCqjR r)(q

k
sCℓlt) = −Qduqℓ

prst −Qduqℓ
rpst ,

ǫijǫkl(q
i
pCqjr)(q

k
R sCℓlR t) = Qqque

prst −QqqdN
prst ,

ǫijǫkl(q
i
R pCqjR r)(q

k
R sCℓlR t) = −QuddN

prst −QuddN
rpst −Qduue

prst −Qduue
rpst ,

(D.3)

where color indices are implicit. The component fields of qR and ℓR have different

hypercharges, but the custodial invariant operators are U(1)Y invariant. The above

equations imply extra relations for the operator coefficients

Cduqℓ
prst =Cduqℓ

rpst ,

Cqque
prst = − CqqdN

prst ,

Cduue
prst =Cduue

rpst ,

Cduue
prst =CuddN

prst ,

(D.4)

in the custodial SU(2) limit.
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