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Gaspar, Fraser W
Chevrier, Jonathan
et al.

Publication Date

2015-03-17

DOI

10.1021/acs.est.5b00322
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8h56k606
https://escholarship.org/uc/item/8h56k606#author
https://escholarship.org
http://www.cdlib.org/


Increasing Sample Size in Prospective Birth Cohorts: Back-
Extrapolating Prenatal Levels of Persistent Organic Pollutants in 
Newly Enrolled Children

Marc-André Verner1,2,*, Fraser W. Gaspar3, Jonathan Chevrier3,4, Robert B. Gunier3, 
Andreas Sjödin5, Asa Bradman3, and Brenda Eskenazi3

1Department of Occupational and Environmental Health, School of Public Health, Université de 
Montréal, Montreal, Canada

2Université de Montréal Public Health Research Institute (IRSPUM), Université de Montréal, 
Montreal, Canada

3Center for Environmental Research and Children’s Health (CERCH), School of Public Health, 
University of California, Berkeley, Berkeley, CA, USA

4Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill 
University, Montreal, QC, Canada

5Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease 
Control and Prevention, Atlanta, GA, USA

Abstract

Study sample size in prospective birth cohorts of prenatal exposure to persistent organic pollutants 

(POPs) is limited by costs and logistics of follow-up. Increasing sample size at the time of health 

assessment would be beneficial if predictive tools could reliably back-extrapolate prenatal levels 

in newly enrolled children. We evaluated the performance of three approaches to back-extrapolate 

prenatal levels of p,p′-dichlorodiphenyltrichloroethane (DDT), p,p′-

dichlorodiphenyldichloroethylene (DDE) and four polybrominated diphenyl ether (PBDE) 

congeners from maternal and/or child levels 9 years after delivery: a pharmacokinetic model and 

predictive models using deletion/substitution/addition or Super Learner algorithms. Model 

performance was assessed using the root mean squared error (RMSE), R2, and slope and intercept 

of the back-extrapolated versus measured levels. Super Learner outperformed the other approaches 
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with RMSEs of 0.10 to 0.31, R2s of 0.58 to 0.97, slopes of 0.42 to 0.93 and intercepts of 0.08 to 

0.60. Typically, models performed better for p,p′-DDT/E than PBDE congeners. The 

pharmacokinetic model performed well when back-extrapolating prenatal levels from maternal 

levels for compounds with longer half-lives like p,p′-DDE and BDE-153. Results demonstrate the 

ability to reliably back-extrapolate prenatal POP levels from maternal levels 9 years after delivery, 

with Super Learner performing best based on our fit criteria.

Graphical abstract

INTRODUCTION

Several persistent organic pollutants (POPs), including p,p′-dichlorodiphenyltrichloroethane 

(DDT), p,p′-dichlorodiphenyldichloroethylene (DDE), and polybrominated diphenyl ethers 

(PBDEs) are routinely detected in maternal blood during pregnancy, cord blood, breast milk 

and child blood1, 2. The insecticide p,p′-DDT, which degrades into its more persistent 

metabolite p,p′-DDE, has been widely used in the USA until the 1970’s, and to fight malaria 

in Mexico until 2000. Today, its use is restricted to vector control under the Stockholm 

Convention on POPs. Penta- and octa-PBDEs are flame retardant commercial mixtures that 

were added to upholstered furniture, mattresses, and other consumer items3, but were phased 

out in 2004 in the USA. Many epidemiologic studies have reported associations between 

prenatal exposure to these contaminants and adverse health effects in children4–8.

The prenatal and early life periods are critical windows of susceptibility because many 

systems undergo major structural and functional changes, which, if perturbed by chemicals, 

may alter normal development9, 10. It is therefore crucial to adequately characterize 

exposure during these windows of susceptibility for use in epidemiological studies. 

Biomarkers of prenatal exposure (e.g., maternal blood levels during pregnancy or cord blood 

levels at delivery) can be collected in the context of prospective birth cohort studies. 

However, the sample size of these studies is often restricted due to the costs and logistics of 

follow-up, thereby limiting their statistical power. A solution to this problem would be to 

recruit additional children at the time of health assessment and to back-extrapolate their 

prenatal exposure levels based on measurements later in life.

Different approaches have been used to back-extrapolate levels of lipophilic POPs. Karmaus 

et al.11 evaluated two exponential decay models12, 13 and a linear regression model to back-

extrapolate polychlorinated biphenyl (PCB) levels in non-pregnant women whose blood was 

sampled ~10 years apart. Based on intraclass correlation coefficients (ICCs), they concluded 

that when repeated measurements are available, regression models provide the most accurate 
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estimations (ICCs: 0.77–0.89). However, regression models without cross-validation may 

lead to overfitting of the data and not predict well on new datasets14, 15. This problem can be 

avoided by using machine learning methods such as the deletion/substitution/addition 

(DSA)16 or Super Learner algorithms17, which optimize predictive models based on cross-

validation techniques. In addition, pharmacokinetic models, using prior knowledge of 

physiology and biochemistry, allow for the back-extrapolation of prenatal exposures without 

the risk of overfitting18.

In the present study, we evaluate a life-course pharmacokinetic model and predictive models 

using DSA or Super Learner algorithms to back-extrapolate prenatal levels of p,p′-DDT/E 

and PBDEs (2,2′,4,4′-tetrabromodiphenyl ether [BDE-47], 2,2′,4,4′,5-pentabromodiphenyl 

ether [BDE-99], 2,2′,4,4′,6-pentabromodiphenyl ether [BDE – 100] and 2,2′,4,4′,5,5′-

hexabromodiphenyl ether [BDE – 153]) from maternal and/or child serum levels measured 

9-years after delivery. We compare and contrast these models and make recommendations 

about the best approach.

EXPERIMENTAL

Study population

The Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) is 

a longitudinal birth cohort study investigating the health effects of pesticides and other 

environmental contaminants on pregnant women and their children living in the agricultural 

Salinas Valley in California (USA)19. 601 pregnant women were enrolled in the 

CHAMACOS cohort between 1999 and 2000, with the following eligibility criteria: women 

were ≥18 years of age, <20 weeks of gestation, English- or Spanish-speaking, eligible for 

Medi-Cal (subsidized health care), and planning to deliver at Natividad Medical Center. A 

total of 337 CHAMACOS mothers and children were seen between April 2009 and March 

2010 when the children were ~9 years of age. Written informed consent was obtained from 

mothers and children provided verbal assent at 9 years of age. Study activities were 

approved by the Institutional Review Board at the University of California, Berkeley; it was 

determined at the Centers for Disease Control and Prevention (CDC) that the agency was 

not engaged in human subjects research.

For the present study, we conducted analyses on three study population subsets with 

maternal blood collected at ~26 weeks of pregnancy: 1) maternal blood was also collected 9 

years after delivery (n=94), 2) child blood was also collected 9 years after delivery (n=161), 

and 3) both maternal and child blood were collected 9 years after delivery (n=89). Because 

the main aim of the 9-year assessments in the CHAMACOS study was to assess the effects 

of PBDEs and p,p′-DDT/E exposure on growth, pubertal development and 

neurodevelopment in girls, blood was only drawn from mothers whose child was a girl 

(subsets 1 and 3).

Data collection

Study visits occurred twice during pregnancy (at ~13 and 26 weeks gestation), after 

delivery, and when the children were 0.5, 1, 2, 3.5, 5, 7, and 9 years old. Information 

collected included parity, history of breastfeeding, age, residential history, socio-
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demographic factors, and anthropometrics. Birth weight, gestational age, and, gestational 

weight gain were abstracted from maternal medical records. Missing values (<10% missing) 

were imputed at random based on the observed probability distributions of each variable. 

Only maternal and child fat percentage had more than 10% of values missing, with those 

values imputed using a linear regression model with body mass index (BMI) and weight as 

the independent variables.

Laboratory measurements of p,p′-DDT/E and PBDE in serum

Blood samples were collected by venipuncture and stored at -80°C until analyzed for several 

environmental contaminants including p,p′-DDT, p,p′-DDE, BDE-47, BDE-99, BDE-100, 

and BDE-153 at the CDC using gas chromatography isotope dilution high-resolution mass 

spectrometry20. Serum levels were expressed on a serum lipid basis (ng/g lipids); total 

serum lipid concentrations were estimated based on the measurements of triglycerides and 

total cholesterol using standard enzymatic methods (Roche Chemicals, Indianapolis, IN)21. 

For levels <LOD, we used values generated by the instrument when available. When no 

signal was detected, levels <LOD were assigned a value of LOD/√222, an approach that was 

shown to be suitable when the percentage of levels <LOD is 10% or lower23.

Prediction Models

DSA16 and Super Learner17 algorithms were employed for selecting predictive models for 

prenatal p,p′-DDT/E and PBDE levels. The DSA algorithm is a loss-based cross-validation 

method that systematically selects the best predictive model by testing multiple covariate 

combinations, polynomial transformations, and interaction terms. An advantage of the DSA 

algorithm is that the final model outputs the significant predictors and coefficient terms 

within an interpretable parametric model. Super Learner is an ensemble machine learning 

technique that utilizes a weighted combination of algorithms to return a prediction function 

that minimizes a cross-validated loss function, avoiding selecting a single prediction method 

a priori.

For both the DSA and Super Learner algorithms, we used 10-fold cross validation to 

minimize the mean squared error (MSE). To reduce the influence of outliers, serum 

concentrations were log10 transformed. For the DSA algorithm, we allowed second-order 

polynomials and 2-level interactions. For the Super Learner algorithm, we selected a diverse 

group of learning algorithms as potential candidates including: generalized linear model 

(GLM), generalized additive model (GAM), random forest, recursive partitioning and 

regression trees, elastic net, neural network, local polynomial regression, polynomial spline 

regression, Bayesian linear model, support vector machine, and DSA algorithm. In addition 

to fitting GLM, GAM, and Bayesian linear models with all potential predictors, we 

employed a screener prior to use by Super Learner, with the models only using predictors 

significantly correlated with prenatal serum levels in bivariate analysis (p-value ≤ 0.1). 

Algorithm-specific MSEs and weights for each subset are presented in the Table S1 

(Supplemental Information).

Variables considered in the Super Learner and DSA algorithms (expressed as shown in 

Table 1) included maternal characteristics at child birth: number of years lived in the USA, 
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country of birth, education, marital status, age, number of children before index child, and 

breastfeeding duration prior to index child; maternal characteristics 9 years after delivery: 

family income, age at blood draw, breastfeeding duration for children born after index child, 

number of children born after index child, BMI, weight, and fat percentage; and child 

characteristics at 9 years of age: if the child ever lived outside the USA, exact age at blood 

draw, age- and sex-specific BMI z-score based on data from the CDC24, weight, and fat 

percentage. Additional variables collected at the 9-year home visit were considered in PBDE 

analyses: stuffed furniture in home (yes/no and number of pieces of furniture), wall-to-wall 

carpet (yes/no and number of rooms), ripped/torn furniture (yes/no), number of televisions at 

home, and computer at home (yes/no). All compounds within the same class were 

considered for the back-extrapolation of prenatal levels of individual compounds, i.e., 9-year 

p,p′-DDE and p,p′-DDT levels were potential predictors in models of prenatal p,p′-DDE and 

p,p′-DDT, and 9-year levels of all PBDE congeners were potential predictors in models of 

individual PBDE congener prenatal levels.

We used available statistical packages to implement DSA and Super Learner algorithms in 

R, version 3.0.1 (R Foundation for Statistical Computing, Vienna, Austria).

Pharmacokinetic modeling

We used a previously published pharmacokinetic model for POPs18 to back-extrapolate 

prenatal levels of p,p′-DDT/E and PBDEs from 9-year maternal or child levels. This two-

compartment model simulates mother’s lifetime environmental exposure and child exposure 

through transplacental diffusion, breastfeeding and environmental exposure (Figure 1). We 

assumed that p,p′-DDT/E and PBDEs distribute homogeneously across maternal and child 

body lipids, including serum and breast milk lipids. Published half-lives were used to 

describe elimination from the maternal and child compartments. For p,p′-DDT/E, we used 

the same half-lives that were used for model validation18: 5-year half-life for p,p′-DDT25 

and a 13-year half-life for p,p′-DDE26. We used PBDE half-lives calculated by Trudel et 

al.27 using a pharmacokinetic model and human data on daily intakes and PBDE levels in 

lipids: 1.4 years for BDE-47, 0.8 year for PBDE-99, 1.8 years for BDE-100 and 7.4 years 

for BDE-153. To back-extrapolate prenatal levels from maternal or child serum levels at the 

9-year assessment, we modified the pharmacokinetic model to account for the delivery and 

breastfeeding of children born after the index child. Also, we modified the model to account 

for different levels in Mexico and the USA: p,p′-DDT/E exposure is higher in Mexico and 

PBDE exposure is higher in California as indicated by blood levels measured in 

CHAMACOS Mexican-American children born in the USA and Mexican children whose 

mothers are from the same region in Mexico as the CHAMACOS mothers28. We 

approximated that p,p′-DDT/E blood concentrations are 4 times higher in Mexico than in the 

USA and that PBDE concentrations are 7 times higher in the USA than in Mexico based on 

ratios of geometric mean serum levels of p,p′-DDT (parent compound) and BDE-47 

(predominant PBDE congener)28.

To simulate subject-specific exposure profiles, the model incorporated information on 

mothers (years in the USA, timing of prenatal blood draw, gestational weight gain, age at 

delivery, age at subsequent deliveries and duration of breastfeeding of each child born after 
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the index child, pre-pregnancy body weight, age at 9-year blood draw, weight at 9-year 

blood draw) and children (sex, gestational age at birth, birth weight, weight at 9-year blood 

draw, duration of exclusive and total breastfeeding). Using the model inputs mentioned 

above, we estimated the maternal daily dose (ng/kg body weight) by running the model 

iteratively and optimizing the dose to obtain matching simulated and measured serum levels 

at 9 years. In addition to exposure through transplacental diffusion and breastfeeding, 

children are exposed to these compounds in their environment. Because exposure to p,p′-

DDT/E is assumed to occur mostly through food intake, we assumed that after the first year 

of life, children were exposed to the same daily dose of p,p′-DDT/E on a body weight basis 

(ng/kg body weight) as that optimized for the mother. We assumed child environmental 

exposure to PBDEs to be the same absolute daily PBDE dose (ng) as that optimized for the 

mother’s based on similar exposure estimates in Lorber29. Model simulations were carried 

out using acslX (Aegis Technologies Group, Inc., Hunstville, AL, USA).

Assessment of model fit

For each chemical and population subset, we assessed the performance of the different 

models by comparing predicted and measured concentrations. We computed the root MSE 

(RMSE) as our main performance criteria because it quantifies both precision and 

accuracy30, and deconstructed the measure into its two components: precision and accuracy. 

We assessed precision using the R2 statistic and accuracy by evaluating the intercept and 

slope of the linear model between measured and back-extrapolated levels. While a higher R2 

indicates better precision, a slope of 1 and intercept of 0 suggest good accuracy and absence 

of bias. In addition, ICCs were calculated for comparison with results from Karmaus et al.11.

RESULTS

Study participants and Exposure Characteristics

At the index child’s birth, the median maternal age was 26.3 years and mothers had lived in 

the USA for a median of 4.5 years (Table 1). The median breastfeeding time was 7 months 

for the index child and a total of 5 months for subsequent children (including exclusive and 

partial breastfeeding). Median p,p′-DDT/E levels were lower in 9-year child and maternal 

samples than in maternal samples during pregnancy. On the other hand, PBDE were higher 

in 9-year samples than prenatal samples. At 9 years, children’s PBDE levels were about 2 

times higher than maternal levels.

Prediction using the 9-year maternal serum subset

In the subset of participants with maternal serum levels at the 9-year visit (n=94), the Super 

Learner algorithm performed best for all compounds (RMSEs ranging from 0.12 to 0.31), 

followed by DSA (RMSEs ranging from 0.16 to 0.35) and pharmacokinetic modeling 

(RMSEs ranging from 0.21 to 0.59) (Table 2 and Figure 2). For the Super Learner 

algorithm, the R2s ranged from 0.58–0.95, slopes ranged from 0.51 to 0.89, intercepts 

ranged from 0.08 to 0.38 and ICCs ranged from 0.71 to 0.97. Highest model performance 

was observed for back-extrapolated p,p′-DDE and BDE-153 levels, the compounds with the 

longest half-lives. The DSA algorithm selected different sets of predictors depending on the 

compound (Table 3). Of note, maternal 9-year levels of certain compounds with longer half-
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lives were selected to back-extrapolate prenatal levels of shorter half-life compounds, e.g., 

BDE-153 9-year levels were selected to back-extrapolate BDE-47, BDE-99 and BDE-100 

levels. Using the maternal 9-year levels, the pharmacokinetic model performed well when 

back-extrapolating longer half-life compounds p,p′-DDE and BDE-153 with respective 

RMSEs of 0.21 and 0.28, R2s of 0.88 and 0.57, intercepts of 0.12 and 0.07, slopes of 0.92 

and 0.79 and ICCs of 0.92 and 0.75, respectively. The pharmacokinetic model did not 

perform as well for shorter half-life PBDE congeners (BDE-47 and BDE-99).

Prediction using the 9-year child serum subset

Like in the 9-year maternal serum subset, Super Learner (RMSEs ranging from 0.20 to 0.29) 

outperformed the DSA (RMSEs ranging from 0.28 to 0.46) and pharmacokinetic modeling 

(RMSEs ranging from 0.50 to 1.08) approaches when using child 9-year levels (n=161) 

(Table 2 and Figure S1). For the Super Learner algorithm, the R2s ranged from 0.83–0.95, 

intercepts ranged from 0.16 to 0.60, slopes ranged from 0.42 to 0.79 and ICCs ranged from 

0.70 to 0.92. The DSA algorithm fit models for p,p′-DDT/E, BDE-100, and BDE-153, but 

did not select any of the predictors to back-extrapolate prenatal serum concentrations of 

BDE-47 and BDE-99 and only fit an intercept model at the measured mean prenatal serum 

levels. Using the child 9-year levels, the pharmacokinetic model performed relatively well 

for p,p′-DDE, but the precision was low for PBDE levels (R2s ranging from 0.03 to 0.19).

Prediction using the 9-year maternal and child serum subset

In the subset where both maternal and child 9-year serum were available (n=89), the Super 

Learner and DSA algorithms strongly predicted prenatal p,p′-DDT/E and PBDE serum 

levels (Table 2 and Figure S2). For the Super Learner algorithm, the RMSEs ranged from 

0.10 to 0.28, the R2s ranged from 0.65 to 0.97, intercepts ranged from 0.08 to 0.38, slopes 

ranged from 0.57 to 0.93 and ICCs ranged from 0.76 to 0.98. However, including both 

maternal and child 9-year serum levels only marginally increased Super Learner algorithm 

performance compared to models relying solely on maternal 9-year levels (RMSEs ranged 

from 0.12 to 0.31).

DISCUSSION

We evaluated three approaches to back-extrapolate prenatal levels of four PBDE congeners 

(BDE-47, BDE-99, BDE-100 and BDE-153) and p,p′-DDT/E from measured maternal 

and/or child levels 9-years after delivery. Our results suggest that Super Learner may be the 

best approach. In addition, we found that estimations were better for compounds with longer 

biological half-lives (p,p′-DDT/E and BDE-153) compared to compounds with shorter half-

lives (BDE-47, -99, and -100).

Super Learner performed the best based on our criteria to minimize the MSE and maximize 

the R2 of the back-extrapolated versus measured p,p′-DDT/E and PBDE levels, followed by 

DSA and pharmacokinetic modeling. A drawback to using Super Learner is that the 

resulting ensemble prediction algorithm is less interpretable than single prediction 

algorithms because the final output is the weighted output of each algorithm (14 in this 

study), each with specific equation parameters and predictors. Therefore, the increased 
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performance obtained by combining predictive algorithms comes at the cost of reduced 

interpretability of the overall model. Conversely, the DSA algorithm provides the exact 

cross-validated model used for prediction and is thus more transparent than Super Learner. 

However, the DSA was less accurate than Super Learner and it failed to select a predictive 

model for BDE-47 and BDE-99 in the child 9-year serum subset. Although the Super 

Learner and DSA algorithms performed better than pharmacokinetic modeling, the 

prediction models they generated may be less informative for other populations because they 

are driven by variables that are population-specific, e.g., the time spent in the USA for 

Mexican-Americans in the CHAMACOS study. To apply these approaches to other studies, 

paired measurements of prenatal and postnatal levels are necessary to build the models. In 

contrast, because the pharmacokinetic model was built a priori based on physiology and 

biochemistry, and was not calibrated based on measured prenatal levels, it could be used to 

back-extrapolate prenatal levels in other populations without a training dataset. However, 

this approach only performed relatively well for the longer half-life compounds (p,p′-DDE 

and BDE-153).

There are limited studies to compare how well our models back-extrapolated prenatal levels. 

ICCs in our study using the maternal subset (n=94) ranged from 0.71 to 0.97 for Super 

Learner, from 0.63 to 0.95 for DSA, and from 0.26 to 0.92 for the pharmacokinetic models. 

Results obtained with the Super Learner and DSA algorithms were similar to those obtained 

by Karmaus et al.11 (ICCs: 0.77–0.89) who used regression models to back-extrapolate 

women’s polychlorinated biphenyl (PCB) levels measured 10 years apart, and are likely to 

be more generalizable to other populations due to cross-validation31.

Results presented herein have many implications. Models evaluated in this study could be 

used to back-extrapolate prenatal levels in children enrolled at the time of health assessment 

to increase study sample size. For example, in the CHAMACOS longitudinal birth cohort, 

where 337 mothers-child dyads have been followed from pregnancy up to 9-years after 

delivery19, we recruited 309 additional 9-year-old boys and girls and their mother to 

increase the sample size to 646. The prediction model generated using the Super Learner 

algorithm will be used to back-extrapolate prenatal levels in newly enrolled dyads, which 

will allow assessing the health effects of prenatal exposure in a population almost twice as 

large as the original birth cohort. However, the potential to back-extrapolate levels from 

levels measured many years after delivery relies, at least in part, on the persistence of the 

compounds considered in our study. Back-extrapolating levels of chemicals with shorter 

half-lives (e.g., phthalates, triclosan) over a period of many years is less likely to be 

achievable, unless exposure levels are very stable through time.

Results from the DSA analyses allowed us to identify important predictors of p,p′-DDT/E 

and PBDEs. Studies considering back-extrapolating prenatal levels of these compounds will 

need to collect information on maternal and child weight (including fat percentage when 

possible), parity, breastfeeding duration, residence history and socioeconomic status. 

Another important finding in our study is that levels of certain compounds can be used to 

back-extrapolate levels of other compounds. That holds especially true for compounds that 

are correlated at the time of exposure and have different half-lives, e.g., compounds with 
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longer half-lives like BDE-153 may provide valuable information on past exposure to 

shorter half-life compounds like BDE-47.

Certain limitations of this study ought to be mentioned. Although back-extrapolated levels 

explained a large portion of the variability in measured prenatal levels, the slope and 

intercept of the estimated vs. measured regressions were consistently below 1 and above 0, 

respectively. This is expected given that our models did not fully capture the variability in 

measured prenatal levels and, consequently, the variance of the predicted values was less 

than the variance of the measured values. Another limitation is that children born to mothers 

in the maternal 9-year subset were exclusively girls. We cannot rule out the possibility that 

the accuracy of the models differs by sex. In addition, it is possible that measures of model 

fit were influenced by the reduced analytical precision for levels close or below the limit of 

detection. Nonetheless, our ability to back-extrapolate prenatal levels from maternal 9-year 

levels demonstrates that it will be possible for existing and future epidemiologic studies to 

estimate prenatal levels of p,p′-DDT/E and PBDEs from levels measured years after birth.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Back-extrapolation using pharmacokinetic modeling. The conceptual representation of the 

pharmacokinetic model is depicted in panel A (reproduced with permission from 

Environmental Health Perspectives). Examples of pharmacokinetic profiles of BDE-47 and 

p,p′-DDE are shown in panel B for a woman who moved from Mexico to the USA at the age 

of 10, gave birth at the age of 25 and breastfed for 6 months.
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Figure 2. 
Scatterplots of back-extrapolated versus measured prenatal (~26 weeks gestation) serum 

concentrations of p,p′-DDT/E and PBDEs using 9-year maternal serum subset (n=94). Root 

mean squared errors (RMSEs) and correlation coefficients (R2) were calculated comparing 

the linear fit of back-extrapolated and measured log10 serum levels (red line). Black line 

represents perfect back-extrapolation. SL = Super Learner, DSA = Deletion/Substitution/

Addition, and PK = pharmacokinetic model.
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