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ABSTRACT OF THE THESIS 

 

Dynamical Modelling and Simulation of Field-Reversed                                                  

Configuration (FRC) Plasmas for Feedback Control 

 

by 

 

Georges Constantinos 
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University of California San Diego, 2021 

Professor Alexey Arefiev, Chair 

 

 

The Direct Fusion Drive (DFD) is an advanced deep-space propulsion technology that 

utilises a field-reversed configuration (FRC) plasma core based on the PFRC-II laboratory test-

bench located at the Princeton Plasma Physics Laboratory. A rigid-body model is derived for 

the translational kinematics of the FRC plasma and a numerical solver is developed in 

MATLAB to aid controller design and analysis for the FRC plasma centroid position. Two 

types of coil actuators are considered: superconducting flux-conservers and constant-current 

electromagnets. For constant-current coil actuators, the open-loop response of the FRC plasma 
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centroid position to radial perturbations is shown to exhibit standing radial oscillations about 

the origin at constant frequency (closed trajectories neither decaying nor growing), while for 

axial perturbations, the FRC plasma position is shown to be axially unstable (driven away from 

the origin axially). Results for flux-conservers are inconclusive, requiring further work. A well 

centred FRC plasma is critical for interpretation of diagnostics and analysis of experimental 

data, the rigid-body model and numerical solver devised are attempted first steps toward this 

goal.
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Chapter 1. Introduction 

Conventional deep-space travel involves transferring between orbits through a series of 

fuel-efficient manoeuvres such as Hohmann transfers and gravity assists (using planetary 

bodies to further accelerate spacecraft, reaching deeper into space). This means deep-space 

travel typically involves detours and numerous manoeuvres prior to arriving at the destination. 

For background, ion thrusters produce on the order of milli-newtons of thrust (long duration 

burns) and have specific impulse in the range <5000s (low thrust, high Isp), while chemical 

rockets produce vacuum thrust on the order of kilo-newtons (strictly short duration burns) and 

have specific impulse of roughly <500s (high thrust, low Isp). 

Princeton Satellite Systems (PSS) and the Princeton Plasma Physics Laboratory (PPPL) 

are engaged in the development of a new deep-space propulsion technology known as the 

Direct Fusion Drive (DFD), funded primarily by NASA and ARPA-E. This advanced 

propulsion concept employs the use of a FRC plasma core (explained next) that is confined 

magnetically using coils (+7T). The engine class is thermo-nuclear, producing on the order of 

5-10 N of thrust per MW and a specific impulse of 10000-20000s (high thrust, high Isp). The 

DFD is intended for deep-space and interplanetary missions with preliminary studies exploring 

direct transit to Jupiter within 1 year and to outer edges of the Solar System, Pluto, within 5 

years (for a 1-2 MW engine) [1]. The electrical power generated by this drive provides a drastic 

change in power budget available for scientific or commercial payloads, on the order of 1MW, 

unseen to date. It is simply posed as a game changing technology in the areas of both energy 

generation and space flight. 

1.1 Overview of Field-Reversed Configuration (FRC) Plasmas 

A field-reversed configuration (FRC) is a type of plasma that exhibits a compact toroid 

structure, as shown in Figure 1. FRC plasmas are magnetically confined to this shape purely 
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by a poloidal magnetic field (black contours in Figure 1, shown inside the plasma) which is 

produced by a toroidal current that has been induced in the plasma (indicated by the red arrow). 

Also shown, FRC plasma is embedded within coils that produce an external confinement field 

for sustainment of the FRC plasma and keeping it in place. 

 

Figure 1. Field-Reversed Configuration (FRC) Plasma embedded in Coil Actuators [2] 

Unlike tokamak configurations shown in Figure 2, FRCs do not have a centre structure 

running through the plasma (no inner poloidal field coil) nor do they have toroidal field coils. 

FRCs are thus a considerably simpler device. 

This area of research, explored initially in the late 1950’s suffered plasma stability 

issues for almost two decades (unable to maintain a steady-state plasma/equilibrium). 

Breakthroughs were made by Soviet researchers in the 1980’s in overcoming unstable FRC 

plasma dynamic modes [3], eventually leading to FRCs regaining popularity in thermo-nuclear 

fusion devices. The key attraction of FRCs is extremely high-𝛽 (x20 greater than tokamaks) 

which is one metric used for reactor cost-benefit/return on investment, x10 greater confinement 

than tokamaks, significantly lower form-factor and simpler machine configuration (cylindrical 

vacuum vessel, reduced magnet complexity), and exhibiting x5 higher plasma density [4]. 
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Figure 2. Tokamak Magnetic Field Configuration [5] 

1.2 Direct Fusion Drive (DFD) Experimental Setup 

The DFD employs the Princeton Field-Reversed Configuration (PFRC) a fusion energy 

core invented by Dr. Samuel Cohen at PPPL, employing the use of a FRC plasma, where high 

energy particles are extracted from the plasma core via the scrape off layer (SOL) and expelled 

out a magnetic nozzle generating high thrust. 

The DFD experimental setup is located at the PPPL and is shown in Figure 3. Key 

features of the propulsion system and FRC plasma core are defined in Section 1.2.1. 

 
Figure 3. Direct Fusion Drive (DFD) Experimental Setup, Cross-Section (adapted from [4]) 
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1.2.1 FRC Plasma Definitions 

Magnetic Separatrix: the boundary highlighted red in Figure 3 that separates closed 

magnetic flux surfaces from open magnetic flux surfaces, labelled as CFR and OFR. The 

separatrix defines the Last Closed Flux Surface (LCFS) since all magnetic flux surfaces outside 

the separatrix are unconfined. The dashed-line in Figure 4 provides another illustration of the 

separatrix with magnetic flux contours. The magnetic field strength at the separatrix is 0T. 

O-Point (or Magnetic Axis): is a ‘magnetic null’ within the FRCs defined by a radial 

position (𝑟𝑜) relative to the FRC centroid, as identified in Figure 3. It is the innermost magnetic 

surface existing as a circular-line in the transverse plane, along which it is a magnetic null. The 

magnetic field lines within the FRC are reversed when crossing the O-point radially, as shown 

in Figure 4 (i.e. magnetic field lines below the O-point travel in opposite direction to field lines 

above the O-point). This reversal gives rise to the name “Field-Reversed” Configuration [3]. 

X-Point: point at which the FRC’s poloidal magnetic field is zero (𝐵𝑝𝑜𝑙𝑜𝑖𝑑𝑎𝑙 = 0T) and 

is defined by an axial position (𝑧x) relative the FRC centroid, as identified in Figure 3. The X-

point also intersects the Separatrix. 

Separatrix Elongation (𝐸 = 𝑍𝑠𝑒𝑝/2𝑅𝑠𝑒𝑝): the length-to-diameter ratio of the 

separatrix. Oblate FRCs have E < 1, and Prolate FRCs have E > 1 [3]. 

Axial Field Coil: coil actuators responsible for magnetically confining the FRC plasma 

(performing stabilisation and/or control) and keeping plasma away from the vacuum vessel 

walls. Axisymmetric coils are currently employed as shown in Figure 3. Refer Section 

1.2.2.2.a.i. for further detail. 

Nozzle Coil: coil actuators that act as magnetic mirrors to create strong restoring forces 

in the axial direction at the machine ends. They effectively reflect the FRC plasma back toward 
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the origin. The nozzle coil is responsible for producing a sufficiently deep “magnetic well” [6] 

about the origin to aid the stability of magnetically confined plasma. 

Scrape Off Layer (SOL): is the outer edge of the plasma. The SOL is a region of plasma 

characterised by open field lines i.e. it resides just outside the separatrix/LCFS. Its purpose is 

to the online removal of fusion by-products from the plasma core redirected for useful thrust 

whilst in operation. The SOL allows control over the build-up of fusion products and removes 

impurities in the plasma. 

 
Figure 4. Field-Reversed Configuration (FRC) Plasma Magnetic Flux Surfaces [4] 

1.2.2 DFD Actuators 

1.2.2.1 Coil Actuator Types 

Two types of coil actuators are employed on DFD and share the responsibility of 

magnetically confining the FRC plasma core, these are: 
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a) Powered Coils: These are electromagnetic (EM) copper coil actuators. EM coils 

have active control currents that produce a magnetic field based on coil geometry. 

b) Unpowered, Flux-Conserving Coils: These are superconducting (SC) coil actuators. 

SC coils do not have active control currents (as with EM coils), instead flux-

conserving currents are induced in the coil to counteract externally applied magnetic 

flux (such as flux introduced by existence of plasma / conducting fluid). Currents 

are induced at speed of light (assumed instantaneous, no time delay). 

1.2.2.2 Coil Actuator Geometry 

Two geometries/configurations are investigated for coil actuators on DFD: 

a) Axisymmetric Coils: for stabilisation/control of plasma axisymmetric modes (m=0). 

There are two axisymmetric coil arrangements considered for DFD axial field coils: 

i. Ellipsoidal Solenoid (Space Configuration): coil radii have an ellipsoidal 

profile per Figure 3. This provides a significant mass and size reduction in 

magnet hardware relative to a uniform solenoid. Ideal for spacecraft as 

magnet hardware constitutes almost a third of the total DFD mass [4]. 

ii. Uniform Solenoid (Terrestrial Configuration): coil radii are equal, as shown 

in Figure 1. Ideal for economic scaling due to ease of manufacture and cost 

savings (reduced complexity) relative to ellipsoidal solenoid. 

b) Saddle Coils: for stabilisation/control of non-axisymmetric modes (example: FRC 

plasma tilt mode (m=1, n=1), radial elongation mode (m=2)). Sometimes referred 

to as trim coils. 
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Figure 5. Saddle Coil Actuator [7] 

N.B. The actuator coils would also perform as a sensor, that is for pickup rather than 

for actuation, used for feedback control. For example, plasma centroid position may be 

estimated by inference from flux-conserving currents along superconducting coils. 

1.3 Commercial Background 

An overview of external stakeholders for this project are listed in Table 1: 

Table 1. Direct Fusion Drive (DFD) External Stakeholders 

Organisation Name Title 

Princeton Satellite 

Systems (PSS) 

Dr. Michael Paluszek PSS President 

Ms. Stephanie Thomas PSS Vice President 

DFD Principal Investigator 

Dr. Charles Swanson Chief Scientist 

Princeton Plasma 

Physics Lab (PPPL) 

Prof. Samuel A. Cohen Inventor of the PFRC reactor 

core employed on DFD 

 

This thesis (MAE299 research units) is funded by SPACEBUS Pty. Ltd. for purposes 

of training. The author had become acquainted with PSS through SPACE INDUSTRIES Pty. 

Ltd. who are developing technologies to extract helium-3 from lunar regolith. PSS has interest 

in the rare isotope helium-3 as an advanced fuel for the DFD and PFRC. 
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Chapter 2. Criteria for Verification of Numerical Results 

Table 2 outlines expected responses for FRC centroid position as theorised in [8] and 

[9], and based on experimental data/observations on the PFRC per consultation with PSS. 

These form criteria against which numerical results produced by this thesis will be verified 

qualitatively for the purpose of developing a tool for control design and systems analysis. 

Table 2. Qualitative Criteria for Verification of Numerical Results 

Case Perturbation Actuator Coil Expected Plasma Response 

1 Radial perturbation to 

FRC centroid position 

- Copper Electromagnet 

- Axisymmetric Coil 

- Constant Current 

 

Stable or bounded open-loop 

response in axial and radial 

position (for 𝐵v𝑧
 < 0) 

2 Axal perturbation to 

FRC centroid position 

- Copper Electromagnet 

- Axisymmetric Coil 

- Constant Current 

 

Unstable or unbounded open-

loop response in axial position 

(for 𝐵v𝑧
 < 0) 

3 3DOF perturbation to 

FRC centroid position 

- Superconductor 

- Axisymmetric Coil 

- Flux-conserving 

Current 

Unknown. 

 

Expecting stable/bounded radial 

and axial position. 

 

Expecting plasma position to be 

“locked” relative to SC coils 

(plasma flux completely 

counteracted by SC coils, hence 

resisting changes in FRC 

position) 

 

N.B. Position perturbations are relative to the origin.
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Chapter 3. Dynamical System Modelling of FRC Plasmas 

3.1 Reference Frame Definitions 

Let the Inertial Frame and FRC Plasma Body Frame be Cartesian Coordinate Systems 

defined in Figure 6. The Inertial Frame, labelled {I}, is located at the origin of the PFRC 

machine (see Figure 3). The Plasma Body Frame, labelled {B}, has origin at plasma centroid.  

The poloidal coordinate (𝜃), also defined in Figure 6, resides within the plasma x-z 

body plane (r-z plane in cylindrical coordinates), and the toroidal coordinate (𝜁) resides within 

the plasma x-y body plane (𝜙 in cylindrical coordinates). 

 
Figure 6. Definition of Inertial and Plasma Body Frames (Cartesian Coordinates) 

From Figure 6: 

{I} is inertial frame of reference. 

{B} is plasma body frame of reference. 

(𝜃, 𝜁) are poloidal and toroidal coordinates defined in the plasma body frame. 
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𝜉CEN
𝐼 = [𝑥CEN

𝐼   𝑦CEN
𝐼   𝑧CEN

𝐼 ] is FRC plasma centroid position in the inertial frame. 

(𝑥𝐶𝑖

𝐼 , 𝑧𝐶𝑖

𝐼 ) is the ith axisymmetric coil cross-section centroid in the Inertial frame. 

(∆𝑥𝐶 , ∆𝑧𝐶) is the coil’s radial and axial thickness. 

3.2 Modelling Electromagnetic Force on Plasma Element 

Using Magnetohydrodynamic (MHD) theory, the FRC plasma is modelled as an 

electrically conducting fluid consisting of charged particles (specifically two species, electrons 

and ions, differing significantly in mass and charge) moving through an external magnetic field. 

A comparison of plasma modelling techniques is provided in Figure 7 to illustrate the 

differences in complexity captured. This thesis focuses on “Plasma as a fluid”. 

 
Figure 7. Comparison Chart for Modelling Plasma [10] 

The FRC plasma is assumed to be a continuous charge distribution in motion (charge 

density 𝜌 moving with velocity 𝑣𝑞). Electromagnetic forces acting on a differential element of 

FRC plasma due to external electric field 𝐸⃗⃗ and magnetic field 𝐵⃗⃗ are given by the Lorentz 

force-density 𝑓𝐿 (per unit volume) as expressed in Equation (1) and illustrated in Figure 8. 

 𝑓𝐿  =  𝜌(𝐸⃗⃗ + 𝑣𝑞 × 𝐵⃗⃗) = 𝜌𝐸⃗⃗ + (𝜌𝑣𝑞 × 𝐵⃗⃗) = 𝑓𝐸 + 𝑓𝑀 (1) 
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Figure 8. Electromagnetic Forces Acting on a Plasma Element of (𝑑𝑞, 𝑑𝑉𝑝) 

The plasma current density 𝐽𝑝 associated with the moving charge distribution is: 

 𝐽𝑝  =  𝜌𝑣𝑞  (2) 

Given no electric fields act on the plasma (𝐸⃗⃗ = 0⃗⃗) and the plasma current from Equation 

(2), the net electromagnetic force 𝐹⃗𝐿 acting on the FRC plasma is found by integration of the 

force density in Equation (1) over the charge distribution (plasma volume 𝑉𝑝), as follows: 

 
𝐹⃗𝐿 = ∫𝑓𝐿 𝑑𝑉𝑝 = ∫𝐽𝑝 × 𝐵⃗⃗ 𝑑𝑉𝑝  (3) 
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3.3 Axisymmetric Assumption 

The FRC plasma is assumed to be axisymmetric about the z-axis per cylindrical 

coordinates in Figure 28. Thus, the spatial derivative with respect to this dimension: 

 𝜕

𝜕𝜙
= 0 (4) 

For example, FRC plasma toroidal current is invariant toroidally, thus 
𝜕𝐽𝑝

𝜕𝜙
= 0. 

3.4 (MHD Constraint 1) Momentum Equation for Plasma in Equilibrium 

The force balance for a FRC plasma, using EM force derived in Equation (3), is: 

 
𝑚𝑝

𝑑𝜉̇𝐶𝐸𝑁

𝑑𝑡
= ∫ 𝐽𝑝 × 𝐵⃗⃗𝑝 − ∇𝑝  𝑑𝑉𝑝 (5) 

Where 𝑚𝑝 is plasma mass, 𝜉𝐶𝐸𝑁  is plasma centroid position in the inertial frame, 𝐽𝑝 is 

plasma current density, 𝐵⃗⃗𝑝 is magnetic field acting on the plasma, 𝑝 is plasma pressure and 𝑉𝑝 

is plasma volume. 

The condition for equilibrium of the FRC plasma centroid position due to 𝑝 is 𝑑𝜉̇/𝑑𝑡 =

0 (given the FRC exhibits “macro-equilibrium” per [11]), resulting in the equilibrium equation: 

 ∇𝑝 = 𝐽𝑝 × 𝐵⃗⃗𝑝 (6) 

Thus, the magnetic forces acting within the plasma (Lorentz force 𝑓𝐿 = 𝐽𝑝 × 𝐵⃗⃗𝑝) must 

balance forces due to the plasma pressure ∇𝑝. Further, by scalar triple product: 

 ∇𝑝 = 𝐽𝑝 × 𝐵⃗⃗𝑝    ⟹     𝐵⃗⃗𝑝 ∙ ∇𝑝 = 𝐵⃗⃗𝑝 ∙ (𝐽𝑝 × 𝐵⃗⃗𝑝) = 𝐽𝑝 ∙ (𝐵⃗⃗𝑝 × 𝐵⃗⃗𝑝) = 0 

                                       𝐽𝑝 ∙ ∇𝑝 = 𝐽𝑝 ∙ (𝐽𝑝 × 𝐵⃗⃗𝑝) = 𝐵⃗⃗𝑝 ∙ (𝐽𝑝 × 𝐽𝑝) = 0 
(7) 

Thus, magnetic field (𝐵⃗⃗𝑝) and plasma current (𝐽𝑝) are perpendicular to pressure gradient 
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𝐵⃗⃗𝑝 ∙ ∇𝑝 = 0   ⟹     plasma pressure is constant along magnetic field lines 

Thus from Equation (7), to satisfy equilibrium conditions for FRC plasma centroid 

position, both the magnetic field (𝐵⃗⃗𝑝) and plasma current (𝐽𝜙) must lie on magnetic flux 

surfaces, as illustrated in Figure 9 for an isosurface of FRC plasma pressure (in the shape of a 

toroid). This is a similar situation for tokamak plasmas per pg.7 of [12].  

 
Figure 9. FRC Plasma Isosurface of Pressure and Force Balance 

In summary, per Figure 9, the toroidal electric current generated in the FRC plasma 

produces a poloidal magnetic field (due to Ampere’s law ∇ × 𝐵 = 𝜇0𝐽). The poloidal magnetic 

field and toroidal current generate an inward Lorentz force (𝐹⃗𝐿), and as previously established, 

this must be inward to counteract the outward magnetic pressure force per Equation (6). 
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3.5 (MHD Constraint 2) Gauss’s Law for Magnetism 

The FRC plasma does not exhibit magnetic field sources or sinks other than moving 

electric charges (the total plasma magnetic flux Φp penetrating a closed surface is zero), thus, 

Gauss’s Law for Magnetism holds: 

 Φ𝑝 = ∇ ∙ 𝐵⃗⃗𝑝 = 0 (8) 

Since 𝐵⃗⃗𝑝 is divergence-free, Poincare’s Theorem dictates there must exist a magnetic 

vector potential 𝐴 as follows (expressed in cylindrical coordinates per Equation (67)): 

 ∇ ∙ 𝐵⃗⃗𝑝 = 0     ⟹     ∃𝐴    s. t.    𝐵⃗⃗𝑝 = ∇ × 𝐴 (9) 

Given the FRC plasma is assumed axisymmetric per Equation (4) 
𝜕𝐴𝜙

𝜕𝜙
=

𝜕𝐴𝑟

𝜕𝜙
= 0, and 

curl in cylindrical coordinates is given per Equation (69), the net magnetic field in cylindrical 

coordinates is: 

 
𝐵⃗⃗𝑝 = ∇ × 𝐴  =  −

𝜕𝐴𝜙

𝜕𝑧
𝑒̂𝑟 + (

𝜕𝐴𝑟

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑟
) 𝑒̂𝜙 +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝐴𝜙)𝑒̂𝑧 (10) 

3.5.1 Poloidal Magnetic Field 

The poloidal component (defined in Section 3.1) of the magnetic field in Equation (10): 

 
𝐵⃗⃗𝜃 = −

𝜕𝐴𝜙

𝜕𝑧
𝑒̂𝑟 +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝐴𝜙)𝑒̂𝑧 

                 = −
1

𝑟

𝜕

𝜕𝑧
(𝑟𝐴𝜙)𝑒̂𝑟 +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝐴𝜙)𝑒̂𝑧 

(11) 

Poloidal magnetic field 𝐵⃗⃗𝜃 is shown to only be a function of toroidal potential 𝐴𝜙 

(independent of 𝐴𝑟 , 𝐴𝑧). Let the poloidal magnetic flux be defined as follows: 
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 𝜓 ≔ −𝑟𝐴𝜙 (12) 

Recalling the following relationship for cylindrical coordinate systems: 

 
∇𝜙 =

1

𝑟
𝑒̂𝜙 (13) 

Substituting Equation (12) and (13) into Equation (11), gives poloidal magnetic field: 

 
𝐵⃗⃗𝜃 = −

1

𝑟

𝜕𝜓

𝜕𝑧
𝑒̂𝑟 +

1

𝑟

𝜕𝜓

𝜕𝑟
𝑒̂𝑧 

                              =
1

𝑟

𝜕𝜓

𝜕𝑧
(𝑒̂𝑧 × 𝑒̂𝜙) +

1

𝑟

𝜕𝜓

𝜕𝑟
(𝑒̂𝑟 × 𝑒̂𝜙) 

                = (
1

𝑟

𝜕𝜓

𝜕𝑟
𝑒̂𝑟 +

1

𝑟

𝜕𝜓

𝜕𝑧
𝑒̂𝑧) × 𝑒̂𝜙 

             = (
𝜕𝜓

𝜕𝑟
𝑒̂𝑟 +

𝜕𝜓

𝜕𝑧
𝑒̂𝑧) ×

1

𝑟
𝑒̂𝜙 

= ∇𝜓 × ∇𝜙               (14) 

Where: ∇𝜓 = [
𝜕𝜓

𝜕𝑟
, 0,

𝜕𝜓

𝜕𝑧
]
T

 per Equation (4), is the poloidal magnetic flux gradient. 

Equation (14) and poloidal flux contours are illustrated in Figure 10 in the plasma body frame. 

 
Figure 10. Poloidal Magnetic Flux Contours in the Plasma Body Frame (r-z plane) 
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3.5.2 Toroidal Magnetic Field 

The toroidal component (defined in Section 3.1) of the magnetic field in Equation (10): 

 
𝐵⃗⃗𝜙 = (

𝜕𝐴𝑟

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑟
) 𝑒̂𝜙 = 𝐵𝜙𝑒̂𝜙 = (𝑟𝐵𝜙)

1

𝑟
𝑒̂𝜙 

(15) 

Let the toroidal magnetic flux be defined as follows: 

 𝑔 ≔ 𝑟𝐵𝜙 (16) 

Substituting Equation (13) and (16) into Equation (15), gives toroidal magnetic field: 

 𝐵⃗⃗𝜙 = 𝑔∇𝜙 (17) 

3.5.3 Total Plasma Magnetic Field 

The total magnetic field in Equation (10) is re-expressed using Equations (15) and (14): 

 𝐵⃗⃗𝑝 = 𝐵⃗⃗𝜃 + 𝐵⃗⃗𝜙 = ∇𝜓 × ∇𝜙 + 𝑔∇𝜙 (18) 

3.6 (MHD Constraint 3) Ampere’s Circuit Law 

The magnetic field associated with plasma current (𝐽𝑝) and changes in electric field (𝐸) 

is expressed using Ampere’s Law: 

 
∇ × 𝐵⃗⃗𝑝  =  𝜇0 (𝐽𝑝 + 𝜀0

𝜕𝐸

𝜕𝑡
) (19) 

Substituting Equation (18) and given 𝐸 = 0, the plasma current density is expressed as: 

 𝜇0𝐽𝑝 = ∇ × 𝐵⃗⃗𝑝 

                          = ∇ × (𝐵⃗⃗𝜃 + 𝐵⃗⃗𝜙) (20) 
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                              = ∇ × 𝐵⃗⃗𝜃 + ∇ × 𝐵⃗⃗𝜙 

3.6.1 Poloidal Current Density 

Expanding the current density term responsible for toroidal flux (𝐵⃗⃗𝜙) in Equation (20): 

 ∇ × 𝐵⃗⃗𝜙 = ∇ × (𝑔∇𝜙) 

             = 𝑔∇ × ∇𝜙 + ∇𝑔 × ∇𝜙    (product rule for multiplication by scalar) (21) 

Since ∇ × ∇𝜙 = 0⃗⃗, second derivative is zero, poloidal plasma current density is thus: 

 
𝐽𝜃 =

1

𝜇0
∇𝑔 × ∇𝜙 

(22) 

3.6.2 Toroidal Current Density 

Expanding the current density term responsible for poloidal flux (𝐵⃗⃗𝜃) in Equation (20): 

 ∇ × 𝐵⃗⃗𝜃 = ∇ × (∇𝜓 × ∇𝜙)                                                     

                                    = ∇𝜓(∇ ∙ ∇𝜙) − ∇𝜙(∇ ∙ ∇𝜓) + (∇𝜙 ∙ ∇)∇𝜓 − (∇𝜓 ∙ ∇)∇𝜙 

= −∇𝜙(∇ ∙ ∇𝜓)                                          (23) 

Since: 

(∇ ∙ ∇𝜙) = 0, divergence of field 𝑒̂𝜙 is zero. 

(∇𝜙 ∙ ∇) = 0, 
𝜕

𝜕𝜙
= 0 per Section 3.3 and Equation (13). 

(∇𝜓 ∙ ∇)∇𝜙 = 0⃗⃗, poloidal flux (𝜓) is expressed in r-z-coordinates, thus no 

derivative in toroidal direction. 
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The toroidal plasma current density is thus: 

 
𝐽𝜙 = −

1

𝜇0
∇𝜙(∇ ∙ ∇𝜓) 

(24) 

Equation (24) shows the electric current responsible for producing the poloidal 

magnetic field (𝐵⃗⃗𝜃) is purely toroidal (𝑒̂𝜙), consistent with assumptions held in Section 3.7 for 

FRC plasmas and illustrated in Figure 4. 

3.6.3 Total Plasma Current Density 

The total plasma current density is given by substituting Equations (22) and (24) into 

Equation (20): 

 𝜇0𝐽𝑝 = −∇𝜙(∇ ∙ ∇𝜓) + ∇𝑔 × ∇𝜙 (25) 
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3.7 Modelling Assumptions 

The following simplifying assumptions are applied for dynamical system modelling 

and stability analysis of the FRC plasma centroid position. Assumptions have been deemed 

applicable per [12] for tokamak plasmas, review of FRCs [3] and per consultation with PSS. 

1. FRC plasma mass (𝑚𝑝) is constant (plasma assumed to be closed system). 

2. Rigid-body FRC dynamics (neglecting high-order plasma dynamic modes). 

3. FRC separatrix shape (𝑅𝑠𝑒𝑝, 𝑍𝑠𝑒𝑝) in plasma body frame is time-invariant. 

4. FRC O-point position (magnetic axis) in plasma body frame is time-invariant. 

5. Plasma current density (𝑗𝑝) is time varying. 

6. Purely toroidal plasma current density, no poloidal current (𝑗𝑝 = 𝑗𝜙𝑒̂𝜙). 

7. Purely poloidal magnetic field, no toroidal magnetic field (𝐵⃗⃗𝑝 = 𝐵⃗⃗𝜃, 𝐵⃗⃗𝜙 = 0). 

8. Vacuum field (𝐵v) from copper-EM coils (not flux conserving) is time-invariant 

9. Ions carry the plasma mass, electrons carry plasma current (per MHD Figure 7) 

10. Flux-conserving currents induced in superconducting coils (axial field coils) are 

a function of plasma axial position only (radial position negligible effect). 

3.8 Modelling Separatrix Geometry 

Two separatrix shapes (elliptical and racetrack) are considered for prolate FRC plasmas 

(Elongation > 1), as shown in Figure 11. The assumption that the separatrix is time invariant 

per Section 3.7 applies only for FRCs exhibiting “macro-equilibrium” (plasma instabilities do 

not manifest, plasma pressure in-balance with EM forces, stable shape). 
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From experimental observations, prolate FRCs exhibit a separatrix shape closer 

resembling racetrack than elliptical. 

 

Figure 11. Characteristics of FRC Equilibria: Elliptical and Racetrack Separatrix Shapes [13] 

3.8.1 Standardised Separatrix Shape 

A Standardised Separatrix Shape is defined in Equation (26) providing an adequate 

analytical expression and least-square fit to a 'racetrack’ separatrix [13], and is compared in 

Figure 12. Thus, it has been selected for stability and dynamical system analysis. 

 
(

𝑟𝐵

𝑅𝑠𝑒𝑝
)

2

+ (
𝑧𝐵

0.5 ∙ 𝑍𝑠𝑒𝑝
)

2𝑚

= 1 (26) 

 
𝑚 ≅ 1.1

𝐸

𝑁𝑠𝑒𝑝
− 0.1 (27) 

Where 𝐸 is FRC elongation, (𝑟𝐵 , 𝑧𝐵) are radial and axial positions in plasma body frame 

per Section 3.1, (𝑅𝑠𝑒𝑝, 𝑍𝑠𝑒𝑝) are separatrix radius and length, exponent ‘𝑚’ characterises 

separatrix shape in the end-regions, and 𝑁𝑠𝑒𝑝 is separatrix shape index. 𝑁𝑠𝑒𝑝 = 1 (for ellipsoidal 

end-region, FRC ends are hemispheres of radius 𝑅𝑠𝑒𝑝) and 𝑁𝑠𝑒𝑝 = E (separatrix is pure ellipse). 
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Figure 12. Separatrix Shape Comparison 

3.8.2 Modelling FRC Plasma Volume 

The volume of a FRC plasma with separatrix shape defined by Equation (26) and (27), 

is derived as follows (i.e. volume integral for a surface of revolution): 

 
𝑉𝑝 = 2∫ ∫ ∫𝑟𝐵(𝑧𝐵)

2𝜋

0

0.5∙𝑍𝑠𝑒𝑝

0

d𝑟𝐵 d𝜙 d𝑧𝐵 

= 2∫ ∫
1

2
𝑟𝐵(𝑧𝐵)2

2𝜋

0

0.5∙𝑍𝑠𝑒𝑝

0

d𝜙 d𝑧𝐵   

Rearranging Equation (26) for 𝑟𝐵(𝑧𝐵) and substituting: 

                          = ∫ ∫ 𝑅𝑠𝑒𝑝
2 [1 − (

𝑧𝐵

0.5 ∙ 𝑍𝑠𝑒𝑝
)

2𝑚

]
2𝜋

0

0.5∙𝑍𝑠𝑒𝑝

0

d𝜙 d𝑧𝐵   

                    = ∫ 2𝜋 ∙ 𝑅𝑠𝑒𝑝
2 [1 − (

𝑧𝐵

0.5 ∙ 𝑍
)

2𝑚

]
0.5∙𝑍𝑠𝑒𝑝

0

d𝑧𝐵    
 

 
∴ 𝑉𝑝 =

2𝜋 ∙ 𝑅𝑠𝑒𝑝
2 ∙ 𝑍𝑠𝑒𝑝 ∙ 𝑚

(2𝑚 + 1)
                                       (28) 
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The FRC plasma volume is approximated as follows using Equations (27) and (28), 

𝑁𝑠𝑒𝑝 = 1 (race-track configuration), and separatrix dimensions specified per Table 5: 

 
𝑚 = 1.1 (

3

1
) − 0.1 = 3.2 

𝑉𝑝 =
2𝜋 ∙ 0.252 ∙ 1.5 ∙ 3.2

(2(3.2) + 1)
≅ 0.254724 m3 

(29) 

3.9 Modelling Plasma Current Density 

The FRC plasma is assumed to exhibit purely toroidal electric current (𝐽𝜃 = 0⃗⃗, zero 

poloidal current) resulting in a purely poloidal magnetic field/flux (𝐵𝜙 = 0, zero toroidal 

magnetic field) per assumptions in Section 3.7 and as shown in Figure 1 and Figure 4. Thus, 

the toroidal flux defined in Equation (16) becomes: 

 𝐵𝜙 = 0   ⟹    𝑔 = 0 (30) 

FRC plasma toroidal current density derived in Equation (22), reduces as assumed to: 

 𝑔 = 0  ⟹  𝐽𝜃 = 0⃗⃗ (31) 

FRC total magnetic field derived in Equation (18), reduces to a purely poloidal field: 

 𝑔 = 0  ⟹  𝐵⃗⃗ = 𝐵⃗⃗𝜃 = ∇𝜓 × ∇𝜙 (32) 

Given the equilibrium conditions derived in Equation (6) for a FRC plasma and 

assumptions in Equations (30), (31) and (32), FRC plasma pressure is derived per [14] to be: 

 
𝑝(𝜓) = 𝑝max (

𝜓𝑖 − 𝜓

𝜓𝑖 − 𝜓𝑎
)
1+𝛿

 (33) 
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Where 𝑝max  is plasma pressure at the magnetic axis (O-point), 𝜓𝑖 is poloidal flux at the 

separatrix (plasma-vacuum interface), 𝜓𝑎 is poloidal flux at the magnetic axis (O-point), 𝛿 is 

shape constant. Noting, FRC exhibits zero plasma pressure at the separatrix, 𝑝(𝜓𝑖) = 0, and 

maximum pressure at the magnetic axis/O-point, 𝑝(𝜓𝑎) = 𝑝max. 

The FRC plasma pressure defined in Equation (33) can be reduced to Equation (34), 

given FRC separatrix shape and O-point are assumed time invariant per Section 3.7, thus 

relative distances between plasma-vacuum interface and magnetic axis are assumed constant: 

 
𝑝(𝜓) = 𝑝max (

𝜓

𝜓max
)
1+𝛿

 (34) 

Note: recalling plasma pressure to be proportional to magnetic field quadratically 

(𝑝 ~ 𝐵2/2𝜇0), however, proportional to magnetic flux 𝜓 linearly as shown in Equation (34). 

FRC plasma current density is defined in terms of plasma pressure 𝑝 as follows [15]: 

 
𝑗𝑝(𝑟𝐵) = 𝑟𝐵

𝜕𝑝

𝜕𝜓
 

(35) 

FRC plasma current density is then derived using Equations (34) and (35) as follows: 

 
𝑗𝑝(𝑟𝐵) = 𝑟𝐵(1 + 𝛿)𝑝max

𝜓𝛿

𝜓max
1+𝛿

∈ ℝ1 
(36) 

This derivation for FRC plasma current is Solov’ev’s Rigid-Rotor Model (RRM), 

where plasma current density is linear with respect to radial position in plasma body frame 𝑟𝐵. 

Given the FRC is assumed to be in “macro-equilibrium” (plasma instabilities do not manifest, 

plasma pressure in-balance with EM forces, stable shape) poloidal flux and plasma current are 

assumed time-invariant, hence, plasma current could be reduced to the expression 𝑗𝑝 = 𝑎𝑗𝑟
𝐵 . 
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Given FRC plasma current density is purely toroidal, the vector form is: 

 𝑗𝑝 = 𝑗𝑝𝑒̂𝜙 (37) 

An alternate form of Solov’ev’s RRM for plasma current density (derived in Equation 

(36)) is given in [16] as follows, and plotted in Figure 13 for various FRC Elongations: 

 
𝑗𝑝(𝑟𝐵) = 𝑟𝐵

𝐵max

𝜇0𝑅𝑠𝑒𝑝
2

(4 +
1

𝐸2
) ∈ ℝ1 

(38) 

Where 𝐵max is maximum field strength at the separatrix along the FRC midplane and 

𝑅𝑠𝑒𝑝, 𝐸 are separatrix shape parameters per Table 5. 

Thus, FRC plasma current 𝐽𝑝 for a toroidal differential element (𝑑𝐴 = d𝑟𝐵d𝑧𝐵) is as 

follows, where current density 𝑗𝑝 can be per Equation (36) or (38): 

 𝐽𝑝(𝑟𝐵) = 𝑗𝑝(d𝑟𝐵d𝑧𝐵)𝑒̂𝜙 ∈ ℝ3×1 (39) 

 
Figure 13. FRC Plasma Current Density, Solov’ev Rigid Rotor Model (RRM) 
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3.10 Discretisation of Plasma Electric Circuits 

Given electrons in the FRC plasma are assumed to carry all the electric current and this 

current is assumed purely toroidal per Section 3.7, two circuit discretisations are considered: 

a) Plasma Current Carrying Coils: plasma is modelled as a set of current carrying 

coils running toroidally per Figure 14.a, where plasma coil “𝑗” has radius 𝑟𝑃𝐶𝑗

𝐵 , 

axial position 𝑧𝑃𝐶𝑗

𝐵  (in plasma body frame), current 𝐽𝑃𝐶𝑗
 and cross-sectional area 

𝑑𝐴 = ∆𝑟𝑝∆𝑧𝑝. This is used to model electrical interactions between FRC 

plasma coils and actuator coil circuits (see Section 1.2.2.1.b). 

b) Plasma Volume Elements: plasma is modelled as differential volume elements 

as shown in Figure 14.b with volume 𝑑𝑉 = 𝑟𝐵d𝑟𝐵d𝜙d𝑧𝐵, centroid position 

(𝑟𝐵 , 𝜙, 𝑧𝐵) and current 𝐽𝑝 acting toroidally at the element centroid. This is used 

to simulate EM forces acting on plasma elements, and hence total body. 

 
Figure 14. FRC Plasma Discretisation: a) Current Carrying Circuits, b) Volume Elements 
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3.11 Modelling Mutual Inductance Between Coils 

The mutual inductance between two coaxial coils of radius and z-position (𝑟1, 𝑧1) and 

(𝑟2, 𝑧2), with constant-current are given by assuming Maxwell Coils per [17] as follows: 

Elliptic Modulus: 

 

𝑘 = 2√
𝑟1𝑟2

(𝑧2 − 𝑧1)2 + (𝑟2 + 𝑟1)2
          where:  𝑘2 ∈ (0,1) (40) 

Complete Elliptic Integral of 1st kind: 

 
𝐾𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 = ∫ (1 − 𝑘2 sin2 𝜃)−

1
2 𝑑𝜃

𝜋
2

0

 

                                 = ∫
1

(1 − 𝑡2)(1 − 𝑘2𝑡2)
 𝑑𝑡

1

0

 

(41)  

Complete Elliptic Integral of 2nd kind: 

 
𝐸𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 = ∫ (1 − 𝑘2 sin2 𝜃)

1
2 𝑑𝜃

𝜋
2

0

 

                  = ∫
√1 − 𝑘2𝑡2

√1 − 𝑡2
𝑑𝑡

1

0

 

(42)  

Thus, the mutual inductance between coils 1 and 2 is given by the elliptic integral: 

 
𝑀1,2 =

2𝜇0√𝑟1𝑟2
𝑘

[(1 −
1

2
𝑘2)𝐾𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 + 𝐸𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐] ∈ ℝ1 (43)  

3.11.1 Modelling Mutual Inductance Between Coil Actuators and FRC Plasma 

Given axial field coils in Figure 3 are superconducting (overview in Section 1.2.2.1.b), 

flux-conserving currents (induced by plasma flux) are assumed to be a function of only plasma 
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axial-position (per Section 3.7), superconducting coils are coaxial, have constant current and 

rectangular cross-section, and plasma discretisation per Section 3.10.a); therefore, plasma coils 

and actuator coils can be modelled as Maxwell Coils (similar to [18]) and Equation (43) applies. 

Given: 

𝑟𝐶i
  radius of axial field coil ‘𝑖’ per Figure 6. 

𝑧𝐶i

𝐼   axial position of axial field coil ‘𝑖’ in inertial frame per Figure 6. 

𝑟𝑃𝐶𝑗
  radius of plasma coil “𝑗” per Figure 14.a. 

𝑧𝑃𝐶𝑗

𝐵   axial position of plasma coil “𝑗” in plasma body frame per Figure 14.a. 

𝑧𝐶𝐸𝑁
𝐼   axial position of FRC plasma centroid in inertial frame per Figure 6. 

𝑁𝐶   the number of superconducting coils. 

𝑁𝑃𝐶  the number of plasma coils (plasma body discretised into 𝑁𝑝 coils). 

For Equations (40) to (43), Let: 

Coil 1: (𝑟1, 𝑧1) ≔ (𝑟𝐶i
, 𝑧𝐶i

𝐼 )      superconducting coil “𝑖” 

Coil 2: (𝑟2, 𝑧2) ≔ (𝑟𝑃𝐶𝑗
, 𝑧𝐶𝐸𝑁

𝐼 + 𝑧𝑃𝐶𝑗

𝐵 )    plasma coil “𝑗” 

The mutual inductance between axial field coil “𝑖” and plasma coil “𝑗” is thus given by: 

 
𝑀𝐶𝑖,𝑃𝐶𝑗

=
2𝜇0√𝑟𝐶𝑖

𝑟𝑃𝐶𝑗

𝑘
[(1 −

1

2
𝑘2)𝐾𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 + 𝐸𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐] ∈ ℝ1 

where:  𝑖 ∈ {1,… , 𝑁𝐶},   𝑗 ∈ {1, … ,𝑁𝑃𝐶} 

(44)  
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The mutual inductance between all superconducting coils and plasma coils given by 

Equation (44) is expressed in compact notation as follows (i.e. ∀𝑖, 𝑗): 

 𝑀⃗⃗⃗𝐶,𝑃𝐶 ∈ ℝ𝑁𝐶×𝑁𝑃𝐶  (45)  

N.B. mutual inductance in Equation (44) is deemed appropriate for numerical 

simulation and analysis, however, it is not closed (analytical) form due to elliptic integrals and 

thus inadequate for stability analysis. Mutual inductance can be approximated through methods 

outlined in [19] to convert to analytical form, this is captured in Chapter 7.2 as future work. 

3.11.2 Modelling Mutual Inductance of Coil Actuators 

The mutual inductance between superconducting coils “𝑖” and “𝑗” is given by Equations 

(40) to (43). Noting, mutual inductance exhibits the following symmetry: 

 M𝐶𝑖,𝐶𝑗
= M𝐶𝑗,𝐶𝑖

   ∀𝑖, 𝑗 ∈ {1,… , 𝑁𝐶}    ⟹   𝑀⃗⃗⃗𝐶,𝐶 = 𝑀⃗⃗⃗𝐶,𝐶
𝑇  (46)  

Thus, the mutual inductance matrix of superconducting coils is square symmetric: 

 𝑀⃗⃗⃗𝐶,𝐶 = {𝑋⃗ ∈ ℝ𝑁𝐶×𝑁𝐶  |  𝑋⃗ = 𝑋⃗𝑇} (47)  

Where elements: 

𝑖 = 𝑗 (diagonal entries) is the self-inductance of superconducting coil “𝑖" 

𝑖 ≠ 𝑗 is the mutual inductance between superconducting coils “𝑖" and “𝑗" 

3.11.3 Modelling Self-Inductance of Coil Actuators 

The self-inductance of superconducting axial field coils in Figure 3 is found by setting 

coils 1 and 2 to be equal in Equations (40) to (43). For example, Let: (𝑟1, 𝑧1) = (𝑟2, 𝑧2) =

(𝑟𝐶i
, 𝑧𝐶i

𝐼 ) for superconducting coil “𝑖”. 
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3.12 Modelling Magnetic Flux through Superconducting Coils due to FRC Plasma 

The magnetic flux through each superconducting coil due to electric currents in the 

FRC plasma is given in compact notation as: 

 Φ⃗⃗⃗⃗𝐶,𝑃𝐶 = 𝑀⃗⃗⃗𝐶,𝑃𝐶  𝐽𝑃𝐶  (48)  

Where: 

Φ⃗⃗⃗⃗𝐶,𝑃𝐶 ∈ ℝ𝑁𝐶×1 magnetic flux (Wb) through each superconducting coil due to plasma. 

𝑀⃗⃗⃗𝐶,𝑃𝐶 ∈ ℝ𝑁𝐶×𝑁𝑃𝐶  is mutual inductance matrix (H) between all superconducting coils 

and plasma coils per Equation (45). 

𝐽𝑃𝐶 ∈ ℝ𝑁𝑃𝐶×1 is the electric current (A) through each of the 𝑁𝑃𝐶 plasma coils. 

For example, the magnetic flux through superconducting coil “𝑖” due to the entire FRC 

plasma is given by ith row of Equation (48) with 𝑀⃗⃗⃗𝐶𝑖,𝑃𝐶 ∈ ℝ1×𝑁𝑃𝐶 given by ith row of Equation 

(45) as follows: 

 Φ𝐶𝑖,𝑃𝐶 = 𝑀⃗⃗⃗𝐶𝑖,𝑃𝐶  𝐽𝑃𝐶 ∈ ℝ1        𝑖 ∈ {1,… , 𝑁𝐶} (49)  

N.B. Biot-Savart law can be employed as an alternative for more complex actuator 

circuit geometries and magnetic field topologies (non-coaxial coils such as saddle coils). This 

is captured in Chapter 7 as future work. Magnetic flux formulation is currently deemed 

adequate for stability analysis of coaxial coils and significantly faster for simulation. 

3.13 Modelling Flux-Conserving (FC) Currents through Superconducting Coils 

The magnetic flux through superconducting coils is required to be zero due to flux 

conservation (refer Section 1.2.2.1.b).  
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The flux conserving electric current in superconducting coils required to counteract 

plasma flux is derived as follows: 

 Φ⃗⃗⃗⃗𝐶,𝑃𝐶 = 𝑀⃗⃗⃗𝐶,𝐶  𝐼𝐹𝐶  

          𝐼𝐹𝐶 = 𝑀⃗⃗⃗𝐶,𝐶
−1  Φ⃗⃗⃗⃗𝐶,𝑃𝐶 (50) 

Where: 

𝐼𝐹𝐶 ∈ ℝ𝑁𝐶×1 is flux-conserving current (A) through each superconducting coil. 

𝑀⃗⃗⃗𝐶,𝐶 ∈ ℝ𝑁𝐶×𝑁𝐶  is mutual inductance matrix (H) of SC coils, per Section 3.11.2. 

Φ⃗⃗⃗⃗𝐶,𝑃𝐶  is the magnetic flux (Wb) through SC coils due to plasma, per Equation (63). 

Thus, the superconducting coil currents induced due to plasma magnetic flux is given 

by subtracting FC current per Equation (50) (thus rationale for minus sign): 

 𝐼𝐶 = 𝐼FC̅̅ ̅̅ − 𝐼𝐹𝐶  

                    = 𝐼FC̅̅ ̅̅ − 𝑀⃗⃗⃗𝐶,𝐶
−1  Φ⃗⃗⃗⃗𝐶,𝑃𝐶  (51) 

Where: 

𝐼𝐶 ∈ ℝ𝑁𝐶×1 is total electric current (A) through each superconducting coil. 

𝐼𝐹𝐶 ∈ ℝ𝑁𝐶×1 is flux-conserving current (A) through each superconducting coil. 

𝐼FC̅̅ ̅̅ ∈ ℝ𝑁𝐶×1 is non-FC electric current (A) through each superconducting coil. 

𝑀⃗⃗⃗𝐶,𝐶 ∈ ℝ𝑁𝐶×𝑁𝐶  is mutual inductance matrix (H) of SC coils, per Section 3.11.2. 

Φ⃗⃗⃗⃗𝐶,𝑃𝐶  is the magnetic flux (Wb) through SC coils due to plasma, per Equation (63). 

N.B. Flux conserving currents are only a function of FRC axial-pos. per Section 3.7. 
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3.14 Modelling Magnetic Flux through FRC Plasma due to Superconductor Currents 

The magnetic flux through the FRC plasma due to superconducting coil currents (flux 

conserving currents) is given in compact notation as: 

 Φ⃗⃗⃗⃗𝑃𝐶,𝐶 = 𝑀⃗⃗⃗𝑃𝐶,𝐶  𝐼𝐶  (52)  

Where: 

Φ⃗⃗⃗⃗𝑃𝐶,𝐶 ∈ ℝ𝑁𝑃𝐶×1 is magnetic flux (Wb) through each plasma coil due to SC coil currents 

𝑀⃗⃗⃗𝑃𝐶,𝐶 = 𝑀⃗⃗⃗𝐶,𝑃𝐶
T ∈ ℝ𝑁𝑃𝐶×𝑁𝐶  is mutual inductance matrix (H) b/w plasma and SC coils 

𝐼𝐶 ∈ ℝ𝑁𝐶×1 is total electric current (A) through each superconducting coil. 

N.B. Flux Φ⃗⃗⃗⃗𝑃𝐶,𝐶  acts at the centre of plasma coils. 

The radial and axial magnetic field through the FRC plasma due to superconducting 

coil currents is given by: 

 𝐵⃗⃗𝐶𝑟
= Φ⃗⃗⃗⃗𝑃𝐶,𝐶  𝑆𝑟 

𝐵⃗⃗𝐶𝑧
= Φ⃗⃗⃗⃗𝑃𝐶,𝐶  𝑆𝑧 

(53)  

Where: 

𝐵⃗⃗𝐶𝑟
, 𝐵⃗⃗𝐶𝑧

∈ ℝ𝑁𝑃𝐶×1 is magnetic field (T) acting on FRC plasma due to SC coil currents. 

𝑆𝑟 , 𝑆𝑧 radial and axial spatial derivatives computed by a finite element grid solver [20]. 

3.15 Modelling Total External Magnetic Field 

The total external magnetic field acting on the FRC plasma comprises of two 

components (summarised in Table 3): a vacuum field component 𝐵⃗⃗v
𝐼 (assumed time-invariant 

per Section 3.7, due to constant-current copper EM coil, exists if plasma was removed), and 
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flux-conserving field component 𝐵⃗⃗𝐶
𝐼  (time-varying per Section 3.7, due to superconducting 

coils and axial-position of the FRC 𝑧CEN
𝐼 ) per Equation (53), given as follows in inertial frame: 

 𝐵𝑟
𝐼 = 𝐵v𝑟

𝐼 + 𝐵𝐶𝑟

𝐼  

𝐵𝑧
𝐼 = 𝐵v𝑧

𝐼 + 𝐵𝐶𝑧

𝐼  

𝐵⃗⃗𝐼 = 𝐵⃗⃗v
𝐼 + 𝐵⃗⃗𝐶

I = [
𝐵𝑟

𝐼

0
𝐵𝑧

𝐼
] ∈ ℝ3×1 

(54)  

N.B. The radial vacuum field 𝐵v𝑟
𝐼  exhibits sign-reversal about the machine midplane 

(inertial z-axis) as follows: 

 𝐵v𝑟
𝐼 < 0   for  𝑧𝐼 > 0    (negative vacuum field, right of PFRC midplane) 

𝐵v𝑟
𝐼 > 0   for  𝑧𝐼 < 0       (positive vacuum field, left of PFRC midplane) 

(55)  

Table 3. Dependency of Magnetic Field Components on FRC Perturbations 

Magnetic Field Component Type of FRC Pos. Perturbation Field Impact 

Vacuum Field (𝑩𝐯
𝑰 ) 

(EM coils) 

Any perturbation (radial or axial) 

No Variation 

Flux-Conserving Field (𝑩𝑪
𝑰 ) 

(SC coils) 

No Axial Perturbation 

Axial Perturbation Recompute 

 

3.16 Modelling FRC Plasma Centroid Position 

Let the state vector for the FRC plasma model be as follows and illustrated in Figure 6: 

 

𝑥⃗ = [
𝜉CEN

𝐼

𝜉
̇
CEN
𝐼

] =

[
 
 
 
 
 
 
𝑥CEN

𝐼

𝑦CEN
𝐼

𝑧CEN
𝐼

𝑥̇CEN
𝐼

𝑦̇CEN
𝐼

𝑧̇CEN
𝐼 ]

 
 
 
 
 
 

∈ ℝ6×1 (56)  

Where: 

𝜉CEN
𝐼 = [𝑥CEN

𝐼  𝑦CEN
𝐼  𝑧CEN

𝐼 ]T ∈ ℝ3×1 is the FRC centroid position in inertial frame. 
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𝜉
̇
CEN
𝐼 = [𝑥̇CEN

𝐼  𝑦̇CEN
𝐼  𝑧̇CEN

𝐼 ]T ∈ ℝ3×1 is the FRC centroid velocity in inertial frame. 

The net force acting on the FRC plasma centroid is given as follows, provided that the 

FRC plasma is “self-consistent” (plasma poloidal magnetic field is balanced with plasma 

pressure per Equation (6)), assuming a rigid-body plasma per Section 3.7, plasma current given 

by Equation (39) and external magnetic field given by Equation (54): 

 

𝐹⃗CEN = 𝑚𝑝

𝑑𝜉
̇
𝐶𝐸𝑁
𝐼

𝑑𝑡
= ∫ 𝐽𝑝 × 𝐵⃗⃗𝐼  𝑑𝑉𝑝 (57) 

The differential volume element 𝑑𝑉𝑝 in cylindrical coordinates per Equation (66) gives: 

 

𝐹⃗CEN = 𝑚𝑝

𝑑𝜉
̇
𝐶𝐸𝑁
𝐼

𝑑𝑡
= ∫ ∫ ∫ (𝐽𝑝 × 𝐵⃗⃗𝐼)

𝑟𝑠𝑒𝑝
𝐵 (𝑧𝐵)

0

2𝜋

0

1
2
𝑍𝑠𝑒𝑝

−
1
2
𝑍𝑠𝑒𝑝

 𝑟𝐵d𝑟𝐵d𝜙d𝑧𝐵 (58) 

Given Equation (58) is not a closed-form expression (due to mutual inductances 𝑀⃗⃗⃗𝑃𝐶,𝐶  

and 𝑀⃗⃗⃗𝐶,𝐶  in the magnetic field term 𝐵⃗⃗𝐼) the net Lorentz force is numerically integrated over a 

discretised volume. The FRC plasma is discretised by differential volume elements outlined in 

Section 3.10.b) and illustrated in Figure 14.b. The position of a plasma volume element is given 

in inertial frame as: 

 

𝜉𝑝
𝐼 = 𝜉𝐶𝐸𝑁

𝐼 + 𝜉𝑝
𝐵 = [

𝑥𝑝
𝐼

𝑦𝑝
𝐼

𝑧𝑝
𝐼

] (59) 

Where 𝜉𝑝
𝐵  is the position of a volume element’s centroid, in plasma body frame (this is 

treated as a model parameter). Let the xy-position (radial position) of a plasma element in 

inertial frame and its unit vector be denoted as: 
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𝜉𝑝𝑥𝑦
𝐼 = [

𝑥𝑝
𝐼

𝑦𝑝
𝐼] ∈ ℝ2×1               𝜉𝑝𝑥𝑦

𝐼 =
𝜉𝑝𝑥𝑦

𝐼

‖𝜉𝑝𝑥𝑦
𝐼 ‖

 (60) 

The direction vector 𝜉𝑝𝑥𝑦
𝐼  is used to apply the radial component of external magnetic 

field 𝐵𝑟
𝐼 to compute the Lorentz force on a plasma differential volume element as follows: 

 𝐵⃗⃗𝑥𝑦
I = 𝐵𝑟

𝐼𝜉𝑝𝑥𝑦
𝐼  (61) 

The net magnetic field acting on a plasma differential volume element “𝑖” is thus: 

 
𝐵⃗⃗𝑖 = [

𝐵⃗⃗𝑥𝑦
𝐼

𝐵⃗⃗𝑧
𝐼
] ∈ ℝ3×1 

(62) 

 

3.17 Modelling Plasma Inertial Mass 

Given time invariant separatrix shape and rigid-body plasma dynamics per simplifying 

assumptions in Section 3.7, the FRC plasma mass (mass of all particles) is expressed as: 

 
𝑚𝑝 = ∫

𝑛𝑝𝑀𝑝

𝑁𝐴
𝑑𝑉𝑝 ≅

𝑛𝑝𝑀𝑝

𝑁𝐴
𝑉𝑝 (63) 

Given chemical properties specified per Table 6, FRC plasma volume (𝑉𝑝) per Equation 

(29) assuming a racetrack separatrix shape (illustrated in Figure 11), FRC plasma mass is thus 

approximated as: 

 

𝑚𝑝 ≅
4 × 1020 |

ions
m3 | ∙ 2.5 × 10−3 |

kg
mol|

6.022 × 1023 |
ions
mol

|
∙ 0.25472 |m3| ≅ 4.2299 × 10−7 kg (64) 

N.B. the fuel ratio D:He3 remains an open area of study, with 1:3 being considered the 

best candidate thus far [11] and impacts plasma molar mass (𝑀𝑝) and number density (𝑛𝑝). 
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Chapter 4. Dynamical System Model Overview 

4.1 Overview of Model Equations 

An overview of the dynamical system model derived in this Thesis for the FRC plasma 

centroid position is provided in Table 4 with assumptions listed in Section 3.7. References to 

derivations are included, along with identification of state variables and parameters. 

Table 4. Overview of Dynamical System Model 

Dynamics Description Var. Param. Dynamics Equation Ref. 

Plasma Separatrix Shape 

(𝑟𝐵 , 𝑧𝐵) 

 

Separatrix Shape 

Exponent (𝑚) 

𝑟𝐵 

𝑧𝐵 

 

𝑅𝑠𝑒𝑝 

𝑍𝑠𝑒𝑝 

𝑁𝑠𝑒𝑝 

𝐸 

 

(
𝑟𝐵

𝑅𝑠𝑒𝑝
)

2

+ (
𝑧𝐵

𝑍𝑠𝑒𝑝
)

2𝑚

= 1 

 

𝑚 ≅ 1.1
𝐸

𝑁𝑠𝑒𝑝
− 0.1 

 

(26) 

 

 

(27) 

Plasma Volume (𝑉𝑝) - 𝑅𝑠𝑒𝑝 

𝑍𝑠𝑒𝑝 

 

𝑉𝑝 =
2𝜋 ∙ 𝑅𝑠𝑒𝑝

2 ∙ 𝑍𝑠𝑒𝑝 ∙ 𝑚

(2𝑚 + 1)
 

 

(28) 

Plasma Mass (𝑚𝑝) - 𝑀𝑝 

𝑛𝑝 

𝑁𝐴 

 

𝑚𝑝 = ∫
𝑛𝑝𝑀𝑝

𝑁𝐴
𝑑𝑉𝑝 ≅

𝑛𝑝𝑀𝑝

𝑁𝐴
𝑉𝑝 

 

(63) 

Plasma Pressure (𝑃) - 𝛿 

𝜓 

𝜓max 

𝑃max 

 

𝑃(𝜓) = 𝑃max (
𝜓

𝜓max
)
1+𝛿

 

 

(34) 

Plasma Current Density 

(𝑗𝑝) 
𝑟𝐵 𝛿 

𝜓 

𝜓max 

𝑃max 

 

𝑗𝑝 = 𝑟𝐵(1 + 𝛿)𝑃max

𝜓𝛿

𝜓max
1+𝛿

 

 

𝑗𝑝 = 𝑗𝑝𝑒̂𝜙 

 

(36) 

 

 

(37) 

Plasma Current (𝐽𝑝) 𝑟𝐵 -  

𝐽𝑝 = 𝑗𝑝(d𝑟𝐵d𝑧𝐵)𝑒̂𝜙 

 

(39) 

Mutual inductance 

between Coaxial Coils 1 

and 2 (𝑀1,2) 

 

- -  

𝑀1,2 =
2𝜇0√𝑟1𝑟2

𝑘
[(1 −

1

2
𝑘2)𝐾𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 + 𝐸𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐] 

 

(43) 
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Table 4. Overview of Dynamical System Model, Continued 

Dynamics Description Var. Param. Dynamics Equation Ref. 

Elliptic Modulus (𝑘) 

 

Complete Elliptic 

Integral of 1st & 2nd kind 

(𝐾𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 , 𝐸𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐) 

 

- -  

𝑘 = 2√
𝑟1𝑟2

(𝑧2 − 𝑧1)2 + (𝑟2 + 𝑟1)2
 

 

𝐾𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 = ∫
1

(1 − 𝑡2)(1 − 𝑘2𝑡2)
 𝑑𝑡

1

0

 

 

𝐸𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 = ∫
√1 − 𝑘2𝑡2

√1 − 𝑡2
𝑑𝑡

1

0

 

 

 

 

(40) 
 

 

 

 

(41) 

 

 

(42) 

 

Mutual Inductance b/w 

Superconducting Coils 

and FRC Plasma (𝑀⃗⃗⃗𝐶,𝑃𝐶) 

𝑧CEN
𝐼  𝜇0 

𝑟𝐶𝑖
 

𝑧𝐶𝑖
 

𝑟𝑃𝐶𝑗
 

𝑧𝑃𝐶𝑖
 

 

 

𝑀𝐶𝑖 ,𝑃𝐶𝑗
=

2𝜇0√𝑟𝐶𝑖
𝑟𝑃𝐶𝑗

𝑘
[(1 −

1

2
𝑘2)𝐾𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 + 𝐸𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐] 

where:  𝑖 ∈ {1,… ,𝑁𝐶},   𝑗 ∈ {1,… ,𝑁𝑃𝐶} 
 

𝑀⃗⃗⃗𝐶,𝑃𝐶 ∈ ℝ𝑁𝐶×𝑁𝑃𝐶  

 

 

(44) 

 

 

 

(45) 

 

Mutual Inductance of 

Superconducting coils 

(𝑀⃗⃗⃗𝐶,𝐶) 

- -  

𝑀⃗⃗⃗𝐶,𝐶 = {𝑋⃗ ∈ ℝ𝑁𝐶×𝑁𝐶  |  𝑋⃗ = 𝑋⃗𝑇} 
3.11.

2 
 

(47) 

FRC Plasma Magnetic 

Flux through 

Superconducting Coil 

(Φ⃗⃗⃗⃗𝐶,𝑃𝐶) 

𝑧CEN
𝐼  -  

Φ⃗⃗⃗⃗𝐶,𝑃𝐶 = 𝑀⃗⃗⃗𝐶,𝑃𝐶  𝐽𝑃𝐶  

 
(48) 

Superconducting Flux-

Conserving Current (𝐼𝐹𝐶) 

𝑧CEN
𝐼  -  

𝐼𝐹𝐶 = 𝑀⃗⃗⃗𝐶,𝐶
−1  Φ⃗⃗⃗⃗𝐶,𝑃𝐶  

 

(50) 

Superconducting Total 

Coil Current (𝐼C) 

𝑧CEN
𝐼  -  

𝐼C = 𝐼FC̅̅ ̅̅ − 𝐼𝐹𝐶  

 

(51) 

Superconducting Coil 

Magnetic Flux through 

FRC Plasma (Φ⃗⃗⃗⃗𝑃𝐶,𝐶) 

𝑧CEN
𝐼  -  

Φ⃗⃗⃗⃗𝑃𝐶,𝐶 = 𝑀⃗⃗⃗𝐶,𝑃𝐶
T  𝐼𝐶  

 

(52) 

Superconducting Coil 

Magnetic Field through 

FRC Plasma (𝐵⃗⃗𝐶𝑟
, 𝐵⃗⃗𝐶𝑧

) 

𝑧CEN
𝐼  𝑆𝑟 

𝑆𝑧 

 

𝐵⃗⃗𝐶𝑟
= Φ⃗⃗⃗⃗𝑃𝐶,𝐶  𝑆𝑟 

𝐵⃗⃗𝐶𝑧
= Φ⃗⃗⃗⃗𝑃𝐶,𝐶  𝑆𝑧 

 

(53) 

Total External Magnetic 

Field in Inertial Frame 

(𝐵⃗⃗𝐼) 

𝑧CEN
𝐼  -  

𝐵𝑟
𝐼 = 𝐵v𝑟

+ 𝐵𝐶𝑟
 

𝐵𝑧
𝐼 = 𝐵v𝑧

+ 𝐵𝐶𝑧
 

𝐵⃗⃗𝐼 = [𝐵𝑟
𝐼 , 0, 𝐵𝑧

𝐼]T 

 

(54) 
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Table 4. Overview of Dynamical System Model, Continued 

Dynamics Description Var. Param. Dynamics Equation Ref. 

Resultant Force on FRC 

Plasma Centroid (𝐹⃗𝐶𝐸𝑁) 

𝑥CEN
𝐼  

𝑦CEN
𝐼  

𝑧CEN
𝐼  

𝑚𝑝 

𝑅𝑠𝑒𝑝 

𝑍𝑠𝑒𝑝 

 

𝐹⃗𝐶𝐸𝑁 = 𝑚𝑝

𝑑𝜉
̇
𝐶𝐸𝑁
𝐼

𝑑𝑡
 

= ∫ ∫ ∫ (𝐽𝑝 × 𝐵⃗⃗𝐼)
𝑟𝑠𝑒𝑝
𝐵 (𝑧𝐵)

0

2𝜋

0

1
2
𝑍𝑠𝑒𝑝

−
1
2
𝑍𝑠𝑒𝑝

 𝑟𝐵d𝑟𝐵d𝜙d𝑧𝐵 

 

(58) 

State Vector (𝑥⃗) - - 
 

𝑥⃗ = [
𝜉CEN

𝐼

𝜉
̇
CEN
𝐼

] ∈ ℝ6×1 

 

= [𝑥CEN
𝐼 , 𝑦CEN

𝐼 , 𝑧CEN
𝐼 , 𝑥̇CEN

𝐼 , 𝑦̇CEN
𝐼 , 𝑧̇CEN

𝐼 ]T 

 

(56) 

 

Plasma parameters identified in this model are considered time-invariant per Section 

3.7, whereby the FRC plasma is assumed to maintain equilibrium conditions per Equation (6). 

Important Note: notice magnetic field/flux terms 𝐵⃗⃗, Φ⃗⃗⃗⃗ and mutual inductance terms 𝑀⃗⃗⃗𝐶,𝑃𝐶  are 

dependent only on plasma axial position (𝑧CEN
𝐼 ) for the given coaxial coil configuration. 

4.2 Dynamical System Model Parameters 

System parameters are provided in Table 5 and Table 6, and are specified by PSS for a 

PFRC reactor configuration scaled for 1-10 MW power output. 

Table 5. Direct Fusion Drive (DFD) and FRC Parameters 

Variable / Parameter Symbol Value 

Separatrix Radius 𝑅𝑠𝑒𝑝 0.25m 

Separatrix Length 𝑍𝑠𝑒𝑝 1.5m 

Elongation (𝑧sep/2𝑟sep) E ~3 (prolate) 

O-point Radial Position 𝑟𝑜 0.091cm 

X-point Axial Position 𝑧𝑋 0.75m 

Number of Axial Coils N 12 

Magnetic Field Strength, Axial 𝐵vz
 5-7T 

Magnetic Field Strength, Nozzle 𝐵𝑁 20T 

Separatrix Shape Index (end-regions) 𝑁𝑠𝑒𝑝 1 (ellipsoidal) 

Table 6. FRC Plasma Chemical Properties 

Variable / Parameter Symbol Value 

Ion Species - D-3He 

Fuel Ratio (D:3He) - 1:3 

Plasma Number Density 𝑛𝑝 4 × 1020 ions/m3 

Plasma Molar Mass (fuel ratio 1:1) 𝑀𝑝 2.5 × 10−3 kg/mol 

Avogadro number 𝑁𝐴 6.022 × 1023 mol−1 
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Chapter 5. Numerical Simulation 

5.1 Overview of Solver Algorithm 

The FRC plasma model in Table 4 to Table 6 is numerically simulated as follows: 

1. Initialise time-invariant model parameters identified in Table 4 to Table 6: 

1.1. Vacuum field (𝐵v), plasma poloidal flux and plasma separatrix shape (𝜓, 𝜓max, 𝑃max) 

are initialised by a Grad-Shafranov Equilibrium solver supplied by PSS, which 

produces a “self-consistent” FRC (plasma current and poloidal field balance out 

plasma pressure gradient, Equation (6)). 

Note on Plasma Separatrix Shape: From Table 4, the separatrix shape (Equations 

(26), (27)) is the only expression not implemented in the numerical solver, and intended 

for analytical control system design/stability analysis (future work). Separatrix shape is 

instead initialised by PSS’ Grad-Shafranov equilibrium, seen in Figure 17, and may be 

parametrised or curve-fit by Equations (26), (27), recalling it is assumed time-invariant. 

1.2. Calculate mutual inductance between superconducting coils (𝑴⃗⃗⃗⃗𝑪,𝑪), Section 3.11.2. 

2. Initialise state vector (𝒙⃗⃗⃗), Equation (56). Run ODE113 solver on steps 3 to 7: 

3. Calculate flux-conserving currents (assumed dependent on FRC centroid axial position 

only), with discretised plasma coils per Figure 14.a: 

3.1. Calculate mutual inductance b/w plasma and superconducting coils (𝑴⃗⃗⃗⃗𝑪,𝑷𝑪), Eqn. (45) 

3.2. Calculate flux through superconducting coils due to plasma (𝚽⃗⃗⃗⃗𝑪,𝑷𝑪), Eqn. (48) 

3.3. Calculate flux-conserving and superconducting currents (𝑰⃗𝑭𝑪, 𝑰⃗𝑪), Equations (50), (51) 
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4. Calculate magnetic flux through plasma due to superconducting coil (𝚽⃗⃗⃗⃗𝑷𝑪,𝑪), Equation (52) 

5. Calculate magnetic field through plasma due to superconducting coils (𝑩⃗⃗⃗𝑪𝒓
), Equation (53). 

6. Calculate magnetic field through plasma due to vacuum and SC coils (𝑩⃗⃗⃗𝑰), Equation (54). 

7. Calculate resultant force on plasma centroid (𝑭⃗⃗⃗𝑪𝑬𝑵), Equation (58), with discretised plasma 

volume per Figure 14.b. 

5.2 Vacuum Magnetic Field 

The vacuum magnetic field, denoted 𝐵⃗⃗v in Equation (54), is simulated by constant-

current copper coil actuators, and has axial and radial field components per Figure 15 and 

Figure 16. These fields are simulated as time-invariant per Section 3.7. Fields are shown here 

for the “top-right quadrant” of the DFD setup shown in Figure 3. 

 

Figure 15. Axial Magnetic Field (Time-Invariant Vacuum Field) 
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Figure 16. Radial Magnetic Field (Time-Invariant Vacuum Field) 

As shown above, constant-current axial field coils and a nozzle coils produce a deep 

“magnetic well” about the machine origin (r=0, z=0), also nozzle coils are verified in Figure 

15 to produce 𝐵𝑁 ≅ 20T per Table 5. 

Performing a consistency check, the force density acting on a plasma element given the 

vacuum field 𝐵⃗⃗v is expanded per Equation (57) as follows: 

 

𝑓𝑝
I = 𝐽𝑝 × 𝐵⃗⃗v

𝐼 = [

   𝐽𝑦𝐵v𝑧
𝐼

−𝐽𝑥𝐵v𝑧
𝐼

𝐽𝑥𝐵v𝑦
𝐼 − 𝐽𝑦𝐵v𝑥

𝐼

] (65) 

Evidently, the axial component of the vacuum field (𝐵v𝑧
𝐼 ) only dictates the radial motion 

of a plasma element, and hence the entire rigid-body FRC plasma. The radial components (𝐵v𝑥
𝐼 , 

𝐵v𝑦
𝐼 ) dictate axial motion of the FRC plasma. 

On further inspection of Figure 15, the vacuum field has negative axial component 

throughout the entire confinement region and about the origin (𝐵v𝑧
𝐼 < 0). From Equation (65), 

sign(𝐽𝑥) and sign(𝐽𝑦) are always such that toroidal FRC plasma current is a positive-rotation 
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about the inertial z-axis (by right hand rule). Thus, net force can only be radially restoring if 

𝐵v𝑧
𝐼 < 0. Alternatively, for a vacuum field with positive axial component, or a FRC with current 

in the opposite direction (negative toroidal direction), net force would be radially destabilising. 

Time-invariant system parameters, such as actuator coil configuration, vacuum 

magnetic field, FRC plasma separatrix shape, are initialised as shown in Figure 17. 
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5.3 Result 1: Plasma Response to Radial Perturbation (Constant Current EM Coils) 

The FRC centroid position response to radial perturbations (0.5cm, 1cm, 3cm, applied 

to initial position) is demonstrated in Figure 18. FRC radial position oscillates about the origin 

at constant frequency without damping, these closed trajectories potentially indicate the system 

exhibits limit cycling about ICs (unknown stability, neither decaying nor growing). The FRC 

position and net force in cartesian frame is given in Figure 19, where FRC axial position 

(subplot: “Plasma Z-Pos”) is shown to exhibit random walk on the order of 1 × 10−17m, 

attributed to integration of forces on order of 1 × 10−11 N (subplot: “Resultant Z-Force”) and 

likely due to numerical precision errors (consistent for double-precision floating-point) and/or 

plasma discretisation. 

 
Figure 18. FRC Plasma Response to Radial Perturbation in Vacuum Magnetic Field 
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Figure 19. FRC Plasma Response to Radial Perturbation in Vacuum Magnetic Field 

The net force acting on the FRC plasma centroid (𝐹⃗𝐶𝐸𝑁) is calculated as a function of 

radial perturbation in Figure 20, where negative radial force acts toward the origin. It is clear 

the net force driving FRC radial response varies linearly with radial perturbation. One should 

be able to analytically derive this linear result through systems analysis and is captured as future 

work under Chapter 7, activity 3. 

 
Figure 20. Resultant Force due to radial position of FRC Plasma in Vacuum Magnetic Field 
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5.4 Result 2: Plasma Response to Axial Perturbation (Constant Current EM Coils) 

The FRC centroid position response to axial perturbations is shown in Figure 21. The 

FRC is demonstrated to be axially driven away from the origin (Subplot 3 “Plasma Z-Pos”) 

until solver termination conditions are exercised, “exceeding z-axis boundary”, indicating FRC 

plasma is unstable axially. Note, the plasma experiences significant restoring forces as it 

approaches the nozzle coils (at around |𝑧CEN
𝐼 | > 1.25m). As shown at ~5.5E-4 ms onwards, 

the plasma slows down, however, had clearly gained significant momentum, and does not come 

to rest before hitting termination conditions. Discussed further in Figure 23 below. 

 
Figure 21. FRC Plasma Response to Axial Perturbation in Vacuum Magnetic Field 

The FRC radial position is shown in Figure 22 to grow exponentially, however, on the 

order of 1 × 10−15m and is likely due to plasma discretisation (differential volume element 

significantly larger than scale of radial displacement) and numerical precision. No simulation 

runs for axial perturbations have been able to demonstrate unstable growth in FRC radial 

position, solver termination conditions are always exercised (due to unstable response in axial 

position) before FRC radial position can achieve a drift beyond 1 × 10−14m. 
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Figure 22. FRC Plasma Response to Axial Perturbation in Vacuum Magnetic Field 

The net axial force acting on the FRC plasma centroid (𝐹⃗𝐶𝐸𝑁,𝑧) is given as a function of 

axial perturbation in Figure 23. The axial force is clearly destabilising when the FRC centroid 

position is within the region: 0m < |𝑧CEN
𝐼 | < 1.25m, whilst axial force is 0N at the origin. 

Note: the fluctuations shown over the nozzle coils at ±1.5m is an artifact of the solver, and due 

to plasma discretisation and its physical intersection with coil actuators at the ends (solver 

neglects physical contact between objects). Solver is deemed applicable 𝑧𝐼<1.25m from origin. 

 

Figure 23. Resultant Axial Force due to Axial Perturbation in Vacuum Magnetic Field 
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Additionally, shown in Figure 23 nozzle coils produce significant restoring forces 

(±3E7 N) when the FRC position approaches 𝑧CEN
𝐼 ≅ ±1.3m (consider a smooth-fitting curve 

at through fluctuations). This nozzle restoring force is demonstrated in Figure 24 for an oblate 

FRC (small FRC that can fit) initialised at 𝑧CEN
𝐼 = 1.3m, in-front of a nozzle coil. The FRC 

plasma exhibits undamped oscillation axially about a null point ~1.25m (see Subplot: “Plasma 

Z-Pos”). The nozzle coil clearly restores the plasma axially toward the origin, while axial field 

coils drive the plasma away from the origin, potentially resulting in formation of an equilibrium 

point at 𝑧𝐼 ≅ 1.25m for the given coil configuration. 

 

Figure 24. FRC Plasma Response to Nozzle Coil in Vacuum Magnetic Field 

5.5 Result 3: Plasma Response with Flux Conservers (Superconducting Coils) 

5.5.1 Radial Perturbations 

With superconducting coil actuators, the FRC position response to radial perturbation 

produces similar results to constant-current EM coils (i.e. exhibits constant-frequency 

undamped oscillations in radial position about the origin, similar to that shown in Figure 19). 
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This is expected, since no variation in the external magnetic field (flux-conserving 

currents/fields or vacuum field) should occur as there is negligible change in FRC axial position 

over time, per Table 3. The flux-conserving currents induced in 𝑁 = 12 superconducting coils 

and subsequent flux-conserving field experienced by the plasma are shown to remain fairly 

constant while FRC is radially oscillating in Figure 26. 

 
Figure 25. FRC Position Response to Radial Perturbation, a) Flux-Conserving Current, b) 

Flux-Conserving Field Acting on FRC Plasma 

5.5.2 Axial Perturbations 

With superconducting coil actuators, the FRC position response to axial perturbations 

produces similar results to constant-current EM coils (i.e. FRC is axially driven away from the 

origin until solver termination conditions are exercised, “exceeding z-axis boundary”, per 

Figure 21). N.B. This is certainly not the response expected per Table 2 for flux-conserving 

coils (to be similar as constant-current EM coils), further investigation is required. Note 

however, flux-conserving currents are successfully induced in 𝑁 = 12 superconducting coils 

as the FRC plasma transits through the device as demonstrated in Figure 27, and values for 

simulated variables shown in Table 8 were cross-referenced as a sanity-check. 
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Figure 26. FRC Plasma Response to Axial Perturbation with Flux Conserving Field 

A case not listed as criteria in Table 2 is presented here out of interest. The reversal of 

cases 1 and 2 (FRC axially stable, radially unstable) is one other possibility theorised [8]. This 

case is demonstrated in Figure 27, where for axial perturbations FRC axial position is shown 

to exhibit undamped oscillations about the origin, axially bounded response, while for radial 

perturbations (not shown) FRC is confirmed to be driven away from the origin radially, thus 

radially unstable. This case is excluded as it does not conform to the DFD/PFRC configuration 

(either plasma current direction or magnetic field direction must be reversed). 

 
Figure 27. FRC Plasma Response to Axial Perturbation with Flux Conserving Field 
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5.6 Verification of Numerical Results 

Numerical results are verified qualitatively against Table 2, with outcomes summarised 

in Table 7. The FRC centroid position response is consistent for cases involving constant-

current copper EM coils (cases 1 and 2), however, further work is required for cases involving 

superconducting/flux-conserving coils (case 3), including a thorough review of the solver 

captured as future work under Chapter 7.1.b. 

Table 7. Numerical Results Evaluated against Criteria 

Case Perturbation Actuator Coil Expected Plasma Response Result 

1 Radial 

perturbation to 

FRC centroid 

position 

 

Copper EM 

Axisymmetric 

Constant Current 

 

Stable or bounded open-loop 

response in axial and radial 

position (for 𝐵v𝑧
 < 0) 

PASS 

(Consistent 

with Sim) 

2 Axal 

perturbation to 

FRC centroid 

position 

 

Copper EM 

Axisymmetric 

Constant Current 

 

Unstable or unbounded 

open-loop response in axial 

position (for 𝐵v𝑧
 < 0) 

PASS 

(Consistent 

with Sim) 

3 3DOF 

perturbation to 

FRC centroid 

position 

Superconductor 

Axisymmetric 

Flux-conserving 

Current 

Unknown. 

 

Expecting stable/bounded 

radial and axial position 

response. 

 

Expecting plasma position to 

be “locked” relative to SC 

coils (plasma flux completely 

counteracted by SC coils, 

hence resisting changes in 

FRC position) 

 

Further 

Work 

Required 
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Chapter 6. Conclusions 

A mathematical model was derived for the FRC plasma translational dynamics, subject 

to coaxial superconducting coil actuators and constant-current copper coil actuators. One term 

of the model remains not in closed-form, specifically elliptic integrals in expressions for mutual 

inductance. A numerical solver was developed in MATLAB using the derived model, 

providing a tool for FRC centroid position control design and analysis (for example, aiding in 

the analysis of coil actuator configurations, including more complex coil geometries or 

confinement schemes such as saddle coils). The current solver may be extended to factor FRC 

rotational kinematics, captured as future work under Chapter 7.6. 

Simulations were run verifying the FRC position exhibited a response consistent with 

expectations for constant-current copper EM coils. For radial perturbations, FRC response is 

demonstrated to be radially bounded (constant-frequency undamped radial-oscillation about 

the origin). For axial perturbations, FRC has an axially unstable response (driven away from 

the origin axially, exceeding physical limits). For cases involving superconducting coils (flux-

conservers), the FRC centroid position did not exhibit a response consistent with expectations. 

Flux-conserving currents are successfully modelled and simulated as a function of FRC 

centroid position. However, for axial perturbations, FRC response is axially unstable (driven 

away from the origin axially), further work is required here as this is contrary to our 

expectation/hypothesis that the FRC plasma axial position should be “locked” relative to flux-

conserving coils or axial motion entirely resisted. 
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Chapter 7. Future Work 

 

The following activities benefit FRC plasma stability analysis and control design the 

most given work conducted in this master’s thesis: 

1. Potential to Publish: 

At current, potential exists for two publications on rigid-body modelling of FRC 

plasmas (for stability and control analysis) and the numerical results, specifically: 

a. FRC centroid position response to radial and axial perturbations given 

constant-current coaxial electromagnet coil actuators (reporting on the 

model/findings for cases 1 and 2 in Table 2). Non flux conserving. 

b. FRC centroid position response to radial and axial perturbations given flux-

conserving superconducting coils (reporting on model/findings for case 3 in 

Table 2). However, this requires more rigorous review of solver source code 

than has been applied in this master's thesis and a more detailed assessment 

of values in Table 8 with PSS. 

2. Mutual Inductance Analytical-Form: 

At current, mutual inductance given by Equation (43) is not in closed form 

(analytical form). Elliptic integrals may be approximated effectively through 

methods in [19] to derive closed form expressions. Some effort could be spent 

approximating elliptic integrals for some perturbation about the PFRC origin Figure 

17 (if unable to express globally) or that which is deemed sufficient to PFRC 

operating conditions. 

3. Systems Analysis and Control Design: 



53 

 

Apply dynamical system analysis and control techniques to the model derived in 

Table 4 (e.g. stability analysis, observability, controllability/reachability, OL/CL 

control). Should ideally include flux-conserving currents 𝐼𝐶  from Equation (51) in 

state vector given by Equation (56). Requires closed-form mutual inductance. 

Currently, this is the only term for FRC centroid position in non-closed form. 

4. Investigate Actuator Configurations: 

At current, can begin investigating different axisymmetric actuator coil 

configurations, and passive/active control schemes (EM coil currents), with little to 

no changes required to the solver. 

5. Modelling Complex Actuator Circuits:  

More complex actuator geometries (such as saddle coils / non-axisymmetric coils 

for stabilisation/control of higher plasma modes, per Section 1.2.2.2.b) require 

replacing Maxwell Coil assumptions with Biot-savart Law in Equation (48) to solve 

a full 3D magnetic field (rather than assuming axisymmetric coils). 

6. Stabilisation of Higher FRC Plasma Modes: 

Eventually, it is desired to stabilise and control higher plasma mode numbers such 

as plasma tilt mode (m=1, n=1) and radial elongation mode (m=2). However, FRC 

centroid position control should come first. For higher modes, need to factor FRC 

rigid-body rotations, specifically for tilt-mode, due to Lorentz force torques and 

gyro-viscous forces exerted on the FRC plasma per [16]. Whereby, ions are 

assumed to carry most of the plasma momentum, causing inherent plasma rotation 

due to ion diamagnetic drift [6]. 



54 

 

Appendix 

Vector Calculus in Cylindrical Coordinate System 

The Cylindrical Coordinate System is illustrated in Figure 28. Unit vectors 𝑒̂𝑟 , 𝑒̂𝜙 , 𝑒̂𝑧 

define the radial, azimuth and axial directions respectively for a differential element. 

 
Figure 28. Differential Element in Cylindrical Coordinate System 

Differential Volume in cylindrical coordinates: 

 𝑑𝑉 = 𝑑𝑟(𝑟𝑑𝜙)𝑑𝑧 = 𝑟 𝑑𝑟 𝑑𝜙 𝑑𝑧 (66)  

Vector Field in cylindrical coordinates: 

 𝐴 = 𝐴𝑟𝑒̂𝑟 + 𝐴𝜙𝑒̂𝜙 + 𝐴𝑧𝑒̂𝑧 (67)  

Divergence of vector field in cylindrical coordinates: 

 
∇ ∙ 𝐴 =

1

𝑟

𝜕(𝑟𝐴𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝐴𝜙

𝜕𝜙
+

𝜕𝐴𝑧

𝜕𝑧
 (68)  
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Curl of vector field in cylindrical coordinates: 

 

∇ × 𝐴 =
1

𝑟 ||

𝑒̂𝑟 𝑟𝑒̂𝜙 𝑒̂𝑧

𝜕

𝜕𝑟

𝜕

𝜕𝜙

𝜕

𝜕𝑧
𝐴𝑟 𝑟𝐴𝜙 𝐴𝑧

||   

 
∇ × 𝐴 = (

1

𝑟

𝜕𝐴𝑧

𝜕𝜙
−

𝜕𝐴𝜙

𝜕𝑧
) 𝑒̂𝑟 + (

𝜕𝐴𝑟

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑟
) 𝑒̂𝜙 +

1

𝑟
(
𝜕(𝑟𝐴𝜙)

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝜙
) 𝑒̂𝑧 (69)  

Quantities of Simulated Variables (Solver Quality Check) 

Quantities for certain model variables are recorded in Table 8 for the purpose of a quick 

quality/consistency check of the solver with PSS. Ideally a more thorough review of the solver 

is required and captured as future work under Chapter 7, activity 1.b. 

Table 8. Orders of Magnitude of Model Variables Simulated 

Variable Numerical Value 

FC Current in Superconductor Coils 10e4 to 15e4 A 

FC Magnetic Flux sensed at the FRC (max.) 0.04 Wb 

FC Magnetic Field sensed at the FRC 1-2 T 

FRC Plasma Current (max.) 600 A 

Resulting Force on FRC Centroid 1e5 N (𝐹CEN,𝑟), 5e6 N (𝐹CEN,z) 

Period of radial and axial oscillation 1e-6 sec (0.001 ms) 

 

Acronyms and Abbreviations 

DFD Direct Fusion Drive 

EM Electromagnetic 

FC Flux Conserving 

FRC Field-Reversed Configuration 

LCFS Last Closed Flux Surface 

MHD Magnetohydrodynamic 

PFRC Princeton Field-Reversed Configuration 

PPPL Princeton Plasma Physics Laboratory 

PSS Princeton Satellite Systems 

RRM Rigid-Rotor Model 

SC Superconducting 
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Overview of Numerical Solver MATLAB Scripts 

An outline of the MATLAB scripts developed for the numerical Solver (FRC plasma 

position response) is given in Figure 29. A description for each script is provided in Table 9. 

 
Figure 29. Overview of MATLAB Scripts used in Rigid-Body FRC Solver 

Table 9. Description of MATLAB Scripts used in Rigid-Body FRC Solver 

Filename Description 

RunRigidBodyFRC.m Main function (entry point). 

SetPFRC_Parameters.m - Plasma / DFD Parameters per 

Table 5 and Table 6. 

- Discretisation of plasma body 

(plasma coils, plasma volume 

elements) per Figure 14. 

- Solver Settings. 

GenerateDisturbanceResponseTimeHistoryFcn.m Simulate plasma 3DOF translational 

response to axial and radial 

perturbations from origin. 

ODE_FcnFRC_StatePrediction.m ODE function (for ODE113 solver). 

ODE_InterruptEvents.m Solver Termination Conditions  

( 𝑟𝐼, 𝑧𝐼 machine limits) 

IntegrateLorentzForceFRC_OptimisedFcn.m Integrates Lorentz forces per Equation 

(58) using param. discretised plasma. 

IntegrateLorentzForceFRC_Fcn.m Integrates Lorentz forces per Equation 

(58) using online plasma discretisation. 

UpdateFluxConservingField.m Calculate magnetic flux through the 

plasma due to flux-conserving 

currents, per Equation (52). 
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Table 9. Description of MATLAB Scripts used in Rigid-Body FRC Solver, Continued 

Filename Description 

CalcFluxConservingCoilCurrents.m Calculate flux-conserving current due 

to plasma flux, per Equations (47) to 

(51). 

CalcFluxCoaxialCoils.m Calculate magnetic flux through coil-1 

due to coil-2. 

CalcMutualInductanceCoaxialCoils.m Calculate mutual inductance between 

two coils, per Equations (40) to (43). 

PlotODE_Solution.m Plot plasma kinematic response, 

resultant force, flux-conserving current 

GenerateRadialForceVectorFieldFcn.m Calculate only radial forces on plasma 

given radial perturbations from origin. 
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