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OP IN ION

Confounding effects of spatial variation on shifts in
phenology
CHARLOTTE W . D E KEYZER 1 , 2 , N ICOLE E . RAFFERTY 1 , 2 , † , DAV ID W . INOUYE 2 , 3 and

JAMES D. THOMSON1 , 2

1Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2, 2Rocky Mountain

Biological Laboratory, Crested Butte, CO 81224, USA, 3Department of Biology, University of Maryland, College Park, MD 20742,

USA

Abstract

Shifts in the timing of life history events have become an important source of information about how organisms are

responding to climate change. Phenological data have generally been treated as purely temporal, with scant attention

to the inherent spatial aspects of such data. However, phenological data are tied to a specific location, and considera-

tions of sampling design, both over space and through time, can critically affect the patterns that emerge. Focusing

on flowering phenology, we describe how purely spatial shifts, such as adding new study plots, or the colonization

of a study plot by a new species, can masquerade as temporal shifts. Such shifts can look like responses to climate

change but are not. Furthermore, the same aggregate phenological curves can be composed of individuals with either

very different or very similar phenologies. We conclude with a set of recommendations to avoid ambiguities arising

from the spatiotemporal duality of phenological data.
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Introduction

The phenomenon of climate change has stirred up

interest in phenology as a source of response variables

(Parmesan & Yohe, 2003; Root et al., 2003; Visser &

Both, 2005; Forrest & Miller-Rushing, 2010; Rafferty

et al., 2015). Because phenological records concern the

timing of natural events, it is possible to think of them

as purely temporal, nothing more than calendar dates.

But such data are necessarily spatial as much as they

are temporal. A plant species may be recorded as com-

ing into bloom on a particular date, but what really

happened is that the species came into bloom on a par-

ticular date at the particular place where the datum was

recorded. In the northern temperate zone, for example,

we know that spring takes weeks to sweep north across

immense latitudinal gradients (Schwartz, 1998). Fur-

thermore, numerous studies have documented latitudi-

nal clines in spring phenology traits, such as bud flush

(Aitken et al., 2008) and flowering time (Stinchcombe

et al., 2004). At smaller spatial scales, spring also arrives

later at higher elevation, on north-facing slopes, in

shaded microhabitats, and in places that accumulate

deeper snowpack over the winter. Such observations of

heterogeneity are commonplace, but their consequences

for data analysis are not always appreciated. In particu-

lar, variation in space and variation in time may inter-

act in ways that allow one to masquerade as the other.

Although this general principle affects all phenological

data, here we focus on how spatiotemporal duality can

potentially produce misleading interpretations of data

on flowering times. We warn that such problems may

become more severe with the need to forecast pheno-

logical change at greater spatial scales and as datasets

are expanded, especially by spatially extensive efforts

such as citizen science (Dickinson et al., 2012; Schwartz

et al., 2012; Primack & Gallinat, 2016).

The critical roles of sample placement and sample

pooling

In many long-term studies, space may essentially be

held constant because the data all come from a single

place. In such cases, it is not necessary to dwell on spa-

tial variation – because there is none – but it is still

important to realize that the data are spatial. They rep-

resent events at that single place and no other. It is also

important to understand that the characteristics that

determine the phenological earliness of a particular
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place may not be inherent to that place per se. The

place-specific characteristics that govern blooming may

change through time even if the place is held strictly

constant. For example, Thomson (2010) described how

the earliest Erythronium grandiflorum flowers in a sub-

alpine meadow consistently appeared around the bases

of large spruce trees where the snow melted earlier

than elsewhere. When such a tree dies and falls, the

herbs around its base will no longer experience earlier

snow melt even though their position in the meadow

has not changed. The early-flowering propensity

caused by the tree acts only in one special location, but

the action is not a permanent property of that location’s

latitude and longitude. It is a transient property of the

ecological community at that location. Similarly, trees

deposited by avalanche debris can shade snow, causing

it to melt weeks later than it would otherwise and

delaying plant growth and flowering for at least 1 year

in that location (D. Inouye, personal observation).

The importance of spatial variation in phenological

data may be clarified by explicitly considering different

spatial scales or hierarchical levels of organization (e.g.,

from an individual plant to an entire population).

Phenological events are often recorded as the onset of a

process, such as the first day of flowering of a species.

However, such data are outliers by definition (van

Strien et al., 2008), so more reliable estimates of flower-

ing times are provided by entire flowering distributions

as revealed by serial censuses taken throughout the

flowering period (Miller-Rushing et al., 2008; Cara-

Donna et al., 2014). Investigators using historical data

may be restricted to using dates of onset (Fitter & Fitter,

2002; Miller-Rushing & Primack, 2008; Rafferty & Ives,

2011), but we expect that newly designed studies will

include more detail. Here, we focus on the ‘flowering

curve’ of a species as a graph of the number of open

flowers each day vs. day of year. Such a distribution

has several properties that can describe the temporal

distribution of flower openings: start date, end date,

mean date of bloom, median date of bloom, breadth of

the flowering curve (as a variance, say, or an interquar-

tile range), and shape (e.g., skewness and kurtosis for

unimodal curves; number of modes for others). We

could also consider the evenness of flowering across

days, as represented by the sorts of diversity indices

used to measure how individuals are spread across

species. Regardless of what we estimate, the values of

all of these measures depend on arbitrary sampling

decisions. The only species-level flowering curve that

would not be affected by the spatial extent of sampling

would be a theoretical universal curve that includes all

flowers produced by all individual plants across the

entire range of the species. Such a curve would amount

to an envelope that would contain any subset of the

total numbers that might emerge from sampling any

smaller portion of the whole, all the way down to a sin-

gle plant.

Any such subset, even a single plant, would amount

to a partial summary of the universal curve, just as any

statistical sample provides an incomplete estimate of

population parameters (see, e.g., Sokal & Rohlf, 1981).

Naturally, we would expect any randomly chosen sin-

gle plant to provide a deeply inadequate representation

of the complete curve. Counting flowers on many

plants would better represent the whole, especially if

those plants were randomly drawn from the set of all

plants across the range. As one sampled more and

more plants, the sample curve would more closely

approach the complete curve. We would expect sum-

mary statistics to approach their parametric values

gradually and asymptotically, just as estimates of spe-

cies richness increase toward the true value as more

individuals are added to the sample (Gotelli & Colwell,

2001). Attempts to measure flowering curves, as

opposed to capturing first flowering dates, are more

likely to be based on counts of flowers within study

plots (e.g., Thomson, 1980; Kudo & Hirao, 2006; Inouye,

2008; CaraDonna et al., 2014; Wheeler et al., 2015),

rather than single plants. Here again, sample estimates

of phenological descriptors will more closely approach

the parametric values as investigators sample more

plots, larger plots, and plots that span more of the spe-

cies’ range.

Whether plants or plots are added, increasing the

spatial extent of the pooled sample will improve its

ability to represent the universal curve. Such improve-

ment would be good if the goal of the study is to repre-

sent the universal curve, but that will seldom be the

goal. Gathering data across the entire range of a species

would almost never be practical and would seldom be

desirable; investigators are far more likely to restrict

their studies to more restricted areas. These could be

determined geologically (such as a mountain range or a

catchment basin), politically (such as a township or

county), expediently (such as ‘a study site’ or ‘the vicin-

ity of a field station’), or collaboratively (such as the

areas under observation by citizen scientists). Almost

any such restriction is defensible, but the choice will

inevitably affect the data that emerge. At the regional

level, for example, a collection of plots spaced along a

line of longitude will yield earlier start times, later end

times, and a broader flowering curve than a similar col-

lection spread along a line of latitude. At smaller scales,

plots in a mountainous region will yield different

results if they are concentrated on south-facing vs.

north-facing slopes or if they are located at different

elevations as opposed to being restricted to a narrow

elevational range. Such quirks will be relatively

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13472
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inconsequential if a single set of fixed plots is studied

across time, but if plots are added to or subtracted from

a study, the change in spatial extent may be misinter-

preted as a change in timing.

Example of spatial variation presented as temporal

variation

An example comes from a valuable dataset compiled

by Inouye and colleagues on flowering times and abun-

dance (CaraDonna et al., 2014). Uniquely extensive, and

now available online (https://osf.io/jt4n5/), this data-

set continues to generate numerous papers (e.g.,

Inouye, 2008; Forrest et al., 2010; Diez et al., 2012;

McKinney et al., 2012; CaraDonna & Inouye, 2015;

Wright et al., 2015). Since 1974, flowers have been

counted approximately every other day in a series of

permanent 2 9 2 m plots in the vicinity of Gothic, Col-

orado, USA. The plots are distributed across a small

spatial extent (approximately 1 km), small elevation

range (approximately 110 m), and occur in different

habitat types, from dry to mesic to wet meadows in this

area.

The plot-based design of this study imparts particu-

lar spatial characteristics. The spatial and temporal

duality of the data is an important consideration for

analyses of changes in flowering phenology over time

and for attributing phenological shifts to temporal pro-

cesses such as climate change. Indeed, phenological

shifts in this subalpine community have been attributed

to increased temperatures and earlier snow melt associ-

ated with climate change over four decades (Iler et al.,

2013; CaraDonna et al., 2014). The plots not only differ

in space but also may have different temporal histories

of plant representation within plots. For example, two

plots were added in 1985, three in 1998, and two in

2004. Furthermore, species may newly colonize or go

extinct in particular plots at any time, even if the plots

were established and monitored for the same time peri-

ods. An analysis that does not explicitly consider spa-

tial effects runs the risk of attributing all variation to

temporal effects. The probability of organisms entering

or dropping out of plots during a study will be greatest

for mobile animals or short-lived plants, but can occur

with long-lived perennials, too.

We present a case study of flower count data from

the perennial herb, Cardamine cordifolia (hereafter Car-

damine). Based on Fig. 2 of CaraDonna et al. (2014), Car-

damine has exhibited the greatest shift in both first

flowering and peak flowering dates of the 60 species

analyzed for this plant community. We chose to exam-

ine this species because its reported shift was greater

than other plants with similar life histories; we won-

dered whether this could be due to a spatial change

masquerading as a temporal change, such as the colo-

nization by Cardamine into an existing plot or the addi-

tion of a new plot to the study.

In the Inouye dataset, Cardamine has been found in

four different plots since 1974. Cardamine flowers have

been fairly consistently counted in the Willow-Meadow

Interface #3 (INT3) plot from 1974 to 2011. For 24 of

these years, the first date of Cardamine flowering has

been recorded from INT3, a plot characterized as mesic.

However, since the addition of the Stream (STR) plot in

2004, the date of first flowering for Cardamine across all

plots has always been recorded in this plot (Fig. 1a).

The STR plot is characterized as wet habitat and is

located at the top of a stream drainage site. We asked

whether the addition of this plot has had an effect on

the changes in first and peak flowering dates for Car-

damine over time and whether those changes should be

attributed to space or time.

When plots are pooled and the change in first date of

flowering for Cardamine (1974–2012) is analyzed using a

simple linear regression, as done by CaraDonna et al.

(2014), first flowering is estimated to have significantly

advanced over time by 8.3 � 1.2 days per decade

(Fig. 1a; R2 = 0.59, F1,32 = 48.1, P < 0.0001). When the

STR plot is excluded from the analyses, the estimated

advance drops to 2.6 � 1.3 days per decade, and the

significance falls short of the conventional threshold of

0.05 (Fig. 1b; R2 = 0.076, F1,31 = 3.65, P = 0.066). We

further tested for spatial effects by fitting a linear model

to unpooled data with plot and year as predictor vari-

ables (R2 = 0.51, F4,39 = 12.2, P < 0.0001, slope = 0.26);

both year (P = 0.048) and STR plot (P < 0.0001) were

significantly correlated with first flowering. Our find-

ings indicate that the addition of the STR plot has had a

significant effect on the perceived change in first flow-

ering for Cardamine.

We also asked whether the more robust phenological

descriptor, peak flowering, could be similarly affected

by a change in sampling extent. We have adopted the

same definition for peaking flowering as CaraDonna

et al. (2014): the day of the year on which 50% of flow-

ers pooled across plots have been counted. When we

include the STR plot in the pooled flower counts, the

change in peak flowering for Cardamine (1974–2012),
analyzed by simple linear regression, is estimated to

have significantly shifted earlier by 7.6 � 1.2 days per

decade (R2 = 0.55, F1,32 = 40.8, P < 0.0001). When we

exclude the STR plot from the same analysis, we find

that the change in peak flowering is still significant but

of lesser magnitude, advancing by 3.4 � 1.2 days per

decade (R2 = 0.18, F1,31 = 8.093, P = 0.0078). By not

accounting for the addition of the STR plot, the change

in peak flowering is perceived to have advanced by an

additional 4.2 � 1.7 days per decade. We elaborate

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13472
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further on the Cardamine example in an online appen-

dix. It is important to know that the issue affecting Car-

damine is an isolated example that does not affect the

general value of the Inouye phenology data.

In the Cardamine example, the spatial change that

masqueraded as a temporal change was the addition of

a new study plot. That might seem to be a simple mat-

ter to avoid, but the same effect could arise if a plant

species being studied were to migrate into a new plot

during the study, and if that plot happened to be in a

site that favored early flowering, or if it were to

disappear from a plot, especially a late-flowering one.

The plant species would appear to begin flowering ear-

lier, but the shift would be attributable to the local-scale

dispersal dynamics of the species rather than a change

in climate. Of course, spatial range shifts can them-

selves be driven by climatic changes (Parmesan &

Yohe, 2003; Freeman & Class Freeman, 2014; Kuhn

et al., 2016), but these will usually be captured at spatial

scales larger than individual plots.

The Cardamine example demonstrates, first, that pool-

ing of data may introduce problems; second, that

(a)

(b) (c)

Fig. 1 Change in day of year of first flowering for Cardamine cordifolia (a) over a 38-year time period (1974–2012) when (b) data are

pooled across plots; each point is the first date of flowering recorded for that year. Plot identity of each point is shown (blue

squares = INT3 plot; orange diamonds = STR plot). R2 = 0.59, F1,32 = 48.1, P < 0.0001, slope = �0.83. (c) Data are unpooled; each point

is the first date of flowering recorded in each plot that year, only plots with multiple years of data are shown. Within plots, the regres-

sion slopes are less and the confidence intervals are so wide that the relationships become insignificant. INT3 (blue squares):

R2 = 0.076, F1,31 = 3.65, P = 0.066, slope = �0.26. STR (orange diamonds): R2 = 0.12, F1,7 = 0.18, P = 0.69, slope = �0.33. Confidence

bands (95%) of regression slopes are shown.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13472
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archiving raw data in sufficient detail can allow some

of those problems to be detected and fixed. The first

point has been made before; for example, Miller-Rush-

ing & Primack (2008, p. 339) discuss the issue with

regard to their combining four separate sets of pheno-

logical data in the area of Concord, Massachusetts,

USA:

‘[W]e, Thoreau, and Hosmer observed flowering

times throughout Concord, while Logemann

observed flowering times only on her property in

Concord. Because Logemann observed a smaller

area and fewer plants, the first flowering dates she

observed for many species were later than they

were for the other observers’.

Although Miller-Rushing & Primack (2008) clearly

recognized the dependence of phenological records on

the extent of sampling, they did not dwell on it or offer

solutions. For example, they did not discuss the possi-

bility of restricting their present-day observations to the

area of Logemann’s property, or of deriving some cor-

rection factor by comparing contemporary data from

Logemann’s property to data from more extensive sam-

ples.

Miller-Rushing et al. (2008) discussed another issue

of sampling extent. Species with increasing popula-

tion sizes, such as invasive species, will colonize a

wider range of microclimates over time. Some of

those sites will tend to promote earlier flowering, so

species that expand their ranges over the course of a

study will tend to show accelerated first flowering

dates. Similarly, ubiquitous species will presumably

have occupied more of the early sites than rare spe-

cies, leading to a positive relationship between popu-

lation size and early onset. In Concord, shifts in

flowering phenology for some species could be

explained only by change in population size and not

by change in climate; however, the same overriding

effect of population size was not found for observa-

tions from Gothic (Miller-Rushing et al., 2008). Miller-

Rushing et al. (2008) suspect that the extent of sam-

pling accounted for this difference between Gothic

and Concord. The much smaller area covered by the

2 9 2 m plots sampled at Gothic would naturally

provide a much smaller range of microclimates for

expanding populations to colonize.

In this case also, Miller-Rushing et al. (2008) acutely

point out the sensitivity of temporal inferences to the

extent of sampling in a special case but do not provide

more general guidelines for properly attributing pat-

terns to causes. We argue that further attention is war-

ranted to the spatial extent of phenological data, and

we close this paper with specific recommendations for

researchers who are either designing new studies or

analyzing existing data.

Thus far, we have emphasized how spatial variation

can present a difficulty for interpreting long-term phe-

nological data; however, we do not wish to convey a

message that calls all previous work on long-term flow-

ering phenology into question. For example, most spe-

cies in the Inouye dataset have been less affected by

changes in sampling extent (P. CaraDonna & A. Iler,

personal communication). Cardamine is an outlier, likely

because only a small number of plants are represented

in a small number of plots, making this species more

likely to be affected by plot additions and subtractions,

especially when plots differ in habitat characteristics.

Other studies that have analyzed long-term phenology

datasets have accounted for spatial variation by includ-

ing plot identity as a fixed (Kudo & Hirao, 2006) or ran-

dom effect (Anderson et al., 2012; but see Wheeler et al.,

2015) in mixed-effects models. Furthermore, experi-

mental manipulations (e.g., snow removal) have been

used to demonstrate that shifts in phenology are attri-

butable to temporal processes, such as the effect of cli-

mate change on the timing of snow melt (Anderson &

Gezon, 2015). Indeed, spatial variation in phenology

can also be used to a researcher’s advantage; a particu-

larly powerful method for studying climate change

effects on phenology has been to combine spatial gradi-

ents with warming experiments over time (Dunne et al.,

2003, 2004).

Decomposing pooled curves

The spatiotemporal nature of phenological data also

affects other issues, such as the hierarchical structure of

ecological heterogeneity (i.e., the ecological patterns

found at various scales) and the nature of interplant

variation, which in turn affect the prospects for

response to selection. By considering a pooled, univer-

sal flowering curve as the sum of smaller-scale pro-

cesses, we can better understand how a particular

property of the pooled distribution might arise from

different underlying processes (Elzinga et al., 2007 dis-

cuss other examples). This is most easily seen with

respect to properties such as flowering curve breadth

or symmetry. Fig. 2 illustrates how two very different

sets of plot data can give rise to identical pooled curves,

but how the underlying differences can be summarized

by partitioning flowering-time diversity of the whole

collection (c diversity) into a (within-plot) and b (be-

tween-plot) components. The hypothetical populations

in Fig. 2a, c are ones in which all plots are homoge-

neous, and each one reproduces the pooled data. In

Fig. 2b, d, b diversity is much higher; plots vary wildly,

and any one plot is a very poor representative of the

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13472
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whole. The two situations would present very different

challenges to flower feeders and different opportunities

for individual selection on timing (Thomson, 1980;

Elzinga et al., 2007), but those differences become invis-

ible when the data are pooled across plots.

The same principle holds if data are recorded for

individual plants instead of individual plots (Primack,

1985; Elzinga et al., 2007). For example, Thomson (1980)

noted that 53 of 57 plant species in subalpine meadows

showed positively skewed flowering curves in pooled

(a) (b)

(c) (d)

Fig. 2 Hypothetical data to demonstrate effects of pooling; here we focus on pooling across plots; however, the same effects apply to

data pooled across individual plants. These data were created by assigning daily counts of open flowers to individual plots. Popula-

tion-level (pooled) flowering counts were created by summing the plot-level flowering counts across days. For pairs of identical pooled

curves (a and b, and c and d; shown in purple), we show possible differences in the flowering curves of the underlying plots. The dif-

ferences between (a) and (b) are summarized by partitioning flowering-time diversity of the whole collection (c diversity) into a

(within-plot) and b (between-plot) components. For simplicity, we use Simpson’s index for a and c diversity and follow Whittaker’s

original definition of b = c/a (Whittaker, 1972). For these equations, instead of calculating the proportional abundance of each species,

we calculate the proportional abundance of each day’s open flowers. (a) All plots are a good representation of the pooled curve, with

similar symmetry and breadth (c = 11.66, b = 1.03). This hypothetical scenario could occur when plots sampled for a given species

occur in a homogeneous flowering environment. (b) Any one plot is a poor representation of the pooled curve (c = 11.66, b = 2.51). b
diversity is much higher in (b) than in (a). This hypothetical scenario could occur when plots sampled for a given species occur in a

heterogeneous flowering environment. (c) All underlying plots have skewed flowering curves that are well represented by the skew-

ness of the pooled curve. (d) None of the underlying plots show skewed flowering curves and instead the skewness of the pooled curve

is a result of a greater number of plots flowering earlier. All curves are computed by a locally weighted regression smoother (LOESS).

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13472
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census data from rectangular grids of 108 plots of 4 m2.

Although he speculated about possible adaptive advan-

tages for individual plants with skewed curves, he

pointed out that the shapes of individual plants’ curves

cannot be deduced from the shape of the pooled curve

to which they contribute. As shown in Fig. 2c, a pooled

curve might be positively skewed because the individ-

ual plant curves are positively skewed and start more

or less at the same time. Alternatively, the individual

curves might be symmetrical (or even negatively

skewed) but their locations in time might tend to be

aggregated toward the beginning of flowering, produc-

ing a skewed pooled curve by a different mechanism

(Fig. 2d; see also CaraDonna et al., 2014). Moving from

the plot level to the plant level, in a later study of Dier-

villa lonicera, Thomson (1985) decomposed a pooled

flowering curve – which was skewed – into its con-

stituent curves from each plant. In that case, individual

shoots did tend to be skewed, thereby presenting the

same skewed nature as the pooled curve. However, a

different result might have emerged. The same argu-

ment applies to individual plants and individual plots:

once phenological data have been pooled across indi-

viduals or sample plots, the characteristics of those sub-

units are lost. To the extent that phenological sampling

collects data at multiple hierarchical levels, such as

plants within plots, plots within meadows, and mead-

ows within floodplains, the preceding arguments about

plants should apply at each hierarchical level (Primack,

1985).

Concluding recommendations

These considerations suggest some good practices for

phenological monitoring. We offer these particularly to

investigators who are planning new studies. Although

we have focused on flowering phenology, many of the

following recommendations could also be applied to

phenological data collection for mobile organisms,

especially when collected from fixed locales (e.g., per-

manent bird-banding stations).

1. In estimating phenological properties, one should

consider and anticipate how those estimates will

depend on the spatial extent of the sampling and the

heterogeneity of the area sampled. In analogy to the

role of species–area curves in the estimation of spe-

cies diversity, one should examine how estimates of

phenological descriptors such as flowering duration

respond to the successive addition of sample plots

(Miller-Rushing et al., 2008). Ideally, a study would

include enough plots for those estimates to stabilize

– as a species–area curve levels off – but this may

not be practical. Rarefaction procedures, analogous

to those used for estimating species diversity, could

help gauge the adequacy of sampling. The analogy

to species diversity could extend to the point of

breaking down phenological variation into hierarchi-

cal components akin to a-, b-, and c-diversity.
2. In designing a study that will establish permanent

sample plots, the criteria for selecting plots should

be considered and recorded as part of the metadata.

To consider questions of functional ecology, it

would be important for the sample of plots to

include a broad range of local variation. But if the

goal is to document change over time, it may be bet-

ter to select plots using some criterion of homogene-

ity. Ecological homogeneity is a difficult criterion

that might require subjectivity (see Curtis, 1959), but

it is better to consider it explicitly rather than to

ignore it. For studies wishing to isolate temporal

trends in flowering phenology, it may be appropri-

ate to include a plot-level characteristic (e.g., eleva-

tion, soil water content, light level, etc.) as a

covariate in analyses.

3. Once a study has begun, researchers should strongly

consider and anticipate the implications of losing

plots (or individuals) and adding plots (or individu-

als). Data and metadata must be archived at the plot

(or individual) level so that additions and deletions

can be detected and treated as necessary. Data analy-

sis should also be able to detect spontaneous gains

or losses of species within plots (see Roth et al.,

2014). In most cases, conclusions about changing

phenology should focus on temporal changes within

plots rather than pooled across plots. When plots are

pooled, statistical analyses of time series should

account for potential effects of plot identity [e.g., by

including individual plot as a fixed (Kudo & Hirao,

2006) or random effect (Anderson et al., 2012)].

Another approach would be to analyze trends

within plots only and to use meta-analytic tech-

niques for assessing overall effects and significance.

Such an approach would allow one to disentangle

the confounding effects of population increase noted

by Miller-Rushing et al. (2008), especially if the

smallest sampling units are small enough to be

microclimatically homogeneous.

4. Recording data at the individual-plant level could be

performed instead of or in addition to recording data

at the plot level. Gathering plant-level data, even if

only for a subset of labeled plants, could provide

insight into the relationship between individual and

populational patterns. In some cases, it may require

only slightly more effort to record data at the indi-

vidual-plant level, which, if combined with data

such as seed set, could give important insights into

the relationship between phenology and fitness com-

ponents. Long-term studies that link phenology and
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fitness will improve our understanding of how

plants are succeeding or failing to adapt to the novel

conditions presented by climate change. As well,

individual-level data are likely to provide a more

precise and accurate dataset that could be summa-

rized with averages instead of by pooling. For exam-

ple, instead of reporting the date of onset at the plot

level, one could calculate the mean date of onset

across individual plants within a plot.

5. In considering study designs, a potentially powerful

approach would be to recruit a growing group of citi-

zen scientists to record dates of first flowering, leaf

budbreak, etc. (as is being done by the USA National

Phenology Network, and Project BudBurst). Such

datasets would be particularly vulnerable to space-for-

time effects, however. If such data were pooled across

respondents, the dates of onset would become earlier

through time as a purely statistical consequence of

adding more observers and thereby increasing the

spatial extent of the sample. Ending dates, such as leaf

drop, would become later. If observers dropped out of

the study, onset would appear to be retarded. It would

be critical to analyze such time series within observers

or to account for sampling effort, and any measure of

central tendency would be better than recording dates

of onset or termination (CaraDonna et al., 2014). Exten-

sion of classic site-occupancy models has been sug-

gested as a possible method for analyzing such

temporally and spatially variable phenological data

(Roth et al., 2014).

Acknowledgements

We thank P. CaraDonna, A. Iler, J. Ogilvie, J. Anderson, and
three anonymous reviewers for comments on the manuscript.
This research was supported by an NSERC CGS-M to CWdK, a
Postdoctoral Fellowship from the Department of Ecology and
Evolutionary Biology at the University of Toronto to NER, NSF
grants (DEB 75-15422, DEB 78-07784, BSR 81-08387, DEB 94-
08382, IBN 98-14509, DEB 02-38331, DEB 09-22080) to DWI, and
NSERC Discovery Grants to JDT.

References

Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation,

migration or extirpation: climate change outcomes for tree populations. Evolution-

ary Applications, 1, 95–111.

Anderson JT, Gezon ZJ (2015) Plasticity in functional traits in the context of climate

change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Global

Change Biology, 21, 1689–1703.

Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T (2012) Pheno-

typic plasticity and adaptive evolution contribute to advancing flowering phenol-

ogy in response to climate change. Proceedings of the Royal Society B: Biological

Sciences, 279, 3843–3852.

CaraDonna PJ, Inouye DW (2015) Phenological responses to climate change do not

exhibit phylogenetic signal in a subalpine plant community. Ecology, 96, 355–361.

CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a

subalpine plant community. Proceedings of the National Academy of Sciences of the

United States of America, 111, 4916–4921.

Curtis JT (1959) The Vegetation of Wisconsin: An Ordination of Plant Communities, pp.

70–71. University of Wisconsin Press, Madison, WI, USA.

Dickinson JL, Shirk J, Bonter D et al. (2012) The current state of citizen science as a

tool for ecological research and public engagement. Frontiers in Ecology and the

Environment, 10, 291–297.

Diez JM, Ibanez I, Miller-Rushing AJ et al. (2012) Forecasting phenology: from species

variability to community patterns. Ecology Letters, 15, 545–553.

Dunne JA, Harte J, Taylor K (2003) Subalpine meadow flowering phenology

responses to climate change: integrating experimental and gradient methods. Eco-

logical Monographs, 73, 69–86.

Dunne JA, Saleska SR, Fischer ML, Harte J (2004) Integrating experimental and gradi-

ent methods in ecological climate change research. Ecology, 85, 904–916.

Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time:

flowering phenology and biotic interactions. Trends in Ecology and Evolution, 22,

432–439.

Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science,

296, 1689–1691.

Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of

phenology in ecology and evolution. Philosophical Transactions of the Royal Society of

London. Series B, Biological Sciences, 365, 3101–3112.

Forrest J, Inouye DW, Thomson JD (2010) Flowering phenology in subalpine mead-

ows: does climate variation influence community co-flowering patterns? Ecology,

91, 431–440.

Freeman BG, Class Freeman AM (2014) Rapid upslope shifts in New Guinean birds

illustrate strong distributional responses of tropical montane species to global

warming. Proceedings of the National Academy of Sciences of the United States of

America, 111, 4490–4494.

Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the

measurement and comparison of species richness. Ecology Letters, 4, 379–391.

Iler AM, Høye TT, Inouye DW, Schmidt NM (2013) Nonlinear flowering responses to

climate: are species approaching their limits of phenological change? Philosophical

Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 20120489.

Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral

abundance of montane wildflowers. Ecology, 89, 353–362.

Kudo G, Hirao AS (2006) Habitat-specific responses in the flowering phenology and

seed set of alpine plants to climate variation: implications for global-change

impacts. Population Ecology, 48, 49–58.

Kuhn E, Lenoir J, Piedallu C, G�egout J-C (2016) Early signs of range disjunction of

submountainous plant species: an unexplored consequence of future and contem-

porary climate changes. Global Change Biology, 22, 2094–2105.

McKinney AM, Caradonna PJ, Inouye DW, Barr B, Bertelsen CD, Waser NM, Irwin

RE (2012) Asynchronous changes in phenology of migrating Broad-tailed Hum-

mingbirds and their early-season nectar resources. Ecology, 93, 1987–1993.

Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thor-

eau’s Concord: a community perspective. Ecology, 89, 332–341.

Miller-Rushing AJ, Inouye DW, Primack RB (2008) How well do first flowering dates

measure plant responses to climate change? The effects of population size and

sampling frequency. Journal of Ecology, 96, 1289–1296.

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts

across natural systems. Nature, 421, 37–42.

Primack RB (1985) Patterns of flowering phenology in communities, populations,

individuals, and single flowers. In: The Population Structure of Vegetation (ed. White

J), pp. 571–593. Springer, Dordrecht, the Netherlands.

Primack RB, Gallinat A (2016) Spring budburst in a changing climate. American Scien-

tist, 104, 102–109.

Rafferty NE, Ives AR (2011) Effects of experimental shifts in flowering phenology on

plant-pollinator interactions. Ecology Letters, 14, 69–74.

Rafferty NE, CaraDonna PJ, Bronstein JL (2015) Phenological shifts and the fate of

mutualisms. Oikos, 124, 14–21.

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Finger-

prints of global warming on wild animals and plants. Nature, 421, 57–60.

Roth T, Strebel N, Amrhein V (2014) Estimating unbiased phenological trends by

adapting site-occupancy models. Ecology, 95, 2144–2154.

Schwartz MD (1998) Green-wave phenology. Nature, 394, 839–840.

Schwartz MD, Betancourt JL, Weltzin JF (2012) From Caprio’s lilacs to the USA

National Phenology Network. Frontiers in Ecology and the Environment, 10, 324–

327.

Sokal RR, Rohlf FJ (1981) Biometry 2nd edn: The Principles and Practice of Statistics in Bio-

logical Research, pp. 52–53. W.H. Freeman and Company, New York, NY.

Stinchcombe JR, Weinig C, Ungerer M et al. (2004) A latitudinal cline in flowering

time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13472

8 C. W. DE KEYZER et al.



Proceedings of the National Academy of Sciences of the United States of America, 101,

4712–4717.

van Strien AJ, Plantenga WF, Soldaat LL, van Swaay CAM, WallisDeVries MF (2008)

Bias in phenology assessments based on first appearance data of butterflies.

Oecologia, 156, 227–235.

Thomson JD (1980) Skewed flowering distributions and pollinator attraction. Ecology,

61, 572–579.

Thomson JD (1985) Pollination and seed set in Diervilla lonicera (Caprifoliaceae): tem-

poral patterns of flower and ovule deployment. American Journal of Botany, 72,

737–740.

Thomson JD (2010) Flowering phenology, fruiting success and progressive deteriora-

tion of pollination in an early-flowering geophyte. Philosophical Transactions of the

Royal Society of London Series B, Biological Sciences, 365, 3187–3199.

Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for

a yardstick. Proceedings of the Royal Society B: Biological Sciences, 272, 2561–2569.

Wheeler HC, Høye TT, Schmidt NM, Svenning J-C, Forchhammer MC (2015) Pheno-

logical mismatch with abiotic conditions – implications for flowering in Arctic

plants. Ecology, 96, 775–787.

Whittaker R (1972) Evolution and measurement of species diversity. Taxon, 21, 213–

251.

Wright KW, Vanderbilt KL, Inouye DW, Bertelsen CD, Crimmins TM (2015) Turn-

over and reliability of flower communities in extreme environments: insights from

long-term phenology data sets. Journal of Arid Environments, 115, 27–34.

Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Appendix S1. Re-analysis of Cardamine data controlling for
time period and inclusion of data from 1974 to 2015.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13472

EFFECTS OF SPATIAL VARIATION ON PHENOLOGY 9




