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Abstract

Bacterial fitness depends on adaptability to changing environments. In rich growth medium,

which is replete with amino acids, Escherichia coli primarily expresses protein synthesis

machineries, which comprise ~40% of cellular proteins, and are required for rapid growth. Upon

transition to minimal medium, which lacks amino acids, biosynthetic enzymes are synthesized,

eventually reaching ~15% of cellular proteins when growth fully resumes. We applied quantitative

proteomics to analyze the timing of enzyme expression during such transitions, and established a

simple positive relation between the onset time of enzyme synthesis and the fractional enzyme

“reserve” maintained by E. coli while growing in rich media. We devised and validated a

coarse-grained kinetic model that quantitatively captures the enzyme recovery kinetics in different

pathways, based solely on the proteomes immediately preceding the transition and well after

its completion. Our model enables us to infer regulatory strategies underlying the “as needed”

gene-expression program adopted by E. coli.

In the wild, bacteria are exposed to rapidly changing nutrient environments, including

feast-like conditions with abundant amino acids and saccharides such as those in the

mammalian gut soon after meals (1, 2), and famine-like conditions as what enteric bacteria
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encounter when they are released into the sewar (3, 4). Rapid adaptation by bacteria to

the changing environment is crucial for bacteria to seize opportunities to proliferate as

much as possible given the nutrients available, and to cope and survive when nutrients

are depleted (5, 6). Early studies of bacterial adaptation to nutrient environment were

done during steady state growth, and discovered the differential allocation of the bacterial

proteome to ribosomes, organized in accordance to the growth rate (7-9). More recent

studies found orderly adjustment of the bacterial proteome in other components of the

proteome besides the ribosomes (10-14). Focusing on bacteria growing on minimal medium,

with a spectrum of growth rates obtained by using different carbon sources, by chemostat

set to different dilution rates, or with growth reduction set by various sublethal doses of

antibiotics, proteomic methods have been used to quantify and predict how the bacterial

proteome is allocated into various functional groups (15-19) and during transitions from one

carbon source to another (11, 20-23). During the course of these studies, theoretical models

have been developed to explain growth phenotypes, including the quantitative prediction of

lag times for different transitions based on only steady state data (24-29). However, most of

the quantitative studies have so far been limited to bacteria in minimal medium with defined

(and simple) carbon and nitrogen sources. Much less is known at the quantitative level for

bacterial growth in different ‘rich media’ containing a multitude of amino acids and other

nutrients, even though such nutrient conditions may be more common in natural habitats

(e.g., the gut for enteric bacteria (1, 2) than minimal medium, at least until substrates present

in rich media are exhausted.

In order to fill in the knowledge gap on proteome allocation for bacteria in rich media, we

characterized the proteome of E. coli cells grown in a variety of ‘rich media’ commonly

used in laboratory studies, with the full supplement of amino acids, with/without nucleotides

and vitamins, and with/without the additional supplement of a carbon source. We focused

on the dynamics during growth transition from rich to minimal media, particularly the

kinetics of the onset of various biosynthetic pathways that are needed for growth in minimal

media but not in rich media. Our study relied on DIA-based quantitative mass-spectrometry

proteomics (19) along with an improved protein quantification method (xTop v2.0), which

allowed us to estimate errors in the protein abundances from the available peptide precursor

signals.

Results

Proteome allocation during growth in rich and minimal media

We characterized the proteomes of exponentially growing E. coli K-12 cells in four common

‘rich media’ using a recently developed protein quantification method (19). Accurate,

quantitative measurements of protein abundances were obtained by data independent

acquisition (DIA) mass spectrometry followed with library-based (30, 31) and library-free

(directDIA) data analysis approaches. Protein abundances were inferred from peptide

measurements using the recently developed algorithm xTop (19). Here, we further extended

the analysis by developing a framework to estimating the uncertainty in the measured

abundances, crucial for comparison of results across growth conditions or over a time

series as will be done below. Our uncertainty estimate leverages the Bayesian framework
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upon which the xTop algorithm is built to calculate condition- and protein-specific

uncertainties arising from the scatter in peptide precursors (Supplementary Note 1). We

combined relative quantification provided by this updated xTop v2.0 algorithm with absolute

quantification provided by ribosome profiling (32), to yield accurate protein abundances

and associated uncertainties for about 2000 proteins in each condition (Methods). For the

ease of comparison to previous studies on proteome allocation in minimal media, we also

characterized the proteomes of the same cells growing in MOPS-based minimal medium

with glucose as the sole carbon source, as well as for cells subjected to reduced glucose

uptake as characterized previously (15, 19, 32).

Fig. 1a shows the growth rate of wild-type cells in various rich and minimal glucose

media; see Supplementary Table 1, 2 for the medium composition used and strain details.

As expected, the addition of casamino acid (CAA, containing amino acid monomers) or

rich-defined medium (RDM, containing amino acids, nucleotides, and vitamins (33)) to

glucose minimal medium increased the steady-state growth rate. Interestingly however,

while the growth on CAA alone well exceeded that on glucose alone, further addition

of glucose boosted the growth more than the addition of nucleotides and vitamins (RDM

alone). This underscores the dominant roles amino acids and additional carbon supplies play

in rapid bacterial growth, with the supply of nucleotides and vitamins exerting relatively

minor effects.

The total abundances of expressed proteins in several main functional groups (defined in

Supplementary Table 3 based on pathways described in Refs. (34, 35)) are shown in Fig.

1b for wild type cells grown in glucose minimal medium and in glucose supplemented

by RDM. Here and throughout the text, the abundance of a protein i is reported as the

mass fraction of that protein among the total cellular protein mass, denoted as ϕi, and the

abundance of a functional group is the sum of the mass fraction of all proteins in that group.

Fig. 1a shows the clear dominance of translation-related proteins for growth in rich medium

and the co-dominance of translation-related proteins and amino-acid biosynthesis (AAB)

enzymes in minimal medium. By plotting the abundance of translation-related proteins

against the growth rate of each culture, we found a linear increase, by ~14%-proteome

from glucose alone to glucose supplemented with RDM (Fig. 1c), with similar increases for

ribosomal proteins and auxiliary proteins including elongation factors and tRNA synthetases

(Extended Data Fig. 1a-c). Since translational elongation rate is nearly saturated in these

growth conditions (36), the observed increase in the abundance of translational machinery

reflects what is needed to increase protein synthesis flux in rich media, as already reported

for bacterial physiology (8, 10, 37, 38).

The total cellular protein content increases with cell volume for cells grown in different

media (19, 39-41), so the abundance measured in mass fraction is approximately

proportional to the cellular protein concentration, with mass fraction of 1% corresponding to

∼ 5 × 104 proteins per μm3 of cell volume for typical proteins 250aa in length (41). Thus, the

increased concentration of translational proteins in rich media is necessarily accompanied

by decreased concentrations of other proteins. We found that this decrease was mainly

achieved by reductions in AAB enzymes, from ~15% to < 4% of total protein mass when
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supplied with either CAA or RDM (Fig. 1d); similar reallocation has also been reported

in S. cerevisiae (42). The role of nucleotide synthesis in proteome allocation is negligible

in comparison since the changes are below 1%-proteome (Fig. 1e). The TCA cycle was

reduced with RDM supplement by ~2%-proteome (Fig. 1g); but this was largely offset by

the increase in allocation for fermentation to acetate (Fig. 1f).

Next, we compare the proteome of cells grown in CAA or RDM, with and without glucose

supplement. The boost of 20-30% in growth rate due to glucose supplementation, which

required a ~5%-proteome increase in translational proteins (Fig. 1c), is accompanied with

reduced allocation for enzymes of TCA cycle (2.5%-proteome), glycolysis/gluconeogenesis,

fermentation to acetate, and ATPase (~0.5%-proteome each); compare open and filled

green symbols in Fig. 1f-i. The reallocation pattern we observed suggests that enzymes

additionally required for growth in rich medium, in the absence of a supplemental carbon

source, are mainly those involved in energy biogenesis and the biosynthesis of other non-AA

carbon components (e.g., lipids and cell-wall component) from one or more amino acids

(AA); see detailed examination in Extended Data Fig. 2.

Growth lag during amino acid downshift

We found that the reallocation of the proteome from AA biosynthesis to translational

machineries is a primary requirement for cells to grow fast in rich media (Fig. 1). However,

removal of AAB enzymes from the proteome makes it more difficult for cells to maintain

growth once the supply of AA is exhausted, because de novo AA biosynthesis is needed

(Fig. 2a). This could result in a lag in growth recovery when cells are shifted from rich to

minimal media.

To analyse the anticipated growth-lag, we grew cells in media with all 20 AAs

(Supplementary Table 4) supplemented by glucose, and shifted mid-exponential cultures to

the same medium containing glucose but lacking AAs (Fig. 2b; Methods). A 2-hour lag was

observed before growth recovery (Extended Data Fig. 3a, 3b). For convenience, most of our

subsequent experiments used a mix of 18 AAs, with two minor AAs, cysteine and tyrosine,

excluded due to their instability (cysteine) and poor solubility (tyrosine). The kinetics of

growth recovery without these two minor AAs is indistinguishable from that with all 20 AAs

(Extended Data Fig. 3b).

We hypothesized that the lag might arise due to bottlenecks in de novo AA biosynthesis and

carbon substrate uptake. We first tested the effect of different carbon supplements on AA

downshift kinetics. Carbon substrates that enter central metabolism from upper glycolysis

(Supplementary Table 5) all had lag times of ~2h (Fig. 2c) despite differences in their

pre- and post-shift growth rates (Fig. 2d, 2e). To test whether the uptake of glycolytic

carbon sources is strongly repressed before downshifts, we performed AA downshift with

glycerol, whose uptake system is well characterized (43): Repeating the AA downshift

experiment with glycerol with a mutant E. coli (NQ399, Supplementary Table 1) that

has glycerol uptake proteins GlpFK strongly expressed (11), we observed the same 2h

lag (Extended Data Fig. 3c-d). We concluded that the 2h lag arises from internal growth

bottleneck(s) related to abrupt AA removal when shifting from rich to minimal media. Next,

we investigated the 2h lag for the downshift from 18AA to none using glycerol as the carbon
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supplement [hereafter used as a standard downshift protocol and just referred to as “AA

downshift” for simplicity]. The steady-state mass fractions of the main protein groups in the

pre-shift condition of this standard AA downshift (Extended Data Fig. 1d-k) were consistent

with those in other rich conditions.

Proteomic analysis during AA downshift

To quantitate cellular recovery kinetics, we analysed the proteome after AA downshift

using mass spectrometry-based proteomics (19). Extended Data Fig. 4 (up-triangles) show

two biological replicates of the time courses of the protein functional groups, with the

instantaneous growth rate plotted in Extended Data Fig. 4l for reference. The group of

AAB enzymes increased the most (~8%-proteome) during the shift (Extended Data Fig. 4b).

Interestingly, glycerol uptake enzymes increased too (Extended Data Fig. 4k), even though

glycerol uptake was not a bottleneck (Extended Data Fig. 3d).

The protein mass fractions plotted in Extended Data Fig. 4 were derived by summing up

mass fractions of individual proteins from each group. In Extended Data Fig. 4b much

larger protein changes of some individual AAB enzymes are masked by the summing

process. Individual AAB enzymes are shown in Extended Data Fig. 5, grouped according to

pathways. (Due to the excellent repeatability of the results shown in Extended Data Fig. 4,

here we only show the data for set 1.) The responses exhibited across these pathways were

quite diverse, both in terms of fold changes and recovery kinetics: MetE showed >100-fold

change (Extended Data Fig. 5a) while enzymes in threonine synthesis pathway showed

no more than two-fold change (Extended Data Fig. 5j). Some enzymes started increasing

their abundances in the early stage of the shift, e.g., the methionine and arginine pathways

(Extended Data Fig. 5a,b), while other enzymes did not increase until 100 min after the shift,

e.g., the serine and threonine pathways (Extended Data Fig. 5i, j).

As the enzymes in the same pathway had similar kinetics, attributed in part to operon

structure (indicated in Extended Data Fig. 5), we summed up the abundances of enzymes in

the same pathway to obtain a finer grained view of the kinetic response of the AAB enzymes

in Fig. 3a, which identified a variety of fold-changes (y-axis) and onset times (x-axis). The

inverse of the fold-change, which is the pre-expression level of a pathway relative to its

final expression level (for steady state growth in glycerol minimal medium), referred to as

(fractional) “pre-shift reserve”, is plotted in increasing order in Fig. 3b. The plot reveals a

surprising exponential separation of the pre-shift reserves as indicated by the red dashed

line.

The kinetic behaviors of the AAB enzymes for the first several groups are plotted in order

in panels Fig. 3c through Fig. 3k, with the remainders and replicates shown in Extended

Data Fig. 6. A systematic change in recovery kinetics was observed in Fig. 3c-3k, with

the enzyme groups with the smaller pre-shift reserve responding earlier after the shift. To

further quantitate recovery kinetics, we estimated the recovery onset time of each group;

see Extended Data Fig. 7a. Plotting the onset time obtained against the reciprocal of the

fold change, we obtained a smoothly increasing relation (triangles, Fig. 3l). This relation

obtained is robust to the precise definition of the onset time (Extended Data Fig. 7b-g),

and is moreover seen not only at the pathway level, but also for individual AAB enzymes
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(blue triangles in Fig. 3m). Correlations between onset time and the pre- and post- shift

abundances themselves, or their differences, are much weaker (Extended Data Fig. 7h-m).

Our data thus reveals a simple rule, that the recovery onset time of AAB enzymes is an

increasing function of the fractional pre-shift reserves.

Modelling AA downshift kinetics

The correlation between enzyme onset time and pre-shift reserve is reminiscent of

qualitative predictions made in a theoretical study by Pavlov and Ehrenberg (PE) (44),

who proposed that allocating protein synthesis preferentially to enzyme groups with the

smallest reserve would provide the fastest recovery. However, it is difficult to obtain

concrete predictions on enzyme onset times from the PE model in order to compare to

the data, since the PE model was assumed to be globally applicable to all enzymes, while

the relationship observed between onset time and pre-shift reserve was specific for AAB

enzymes, but not for the majority of other detected proteins (circles vs. triangles, Fig. 3m).

We incorporated elements of the PE model into a coarse-grained model of flux-controlled

proteome allocation (21) to quantitate the onset of AAB enzymes, and their effect on the

overall growth recovery.

Qualitatively, the problem cells face right after AA downshift can be described as follows:

Cells need to make AAB enzymes to supply the missing AA influx. However, the overall

protein synthesis flux is limited due to the lack of AAs. Therefore, it is necessary to

reallocate the limited protein synthesis flux towards AAB enzymes right after the shift, away

from the synthesis of ribosomal proteins which dominated before the shift (Fig. 2a). The

generic kinetic equations for the jth AAB enzyme group (of proteomic mass fraction ϕA, j(t))
and ribosomal proteins (of mass fraction ϕRb(t)) can be written as (Supplementary Note 2)

dϕA, j
dt = λ(t) ⋅ χA, j(t) − ϕA, j(t) , (1)

dϕRb
dt = λ(t) ⋅ χRb(t) − ϕRb(t) . (2)

Here λ(t) ≡ d
dt ln M(t) is the instantaneous growth rate during the shift, with M(t) being the

total protein mass at time t after shift. It describes the magnitude of protein synthesis flux

(dM ∕ dt) normalized by the total protein mass. χA, j(t) and χRb(t) are “allocation functions”

describing the fraction of protein synthesis flux directed towards synthesizing the jtℎ AAB

enzyme group and ribosomal proteins, respectively. In order to solve the recovery kinetics, it

is necessary to specify the time dependence of growth rate λ(t) and the allocation functions

χA, j(t), χRb(t) in terms of the dynamical variables, ϕA, j(t), ϕRb(t).

We adopted the PE model (44), setting the instantaneous growth rate in terms of the

abundances of the rate-limiting enzyme group(s), in this case, the AAB enzyme groups

ϕA, j(t), as
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λ(t)
λ∗ = min

j

ϕA, j(t)
ϕA, j

∗ = min
j

qj(t) . (3)

Here λ∗ and ϕA, j
∗  represent the growth rate and the abundance of the jtℎ AAB enzyme

group in the post-shift steady-state, respectively, and qj(t) ≡ ϕA, j(t) ∕ ϕA, j
∗  is the enzyme

abundance relative to the final abundance, i.e., the fractional enzyme reserve. As elaborated

in Supplementary Note 2B, Eq. (3) is simply a statement that the protein synthesis flux

(proportional to λ(t)) is governed by the abundance of the most bottlenecked enzyme

group(s), a result which follows from the assumption that the catalytic rates of the growth-

limiting enzyme groups are at maximum (i.e., uninhibited) as are the catalytic rates in the

post-shift steady-state, with allosteric inhibition of the non-limiting AAB enzymes (45).

Specifying the time-dependent allocation functions χA, j(t), χRb(t) involves more effort.

Molecularly, the synthesis of different enzyme groups are regulated by their corresponding

AA products (Fig. 4a). According to the well-known mechanisms of end-products inhibition

(45, 46), the synthesis of growth-limiting AAB enzyme group(s) are expected to be

up-regulated due to the low concentration of their AA products, while synthesis of non-

growth limiting group(s) are expected to be repressed due to the accumulation of their

corresponding AA products. To determine the protein synthesis flux allocated to each AAB

group without requiring molecular details (which are mostly unknown at the quantitative

level), we developed a two-stage allocation scheme as illustrated in Fig. 4a: In the first

stage, we extended the scheme of flux-controlled regulation (FCR) introduced by Erickson

et al (21) and reviewed in (14) to describe the allocation between ribosome synthesis χRb(t)
and total AAB enzyme synthesis χA, tot(t), which is based molecularly on ppGpp-mediated

regulation (47). Then in the second stage, we describe more refined sub-allocation of the

AAB enzymes to each group, i.e., from χA, tot(t) to χA, j(t), which is based on end-product

inhibition.

In the FCR scheme, the translational activity, defined as

σ(t) ≡ λ(t) ∕ ϕRb(t), (4)

is taken to represent the overall abundance of the AA pools while growth is limited by AA

synthesis (Eq. (3)). Using σ(t), we can express the allocation functions χA, tot(t) and χRb(t) in
terms of the regulatory functions χA, tot(σ) and χRb(σ), as

χA, tot(t) = χA, tot(σ(t)), (5)

χRb(t) = χRb(σ(t)) . (6)

The forms of these regulatory functions, shown in Fig. 4b, can be determined from steady-

state measurements as detailed in Extended Data Fig. 8. We see that under limited growth
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(small σ), ribosomal synthesis is repressed while AAB enzyme synthesis is induced as may

be expected intuitively. Molecularly, the translational activity σ(t) is represented (inversely)

by the ppGpp signaling system, during growth transition and in steady-state (47, 48). Down-

regulation of ribosomal synthesis by high ppGpp (small σ) is well documented (49-52). Our

model also expects up-regulation of AAB enzyme synthesis by ppGpp (Fig. 4b), which is

supported by recent studies characterizing the transient effect of ppGpp on AAB synthesis

(53).

In the second stage of our regulatory scheme, we specified the allocation of AAB enzyme

synthesis towards the individual groups by introducing a set of relative allocation functions:

χA, j(t) ≡ ηj(t) ⋅ χA, tot(t) . (7)

The relative allocation functions ηj(t) were chosen in accordance to the outcome of end-

product inhibition (45, 46). A full implementation of this regulatory effect would require

knowledge of the metabolite concentrations which we are not keeping track of in this

work. Instead, we adopt a simple mathematical implementation as described by Pavlov

and Ehrenberg (44). In this implementation (detailed in Supplementary Note 2C), feedback

inhibition is determined through the present abundance of each enzyme group, qn(t). At a

given time t, the AAB groups can be divided into two classes based on whether a group

is growth-limiting at that time. The non-limiting group (with qj(t) > λ(t) ∕ λ∗) receives no

allocation, i.e., ηj(t) = 0, while the limiting groups are allocated in proportion to their final

abundances, ϕA, j
∗ . If one orders the enzyme groups according to their relative pre-shift

abundance level qj(0), i.e., q1(0) < q2(0) < ⋯, then the group-specific relative allocation

imposed by end-product inhibition can be expressed as

ηj(t) =
0 j > J (t)

ϕA, j
∗ ∕ ∑m = 1

J (t) ϕA, m
∗ j ≤ J (t)

(8)

where J (t) is the number of enzyme groups being synthesized at time t, so that the groups

with j ≤ J (t) are equally growth-limiting while those with j > J (t) are not limiting.

Enzyme and growth kinetics of the two-stage model

Equations (1) through (8) completely specify our kinetic model of AA downshift. With the

pre-shift and the final post-shift enzyme abundance values, ϕA, j(0) and ϕA, j
∗ , respectively,

obtained from the proteomic data (Supplementary Table 6), the model can be solved

numerically to predict the quantitative time course of a long list of kinetic variables

(Supplementary Table 7), including the abundances of the ribosomes, each AAB enzyme

groups, as well as the overall growth dynamics, without any adjustable parameters; see

Supplementary Note 3 for detailed explanation of the kinetic framework. First of all, the

allocation for ribosomal synthesis χRb(t) is predicted to be repressed right after the shift,

while the total allocation for AAB enzymes χA, tot(t) is upregulated as shown in Fig. 4c.
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The resulting changes in the abundances of these two groups of proteins, plotted as the

black and green curves in Fig. 4d, capture the data (triangles) very well. The predicted

allocation functions χA, j(t) for each AAB groups are shown in Fig. 4e: Right after the

shift, only the Met group (orange) was synthesized since methionine was most growth

limiting (based on the pre-shift reserve of the Met enzymes shown in Fig. 3c). After ~20

minutes when methionine was no longer the only growth-limiting AA, the synthesis of

other AAB enzymes would turn on one after another, in a multi-step recovery process. The

resulting dynamics for each enzyme group is plotted in Fig. 4f for the relative abundance

qj(t) using the same color scheme. Predictions of the time courses of the abundance of

each enzyme group also capture the data well (Fig. 3c-k, lines and symbols). Again, the

theoretical predictions were generated without resorting to any adjustable parameters. From

these solutions, we computed the onset time for each enzyme group. The results (circles

in Fig. 3l) are again in good overall agreement with the observed onset time (triangles),

except for the serine group as will be addressed shortly below. The onset time predicted

by the model can in fact be derived analytically without resorting to numerical simulation

(Supplementary Note 4), by adopting a simplifying approximation that holds the allocation

for ribosome synthesis to the basal level throughout the period of AAB recovery (as justified

by the data in Fig. 4d). The analytical solution highlights a key time scale setting the enzyme

recovery kinetics, given by (λ∗ϕA, tot
max ∕ ϕA, 1

∗ )−1 where λ∗ and ϕA, 1
∗  are the growth rate

and met group abundance, respectively, in the post-shift steady state, and ϕA, tot
max = χA, tot(0)

gives the maximum allocation for AAB protein synthesis in the early phase of shift (see

Supplementary Note 2D).

In addition to the kinetics of each enzyme group, our model also gave prediction on the

growth kinetics itself during the shift (blue line, Fig. 5a). Although our model captured

the AAB enzyme onset time very well, it predicted a growth lag (blue line) which was

about only half of the 2-hr lag observed (blue circles). Together with the poor prediction

of the onset time of the serine pathway (Fig. 3l), we wondered whether the problem with

the overall growth kinetics was associated specifically with the delayed onset of the serine

pathway. We thus repeated the AA downshift experiment by removing serine from the

starting 18AA, still with the glycerol supplement. The data (red open diamonds in Fig. 5a)

exhibited notably shorter lag, reducing the 2 hour lag to about 1 hour. In contrast, when we

removed from the initial AA mixture of other single AAs whose pathways show late onset,

the lag times changed much less (grey symbols, Extended Data Fig. 9b).

Addressing the serine problem

The origin of the “serine problem” can be traced to the common recipe for “rich medium”

(33), in which the composition of serine used is 10-fold higher than that of the serine content

in typical proteins (Extended Data Fig. 9a). With normal AA composition, serine is depleted

well before other AAs (54, 55); the rich medium recipe is designed to suppress this problem.

We reasoned that this highly unnatural serine content might have created an unintended

problem for cells during AA downshift, which would normally occur without serine. Indeed,

using “casamino acid” (obtained as the hydrolysis product of the protein casein (56)) as the
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source of amino acid in pre-shift, we see that the growth kinetics is the same as that of

‘18AA-minus-ser’ shift (grey circles, Fig. 5a).

To exam whether our model can capture the recovery kinetics of the downshift starting

from 18AA-minus-ser, we performed additional proteomic measurements specifically for

this shift. The resulting pathway abundances and the pathway onset times are plotted as

red triangles in Fig. 5b-5k, again for the pathways showing at least 2-fold change in total

abundance. The difference between this data set and the one analyzed earlier for shift

from 18AA (blue triangles) is clearly substantial compared to difference between replicates

(Extended Data Fig. 6); note the logarithmic scales for both axes. To obtain theoretical

predictions for downshift starting from 18AA-minus-ser (red lines in Fig. 5a-5k), we simply

replaced the pre-shift states by the pre-shift growth rate and pre-shift AAB enzyme reserves

measured for the ‘18AA-minus-ser’ shift (Supplementary Table 6). We see that consistent

with the measured faster recovery in growth and AAB enzyme abundance, our model

predictions quantitatively capture the faster kinetics during downshift from ‘18AA-minus-

ser’. Calculated onset times (red circles, Fig. 5l) also capture well the observed onset times

(red triangles). Importantly, this time the model also captures the overall growth curve (red

line, Fig. 5a). More detailed examination into the differences in model prediction between

the shift with and without serine shows that the two factors that are different between the

two cases, the fractional pre-shift reserves (qj(0)) and the allocation function (χA, tot), both

played important roles leading to notably different dynamics; see Extended Data Fig. 9c-f.

Biologically, differences between the shift with and without serine can be appreciated by

examining the abundances of the major functional groups. As seen in Extended Data Fig.

4, substantial differences existed in the pre-shift proteome (t = 0), with the exclusion of

serine resulting in 2-3 fold reduction in enzymes catalyzing fermentation to acetate, and a

compensating 50% increase in TCA cycle enzymes along with 2-3 fold increase in enzymes

for carbon catabolism and particularly glycerol uptake. While serine is known to be taken

up rapidly (54, 55), the extent of its effect on the proteome is unexpected. In fact, enzymes

for TCA cycles and fermentation to acetate were nearly at their respective post-steady state

levels (indicated by the gold bars) when growing in AA without serine. Thus, E. coli appears

to execute distinct programs in central carbon metabolism (CCM) based on the availability

of external serine. With natural AA composition, serine would be depleted in the early phase

of growth (55), and cells would be able to transition to the more respiration-leaning CCM

while it still has the remaining AAs. Transition to minimal medium occurs later when AAs

are depleted and CCM is already pre-adapted. In our experiment of AA downshift with

serine, cells need to remodel the proteome for both AAB and CCM which took twice as

long (compare blue and grey circles in Fig. 5a). From the time course of proteome dynamics

in Extended Data Fig. 4, we see that for shift with serine, recovery for AAB enzymes

occurred before those for CCM. This rationalizes why our model, which deals with only

AAB enzyme recovery, was able to capture the AAB enzyme kinetics well (Fig. 3), but

could not capture growth recovery which required also addressing remodeling CCM after

the recovery of AAB enzymes.
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Discussion

We investigated the allocation of the proteome of E. coli grown in rich or minimal media,

in steady state growth and during transitions between them. The most substantial changes

are the tradeoff between AAB enzymes and the translational machinery, which allows cells

to achieve higher protein synthesis flux, hence growth rate, in rich media, when de novo
AA biosynthesis is relieved (Fig. 1). However, drastically reducing the abundance of AAB

enzymes causes problems when AA supply is abruptly depleted, manifested by a lag during

AA downshift even when a separate carbon source is provided throughout the shift (Fig. 2).

Quantitative proteomic measurements during AA downshift revealed a hierarchy of time

scales in the recovery kinetics of AAB enzymes (Fig. 3, Extended Data Fig. 5). A

smoothly increasing relationship was established between the onset time and the fractional

pre-shift reserve of AAB enzymes across pathways (Fig. 3l). The observed relationship

is a manifestation of an as-needed strategy of gene regulation for AAB enzymes, where

those involved in the biosynthesis of the amino acid most needed for protein synthesis,

methionine, were expressed first, followed by the enzymes for the next most needed AA,

arginine, etc. In this context, we recall that a related ‘just-in-time’ gene expression strategy

within a pathway (Extended Data Fig. 10a) was proposed long ago for AA downshift (57),

and was claimed as the optimal strategy for minimizing the amino acid recovery time

while minimizing enzyme production cost. However, our proteomic data clearly refuted the

adoption of such a strategy within AAB pathways (Extended Data Fig. 10c-f). Instead, E.
coli adopts the just-in-time strategy across AAB pathways.

To quantitate recovery kinetics during AA downshift, we devised a coarse-grained model

with proteome allocation specified in two stages (Fig. 4a, Supplementary Note 3). In the

first stage, we extended the framework of flux-controlled regulation introduced in Erickson

et al. (21) to AA biosynthesis, using “translational activity” to represent the collective effect

of AA pools and to direct the dynamic allocation of protein synthesis flux between the

AAB enzymes and ribosomal proteins. In the second stage, we allocated the synthesis of

AAB enzymes into individual pathways, using the on-off strategy formulated by Pavlov &

Ehrenberg (44) to capture the effect of end-product regulation (45). The resulting model has

no adjustable parameters, in the sense that all model parameters (listed in Supplementary

Table 6) are fixed by the growth rates and the proteomic data in the pre- and post-shift

steady states. When applied to AA downshift, the model was able to quantitatively capture

the onset time of most AAB enzyme groups except that for serine (Fig. 3l). However,

our model failed to describe the growth transition kinetics itself. Attributing the “serine

problem” to non-realistic medium composition which led to very different programs in

central carbon metabolism (Extended Data Fig. 4), we repeated the analysis for AA

downshift without serine, finding the model to quantitatively capture not only the enzyme

recovery kinetics (Fig. 5b-5l) but also the entire growth transition kinetics (Fig. 5a). The

ability of the model to capture quantitative differences in the AAB pathway recovery

kinetics between the shift with and without serine (blue and red symbols in Fig. 5l) also

serves as a validation of our approach, especially robustness in the construction of the

allocation function for AAB enzymes (Extended Data Fig. 4).
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The success of our model raises the question of whether E. coli cells might have evolved

to minimize the recovery time, since the on-off strategy employed in our model was shown

theoretically by Pavlov and Ehrenberg (PE) to give the fastest recovery kinetics within an

overall proteomic resource constraint (44). Indeed, for a period after the shift when protein

synthesis is allocated mostly to AAB enzymes, our model becomes a specific realization of

the on-off model considered by PE (Supplementary Note 4B). However, these models only

describe response to “initial conditions” imposed by the proteome set in pre-shift growth.

As the initial condition affects the recovery kinetics in minimal medium, we explored the

dependence of the expected recovery time on the pre-shift reserve (i.e., qj(0)) for a fixed

total abundance of AAB enzymes before the shift. The calculation in Supplementary Note

4D shows that a uniform pre-shift reserve would give a lag time that is less than half of

the observed one; and even for randomly generated pre-shift reserves, the lag times would

be in most cases shorter than the observed one. In this light, we can understand the long

lag time observed as a consequence of the actual pre-shift reserves being broadly distributed

over nearly two orders of magnitude (Fig. 3b), which is very far from a uniform distribution.

In other words, E. coli arranges a very non-uniform, hierarchical distribution of pre-shift

reserves, with the consequence of acquiring an exceptionally long lag time. These results

suggest that even though E. coli uses feedback inhibition to allocate protein synthesis flux to

the most limiting pathways given the pre-shift distribution, minimizing the recovery time of

downshift to minimal media is not a primary concern for E. coli cells growing in rich media.

The physiological reason for E. coli to acquire this broad distribution of pre-shift reserves is

not understood.

In our model the allocation for ribosome synthesis (χRb(t)) was gradually turned on as AAB

enzyme synthesis (χA, tot(t)) was reduced (Fig. 4c), not abruptly switched on as prescribed

by the on-off model (44). The portion of the proteome allocated to the ribosomes and AAB

enzymes, which is the focus of this study, comprised < 30% of the total proteome (dashed

line, Fig. 4b). The remainder of the proteome was allocated to such functions as carbon

and AA transport, motility, as well as other housekeeping functions carrying no metabolic

fluxes in the growth conditions we studied. Many of these proteins are turned on before

the AAB enzymes (grey circles, Fig. 3m). If we applied the PE model to all these proteins

beyond the AAB enzymes, the cells would adapt much faster. Clearly, such a strategy is not

adopted by E. coli. Instead, E. coli casts its response broadly, underscoring the importance

of anticipating different nutrient types when AA supplies are exhausted in the native habitat.

The kinetic responses exhibited by the various protein groups reflect the interplay of their

respective regulatory mechanisms which are set by a variety of physiological and ecological

reasons that are mostly unknown. The coarse-grained kinetic framework described in

this work can be used to quantitatively capture the regulatory functions, and from them,

quantitatively predict the recovery kinetics, based merely on proteome allocation in the pre-

and post-shift steady state without making assumptions on optimality.
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Methods

Strain construction

The strain used in this study are either wild type E.coli K-12 NCM3722 strain or its

derivative, see Supplementary Table 1 for details.

Growth medium

Unless stated otherwise, all the growth media used in this study were based on MOPS

buffered media described in Cayley et al (58). The medium contains 40mM Mops and 4mM

Tricine (adjust to pH 7.4 by NaOH), 0.1mM FeSO4, 0.276 mM Na2SO4, 0.5 μM CaCl2,

0.523 mM MgCl2, and also micronutrients mixtures used in Neidhardt et al (33).

If not specified, the media used in steady-state proteomic measurements were MOPS

buffered media with 50mM NaCl, 1.32mM KH2PO4, plus carbon source, nitrogen source

and other nutrients as summarized in Supplementary Table 2. For Rich defined medium

(RDM), we used kit from Teknova M2105, which was prepared based on Neidhardt et al.
(33). Casamino acids (CAA) used was obtained from BD Bacto. The concentrations of

individual amino acids are listed in Supplementary Table 4.

For most of the AA downshift experiments, the post-shift medium was MOPS buffered

media with 50mM NaCl, 1.32mM KH2PO4, 0.4% glycerol as carbon source, and 10mM

ammonia chloride as the nitrogen source. The pre-shift medium was made by the addition

of 18 amino acids (all except cysteine and tyrosine) to the post-shift medium. The

concentrations of those amino acids added were the same as those listed in RDM (33);

see Supplementary Table 4. Cysteine was excluded because it oxidizes to cystine in aerobic

growth. Tyrosine was excluded because of its poor solubility. Among the 18 amino acids

added, asparagine and glutamine were prepared freshly for every experiments due to their

fast degradation. In this work, some 18AA downshifts were also done with carbon sources

other than glycerol, e.g., 0.2% glucose, 0.2% lactose, 0.2% xylose or 0.2% fructose; see Fig.

2c-e.

In some AA downshifts starting from fewer than 18AA (Extended Data Fig. 4b), the post-

shift medium was still the same glycerol MOPS medium. The pre-shift medium (referred to

as ‘18AA-minus-X’ with X indicating the amino acid(s)) was again obtained by adding to

the post-shift medium the same 18 amino acids stated above except X. The casamino acid

(CAA) medium used in Fig. 5a was prepared in the same way, but with the addition of 0.2%

casamino acids instead of 18AA.

In experiments using all 20 AA (Fig. 3a,b), cysteine solution was prepared and added to

the medium right before inoculating cells, and tyrosine was freshly dissolved in 0.1M KOH

before added to the medium. The pH of the medium with tyrosine was still around 7.4.

Cell growth and medium shift

All the steady-state measurements and medium shift experiments were performed with

5 mL of cultures grown in 20 mm diameter test tubes immersed in a 37°C water bath

Wu et al. Page 13

Nat Microbiol. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shaker shaking at 240 rpm. Shifts always started after cells reaching steady-state in pre-shift

medium. To grow cells to exponential phase, we followed a standard cell growth procedure

taking 3 rounds: seed culture, pre-culture and experimental culture. For seed culture, cells

were inoculated to LB broth from fresh LB plate and grew for about 7 hrs. Then cells

were washed with corresponding MOPS medium once and diluted to the same MOPS

medium (pre-culture) with starting OD600 at ~10−3. If inductions (e.g., 3-methylbenzyl

alcohol, IPTG) were needed in these experiments, they were added to the pre-culture also.

After overnight pre-culture and before the culture reaches stationary phase, cells were

diluted to the same MOPS medium (experimental culture) with starting OD600 below 0.01.

For exponential growth measurements, we let cultures grow to OD600 ≈ 0.5 . More than

five OD measurements were taken within the range of OD600 = 0.05~0.5 for growth rate

calculation. OD600 was measured by Genesys 20 spectrophotometer (Thermo Fisher), with

each measurement taking 200 μL of the culture. For medium shift experiments, we let

cells grow to OD600 ≈ 0.3, then washed cells twice with pre-warmed post-shift medium

and diluted it to OD600 ≈ 0.1 in pre-warmed post-shift medium. Whole medium transition

process was kept within 5 mins and the moment cells were transferred to post-shift medium

was defined as “time zero”. A control shift from 18AA with glycerol to the same media

was done and no lag or growth rate change was observed. We took at least five OD

measurements in the pre-shift medium starting from OD600 ≈ 0.05 . After medium transition,

we took OD measurements every 5-20 mins according to the lag time until OD600 reached

~0.5.

Growth rate calculation

For steady-state exponent growth rate, we simply fitted growth curve exponentially. If

R2 < 0.999, we didn’t take it as reliable results.

To get instantaneous growth rate, we applied Savitzky-Golay filter (59) to N {ti, ln(OD600, i)}
data set. Recall that because of medium switch, OD600 was not continuously at t=0.

Therefore we scaled the data in post-shift region before calculating growth rate to make the

first OD600 after shift (t < 5 min) equal to the value exponentially extrapolated from pre-shift

data.

The window size we used includes 3 data points. First, we fitted the first 3 data points to

the 2nd polynomial and substituted t of middle data point (t2) into fitted equation to get its

slope. Then we moved the window to the right and did the same thing for the 2nd to 4th data

points to get the slope at t3. Repeating moving windows and calculating slope, we got slopes

at t2, t3, …tN − 1. We took these slopes as the “instantaneous growth rates” at t2, t3, …tN − 1.

Cells were in steady-state at t1 and tN according to our experimental setting, so we only

plotted data points from t2 to tN − 1 for instantaneous growth rate plots.
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Measurements of proteins using mass spectrometry

For steady-state growing cells (sample ID M1-M4, P1, P8-P10, N5-N8, O8-O10, A1-A3,

A7-A9, A26-A28), we followed the cell growth protocol stated above and took samples

at OD600 ≈ 0.4. For each AA downshift experiment (sample ID S1-S5, A29-A39) we

followed the protocol above and took one sample (S1, A29-A31) in pre-shift steady-state, at

OD600 ≈ 0.3. For 18AA downshifts (A32-A35), samples were taken at 15, 50, 100, 200 min

after the shift started. For 18AA-minus-ser downshift (A36-A39), samples were taken at 15,

45, 75, 120mins after the shift start. We collected at least one OD600 ⋅ ml culture volume of

cells for each sample by centrifuging at 13,200 RPM for 2 min.

We used quantitative mass spectrometry to characterize the abundance of E. coli proteomes

at various growth conditions (Supplementary Table 2). The samples belong to three groups:

group #1, samples M1-M4, N5-N8 and O8-O10; group #2, samples P1, P3, P8-10 and S1-5;

group #3, samples A1-A3, A7-A9 and A26-A39. Samples O8-O10, P3, A1-A3 are only

used for internal calibration and validation. Quantitative measurements of E. coli proteomes

for group #1 and #2 were carried out as described previously (19). Briefly, E. coli cell

pellets were lysed with 2% sodium deoxycholate and digested with LysC and trypsin. An

iRT peptide mix (Biognosys) was added to all samples for retention time alignment. Tryptic

peptides were measured in SWATH mode (64 variable windows) on a TripleTOF 5600 mass

spectrometer (Sciex). The data was analyzed using OpenSWATH (as included in openMS

v.2.1.0) as done in Ref. (19).

Quantitative measurements for group #3 were carried out in DIA mode on an Orbitrap

Exploris 480 mass spectrometer (Thermo Fisher Scientific) and analyzed using Spectronaut

and the directDIA approach (Biognosys). Details for the complete group #3 workflow are

given below:

Bacterial cell lysis and protein digestion for group #3.—Cells were lysed in 100

μL absolute TFA (Sigma-Aldrich; 5 min, 55°C, shaking at 1,000 rpm) and neutralized with

900 μL 2 M Tris (60). Protein concentration was determined using Bradford reagent (Sigma-

Aldrich). Subsequently, 50 μg of total protein amount were reduced and alkylated (10

mM Tris(2-carboxyethyl)phosphine hydrochloride, 40 mM Chloroacetamide; 5 min, 95°C).

Water-diluted samples (1:1) were subjected to proteolysis with trypsin (Roche, protein ratio

1:50, 30°C, overnight, 400 rpm). Enzymatic digestion was stopped by addition of 3%

formic acid (FA). Peptide samples were desalted using self-packed desalting tips prepared

in-house using five discs of Empore C18 (3M) material stacked in 200μL pipette tips. The

desalting tips were conditioned with 100% acetonitrile (ACN) and 40% ACN/0.1% FA, and

equilibrated with 2% ACN, 0.1% FA in HPLC grade water. Peptides were loaded, washed

(2% ACN, 0.1% FA in HPLC grade water) and eluted (40% ACN, 0.1% FA in HPLC grade

water). Samples were dried to completeness and re-dissolved in 30 μl 0.1% FA in HPLC

grade water.13.3 μg of total peptide amount (as determined by Bradford assay) was injected

into the mass spectrometer per run.

DIA-based mass spectrometric data acquisition for group #3.—Peptides were

analyzed on an UltiMate 3000 (micro-flow configuration) coupled to an Orbitrap Exploris
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480 mass spectrometer (Thermo Fisher Scientific). 13.3 μg of peptides were applied directly

onto a commercially available Acclaim PepMap 100 C18 column (2 μm particle size, 1 mm

ID × 150 mm, 100 Å pore size; Thermo Fisher Scientific), and separated using a 60 minutes

linear gradient ranging from 3% to 28% solvent B (0.1% FA, 3% DMSO in ACN) in solvent

A (0.1% FA, 3% DMSO in HPLC grade water) at a flow rate of 50 μl/min. The mass

spectrometer was operated in data-independent acquisition (DIA) mode. MS1 full scans

(360 – 1300 m/z) were acquired with a resolution of 120,000, an AGC target value of 106

and a maximum injection time of 50 ms. MS2 scans (200 – 1800 m/z) were acquired over a

total of 40 DIA segments with widths adjusted to the precursor density (see Supplementary

Table 8). The scan resolution in the Orbitrap was set to 15,000 with an AGC target value of

105 and a maximum injection time of 22 ms. The HCD collision energy was set to 30%.

directDIA data analysis using Spectronaut for group #3.—DIA data were analyzed

with Spectronaut (v.14.2, Biognosys) using the directDIA functionality, which omits the

need for an experimental spectral library. In brief, DIA raw files were loaded into

Spectronaut and searched against the Uniprot-derived Escherichia coli (K12, MG1655)

reference proteome (UP000000625, download 07.09.2021, protein entries 4438). Trypsin/P

was used as digestion enzyme and up to two missed cleavages were allowed. Oxidation

of methionine and acetylation of protein N-terminus were set as variable modifications,

and carbamidomethylation of cysteine as fixed modification. For directDIA data extraction

default settings provided by Biognosys were used. The mProphet approach was used to

estimate FDR. The dataset was filtered to 0.1% FDR at peptide precursor level (q-value

cutoff < 0.001). Peptide quantification was performed based on MS2 XIC peak areas, using

the best N fragments per peptide (min 3, max 6).

Protein quantification and proteomics error determination.—Protein intensities

were computed from the detected peptide intensities using the algorithm xTop v2.0

developed in this work. This algorithm, described and validated in Supplementary Note

1, improves over the xTop algorithm introduced in Ref. (19) by allowing estimating

the uncertainty in the inferred protein abundances due to noise in the peptide precursor

intensities. xTop v2.0 was applied separately on the three groups of samples using the

following parameters: filter_thres=0.5; thres_xTop = 300; N_c_thres = 3; s2_min=0.01;

absolute_filter_ratio = 0.1. Batch effects among different groups of samples were accounted

for as follows: The relative protein abundances from groups #1 and #2 (obtained with

SWATH, but in separate batches) were first harmonized by minimizing the log-ratio

between the samples corresponding to glucose minimal medium and carbon-limited growth.

Then, proteins from both groups were scaled so that the average protein abundances in

glucose minimal medium matched the average abundances from group #3 in the same

conditions. Absolute protein mass fractions were computed by calibrating the average

protein abundances in samples A7, A8, A9, O10 and P3 for E. coli EQ353 strain to

ribosome profiling data for the same strain and condition, as done in Ref. (19); protein mass

fractions were computed from number fractions as done in Ref. (19). Raw proteomics data is

available on the PRIDE repository (see the “Data availability” section). The resulting protein

mass fractions are reported in Supplementary Table 9.
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Statistics and reproducibility

Uncertainties on the absolute protein intensities were calculated by combining the errors

on the xTop protein intensities and the error on ribosome profiling. Errors on the xTop

protein intensities originate from the observed scatter of peptide precursors. The coefficient

of variation (CV) of the ribosome profiling data from was assumed identical for all genes,

and estimated as follows. For each gene, we obtained from Ref. (32) the reads in the first

(Li) and second half (Ri) of each gene i, and estimated the typical CV = 16.5 % as the average

value of the empirical coefficient of variation 2(Li − Ri)2 ∕ (Li + Ri)2 over 2870 genes with

Li and Ri>64 reads. This CV was combined with the protein- and condition-specific error

from xTop to yield the error on the absolute protein fractions ϕi. See Supplementary Note 1

for details on both the relative and absolute error in proteomics data. The error on the total

protein fraction for a group of proteins was obtained by summing in quadrature the errors for

the individual proteins. When calculating the average abundance of two or more biological

repeats, the error of each sample (σi) were taken into consideration as weights (wi = 1 ∕ σi2).

In Figure 1a, the growth rates were measured in at least 3 biological replicates. The error

bars represent the standard error on the mean.

In Figure 1b-j and Extended Data Fig. 1, the proteomic data in minimal media (black

symbols) are average of two independent biological repeats (see Supplementary Table 2).

Other proteomic data are from single experiments (Figure 1 green symbols, Figure 3, 5, etc.)

although replicate results shown in Extended Data Fig. 4, 7 are highly similar.

In Fig. 2d, 2e, each data point is derived from a single shift experiment shown in Fig. 2c.

The main experiment with glycerol as carbon source has been independently repeated more

than three times (Extended Data Figure 3d).

In Figure 5a and Extended Data Figure 3, 13b, each growth curve is from a single shift

experiment, among which 18AA downshift with or without ser have been repeated at least 3

times and similar lag time (less than 10% difference) were observed for biological replicates.

Modelling

The modeling approach used to capture the observed growth and proteomics data is

explained in Supplementary Notes 2 through 4. Briefly, Supplementary Note 2 provides

an extensive explanation of the model, relating growth and the lag time during a nutrient

shift to the pre-shift abundance and the synthesis of biosynthetic enzymes, along with its

assumptions; Supplementary Note 3 describes the concrete application of the model to the

data; Supplementary Note 4 describes analytical expressions approximating the exact model

solution, the relationship with previous model of enzyme allocation, robustness of the model

with respect to noise in the input data, and whether the observed protein reserves (on which

the lag time depends) are optimized for fast recovery.
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Extended Data

Extended Data Fig. 1.
(a-c) Breakdown of the steady state protein abundances of the translational machinery

(Fig. 1) into (a) ribosomal proteins, (b) affiliated translational apparatus, and (c) tRNA

synthetases. In all cases, the protein mass fractions are plotted against the growth rate

under carbon limitations (wild type: black open circles; titratable ptsG mutant: black open

diamonds) and four rich conditions (green symbols as shown in the legend table). The

same symbols are used in Figure 1 and Extended Data Figure 2. (d-k) Steady state protein

abundance of key metabolic enzyme groups. These panels are the same as Fig. 1c-j except

with the inclusion of conditions for 18AAs with 0.4% glycerol supplement (red circles),

and 0.4% glycerol as the sole carbon source (yellow squares). See Supplementary Table

2 for the details of growth conditions and Supplementary Table 3 for gene classifications.

In all panels, error bars are propagated from the estimated errors for individual proteins

(Methods).

Wu et al. Page 18

Nat Microbiol. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 2.
(a) Summary of AA degradation pathways based on EcoCyc (34, 35). Five AAs (ala, ser,

thr, gly, trp degrades into pyruvate, and six AAs (asp, asn, glu, gln, pro, arg) degrade

into TCA intermediates. Degradation pathways are not known for the remaining 9 amino

acids (leu, ile, val, met, cys, lys, his, phe, tyr). (b) The abundances of enzymes of Central

Carbon Metabolism (CCM) in steady state growth, plotted against the growth rate. The

symbols are the same as those used in Extended Data Fig. 1. The gene names shown with

a black background are enzymes that increased by more than 50% or by more than 2‰ of

proteome in CAA or RDM without glucose supplement compared to those with glucose

supplement (i.e., increased in filled green symbols compared to open green symbols).

Error bars indicate uncertainties from the protein quantification method (Methods). (c)
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Enzymes and metabolites involved in CCM. Metabolites that can be produced from AA

degradation are boxed in yellow. Reactions are represented by colored arrows with the genes

encoding the corresponding enzymes written next to it in italic. The color of the arrows

corresponds to the box color in panel (b), with gray indicating reversible reactions involved

in both glycolysis and gluconeogenesis, red indicating gluconeogenesis only, blue indicating

glycolysis only, orange indicating TCA cycle, pink indicating glyoxylate shunt, and green

indicating pyruvate fermentation to acetate. The enzymes with increased abundances in

rich medium without glucose supplement are clearly clustered in gluconeogenesis (red box

in panel (b), 5 out of 6 enzymes) and in TCA cycle (orange box in panel b, 7 out of 8

enzymes). This suggests that in the absence of glucose supplement, the AA degradation

products are funneled through CCM to supply the cell’s non-AA carbon needs, e.g., energy

biogenesis and the biosynthesis of lipids and cell wall components, via TCA cycle and via

gluconeogenesis.

Extended Data Fig. 3.
(a) Optical density during a nutrient shift from 20AA to no AA (red triangles),

supplemented with glucose, as well as a control sample (grey circles), with the same

medium before and after the shift. As described in Methods, when the pre-shift culture

reached OD600 ∼ 0.3, we performed the shift by filtering and washing the pre-shift cell

culture and re-suspending the pellets using the post-shift medium (Fig. 1b). The post-shift

culture started at OD600 ∼ 0.1. From this raw growth curve, we match the start of the

post-shift OD600 to the end of the pre-shift OD600 to make the growth curves continuous.

Then we normalized the growth curve so that the normalized OD600 at the start of a shift is

always 1. This leads to the triangles shown in panel (b). (b) Comparison of AA downshift

with all 20 AAs (triangles) and downshift with 18AA (excluding cysteine and tyrosine due

to poor solubility and stability); see Methods and Supplementary Table 4. Both shifts are
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supplemented by 0.2% glucose before and after the shift. Note the presence or absence

of cysteine and tyrosine made little difference to the growth transition kinetics. (c) AA

downshift experiments of panel (b) is repeated with glucose replaced by 0.4% glycerol as

the carbon supplement. The growth transition is nearly the same for both 20AA-to-none and

18AA-to-none shifts. (d) The grey filled circles are the same as those in panel b, indicating

the 18AA downshift with glycerol supplement. Open circles represent the result of the same

downshift in strain NQ399 (see Supplementary Table 1), which has fully expressed glycerol

uptake system (GlpFK). [1mM IPTG and 1mM 3MBA was added to the medium before and

after the shift for the shift by NQ399 so that glpFK expression was fully induced throughout

the shift (11).] The lag period did not change, indicating that the glycerol uptake system was

not the bottleneck of this growth transition. (e) Repeatability of 18AA shift supplemented by

glycerol. Symbols of different colors represent results of independent experimental runs. The

CV of lag time across these runs is within 10%.
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Extended Data Fig. 4.
The time dependence of the total abundance of proteins from a number of key functional

groups during AA downshift with glycerol as the carbon source. The 8 functional groups in

panels (a)-(h) are those introduced in Fig. 1; we additionally included (i) AA transport, (j)
carbon catabolism, and (k) glycerol uptake, with the lattest added given the use of glycerol

as the carbon supplement. Three sets of data are included: set 1 (blue up-triangles) and set

2 (grey up-triangles) are replicates for 18AA downshift; the third dataset indicated by the

red down-triangles are for downshift starting from 18AA minus serine; see Supplementary

Table 2. Raw protein abundance data for each replicate are shown in Supplementary Table

9. Membership of each functional group is shown in Supplementary Table 3. All protein

abundances are reported in mass fraction (%-proteome), except for glycerol uptake enzymes
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whose absolute abundance could not be fixed because these enzymes were not expressed in

the reference condition where ribosome-profiling was performed (32). Data corresponding

to pre-shift are shown at time 0. Error bars for all protein groups (except the glycerol uptake

group) are propagated from the estimated errors for individual proteins (Methods). The

horizontal gold bars indicate data for steady state growth on glycerol and no AA, which

is the final post-shift stead state; the thickness of the bars indicate estimated errors. (l)
Instantaneous growth rate (see Methods) at various time after the shift. For clarity, only one

set of data is shown for 18AA downshift, as the repeatability of the growth curve is already

shown in Extended Data Fig. 3e.

Extended Data Fig. 5.
The abundance time courses for individual AA biosynthesis enzymes during ‘18AA-to-

none’ shift (set 1) supplemented by glycerol. The enzymes in the same pathway are plotted

in the same plot. Error bars represent standard errors obtained using the xTop protein

quantification method (Methods). In each panel, the lines in the legend box next to the gene

name indicates the operon structure. The same line style means the genes belong to the same

operon. E.g., for panel (m), cysC and cysN are in one operon, cysHIJ are in another operon,
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while cysD, cysE, cysK, cysM are by themselves. The genes in different groups don’t share

operons except serC-aroA and aroF-tyrA. In each panel, the similar color of the recovery

curves indicating similar kinetic behavior. E.g., in (i), SerA and SerC (both in red) have

similar kinetics, while SerB (in blue) is different. Similar kinetic behavior in panels c-d,f,j
are all attributable to the operon structure. Similar kinetic behaviors are also seen in other

panel where the genes are not in the same operons. More specifically, in the met group (a),
changes in the abundance of MetE dominated the entire group. In the arg group (b), most

enzymes showed large increase between 15 min and 50 min after the shift, except ArgA,

ArgD, ArgH. The total abundance of this group was mainly determined by the abundance of

ArgG and ArgI. In the ilv group (e), several enzymes (e.g. ilvC, ilvN) exhibited moderate

increase in the first 50 min, while the rest increased only after 50 min. Since IlvC is much

more abundant than the other enzymes, the group kinetics was largely determined by this

enzyme alone. In the lys group (h), three enzymes (DapA, DapE, DapF) were approximately

constant throughout the shift. The rest started increasing after 50 min, most of which showed

only small increases during the shift, except for LysC, with a big jump between 50 min

and 100 mins. But since LysC is not the most abundant enzyme in the lys group, it did

not significantly affect the group kinetics itself. In the aro group (k), most of the enzymes

stayed constant or dropped during the shift. Three enzymes clearly increased during the

shift, among which AroG was the most abundant. In the phetyr group (l), decrease in TyrA

could likely be attributed to the fact that tyrosine was not provided in the pre-shift medium,

so that TyrA was fully expressed before the shift and was then shutoff (with abundance

decreasing due to dilution) during the growth recovery phase.

Wu et al. Page 24

Nat Microbiol. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 6.
Panels a-i are the same as Fig. 3c-k, but showing both replicates of 18AA downshift

(blue and grey triangles). Also shown are a number of AAB groups whose total enzyme

abundances changed by < 2-fold (panels j-n). Colored bands indicate the abundances in

the pre-shift conditions, with the dashed lines indicating the measured value and the width

indicating the standard error. In all cases, errors on protein groups are propagated from the

estimated errors for individual proteins (see Methods).
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Extended Data Fig. 7.
(a) The total abundance of the glt group relative to the pre-shift total abundance is plotted

at different times after the shift (same data as Fig. 3f. Between the measured data points,

we used linear interpolation (blue dashed lines) to connect the data points. The green arrow

shows the fold-change in enzyme abundance in post-shift steady-state (yellow bar) from

the pre-shift level for the glt pathway. The red arrow indicates the onset time, defined as

the time when the enzyme abundance exceeds the pre-shift value by 25%. (b) Same as

panel a, but with a piecewise 3rd degree polynomial interpolation of the time course of the

enzyme abundance. (c) The onset times obtained from the linear and 3rd degree polynomial

interpolation are hardly different. (d)-(g) The onset time obtained from various definition

for each AAB pathway is plotted against the inverse of fold change in the total protein

abundance of that pathway (triangles). Panel (e) is the same as that shown in Fig. 3l. Panel

(d) and (f) show the same but with onset threshold defined as 10% and 50% from the
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initial value, respectively. Panel g is with 3rd degree polynomial interpolation. Circles are

model predictions of onset time. (h-j) show plots of the onset time (defined as in panel

a) against the pre-shift, the post-shift abundances and the increase from pre- to post- shift

for individual AAB enzymes, respectively. The Pearson’s correlation coefficient between

the onset time and the pre-shift abundance (or the log of abundance) is 0.56 (or 0.61). The

Pearson’s correlation coefficient between the onset time and the post-shift abundance (or

the log of abundance) is -0.45 (or -0.56). The Pearson’s correlation coefficient between the

onset time and the increase abundance from pre- to post-shift (or the log of abundance) is

-0.50 (or -0.75). Due to the definition of the onset time in (a), the enzymes with fold change

less than 1.25 or undetected in the pre-shift condition do not have defined onset times, and

are thus excluded in the plots. (k-m) show plots of the onset time with the pre-shift, the

post-shift abundance and the increase abundance from pre- to post- shift for all enzymes of

each pathway, respectively.

Extended Data Fig. 8.

(a) shows the abundance ϕRb
∗  of ribosomal proteins at different growth rate (λ∗) for cultures

growing exponentially in different nutrient sources. [Same data as that shown in Extended

Data Fig. 1a; errors are propagated from the errors for individual ribosomal proteins

(Methods).] The data is well-captured by a linear fit (dashed line), i.e., ϕRb
∗ = ϕRb, 0 + λ∗ ∕ γ,

with ϕRb, 0 = 4.45 % and inverse slope γ = 8.35 ℎ−1. In steady state, we have χRb
∗ ≡ ϕRb

∗ ,

obtained by setting d
dtϕRb = 0 in Eq. (2) of the main text. Using the definition of σ in Eq. (4)

of the main text,
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σ∗ = λ∗

ϕRb
∗ = λ∗

ϕRb, 0 + λ∗ ∕ γ
(F8.1)

we can invert Eq. (F8.1) to obtain λ∗(σ∗), and obtain the regulatory function as

χRb(σ) = χRb
∗ (σ) = ϕRb

∗ (λ∗(σ)) = ϕRb, 0
1 − σ ∕ γ . (F8.2)

The function obtained is sketched as the gray line in panel (b) and in Fig. 4b. (c) The

form of the regulatory function for the total AAB enzymes, χA, tot(σ), is derived similarly

to that of χRb(σ). We start with the steady state abundance ϕA, tot
∗  of the AAB enzymes

in different growth conditions: the value in the pre-shift steady-state is indicated in figure

by the open circle, and that of the post-shift steady-state is indicated by the filled square.

We connect these two points by a straight line (green dash line) to yield the relation

ϕA, tot
∗ = ϕA, tot

max − αAλ∗ with ϕA, tot
max = 18.1 % and αA = 0.11 ℎ. Using Eq. (F8.1) to relate λ∗ to

σ∗, we obtain

χA, tot(σ) = ϕA, tot
∗ (λ∗(σ)) = ϕA, tot

max − αA ⋅ σχRb(σ), (F8.3)

where χRb(σ) is given by Eq. (F8.2). The resulting function is plotted in panel (b). This form

shows that when the translational activity σ is low (reflecting limitation by the shortage of

AAs), AAB enzymes are expected to be up-regulated. This is consistent with our qualitative

expectation that due to the global regulation of ppGpp, cells allocate more protein synthesis

to AAB enzymes after AA downshift. Quantitatively, the expression for χA, tot(σ) arise from

the hypothesized linear relation between ϕA, tot
∗  and λ∗ shown in (a).

The hypothesized linear relation shown in (a) is difficult to measure directly. Our hypothesis

of the negative linear relation in (a) is based on previous characterization of protein

allocation under various modes of metabolic limitations (11, 15): For exponentially growing

cells with growth rate limited by the influx of carbon substrate in minimal medium, it was

shown that the abundance of carbon catabolic enzymes increased linearly with decreasing

growth rate, a distinct phenotype referred to as the “C-line”. Similarly, under internal

bottleneck in AA biosynthesis, the abundances of various AAB enzymes increased linearly

with decreasing growth rate, referred to as the “A-line”. The linear response depicted in

panel (a) is in fact a form of the A-line characterized in Ref. (11), a response to limitation in

AA fluxes consumed by the ribosomes. Thus, the linear form described by Eq. (F8.3) is well

motivated, and its two parameters can be fixed by the abundances of AAB enzymes in the

two steady state conditions, before and after the shift.
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Extended Data Fig. 9.
Our model did not quantitatively capture the growth kinetics of 18AA downshift as seen in

Fig. 5a (compare blue line and blue circles) despite its success in predicting the recovery

kinetics of most AAB pathways. The discrepancy between the observed and predicted

growth curves likely has to do with the behavior of the serine pathway, whose recovery

kinetics was also poorly predicted (Fig. 3j). (a) The common recipe of AA composition for

the “rich medium” we used (RDM) contained >10-fold higher serine than the natural AA

composition in proteins (blue circles, with arrow pointing to serine); see Ref. (33) for recipe

for RDM and Ref. (56) for the composition of the protein casein (brown diamond) from

which casamino acids is derived, with the latter similar to the natural AA frequency across

proteins (61), plotted as the x-coordinate. (b) Growth curve for ‘18AA-minus-ser’ downshift

(red diamond) shows a significantly shorter lag than 18AA downshift (black circles). In

comparison, if the shift starts from withholding another aa instead of ser, e.g., thr, lys, his,

glu, chosen because the onset time of these enzyme groups are the closest to that of the ser

group (Extended Data Fig. 7), the corresponding growth curves (grey symbols) exhibited

similar lag as the 18AA shift. This comparison shows that there is something special for AA

downshift involving serine.
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In the main text, we showed that our model was able to capture accurately the shift if serine

is excluded, i.e., the 18AA-minus-ser downshift. Below, we provide a more detailed analysis

of factors that lead to different predictions for the model with and without serine. We note

that differences in model predictions with and without serine are completely dictated by the

two different pre-shift states. It can be attributed to two aspects: First, fractional pre-shift

reserves of the AAB groups, qj(0), are somewhat different as shown in panel (c). Second,

different form of the allocation function χA, tot as shown in panel (e), constructed based

on the relationship between total AAB enzyme abundance and growth rates (panel d). To

analyze the contribution of each aspect, we mixed and matched the model input as shown

in the table in panel (f) and calculated the lag time in each case. In each case, the height

of the bar representing the average of n=1000 model runs obtained by randomly generating

the input data (growth rates and protein abundances, assumed normally distributed) using the

uncertainties reported in Supplementary Table 6; error bars represent the standard deviation

of the simulated data. The lag difference predicted for the shift with and without serine

(combinations A and D) is well beyond the uncertainty range. Although χA, tot is constructed

from only two data points, its form is reliable in predicting the lag time of different shift.

Furthermore, since the lag duration of the combinations B and C are in the middle of the lag

time for A and D, we conclude that the difference in model predictions for the two shifts

received similar contributions from χA, tot and from fractional pre-shift reserves qj(0).

Extended Data Fig. 10.
(a) The ‘just-in-time’ program of enzyme recovery kinetics proposed by Zaslaver et al
(57) states that during AA downshift, the response time of an enzyme in a linear pathway

is shorter if it is located towards the beginning of the pathway (as indicated by the blue

symbols), while the maximum abundance is higher towards the beginning of the pathway

(as indicated by the red symbols). (b) Examples of response time calculated based on

the proteomic measurements of SerA, SerB, SerC (Extended Data Fig. 6i). Between the

measured data points, we used linear interpolation (gray dash lines) to connect the data

points. The x-coordinates of the solid dots represent the corresponding response times,

defined as the time when the enzyme abundance reaches 50% of the maximum during
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the shift according to Zaslaver et al. (57). For enzyme abundance exceeding 50% at the

beginning of the shift (as in the case of SerB), we took the response time to be zero. (c)-(f)
The observed response times and maximum enzyme abundances for 4 linear segments of the

AAB pathways are plotted in the order of enzyme locations for met in panel (c), ser in panel

(d), arg in panel (e), lys in panel (f). Neither the response time nor the maximum abundance

exhibited the predicted trends shown in (a) for any of the 4 pathways. While some of the

differences may arise from the fact that the study of Zaslaver et al. limited a single amino

acid while our study limited 18 amino acids, we note that the derivation of the ‘just-in-time’

program done in Zaslaver et al. assumed that the synthesis of an enzyme in a pathway

depended only on the pool of its substrates. This assumption ignored the crucial condition

that all amino acids, including the one being limited, are needed in order to synthesize the

enzymes. Analysis based on this assumption may well be applicable to the generic onset of

a metabolic pathway where it was first proposed (62), but hard to justify for the onset of an

AAB pathways where the end-product of the pathway is a limiting factor of AAB enzyme

synthesis.
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Figure 1. Steady-state protein abundances.
(a) The steady-state growth rate of E. coli K-12 NCM3722 cells are shown for various

minimal and rich media used in this study (Supplementary Table 2): minimal medium with

glucose as the sole carbon source, casamino acid (CAA) with glucose and without glucose,

and rich-defined medium (RDM) with glucose and without glucose. The CVs of the growth

rates are no more than 3% based on at least 3 replicates. Bars indicate average growth

rates; error bars indicate standard error on the mean. (b) Proteomic allocation comparison

between glucose minimal media (black bars) and RDM with glucose (green bars). The mass

fraction changes in translational machinery and AAB enzymes are dominant compared to

others. (c)-(j) Total abundance of proteins in various protein groups, as obtained from mass

spectrometry and reported as fraction of total protein mass (“proteome fraction”), is plotted

against the growth rate of each culture. Classification of proteins into groups are specified

in Supplementary Table 3 according to Refs. (34, 35). In addition to NCM3722 cells in

the 5 conditions described in panel (a), the plots also show (as open diamonds) the results

for slower-growing mutants with limited expression of glucose uptake protein PtsG (36,

43) to help visualize the trend; see Supplementary Table 1 for strain details. The error bars
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on protein abundances, indicating a standard deviation, reflect the scatter in the peptide

precursors detected in the mass-spectrometry data (via xTop v2.0; see Supplementary Note

1) and a basal noise level originating from the uncertainty in the absolute scale of protein

abundance (see Methods).
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Figure 2. AA downshift with various carbon supplement.
(a) Remodeling of the proteome needed during AA downshift. Pie charts shows the

steady-state proteomic allocation in glucose minimal media and in CAA supplemented

with glucose. Grey sector represents translational proteins, green sector represents AA

biosynthesis (AAB) enzymes, and the white sector represents other proteins. In minimal

media, cells need to synthesize AAs using AAB enzymes, which are expressed at low levels

in rich media. When the environment suddenly changes from rich media to minimal media

(dash line), cells suffer from the shortage of both AAs and AAB enzymes. Limited AAB

enzymes provide limited AA fluxes, which limit the synthesis of all proteins including the

AAB enzymes. (b) shows a schematic diagram of the medium shift performed in this study,

with the entire duration of the shift taking < 5 min. (c) Growth curves for downshift from

18AA (Supplementary Table 4) for WT strain, while maintaining one of the carbon sources

shown in the legend throughout the shift. Time 0 is the downshift time; see Extended Data

Fig 3a. “Lag time” is defined by extrapolating the exponential growth of post-shift steady

state to the OD of the culture at the time of shift. The open squares show the results for

control experiment from 18AA with glycerol to the same medium, demonstrating that the

filter-wash process in (b) does not affect cell growth. (d)-(e) Scatter plots of lag times

against pre-shift and post-shift steady-state growth rates for the shifts shown in (c) using

the same color scheme. The vertical dash line in panel (d) shows the growth rate of the

culture on 18AA without additional carbon source. The horizontal error bars in (d) and (e)
shows 95% confidence interval, coming from exponential fitting of growth curves. Typical

variation from biological repeats were within 5% for growth rate measurements and within
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10% for lag time measurements (see Extended Data Fig. 3e for repeatability of the growth

curves).
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Figure 3. Enzyme recovery kinetics for individual AAB groups.
(a) AAB enzymes are sorted into different groups according to the pathways they are in

(Supplementary Table 3). The total enzyme abundance of each group that has changed at

least 2-fold, expressed in term of the fraction of total protein mass, is plotted at time t=15

min, 50 min, 100 min and 200 min after the amino acid down-shift. See Extended Data

Fig. 5 for the abundances of individual enzymes in each group. The data are plotted in

log scales in both axes. (b) Pre-shift abundance level relative to final post-shift level (the

reciprocal of the fold change), referred to as the “pre-shift reserve” qj(0). The reserves

for the first 10 AAB groups show an approximate exponential trend, with qj(0) ∝ e0.38 ⋅ j

(red dashed line). (c-k) Enzyme abundance of each of the pathways in panel (a). The

total abundances before the shift are shown as blue bars, while the total abundances in the

post-shift steady state are shown as the gold bars. Error bars and the width of the horizontal

bars represent the estimated standard errors from our proteomics pipeline (see Methods).

Solid lines represent the model predictions (see text). (l) Onset time of each enzyme group,

as defined in Extended Data Fig. 7a, against the pre-shift reserve. Circles indicate the onset

time predicted from the model. Clearly, the onset time observed for the ser group is well off

from the predicted value; this will be investigated below. (m) Same as the previous panel,

Wu et al. Page 39

Nat Microbiol. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



but for all the up-regulated genes during the shift (grey circles), in which AAB genes are

shown as blue triangles.
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Figure 4. Model of dynamic proteome allocation for AA downshift.
(a) Upon AA removal, cells synthesize AAs de novo using AA biosynthesis (AAB)

enzymes, indicated as A.1, A.2, etc. The AAs synthesized (indicated as circles, triangles,

and diamonds) are consumed by ribosomes (Rb) for protein synthesis. Limited AA synthesis

fluxes lead to limited AA pools and reduced ribosome activity, denoted by σ(t) and

defined mathematically by Eq. (4). σ(t) serves here as a “signal” reflecting the AA pools,

representing the (inverse of) the alarmone ppGpp (14, 21). It controls the allocation of

protein synthesis flux to AAB enzymes and ribosomal proteins, indicated by the thick green

and grey arrows, respectively. The latter are described by the allocation functions, χA, tot(t)
and χRb(t), respectively, and set by the regulatory functions χRb(σ) and χA, tot(σ) according

to Eqs. (5) and (6). The protein synthesis flux directed to AAB enzymes is further allocated

to the enzymes of each pathway by the pathway-specific allocation function χA, j(t) specified

in Supplementary Note 2D. (b) shows the forms of the regulatory functions χRb(σ) and

χA, tot(σ), solid gray and dotted green lines, respectively, constructed through the relation

between the steady-state growth rate and the abundances of the corresponding protein

sectors as detailed in Extended Data Fig. 8. (c) Time courses of the allocation functions

χRb(t) (solid grey line) and χA, tot(t) (dotted green line), obtained by solving the complete

model defined by Eqs. (1)-(8). (d) Time courses of ribosomal protein abundance (grey) and

total AAB enzyme abundance (green) for model predictions (lines) and experimental data

(triangles). Error bars are obtained combining the errors estimate from individual proteins

in each group (Methods). (e) Time courses of the predicted regulatory functions χA, j(t)
(stacked) for each AAB group. The areas with different colors represent the allocation

functions for the different AAB groups as described by the legend on the right. The top

curve represent the time course of χA, tot since it is the sum of χA, j. (f) Time courses of the

relative abundance qj(t) = ϕA, j(t) ∕ ϕA, j
∗  for each AAB group j. Eventually all the qj(t) reach

one, indicating cells reach the final steady-state expression levels.
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Figure 5. Data and model for AA downshift without serine.
(a) The model for AA downshift (blue line) predicted significantly shorter lag than the

data (filled blue circles). The growth curve for AA downshift without serine (open red

diamonds) is similar to that for downshift starting with casamino acid (CAA, filled grey

circles), with significantly shorter lag and is accurately captured by the corresponding model

(red line). (b)-(k) Recovery kinetics for total enzyme abundance of each AAB for AA

downshift without serine (red triangles). Blue triangles are the data for the same pathways

during downshift with serine (same as those shown in Fig. 3c-k). Only pathways with at

least 2-fold change in total abundance are shown. Blue and red bars indicate the abundances

in the pre-shift steady state, while the gold bars indicate the abundances in the post-shift

steady state (same for the two shifts). Error bars and the width of the colored bars indicate

the standard errors propagated from the errors of individual proteins (Methods). Red lines
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are the recovery kinetics predicted for the shift without serine, based on the same model

as that used for shift with serine (Fig. 3) but using the pre-shift growth rate and proteome

data for steady-state growth in AA without serine; see Extended Data Fig. 9 for details. Blue

lines are model predictions for shift with serine (same as in Fig. 3c-k). (l) Comparison of

observed and predicted onset time for each pathway (red triangles and circles) for the shift

without serine, plotted against the corresponding fractional pre-shift reserves. Blue triangles

and circles are the same plot for the shift with serine (same as those in Fig. 3l).
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