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Thermal soaring conditions above the sea have long been assumed absent or
too weak for terrestrial migrating birds, forcing obligate soarers to take long
detours and avoid sea-crossing, and facultative soarers to cross exclusively
by costly flapping flight. Thus, while atmospheric convection does develop
at sea and is used by some seabirds, it has been largely ignored in avian
migration research. Here, we provide direct evidence for routine thermal
soaring over open sea in the common crane, the heaviest facultative soarer
known among terrestrial migrating birds. Using high-resolution biologging
from 44 cranes tracked across their transcontinental migration over 4 years,
we show that soaring performance was no different over sea than over land
in mid-latitudes. Sea-soaring occurred predominantly in autumn when large
water-air temperature difference followed mid-latitude cyclones. Our find-
ings challenge a fundamental migration research paradigm and suggest
that obligate soarers avoid sea-crossing not due to the absence or weakness
of thermals but due to their low frequency, for which they cannot compen-
sate with prolonged flapping. Conversely, facultative soarers other than
cranes should also be able to use thermals over the sea. Marine cold air
outbreaks, imperative to global energy budget and climate, may also be
important for bird migration.
1. Introduction
Long-distance avian migrants are hypothesized to select their migratory timing,
routes and behaviours in relation to their internal state, the constraints imposed
by their motion and navigation capacities, and the environments they pass
through [1,2]. Inter- and intraspecific variation in response to environmental
conditions is apparently most pronounced when and where migrating birds
encounter large ecological barriers such as large seas, oceans or deserts that
prevent or restrict migration due to the scarcity of resources and safe habitats
and/or the prevalence of environmental conditions that increase the energetic
cost associated with crossing [2–5]. Some bird species cross barriers in a
straight, continuous flight to minimize the crossing time, some use ‘islands’
of suitable habitat as stepping-stones for crossing, while others take long
detours to either shorten crossing as much as possible or avoid crossing
altogether [4,6]. This variation in bird response to ecological barriers depends
on several key characteristics such as habitat/food requirements, morphology,
physiology and flight mode.

Migrating birds can use two principal flight modes; powered flapping flight
during which continuous wingbeats are used to progress and stay aloft, and soar-
ing-gliding during which wings are kept outstretched and the bird alternates
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between a climbing stage and a subsequent descent gliding for
forward movement [7–9]. Migration flight strategy represents a
continuum of soaring-gliding to flapping, with some species
specializing at either end while many others are situated
across this continuum. Soaring-gliding flight substantially
reduces flight costs by using energy available in the environ-
ment [8,9]. However, for land birds, relying on thermal
updrafts (columns of rising hot air produced by uneven heating
of the ground) for soaring also constrains their migration to
regions and times of day where and when thermals are avail-
able [4,8,10,11]. Unlike obligate soaring birds that seldom use
powered flapping flight, facultative soarers are capable of flap-
ping for a significant part of their flight as well as soaring-
gliding, and can thus frequently alternate between flight
modes in response to changes in environmental conditions
because of their wing morphology and physiology [8,12–14].
Consequently, they can exploit different environments and are
less constrained by suitable atmospheric conditions [13–17].

Sea crossing is highly challenging for migrating terrestrial
soaring birds that regularly soar and glide over land [4,10],
leading to interspecific variation in sea-crossing strategies
explained by wing morphology (namely, wing loading) and
flight modes (position on the soaring-gliding to flapping con-
tinuum) [16,17] (figure 1). Obligate soaring birds take long
detours to circumvent the sea [20–22] or cross it only in
short sections [23]. White storks (Ciconia ciconia), Egyptian
vultures (Neophron percnopterus) and short-toed eagles
(Circaetus gallicus), that flap for about 11%, 4% and 2% of
their flight, respectively, are exemplary for this behaviour
[22,24–27]. The prevailing paradigm in avian migration
research assumes that such detours are caused by the absence
or weakness of thermal soaring conditions above the sea
[4,8,10,11,16,17]. Most terrestrial soaring birds are facultative
soarers that are also capable of prolonged flapping and there-
fore, under the same paradigm, have been assumed to cross
the sea exclusively by costly flapping flight [4,10,28].

Nonetheless, ascending air through atmospheric convec-
tion does develop over oceans and seas, encompassing
atmospheric phenomena such as radiative cooling above
cloud tops, trade-wind convection over tropical waters and
marine cold air outbreaks outside the tropics [29–31]. In the
latter, convection is generated when colder continental air
flows over warmer sea-surface water. Under such tempera-
ture difference (ΔT; positive if sea surface is warmer than
the overlying air), the cold air layer is heated by the water,
producing unstable upward-downward air motion in the
marine atmospheric boundary layer that may organize into
convective cells [29,30]. Recent studies have shown how the
unique combination of trade-wind convection over tropical
oceans and extreme wing morphology of frigatebirds enables
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them to soar as they forage for extended periods [32], and
that gulls use soaring flight when foraging at sea relatively
close to shore [12]. Yet, despite very early observations of
soaring gulls that inspired the meteorological and physical
study of cellular convective systems over the oceans [33,34],
their utilization for soaring by terrestrial birds over temperate
and subtropical waters has been largely ignored in avian
migration research [10,11,13] and the paradigm uncontested.

Recent studies have either suggested thermal soaring
during sea-crossing based on low-resolution tracking of rap-
tors [35] or examined uplift potential during raptor migration
over the sea [36,37], but lacked direct biologging evidence for
the circling behaviour typical of thermal soaring. Conse-
quently, sea-crossing solely by flapping flight could not be
excluded in these studies. The first, and so far only, direct evi-
dence based on high-resolution GPS tracking comes from
ospreys migrating across the Mediterranean Sea [38], which
have a relatively low morphospace position (figure 1). More-
over, the underlying meteorological conditions responsible
for generating uplift potential that can be (and are) used by
migrating birds remain largely under-investigated both in eco-
logical and meteorological studies.

Among migratory birds, cranes are the heaviest facultative
soarers that commonly use both low-cost soaring and
costly prolonged flapping flight when and where soaring is
unfeasible, adjusting their flight mode to the changing atmos-
pheric conditions at their aerial habitat during migration
[10,14,17,28]. Cranes have a unique combination of wing mor-
phology traits that neither fit terrestrial nor marine facultative
soarers, but lies well within a zone merging the largest obligate
soarers (pelicans, vultures and condors) that seldom or never
cross the sea, and the largest obligate flapping birds (swans
and geese) that use prolonged flapping for sea-crossing
(figure 1). Common cranes (Grus grus), weighing on average
5.6 kg [39], routinely cross the Baltic, Black, Mediterranean
and Red Seas during migration, including long stretches of up
to 850 km over open water [28,40]. The common and the
white-naped cranes (Antigone vipio) are the heaviest facultative
soarers known to migrate long distances across the sea and, as
in other cases, have been assumed to do so only by flapping
flight [10,28,41], but not by thermal soaring.

Here, we used 1524 h of high-resolution (1 Hz) GPS, three-
dimensional acceleration and magnetometer measurements
from 44 common cranes, tracked along the breadth of their
cross-continental migratory route between western Russia and
Africa during 2018–2021, to provide the first direct evidence
that cranes repeatedly use thermal soaring over the sea
far from nearest land. Following this discovery, we set out to
investigate theirmigration flight strategy along their route, com-
paring different geographical regions over land (northern or
southern latitudes) and across the sea (Black orMediterranean),
and between migration seasons (spring or autumn). We then
examined how soaring and flapping flight performance and
characteristics of the cranes vary over land and sea, and finally
investigated the specific meteorological conditions that enable
the cranes to soar and glide over extended seascapes.
2. Results
High-resolution biologging of tracked cranes was configured
in designated areas over three regions: land north of 32° N,
sea (Black and Mediterranean) and land south of 32° N
(desert) (figure 2a; electronic supplementary material, appen-
dix figure S1). The dataset was divided into 8657 10 min
sections, with 3412 sections containing at least one thermal
soaring event. Cranes used a combination of flapping and
thermal soaring over both land regions and over the sea.
In at least 40% of the time, cranes migrated exclusively using
flapping flight, even over land at southern latitudes where
thermals are assumed to be stronger and frequent
(figure 2b). The proportion of thermal soaring differed
between regions (binomial GLMM, LRTs: region: x24 ¼ 1560
p < 0.001) and seasons (binomial GLMM, LRTs: season:
x23 ¼ 149 p < 0.001), with the highest over the desert and
lowest over the sea (figure 2b(i)), and lower during autumn
than spring in the desert but much higher in autumn over
the sea (binomial GLMM, LRTs: season×region: x215 ¼ 148
p < 0.001; figure 2b(i)). In diurnal trips with soaring activity,
the proportion of time soaring was 2.3 times lower over sea
than land (ART-ANOVA: F = 276, p < 0.001; figure 2b(ii)). The
mean (± s.d.) air speed was 10.7 ± 3.9 and 13.1 ± 4.5 m s−1 in
sections with and without soaring, respectively (ART-
ANOVA: F = 201, p < 0.001).

Soaring-gliding performance over the sea was not
different from that over land at northern latitudes, but
both were significantly different from that over land at
southern latitudes. More specifically, over the desert, cranes
had higher climbing rates and lower flapping ratios in both
the climbing and gliding phases (ART-ANOVA: p < 0.001;
figure 3). Thermal exit height above ground level was signifi-
cantly higher over the desert than over land at northern
latitudes (median height: 725 and 516 m, respectively; ART-
ANOVA: p < 0.001), but not significantly different over the
sea (median height: 594 m) compared with both land regions.
The estimated minimum sink rate of common cranes, calcu-
lated in the program FLIGHT (version 1.25) [42], is
0.66 m s−1. Thermal uplift strength, which can be regarded
as the minimum sink rate added to the soaring climb rate,
ranged from approximately 1 to 3.5 m s−1.

The probability of thermal soaring when cranes crossed
the sea, a proxy for the probability of thermal formation
over the sea, was significantly and positively related to ΔT
and wind speed at median flight height (395 m), but
the wind speed effect was weak (appendix, electronic sup-
plementary material, table S2). Generally, thermal soaring
occurred mostly in ΔT > 1. To understand the broader meteor-
ological context, we examined meteorological conditions 3
days before and 1 day after Mediterranean Sea crossing
events during autumn (figure 4c). Out of 40 crossing events
recorded in high resolution (figure 4a), 25 (62%) included at
least one thermal soaring event. Cranes that crossed the sea
with thermal soaring stayed significantly longer at the last
stopover before crossing, compared with birds that crossed
without any thermal soaring (ART-ANOVA: F = 5.9, p =
0.02; figure 4b). For events including thermal soaring,
environmental conditions 2 and 3 days prior to departure
were mostly all significantly different than the departure
day and showed clear and significant trends (one-way
ANOVA: p≤ 0.01 for all variables; figure 4c blue lines). By
contrast, sea-crossing events that did not include soaring
did not show significant trends or differences between days
in any of the meteorological variables (one-way ANOVA:
N.S; figure 4c red lines). ΔT levels were, on average, lowest
3 days before departure of soaring cranes (indicating rela-
tively high air temperature very close to the sea
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temperature, Dunnett’s test: p = 0.07) and reached a maxi-
mum 1 day before departure, indicating a decrease in air
temperature. By contrast, crossings without soaring occurred
during low ΔT levels without a sharp increasing trend in the
preceding days (figure 4d ). Additionally, crossings that
included thermal soaring were preceded by a decrease, fol-
lowed by a sharp increase, in sea level pressure, on average
reaching a minimum 2 days before departure (Dunnett’s
test: p < 0.05). They also occurred during a minimum in
total cloud cover and daily precipitation, both reaching a
maximum 2–3 days before departure (Dunnett’s test: p =
0.008 and p < 0.001, respectively). Tailwind was present
during departure days of soaring cranes, but there was head-
wind 2 and 3 days prior (Dunnett’s test: p < 0.05). Since
autumn departures for Mediterranean Sea-crossings are in a
southerly direction (mean ± s.d. 285° ± 16), tail- and head-
winds generally correspond to northerly and southerly
winds, respectively. The synoptic interpretation of these
results indicates the passing of a mid-latitude cyclone (low-
pressure area) and associated cold front 2 days, on average,
prior to departures for Mediterranean Sea-crossings that
included thermal soaring (figure 4e).
3. Discussion
Our data directly demonstrate thermal soaring over the sea
by a large, heavy terrestrial migrant, with wing loading up
to twice that of all raptors and gulls for which this behaviour
was previously documented [33,34,38] or suggested [35–37].
Importantly, we found that soaring crane climb rates and
thermal exit heights over the sea were comparable to over
land in northern latitudes (figure 3a), but the time spent soar-
ing was considerably lower (figure 2b), suggesting lower
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frequency but not lower strength of thermals over the sea.
These findings challenge fundamental assumptions in avian
migration research that have assigned a small, if any, role
for thermals over the sea for migrating birds and explained
sea avoidance of obligate soarers by thermal absence or
weakness [4,8,10,11,38,43]. Rather, our findings suggest
that lower thermal frequency—hence higher thermal uncer-
tainty—greatly limits obligate soarers and thus better
explains their avoidance of sea-crossing, rather than thermal
strength. Our findings further imply that not only cranes
and ospreys [38], but probably also honey buzzards [36,37]
and other facultative soaring species capable of flapping for
a significant part of their flight, also use thermal soaring
as they cross open seas, allowing a reduction in the energy
needed to cross this barrier as well as a reduction in time
by avoiding large detours.
Our study shows the ability of facultative soaring
migrants to switch flight modes in response to changes in
the environmental conditions they encounter en route.
Common cranes heavily rely on powered flapping flight,
use it exclusively for around half of their migratory flights
and frequently flap also during thermal soaring-gliding
(figures 2b and 3). This corresponds to a previous assertion
by Pennycuick et al. [28] that flapping is the common
crane’s primary mode of flight. Climb rates reported in [28]
are also similar to ours, in the range of 0.5–2.5 m s−1, despite
notable differences in geographical location and timing
(April, 55° N versus September–November and March–May
52-15° N). Common crane soaring climb rates are comparable
to those achieved by griffon vultures (Gyps fulvus), an exemp-
lary obligate soarer [44]. Minimum sink rates for the crane
and vulture are nearly the same (0.66 versus 0.69 m s−1),
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black, the percentage of crossing time that contained thermal soaring. Purple shading indicates the event for which weather conditions are shown in e. (e) Example
of a low-pressure weather system affecting the eastern Mediterranean on 25–27 October 2018. Shaded areas are air temperature (°C) at 2 m height; coloured lines
are isobars of sea-level pressure (mb), with colder (bluer) colours indicating lower pressure; and arrows are wind vectors at an altitude of 950 mb (approximately
450 m a.s.l.). ‘L’ and ‘H’ indicate low- and high-pressure areas, respectively. (i) 25 October 2018 (−2 timescales relative to departure), 06.00 UTC: a relatively deep
low-pressure area approaches the eastern Mediterranean from the west. (ii) 27 October 2018 (departure day), 06.00 UTC, the low-pressure area moved eastward and
was replaced by high pressure over Turkey and a shallow insignificant low south-east of Cyprus. SLP, sea level pressure.
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hence both could potentially use thermals of similar strength.
The same holds also for white storks, with an estimated mini-
mum sink rate of 0.64 m s−1. These comparisons lend further
support to our suggestion that thermal strength is not a limit-
ing factor over the sea, but rather the inability of obligate
soaring birds to flap substantially between thermals in
order to cope with their lower frequency over the sea, as
the cranes are able to do. Our findings also support previous
observations that cranes merge soaring-gliding and flapping
flight to ‘prolong’ inter-thermal gliding, but occasionally flap
also during thermal circling to keep in tight flock formation
[10,28]. By keeping formation as they exit the thermal,
cranes can conserve energy by formation-flying [45] as soon
as they switch from pure gliding to flapping. The higher
climb rates and lower flap rates observed during migration
over land at southern latitudes probably reflect stronger ther-
mal activity; this allows to preserve energy by relying less on
costly flapping flight while crossing these desert areas that
have few, if any, opportunities to refuel [10,40].

Mediterranean Sea-crossing events in autumn that
included thermal soaring occurred on average 2 days after
the passage of mid-latitude cyclones, when positive ΔT
values occurred but the precipitation and headwinds associ-
ated with the cold front have ceased (figure 4). The low-
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pressure area draws in cold air behind it, which increases sea-
air ΔT as the sea surface temperature is hardly affected by
synoptic variations (figure 4d ). Winds also tend to have a
strong southerly component ahead of the low, which gener-
ates headwinds for the south-bound cranes. After the
passing of the cold front and during gradual clearing of the
low, the northerly (tail) component of the wind sets in,
though precipitation may still linger and hinder crane depar-
ture. After that, even as ΔT somewhat decreases from its
maximum, meteorological conditions are favourable for
departure and for thermal soaring over the sea. During the
spring, however, the same post-cyclonic cold air events gen-
erally correspond to headwinds for the north-bound cranes.
This may partly explain why soaring over the Mediterranean
was much rarer in spring. The finding that cranes crossing the
Mediterranean using thermal soaring tended to wait longer at
the last stopover site before crossing could indicate waiting
for good soaring conditions, or simply waiting for adverse
weather conditions to improve, as there is a connection
between the two. It might also suggest that cranes that
cross by flapping aim to minimize migration time rather
than energy during this part of the migration route, so they
are less keen on waiting at the stopover. In addition, high
sea-air ΔT is not limited to daytime as thermal updrafts over-
land are, and night-time oceanic mesoscale cellular
convection is known to form [46]. This could potentially
enable birds to soar over sea also during the night. Penny-
cuick et al. [28] noted that common cranes fly across the
Mediterranean at night and assumed (whether night- or day-
time) they do so by flapping. While we do not have high-
resolution data from night-time sea-crossings of cranes, the
possibility of soaring during the night cannot be ruled out.

In summary, we provide direct evidence based on rich
high-resolution data for routine thermal soaring over the
sea in the heaviest facultative soarer among terrestrial
migrating birds, which calls to reconsider a prevailing
paradigm in bird migration research. The mechanisms
underlying this surprising finding encompass the flight
mode flexibility of cranes which in turn allows greater flexi-
bility in migration route and timing, as well as the
atmospheric processes that enable thermal soaring of such
heavy birds over the sea. These atmospheric processes,
associated with marine cold air outbreaks, have been
given much attention in atmospheric science as they are
imperative to understanding low cloud formation and the
global energy budget and climate system [29,30,47]. Here,
we show that even small-scale marine cold air outbreaks
such as those occurring in the eastern Mediterranean and
Black Seas, which may not even generate visible convective
cells (organized clouds) that are of interest to the atmos-
pheric science community, still have significant global
effects for biological processes such as bird migration and
are of interest to the biological science community. Our
high-resolution tracking of migrating common cranes
allowed insights to be gained on the existence and strength
of atmospheric thermals over the sea, a micrometeorologi-
cal-scale phenomenon that cannot be captured by
large-scale models and difficult to investigate by human-
operated sensors over open sea. Indeed, migratory birds
can serve as sentinels of climatological and meteorological
phenomena [48,49], sparking new opportunities for multi-
disciplinary research across biological and atmospheric
sciences.
4. Material and methods
(a) Tagging and data collection
Between January 2016 and September 2018, 44 common cranes
(electronic supplementary material, S1) were trapped in their
pre-migration flocking areas in western Russia (Ryazan area;
54°56’N, 41°02 E). The cranes were trapped using alpha-
chloralose [cf. 50–52] and processed in accordance with protocols
approved by the Department of Environment of the Ryazan
district, Russia (permit СК19-7154). Captured birds were
colour-ringed, fitted with leg-mounted solar-powered GPS-Global
System for Mobile Communications (GSM) transmitters (Orni-
Track-L40: Ornitela, Lithuania), morphological measurements
were taken, and body feathers were collected for molecular
sexing. The maximal total mass of a transmitter plus rings used
for attachment was (mean ± s.d.) 0.8 ± 0.09% (range: 0.7–1%;
35–42 g) of the captured cranes’ average body mass.
Each transmitter included a high-frequency three-dimensional
accelerometer and magnetometer sensor.

GPS locations were sampled at a resolution of 2 min to 1 h over
the whole annual cycle depending on the measurement scheme
and battery recharge. Once a bird was flying inside pre-set geo-
graphical areas along the migratory route, GPS data were
sampled continuously at 1 s intervals (electronic supplementary
material, appendix figure S1). During 1 Hz GPS recording, three-
dimensional acceleration and magnetometer data were recorded
in synchrony with the GPS position (figure 3b). Higher resolution
(10 Hz) 4 s bursts of three-dimensional acceleration and magnet-
ometer were recorded once every 1 min; during this ultra-high
resolution sensor burst, GPS recording is paused. All data were
downloaded remotely through a GSM network connection.

In all our analyses, we used data from individuals migrating
mainly along the Russian-Pontic route of the East Eurasian
Flyway, leading from breeding grounds in Eastern Europe and
the European part of Russia, through the Black Sea and towards
wintering grounds in the Near East and north-east Africa [53]
(figure 2a). A smaller portion of individuals breeding in the
European part of Russia also use the Caucasus Flyway, leading
across the Caucasus mountains to wintering grounds in Iran,
the Near East and north-east Africa [40,53]. Age categories
were assigned separately for every migration year, leading to
some individuals being included in juvenile category during
the first year of data collection and later assigned to the adult
category. All movement data analyses were performed using
MATLAB R2020a (The Mathworks Inc., Natick, MA, USA).
(b) Movement analysis
High-resolution (1 Hz) data were recorded for various lengths
of time depending on battery recharge and point of entry/exit to/
from the predefined preset geographical areas. We included in the
analysis only continuous 1 Hz sections longer than 10 min. This
data filtering resulted in a total of 1352 sections of 71.2 (range: 10–
470) min. During the 4 s recording of 10 Hz sensor burst, the 1 Hz
GPS recording did not occur. Thus, to create continuous 1 Hz
data series, we subsampled the 10 Hz data by selecting the first
acceleration and magnetometer value of every second during the
burst. Linear interpolation was used to fill the 4 s gaps in GPS
data occurring during sensor burst. While dead-reckoning provides
a more accurate approach to fill data gaps [54], linear interpolation is
not expected to introduce a significant bias in the current study due
to the overall low proportion of gaps (6 ± 3% of all data) and the
highly similar distribution at different regions.
(c) Identifying thermal soaring-gliding
Soaring-gliding events consist of an altitudinal gain phase per-
formed using circular thermal climbing, followed by a gliding
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phase during which altitude loss occurs [55]. Thermal soaring
and inter-thermal gliding fundamental movement elements
(FMEs) [56] were defined separately in our dataset due to the ten-
dency of the cranes to use a mixture of gliding and flapping flight
[10], hence not all thermal soaring phases were followed by
clearly definable gliding phases.

To identify soaring phases, we first found all climbing events.
Two main types of thermal soaring were observed in our data:
(1) classic soaring, or circling flight phases, were identified by a
continuous change in heading angle in one direction for at
least two full circles during the climb event (97% of all thermal
sections) and (2) spring-like soaring pattern, which might be a
result of circling with high drift (3% of all thermal sections,
12% of thermal sections over the sea, electronic supplementary
material, appendix, figure S3). Those were identified by a con-
tinuous change in heading direction using the magnetometer
data (figure 3). For each local minimum point in the flight
height, we found its following local maximum point. If the
time between the max and min points was at least 30 s, and if
for each recorded flight heights 10 s apart the latter was higher,
we considered it a climb. Climbs less than 15 s apart were
merged. A consequent gliding phase was registered if 80% of
the 1 s steps were downwards without circling for at least 30 s
and if it followed a soaring phase by less than 60 s [55].

The mean (± s.d.) time of thermal soaring was 213 (± 116) s,
and the mean (± s.d.) time of gliding was 109 (± 82) s. For
each segment of thermal soaring, we calculated vertical speed
(climb rate), thermal starting and exit heights above terrain,
and flapping proportion (see below). When a matching gliding
phase was coupled with the soaring phase (61% of the soaring
FMEs), time of gliding, ground speed, air speed, vertical speed
(sink speed) and flapping rate (see below) were calculated
(figure 3). The minimum sink rate for the common crane was
calculated using the FLIGHT (version 1.25) software [42], with
crane morphological input values (mean body mass = 5.614 kg,
wing area = 0.5853 m2, wing span = 2.22 m, aspect ratio = 8.42)
obtained from data provided in [39].
(d) Flapping rate
The recorded raw tri-axial acceleration (in millivolts) was trans-
formed to actual acceleration (m s−2) using sensor-specific
calibration values for each axis obtained prior to deployment
of each transmitter. To obtain vertically aligned acceleration,
we calculated tri-axial static acceleration and projected the raw
acceleration. Our goal was to determine flap rate (number of
wingbeats per second) for the entire FME (samples at 1 Hz)
and not only for the ultra-high resolution (10 Hz) 4 s acceleration
bursts which were sampled intermittently (electronic supple-
mentary material, appendix figure S2). Since commonly used
methods [24,57] for determining the flap rate during flight
using acceleration data are not suitable at the sampling resol-
ution of 1 Hz because wingbeats occur in a higher temporal
resolution, we developed a model to estimate flap rate from
1 Hz data based on a calibration dataset of 10 Hz.

The model was based on a two-layer, fully connected, feed-
forward neural network (Python 3.9; TensorFlow 2.8). The
input neurons were the result of applying aggregate functions
and calculating the Pearson correlation between axes for accelera-
tion and magnitude data. For model calibration, we used 12 580
sections of ultra-high resolution (10 Hz) 4 s acceleration bursts
(electronic supplementary material, appendix figure S2A),
divided into 80% for model training and 20% for model vali-
dation. For each section, flap rate was calculated by identifying
wingbeats represented as peaks at the heave axis [cf. 25] and
dividing the number of peaks by 4 s (section total length).
Models were estimated for multiple configurations and the best
model was selected according to the goodness-of-fit of the
flap rate projected from 1 Hz data and the one calculated from
10 Hz data. The best-performing model (R2 = 0.91) was based
on five continuous samples (4 s) of 1 Hz acceleration (magnitude
data were dropped in model selection) with the flap rate esti-
mated for the middle sample point. This model was used
to calculate flap rate from 1 Hz data for all our tracks (figure 3;
electronic supplementary material, figure S2B). The mean
(± s.d.) calculated flap rate was 2.15 (± 0.79) flaps s−1 during
powered flapping flight and 0.89 (± 0.83) flaps s−1 during
thermal soaring.

Flapping rate was converted into flapping ratio (number of
wingbeats out of the maximal number of wingbeats expected
during flapping flight) to better represent flapping behaviour
during each FME. Flapping ratio was calculated by dividing
the cumulative number of flaps in each FME by the maximal
possible number of flaps based on the mean calculated flapping
rate during powered flight. This method of flapping ratio
calculation probably leads to overestimation of flapping, as
a particular second is considered flapping regardless of how
many wing flaps were performed in that second [24,25]. How-
ever, because the actual number of flaps was unknown and
estimated based on a running average over 4 s, our calculation
is representative of the flapping ratio during the different
movement phases.

(e) Annotating environmental variables
Flight height above ground level was calculated by subtracting
from the altitude above sea level [58] the ground elevation
(ASTER DEM, 1 arc-second spatial resolution) obtained from
Env-DATA track annotation service [20]. To relate the flight be-
haviour to the time of day, we classified diurnal locations
as those collected between sunrise and sunset and regarded the
remaining locations as nocturnal. To identify flight above
the Black Sea and Mediterranean Sea, we used the Marine
Regions shapefile [59] and annotated the corresponding position
to the location inside or outside the polygon.Sea-crossing was
identified if at least one point was located inside the sea polygon.
All data tracks were classified to three geographical areas:
(a) over Black or Mediterranean Seas, (b) over land north of lati-
tude 32°N and (c) over land south of latitude 32°N. Latitude
32°N was chosen to differentiate tracks above desert or elsewhere
because the geographical areas in which the 1 Hz data was
sampled do not include deserts north of this latitude (electronic
supplementary material, appendix figure S1).

Atmospheric variables were obtained from the ERA5 hourly
data on pressure levels [60] and single levels [61] from 1979 to
present, provided by European Centre for Medium-Range
Weather Forecasts (ECMWF). We annotated all crane GPS
locations with the following single-level variables: mean sea
level pressure, air temperature at 2 m above the surface, sea sur-
face temperature, total cloud cover and boundary layer height
(BLH). Additionally, annotation was done on the 950 millibar
pressure level with geopotential height and U- and V- wind com-
ponents. Since the ERA5 temporal resolution is 1 h, the GPS
location timestamp was rounded to the nearest hour for the
ERA5 annotation. Precipitation data were obtained from
the GPCC First Guess Daily Product at 1.0° [62].

( f ) Statistical analysis
To assess thermal soaring under different conditions, we seg-
mented the data into 10 min sections and only sections lasting
10 full minutes were analysed. The sections were classified as
above sea or above land and only sections for which all points
were classified to the same habitat were analysed. For this analy-
sis, only thermal soaring was considered and for each section,
the number of thermal soaring FMEs and total time in thermal
soaring were recorded.
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To identify factors influencing thermal probability at sea,
we modelled the relationship between thermal presence and
meteorological predictor variables using binomial generalized
linear-mixed model (GLMM) with the glmer function in the
lme4 package [63]. Before fitting the GLMMs, all continuous pre-
dictors were transformed to z-scores to standardize them [64].
To rule out collinearity, we calculated Pearson’s correlation
coefficients (r) between each pair of explanatory variables and
selected variables with |r| less than 0.7 [65] We compared the
full model with a null model (including only random and control
variables) using likelihood-ratio tests (ANOVA function set to
‘Chisq’). The response variable was presence/absence of thermal
circling, and the predictor meteorological variables included
wind speed, mean temperature difference between sea and air
(ΔT) and sea level pressure. Mean BLH was correlated with ΔT
(r = 0.72, p < 0.001) and excluded from the model. An additional
predictor variable was individual age (categorized as ‘adults’
versus ‘subadults’—birds under the age of three). First year
juveniles were not analysed separately because our dataset
included only one juvenile. Animal ID was included as
a random factor in all models to account for repeated measures.

To compare the proportion of 10 min sections with and with-
out thermal presence at different geographical regions and
between autumn and spring, we applied binomial GLMM with
logit link function in the ‘lme4’ package [63]. Season (categorized
as ‘autumn’ and ‘spring’) and geographical regions (categorized
as ‘North’, ‘Desert’, ‘Sea’) were included as fixed factors while
crane ID was a random factor. Likelihood ratio tests (LRTs)
were used to test for significance of explanatory variables. Post
hoc comparisons of the estimated marginal effects were con-
ducted using the R package emmeans, with Holm step-down
procedure for multiple comparisons. To compare time soaring,
we analysed only trips (continuous flight event) with at least
one thermal soaring event. We analysed the difference in the pro-
portion of time in soaring flight in the different geographical
regions, using Aligned Rank Transformed ANOVA (ART-
ANOVA) for our non-parametric, factorial analyses, due to the
non-convergence of a binomial GLMM, likely attributed to
data sparsity after aggregation by trip. This approach was
implemented using the ARTool package [66] with geographical
region as a fixed factor and crane ID as a random factor. We con-
ducted within-group comparisons using the ARTool pairwise
contrast function and between-group comparisons using
Mann–Whitney U-tests with Tukey corrected p-values. Similarly,
ART-ANOVA was used to compare flap ratio during climbing
and gliding, climb rate and exit height (above ground level)
from thermals, between the different geographical regions. For
this analysis, only coupled soaring-gliding FMEs were used.

We used repeated measures analysis of variance (RM-
ANOVA) to compare conditions in the Mediterranean Sea
across different timescales relative to the autumn departure of
cranes for sea-crossing. We considered time (up to 3 days prior
to departure and 1 day after) as a within-subject factor and
flight mode (soaring or flapping) as a between-subject factor
(after [67]). Crossing flight mode was set as thermal soaring if
at least one 10 min section with thermal soaring was present
during crossing; otherwise, it was set as flapping only. Each
meteorological factor (ΔT, sea level pressure, total cloud cover,
precipitation and tailwind) was analysed separately. For annota-
tion of meteorological conditions two common locations at
sea were selected for birds departing from central Turkey
(36°08’N, 34°06 E) and Adana (35°17’N, 35°36 E), respectively
(figure 4a) and at the time the birds entered the Mediterranean
Sea. Tailwind was calculated in relation to bird flight direction
between the point of departure and the point of analysis in
sea. We performed a one-way ANOVA for each meteorological
factor within each flight mode group separately to determine if
there were significant differences across timescales. Subsequently,
for cases where significant time effects were observed, we
applied Dunnett’s test [68] to compare the conditions at the
departure day with the ones measured at other days (−3, −2,
−1 and +1).

Ethics. The cranes were trapped and processed in accordance with
protocols approved by the Department of Environment of the
Ryazan district, Russia (permit СК19-7154) and the Israel Nature and
Parks Authority (permit 2015/41169). The animal experimental proto-
col was approved by the ethics review committee of The Hebrew
University of Jerusalem (NIH approval number: OPRR-A01-5011).
Data accessibility. All data and scripts associated with this manuscript
are available on Dryad Digital Repository: https://doi.org/10.
5061/dryad.t76hdr871 [69].

Additional information is provided in electronic supplementary
material [70].
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