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SOFTWARE Open Access

Valection: design optimization for
validation and verification studies
Christopher I Cooper1†, Delia Yao1†, Dorota H Sendorek1†, Takafumi N Yamaguchi1, Christine P’ng1,
Kathleen E Houlahan1,2, Cristian Caloian1, Michael Fraser3, SMC-DNA Challenge Participants, Kyle Ellrott4,5,6,
Adam A Margolin4,5,7, Robert G Bristow2,3, Joshua M Stuart6 and Paul C Boutros1,2,8,9,10,11*

Abstract

Background: Platform-specific error profiles necessitate confirmatory studies where predictions made on data generated
using one technology are additionally verified by processing the same samples on an orthogonal technology. However,
verifying all predictions can be costly and redundant, and testing a subset of findings is often used to estimate the true
error profile.

Results: To determine how to create subsets of predictions for validation that maximize accuracy of global error profile
inference, we developed Valection, a software program that implements multiple strategies for the selection of
verification candidates. We evaluated these selection strategies on one simulated and two experimental datasets.

Conclusions: Valection is implemented in multiple programming languages, available at: http://labs.oicr.on.ca/boutros-
lab/software/valection

Keywords: Verification, Validation, Candidate-selection, DNA sequencing

Background
High-throughput genomics studies often exhibit error
profiles that are biased towards certain data characteris-
tics. For example, predictions of single-nucleotide variants
(SNVs) from DNA sequencing data have error profiles
biased by local sequence context [1, 2], mappability of the
region [3] and many other factors [4, 5]. The false positive
rate for individual predictions in high-throughput studies
can be high [6, 7], while the false negative rate is difficult
to estimate and rarely known. Critically, error rates can
vary significantly between studies because of tissue-spe-
cific characteristics, such as DNA quality and sample pur-
ity, and differences in data processing pipelines and
analytical tools. In cancer studies, variations in normal tis-
sue contamination can further confound genomic and
transcriptomic analyses [8–10].

Taken together, these factors have necessitated the
wide-spread use of studies with orthogonal technologies,
both to verify key hits of interest and to quantify the global
error rate of specific pipelines. In contrast to a validation
study, which typically approaches the same biological ques-
tion using an independent set of samples (e.g. like a test
dataset in a machine learning exercise), we define a verifica-
tion study as interrogating the same sample-set with an in-
dependent method (e.g. a method that generates analogous
data using a distinct chemistry). The underlying concept is
that if the second technique has separate error profiles from
the first, a comparative analysis can readily identify false
positives (e.g. in inconsistent, low quality calls) and even
begin to elucidate the false negative rate (e.g. from discord-
ant, high quality calls).
The choice of verification platform is critical as it deter-

mines both the tissue and financial resources required.
There is typically a wide range of potential verification
technologies for any given study. While confirmation of
DNA-sequencing results traditionally involves gold-stand-
ard Sanger sequencing [11, 12], the drawbacks of this ap-
proach (e.g. high financial and resource costs) and
advancements in newer sequencing techniques have
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shifted the burden of variant verification to other tech-
nologies [13–15]. For example, a typical Illumina-based
next-generation sequencing (NGS) whole-genome or
whole-exome experiment may be verified by sequen-
cing a separate library on a different but similar ma-
chine [16]. This offers the advantages of high-throughput,
low cost and the opportunity to interrogate inter-library
differences [17]. Other groups have applied
mass-spectrometric based corroboration of individual var-
iants, which has the benefit of technological independence
[18, 19].
Apart from choice of technology, all groups must make

decisions regarding the scope of their verification work. For
example when considering genome-wide discovery, it may
be appropriate to verify only known candidate drug target
mutations or unexpected novel functional aberrations.
However, in many contexts having an unbiased estimate of
the global error rate is critical. This is particularly true
when benchmarking different data-generating methods or
when looking at genome-wide trends. It remains unclear
how best to select targets for verification studies, particu-
larly in the context of fairly comparing multiple methods
and providing unbiased performance metric estimates. To
address this problem, we created Valection, a software tool
that implements a series of diverse variable selection strat-
egies, thereby providing the first framework for guiding op-
timal selection of verification candidates. To benchmark
different strategies, we exploit data from the ICGC-TCGA
DREAM Somatic Mutation Calling Challenge (SMC-
DNA), where we have a total of 2,051,714 predictions of
somatic SNVs made by 21 teams through 261 analyses
[4, 20]. The advantage of these simulated data are that
truth is fully known, allowing analysis of both false posi-
tive and false negative rates. Additionally, we evaluated
Valection selection strategies on two experimental data-
sets: seven sets of single-nucleotide polymorphisms (SNP)
from the Genome in a Bottle (GIAB) Consortium [21, 22]
and 15 sets of somatic SNVs from a chronic lymphocytic
leukaemia (CLL) tumour-normal pair [23]. We show that
the optimal strategy changes in a predictable way based
on characteristics of the verification experiments.

Implementation
We began by developing six separate strategies for select-
ing candidates for verification (Fig. 1). The first is a naïve
approach that samples each mutation with equal probabil-
ity, independent of whether a mutation is predicted by
multiple algorithms or of how many calls a given algo-
rithm has made (‘random rows’). Two simple approaches
follow that divide mutations either by recurrence (‘equal
per overlap’) or by which algorithm made the call (‘equal
per caller’). Finally, we created three approaches that ac-
count for both factors: ‘increasing per overlap’ (where the
probability of selection increases with call recurrence),

‘decreasing per overlap’ (where the probability of selection
decreases with call recurrence) and ‘directed-sampling’
(where the probability of selection increases with call
recurrence while ensuring an equal proportion of targets
is selected from each caller). All methods have program-
matic bindings in four separate open-source languages (C,
R, Perl and Python) and are accessible through a system-
atic API through the Valection software package. Valection
thus becomes a test-bed for groups to try new ways of op-
timizing verification candidate-selection strategies.
To compare the six methods outlined above, we used

data from tumour-normal whole-genome sequencing pairs
from the ICGC-TCGA DREAM Somatic Mutation Calling
Challenge [4, 20]. These tumours differ in major character-
istics such as normal contamination, sub-clonality and mu-
tation rate. We chose to work with simulated tumours
because we know the ground truth of their mutational pro-
files, allowing a precise evaluation of the effectiveness of
different selection schemes in estimating the true under-
lying error rates. Altogether, there are results available from
261 SNV calling analyses performed by 21 teams. We de-
signed a rigorous parameter-sweeping strategy, considering
different numbers of SNV calling algorithms and different
quantities of verification candidate targets. The experimen-
tal design is outlined in Fig. 2.

Results
We assessed the performance of the candidate-selection
strategies in two ways. First, we considered how close the
predicted F1 score from a simulated verification experi-
ment is to that from the overall study. We calculated pre-
cision in two modes: ‘default’ (as described in Methods)
and ‘weighted’. In the ‘weighted’ mode, precision scores
are modified so that unique calls carry more weight than
calls predicted by multiple callers. This places more em-
phasis on true positive calls that are unique to a single
submission (i.e. SNVs that are more difficult to detect)
over those that are found across multiple submissions.
This is important to consider, given that one key goal of
SNV calling is to maximize the number of true mutations
detected. Second, we assessed the variability in this result
across 10 replicate runs of each strategy, allowing us to
gauge how much random chance elements of variant-se-
lection perturb the results of a given method (i.e. a stabil-
ity analysis).
Overall, across all simulations, the ‘equal per caller’ ap-

proach performs best, showing a negligible mean difference
between subset and total F1 scores while, additionally, dis-
playing low variability (i.e. small spread) in F1 score differ-
ences across all runs (Fig. 3). Both the number of
algorithms tested and the verification budget size (i.e. the
number of candidates being selected) factor into which
strategy performs optimally. Specifically, when there are
large numbers of algorithms or the number of possible
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verification targets is low, the ‘equal per caller’ method does
extremely well (ntargets = 100; Additional file 1: Figure S1).
By contrast, when the number of verification targets is sub-
stantially larger (i.e. a considerable proportion of all predic-
tions will be tested), the ‘random rows’ method shows
similar performance levels (ntargets = 1000 and ntargets =
2500; Additional file 1: Figures S2 and S3, respectively).
However, the ‘random rows’ method performs poorly when
prediction set sizes are highly variable (i.e. a small number
of callers has a large fraction of the total calls), resulting in
some callers with no calls by which to estimate perform-
ance. This was the case for runs with verification budgets
of ntargets = 250 (Additional file 1: Figure S4), ntargets = 500
(Additional file 1: Figure S5) and, in particular, ntargets = 100
(Additional file 1: Figure S1). Missing scores were treated as
missing data.

However, the effects of the verification experiment char-
acteristics described above alone do not account for all
the variability observed across the simulations. Comparing
runs of matching parameter combinations across the three
synthetic tumours reveals some inter-tumour differences.
Unlike with tumours IS1 (Additional file 1: Figure S6) and
IS2 (Additional file 1: Figure S7), the ‘random rows’
method performs best on tumour IS3 suggesting tumour
characteristics may have an impact on target selection
strategy performance (Additional file 1: Figure S8). The
‘equal per caller’ method is only the second best selection
strategy for the IS3 dataset.
We further assessed variability in the results of the selec-

tion strategies by running 10 replicate runs of each. The re-
sults in Fig. 4 show that the consistency of performance
across simulations trends with the overall performance of

Fig. 1 Valection Candidate-Selection Strategies. a A hypothetical scenario where we have results from three callers available. Each call is represented
using a dot. SNV calls that are shared by multiple callers are represented with matching dot colours. b The ‘random rows’ method where all unique
calls across all callers are sampled from with equal probability. c The ‘directed-sampling’ method where a ‘call overlap-by-caller’ matrix is constructed
and the selection budget is distributed equally across all cells. d The ‘equal per caller’ method where the selection budget is distributed evenly across
all callers. e The ‘equal per overlap’ method where the selection budget is distributed evenly across all levels of overlap (i.e. call recurrence across
callers). f The ‘increasing with overlap’ method where the selection budget is distributed across overlap levels in proportion to the level of overlap. g
The ‘decreasing with overlap’ method where the selection budget is distributed across overlap levels in inverse proportion to the level of overlap
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Fig. 2 Verification Selection Experimental Design. Verification candidates were selected from somatic mutation calling results of multiple algorithms
run on three in silico tumours (IS1, IS2, and IS3). Candidate selection was performed separately on each tumour’s set of results using all combinations
of five different verification budgets (i.e. number of calls selected) and six different selection strategies. F1 scores were calculated for each set of
selected calls and compared to F1 scores calculated from the full prediction set. To compare the effect of the numbers of algorithms used, datasets
were further subset using four different metrics

Fig. 3 All Synthetic Data Simulation Results for Selection Strategy Parameter Combinations. Overall, the best results are obtained using the ‘equal per
caller’ method. The ‘random rows’ approach scores comparably except in cases where there is high variability in prediction set sizes across callers. Calls
from low-call callers are less likely to be sampled at random and, in cases where none are sampled, it is not possible to get performance estimates for
those callers. Failed estimate runs are displayed in grey

Cooper et al. BMC Bioinformatics  (2018) 19:339 Page 4 of 11



the selection strategy. An overall positive effect of
the adjustment step (‘weighted mode’) on the selec-
tion strategies is also visible with the exception of
the ‘random rows’ method, on which the weighted
precision calculation appears to have no effect. A
closer look at the recall and precision scores reveals
that the approach with the poorest recall score,
‘decreasing with overlap’ (Additional file 1: Figure
S9a), also shows the most sensitivity to the weighted
adjustment step in precision calculations (Additional
file 1: Figure S9b). Altogether, across methods, recall
tended to mirror F1 in both magnitude and amount
of spread, which is lower in approaches with higher
recall. In contrast, precision scores are highly vari-
able across most selection approaches, regardless of
their overall performance.
Additionally, we looked at the effect that the number of

call sets sampled from has on selection strategy rankings.
We performed two comparisons: a) using the complete
submission set (all submissions versus a subset of 25 ran-
domly selected submissions per tumour) and b) using only
the best team submissions per tumour (all submissions ver-
sus a subset of 3 randomly selected submissions). For each
comparison group, scores were calculated as before. When
selection strategies are ranked by median differences, we

see that the ‘random rows’ method most consistently ap-
pears in the top performance ranks among all submission
sets (Additional file 1: Figures S10 and S11). The ‘decreas-
ing per overlap’ method using default precision calculations
is always the worst performing selection strategy, followed
by ‘decreasing per overlap’ with weighted precision scores.
The performance rankings of the other selection strategies
are more variable across submission sets.
While simulated data has fully known truth and thus al-

lows precise analysis of false-positive and false-negative
rates, it also represents only a subset of experimental sce-
narios therefore we assessed the Valection selection strat-
egies on real data by enlisting two separate experimental
datasets. First, we evaluated on the germline SNPs in sam-
ple NA12878 of the GIAB Consortium, whose genome
has been extensively characterized by combining informa-
tion from various sequencing technologies and bioinfor-
matics pipelines [21, 22]. We collected seven publicly-
available VCF files containing germline variant calls ob-
tained from NA12878 DNA samples that were processed
on one of five different sequencing platforms, using one of
four variant calling methods (NIST v3.3.2). Integrated,
high-confidence SNP calls provided by the consortium in
the same data release served as the mutational ground truth
for our analysis. Results reveal the ‘random rows’ method

Fig. 4 F1 Scores for All Synthetic Dataset Replicate Runs. Top selection strategies perform consistently across replicate runs. Strategies are ordered
by median scores. The adjustment step in precision calculations improves the ‘equal per caller’ method, but shows little effect on ‘random rows’

Cooper et al. BMC Bioinformatics  (2018) 19:339 Page 5 of 11



as the top selection strategy in terms of overall highest
mean performance as well as performance consistency
(Additional file 1: Figure S12), which is consistent with the
strategy’s high ranking in the simulated tumour analysis. In
addition to running the evaluation at the original synthetic
data candidate budget sizes, we ran Valection with budgets
increased a magnitude in size (ntargets = 1000, 2500, 5000,
10000, 25000). The budgets were, in this case, more pro-
portionally similar to those of the synthetic dataset analysis
when contrasted against the full known mutation set. How-
ever, the increased budget sizes have minimal effect on
overall selection strategy performance and no effect on the
relative strategy rankings (Additional file 1: Figure S13).
The second experimental dataset was obtained from

Alioto et al. [23] and consists of a total of 15 somatic SNV
call sets submitted by 14 teams, generated by running
various calling algorithms on a single CLL tumour-normal
sample. A gold set of verified SNV mutations was cu-
rated from these results and published, serving as the
mutational ground truth. Valection was run on the sam-
ples with a slightly modified candidate budget size range
(ntargets = 50, 100, 250, 500, 1000) due to there being a
smaller set of known SNVs in this sample (n = 1319).
Once again, results point to the ‘random rows’ method as
the optimal selection strategy, with best overall perform-
ance and low spread in performance scores across submis-
sions (Additional file 1: Figure S14).

Discussion
Assessing and comparing the quality of new prediction
tools is an important step in their adoption and the truth of
their results is arguably the most important component of
this assessment. When the resources required to independ-
ently verify results are substantial, it is vital to choose an
unbiased but maximally informative set of results. This is
naturally true not just for single-nucleotide mutations, but
other predictions like structural variants, fusion proteins, al-
ternative splicing events and epigenetic phenomena, e.g.
methylation and histone marks. Ongoing research into the
error profiles of various data types increases our under-
standing of what factors influence verification rates [24].
This information helps in distinguishing high- from low-
quality calls and goes towards minimizing the amount of
prediction verification required. However, with the continu-
ous emergence of new data-generating technologies, e.g.
third generation sequencing [25], benchmarking studies
assessing false positive and false negative rates are likely to
remain a fundamental component of computational bio-
logical research well into the foreseeable future. Having
standardized methods for comparing workflows in contexts
such as these will ease the uptake of new techniques more
confidently. Valection is a first step towards standardizing
and optimizing verification candidate selection.

Evaluation of the target candidate selection approaches
presented in this study provides an in-depth view of the
effects of call recurrence and algorithm representation on
a verification candidate set. Nonetheless, this is by no
means an exhaustive set of selection strategies. Although,
our findings suggest that surprisingly straightforward ap-
proaches (e.g. ‘random rows’) are often the most effective,
future implementations of more complex strategies may
highlight additional factors important to target candidate
selection. This is particularly true when error profiles are
highly biased by known features of the dataset itself.
The need for informative verification target selections

also highlights the importance of simulators for experimen-
tal biology, since the best suited method may vary from
dataset to dataset. Indeed, as our findings here suggest, op-
timal candidate-selection strategies for mutation calls may
even be affected by various tumour data characteristics. A
complete assessment of error profiles is impossible without
access to multifarious datasets with an established ground
truth. As such, there is a need for reliable simulators in
biology to create and analyze gold-standard synthetic data-
sets to help guide top empirical research. As demonstrated
here, and specific to cancer genomics, synthetic tumour
data can expedite accurate estimation of false negative rates
which are difficult to determine in genome-wide mutation
calling, mitigating the need for large-scale wet lab validation
of non-variants. However, the utility of synthetic data is
limited to non-exploratory research given that biological
processes or data features that are unknown or poorly
understood cannot be adequately simulated, leading to a
lack of ‘real-world’ complexity. Therefore, the interplay be-
tween experimental and simulated data is critical to the ad-
vancement of disciplines such as genomics.
For these reasons, we included the evaluation of our soft-

ware on ‘real’ data to determine the generalizability of our
synthetic dataset analysis findings. It is key to note that the
development of gold-standards from experimental data is
fraught with its own set of biases. Validation experiments
typically endeavour to use orthogonal sequencing technolo-
gies, which have largely independent error-profiles. How-
ever in practice, it is exceedingly rare for two technologies
that measure a single phenomenon to be truly orthogonal.
For example, DNA sequencing technologies typically exist
down-stream of DNA extraction technologies, and thus
share their biases. As another example, many sequencing
techniques have challenges with repetitive regions (particu-
larly homopolymer repeats), or lie up-stream of methods
like sequence-alignment that have specific biases. Thus one
key strategy to improving benchmarking is to rely on a
battery of comparisons, with diverse gold-standards
generated using both simulated and real data, and with
the real data having a broad range of known biases that
are clearly outlined to highlight potential correlations
with the discovery data.
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Conclusions
Verification of somatic SNV calls made on NGS tumour
data is critical due to the high numbers of false positive and
false negative calls. However, a thorough search to identify
all erroneous calls is a cumbersome and expensive task.
Our findings suggest that it may also be an avoidable one.
Fewer verification targets may be sufficient to characterize
global error rates in data, provided that there is proper
optimization of the target candidate selection process. We
find that this optimization must factor in not just the scope
of the verification study but, conceivably, the characteristics
of the dataset itself. To date, few studies have assessed
candidate-selection methods for verification purposes.
Here, we begin to explore the alternatives available to geno-
micists performing confirmatory studies that are both effi-
cient and thorough. By releasing our Valection software
publicly, we encourage groups across the wider research
community to continue this work. With a straightforward
implementation and easy application, Valection has the po-
tential for maximal impact across a wide range of disci-
plines that rely on verification studies.

Methods
Selection strategies & software
The random rows selection strategy (Fig. 1b) samples calls
at random without replacement from the entire set of
calls, and continues until the verification budget has been
reached, or there are no more calls left.
The directed-sampling selection strategy (Fig. 1c) begins

by constructing a matrix. Row 1 contains all the calls
made only by individual callers, row 2 contains the calls
made by exactly 2 callers, all the way to row N, which con-
tains the calls that were made by all of the N callers. Each
column, j, of the matrix contains only the calls made the
jth caller. Note that this means in all rows past 1, calls
appear in multiple cells on the same row. Any given cell
holds zero or more calls. To select calls, the following pro-
cedure is followed for each row, from N to 1, and for each
cell in that row, ordered by ascending number of calls:

� Calculate the cell budget as the total remaining
verification budget divided among the yet
unexamined cells in the rest of the matrix.

� Select calls without replacement from the cell in
question up to the cell budget (these calls become
invalid selections for future cells). Each call selected
reduces the total remaining verification budget.

� If any budget remains once all cells have been
selected from, the process is repeated.

The equal per caller selection strategy (Fig. 1d) divides
the verification budget equally among all callers. The set
of calls that each individual caller made is sampled from
without replacement up to that caller’s portion of the total

budget. A call selected by one caller becomes an invalid
choice for all other callers. If a single caller does not have
enough available calls (calls not yet selected in another
caller’s budget), its remaining budget is distributed equally
to the other callers.
The equal per overlap selection strategy (Fig. 1e) is

based around the number of times each call was made.
With N callers, the verification budget is divided N ways.
Out of the set of calls made only once (all the calls unique
to any caller), calls are selected without replacement up to
the sub-budget. This is repeated for all the calls made by
exactly two callers, and so on up every level of overlap. If
a single level of overlap does not have enough available
calls (calls not yet selected in another overlap level’s
budget), its remaining budget is distributed equally to the
other levels.
The increasing with overlap selection strategy (Fig. 1f) is

similar to equal per overlap, but instead of selecting an
equal number of calls at every level of overlap, it selects a
number from each level of overlap proportional to the
level of overlap.
The decreasing with overlap selection strategy (Fig. 1g)

is identical to increasing with overlap, but the number of
calls selected at each level is inversely proportional to the
level of overlap.
All of these methods are available through four com-

monly used programming languages C, Perl, Python and R.
The implementations have robust user-level documentation
and are openly available at both their appropriate public re-
positories (i.e. CPAN, PyPI and CRAN) and on our website
at: labs.oicr.on.ca/boutros-lab/software/valection.
The selection strategy algorithms were implemented in

C, and compiled using the GNU Compiler Collection
(v4.8.1). The implementations also made use of GLib (v
2.44.0). The R statistical environment (v3.1.3) was used for
statistical analysis and data subsetting. Perl (v5.18.2) was
used to coordinate the simulations. All plots were gener-
ated with the same version of R using the “BPG” (v5.2.8)
[26], “lattice” (v0.20–31) and “latticeExtra” (v0.6–26) pack-
ages. The analysis scripts are also available at http://lab-
s.oicr.on.ca/boutros-lab/software/valection.

Simulated data
To test the accuracy of these different approaches empir-
ically, we applied them to gold-standard data from the
ICGC-TCGA DREAM Somatic Mutation Calling Chal-
lenge [20]. This is a global crowd-sourced benchmarking
competition aiming to define the optimal methods for the
detection of somatic mutations from NGS-based whole-
genome sequencing. The challenge has two components,
one using simulated data created using BAMSurgeon soft-
ware [4] and the other using experimentally-verified ana-
lyses of primary tumours. To test the accuracy of our
approaches on representation algorithms, we exploited
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the SNV data from the first three in silico tumours. This
dataset comprises 261 genome-wide prediction sets made
by 21 teams and there are no access restrictions. The raw
BAM files are available at SRA with IDs SRX570726,
SRX1025978 and SRX1026041. Truth files are available as
VCFs at https://www.synapse.org/#!Synapse:syn2177211.
Prediction-by-submission matrices for all submissions are
provided in Additional file 2: Table S1, Additional file 3:
Table S2 and Additional file 4: Table S3, as well as the best
submissions from each team in Additional file 5: Table S4,
truth calls in Additional file 6: Table S5, Additional file 7:
Table S6 and Additional file 8: Table S7 and a confusion
matrix in Additional file 9: Table S8.
To probe a range of possible verification studies, we ran a

very broad set of simulations. For each run, we
pre-specified a tumour, a number of algorithms and a num-
ber of mutations to be selected for verification, and ran
each of the candidate-selection strategies listed above. We
then calculated the F1 score (along with precision and re-
call) based on the verification study, assuming verification
results are ground truth. Finally, we compared the true F1
for a given algorithm on a given tumour across all muta-
tions to the one inferred from the verification experiment.
We used three separate tumours with diverse character-

istics (https://www.synapse.org/#!Synapse:syn312572/wiki/
62018), including a range of tumour cellularities and the
presence or absence of sub-clonal populations. We se-
lected subsets of algorithms for benchmarking in four dif-
ferent ways:

i) the complete dataset (X)
ii) the single best submission from each team (X-best)
iii) three randomly selected entries from X-best

(repeated 10 times)
iv) 25 randomly selected entries from X (repeated 10

times)

Lastly, we considered verification experiment sizes of
100, 250, 500, 1000 and 2500 candidates per tumour.
Thus, in total, we analyzed each of the candidate-selection
algorithms in 22 datasets for 3 tumours and 5 verification
sizes, for 330 total comparisons.

Experimental data
In addition to using synthetic data, we used two experi-
mental datasets to thoroughly evaluate the Valection selec-
tion strategies. The first dataset consists of germline SNP
information for the GIAB Consortium sample NA12878
[21, 22]. Germline mutation predictions were made on tis-
sue samples sequenced on five platforms and analyzed
using four SNP callers for a total of seven prediction sets.
The second dataset comes from a mutation-calling bench-
marking study that predicted somatic SNVs in a CLL
tumour-normal sample [23]. This dataset comprises 15

somatic SNV prediction sets submitted by 14 teams. In-
formation on the mutation predictions for these data-
sets is provided as Additional file 10: Table S9 and
Additional file 11: Table S10.
As with the simulated dataset, we ran a number of sim-

ulations for each of our candidate-selection strategies with
different combinations of the following two parameters:
the number of algorithms/submissions sampled from and
the number of mutations selected for verification (i.e. the
candidate budget size). As before, we calculated the recall,
precision and F1 score for each submission run and com-
pared the true F1 for the submission to the verification ex-
periment’s F1.
Because we had fewer prediction sets per tumour for

the experimental datasets, we only ran two of the four
previous algorithm subsets:

i) the complete dataset (X)
ii) 25 randomly selected entries from X

Regarding verification candidate budget sizes, for the
first dataset (NA12878) we considered both the original
set of sizes (ntargets = 100, 250, 500, 1000, 2500) as well as
larger budget sizes, reflective of the ratio of verified germ-
line mutations to somatic mutations (ntargets = 1000, 2500,
5000, 10000, 25000). For the second dataset (CLL), we
only used smaller budget sizes since the data consists of
somatic SNV calls. Given that the number of known som-
atic mutations for this dataset was 1319, the budget set
size was modified not to exceed that amount (ntargets = 50,
100, 250, 500, 1000).

Statistical analyses
The precision, recall and F1 score of each caller were cal-
culated as follows, from the caller’s true positive (TP), false
positive (FP) and false negative (FN) values, as estimated
by the selection strategy. Here, FNs are true calls sampled
by the selection strategy that were not made by the caller
in question (i.e. another caller made it).

precision ¼ TP
TP þ FP

ð1Þ

recall ¼ TP
TP þ FN

ð2Þ

F1score ¼ 2 � precision � recallð Þ
precision þ recallð Þ ð3Þ

When no calls were selected to calculate a value for a
caller, scores were given values of N/A. This happened
primarily with the ‘random rows’ method.
Additionally, each precision score was calculated in an

adjusted and unadjusted manner. A caller’s precision in
the unadjusted form was calculated exactly as described
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above, using all the calls made by the caller and selected
for verification as the TPs and FPs. In the adjusted form,
the selected calls were first divided into groups, according
to how many callers made the call. Then, the precision
was calculated separately using the calls from each group.
The final precision was calculated as a weighted average
of the precision of each group of calls, with weights equal
to the total number of calls (verified and unverified) that
caller made at that overlap level. Thus, in a two-caller ex-
ample, a caller that made 100 unique calls and 50 calls
shared with the other caller would count its precision
from unique calls twice as strongly as its precision from
shared calls.

Availability and requirements
Project name: valection
Project home page: http://labs.oicr.on.ca/boutros-lab/

software/valection
Operation Systems(s): any that support Perl, Python, R

or C
Programming language: Perl, Python, R and C
License: GPL-3

Additional files

Additional file 1: Figure S1. Simulations with 100 verification targets,
across all synthetic tumours. Note: ‘random rows’ method generates N/
As. Figure S2. All simulations with 1000 verification targets, across all
synthetic tumours. Figure S3. All simulations with 2500 verification
targets, across all synthetic tumours. Figure S4. All simulations with 250
verification targets, across all synthetic tumours. Note: ‘random rows’
method generates N/As. Figure S5. All simulations with 500 verification
targets, across all synthetic tumours. Note: ‘random rows’ method
generates N/As. Figure S6. All simulations for tumour IS1. Optimal results
are achieved with the ‘equal per caller’ method (weighted mode). Figure
S7. All simulations for tumour IS2. Optimal results are achieved with the
‘equal per caller’, ‘increasing per overlap’ and ‘equal per overlap’ methods
(weighted mode). Figure S8. All simulations for tumour IS3. Optimal
results are achieved with the ‘random rows’ method, regardless of how
precision is calculated. Figure S9. a) Recall from all runs, displayed per
candidate-selection strategy. b) Precision from all runs, calculated with
and without a weight adjustment (default and weighted mode, respect-
ively) and displayed per candidate-selection strategy. Figure S10. Repli-
cate run scores for all synthetic data (a) and for a subset of 25 randomly
selected submissions from that cohort (b). Selection strategies ordered by
median scores. Figure S11. Replicate run scores for all the best synthetic
data team submissions (a) and for a subset of 3 randomly selected sub-
missions from that cohort (b). Selection strategies ordered by median
scores. Figure S12. All simulations for sample NA12878 of the GIAB Con-
sortium, with sampling budgets of 100, 250, 500, 1000, 2500. Figure S13.
All simulations for sample NA12878 of the GIAB Consortium, with sam-
pling budgets of 1000, 2500, 5000, 10000, 25000. Figure S14. All simula-
tions for the CLL tumour-normal sample, with sampling budgets of 50,
100, 250, 500, 1000. (PDF 58025 kb)

Additional file 2: Table S1. A prediction-by-submission matrix of all
SNV call submissions for tumour IS1 where SNV predictions are annotated
with chromosome (“CHROM”) and position (“END”). (CSV 57526 kb)

Additional file 3: Table S2. A prediction-by-submission matrix of all
SNV call submissions for tumour IS2 where SNV predictions are annotated
with chromosome (“CHROM”) and position (“END”). (CSV 28680 kb)

Additional file 4: Table S3. A prediction-by-submission matrix of all
SNV call submissions for tumour IS3 where SNV predictions are annotated
with chromosome (“CHROM”) and position (“END”). (CSV 3656 kb)

Additional file 5: Table S4. A summary table of the top team
submissions for each tumour, includes submission ID, team alias, the
number of true positives, true negatives, false positives and false
negatives, as well as the precision, recall and F1 scores. (CSV 3 kb)

Additional file 6: Table S5. A table of all predicted SNVs for tumour IS1,
annotated by chromosome (“chrom”) and position (“pos”), and a “truth”
column for whether the call is a true positive (1) or not (0). (CSV 3127 kb)

Additional file 7: Table S6. A table of all predicted SNVs for tumour IS2,
annotated by chromosome (“chrom”) and position (“pos”), and a “truth”
column for whether the call is a true positive (1) or not (0). (CSV 2537 kb)

Additional file 8: Table S7. A table of all predicted SNVs for tumour IS3,
annotated by chromosome (“chrom”) and position (“pos”), and a “truth”
column for whether the call is a true positive (1) or not (0). (CSV 328 kb)

Additional file 9: Table S8. A summary table of all submissions from
across all synthetic tumours, includes submission ID, the number of true
positives, true negatives, false positives and false negatives, as well as the
precision, recall and F1 scores. (CSV 19 kb)

Additional file 10: Table S9. A summary table of all submissions from
the first ‘real’ dataset, the GIAB sample NA12878, includes submission ID,
the number of true positives, true negatives, false positives and false
negatives, as well as the precision, recall and F1 scores. (CSV 694 bytes)

Additional file 11: Table S10. A summary table of all submissions from
the second ‘real’ dataset, the CLL tumour-normal sample, includes
submission ID, the number of true positives, true negatives, false positives
and false negatives, as well as the precision, recall and F1 scores. (CSV 1
kb)
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