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ABSTRACT OF THE DISSERTATION

Improving Recommender Systems via Multimodal Information

by

Zeyu Li

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Wei Wang, Chair

Recommender systems are the backbones of a variety of critical services provided by tech-

heavy applications and companies. In social media applications such as Facebook, Instagram,

TikTok, and Snapchat, recommender systems of different types are leveraged to suggest the

next post, image, or video to users to their satisfaction. Online shopping websites, such as

Amazon, eBay, and Taobao, recommend items to users so that they can immediately find

what they favor without the need for intensive querying. Due to its outstanding significance,

both academia and industry put great effort into developing more powerful recommendation

engines.

In this dissertation, we aim at improving recommender systems via different ways of

incorporating data from multiple modalities such as the graphical structure of the entity re-

lations, the attributes of entities, and the textual reviews to items from users. We exemplify

the process of incorporating multimodal data via five works completed during my Ph.D.

study. In these works, we will demonstrate the incorporation of different data modalities

for different recommendation scenarios. NeRank focuses on the question routing task that

recommends experts to question raisers combining user expertise and structural relations of
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entities. InterHAt considers the polysemy of features to build an interpretable click-through

rate predictor. GEAPR, specialized in point of interest recommendation, decomposes the

user motivation by data modalities such as social network, attribute information, and ge-

olocation. The framework of ASPE+APRE presents a possibility to objectively understand

the preference of users through what they said rather than what they purchased, clicked,

or viewed. Using the objective information, recommender systems can obtain a detailed

and fine-grained picture of user interests and item properties. This framework handles the

descriptive statements of reviews leaving the comparative statements unattended. Finally,

we introduce SAECON that deals with comparative statements and analyzes the reviews

with larger coverage.

The research effort demonstrates that incorporating data from multiple modalities can

hugely improve the performance of recommendations. In addition, it provides recommenda-

tion engines with interpretability to decompose the motivation behind certain user behaviors

when using the service. It can be envisioned that the fusion of multimodal data will inspire

the development of recommender systems in both academic research and industrial practice.
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CHAPTER 1

Introduction

1.1 Recommender Systems

Mobile internet boomed in the 2010s. Innovative mobile devices were designed, created, and

made cheap and easily accessible. More users connected to the Internet and participated in a

wide variety of online services such as online shopping, social network, search engine, and on-

line entertainment. With more users, high-tech companies were able to collect an enormous

amount of data that can precisely record the sequences of user behaviors. These datasets

then powered the massive scale machine learning-based recommender systems. These rec-

ommender systems, in turn, provided smart customized experiences to users and fueled the

prosperity of business.

What are recommender systems? Recommender systems refer to intelligent platforms

and software that learn user preference and predict users’ interaction behaviors such as

watching a video or a post, clicking an advertisement, purchasing an item, visiting a point

of interest, or rating and reviewing a product after purchase. In this dissertation, we use

interaction to denote the set of possible behaviors that happened between users and items.

Nowadays, recommender systems serve as the backbones of a wide range of applications

or web services. Amazon, Taobao, and JD use different recommendation models for search,

“item you may be interested in”, “people also viewed”, etc., which increase the visibility of

similar items and elongate user engagement. Facebook, Instagram, TikTok, and Snapchat

employ recommendation models to build user profiles and correspondingly customize the
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next batch of content to display so that users can interact with the application longer or

more frequently. Yelp and Google Map learn user preference via recommender systems so

that they can tailor the query results considering the diverse tastes of users.

The oil that powers the recommender systems to build user preference profile is data,

which includes user-item interaction history records, the social relationships of users de-

scribed by graphs, the static attribute information of users and items, the review text users

write as feedback of items, etc. Intuitively, the more data involved in the development pro-

cess of recommender systems, the better the recommendation performance will get. This

idea has been the guiding principle for the research in recommendation in the past years.

Traditional recommender systems are based on the history of user interaction or engage-

ment. The intuition supporting the idea is that users showing similar purchasing patterns

tend to continue to buy the same group of items. This idea is typically defined as collabora-

tive filtering. For example, matrix factorization (MF) decomposes a static interaction matrix

of user and item into a user embedding matrix and an item embedding matrix. Follow-up

works of matrix factorization employ additional regularizations or constraints to enhance

accuracy or efficiency.

The downsides of matrix factorization-based are obvious. First, it cannot model temporal

information and discards the dynamics of user interests and item supplies. Items being

recommended are global regardless of the time or season of the query. Second, it completely

fails for new users and new items unless being repeatedly retrained with high computational

cost. Third, it is incapable of utilizing data from other domains such as attribute, network,

or text. Fruitful research progress has been made attempting to solve the third problem

by advanced recommendation algorithms. This dissertation also pursues that direction and

demonstrates efforts in incorporating multimodal data into building better recommendation

algorithms.
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Figure 1.1: Example data modality in recommender systems.

1.2 Incorporating Multimodal Data

The recent development of deep learning provides effective tools for modeling multimodal

data and fusing the information for a more accurate prediction. Figure 1.1 shows four ex-

ample modalities of the recommender systems including Interaction history, Social network,

Attribute information, and Reviews and ratings. Incorporating these four different types of

data is comprehensively discussed in this dissertation such as the corresponding pioneer-

ing works, past milestones, our contribution in these threads, and the potential exploration

directions for future effort. We introduce these data types as follows.

Interaction history Interaction history refers to the past engagement of users with items.

According to the type of services of the platform, interactive behaviors can be watching

videos or posts, clicking on advertisements, commenting on items, and visiting places,

etc. Different kinds of behaviors represent different levels of preference. For example,
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for a news recommender, a possible descending order of likeness can be retweet/share =

comment > like > watch entirely > click but leave > non-click > dislike > hide/report.

Although applications may not have the whole spectrum of likeness buttons, they can

still build algorithms with discriminative loss terms on different signals. These signals

reveal the users’ loves and hates and help the recommender suggest items users also

like and avoid things they dislike.

Social network Social network has attracted extensive attention itself due to its diverse

research directions such as node representation learning for account classification, edge

prediction for “friends you may know” suggestion, clique detection for mining potential

interest groups, etc. The topological structure can provide proximity information of

the entities in the network. As some online services also contain social networks, it

is worth being incorporated into the recommendation since, intuitively, the friends or

connected users of a user can influence their behaviors. Frequently used techniques

of network-related algorithms include network embedding and graph neural networks

which will be discussed in later chapters.

Attribute information Attributes of items are typically static demographic features such

as user name, age, and location (zip code). Attribute information can help the machine

learning algorithm identify certain patterns of the sub-cohort of the user base. For

example, young users tend to have similar behavioral patterns, and geographically

close users can also have similar needs to those specific regions, etc. One successful

attempt to leverage attribute information is factorization machines where different

orders of interactions are computed for the features.

Reviews and ratings Different from the above three modalities, reviews and their asso-

ciated ratings provide a subjective angle of user preference, an angle not based on

what users do but they say. Understanding reviews requires techniques from natural

language processing. Applying text mining or text representation learning to build
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recommender systems is not novel. But most of these work either only encodes the

text into latent representation or assigns a fixed number of latent aspects without ex-

tracting the actual sentiments expressed by the text. Encoding the entire sentence or

review can hardly provide any clues of interpreting the recommendation using the text

data. Therefore, a method that can efficiently extract the entities in that text with

associated user sentiments is strongly needed.

In summary, we see that the four data modalities can benefit the performance of rec-

ommender systems in many aspects. Therefore, we propose methods in this dissertation to

utilize these data from different aspects to boost the recommendation performance. In the

next section, we go through the research works in a nutshell and summarize their contribu-

tion.

1.3 Contribution of Dissertation

In this dissertation, we list three groups of work including NeRank, InterHAt and GEAPR,

and ASPE+APRE and SAECON. We briefly summarize their contribution in advancing the

incorporation of multimodel data into recommender systems.

First of all, NeRank is a novel idea for question routing marking the first work that

considers the network structure of a community-based question answering forum such as

Stack Overflow. Specifically, we model the different types of entities in the graph as well as

their relations as a heterogeneous information network so that the diverse semantics attached

to the edges can be accurately captured. In addition, NeRank fuses text data with network

embedding through a text encoder via which the network embeddings learned are aligned

with the text semantic. The expertise information is preserved in the embeddings too.

Secondly, InterHAt and GEAPR are two projects on interpretable recommender systems.

InterHAt tries to explain a CTR prediction using a hierarchical attention network, which

is a novel architectural design. With such a design, a recommender can compute the in-
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teractions of different features potentially coming from different modalities and output the

salience of these interactions via attention scores. GEAPR explains visits to the point of

interest by decomposing the potential motivation into several different factors such as geolo-

cation, attributes, or network structures. Here the different types of data are combined to

recommend new points of interest. The significant contributions of these works are build-

ing explainable models for recommendation scenarios and including attribute information in

POI recommendations.

Finally, ASPE+APRE and SAECON are two examples of incorporating natural language

in the recommender systems. ASPE+APRE consists of two parts including an Aspect-

Sentiment Pair Extractor and an Attention-Property-aware Rating Estimator. ASPE ex-

tracts aspect-sentiment pairs (AS-pairs) which are the basic units of user preference on

certain item properties. The sentiment terms indicate the emotion of users such as like or

hate. APRE takes in the AS-pairs, pools the sentiments for the same aspects, and aggregates

the detailed sentiments to predict the final rating score a user will give an item. However,

this framework can only deal with descriptive statements but fails to handle comparative

ones. This is where SAECON comes in. It can detect comparative sentences in reviews and

predict which one of the two given entities wins the comparison.

The novelty of the ASPE+APRE framework is that it marks the first attempt to model

user preference to aspects explicitly and explain the rating prediction by aspects with AS-

pairs as the exact evidence. Of course, the performance is improved against all existing rating

prediction baselines. For SAECON, our contribution is that the accuracy of the comparative

preference classification (CPC) is enhanced with the help of the innovative domain adaptive

knowledge transfer that borrows training signal from the aspect-based sentiment analysis

(ABSA) data and task.

Overall, this dissertation presents novel efforts in incorporating data from different modal-

ities into improving recommender systems in several distinct scenarios such as question rout-

ing, CTR prediction, POI recommendation, and rating prediction.
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1.4 Overview

In the last section of this chapter, we present how the following parts of the dissertation

are organized. Chapter 2 introduces the existing research effort relevant to this disserta-

tion. We elaborate on relevant research problems and techniques separately. Chapter 3

introduces NeRank, a framework that recommends domain experts of a community-based

question answering platform to users raising new questions. Chapter 4 introduces InterHAt,

an interpretable click-through rate prediction model that predicts whether a user clicks a

post or an advertisement and explains the prediction. Chapter 5 introduces a location-based

recommendation framework to recommend points of interest to users taking into consider-

ation structural context, attributes, geolocation, and immediate neighbors. Chapter 6 and

Chapter 7 cover two natural language processing-based models for understanding user pref-

erence both in descriptive and comparative statements. With them, recommender systems

can incorporate review data to decompose and interpret users’ attention to the items.
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CHAPTER 2

Related Work

This chapter discusses the related work for the dissertation. According to their topics, these

sections are divided into two parts. The first part covers relevant research progress on the

different recommendation scenarios such as existing work and their corresponding advantages

and disadvantages. The second part covers the background of related techniques utilized in

the following research projects.

2.1 Related Work for Recommendation Scenarios

2.1.1 Question Routing

Question routing, which will be discussed in Chapter 3, is defined as predicting whether

a user in community-based question answering (CQA) will share knowledge and answer a

given question [ZLK12]. The majority of previous works fall into two categories: feature

engineering-based methods and matrix factorization-based methods.

Feature engineering algorithms [ZLK12, JW13, CP13] feed features extracted from users,

questions, and their relations to models such as SVM [HDO98] and Linear Regression [CP13]

to rank the user authority to make recommendations. However, they require carefully crafted

features and the performance relies heavily on feature selection.

Matrix factorization models decompose feature matrices based on the low-rank assump-

tion to discover users’ expertise on particular words and compute ranking scores by the inner

product of the user and question feature vectors [ZZH15]. It suffers from the limitation of
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the bag-of-word model which is unable to preserve sequential text semantics.

2.1.2 Click-Through-Rate (CTR) Prediction

CTR prediction models predict the probability of a user clicking on a certain item within

a certain context. It has drawn great attention from both academia and industry [GZL17,

Ren10, CKH16, QCR16, WZX18, XYH17, LLS16, SHJ16, ZZS18, LZZ18, WFF17, HC17,

ZZZ18, ZMF18] due to its significant impact on online advertisements. The advancement

of CTR prediction algorithms essentially shows a trend towards deeper model architectures

since they are more powerful in feature interaction learning [SSX18].

Factorization Machine (FM) [Ren10] assigns a d-dimensional trainable continuous-valued

representation to each distinct feature, learns the representations of distinct features, and

makes predictions by a linear aggregation of first- and second-order features. Although FM

can be generalized to high-order cases, it suffers from the computational cost of exponen-

tial complexity [BFU16] and the low model capability of shallow architecture. Field-aware

Factorization Machine (FFM) [JZC16] assumes that features may have dissimilar seman-

tics under distinct fields and extends the idea of FM by making the feature representation

field-specific. Although it achieves better CTR results than FM, the parameter size and

complexity are also increased and overfitting is easier to happen. Attentional Factorization

Machine (AFM) [XYH17] extends FM with an attention net that improves not only the

performance but also interpretability. The authors argue that the feature salience provided

by the attention network greatly enhances the transparency of FM. That said, AFM can

only learn up to the second-order attention-based salience due to the inherent architectural

limit of FM.

Wide&Deep [CKH16] consists of a wide and a deep component, which are essentially

a generalized linear model and a multi-layer perceptron (MLP), respectively. The CTR

prediction is made by a weighted combination of the outcomes of the two components. Note

that the deep component, i.e., the MLP, ruins the possibility of explaining the prediction

9



because the layer-wise transformations are conducted on unit level instead of feature level,

and individual unit level values can not carry concrete and complete semantic information

of features. Deep&Cross Network (DCN) [WFF17] slightly differs from Wide&Deep in that

DCN replaces the linear model with a cross-product transformation to integrate high-order

information with non-linear deep features. DeepFM [GTY17] improves these two models by

replacing the polynomial production with an FM component. The deep MLP component

captures the high-order feature interaction and the FM analyzes the second-order feature

interaction. xDeepFM [LZZ18] claims that MLP parameters are actually arbitrarily modeling

the implicit feature interactions. The authors hence introduce the compressed interaction

network (CIN) to model the explicit features alongside the implicit ones. Recent works

from industry practice include DIN [ZZS18] and DIEN [ZMF18] that respectively model the

static and dynamic shopping interest of users. Both work heavily rely on deep feed-forward

networks which are typically unexplainable.

All aforementioned CTR prediction models depend heavily on deep neural networks and

achieve ever-increasing performances. However, as a sword has two edges, deep learning

algorithms suffer from potential risks in reliability and security. The weights and activations

of hidden layers are hardly explainable and the causal relationships between the inputs and

outputs are concealed and uncertain. They all fail to provide any feature-level clues that

explain why such deep feature learning strategies enhance or diminish the CTR performance.

Consequently, the predictions made thereby without clear explanations are considered un-

trustworthy.

2.1.3 Point of Interest (POI) Recommendation

Points of interest refer to locations that customers of online business directories or re-

view forums are interested in. POI recommendation is a popular task since it directly

affects the revenue and reputation of POI platforms. Research on this topic has been

fruitful [LPC17, LJJ19, YBZ17, YYL11, LGH16, LWW16, ZC15, ZC13, ZCL14, LWS14,
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LZX14, LCL15, WYC20, YCG20, ZYZ19, JXZ19, ZZK17, WWT17, HPN18, LZX20, ZGH19,

ZMZ19, SQC20, CLZ20, MZW18, CGC20, ZYL17, RAB20, LLW20, YZC16, LCZ20, YWW17,

CZH17, YZZ18]. We categorize them into traditional POI models and deep learning-based

ones and discuss their pros and cons by examples.

Traditional models USG [YYL11] is a collaborative filtering-based model for POI rec-

ommendation. It suggests that not only social connections but also geographical influences

can help improve the accuracy of POI recommendations. Therefore, USG specifically looks

at three complementary factors: user preference of POIs, social influences, and geographical

influence. GeoSoCa [ZC15] digs deeper into POIs’ property that the category of POI is

taken into consideration. Authors argue that category is critical information and it affects

user preference since people have different biases towards different types of POIs. There-

fore, GeoSoCa firstly employs the biases measurement to build personalized POI popularity.

ASMF and ARMF [LGH16] refer to augmented square error-based MF and augmented

ranking error-based MF, respectively. Despite the minor difference in the selection of error

function, they both focus on user relations from three dimensions which are generally defined

as friendships, namely social friends, location friends, and neighbor friends. The emphases

on user friendships strongly indicate that users’ preferences can be greatly reshaped by and

effectively learned from human-human connections.

Deep learning-based models PACE [YBZ17] utilizes a multi-task learning architecture

that models user context, POI context, and user-POI interaction simultaneously. Technically,

it assigns a learnable embedding vector to each user and POI to capture their latent features

and use a feed-forward layers-based deep network to predict user context, POI context, and

check-ins. SAE-NAD [MZW18] is composed of a self-attentive encoder (SAE) for user-POI

interaction modeling and a neighbor-aware decoder (NAD) for geographical context model-

ing. SAE differentiates user preference degrees in multiple aspects by self-attention. NAD

ensures only physically and preferentially nearby users’ check-ins receive stronger weights
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in the POI recommendation. APOIR [ZYZ19] signifies the first application of generative

adversarial network (GAN) [GPM14] on POI recommendation. The co-trained two sides of

the mini-max game are the recommender aiming to suggest the most probable POI check-ins

and the discriminator that separates the recommended POI from the true visits.

All aforementioned previous approaches carefully attend to user preferences mining and

POI profiling in terms of categories and geolocations. However, we notice two major disad-

vantages that deserve some improvements. First, attributes of individuals have long been

ignored even though recommendation models such as factorization machine (FM) [Ren10]

have demonstrated the usefulness of user attributes to enhance accuracy. Existing algorithms

have a delicate design on user preference and geolocation modeling [ZYL17, MZW18] but

lack latent attribute learning for users. Second, all previous models, either deep learning-

based or MF-based, preserve the information of users or POIs by latent representations

without explicitly highlighting salient factors or signals. Different information sources are

integrated by simple operations such as addition, concatenation, or multilayer perceptrons

(MLP). Consequently, the trained models with unjustifiable parameters fail to explain why

users favor or dislike certain POIs and what really causes a visit.

Sequential POI recommendation Sequential, or successive, POI recommendation (SPR)

models [ZMZ19, ZZK17, YCG20, JXZ19, SQC20, WYC20] is a separate branch of location-

based recommendations from general POI recommendations. They are essentially different

use scenarios. General models emphasize the modeling of general user and POI character-

istics whereas SPR models focus on time-sensitive check-in suggestions and temporal POI

visit behavior mining.

2.1.4 Aspect-Based Sentiment Analysis

Aspect-based sentiment analysis (ABSA) [XLS20, WML18] predicts sentiments toward spe-

cific aspects of an item mentioned in the text. It has been utilized in recommendation sce-
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narios to discover the user preference disclosed in product reviews. Traditional approaches

of ABSA utilize SVM for classification [KZC14, WAC14, ZZL14] while neural network-

based approaches employ variants of RNN [NS15, AG20], LSTM [TQF16, WHZ16, BLB19],

GAT [WSY20], and GCN [PND20, XZL20].

More recent works widely use complex contextualized NLP models such as BERT [DCL19].

[SHQ19] transform ABSA into a Question Answering task by constructing auxiliary sen-

tences. [PO20] and [TJL20] utilize contextualized language encoding to capture the context

of aspect terms to predict the sentiments. [CSW20] focuses on the consistency of the emotion

surrounding the aspects, and [DSW20] equips pre-trained BERT with domain-awareness of

sentiments.

2.1.5 Aspect or Sentiment Terms Extraction

Aspect and sentiment terms extraction is a presupposition of ABSA. However, manually

annotating data for training, which requires the hard labor of experts, is only feasible on

small datasets in particular domains such as Laptop and Restaurant [PGP14, PGP15] which

are overused in ABSA.

RINANTE [DS19] and SDRN [CLW20] automatically extract both terms using rule-

guided data augmentation and double-channel opinion-relation co-extraction, respectively.

However, the supervised approaches are too domain-specific to generalize to out-of-domain

or open-domain corpora. Conducting domain adaptation from small labeled corpora to un-

labeled open corpora only produces suboptimal results [WP18]. SKEP [TGX20] exploits an

unsupervised PMI+seed strategy to coarsely label sentimentally polarized tokens as senti-

ment terms, showing that the unsupervised method is advantageous when annotated corpora

are insufficient in the domain of interest.
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2.1.6 Aspect-based Recommendation

The aspect-based recommendation is a category of recommendation algorithms that de-

compose the motivation of click or purchase into different latent aspects in pursuit of a

fine-grained preference study. It is a relevant task with a major difference that specific terms

indicating sentiments are not extracted. Only the aspects are needed [HYW19, GCH19,

HJW20, CZJ18]. Some disadvantages are summarized as follows. Firstly, the aspect extrac-

tion tools are usually outdated and inaccurate such as LDA [HYW19], TF-IDF [GCH19],

and word embedding-based similarity [HJW20]. Second, the representation of sentiment is

scalar-based which is coarser than the embedding-based method used in our work.

2.1.7 Review-based Rating Prediction

Review-based rating prediction is an important task in the recommendation. Although

the rating scores are typically discrete, the task is modeled as a regression task where the

model predicts the scalar scores using the text of the review. Related approaches utilize

text mining algorithms to build user and item representations and predict ratings [KPO16,

ZNY17, CZL18, CZJ18, LLD19, BLT17]. However, the text features learned are latent and

unable to provide explicit hints for explaining user interests.

2.1.8 Comparative Preference Classification

Comparative Preference Classification (CPC) originates from the task of Comparative Sen-

tence Identification (CSI) [JL06]. CSI aims to identify the comparative sentences. [JL06]

approaches this problem by Class Sequential Mining (CSR) and a Naive Bayesian classifier.

Building upon CSI, [PBF19] proposes the task of CPC, releases CompSent-19 dataset, and

conducts experimental studies using traditional machine learning approaches such as SVM,

representation-based classification, and XGBoost. However, they neglect the entities in the

comparative context [PBF19]. ED-GAT [MMW20], a more recent work, uses the dependency
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graph to better recognize long-distance comparisons and avoid falsely identifying unrelated

comparison predicates. However, it fails to capture semantic information of the entities as

they are replaced by entityA and entityB. Furthermore, having multiple GAT layers severely

increases training difficulty.

2.2 Related Work for Techniques

2.2.1 Network Embedding

Network embedding models learn low-dimensional representations for nodes in a network that

preserve the structural context of nodes [PAS14, GL16, TQW15, SHZ18, DCS17, CS17]. As

the type of graph can be either homogeneous or heterogeneous depending on whether the

graph has different node types, the network embedding methods also fall into these two

categories. For heterogeneous information networks, the diversified node and edge types

bring forth additional semantic information of networks which motivates the metapath-

based network embedding algorithms [SHY11]. [CS17] proposes a task-specific and path-

augmented model that jointly optimized the network-general and task-specific objectives.

Metapaths are specifically selected for the task. metapath2vec and metapath2vec++ [DCS17]

combine metapaths with the word2vec model for heterogeneous embedding learning.

2.2.2 Attention Mechanism

Attention mechanism learns a function that weighs over intermediate features and ma-

nipulates the information that is visible to other modules of the machine learning algo-

rithm. Due to its capability to pinpoint and amplify salient features that greatly affect

the predictions [GBY18], attention mechanism is regarded as a reasonable and reliable

way to explain the decision-making procedure in many tasks such as recommender sys-

tems [XYH17, YZZ18], health care systems [CBS16], computer vision [XXY15], visual ques-

15



tion answering (VQA) [LYB16, HAA18], etc.

For example, RETAIN [CBS16] studies electric health records (EHR) of patients with a

two-layer attention network that identifies and explains influential hospital visits and sig-

nificant clinical diagnoses associated with the visits. Co-attention mechanism [HAA18] in

VQA proposes question-guided visual attention and visual-guided question attention on word

level, phrase level, and question level. Three levels of information are combined to predict

the answer with improved performance while retaining the explainability of the outcomes.

In the natural language domain, language-specific and across-language attention net-

works based on linguistic hierarchy [YYD16, PP17] such as words and sentences are pro-

posed for document classification tasks. Another form of attention in NLP is self-attention.

Researchers from Google design Transformer [VSP17] based on multi-head self-attention in

which tokens in a sentence attend to other tokens within the same sentence to learn the com-

pound sentence semantics. Using the strong learning power of Transformer, BERT [DCL18],

built by stacking a number of bi-directional Transformer layers, achieves state-of-the-art

performance on 11 major NLP tasks. The success of BERT shows the outstanding feature

interaction power of Transformer.

In summary, a variety of existing works have endorsed that utilizing attention mech-

anism improves both accuracy and transparency of the model. Being capable to identify

important features and feature interactions makes attention mechanism a reliable way to

explain the thinking of machine learning models [GBY18]. Therefore, attention is consid-

ered as the solution to interpretablity in various research scenarios including recommender

systems [XYH17, YZZ18, LCC20], graph representation learning [VCC17], computer vi-

sion [XXY15], etc. Although the attention modules are not trained for generating human-

readable prediction rationales, they can still reveal the salience distribution of information

when the feature representations flow through the model architecture, which can serve as a

form of explanation.
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CHAPTER 3

Personalized Question Routing via Heterogeneous

Network Embedding

Question Routing (QR) on Community-based Question Answering (CQA) websites aims at

recommending answerers that have high probabilities of providing the accepted answers to

new questions. The existing question routing algorithms simply predict the ranking of users

based on query content. As a consequence, the question raiser information is ignored. On

the other hand, they lack learnable scoring functions to explicitly compute ranking scores.

To tackle these challenges, we propose NeRank in this chapter that, firstly, jointly learns

representations of question content, question raiser, and question answerers by a heteroge-

neous information network embedding algorithm and a long short-term memory (LSTM)

model. The embeddings of the three types of entities are unified in the same latent space.

Secondly, NeRank conducts question routing for personalized queries, i.e., queries with two

entities (question content, question raiser), by a convolutional scoring function tak-

ing the learned embeddings of all three types of entities as input. Using the scores, NeRank

routes new questions to high-ranking answerers that are skillfulness in the question domain

and have similar backgrounds to the question raiser.

Experimental results show that NeRank significantly outperforms competitive baseline

question routing models that ignore the raiser information in three ranking metrics.
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3.1 Motivation and Background

Community-based question answering (CQA) such as Stack Overflow1 is rapidly gaining pop-

ularity and becoming an important type of social media for sharing and spreading knowledge.

Through CQA websites, users with questions are able to quickly locate answers provided by

experts. A user can also create a new post if relevant and satisfactory QA records do not

exist, and then wait for answers from the community. After several responses are gathered,

the question raiser reviews the answers and selects one that he/she is the most satisfied

with as the accepted answer. The answer collection can be unacceptably time-consuming

due to the lack of an efficient way to find the domain experts. As a result, a large number of

questions remain poorly addressed.

One of the solutions to promote answer collection is to automatically identify users that

tend to contribute high-quality answers and then send answer invitations to them. The

answer collection is consequently accelerated since these users are able to immediately spot

the questions of their expertise. Such task is also known as question routing and is previ-

ously addressed by feature engineering-based approaches [ZLK12, JW13, CP13]. Features

exploited include the statistics of users, the language modeling features of question content,

and the relationships between users and questions. All of them focus on estimating users’

authority level and identifying the skillful users for recommendation.

However, the feature engineering-based strategies have at least three limitations as fol-

lows. First, they are not personalized, i.e., they cannot customize recommendations for

questions raised by users with diverse characteristics due to ignoring the background and

preference of the question raisers. Second, they lack explicit definitions of scoring func-

tions for queries with multiple entities and, therefore, have trouble computing scores for new

question routing queries. Third, they model question content by language model or topic

model features which are unable to capture the complex semantics of question content. Also,

1https://stackoverflow.com
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their representation power is undermined when handling questions with new topics that are

unobserved or underrepresented in the training set.

In order to overcome the above limitations, we propose NeRank, which stands for Network

embedding-augmented Ranking for question routing. NeRank assesses the personalized au-

thority, i.e., the authority of an answerer with respect to not only the question content but

also the background of the question raiser, for question routing. In addition, the recom-

mended answerers are also expected to have similarities with the question raiser in domains

of interest to fulfill the personalization requirement so that their responses conform to the

raiser’s anticipation.

In particular, NeRank models CQA websites as heterogeneous information networks

(HIN), namely CQA networks, and applies a metapath-based heterogeneous network em-

bedding algorithm to CQA networks to learn representations for question raisers and ques-

tion answerers. A long short-term memory (LSTM) component is specifically utilized to

learn question content representation. Using network embedding, the proximity information

between the entities in a CQA network is preserved.

NeRank models the question routing task as a ranking problem and utilizes a convolu-

tional neural network (CNN) to compute the ranking score of an answerer given a query

(question raiser, question content). Such ranking score measures the probability of

the answerer providing the accepted answer to this question. Compared with previous frame-

works [ZLK12, ZZH15, JW13], our ranking function explicitly computes the ranking scores

taking advantage of rich non-linear information of the three entities.

We summarize our contributions as follows:

• We propose NeRank for personalized question routing on CQA websites. Compared

with existing models, NeRank considers question raiser’s profile in addition to question

content. To the best of our knowledge, this is the first work on personalized question

routing on CQA websites.
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• We learn representations of entities by an HIN embedding method and compute ranking

scores for answerers by an explicitly defined CNN scoring function given the learned

representations as input. It is a novel attempt to apply an embedding-based method

to question routing.

• We conduct extensive experiments on two real CQA datasets and evaluate the routing

performance of NeRank via three ranking metrics. Our model outperforms the base-

lines in these metrics. Results also show that the HIN embedding algorithm and CNN

scoring function improve the ranking performance.

3.2 Preliminaries and Problem Statement

A CQA network is built upon a static archive of a CQA website conserving all question-

answer sessions accumulated over time. We create question Raiser set R = {r1, r2, . . . , rm}
and Answerer set A = {a1, a2, . . . , ak} where m is the number of users who have asked

questions, i.e. question raisers, and k is the number of users who have answered questions,

i.e. question answerers, in this CQA website. Note that we only model users that have

asking or answering records in the dataset. Hence, each user of the CQA website may have

one or two embeddings associated with the role(s) they played. We create Question set

Q = {q1, q2, . . . , ql} where l denotes the number of questions. There exist two relations

among these entities, namely “raises a question” between entities in R and Q and “answers

a question” between entities in A and Q.

A CQA network is defined as a heterogeneous information network G = (V,E, T, ϕ),

where V = R ∪ Q ∪ A denotes the node set; E denotes the edge set; T denotes the set of

three entity types involved [ZLZ17]; ϕ : V → T is a labeling function that maps an entity

into its type t ∈ T . Each edge in a CQA network symbolizes an asking or answering record.

Note that entities of R and A do not directly interact with each other and hence there is no

connection between them. Figure 3.1 shows a toy example of a CQA network. Node r2 is
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linked to q2 and q3, meaning that r2 poses q2 and q3. q3 is linked to a3 and a4 since a3 and

a4 answer q3. a1 and a2 have strong similarity since they both answer q1 and q2.

r1 r2 r3

q1 q2 q3 q4 q5

a2 a3 a4 a5 a6 a7a1

Question raisers

“Raises a question” 
relationship

Questions

“Answers a question” 
relationship

Answerers

Figure 3.1: A heterogeneous network view of a CQA website.

Using above notations, we define the personalized question routing as the following: Given

a CQA network G = (V,E, T, ϕ) and a query (question raiser, question content)

denoted by γ = (r, q) where r ∈ R is a question raiser and q ∈ Q is a new question, compute

the ranking scores for answerers a ∈ A and select the answerer with the highest ranking

score as the predicted provider of the accepted answer.

3.3 NeRank

In this section, we demonstrate the technical details of NeRank. The list of notations is

provided in Table 3.1 in advance for the convenience of later discussion.

3.3.1 Problem Overview

We formalize the personalized question routing problem as a ranking task in NeRank which

ranks the probabilities of potential answerers contributing the accepted answers using the

embeddings of entites. Specifically, it has two steps: modeling entity-wise similarity and

computing the ranking scores of answerers given (question raiser, question content)
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Table 3.1: Frequently used notations for NeRank.

Notation(s) Definition

G The CQA network.

E, V, T The edge set, node set, and type set of G.

d The dimension of entity embeddings.

ve, ue The d-dimensional embedding of entity e.

n, c The center and context entity [MSC13].

P A metapath.

wP A walk generated according to P .

τj The entity type of the j-th element of P .

e
(i)
t The i-th entity of wP with type τt.

ϕ(e) The entity type of the entity e.

D The corpus of all (n, c) pairs, positive samples.

Θ The parameter set of NeRank.

queries. The trained representations for the three types of entities are expected to pre-

serve both the entity-wise proximity information and the question-raiser-specific expertise

information.

In the following subsections, we explain how the NeRank pipeline (shown in Figure 3.2)

acquires the embeddings with proximity and enterprise information and computes the rank-

ings scores. There are two steps in the training procedure. Step 1 learns the entity em-

beddings using an LSTM-equipped metapath-based network embedding algorithm. Step 2

computes the ranking scores using a convolutional scoring function and finally outputs a

ranked list of answerers.
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Question Encoder

Step 1: LSTM-equiped Metapath-based 
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Step 2: Convolutional 
Recommender System

…
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CNN, ReLU, and 
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Question 
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Question 
Content (Text)

Query Represented by
Entity Embeddings
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Answerers by 

Scores

Question Answerers
Embeddings

Question Raisers
Embeddings

Question Content
Embeddings

Figure 3.2: The pipeline of NeRank with two training steps.

3.3.2 LSTM-equiped Metapath-based Embedding with Negative Sampling

To capture proximity information, we learn embeddings of heterogeneous entities using an

LSTM-equipped metapath-based heterogeneous network embedding model. We first explain

the metapath-based Skip-gram on HIN and then show the jointly optimized LSTM model

for question content representation learning.

3.3.2.1 Metapaths for HIN Embedding.

HIN owns various node types, which differs from homogeneous networks. Simply applying

the original random walk-based Skip-gram to HINs results in biases towards certain types

of nodes [SHY11]. To create a bias-free walk corpus for Skip-gram on HINs, [DCS17] gen-

erate walks according to the patterns specified by metapaths. It has been proved that HIN

embedding models benefit from metapaths in reducing biases [DZT15, SH12, SNH13].

A metapath P is a sequence of objects linked by relations in form of τ1
π1−→ τ2

π2−→ . . . τt
πt−→

τt+1 . . .
πl−1−−→ τl. π = π1 ◦ π2 ◦ · · · ◦ πl−1 denotes the composite relations between node types

τ1 and τl, τi ∈ T . For example, metapath A
answers−−−−→ Q

raises−1

−−−−→ R
raises−−−→ Q

answers−1

−−−−−→ A

means that two answerers each solves a question raised by the same person. τ−1 denotes the

inverse relationship of τ , e.g. raises−1 represents “is raised by”. Apparently, the metapath

preserves semantic and structural correlations of entities in HIN which will be encoded in the
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representations by the Skip-gram model. We will omit the relations in metapath notations

(e.g., AQRQA) in the following discussion since the relation type between each given pair

of entities is unique.

Metapath P guides the walk generation as follows. Randomly select an entity e1 of type

τ1 as the initial entity, and then cycle from nodes of type τ2 to τl until wP grows to the

desired length L. An example walk in Figure 3.1 is a5q4r3q5a7q2r2q3a4 given P = AQRQA

and L = 9. The transition from τt-type entity e
(i)
t to entity e(i+1) is governed by the transition

probability p(e(i+1)|e(i)t ,P):

p(e(i+1)|e(i)t ,P) =


1
N (e(i+1), e

(i)
t ) ∈ E, ϕ(e(i+1)) = τt+1

0 otherwise.

,

where N denotes the count of τt+1-type neighbors of e
(i)
t .

3.3.2.2 Skip-gram with Negative Sampling on HINs.

Negative sampling is an approximation strategy to relieve the expensive computational cost

of softmax function [MCC13]. Skip-gram with negative sampling maximizes the likelihood

of D, the positive sample set generated from the metapath walk corpus by the sampling

method in [MCC13], and minimizes the likelihood of the negative samples D′ = {(n, c)|n, c ∈
V ∧ (n, c) /∈ D}. The overall likelihood L(D,D′|Θ) to maximize is:

L(D,D′|Θ) =
∑
D

log(σ(vn · uc)) +
∑
D′

log(−σ(vn · uc)). (3.1)

In Equation (3.1), vn and uc are representations of center entity n and context entity c.

They are parts of the model parameter Θ. σ(·) is the sigmoid function. Equation (3.1) is

consistent with word2vec that each entity has two versions of embeddings. We select the

“center entity” version embedding as the input of the CNN recommender model.

Here we emphasize the necessity of the HIN embedding component without which the

pure CNN scoring function has limited capability of analyzing user-user correlations and

similarity.
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3.3.2.3 LSTM for Question Representation.

Different from the question raisers and answerers whose embeddings are parts of the param-

eter Θ, the embeddings of question content, vq, are not in Θ but directly obtained from

question text through an LSTM model. vq is then sent to Equation (3.1) together with the

corresponding vr and va for training and ranking score calculations.

LSTM is powerful in learning sequential features such as the semantics of text and has

been applied to a variety of tasks such as text classification [ZSL15] and machine transla-

tion [BCB14]. We skip the mathematical details of LSTM since they have been frequently

discussed in previous literature.

The generation of vq of question q with Lq words is as follows. The input is the word

embedding matrix of question X ∈ RLq×k composed of k-dimensional word vectors. The

LSTM cell at the t-th time step receives the t-th word embedding vector xt ∈ Rk in X

as well as the hidden state ht−1 from the previous time step. The output at time t is the

hidden state ht ∈ Rd which contains the accumulated semantic information from x0 to xt.

Therefore, we use the hidden state output of the last time unit, hLq , as the text semantic

representation vq for the textual content of q.

It is worth mentioning that given the trained Θ and the word sequence of a new question

qnew, the representation learning of qnew is independent of the training data and the CQA

network structure. Therefore, the LSTM component tackles the challenge of cold start issues

for new questions.

3.3.3 Convolutional Recommender System

In this section, we present a convolutional neural network ranking model F that comprehen-

sively analyzes the correlations between the three entities and computes the ranking score.

Considering the properties of a ranking score, we rationally assume the following two partial

order constraints based on our intuition and observation made on the dataset: (1) The best
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answerer has the highest score among all answerers to the query γ = (r, q); (2) Answerers

who answered q have higher scores than those who did not.

Using entity representation vr, vq, and va, we translate the above constraints and for-

malize the scoring function F (vr,vq,va) as follows:

[!ht]

∀a∗, a ∈ Aγ,∀an ∈ A and an /∈ Aγ,

F (vr,vq,va∗) ≥ F (vr,vq,va),

F (vr,vq,va) ≥ F (vr,vq,van),

(3.2)

where Aγ is the set of answerers of γ = (r, q), a∗ ∈ Aγ is the accepted answerer, and an is

an answerer that is not involved in γ.

The reason of building a CNN-based scoring function is as follows: CNN has a strong

capability of extracting hidden correlations of entities represented by static feature maps such

as images [HZR16] and text [Kim14]. Compared with some straightforward scoring functions

such as the dot-product, CNN is more powerful in preserving sophisticated correlations in

the embedding matrices. Therefore, we design F as a CNN since the ranking score produced

by F (vr,vq,va) can be considered as a hidden feature of the combination of r, q, and a.

Question Raiser Embedding

Question Answerer Embedding
(Right hand side)

Question Answerer Embedding
(Left hand side)

Question Content Embedding

Three CNN kernels - Rank Loss
Fully connected  & 
Activation layers

Feature map of M
(Left hand side)

Feature map of  M* 
(Right hand side)

SRank(D, D0|⇥)
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Figure 3.3: The CNN-based ranking module of NeRank to learn the ranking scores.

The computation of ranking scores is depicted in Figure 3.3. Given a query γ = (r, q)

and an answerer a to compute ranking score for, we stack their embeddings to construct the

feature map M as M = [vr,vq,va], M ∈ Rd×3. Three convolutional kernels k1 ∈ Rd×1,
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k2 ∈ Rd×2, and k3 ∈ Rd×3 are applied to the input matrices. The intermediate hidden

features go through two fully-connected layers and ReLU layers before deriving the ranking

score. k1 extracts the hidden features within the vector of each entity. k2 captures the

correlation between (1) vr and vq and (2) vq and va since they have direct interactions. k3

extracts the overall correlations across the three entities. Therefore, the aggregation of k1,

k2, and k3 is able to comprehensively utilize the hidden features in M and measure the score

of a given γ.

The inequalities in Equation (3.2) hold for all two groups of triplets: (1) the accepted

triplets versus the corresponding answered but unaccepted triplets; (2) the answered triplets

versus the random unanswered triplets. Therefore, we model the ranking as the maximization

of SRank(D,D′|Θ) which is defined as the summation of all differences between the two sides

of the inequalities in Equation (3.3):

SRank(D,D′|Θ)

=
∑

(a∗,q),(a,q)∈D

(F (vr,vq,va∗)− F (vr,vq,va))

+
∑

(a,q)∈D,(an,q)∈D′

(F (vr,vq,va)− F (vr,vq,van)) ,

(3.3)

We only select (a, q) pairs from D and D′ since (a, q) pairs provide sufficient coverage over

all question instances for training in the CQA datasets.

3.3.4 Objectives and Optimization

Cost Functions. We need to optimize the parameter Θ that contains four parts: all

embeddings of question raisers, all embeddings of question answerers, the parameters of the

LSTM, and the parameters of the CNN-based scoring component. Since the optimal Θ

should maximize both Equation (3.1) and Equation (3.3), we alternatively maximize the

two objective functions by gradient-based algorithms and back-propagation.

When NeRank converges, the embeddings and deep models in the optimum state have the
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following properties: (1) The entity embeddings contain proximity and expertise information

to achieve personalized question routing; (2) The LSTM question encoder maps the content

of new questions to a latent space where two additional aspects of information (expertise and

proximity) are assessable in addition to text semantics. (3) The CNN recommender generates

ranking scores using all three entity embeddings to measure the scores of answerers providing

the accepted answer.

Complexity. Suppose that single LSTM and CNN computations have T1 and T2 atomic

operations respectively, a training batch has b instances, and the embedding dimension is d.

The forward time complexity is O(b(T1 + T2 + bd)) per iteration.

Avoid Overfitting. We have the following mechanisms to prevent overfitting from happen-

ing on LSTM and CNN. (1) The LSTM is simplified to single-directional and single-layer to

prevent over-parameterization; (2) Early stopping is utilized so the training terminates when

the losses reach plateaux, which is shown in Figure 3.5; (3) The two objective terms are al-

ternatively optimized towards different directions. They function as each other’s regularizer

that avoids overfitting.

3.4 Experiments

In this section, we introduce the experiment settings, show experimental results, and demon-

strate effectiveness and efficiency of NeRank.

3.4.1 Experimental Setup

Two datasets of two real-world CQA websites with specific topics are employed to evaluate

NeRank: Biologyand English. Each dataset2 contains all questions raised before December,

2017 and all users’ historical asking and answering records. The datasets differ in sizes (see

2Available at: https://archive.org/details/stackexchange
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Table 3.2) and are mutually exclusive in topics so that NeRank can be comprehensively

tested. Other CQA datasets, such as Yahoo! Answers, are not selected for evaluation since

they do not provide accepted answers that are needed to serve as the ground truth.

Table 3.2: Statistics of the datasets for the evaluation of NeRank.

Dataset # of users # of r # of q # of a

Biology 5,071 3,696 2,224 21,613

English 35,713 19,743 22,753 209,543

CQA networks are built from 90% of questions and the corresponding users to generate

training walks. The rest 10% of questions and the corresponding raisers and answerers for

testing. Users in the test set should have at least 5 asking or answering records to avoid cold

starts. In each test query γ = (r, q), we create a candidate answerer set of 20 answerers that

includes all answerers of q in the dataset and some other users randomly selected from the

top 10% most responsive users. We choose the answerer with the highest predicted ranking

score as the recommendation. The owners of the accepted answers are the ground truth.

The walks are generated from metapath AQRQA with the default length of 13 (three

cycles) and the default node coverage of 20 (each node is covered at least 20 times in walk

generation). The window size of Skip-gram model is set as 4; we use 3 negative samples per

positive sample; and the dimension of learned embeddings is set as 256. We use a 64-channel

CNN for ranking and the 300-dimensional GoogleNews pretrained word2vec model3 to build

the embedding matrix x for questions. NeRank is prototyped by Python 3.6.4 and PyTorch

0.4.04. All experiments are conducted on a single 16GB-memory Tesla V100 GPU in an

512GB memory Nvidia DGX-1.

3Available at: https://code.google.com/archive/p/word2vec/

4Available at: https://github.com/zyli93/NeRank
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3.4.2 Experimental Results

This section reports the experimental results and analyses of the effectiveness and efficiency

of NeRank. Note that three metrics, including Mean Reciprocal Rank (MRR), Hit at K

(Hit@K ), and Precision at 1 (Prec@1 ), are applied to evaluate the ranking performance.

3.4.2.1 Effectiveness of NeRank

We compare NeRank with three baseline models shown as below.

Score A trivial method that recommends the answerer that has the largest number of

accepted answer.

NMF Non-negative Matrix Factorization [GNH11] uses matrix decomposition to solve the

ranking problem.

L2R SVM-based and RankingSVM-based learning to rank algorithms [JW13] that extract

features from user-question relations to predict the ranking.

The performances of NeRank and the baselines are shown in Table 3.3. NeRank significantly

outperforms all baseline algorithms on both datasets in terms of all metrics. On the Biology

dataset, NeRank achieves a Prec@1 of 0.387 and a Hit@K of 0.806, meaning that around

38.7% of the predictions are correct and the ground truth can be found in the top-5 ranked

answerers in around 80.6% of the predictions. On the English dataset, NeRank achieves

similar performances that the Prec@1 is 0.372 and Hit@k is 0.833. MRR in both dataset are

around 0.56 indicating a huge improvement over the baselines in terms of overall ranking

performance. All improvements of NeRank over the best baseline, NMF, are significant at

99% confidence in a paired t-test.

Some entries in Table 3 show that Biology has better results than English. Although,

generally speaking, larger training sets may lead to better performance, the properties of
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the datasets may also play a role. In Biology, there exist a small group of proficient users

with particular expertise. However, the English community has a larger proportion of skilled

users since language is a common knowledge. Therefore, the performance may show small

variance across datasets.

In summary, NeRank has a strong ability in discovering experts that provide the accepted

answer. The advantages of NeRank lie in the following facts: (1) NeRank considers question

raiser information in addition to question content and question answerer, which can better

conduct question routing. (2) NeRank utilizes deep neural network models that preserve the

complex information of text semantic features and entity correlation features.

Table 3.3: Performance comparisons between NeRank and three baseline models.

Dataset Biology English

Metric MRR Hit@K Prec@1 MRR Hit@K Prec@1

Score 0.27 0.412 0.105 0.203 0.379 0.065

NMF 0.375 0.643 0.177 0.458 0.737 0.225

L2R 0.169 0.158 0.050 0.101 0.058 0.024

NeRank 0.563 0.806 0.387 0.567 0.833 0.372

3.4.2.2 Effectiveness of Metapath-based Embeddings

We compare NeRank with two of its variants that employs, instead of metapath-based HIN

embedding model, Deepwalk [PAS14] (denoted by “NeRank-DW”) and LINE [TQW15] (de-

noted by “NeRank-LINE”) for embedding learning. Other configurations remain unchanged.

We show that metapath benefits represention learning on HINs and improve the performance

of NeRank.

Figure 3.4 shows the experimental results. We observe that NeRank achieves better

results than NeRank-DW and NeRank-LINE on both datasets on all metrics. The reason
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Figure 3.4: Performance comparison between NeRank and three variants.

is that Deepwalk and LINE are designed for homogeneous networks whereas CQA networks

are heterogeneous that contain rich semantic information in diverse node and edge types.

Metapath-based models take advantage of the semantic information and thus helps enhance

the performance.

Although not particularly designed for HIN, Deepwalk and LINE are also capable of

discovering the proximity relations between entities since both the metapath-based model

and homogeneous network embedding models assume that connected entities have similarity.

This accounts for the insignificance of the performance drop.

3.4.2.3 Effectiveness of Scoring Function

We compare NeRank with another variant that replaces the CNN scoring function by va ·
vr+vq

2
, another combination of query (question raiser, question content). The dot

product of va and the numeric average of vr and vq is considered as the ranking score.

Other settings are the same. We illustrate that our scoring function can effectively extract

the latent expertise information and accurately generate ranking scores. The results are

demonstrated in Figure 3.4 in which we denote the variant as “NeRank-AVG”.

32



We observe that NeRank significantly outperforms NeRank-AVG by at least two folds.

The performance difference is maximized in Prec@1 where NeRank-AVG can only correctly

predict for 6.05% of the queries on Biology dataset and 0.04% on English dataset.

The huge performance gap indicates the strong ability of the CNN scoring function to

capture the expertise information from the correlations of entity representations and make

accurate predictions.

3.4.2.4 Convergence rate of NeRank

(a) Losses on Biology (b) Metrics on Biology

(c) Losses on English (d) Metrics on English

Figure 3.5: Convergence rate study of NeRank.
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We plot the trends of losses, i.e., negative objectives (Skip-gram objective in Equa-

tion (3.1) and Ranking objective in Equation (3.3)), and metrics as a function of the training

iterations in Figure 3.5. These trends give us insight to the convergence rate of NeRank.

These experiments are run in the default configurations.

It is observed that the NeRank converges at around 5,000 iterations (batch count) on the

Biology dataset and at around 10,000 iterations on the English dataset. The convergences

of the metrics happen before 5,000 iterations on Biology and before 10,000 iterations on

English. Such converge rate is fast given the complex CNN and LSTM hybrid architecture

of NeRank and a single GPU core, which demonstrates the model’s learning efficiency and

scalability. Convergences happen earlier on smaller dataset (Biology) and later on larger

dataset (English). The reason is that, with the same batch size, a larger proportion of

entities in smaller networks participates in training due to negative sampling.

3.4.2.5 Parameter Sensitivity

We also evaluate the sensitivity of NeRank to node coverage and walk length. Node coverage

refers to the number of times a certain node is covered by the training walks. We report the

trends of MRR in Figure 3.6.

It is observed that the curves almost coincide in the four subfigures, meaning that NeRank

converges to very similar states at a similar speed although given different node coverages

and walk lengths. Therefore, NeRank is robust to the changes of these hyperparameters.

3.5 Summary

In this chapter, we propose NeRank, a framework for personalized question routing based

on the question content and question raisers. NeRank learns representations of entities

by heterogeneous network embedding and LSTM. Using the embeddings, the convolutional

scoring model computes the ranking scores to predict the answerer that most probably
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(a) MRR, Cov (Biology) (b) MRR, Len (Biology)

(c) MRR, Cov (English) (d) MRR, Len (English)

Figure 3.6: Parameter sensitivity study of NeRank w.r.t. MRR.

contribute the accepted answer. We test NeRank on two real-world CQA datasets. NeRank

achieves a high performance and outperforms the state-of-the-art models.
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CHAPTER 4

Click-Through Rate Prediction via Hierarchical

Attention

Click-through rate (CTR) prediction is a critical task in online advertising and marketing.

For this problem, existing approaches, with shallow or deep architectures, have three major

drawbacks. First, they typically lack persuasive rationales to explain the outcomes of the

models. Unexplainable predictions and recommendations may be difficult to validate and

thus unreliable and untrustworthy. In many applications, inappropriate suggestions may even

bring severe consequences. Second, existing approaches have poor efficiency in analyzing

high-order feature interactions. Third, the polysemy of feature interactions in different

semantic subspaces is largely ignored.

In this chapter, we introduce InterHAt that employs a Transformer with multi-head

self-attention for feature learning. On top of that, hierarchical attention layers are utilized

for predicting CTR while simultaneously providing interpretable insights of the prediction

results. InterHAt captures high-order feature interactions by an efficient attentional aggrega-

tion strategy with low computational complexity. Extensive experiments on four public real

datasets and one synthetic dataset demonstrate the effectiveness and efficiency of InterHAt.

36



4.1 Motivation and Background

Click-through rate (CTR) is defined as the probability of a user clicking through a partic-

ular recommended item or an advertisement on a web page. It plays a significant role in

recommender systems, such as online advertising, since it directly affects the revenue of ad-

vertising agencies [RDR07, GZL17, WZX18, ZZS18, RDR07, HC17, ZMF18, JZC16, HPJ14].

Consequently, CTR prediction, which attempts to accurately estimate the CTR given in-

formation describing a user-item scenario, is critical for achieving precise recommendations

and increasing good revenue for enterprises.

The development of deep learning provides a new machine learning paradigm that uti-

lizes deeper neural network structure to capture more complex information from the training

data. Therefore, the architectural and computational complexity of existing CTR prediction

models has been ever increasing in order to learn the joint effect of multiple features, i.e.,

high-order features (a.k.a. cross features), and attain better prediction accuracy. Specifi-

cally, a k-th order feature (k ∈ N) refers to a latent variable that is a k-th degree polynomial

of the raw features [CKH16, WFF17]. Deep neural networks provide strong capability to

capture rich high-order information due to the large number of layers and units. For exam-

ple, DeepFM [GTY17] and xDeepFM [LZZ18] learn high-order features by multi-layer feed-

forward neural networks (FNN) and multi-block compressed interaction networks (CIN).

However, the ever-growing model complexity has two drawbacks: impaired interpretabil-

ity and poor efficiency. For interpretability, the prediction-making processes are hard to

be reasonably explained since the weights and activations of the neural network layers are

usually deemed unexplainable. For example, the wide component of Wide&Deep [CKH16]

applies cross-product transformations to feature embeddings but fails to quantify and jus-

tify its effectiveness to the actual click-through rate prediction performance. The lack of

persuasive rationales for the predictions of the models casts shadow on their reliability and

security. In many applications, e.g., medication recommendation [LXM13] and financial ser-

37



vices [Zib16], untrustworthy and unreliable advertisements can mislead users to click through

the statistically popular but actually useless or even harmful links which can result in serious

consequences such as economic or health losses.

The second defect of existing approaches is the poor efficiency since the high-order in-

teraction feature generation by deep neural networks involves extremely heavy matrix com-

putations in deep neural networks (DNN). For example, the compressed interaction network

(CIN) in xDeepFM [LZZ18] computes the (k+ 1)-th order feature matrix by an outer prod-

uct layer and a fully-connected layer which entails a cubic complexity to the embedding

dimension. The deep component in Wide&Deep has a number of fully-connected layers each

of which involves a quadratic number of multiplications.

In real applications, the efficiency issue is prevalent and critical. Advertising agencies

prefer prompt click recommendation provision to slow or costly ones especially under the

pressure of massive real-time recommendation queries. For example, Criteo, which is an

Internet advertisement company, handles over 4 billion click-throughs in 24 days1. Despite

the large data volume, new features, such as new users and items, are emerging rapidly, to

which the recommender systems must quickly adapt for better user experience. Therefore,

learning the representations of an enormous number of existing or emerging features can be

computationally intractable with existing approaches.

In addition to the interpretability and efficiency issues, we point out another impediment

that can degrade the performance of detecting important cross-feature interactions: differ-

ent cross-features may have conflicting influences on CTR that have to be comprehensively

analyzed. For example, a movie recommendation record movie.genre = horror, user.age

= young, time = 8am has conflicting factors: the combination of the first two encourages

the click-through whereas the combination of the latter two inhibits it since movie watch-

ing usually happens at night. Such conflict problem is caused by the polysemy of feature

1https://ailab.criteo.com/criteo-releases-new-dataset/
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interactions in different semantic subspaces. In this example, the polysemic interactions of

user.age cause opposite impacts on CTR when user.age=young is combined with two dif-

ferent attributes, movie.genre and time. However, this problem is largely ignored by the

existing methods.

To address the above issues, in this chapter, we propose an Interpretable CTR predic-

tion model with Hierarchical Attention (InterHAt) that efficiently learns salient features

of different orders as interpretative insights and accurately predicts CTR simultaneously in

an end-to-end fashion. Specifically, InterHAt explicitly quantifies the impacts of feature in-

teractions of arbitrary orders by a novel hierarchical attention mechanism, aggregates the

important feature interactions for efficiency purposes, and explains the recommendation de-

cision according to the learned feature salience. Different from the hierarchical attention

network by [YYD16] that studies the linguistic hierarchy (word and sentence), InterHAt

uses the hierarchical attention on feature orders, and the high-order features are generated

based on the lower ones.

To accommodate the polysemy of feature interactions in different semantic subspaces, In-

terHAt leverages a Transformer [VSP17] with multi-head self-attention to comprehensively

study different possible feature-wise interactions. Transformer has been popularly employed

in natural language processing tasks such as sentiment analysis, natural language infer-

ence [DCL18], and machine translation [TC18]. The multiple attention heads can capture

the manifold mutual effects of words that jointly compose the semantics of text from different

latent subspaces. We utilize this great property of Transformer to detect the complex poly-

semy of feature interactions and learn a polysemy-augmented feature list which serves as the

input of hierarchical attention layers. Note that despite the strong capability of Transformer

in feature learning, the model efficiency is retained according to [VSP17].

We summarize the contributions of this chapter as follows.

• We propose InterHAt for CTR prediction. Particularly, InterHAt employs hierarchical
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attention to pinpoint the significant single features or different orders of interactive

features that have great contributions to the click-through. Then, InterHAt can com-

pose a corresponding attention-based explanation for the CTR prediction based upon

the various orders of feature interactions.

• InterHAt utilizes a Transformer with multi-head self-attention to thoroughly analyze

possible interactive relations between features in different latent semantic subspaces.

To our knowledge, InterHAt is the first approach that employs the Transformer with

multi-head self-attention to learn the polysemy of latent features for CTR prediction.

• InterHAt predicts CTR without using deep multilayer perceptron networks that entail

heavy computational cost. It aggregates the features instead and hence saves the

expense of enumerating the exponential size of feature interactions. As a result, it is

more efficient in handling high-order features than existing algorithms.

• Extensive experiments are conducted to evaluate InterHAt for interpretability, effi-

ciency, and effectiveness on three major CTR benchmark datasets (Criteo, Avazu, and

Frappe), one popular recommender system dataset (MovieLens-1M), and one synthetic

dataset. Results show that InterHAt explains the decision-making process, achieves

a huge improvement on training time, and still has comparable performance with the

state-of-the-art models.

4.2 InterHAt

In this section, we elaborate the pipeline of InterHAt depicted in Figure 4.1 and CTR predic-

tion interpretation method according to the attentional weights. The inputs are categorical

and numerical features at the bottom and the outputs are a prediction ŷ and a cross entropy

loss. The black arrows explain the data flow for training and prediction, the blue arrows

illustrate the collection of attentions for interpretation.
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Figure 4.1: The architecture of InterHAt with prediction interpretation generation.

4.2.1 Embedding Layer

Feature embedding is a prerequisite for CTR prediction since the click-through records

contain discrete categorical terms that are not directly applicable to numerical computa-

tions [GTY17, QCR16, SHJ16, WFF17].

A click-through record contains a set of fields F and a binary label y as the ground

truth representing whether a click-through is actually made. Each field f ∈ F has either

a categorical or a numerical value. Distinct values are defined as different features. For

categorical fields, we apply multi-field one-hot encoding to field-aware embedding layers for

low-dimensional real-valued feature representations. Specifically, each distinct feature value

v of a field is assigned a trainable d-dimensional continuous vector as its representation. If

a particular feature appears in a click-through record, the corresponding embedding of that

feature is considered as the field representation. For numerical fields, we assign one vector
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to each field as its embedding. Given vf as the normalized value of a numerical field f and

x
(f)
num,0 ∈ Rd as the trainable representation associated with this field, the representation of

the feature, x
(f)
num ∈ Rd, is derived by x

(f)
num = vf · x(f)

num,0. The initial input representation

matrix X0 ∈ Rd×m is then X0 =
(
x
(1)
0 ,x

(2)
0 , . . . ,x

(m)
0

)
where m = |F |.

4.2.2 Multi-head Transformer

Transformer is prevalent in natural language processing thanks to the outstanding power to

learn the co-effects to the text semantics of word pairs within a sentence or across sentences

regardless of the orders and distances of the words. In the context of CTR prediction, we

define the co-effects of the features, i.e., feature interactions, towards different polarity as

the “polysemy”. Therefore, we equip InterHAt with a multi-head self-attention based Trans-

former to capture the rich pair-wise feature interactions and learn the diversified polysemy

of feature interactions in different semantic subspaces, i.e., diversified implications towards

the CTR in different click-through contexts.

Given the input matrix X0 that contains the learnable embeddings of features of a training

CTR record, the latent representation Hi of Transformer head i is obtained by a scaled dot-

product attention [VSP17],

Hi = softmaxi

(
QKT

√
dK

)
V,

Q = W
(Q)
i X0, K = W

(K)
i X0, V = W

(V )
i X0.

Matrices W
(Q)
i ∈ RdK×d, W

(K)
i ∈ RdK×d, and W

(V )
i ∈ RdK×d are weight parameters to learn

for head i and dK denotes the dimension of K and Hi ∈ RdK×m.

A combination of hidden features Hi forms an augmented representation matrix X1 that

preserves both the intrinsic and polysemic information of each feature. Computationally, we

use concatenation followed by a feed-forward layer and a ReLU for the combination to learn

the non-linearity of the combined information as

X1 = ReLU(FeedForward(Wm[H1;H2; . . . ;Hh])),
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where Wm ∈ Rd×hdk contains the weights and h is the number of attention heads and

“;” denotes the concatenation of matrices. The X1 ∈ Rd×m is the matrix with polysemy-

augmented features and ready to be sent to the hierarchical attention layer for explainable

CTR prediction.

4.2.3 Hierarchical Attention

The augmented feature matrix X1 is served as the input of the hierarchical attention layers

which learn the feature interaction and generate interpretations simultaneously. However,

computing the high-order multi-feature interactions by enumerating all possible combina-

tions is expensive due to the combinatorial explosion. Such potential expense motivates the

aggregation of the current order before proceeding to the computation of the higher order.

That is, in order to generate the (i + 1)-th order cross-features Xi+1, we first aggregate

the i-th layer hidden features to ui as a summarization of Xi. The interaction between Xi

and X1, from which we derive Xi+1, is computed by the proxy of Xi, i.e., the attentional

aggregation ui from Equation (4.1), and X1. Mathematically, given the i-th feature matrix

Xi =
(
x
(1)
i , . . . ,x

(m)
i

)
, its attentional aggregation representation ui is

ui = AttentionalAgg(Xi) =
m∑
j=1

α
(j)
i x

(j)
i , (4.1)

where α
(j)
i ∈ R denotes the attention on the j-th field in the i-th attentional aggregation

layer. α
(j)
i is computed by

α
(j)
i =

exp (cTi ReLU(Wix
(j)
i )∑

j′∈F exp (cTi ReLU(Wix
(j′)
i ))

, (4.2)

where Wi ∈ Rs×d is the weight of layer i, ci ∈ Rs is the context vector of layer i, and s

denotes the attention space size. Note that other attention mechanisms can also be adopted

here, such as the gated attention mechanism [ITW18]. Using ui and Xi, we derive x
(j)
i+1 in

Xi+1 by a cross-product transformation [CKH16, HZR16]

x
(j)
i+1 = ui ◦ x(j)

1 + x
(j)
i , j ∈ {1, . . . ,m}, (4.3)
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where ◦ denotes the Hadamard product of two vectors.

Recurrently applying Equation (4.1) and Equation (4.3) produces ui and Xi for feature

orders from the 1st order to the k-th, the highest cross-feature order to analyze, by a series

of attentional aggregation layers. These layers composite a hierarchy that extracts features

from low order to higher ones and the lower ones contribute to the construction of one-order

higher features using the proposed attentional aggregation and cross-product transformation.

As the last step, we combine attentional aggregations U = (u1,u2, . . . ,uk) to predict

the probability of click-through. U gathers all combinatorial feature semantics of k orders.

By modifying k, InterHAt is able to capture arbitrary order of feature interactions, and yet

avoids the exponential cardinality of high-order feature combinations.

4.2.4 Objective Function and Optimization

The final CTR prediction function g(U) = ŷ ∈ [0, 1] maps U to a probability that quantifies

the CTR. g(U) is implemented as the following. It first computes the attentional aggregation

of U by Equation (4.4) and Equation (4.5) to obtain its aggregation uf ∈ Rd and attention

αf ∈ Rk,

uf = AttentionalAgg(U) =
k∑

j=1

α
(j)
f uj, (4.4)

α
(j)
f =

exp (cTf ReLU(Wfuj)∑
j′∈{1,...,k} exp (cTf ReLU(Wfuj′))

, (4.5)

where αf is the importance distribution across k feature orders, cf and Wf are learnable

parameters. Finally, the prediction ŷ is then made by

ŷ = sigmoid(MLP(uf ))

where MLP(·) refers to a shallow multilayer perceptron that reduces the output dimension

from d to 1. The objective function, Equation (4.6), of InterHAt is a cross entropy loss of

44



binary classification.

L(Θ) =
∑
t∈D

[−yt log(ŷt)− (1− yt) log(1− ŷt)] + λ||Θ||2. (4.6)

D denotes the training set and Θ includes all trainable parameters, namely feature em-

beddings and the parameters of Transformer and hierarchical layers. An L2 regularization

weighted by λ is applied to Θ to prevent overfitting. We optimize Equation (4.6) by Adam

gradient descent optimizer [KB14].

4.2.5 Interpretation

This section elaborates how to “understand” the attentions in the hierarchy as important

factors that trigger the prediction of CTR. Note that the attention mechanism only high-

lights the salience of features so it is not expected to generate completely human readable

interpretations. This assumption is consistent with other attention-based interpretable mod-

els [GBY18].

Here is a walk-through of the interpretation using the salience distribution (α1,α2, . . . ,αk)

and αf . αf contains the significance of all k orders of features and signifies the feature or-

ders that are influential to the ultimate CTR prediction. Dominant weights in αf ∈ Rk

pinpoint the Xi’s that contain significant i-th order features. According to αf , we learn the

numbers of orders, i.e., the numbers of interacting features, that have the strongest impact

to encourage the user to click through the recommended ads.

The attention weights in corresponding αi identify the candidate individual features that

participate in the contributory i-th order features. For example, if the attention weights of

features of fields f1 and f2, i.e., αi[f1] and αi[f2], outweigh the rest of the features in αi,

we learn that features of field f1 and f2 both contribute to an i-th order feature since they

actively interact with the i−1 order aggregation features. Finally, following the above steps,

we can identify all features in different orders. The actual click-through is interpreted by

identifying salient features layer by layer and order by order.
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4.3 Experiments

4.3.1 Experimental Setup

Datasets We evaluate InterHAt on three publicly available datasets, namely Criteo2,

Avazu3, and Frappe [BCK15]. Criteo and Avazu contain chronologically ordered click-

through records from Criteo and Avazu which are two online advertisement companies. We

use their top 30% records for evaluation. Frappe dataset contains context-aware app usage

log. Table 4.1 shows the statistics of the datasets. The ratio of train, test, and validation

set sizes is 8:1:1.

Table 4.1: Statistics of Criteo, Avazu, and Frappe datasets for the evaluation of InterHAt.

Dataset Criteo Avazu Frappe

#. of features (C + N) 22 + 14 21 + 0 7 + 0

#. of total records 13.8M 12.1M 288K

#. of distinct features 605.7K 23.8K 5,382

Baseline models and metrics The performance of InterHAt is compared with the fol-

lowing state-of-the-art approaches specifically designed for CTR tasks:

FM [Ren10] Factorization Machine that uses linear combination of first-order and second-

order (dot-product of feature vectors) to compute CTR.

Wide&Deep [CKH16] An ensemble method of general linear model and an unexplainable

deep MLP.

2https://www.kaggle.com/c/criteo-display-ad-challenge

3https://www.kaggle.com/c/avazu-ctr-prediction
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DCN [SHJ16] An ensemble method of a cross-product transformation for high-order fea-

tures and a deep MLP.

PNN [QCR16] A production based feature engineering algorithm that uses an architecture

composed by simple inner product, outer product, and non-linear activation functions

for CTR prediction.

DeepFM [GTY17] A combination of a deep MLP and a factorization machine to compute

CTR.

xDeepFM [LZZ18] A combination of a deep MLP and a novel compress information net-

work module that more thoroughly studies the subtle implicit features for CTR.

We argue that the baseline models considered are strong enough to present the state-of-the-

art performance on CTR prediction, especially on Criteo and Avazu which are dedicated for

CTR prediction evaluation and have been utilized in the most of the above works.

We focus on metrics Logloss, i.e., the cross entropy loss, and AUC which is the shorthand

of Area Under the ROC Curve. These two metrics are widely adopted by CTR prediction

evaluations. A smaller Logloss or a larger AUC represents better performance. We present

the experimental results of InterHAt on its efficiency, effectiveness, and interpretability.

Default hyperparameters The default settings of each dataset are listed in Table 4.2 for

reproducibility purposes. The settings vary across the three datasets due to different dataset

sizes. The prototype of InterHAt is implemented by Python 3.7 + TensorFlow 1.12.0 and

run with a 16GB Nvidia Tesla V100 GPU.

4.3.2 Efficiency and Effectiveness

We illustrate the comparison of InterHAt with baseline models and its variant to show its

efficiency and effectiveness.
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Table 4.2: Default hyperparameter settings of InterHAt for datasets.

Dataset Criteo Avazu Frappe

Embedding size (d) 12 8 12

Attention size (s) 30 20 16

#. of heads 12 8 4

Regularization weight (λ) 2e-4 2e-4 2e-3

4.3.2.1 Efficiency

Figure 4.2 demonstrates a comparison on the runtime between InterHAt and five state-of-

the-art models with GPU implementations on Criteo and Avazu. Frappe is not used for the

efficiency test since its size is relatively small and the computational overhead accounts for

most of the runtime. FM is also not used since only CPU-based implementation is available.

The y-axis shows an average runtime per epoch over five training epochs after which all

models start to converge observably. The hardware settings are identical to what mentioned

in the experiment setting session. From the figure, we observe that InterHAt displays an

outstanding efficiency by spending the minimum time for each epoch among the six models.

Two properties of InterHAt enable the huge speedup: (1) The attentional aggregation

operations across the features reduce the problem scale from exponential to linear by avoiding

the enumeration of all possible feature combinations in the k orders; (2) Only shallow MLP

layers are involved in InterHAt in contrast with the deep MLP used in the baseline models.

Deep neural network can drastically slow down the computation due to the humongous

parameter sizes.

4.3.2.2 Effectiveness

In CTR prediction task, a 10−3 magnitude of performance gain on AUC or Logloss is con-

sidered as a huge improvement. We observe from Table 4.3 that InterHAt outperforms
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Figure 4.2: Efficiency study of InterHAt and the baselines on average runtime per epoch.

all models on Frappe and Avazu on both metrics, and attains comparable performance on

Criteo. Therefore, the effectiveness of InterHAt is substantiated despite the fact that Inter-

HAt is structurally simpler compared with other models. InterHAt-S refers to the variant

of InterHAt that has the multi-head self-attention module removed as an ablation study.

The decreased performance of InterHAt-S proves the contribution of the multi-heads based

Transformer.

The reason that InterHAt virtually ties other models on Criteo is that the features of

Criteo are more complicated in semantics as opposed to Avazu and Frappe. Competing

models use non-explainable deep fully-connected (FC) layers to capture the complex implicit

information and improve the performance. However, InterHAt is free of deep FC layers that

damage the model interpretability. In addition, the current field-aware embedding strategy,

in which numerical fields only have a single embedding x
(f)
num,0, undermines the ability of In-

terHAt to parameterize numerical-numerical and categorical-numerical feature interactions.

We leave the exploration towards proper feature representation and parameterization scheme

for future work.
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Table 4.3: Performance comparisons of InterHAt and baseline models on Logloss and AUC

Dataset Criteo Avazu Frappe

Metrics Logloss AUC Logloss AUC Logloss AUC

FM 0.4814 0.7525 0.3951 0.7508 0.4480 0.8625

Wide&Deep 0.4577 0.7845 0.3920 0.7564 0.2571 0.9500

DCN 0.4590 0.7826 0.3921 0.7564 0.2335 0.9616

PNN 0.4547 0.7887 0.3916 0.7569 0.2177 0.9642

DeepFM 0.4560 0.7866 0.3920 0.7561 0.2410 0.9520

xDeepFM 0.4563 0.7874 0.3917 0.7569 0.2043 0.9694

InterHAt-S 0.4608 0.7820 0.3919 0.7577 0.2151 0.9616

InterHAt 0.4577 0.7845 0.3910 0.7582 0.2026 0.9696

Figure 4.3: Parameter sensitivity study on number of heads in Transformer.

4.3.2.3 Sensitivity on Transformer heads

This section illustrates the hyperparameter sensitivity study on Transformer head numbers

as an ablation study. The Logloss and AUC of InterHAt with different numbers of heads

are given in Figure 4.3. We change the number of heads from 1 to 12, keep other settings

fixed, and train the model until convergence. For Criteo and Avazu, the optimal options

of the number of heads are 8 and 4, respectively. For Frappe, the optimal head number

falls on 1, which is consistent with our observation that the semantics of Frappe fields is
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Figure 4.4: Parameter sensitivity study on the highest feature orders.

isolated from each other without any potential interactions. The results prove the existence

of the multiple aspects of semantics, i.e., the feature polysemy, in the click-through records

in complex datasets and justify the usage of multi-head Transformer. As the number of

heads increases, the performances descend due to over-parameterization.

4.3.2.4 Highest feature order

We evaluate InterHAt with different highest feature order, i.e., different k, on three datasets.

The k changes from 1 to 4. We use cross-features from the first- to the k-th-order in these

experiments. The results are shown in Figure 4.4. On large datasets, Criteo and Avazu, the

AUC and Logloss have marginal fluctuations when the order increases. However, in Frappe

datasets, overfitting comes into existence after the order is greater than 3. In general,

InterHAt has a stable performance on high-order learning.

4.3.3 Interpretability

Interpretation is generated in company with the predictions which is one of the major con-

tributions of InterHAt. In this section, we demonstrate the interpretations by visualizing the

learned salient low- or high-order features. However, the actual content of the click-through

records in the two public real-world benchmark datasets, Criteo and Avazu, are encrypted for
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privacy-preserving issues, which makes it impossible to justify the interpretation constructed

by InterHAt. Therefore, in order to comprehensively test the explanation generation of In-

terHAt, we use a real-world dataset and a synthetic dataset to simulate real click-through

records. In the following subsections, we discuss data collection and results based on the two

datasets.

4.3.3.1 Evaluate on real dataset

Dataset The real semantic meaning of the features in Criteo and Avazu are encrypted.

Other datasets that are also in recommemder system domain are appropriate substitutes.

Therefore, we select MovieLens-1M [HK16] dataset for this tasks. MovieLens-1M has plain-

text4 attributes and is also extensively employed to evaluate recommender systems [SSX18].

It is composed of around 1M anonymous movie ratings given by 6,040 MovieLens users.

Each records has user profile, movie genres, and a rating ranging from 1 to 5. User pro-

files include Age, Gender, and Profession and movie attributes include Release year and 18

different genres. We consider a “rate” action in MoiveLens-1M as a click-through in CTR

prediction, i.e., the positive samples with labels as 1. We create a negative records with the

same amount as the positive ones by randomly sampling pairs of movies and users and label

them as 0. The positive and negative datasets are disjoint to each other.

Results We plot the heat maps of the attention weights from the first-order to the third-

order, that is, the αi in Equation (4.2) with i ∈ {1, 2, 3}. We select k = 3 since few higher

order features are found significant. The αf of the following cases are not presented in the

interest of space. The k-order example we select for visualization has a largest αf [k] among

all weights in the corresponding αf . The darker cells in Figure 4.5, 4.6, and 4.7 signify

greater feature importance that InterHAt learns from the rating records. The movie genres

4https://grouplens.org/datasets/movielens/1m/
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Figure 4.5: Attention weights of a first-order salient feature example (The Terminator, 1984)

in the figures have been shortened to three letters5. In the Raw genre rows, black cells mean

the movie has the corresponding genre attributes in the raw data, i.e., the training data.

Figure 4.5 shows a rating to the movie The Terminator (1984), which reports the largest

aggregation attention weight on the first-order features. In this record, we observe that M.ID

and M.Sci. significantly outweigh other cells in the 1st-order row due to the high reputation

of the movie itself and its outstanding characteristic as a Sci-Fi (Science Fiction). InterHAt

also detects that the other two genre labels, Action and Thriller, are not as accurate and

hence not highlighted. Higher order interactions are not observed as strong since people

may already make the decision to watch The Terminator by its great reputation as a Sci-Fi

movie.

Figure 4.6 demonstrates a second-order interaction dominated case in a rating towards

Léon: The Professional (1994). We observe one first-order feature and two second-order fea-

tures with more “heat”. For the two second-order features, Crime and Romance interaction

is captured due to the moving love and criminal story that the movie tells. The combined

affect of the two characteristics increases the probability of this movie being watched and

rated. A first-order feature U.ID is highlighted since InterHAt discovers from the training

data that this particular user frequently rates movies. InterHAt then believes a rate is likely

to happen when he or she is present. This is consistent with logic of attention-based model

5Please refer to http://files.grouplens.org/datasets/movielens/ml-1m-README.txt for the full
names.
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Figure 4.6: Attention weights of a second-order salient feature example (Léon: The Profes-

sional, 1994)

Figure 4.7: Attention weights of a third-order salient feature example (Toy story 2, 1999)

interpretation in Section 2.2.2 that it is only able to highlight the steering of information

flow in the model but unable to create an intuitive human-readable story of predictions.

An example of the third-order interaction dominated case is given in Figure 4.7 where

the feature importance of a rating of Toy story 2 (1999) is depicted. We observe a three-

feature interaction, Release year, Animation, and Children, in which we are curious about

how Release year interacts with the other two closely related features. It turns out that the

year 1999 is important for animated movies and the total amount of tickets sold reaches a

maximum between 1995 and 2000 according to a movie market survey6.

6https://m.the-numbers.com/market/production-method/Animation-and-Live-Action
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4.3.3.2 Evaluate on synthetic dataset

Dataset Considering that MovieLens-1M is genuinely rating data rather than click-through

data, we conduct a set of experiments using synthetic data to show the interpretabil-

ity. The synthetic data contains 100K synthesized click-through records with 10 fields

F = [f1, . . . , f10] simulating real click-through records. Each field is created independently

and can take values from [β1, . . . , β10]. The synthetic instance labels are decided by the

feature groups using the rules in Table 4.4 as a simulation of groups of feature(s) solely or

jointly affecting the CTR prediction. The labels are decided as follows. Given a feature

group G, y = 1 representing the click-through happens, and y = 0 as the opposite,

Pr(y = 1|F,G) =

p1 if ∀fi ∈ G, fi.val = βi;

p2 otherwise.
(4.7)

For example, enabling Rule 2 in Table 4.4 implies that the synthetic label has p1 probability

to be 1 and 1 − p1 to be 0 when the conditions hold that f3.val = β3 and f4.val = β4.

Otherwise, the label will be set to 1 by p2 probability and o by 1− p2 probability. We set p1

to 0.9 and p2 to 0.2 to represent high and low probabilities of click-through. Without loss of

generality, we evaluate features from the first-order to the third-order.

Table 4.4: Rules for creating the synthetic dataset for interpretation study.

Index k-th order Feature group G

1 First-order {f1}
2 Second-order {f3, f4}
3 Third-order {f5, f6, f7}

Results We present the salient features by heat maps of the attentions in each layer. Each

cell of order i in the following heat maps represents a normalized average of aggregation

attention αi of all records that satisfy the rule, i.e., fi.val = βi.
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Figure 4.8 depicts the heat map of the first order by enacting Rule 1. We observe that f1

draws the largest attention among all features which is consistent to Rule 1. An additional

observation is that the variance from the attentions is small, meaning that using first-order

only for learning and predicting has a low stability.

Figure 4.8: First-order attention heat map for the interpretation on synthetic data.

We plot the second-order heat map in Figure 4.9 to visualize the second-order feature

interactions by Rule 2. The learned attention values on f3 and f4 are notably greater than

other cells as they have lighter colors in contrast with the black ones. Although the cells of

f3 and f4 have different colors, they are still numerically close to each other. Therefore, the

results in Figure 4.9 also demonstrate the ability of InterHAt to extract salient features and

interpret click-through predictions.

Figure 4.9: Second-order attention heat map for the interpretation on synthetic data.

Rule 3 exemplifies the interpretability in high-order scenarios. We include the heat maps

from the first-order to the four-order in Figure 4.10. From the top three rows, we spot

the process of InterHAt acquiring feature interaction knowledge from the dataset. In the

first-order, f6 and partial f5 information is learned. Next, f5 and partial f7 are captured

in addition to f6 in the row of the second-order. Then, the third-order finished acquiring
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all the interaction information. Finally, the fourth-order features show uniform attention

values with marginal variability, which demonstrates that the high-order feature learning

terminates at the third-order and no greater order features are present in the dataset.

Figure 4.10: Third-order attention heat maps for the interpretation on synthetic data.

In summary, we comprehensively evaluated the ability of InterHAt to generate rationales

while predicting the CTR using a real-world dataset and a synthesized dataset. The heat

map visualizations of both datasets can be reasonably explained in alignment with human

perception, which endorses the interpretability of InterHAt.

4.4 Summary

In this chapter, we proposed InterHAt, an interpretable, efficient, and effective CTR pre-

dictor. InterHAt leverages a multi-head Transformer to learn the polysemy of feature inter-

actions and leverages a hierarchical attention structure to learn the importance of different

orders of features. The explanation is inferred according to the learned importance distribu-

tion. Moreover, InterHAt achieves a relatively low computational cost compared with other

models. Comprehensive experiments show that InterHAt can learn interpretable importance

for feature interactions, runs faster than state-of-the-art models meaning a high efficiency

on CTR prediction, and achieves comparable or even better performances.
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Here are a few aspects for future effort: (1) A better embedding learning paradigm of

numerical features is needed to boost the performance; (2) Explainable deep neural networks,

such as MLP and outer products-based networks, are in demand to achieve high accuracy

and interpretability.
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CHAPTER 5

Point-of-Interest Recommendation via Graph

Enhanced Attention Network

Point-of-interest (POI) recommendation is an emerging area of research on location-based

social networks to analyze user behaviors and contextual check-in information. For this

problem, existing approaches, with shallow or deep architectures, have two major drawbacks.

First, for these approaches, the attributes of individuals have been largely ignored. There-

fore, it would be hard, if not impossible, to gather sufficient user attribute features to have

complete coverage of possible motivation factors. Second, most existing models preserve the

information of users or POIs by latent representations without explicitly highlighting salient

factors or signals. Consequently, the trained models with unjustifiable parameters provide

few persuasive rationales to explain why users favor or dislike certain POIs and what really

causes a visit. To overcome these drawbacks, we propose GEAPR, a POI recommender

that is able to interpret the POI prediction in an end-to-end fashion. Specifically, GEAPR

learns user representations by aggregating different factors, such as structural context, neigh-

bor impact, user attributes, and geolocation influence. GEAPR takes advantage of a triple

attention mechanism to quantify the influences of different factors for each resulting rec-

ommendation and performs a thorough analysis of the model interpretability. Extensive

experiments on real-world datasets demonstrate the effectiveness of the proposed model.

GEAPR is deployed and under test on an internal web server.
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5.1 Motivation and Background

Point of interest (POI) recommendation is a critical component in the recommender system

family. Point of interest refers to locations that customers of online business directories or

review forums are interested in. Such directories or forums are typically named as location-

based social network (LBSN), e.g., Yelp and Foursquare, since users interact with each other

in various ways such as co-reviewing, co-visiting, or direct connecting via friendship relations.

POI recommendation has a wide coverage of scenarios in which the advertised items have

significant spatial attributes that strongly influence the user decisions. Properly recommend-

ing POI replies on precisely understanding user taste, POI’s property, geolocation, and their

correlations. Varying from simple to sophisticated, existing algorithms are painstakingly

customized for more precise user preference modeling, POI profiling, and user-POI relevance

estimation. In other words, the development of POI recommendation systems witnesses the

utilization of multiple modalities of data to achieve more satisfactory POI recommendations.

That being said, we point out two prevalent shortcomings of existing models: (1) inad-

equate interpretable motivation analysis for POI visits, and (2) absent attribute study for

users with a diverse background.

First, for motivation analysis, the ranking functions of existing approaches merely fuse

the multi-modal information without explicitly quantifying or explaining which modalities

are comparatively more important than the others and which are less relevant. However,

quantitatively comprehending the key causes of the check-ins is valuable because it is able to

measurably interpret the users’ mind-sets on choosing the next POI to visit. For example,

some users always check in places their friends have checked in or have suggested, while others

tend to visit places that their peer group favors. Such numerical motivation importance

measurements can also reasonably provide a clear answer to the following debate. Tobler’s

first law of geography [Tob70], frequently cited by previous work [ZC15, LGH16, YYL11],

states that: “Everything is related to everything else, but near things are more related
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than distant things.” But authors of GeoMF state the opposite: a user’s visit to certain

POI implies exactly her indifference to those nearby, otherwise she would have visited them

instead in the first place [LZX14]. With numerical motivation analysis, it becomes easy to

capture and interpret the primary causes of user check-ins, i.e. the motivations, which also

benefits LBSN on explaining their recommendations. In contrast, existing approaches are not

adaptive enough to learn different motivations in a transparent way. They instead simply

use unweighted additions [MZW18, ZZK17] or feature vector concatenations [YBZ17] to

mingle the intermediate information and produce recommendations. Motivation importance

is hardly revealed by these operations. Such discrepancy calls for an effective architecture

that is elaborately developed for interpretable motivation analysis with explicit salience

distribution on different motivation factors.

Second, existing POI recommendation methods largely ignore user attribute study which,

however, is of great importance. The extensive literature of item-based recommender sys-

tems, e.g., movies and books, have demonstrated the potential of user profile, demograph-

ics, and their complex joint effects to enhance recommendation accuracy [Ren10, GTY17,

XYH17, BFU16, LCC20, HLZ17]. Such potential is also plausible in the context of POI

recommendation. For example, the young population loves to try different restaurants in

different locations while the seniors may have distance concerns. However, user attribute

information has been underestimated even by the recent deep learning-based POI recom-

mendation models [MZW18, ZYZ19, ZZK17, ZMZ19, ZYL17] although deeper models have

superior ability to fuse different information modalities and capture the corresponding impor-

tance. Therefore, it is necessary to incorporate the user attribute features to comprehensively

cover possible motivation factors.

To address the two aforementioned concerns, we propose a Graph Enhanced Attention

network for explainable POI Recommen-dation (short for GEAPR) in this chapter that

recommends POIs in an adaptive and interpretable way. GEAPR leverages not only geo-

graphical and social information but also user personal attributes and provides an end-to-end
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justification of the recommendation in the meantime. Specifically, we decompose the possible

motivating causes into four factors:

Structural Context. A check-in can be motivated by neighboring users with high struc-

tural proximity in the social network since they have a similar social context. This type

of stimulus is typically ignored as it is latent and implicit. We argue and experimentally

demonstrate that social structural context is a critical cause of visits.

Neighbor Impact. Impact from direct neighbors, i.e., friends, is another factor of interest

since people are likely to trust their friends’ suggestions and check-in POIs their friends did

before. Previous works characterize neighbor impact by MF-based methods which fail to

generate explanations simultaneously.

User Attributes. Check-in behaviors can also be spontaneous due to users’ characteristics

such as age, religion, income level, etc. For example, young users may choose to check-in

the POIs that other young people love without external stimulus such as friends. GEAPR

proposes to understand the underlying correlation between check-in behavior and attributes

in a novel manner. Factorization machines-based models are dedicated to learning from

attribute data. Therefore, GEAPR utilizes a factorization machines equipped with the

attention mechanism to learn attribute features.

Geolocation Influence. Geolocation influence has a particularly strong impact on POI

recommendations because it is intuitive that people are more aware of nearby restaurants,

supermarkets, or museums, etc. than distant ones. In GEAPR, we fix the POI influence

distribution parameterized by Manhattan distance and learn the user preference for each

geographical unit.

Altogether, GEAPR takes advantage of the attention mechanism to quantify the influ-

ences of different factors for each resulting recommendation and performs a thorough analysis

of the model interpretability. Some literature [JW19] states that attentions lack robustness

to serve as an explanation. We acknowledge the statement but argue that interpretability
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reveals the salience of the factors the model captures from the complex statistics of training

data. Also, to the best of our knowledge, generating a fully human-readable explanation as

a by-product of the ranking score is yet technically infeasible since even users themselves are

unable to articulate the exact reasons that motivate a visit to a POI.

The geolocation feature encoding is decoupled from the three other factors that only

focus on the user’s personal motivation. The main rationale is for the compatibility: al-

though GEAPR is applied to the POI recommendation, it can be painlessly transplanted to

geolocation-irrelevant recommendation scenarios by simply detaching the geolocation mod-

ule. Examples include movie recommendation [ZYL18], question routing [LJS19], and new

friend recommendations, etc. We summarize the major contributions:

• We propose GEAPR, a POI recommender that is able to interpret the POI prediction

in an end-to-end fashion. It specifically focuses on four factors, namely structural

context, neighbor impact, user attributes, and geolocation influence, and quantifies

their influences by numeric values as the feature salience indicators.

• User attributes are taken into consideration in GEAPR. To the best of our knowledge,

this is the first work that incorporate attributes to POI recommendation.

• Attention mechanism is used to address the recommendation interpretability by means

of finding significant factors which are more influential in POI recommendation com-

pared with other features.

• Extensive experiments are conducted on two real-world datasets from Yelp. Exper-

imental results demonstrate the effectiveness of the proposed model. Testing results

demonstrate the effectiveness of GEAPR.
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5.2 GEAPR

5.2.1 Architecture Overview
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Figure 5.1: The overall pipeline of GEAPR.

The architecture of GEAPR is shown in Figure 5.1. Some important notations are

summarized in Table 5.1. The inputs of GEAPR include the adjacency matrix Ma of the

friendship graph of LBSN, structural context Ms, the users’ attributes F , and the POI

influence scores.

GEAPR uses three different architectures customized for the three factors on the user

motivation side. Specifically, a dense neural network-based structural context encoder is uti-

lized to learn the structural context, a graph neural network-based attentional friendship

encoder is utilized to model the neighbor impact, and an attention-based latent factoriza-

tion machine is utilized for preserving the attribute interactions.

These three sub-modules will generate three hidden feature representations individually

as hs, hn, and ha. The information from three sources is then merged by an attentional aggre-

gation [LCC20] strategy which is able to reveal the relative salience among them. The merged

motivation representation is then combined with geolocation features as constraints so that
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Table 5.1: Critical notations for GEAPR that are essential.

Notation(s) Definition

U , P , E The sets of users, POIs, and friendship relations in an LBSN.

nu, np The total numbers of users and POIs in an LSBN.

G The friendship graph for users. G = {U,E}.
NG(u) The set of neighbors of user u in G and NG(u) = {v|(u, v) ∈ E}.
F , m The set of fields with m fields of user attributes. m = |F|.

Ma The adjacency matrix of G, Ma ∈ {0, 1}nu×nu .

Ms The structural context matrix based on Ma, Ms ∈ Rnu×nu .

hs, hn, ha Hidden vectors of structural context, neighbor impact, and attributes.

hu The attentional aggregation of hs, hn, and ha.

hg The geolocation preference of the user.

gp The predefined geographical influence scores of POI to grids on a map.

rp The hidden representation of POI semantics.

su,p The score representing how likely user u will visit POI p.

strongly relevant but distant POIs will be removed from the recommendation. GEAPR then

takes the dot-product of the graph-enhanced user embedding and the POI embedding to

generates a scalar score su,p representing the likelihood of a user u visiting a POI p in the

future.

In order to preserve reliable interpretability while making an accurate recommendation,

the building blocks of GEAPR focus on attention-based algorithms. Although literature

argues that attention lacks the potential to provide an “explanation” that agrees with human

perception, it still reveals the distribution of salience which can be considered as a form of

explanation. In addition, it is worth noting that unlike the tasks where ground truth is

typically defined and easily accessible, formal explanations are unavailable from LBSN or
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public datasets for interpretable POI recommendation as ground truth. Therefore, measuring

the “correctness” of the generated interpretation is impracticable.

5.2.2 Structural Context Factor

The structural context tries to model the commonality of the close neighbors of a certain user.

Intuitively, the proximity of user characters and preferences can be propagated through a

few hops of social connections to form cliques within the network. In order to capture

social context from network structure, GEAPR utilizes Random Walk with Restart (RWR),

a popular method widely used for learning community proximity [NCL18]. The structural

context features of a user are learned based upon his or her RWR representation.

Mathematically, given a network G of nu nodes represented by its adjacency matrix Ma

with Ma,ij = 1 if nodes i and j are connected and otherwise 0, a starting user u0 in U , the

r-step RWR vector p(r) ∈ Rnu is computed by

p(r) = γp(0) + (1− γ)p(r−1)[D−1Ma],

where γ denotes the probability that the random walk generator restarts from u0, p
(0) denotes

the corresponding row of u0 in Ma, and D denotes a diagonal matrix with Dii =
∑nu

j=1Ma,ij.

Let R denote the maximum step of the RWR process, the summation of p(r) is considered

as the structural context. R is usually set as a small value such as 2 or 3 to make sure only

local information is preserved in h′
s and h′

s =
∑R

r=1 p
(r), h′

s ∈ Rnu .

However, one problem of encoding the local context is the enormous dimension: the

size of h′
s is the same scale as the user numbers. Therefore, GEAPR conducts dimension

reduction to h′
s to generate hs, the latent features of structural context, by a multi-layer

dense neural network with ReLU(x) = max(0, x) as the activation function (using two layers

as an example):

hs = ReLU(WT
2 (ReLU(WT

1h
′
s + b1)) + b2), hs ∈ Rd,
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where d is the dimension of hidden representations and {Wi, bi} are trainable parameters.

ReLU(·) introduces non-linearity and enhances the representation learning capacity for struc-

tural context.

5.2.3 Neighborhood Impact Factor

The second aspect of potential visit stimuli is the direct friends since one may naturally check

in the POIs suggested by friends. We thereby focus on the understanding of impact from

neighbors NG(u) of a user u. Graph attention network (GAT) [VCC17] provides an effective

way to aggregate information from direct neighbors and compute the attention to pinpoint

significant neighbors. Therefore, we encode neighborhood impact using an attention-based

graph neural-network. Given a user u and the friends of u, NG(u), the hidden neighbor

feature hn is

hn = σ

 ∑
j∈NG(u)

αujWnvj

 .

σ(·) is typically a non-linear function such as ReLU(·) or tanh (·). Wn ∈ Rdn×dp is a learnable

weight matrix for the attention network that maps all neighbor embeddings to a common

space. vj is derived by the average POI embeddings that user j visited before. The scalar

αuj is the weight from user j to u and GEAPR computes αuj by Equation (5.1) where

LeakyReLU advances ReLU in that it allows shrunk negative signal to flow through, “||”
denotes concatenation along an existing dimension, and a ∈ R2d is a trainable vector that

helps compute the attention logits and W ∈ Rd×dp .

αuj =
exp

(
LeakyReLU

(
aT [Wvu||Wvj]

))∑
i∈NG(u) exp (LeakyReLU (aT [Wvu||Wvi]))

(5.1)

The set of attention weights αuj demonstrates the influential neighbors. In addition to

concatenation, other ways can also produce attention logits such as dot-product of vj and vu,

the matrix-dot-product vT
j Wvu, or the non-linear MLP of concatenation of vj and vu. The

original GAT [VCC17] can handle multiple attention heads and multiple neighborhood hops.

Increased head numbers can preserve information in more sub-spaces, and enlarged scopes
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of direct or nearby users bring in more local context, which both benefit the performance.

However, in consideration of the interpretability, we simplify the settings to a single head

and one-hop neighbors.

5.2.4 Attribute Interactive Factor

Apart from the effects of social structural context and direct neighbors, the personal at-

tributes are also important factors to motivate the user to visit particular POIs. The combi-

natorial possibilities of feature interactions create diverse influences on the users’ preference

towards POIs, which has been thoroughly studied in feature-based recommender systems

such as factorization machines (FM) [Ren10], DeepFM [GTY17], and xDeepFM [LZZ18],

etc. In GEAPR, we combine feature-based FM methods with attention mechanism [XYH17]

to analyze feature interaction and maintain interpretability.

Embedding the categorical and numerical features into a lower-dimensional space is a

prerequisite [Ren10, GTY17, XYH17, LCC20, LZZ18]. User attributes can be written as

m fields {F1, . . . , Fm} with different values, also known as features. We assign a trainable

vector to each distinct feature f c ∈ Rda for categorical field and discretize the continuous

value by bucketing and then treat the converted alternative as a categorical feature for the

numerical field.

Given the feature embeddings, user attribute impact is model as

ha = w0 +
m∑
i=1

βif i +
m∑
i=1

m∑
i=j+1

λijf i ⊙ f j, (5.2)

where w0 is the offset term, βi, and λij are the attention weights for first-order and second-

order feature interactions. They are computed as follows, given feature matrix F = {f 1, . . . ,fm},
β = softmax(ReLU(qT

1F)), λij = softmax(qT
2 ReLU(Wa(f i ⊙ f j) + b)). Here q1, q2 ∈ Rda ,

Wa ∈ Rda×da and b ∈ Rda denote learnable tensors to build attention weights. ⊙ is the

element-wise multiplication. Once more, we use the attention weights as the information

source for interpretability.
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Equation (5.2) contains an enumeration of the first-order features and second-order fea-

ture interactions which are incomprehensive compared with the exponential-sized feature in-

teraction space. Studies have shown that the first two orders of features are already capable of

contributing sufficient information for learning interactive features and adding higher-order

features is only making a marginal information supplement. That being said, GEAPR still

enjoys great compatibility with higher-order features interaction models [LCC20, BFU16].

5.2.5 POI Geographical Influence

In GEAPR, we model the geographical influence features from two aspects: learnable user

geolocational interest and predefined POI area influence. As shown in Figure 5.2, the left

figure shows three trainable user preference geographical distributions and the right one

shows an example of pre-defined POI influence score measured by Manhattan distance.

Specifically, we first divide the city map of POIs into grids with nlat units on the latitude

axis and nlong units on the longitude axis. We model the geographical influence of a POI in

grid p to a target grid t using the influential score gp,t [LZX14] as

gp,t = K

(
dman(p, t)

σg

)
where σg denotes the standard deviation of distances, K(·) denotes a standard normal distri-

bution, and dman(a, b) measures the Manhattan distance from the grid a to grid b. Therefore,

we can define the influential score vector gp of POI p as gp ∈ R(nlong·nlat) which is essentially

a flattened 2-dimensional influential score matrix. We are also curious about the geograph-

ical preference distribution of users which is defined as a learnable parameter representing

user preference, hg ∈ R(nlong·nlat). Each user has one unique hg. We define the geographi-

cal influence correlation between users and POIs by taking the product hT
g gp. The overlap

between user-preferred regions and POI influential regions can be selected and amplified by

multiplication.
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Figure 5.2: Geolocation encoding for user preference and POI influence.

5.2.6 Objective and Optimization

After showing the derivations of the representation of the four causing factors, we show how

to make predictions for future check-ins. We first aggregate hs, hn, and ha by an attention

mechanism as Equation (5.3) and Equation (5.4) since they all encode users motivation.

hu = πs · ReLU(hs) + πn · ReLU(hn) + πa · ReLU(ha) (5.3)

πx∈{s,n,a} =
exp(wTReLU(hx))∑

x′∈{s,n,a} exp(wTReLU(hx′))
(5.4)

Then Equation (5.5) computes the possibility of the potential check-in su,p which is defined

by the dot-product with motivation feature and geographical feature of users and POIs. If

rp represents the motivation-related POI semantics, then

su,p = [hu||hg] · [rp||gp] = hT
urp + hT

g gp. (5.5)

The overall objective function is Equation (5.6) which sums a ranking loss Lrank and a

regularization loss Lreg weighted by a hyper-parameter. In GEAPR, we use L2 norm as the

regularization term.

L = Lrank(D,D′) + cLreg (5.6)
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We use negative sampling to implement the ranking term that specifically penalize on the

negative samples D′ while optimizing the positive samples D. There are two standard ways

to implement the ranking loss, Lrank, namely pair-wise or point-wise ranking loss.

Point-wise (PO) Loss. Point-wise loss forces the positive instances to approach an indi-

cator 1 and pushes the negative instances to indicator 0 via a cross-entropy loss of binary

classification. y = 1 if (u, p) ∈ D, y = 0 if (u, p) ∈ D′, and σ(·) is the sigmoid function.

Lrank-po = −
∑
D,D′

(y log(σ(su,p)) + (1− y) log(1− σ(su,p))) .

Pair-wise (PA) Loss. Pair-wise loss tries to capture the partial order relationships in the

training data and maintain that order between the scores of positive instances and negative

instances. We follow the method in RankNet [BSR05] as the equation below with (u, p) ∈ D,

(u, p′) ∈ D′, and ∆u,p,p′ = su,p − su,p′ .

Lrank-pa =
∑
D,D′

−∆u,p,p′ + log(1 + exp(∆u,p,p′)).

We use Adam [KB14] to optimize the parameters since all modules in GEAPR are con-

tinuous and differentiable.

Complexity We use δ(n) to denote the complexity of the multiplication of an n di-

mensional vector and an n × n dimensional matrix. We omit the detailed computation

of the complexity and give the result as follows. Summing up complexity of the four

modules and of the overall optimization, the forward pass complexity of GEAPR is T =

rδ(nu) + δ(d) + nuδ(dp) + m2δ(da) + O(nlong × nlat). Further, considering that different

dimensions are on the same scale, we rewrite T as

T = rδ(nu) + (nu + m2)δ(d) + O(nlong × nlat).

If hyperparameters r, d, m, nlong, and nlat are set, they can be viewed as constants. Then

the complexity T of a training forward pass is proportional to δ(nu), which equals to O(n2
u)

and is common to graph neural networks [VCC17].
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5.3 Experiments
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Figure 5.3: Performance evaluation of GEAPR compared with baseline models.

This section reports the evaluation of GEAPR on effectiveness and interpretability by its

performance on real-world datasets and case studies of interpretation.

5.3.1 Experimental Setup

5.3.1.1 Dataset

We use Yelp Challenge1 Round 13 dataset for effectiveness and interpretability tests. We

divide the reviews by cities and subsets of “Toronto” and “Phoenix” are used due to larger

sizes. Yelp dataset contains comprehensive details of the reviews, user attributes, user friend-

ships, and POI locations. The friendship network in the datasets serves as the information

1https://www.yelp.com/dataset

72

https://www.yelp.com/dataset


source of the neighbor impact encoder and the structural context encoder of GEAPR. The

adjacency matrix is the input of the neighbor impact encoder and also helps to create the

structural context. Yelp Round 13 dataset does not include the owners of the check-in

records. We instead consider the abundant reviews to be equivalent to check-ins since intu-

itively each review corresponds with a past check-in. We sort all reviews grouped by users

chronologically and filter out users with less than 10 reviews to avoid cold-start. We parti-

tion the review set of each individual into 9:1 where 90% data is used for training and the

10% rest for testing. Table 5.2 shows the statistics.
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Figure 5.4: Ablation study of GEAPR compared with its variants.

5.3.1.2 Metrics and Baseline Models

For effectiveness evaluation, we consider three metrics widely utilized in information retrieval

and recommender systems, including Mean Average Precision at K (MAP@k), Precision at

k (Prec@k), and Recall at k (Recall@k). For the i-th test sample, given the list of the top

73



k POIs ranked according to the predicted scores si = (si1, si2, . . . , sik), and the m POIs that

a particular user checked-in in the test set Ti = {ti1, . . . , tim}, the three metrics are defined

as follows where n is the number of test samples and si,1−j denotes the prefix sublist of si of

length j. Prec@k = 1
n

∑n
i=1

|Ti∩si|
k

, Recall@k = 1
n

∑n
i=1

|Ti∩si|
|Ti| , MAP@k = 1

n

∑n
i=1 APi(Ti, si),

and APi(Ti, si) = 1
k

∑k
j=1

|Ti∩si,1−j |
j

. All three metrics take values in [0, 1]. Larger values

represent better results. Prec@k and Recall@k measure how good the top-ranked POIs

match with the ground truth and MAP@k signifies if the ground truth is ranked at higher

positions. k is from 10 to 100.

Table 5.2: Statistics of the datasets for evaluation.2

Dataset #.User #.POI #.Reviews #.U-Cxn %.Reviews %.U-Cxn

Toronto 9582 9102 234388 104402 2.687×10−3 1.139×10−3

Phoenix 11289 9633 249029 163900 2.290×10−3 1.286×10−3

Eight baselines are used for performance comparison including MF, GeoMF, WRMF,

LORE, GeoSoCa, PACE, CORALS, and LCR. They include matrix factorization based

models and deep-learning-based models. We provide brief descriptions for the baseline mod-

els for comparisons with GEAPR3. The parameter settings follow the default values in the

source code or in their original papers. MF, the Matrix factorization model that decomposes

the user-POI check-in matrix and make predictions by reconstruction. GeoMF [LZX14],

a geolocation-enhanced MF model that considers the geographical factors as constraints.

WRMF [HKV08], Weight regularized MF, incorporates both implicit and explicit check-ins

for future check-in predictions. LORE [ZCL14] builds a location-location transition graph to

specifically model the sequential influence of POIs to user preferences. In GeoSoCa [ZC15],

2“#”: the count of ; “%”: the density of ; “U-Cxn”: user friendship connections.

3The implementation of PACE: https://github.com/yangji9181/PACE2017; The implementation of
the rest of baselines: http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17.
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Geolocation, social connections, and POI categories are all considered to extract diverse

information. PACE [YBZ17] is a deep learning-based multi-task learning algorithm that

predicts POI, user context, and spot context simultaneously for better accuracy and ro-

bustness. CORALS [LJJ19] incorporates the modeling of reputation prediction of POIs

in location recommendations. LCR [LLW20], Local Collaborative Ranking, assumes that

user-POI matrix is local low-rank rather than global low-rank to mitigate the data sparsity

issue of POI recommendation.

Even so, our experiments are still able to provide coverage on both traditional meth-

ods and deep learning-based methods. In addition, sequential POI recommendation mod-

els [ZMZ19, ZZK17, YCG20, JXZ19, SQC20, WYC20] are excluded as well due to different

use cases as discussed earlier in Section 2.1.3.

5.3.1.3 Reproduction

The prototype of GEAPR was implemented by Python (3.6.8) and TensorFlow (1.14.0) and

run with a 16 GB Nvidia Tesla V100 GPU embedded in a Nvidia DGX-1 server. The code

is publicly available on GitHub4. and a comprehensive end-to-end instruction on how to run

the code is also provided.

The hyper-parameters that generate the results in Section 5.3 are listed in Table 5.3. To

prevent overfitting, dropout is employed in the graph attention network module for structural

context modeling and the attentional factorization machines module for attribute impact

modeling. The dropout rates are also shown in Table 5.3.

5.3.2 Effectiveness

This section reports the comparisons of GEAPR and the baselines for performance analysis,

and of GEAPR and its variants for ablation study. A parameter sensitivity study is also

4The source code is available here: https://github.com/zyli93/GEAPR
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Table 5.3: Parameter settings for the experiments of GEAPR.

Parameters Toronto Phoenix

da, dn, dp, and d {64,64,64,32}
nlong, nlat {30, 30}

R, γ, and c {3, 0.05, 0.1}
Loss function Point-wise

Regularization function L2, c = 0.0001

Optimizer Adam

Learning rate 0.001

Hidden layers of SC module 2 layers: {64,48}
Negative sampling (P:N) 1:105 1:90

NI module dropout 0.3 0

AT module dropout 0.3 0.2

provided to cast light on the heuristics to parameter tuning. Please note that POI recom-

mendation tries to identify all potential POIs from an enormous candidate base, which is

essentially hard due to the unpredictability of users’ minds. Users can receive multifaceted

stimuli, a great proportion of which are implicit and difficult to capture based merely on the

dataset. As a result, the numeric values of POI recommendation are relatively small for

all state-of-the-art models.

5.3.2.1 Comparison with Baselines

The experimental results on effectiveness are shown in Figure 5.3. Point-wise (PO) loss

is selected due to its superior performance and the results by pair-wise loss are shown in

Section 5.3.2.2. It is demonstrated that GEAPR can achieve the state-of-the-art result by

outperforming MF, GeoMF, WRMF, LORE, GeoSoCa, PACE, CORALS, and LCR on all
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three metrics. In other words, the ground truth of the test samples is effectively identified

at high ranking positions. The advancement of deep learning has pushed the performance

of this task to an extreme such that numerically small performance increases should also be

considered significant. Therefore, GEAPR has made significant progress on accurate POI

recommendation. As PACE is deep learning-based and requires larger input data density,

its performance slightly drops under the settings of Table 5.2. CORALS requires dense

review data for location reputation modeling and hence the density hurts its performance as

well. The architecture that maintains interpretability requires GEAPR to avoid unjustifiable

element-wise feature multiplication and aggregate information by weighted average pooling.

Hence some complex or subtle information is missed and the learning power of GEAPR is

undermined. That being said, GEAPR still achieves great performances.

5.3.2.2 Ablation Study

Ablation study illustrates in Figure 5.4 the contributions of the four factors and the perfor-

mance difference of the two ranking losses. “GEAPR-X” refers to the variant that differs

from GEAPR by “X”. X can be “SC” (no structural context), “NI” (no neighbor impact),

“AT” (no user attributes), “GEO” (no geolocations), or “PA” (uses pair-wise loss). The

curve of GEAPR is higher than other variants in all six subfigures. Four conclusions are

drawn: (1) Attribute information provides performance gain indicating its usefulness. The

reason of the relatively small contribution is the lack of the diversity of attribute informa-

tion revealing user interests such as age and gender; (2) Removing the geolocation causes

the largest performance deterioration. Therefore, the geographical information is the most

influential factor as it is closely related to the POI task. It also shows that accurately mining

geographical information is critical in accurate POI recommendation; (3) Taking away any

factor will hurt the performance meaning that all three non-geographical factors take effect

and contribute uniquely to the performance increase; (4) Pair-wise loss is not as useful as

point-wise loss. Pair-wise loss relies on an advanced sampling strategy to sample data that is
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closer to the “decision hyperplane” with larger probabilities at the cost of extra computation.

Instead, GEAPR draws negative samples uniformly with the goal of being generalizable to

the diverse possible distributions of the data.

5.3.2.3 Parameter Sensitivity

We briefly introduce the parameter sensitivity study of GEAPR. None of the tuned parame-

ters has a monotonic relationship with the evaluation results. For example, a greater negative

sampling ratio will slow down the training and overly penalize on the unobserved check-ins so

that the ground truth can also be mistakenly concealed, whereas a smaller ratio overfits the

positive samples but underfits the negative, hurting the performance in another way. As for

embedding size d, assigning d as 32, 64, or 128 only produces a little performance fluctuation

but making it larger or smaller will deteriorate the recommendation accuracy. There is no

theoretical guarantee on their optimality of the hyper-parameters used to derive the results

in Figure 5.3. It is plausible to grid-search for other settings with better performances.

5.3.3 Interpretability

In this section, we demonstrate the interpretability of GEAPR by plotting the heat maps of

π = {πs, πn, πa}, αu in the graph attention network module for neighbor impact, β and λ in

the attribute influence module denoting the first- and second-order interaction importance,

respectively, and hg for geolocation feature. They are designed to probe the importance of

features and generate interpretation accordingly.

5.3.3.1 User Motivation Study

We plot three examples on this topic shown in Figure 5.5, 5.6, and 5.7. The blue bars show

the motivation breakdown π; the green bars show the attributes importance β; the variable-

length dark orange bars show the friends count of a user and the weights learned from the

78



Figure 5.5: Example with significant neighbor impact.

Figure 5.6: Example with significant structural context.

neighbor impact module (αu). The λ is not plotted since it is observed that the values in λ

are almost identical, showing that the second-order features are orthogonal to the formation

of user motivation. This fact is consistent with our perception since features provided by the

dataset are mostly counts or scores (e.g., review counts, funny score, cool score, etc.) and

are independent of each other by intuition.

Figure 5.5 shows an example with important neighbor feature since its weight is the

Figure 5.7: Example with significant user attribute.
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largest in the blue heat map. From the 19 neighbors of the user, only one user has a huge

impact on causing the user’s motivation. The single peak of the user neighbor impact boosts

of direct neighbor importance and decreases of the context importance. And the strong

neighbor and context combined depress the weight of attribute since all weights add up to

1.

Figure 5.6 shows an example with important structural context features. The actual

structural context is hard to depict since it is a dense vector with dimension size identical to

the number of users. But we can still observe that the friends of this user are contributing

more evenly impacts compared with Figure 5.5. That is, the user’s visit preference is actually

influenced by many neighbors and potentially the further neighbors, i.e., the users in the

same structural context or community.

Figure 5.7 exemplify a case with both important attribute information and important

neighbor impact. The lack of friendship connections (only 5 friends) and the single-peaked

neighbor impact push the model to learn motivation from attributes. Therefore a heavy-

weight is put on YelpYrs that stands for the number of years the user had been on Yelp.

It turns out that the user’s “Yelping years” is 8 years, a time long enough to form a user’s

visiting habits. From the figures, we notice a common property of attribute weights (green

bars) that #.Elite and YelpYrs are usually highlighted as opposed to other user attributes.

#.Elite denotes how many times the user had been awarded as “Yelp elite”. We suppose

that these two features have tight bonds with user activity and are understood by the model

as a signal of a generally stronger motivation.

In addition, we acknowledge the insufficiency of attribute information of the Yelp dataset

even though other POI datasets do not provide attributes at all. Without informative

features, the models can not produce convincing rationale but complex statistical signals

from the data.
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Figure 5.8: User geographical preference v.s. single POI influence distribution

Figure 5.9: User geographical preference v.s. sum of POI influence distribution
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5.3.3.2 Geolocation Preference

As shown in Equation (5.5), the geographical correlation with user and POI is modeled by

a linear dot-product. That is, a greater preference value represents a stronger inclination to

that zone. We exemplify the results by showing the learned user preference against (1) the

predefined influence distribution of a single visited POI and (2) the normalized summation

of the influence distributions of all visited POIs in Figure 5.8 and Figure 5.9. Each figure

contains 30× 30 grids each representing a grid in the real-world map of POIs.

In Figure 5.8, we observe that the user preference values concentrate at the bottom right

corner which agrees with the influential center of the POI. In addition, the top left corner

is not favored by the user and the POI influence figure also shows the same pattern of low

influence. In Figure 5.9, the heat zones are generally aligned between the two figures. The

upper halves of both user preference and POI influence are heated and the bottom parts are

relatively inactive. This demonstrates that GEAPR is capable of capturing the geographical

preference of a user and understand which parts the more favored than other parts.

5.4 Summary

In this chapter, we propose GEAPR, a graph-enhanced POI recommendation algorithm

that incorporates user friendship network information in addition to user attributes and

geolocation features. Specifically, GEAPR decomposes the motivation of user check-ins into

four different aspects: social structural context, neighborhood impact, user attribute, and

geolocation, and quantifies the importance of each feature. In addition, GEAPR employs the

attention mechanism to generate interpretations that reveal the salient motivating factors,

influential neighbors, informative attribute interactions, and heated geographical areas, etc.

Experimental results demonstrate the effectiveness and interpretability of GEAPR.

We list the following potential improvements as future work: (1) It may be helpful to

also build a POI graph by semantics and apply graph mining algorithms; (2) A better way
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to preserve non-linear geolocational features is needed to learn complex information.

5.5 Supplementary Materials

5.5.1 Complexity of GEAPR

Here we provide detailed analysis of computational complexity T for the forward pass of

GEAPR. We use δ(n) to denote the complexity of the multiplication of an n dimensional

vector and an n× n dimensional matrix.

Structural Context. The complexity of obtaining the RWR vector p(r) is T (p(r)) =

r(O(nu) + δ(nu)) = rδ(nu). The complexity from p(r) to h′
s and then to hs is T (hs) =

O(rnu) + δ(nu) + δ(d). Overall, its complexity is T (p(r)) + T (hs) = rδ(nu) + δ(nu) + δ(d) =

rδ(nu) + δ(d).

Neighbor Impact. The complexity of neighbor impact consists of computing αuj and

computing hn. T (αuj) is dominated by the denominator of Equation (5.1) as T (αuj) =

nu(δ(2dp) +O(d)) = nuδ(dp). T (hn) = nuδ(dp) +O(nu) = nuδ(dp) since we can pre-compute

and save all αuj. Therefore, its complexity is T (αuj) + T (hn) = nuδ(dp).

Attribute Interactions. We compute its complexity as the summation of comput-

ing first-order and second-order terms. T (first-order) = mδ(da) and T (second-order) =

m2(δ(da)+O(da)+O(da)) = m2δ(da). Overall, its complexity is T (first-order)+T (second-order) =

mδ(da) + m2δ(da) = m2δ(da).

Geographical Influence. The complexity comes from the dot product with nlong×nlat

dimensions. Therefore, its complexity is O(nlong × nlat).

Overall. The computational complexity of the prediction terms in Equation (5.6) can

be merged into the previous terms. Therefore, summing up complexity of the four modules

and of the overall optimization, the forward pass complexity of GEAPR is T = rδ(nu) +

δ(d) + nuδ(dp) + m2δ(da) + O(nlong × nlat). Further, considering that different dimensions
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are on the same scale, we rewrite T as

T = rδ(nu) + (nu + m2)δ(d) + O(nlong × nlat).
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CHAPTER 6

Understanding the Recommendation with

Aspect-Sentiment Co-Extraction

Compliments and concerns in reviews are valuable for understanding users’ shopping interests

and their opinions with respect to specific aspects of certain items. Existing review-based

recommenders favor large and complex language encoders that can only learn latent and

uninterpretable text representations. They lack explicit user-attention and item-property

modeling, which however could provide valuable information beyond the ability to recom-

mend items. Therefore, we propose a tightly coupled two-stage approach, including an

Aspect-Sentiment Pair Extractor (ASPE) and an Attention-Property-aware Rating Esti-

mator (APRE). Unsupervised ASPE mines Aspect-Sentiment pairs (AS-pairs) and APRE

predicts ratings using AS-pairs as concrete aspect-level evidences. Extensive experiments on

seven real-world Amazon Review Datasets demonstrate that ASPE can effectively extract

AS-pairs which enable APRE to deliver superior accuracy over the leading baselines.
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6.1 Motivation and Background

Reviews and ratings are valuable assets for the recommender systems of e-commerce websites

since they immediately describe the users’ subjective feelings about the purchases. Learning

user preferences from such feedback is straightforward and efficacious. Previous research on

review-based recommendation has been fruitful [CZJ18, CZL18, BLT17, LLD19]. Cutting-

edge natural language processing (NLP) techniques are applied to extract the latent user

sentiments, item properties, and the complicated interactions between the two components.

However, existing approaches have disadvantages bearing room for improvement. Firstly,

they dismiss the phenomenon that users may hold different attentions toward various prop-

erties of the merchandise. An item property is the combination of an aspect of the item and

the characteristic associated with it. Users may show strong attentions to certain properties

but indifference to others. The attended advantageous or disadvantageous properties can

dominate the attitude of users and consequently, decide their generosity in rating.

Reviews Microphone Comfort Sound

R1 [5 stars]: Comfortable. Very high quality sound.

. . .Mic is good too. There is an switch to mute your

mic. . . I wear glasses and these are comfortable with my

glasses on. . . .

good

(satisfied)

comfortable high quality

(praising)

R2 [3 stars]: I love the comfort, sound, and style but

the mic is complete junk!

complete

junk (angry)

love love

R3 [5 stars]: . . . But this one feels like a pillow, there’s

nothing wrong with the audio and it does the job. . . . con

is that the included microphone is pretty bad.

pretty bad

(unsatisfied)

like a pillow

(enjoyable)

nothing

wrong

Table 6.1: Example reviews of a headset with three aspects, microphone quality, comfort

level, and sound quality, as well as the sentiments.
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Table 6.1 exemplifies the impact of the user attitude using three real reviews for a head-

set. Three aspects are covered: microphone quality, comfortableness, and sound quality.

Comparing R1 and R2, we find that different users react differently (microphone quality) to

the same item due to distinct personal attentions and, consequently, give divergent ratings.

Comparing R1 and R3, we find that a user can still rate highly of an item due to special

attention on particular aspects (comfort level) regardless of certain unsatisfactory or indif-

ferent properties (microphone and sound qualities). The microphone quality is controversial.

R2 and R3 criticize it but R1 praises it. The sole disagreement between R1 and R2 is on

microphone, which is the major concern of R2, results in the divergence of ratings (5 stars

vs. 3 stars). However, R3 neglects that disadvantage and grades highly (5 stars) for its

superior comfortableness indicated by the metaphor of “pillow”.

Secondly, understanding user motivations in granular item properties provides valuable

information beyond the ability to recommend items. It requires aspect-based NLP techniques

to extract explicit and definitive aspects. However, existing aspect-based models mainly use

latent or implicit aspects [CZJ18] whose real semantics are unjustifiable. Similar to Latent

Dirichlet Allocation (LDA, [BNJ03]), the semantics of the derived aspects (topics) are

mutually overlapped [HMG20]. These models undermine the resultant aspect distinctiveness

and lead to uninterpretable and sometimes counterintuitive results. The root of the problem

is the lack of large review corpora with aspect and sentiment annotations. The existing

ones are either too small or too domain-specific [WP18] to be applied to general use cases.

Progress on sentiment term extraction [DS19, TGX20, CLW20] takes advantage of neural

networks and linguistic knowledge and partially makes it possible to use unsupervised term

annotation to tackle the lack-of-huge-corpus issue.

In this chapter, we seek to understand how reviews and ratings are affected by users’

perception of item properties in a fine-grained way and discuss how to utilize these findings

transparently and effectively in rating prediction. We propose a two-stage recommender with

an unsupervised Aspect-Sentiment Pair Extractor (ASPE) and an Attention-Property-
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aware Rating Estimator (APRE). ASPE extracts (aspect, sentiment) pairs (AS-pairs)

from reviews. The pairs are fed into APRE as explicit user attention and item property

carriers indicating both frequencies and sentiments of aspect mentions. APRE encodes the

text by a contextualized encoder and processes implicit text features and the annotated AS-

pairs by a dual-channel rating regressor. ASPE and APRE jointly extract explicit aspect-

based attentions and properties and solve the rating prediction with a great performance.

Aspect-level user attitude differs from user preference. The user attitudes produced

by the interactions of user attentions and item properties are sophisticated and granular

sentiments and rationales for interpretation (see Section 6.3.4 and 6.5.3). Preferences, on

the contrary, are coarse sentiments such as like, dislike, or neutral. Preference-based models

may infer that R1 and R3 are written by headset lovers because of the high ratings. Instead,

attitude-based methods further understand that it is the comfortableness that matters to

R3 rather than the item being a headset. Aspect-level attitude modeling is more accurate,

informative, and personalized than preference modeling.

Note. Due to the page limits, some supportive materials, marked by “†”, are presented

in the Supplementary Materials. We strongly recommend readers check out these mate-

rials. The source code of our work is available on GitHub at https://github.com/zyli93/

ASPE-APRE.

6.2 ASPE and APRE

6.2.1 Problem Formulation

Review-based rating prediction involves two major entities: users and items. A user u writes

a review ru,t for an item t and rates a score su,t. Let Ru denote all reviews given by u and

Rt denote all reviews received by t. A rating regressor takes in a tuple of a review-and-rate

event (u, t) and review sets Ru and Rt to estimate the rating score su,t.
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6.2.2 Unsupervised ASPE

We combine three separate methods to label AS-pairs without the need for supervision,

namely PMI-based, neural network-based (NN-based), and language knowledge- or lexicon-

based methods. The framework is visualized in Figure 6.1.

PMINeural Net

Lexicon

Sentiment Terms (ST)

Review Text

Dependency parsing

AS-pair Candidates
(Aspect 1, Sentiment 1),

(Aspect 2, Sentiment 2),…

filtering and merging
AS-pair Extractions (in green)

(Aspect 1, Sentiment 1), (Aspect 2, Sentiment 2) …
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Figure 6.1: Pipeline of Aspect-Sentiment Pair (AS-pair) Extractor (ASPE).

6.2.2.1 Sentiment Terms Extraction

PMI-based method Pointwise Mutual Information (PMI) originates from Information

Theory and is adapted into NLP [ZLS19, TGX20] to measure statistical word associations

in corpora. It determines the sentiment polarities of words using a small number of carefully

selected positive and negative seeds (s+ and s−) [TGX20]. It first extracts candidate senti-

ment terms satisfying the part-of-speech patterns by [Tur02] and then measures the polarity

of each candidate term w by

Pol(w) =
∑
s+

PMI(w, s+)−
∑
s−

PMI(w, s−). (6.1)

Given a sliding window-based context sampler ctx, the PMI(·, ·) between words is defined

by

PMI(w1, w2) = log
p(w1, w2)

p(w1)p(w2)
, (6.2)
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where p(·), the probability estimated by token counts, is defined by p(w1, w2) = |{ctx|w1,w2∈ctx}|
total #ctx

and p(w1) = |{ctx|w1∈ctx}|
total #ctx

. Afterward, we collect the top-q sentiment tokens with strong

polarities, both positive and negative, as STPMI.

NN-based method As discussed in Section 2.1.5, co-extraction models [DS19] can ac-

curately label AS-pairs only in the training domain. For sentiment terms with consistent

semantics in different domains such as good and great, NN methods can still provide a ro-

bust extraction recall. In this work, we take a pretrained SDRN [CLW20] as the NN-based

method to generate STNN. The pretrained SDRN is considered an off-the-shelf tool similar

to the pretrained BERT which is irrelevant to our rating prediction data. Therefore, we

argue ASPE is unsupervised for open domain rating prediction.

Knowledge-based method PMI- and NN-based methods have shortcomings. The PMI-

based method depends on the seed selection. The accuracy of the NN-based method dete-

riorates when the applied domain is distant from the training data. As compensation, we

integrate a sentiment lexicon STLex summarized by linguists since expert knowledge is widely

used in unsupervised learning. Examples of linguistic lexicons include SentiWordNet [BES10]

and Opinion Lexicon [HL04]. The latter one is used in this work.

Building sentiment term set The three sentiment term subsets are joined to build an

overall sentiment set used in AS-pair generation: ST = STPMI ∪ STNN ∪ STLex. The three

sets compensate for the discrepancies of other methods and expand the coverage of terms

shown in Table 6.5.

6.2.2.2 Syntactic AS-pairs Extraction

To extract AS-pairs, we first label AS-pair candidates using dependency parsing and then

filter out non-sentiment-carrying candidates using (ST ). This procedure is explained in
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detail by pseudocode of Algorithm 1.

Algorithm 1: AS-pairs Generation

Input: Sentiment terms ST , dependency parser DepParser, threshold c.

Output: AS-pairs

Data: Review-rating corpus R; WordNet with synsets.

/* Initialize AS-pair candidate and AS-pair sets */

1 AS-cand, AS-pairs ←− ∅, ∅
/* Extract AS-pair candidates. */

2 foreach review r ∈ R do

3 dep-graphr ←−DepParser(r)

4 foreach dependency relation rdep in dep-graphr do

5 if rdep is nsubj+acomp or rdep is amod then

6 Add corresponding (noun, adj.) tuple to AS-cand (Figure 6.2)

/* Merge synonym aspects */

7 foreach (noun,adj.) tuple ∈ AS-cand do

8 MergeSynAspect(synsets, noun)

/* Filter out non-AS-pairs by ST and frequency threshold c. */

9 foreach (noun, adj.) tuple ∈ AS-cand do

10 if adj.∈ ST and Freq[noun] > c then

11 Add (noun, adj.) to AS-pairs

12 return AS-pairs

Dependency parsing extracts the syntactic relations between the words. Some nouns

are considered potential aspects and are modified by adjectives with two types of depen-

dency relations shown in Figure 6.2: amod and nsubj+acomp. The pairs of nouns and the

modifying adjectives compose the AS-pair candidates. Similar techniques are widely used

in unsupervised aspect extraction models [TC20, DS19]. AS-pair candidates are noisy since
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not all adjectives in it bear sentiment inclination. ST comes into use to filter out non-

sentiment-carrying AS-pair candidates whose adjective is not in ST . The left candidates

form the AS-pair set. Admittedly, the dependency-based extraction for (noun, adj.) pairs

is suboptimal and causes missing aspect or sentiment terms. An implicit module is designed

to remedy this issue. Open domain AS-pair co-extraction is blocked by the lacking of public

labeled data and is left for future work.

We introduce ItemTok as a special aspect token of the nsubj+acomp rule where nsubj

is a pronoun of the item such as it and they. Infrequent aspect terms with less than c

occurrences are ignored to reduce sparsity. We use WordNet synsets [Mil95] to merge the

synonym aspects. The aspect with the most synonyms is selected as the representative of

that aspect set.

Discussion ASPE is different from Aspect Extraction (AE) [TC20, LLL19, WHZ20, MLW19,

AL18, XLS18, SXL17, HLN17] which extracts aspects only and infers sentiment polarities in

{pos, neg, (neu)}. AS-pair co-extraction, however, offers more diversified emotional signals

than the bipolar sentiment measurement of AE.

6.2.3 APRE

APRE, depicted in Figure 6.3, predicts ratings given reviews and the corresponding AS-pairs.

It includes a user review encoder in the orange dashed box and an item review encoder in the

top blue box, each containing an implicit channel (left) and an aspect-based explicit channel

(right).

APRE first encodes language into embeddings, then learns explicit and implicit features,

and finally computes the score regression. One distinctive feature of APRE is that it explic-

itly models the aspect information by incorporating a da-dimensional aspect representation

ai ∈ Rda in each side of the substructures for review encoding. Let A(u) = {a(u)
1 , . . . ,a

(u)
k }

denotes the k aspect embeddings for users and A(t) for items. k is decided by the number
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amod dependency relation:

Amazing sound and quality, all in one headset.

amod cc

conj

prep

advmod

pobj

nummod

Extracted AS-pair candidates:

(sound, amazing), (quality, amazing)

nsubj+acomp dependency relation:

Sound quality is superior and comfort is excellent.

compound nsubj acomp

cc

conj

nsubj acomp

Extracted AS-pair candidates:

(Sound quality, superior), (comfort, excellent)

Figure 6.2: Two dependency-based rules for AS-pair candidates extraction. Effective depen-

dency relations and aspects and sentiments candidates are highlighted.

of unique aspects in the AS-pair set.

Language encoding The reviews are encoded into low-dimensional token embedding se-

quences by a fixed pre-trained BERT [DCL19], a powerful transformer-based contextualized

language encoder. For each review r in Ru or Rt, the resulting encoding H0 ∈ R(|r|+2)×de

consists of (|r|+2) de-dimensional contextualized vectors: H0 = {h0
[CLS],h

0
1, . . . ,h

0
|r|,h

0
[SEP]}.

[CLS] and [SEP] are two special tokens indicating starts and separators of sentences. We

use a trainable linear transformation, h1
i = WT

adh
0
i + bad, to adapt the BERT output repre-

sentation H0 to our task as H1 where Wad ∈ Rde×df , bad ∈ Rdf , and df is the transformed

dimension of internal features. BERT encodes the token semantics based upon the context
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which resolves the polysemy of certain sentiment terms, e.g., “cheap” is positive for price

but negative for quality. This step transforms the sentiment encoding to attention-property

modeling.

Explicit aspect-level attitude modeling For aspect a in the k total aspects, we pull out

all the contextualized representations of the sentiment words1 that modify a, and aggregate

their representations to a single embedding of aspect a in r as

h(a)
u,r =

∑
h1

j , wj ∈ ST ∩ r and wj modifies a.

An observation by [CSW20] suggests that users tend to use semantically consistent words

for the same aspect in reviews. Therefore, sum-pooling can nicely handle both sentiments

and frequencies of term mentions. Aspects that are not mentioned by r will have h(a)
u,r = 0.

To completely picture user u’s attentions to all aspects, we aggregate all reviews from u,

i.e. Ru, using review-wise aggregation weighted by α
(a)
u,r given in the equation below. α

(a)
u,r

indicates the significance of each review’s contribution to the overall understanding of u’s

attention to aspect a

α(a)
u,r =

exp(tanh(wT
ex[h

(a)
u,r;a

(u)]))∑
r′∈Ru exp(tanh(wT

ex[h
(a)
u,r′ ;a

(u)]))
,

where [·; ·] denotes the concatenation of tensors. wex ∈ R(df+da) is a trainable weight. With

the usefulness distribution of α
(a)
u,r, we aggregate the h(a)

u,r of r ∈ Ru by weighted average

pooling:

g(a)
u =

∑
r∈Ru

α(a)
u,rh

(a)
u,r.

Now we obtain the user attention representation for aspect a, g
(a)
u ∈ Rdf . We use Gu ∈

Rdf×k to denote the matrix of g
(a)
u . The item-tower architecture is omitted in Figure 6.3

since the item property modeling shares the identical computing procedure. It generates

1BERT uses WordPiece tokenizer that can break an out-of-vocabulary word into shorter word pieces. If
a sentiment word is broken into word pieces, we use the representation of the first word piece produced.
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Figure 6.3: Pipeline of Attention-Property-aware Rating Estimator (APRE). Item encoder

details are omitted since it is identical to the user encoder.

95



the item property representations g
(a)
t of Gt. Mutual attention [LLD19, TLH18, DNC20] is

not utilized since the generation of user attention encodings Gu is independent to the item

properties and vice versa.

Implicit review representation It is acknowledged by existing works shown in Sec-

tion 2.1.6 and Section 2.1.7 that implicit semantic modeling is critical because some emotions

are conveyed without explicit sentiment word mentions. For example, “But this one feels like

a pillow . . . ” in R3 of Table 6.1 does not contain any sentiment tokens but expresses a strong

satisfaction of the comfortableness, which will be missed by the extractive annotation-based

ASPE.

In APRE, we combine a global feature h1
[CLS], a local context feature hcnn ∈ Rnc learned

by a convolutional neural network (CNN) of output channel size nc and kernel size nk with

max pooling, and two token-level features, average and max pooling of H1 to build a com-

prehensive multi-granularity review representation vu,r:

vu,r =
[
h1

[CLS];hcnn;MaxPool(H1);AvgPool(H1)
]
,

hcnn = MaxPool(ReLU(ConvNN 1D(H1))).

We apply review-wise aggregation without aspects for latent review embedding vu

βu,r =
exp(tanh(wT

imvu,r))∑
r′∈Ru exp(tanh(wT

imvu,r′))
,

vu =
∑
r∈Ru

βu,rvu,r,

where βu,r is the counterpart of α
(a)
u,r in the implicit channel, wim ∈ Rdim is a trainable

parameter, and dim = 3df + nc. Using similar steps, we can also obtain vt for the item

implicit embeddings.
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Rating regression and optimization Implicit features vu and vt and explicit features

Gu and Gt compose the input to the rating predictor to estimate the score su,t by

ŝu,t = bu + bt︸ ︷︷ ︸
biases

+Fim([vu;vt])︸ ︷︷ ︸
implicit feature

+ ⟨γ,Fex([Gu;Gt])⟩︸ ︷︷ ︸
explicit feature

.

Fim : R2dim → R and Fex : R2df×k → Rk are multi-layer fully-connected neural networks

with ReLU activation and dropout to avoid overfitting. They model user attention and

item property interactions in explicit and implicit channels, respectively. ⟨·, ·⟩ denotes inner-

product. γ ∈ Rk and {bu, bt} ∈ R are trainable parameters. The optimization function of

the trainable parameter set Θ with an L2 regularization weighted by λ is

J(Θ) =
∑

ru,t∈R

(su,t − ŝu,t)
2 + L2-reg(λ).

J(Θ) is optimized by back-propagation learning methods such as Adam [KB14].

6.3 Experiments

6.3.1 Experimental Setup

Datasets We use seven datasets from Amazon Review Datasets [HM16]2 including Au-

toMotive (AM), Digital Music (DM), Musical Instruments (MI), Pet Supplies (PS), Sport

and Outdoors (SO), Toys and Games (TG), and Tools and Home improvement (TH). Their

statistics are shown in Table 6.2.

We use 8:1:1 as the train, validation, and test ratio for all experiments. Users and items

with less than 5 reviews and reviews with less than 5 words are removed to reduce data

sparsity.

Baseline models Thirteen baselines in traditional and deep learning categories are com-

pared with the proposed framework. The pre-deep learning traditional approaches predict

2https://jmcauley.ucsd.edu/data/amazon
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Dataset Abbr. #Reviews #Users #Items Density Ttl. #W #R/U #R/T #W/R

AutoMotive AM 20,413 2,928 1,835 3.419×10−3 1.77M 6.274 10.011 96.583

Digital Music DM 111,323 14,138 11,707 6.053×10−4 5.69M 7.087 8.558 56.828

Musical Instruments MI 10,226 1,429 900 7.156×10−3 0.96M 6.440 10.226 103.958

Pet Supplies PS 157,376 19,854 8,510 8.383×10−4 14.23M 7.134 16.644 100.469

Sports and Outdoors SO 295,434 35,590 18,357 4.070×10−4 26.38M 7.471 14.484 99.199

Toys and Games TG 167,155 19,409 11,924 6.500×10−4 17.16M 7.751 12.616 114.047

Tools and Home improv. TH 134,129 16,633 10,217 7.103×10−4 15.02M 7.258 11.815 124.429

Table 6.2: The statistics of the seven real-world datasets. (W: Words; U: Users; T: iTems;

R: Reviews.)

ratings solely based upon the entity IDs. Table 6.3 introduces their basic profiles which are

extended in Section 6.5.2†. Specially, AHN-B refers to AHN using pretrained BERT as the

input embedding encoder. It is included to test the impact of the input encoders.

Evaluation metric We use Mean Square Error (MSE) for performance evaluation. Given

a test set Rtest, the MSE is defined by

MSE =
1

|Rtest|
∑

(u,r)∈Rtest

(ŝu,r − su,r)
2.

Reproducibility We provide instructions to reproduce AS-pair extraction of ASPE and

rating prediction of baselines and APRE in Section 6.5.1†. The source code of our models is

publicly available on GitHub3.

6.3.2 AS-pair Extraction of ASPE

We present the extraction performance of unsupervised ASPE. The distributions of the fre-

quencies of extracted AS-pairs in Figure 6.5 follow the trend of Zipf’s Law with a deviation

3https://github.com/zyli93/ASPE-APRE
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Model Reference Cat. U/T ID Review

MF - Trad. ✓

WRMF [HKV08] Trad. ✓

FM [Ren10] Trad. ✓

ConvMF [KPO16] Deep ✓ ✓

NeuMF [HC17] Deep ✓

DeepCoNN [ZNY17] Deep ✓

D-Attn [SHY17] Deep ✓

NARRE [CZL18] Deep ✓ ✓

ANR [CZJ18] Deep ✓

MPCN [TLH18] Deep ✓ ✓

DAML [LLD19] Deep ✓

AHN [DNC20] Deep ✓ ✓

AHN-B Same as AHN Deep ✓ ✓

Table 6.3: Compared baselines with inputs marked by “✓”. “U” and “T” denote Users and

iTems.

common to natural languages [Li92], meaning that ASPE performs consistently across do-

mains. We show the qualitative results of term extraction separately.

Sentiment terms Generally, the AS-pair statistics given in Table 6.4 on different datasets

are quantitatively consistent with the data statistics in Table 6.2 regardless of domain.

Figure 6.4 is a Venn diagram showing the sources of the sentiment terms extracted by ASPE

from AM. All three methods are efficacious and contribute uniquely, which can also be verified

by Table 6.5.

We provide Table 6.5 ancillary to the Venn diagram in Figure 6.4 and the corresponding
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Data c #AS-pairs/R #A/U #A/T #A #S

AM 50 3.076 12.681 16.284 291 8,572

DM 100 1.973 5.792 8.380 296 9,781

MI 50 3.358 12.521 16.323 167 8,143

PS 150 3.445 14.886 23.893 529 12,563

SO 250 4.078 19.401 28.314 747 17,195

TG 150 4.482 19.053 26.657 680 13,972

TH 150 5.235 22.833 29.816 659 14,145

Table 6.4: Statistics of unsupervised AS-pair extraction. c denotes frequency threshold.

conclusion in Section 6.3.2. We use P (PMI), N (Neural network), and L (Lexicon) to denote

the produced sentiment term sets of the three methods, respectively. Operator \ denotes

set minus, e.g., P ∩ L\N refers to the set of terms that are in both P and L but not in N .

All sets contain commonly-used sentimental adjectives that can modify automotive items.

Table 6.5 illustrates the contributions of the three distinct sentiment term extraction methods

discussed in Section 6.2.2, namely PMI-based method, neural network-based method, and

lexicon-based method. All three methods can extract useful sentiment-carrying words in the

domain of Automotive. Their contributions cannot overwhelm each other, which strongly

explains the necessity of the unsupervised methods for term extraction in the domain-general

usage scenario. Altogether they provide comprehensive coverage of sentiment terms in AM.

Aspect terms Table 6.6 presents the most frequent aspect terms of all datasets. ItemTok

is ranked top as users tend to describe overall feelings about items. Domain-specific terms

(e.g., car in AM) and general terms (e.g., price, quality, and size) are intermingled illustrating

the comprehensive coverage and the high accuracy of the result of ASPE.
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P only N only L only P ∩N\L P ∩ L\N N ∩ L\P P ∩N ∩ L

countless therapeutic fateful ultimate uplifting dazzling amazing

dreamy vital poorest new concerned costly beautiful

edgy uncanny tedious rhythmic joyful devastated classic

entire adept unwell generic bombastic faster delightful

forgettable fulfilling joyous atmospheric unforgettable graceful enjoyable

melodious attracted illegal greater phenomenal affordable fantastic

moral celestial noxious supernatural inventive supreme gorgeous

propulsive harmonic lovable contemporary classy robust horrible

tasteful newest crappy surprising insightful useless inexpensive

uninspired enduring arduous tremendous masterful unpredictable magnificent

Table 6.5: Example sentiment terms of each part of the Venn diagram (Figure 6.4) from AM

dataset.
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AM DM MI PS SO TG TH

ItemTok song ItemTok ItemTok ItemTok ItemTok ItemTok

product ItemTok sound dog knife toy light

time album guitar food quality game tool

car music string cat product piece quality

look time quality toy size quality price

price sound tone time price child product

quality voice price product look color bulb

light track pedal price bag part battery

oil lyric tuner treat fit fun size

battery version cable water light size flashlight

Table 6.6: High frequency aspects of the corpora.

6.3.3 Rating Prediction of APRE

Comparisons with baselines For the task of review-based rating prediction, a percentage

increase above 1% in performance is considered significant [CZJ18, TLH18]. According to

Table 6.74, our model outperforms all baseline models including the AHN-B on all datasets

by a minimum of 1.337% on MI and a maximum of 4.061% on TG, which are significant

improvements. It demonstrates (1) the superior capability of our model to make accurate

rating predictions in different domains (Ours vs. the rest); (2) the performance improvement

is NOT because of the use of BERT (Ours vs. AHN-B). AHN-B underperforms the original

word2vec-based AHN5 because the weights of word2vec vectors are trainable while the BERT

embeddings are fixed, which reduces the parameter capacity. Within baseline models, deep-

learning-based models are generally stronger than entity ID-based traditional methods and

4All reported improvements over the best baselines are statistically significant with p-value < 0.01.

5The authors of AHN also confirmed this observation.
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recent ones tend to perform better.

Ablation study Ablation studies answer the question of which channel, explicit or im-

plicit, contributes to the superior performance and to what extent? We measure their contri-

butions by rows of w/o EX and w/o IM in Table 6.7. w/o EX presents the best MSEs of an

APRE variant without explicit features under the default settings. The impact of AS-pairs

is nullified. w/o IM, in contrast, shows the best MSEs of an APRE variant only leveraging

the explicit channel while removing the implicit one (without implicit). We observe that the

optimal performances of the single-channel variants all fall behind those of the dual-channel

model, which reflects positive contributions from both channels. w/o IM has lower MSEs

than w/o EX on several datasets showing that the explicit channel can supply comparatively

more performance improvement than the implicit channel. It also suggests that the costly

latent review encoding can be less effective than the aspect-sentiment level user and item

profiling, which is a useful finding.

Hyper-parameter sensitivity A number of hyper-parameter settings are of interest,

e.g., dropout, learning rate (LR), internal feature dimensions (da, df , nc, and nk), and

regularization weight λ of the L2-reg in J(Θ). We run each set of experiments on sensitivity

search 10 times and report the average performances.

We tune dropout rate in [0, 0.1, 0.2, 0.3, 0.4, 0.5] and LR6 in [0.0001, 0.0005, 0.001, 0.005, 0.01]

with other hyper-parameters set to default, and report in Figure 6.6 the minimum MSEs and

the epoch numbers (Ep.) on AM. For dropout, we find the balance of its effects on avoid-

ing overfitting and reducing active parameters at 0.2. Larger dropouts need more training

epochs. For LR, we also target a balance between training instability of large LRs and over-

fitting concern of small LRs, thus 0.001 is selected. Larger LRs plateau earlier with fewer

6The reported LRs are initial since Adam and a LR scheduler adjust it dynamically along the training.
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Figure 6.6: Hyper-parameter searching and sensitivity - Part 1.

epochs while smaller LRs later with more.

Figure 6.7 analyzes hyper-parameter sensitivities to changes on internal feature dimen-

sions (da, df , and nc), CNN kernel size nk, and λ of L2-reg weight. We always set df = da = nc

for the consistency of internal feature dimensions. For (df , da, nc) in Figure 6.7a, we choose

values from [50, 100, 150, 200] since the output dimension of the BERT encoder is 256. The

best performance occurs at 200. The training time spent is stable across different values.

CNN kernel size nk in Figure 6.7b varies in [4, 6, 8, 10]. We observe that generally larger

kernel sizes may in turn hurt the performance as the local features are fused with larger

sequential contexts in natural language. The epoch numbers are stable as well. Figure 6.7c

demonstrates how λ affects the performance. As λ becomes larger, the “resistance” against

the loss minimization increases so that the training epoch number increases. However, there

are no clear trends of performance fluctuation meaning that the sensitivity to L2-reg weight

is insignificant.

Finally, we evaluate the effect of adding non-linearity to embedding adaptation function

(EAF) mentioned in Section 6.2.3 which transforms H0 to H1 by h1
i = σ

(
WT

adh
0
i + bad

)
.
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We try LeakyReLU, tanh, and identity functions for σ(·) and report the performances in

Figure 6.7d. Without non-linear layers, APRE is able to achieve the best results whereas

non-linearity speeds up the training.

Efficiency A brief run time analysis of APRE is given in Table 6.8. The model can run

fast with all data in GPU memory such as AM and MI denoted by “*”, which demonstrates

the efficiency of our model and the room for improvement on the run time of datasets that

cannot fit in the GPU memory. Other datasets are run on CPU memory. The efficiency of

ASPE is less critical since it only runs once for each dataset.

6.3.4 Case Study for Interpretation

Finally, we showcase an interpretation procedure of the rating estimation for an instance in

AM: how does APRE predict u∗’s rating for a smart driving assistant t∗ using the output AS-

pairs of ASPE? We select seven example aspect categories with all review snippets mentioning

those categories. Each category is a set of similar aspect terms, e.g., {look, design} and {beep,

sound}. Without loss of generality, we refer to the categories as aspects. Table 6.9 presents

the aspects and review snippets given by u∗ and received by t∗ with AS-pairs annotations.

Three aspects, {battery, install, look}, are shared (yellow rows). Each side has two unique

aspects never mentioned by the reviews of the other side: {materials, smell} of u∗ (green

rows) and {price, sound} of t∗ (blue rows).

APRE measures the aspect-level contributions of user-attention and item-property inter-

actions by the last term of su,t prediction, i.e., ⟨γ,Fex([Gu;Gt])⟩. The contribution on the

ith aspect is calculated by the ith dimension of γ times the ith value of Fex([Gu;Gt]) which

is shown in Table 6.10. The top two rows summarize the attentions of u∗ and the properties

of t∗. Inferred Impact states the interactional effects of user attentions and item properties

based on our assumption that attended aspects bear stronger impacts to the final predic-

tion. On the overlapping aspects, the inferior property of battery produces the only negative
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Figure 6.7: Hyper-parameter sensitivity and searching - Part 2.
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score (-0.008) whereas the advantages on install and look create positive scores (0.019 and

0.015), which is consistent with the inferred impact. Other aspects, either unknown to user

attentions or to item properties, contribute relatively less: t∗’s unappealing price accounts

for the small score 0.009 and the mixture property of sound accounts for the 0.006.

This case study demonstrates the usefulness of the numbers that add up to ŝu,t. Al-

though small in scale, they carry significant information of valued or disliked aspects in u∗’s

perception of t∗. This process of decomposition is a great way to interpret model prediction

on an aspect-level granularity, which is a capacity that other baseline models do not enjoy.

In Section 6.5.3†, another case study indicates that a certain imperfect item property

without user attentions only inconsiderably affects the rating although the aspect is men-

tioned by the user’s reviews.

6.4 Summary

In this chapter, we propose a tightly coupled two-stage review-based rating predictor, con-

sisting of an Aspect-Sentiment Pair Extractor (ASPE) and an Attention-Property-aware

Rating Estimator (APRE). ASPE extracts aspect-sentiment pairs (AS-pairs) from reviews

and APRE learns explicit user attentions and item properties as well as implicit sentence

semantics to predict the rating. Extensive quantitative and qualitative experimental re-

sults demonstrate that ASPE accurately and comprehensively extracts AS-pairs without us-

ing domain-specific training data and APRE outperforms the state-of-the-art recommender

frameworks and explains the prediction results taking advantage of the extracted AS-pairs.

Several challenges are left open such as fully or weakly supervised open domain AS-pair

extraction and end-to-end design for AS-pair extraction and rating prediction. We leave

these problems for future work.
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6.5 Supplementary Materials

This section exhibits additional content regarding the experiments such as a detailed exper-

imental setup, the instructions to reproduce the baselines and our model, and another case

study.

6.5.1 Reproducibility of ASPE and APRE

ASPE+APRE is implemented in Python (3.6.8) with PyTorch (1.5.0) and run with a single

12GB Nvidia Titan Xp GPU. The code is available on GitHub7 and comprehensive instruc-

tions on how to reproduce our model are also provided. The default hyper-parameter settings

for the results in Section 6.3.3 are as follows:

ASPE In the AS-pair extraction stage, we set the size of ctx to 5 and the PMI term quota

q to 400 for both polarities. The counting thresholds c for different datasets are given in

Table 6.4. SDRN [CLW20] utilized for term extraction is trained under the default settings

in the source code8 with the SemEval 14/15 datasets mentioned in Section 2.1.5. spaCy9, a

Python package specialized in NLP algorithms, provides the dependency parsing pipeline.

APRE In the rating prediction stage, we use a pre-trained BERT model with 4 layers, 4

heads, and 256 hidden dimensions (“BERT-mini”) for manageable GPU memory consump-

tion. The BERT parameters (or weights) are fixed. The BERT tokenizer and model are

loaded from the Hugging Face model repository10. The initial learning rate is set to 0.001

with two adjusting mechanisms: (1) the Adam optimizer (β1, β2) = (0.9, 0.999) (the default

7https://github.com/zyli93/ASPE-APRE

8https://github.com/chenshaowei57/SDRN

9https://spacy.io

10https://huggingface.co/google/bert_uncased_L-4_H-256_A-4

108

https://github.com/zyli93/ASPE-APRE
https://github.com/chenshaowei57/SDRN
https://spacy.io
https://huggingface.co/google/bert_uncased_L-4_H-256_A-4


setting in PyTorch); (2) a learning rate scheduler, StepLR, with step size as 3 and gamma as

0.8. Dropout is set to 0.2 for both towers. df , da, and nc are all set to 200 for consistency.

The CNN kernel size is 4. The L2-reg weight, λ, is set globally to 0.0001. We use a clamp

function to constrain the predictions in the interval (1.0, 5.0).

6.5.2 Baseline information of APRE

We introduce baseline models mentioned in Table 6.3 including the source code of the soft-

ware and the key parameter settings. For the fairness of comparison, we only compare the

models that have open-source implementations.

MF, WRMF, FM, and NeuMF11 Matrix factorization views user-item ratings as a

matrix with missing values. By factorizing the matrix with the known values, it recovers the

missing values as predictions. Weighted Regularized MF [HKV08] assigns different weights

to the values in the matrix. Factorization machines [Ren10] consider additional second-order

feature interactions of users and items. Neural MF [HLZ17] is a combination of generalized

MF (GMF) and a multilayer perceptron (MLP). Hyper-parameter settings: The number of

factors is 200. Regularization weight is 0.0001. We run for 50 epochs with a learning rate of

0.01 with the exception of MI that uses a learning rate of 0.02 for MF and FM. The dropout

of NeuMF is set to 0.2.

ConvMF A CNN-based model proposed by [KPO16]12 that utilizes a convolutional

neural network (CNN) for feature encoding of text embeddings. Hyper-parameter settings:

The regularization factor is 10 for the user model and 100 for the item model. We used a

dropout rate of 0.2.

ANR Aspect-based Neural Recommender [CZJ18]13 first proposes aspect-level represen-

11Source code of MF, WRMF, FM, and NeuMF is available in DaisyRec, an open-source Python Toolkit:
https://github.com/AmazingDD/daisyRec.

12https://github.com/cartopy/ConvMF.

13https://github.com/almightyGOSU/ANR.
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tations of reviews but its aspects are completely latent without constraints or definitions on

the semantics. Hyper-parameter settings: L2 regularization is 1 × 10−6. Learning rate is

0.002. Dropout rate is 0.5. We used 300-dimensional pretrained Google News word embed-

dings.

DeepCoNN DeepCoNN [ZNY17]14 separately encodes user reviews and item reviews

by complex neural networks. Hyper-parameter settings: Learning rate is 0.002 and dropout

rate is 0.5. Word embedding is the same as ANR.

NARRE A model similar to DeepCoNN enhanced by attention mechanism [CZL18].

Attentional weights are assigned to each review to measure its importance. Hyper-parameter

settings: L2 regularization weight is 0.001 Learning rate is 0.002. Dropout rate is 0.5. We

used the same word embeddings as described for ANR.

D-Attn15 Dual attention-based model [SHY17] utilizes CNN as text encoders and builds

local- and global-attention (dual attention) for user and item reviews. Hyper-parameter

settings: In accordance with the paper, we used 100-dimensional word embedding. The

factor number is 200. Dropout rate is 0.5. Learning rate and regularization weight are both

0.001.

MPCN Multi-Pointer Co-Attention Network [TLH18] selects a useful subset of reviews

by pointer networks to build the user profile for the current item. Hyper-parameter settings

are the same as D-Attn except that the dropout is 0.2.

DAML DAML [LLD19] forces encoders of the user and item reviews to interchange

information in the fusion layer with local- and mutual- attention so that the encoders can

mutually guide the representation generation. Hyper-parameter settings are the same as

MPCN.

14Source code of DeepCoNN and NARRE: https://github.com/chenchongthu.

15Source code of D-Attn, MPCN, and DAML: https://github.com/ShomyLiu/Neu-Review-Rec
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AHN Asymmetrical Hierarchical Networks [DNC20]16 that guide the user representation

generation using item side asymmetric attentive modules so that only relevant targets are

significant. Experiments are reproduced following the settings in the paper.

6.5.3 Case Study II for Interpretation

Finally, we show another case study from AM dataset using the same attention-property-

score visualization schema as Section 6.3.4. In this case, our model is predicting the score

user u∗ will give to a color and clarity compound for vehicle surface t∗. The mentioned

aspects of u∗ and the properties of t∗ are given in Table 6.11 including three overlapping

aspects (quality, look, cleaning) and one unique aspect of each side (size of u∗ and smell of

t∗). A summarization table, Table 6.12, shows the summarized attentions and properties,

the inferred impacts, and the corresponding score components of ⟨γ,Fex([Gu;Gt])⟩.

In this case study, we can observe the interesting phenomenon also exemplified in Ta-

ble 6.1 by the contrast between R1 and R3 that the aspect look, which has been mentioned

by u∗ and reviewed negatively as a property of t∗ (“strange yellow color”), only produces an

inconsiderable bad effect (-0.002) on the final score prediction. This indicates that the im-

perfect look (or color) of the item, although also mentioned by u∗ in his/her reviews, receives

little attention from u∗ and thus poses a tiny negative impact on the predicted rating deci-

sion of the user. The other two overlapping aspects show intuitive correlations between their

inferred impacts and the scores. The unique aspects, size and smell, have relatively small

influences on the prediction because they are either not attended aspects or not mentioned

properties.

It is also notable that some sentences that carry strong emotions may contain few explicit

sentiment mentions, e.g., “But for an all in one cleaner and wax I think this outperforms

most.” It backs the design of APRE which carefully takes implicit sentiment signals into

16https://github.com/Moonet/AHN
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consideration, and also calls for an advanced way for aspect-based sentiment modeling beyond

term level. Different proportions of such sentences in different datasets may account for the

inconsistency of better performances between the two variants of the ablation study.
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Models AM DM MI PS SO TG TH

Traditional Models

MF 1.986 1.715 2.085 2.048 2.084 1.471 1.631

WRMF 1.327 0.537 1.358 1.629 1.371 1.068 1.216

FM 1.082 0.436 1.146 1.458 1.212 0.922 1.050

Deep Learning-based Models

ConvMF 1.046 0.407 1.075 1.458 1.026 0.986 1.104

NeuMF 0.901 0.396 0.903 1.294 0.893 0.841 1.072

D-Attn 0.816 0.403 0.835 1.264 0.897 0.887 0.980

D-CNN 0.809 0.390 0.861 1.250 0.894 0.835 0.975

NARRE 0.826 0.374 0.837 1.425 0.990 0.908 0.958

MPCN 0.815 0.447 0.842 1.300 0.929 0.898 0.969

ANR 0.806 0.381 0.845 1.327 0.906 0.844 0.981

DAML 0.829 0.372 0.837 1.247 0.893 0.820 0.962

AHN-B 0.810 0.385 0.840 1.270 0.896 0.829 0.976

AHN 0.802 0.376 0.834 1.252 0.887 0.822 0.967

Our Models and Percentage Improvements

Ours 0.791 0.359 0.823 1.218 0.863 0.788 0.936

∆(%) 1.390 3.621 1.337 2.381 2.784 4.061 2.350

Val. 0.790 0.362 0.821 1.216 0.860 0.790 0.933

Ablation Studies

w/o EX 0.814 0.379 0.833 1.244. 0.882 0.796 0.965

w/o IM 0.798 0.374 0.863 1.226 0.873 0.798 0.956

Table 6.7: MSE of baselines, our model (Ours for test and Val. for validation), and variants.

The row of ∆ calculates the percentage improvements over the best baselines.
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AM DM MI PS SO TG TH

127s∗ 31min 90s∗ 36min 90min 51min 35min

Table 6.8: Per epoch run time of APRE on the seven datasets.
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From reviews given by user u∗. All aspects attended (✓).

battery [To t1] After leaving this attached to my car for two days of non-use I have a dead

battery. Never had a dead battery . . . , so I am blaming this device.

install [To t2] This was unbelievably easy to install. I have done . . . . The real key . . . the

installation is so easy. [To t3] There were many installation options, but once . . . , they

clicked on easily.

look [To t3] It was not perfect and not shiny, but it did look better. [To t4] It takes some

elbow grease, but the results are remarkable.

material [To t5] The plastic however is very thin and the cap is pretty cheap. [To t6] Great

value. . . . . They are very hard plastic, so they don’t mark up panels.

smell [To t7] This has a terrible smell that really lingers awhile. It goes on green. . . .

From reviews received by item t∗.

battery [From u1] The reason this won’t work on an iPhone 4 or . . . because it uses low power

Bluetooth, . . . . (✗)

install [From u2] Your mileage and gas mileage and cost of fuel is tabulated for each trip-

Installation is pretty simple - but it . . . . (✓)

look [From u3] Driving habits, fuel efficiency, and engine health are nice features. The overall

design is nice and easy to navigate. (✓)

price [From u4] In fact, there are similar products to this available at a much lower price

that do work with . . . (✗)

sound [From u5] The Link device makes an audible sound when you go over 70 mpg, brake

hard, or accelerate too fast. (✓) [From u6] Also, the beep the link device makes

. . . sounds really cheapy. (✗)

Table 6.9: Examples of reviews given by u∗ and received by t∗ for Case Study I with Aspect-

Sentiment pair mentions as well as other sentiment evidences on seven example aspects.
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Aspects material smell battery install look price sound

Attn. of u∗ ✓ ✓ ✓ ✓ ✓ n/a n/a

Prop. of t∗ n/a n/a ✗ ✓ ✓ ✗ ✓/✗

Inferred Impact Unk. Unk. Neg. Pos. Pos. Unk. Unk.

γiFex(·)i (×10−2) 1.0 0.8 -0.8 1.9 1.5 0.9 0.6

Table 6.10: Attentions and properties summaries, inferred impacts, and the learned aspect-

level contributions for Case Study I.
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From reviews given by user u∗.

quality [To t1] As soon as I poured it into the bucket and started getting ready, I can tell the

product was already better quality than my previous washing liquid.

look [To t4] I bought [this item] because I had neglected my paint job for too long. . . . it made

my black paint job look dull.

cleaning [To t2] . . . I was able to dry my car in record time and not have any water marks left on

the paint. I just slide the towel over any parts with water and it left no trace of water and

a clean shine to my car. [To t3] I had completely neglected these areas, except for minor

cleaning and protection. Once I applied it, the difference was night and day!

size [To t6] The size was great as well, allowing me to get larger areas in an easier amount of

time so that I could wash my car quicker than I have in the past.

From reviews received by item t∗.

quality [From u1] Adding too little soap will increase the tendency . . . This thick, high quality

soap helps prevent against that. (✓) [From u2] . . . Cons: A bit pricey, but quality

matters, and this product absolutely has it. Worth every cent for sure! (✓)

look [From u3] I was a bit disappointed. It is a strange yellow color and it is thick and I

personally did not care for the smell. (✗)

cleaning [From u4] As far as cleaning power it does fairly good, . . . The best cleaning of a car is

in steps, but for an all in one cleaner and wax I think this outperforms most. (✓)

smell [From u5] Just giving some useful feedback about the truth behind the product . . . that

it smells good. [From u6] I believe this preserves the wax layer longer . . . This is much

thicker than the [some brand] soap, and has a very pleasant smell to it. (✓)

Table 6.11: Examples of reviews given by u∗ and received by t∗ for Case Study II with As-

pect-Sentiment pair mentions as well as other sentiment evidences on five example aspects.
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Aspects size quality look cleaning smell

Attn. of u∗ ✓ ✓ – ✓ n/a

Prop. of t∗ n/a ✓ ✗ ✓ ✓

Inferred Impact Unk. Pos. Neg. Pos. Unk.

γiFex(·)i (×10−2) 0.5 2.9 -0.2 1.4 0.3

Table 6.12: Attentions and properties summaries, inferred impacts, and the learned aspect-

level contributions on the score prediction for Case Study II.
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CHAPTER 7

Classifying Comparative Statements in Reviews

In addition to the descriptive statements in reviews which can be processed by the ASPE-

APRE framework, comparative statements are left unattended. We study Comparative

Preference Classification (CPC) which aims at predicting whether a preference comparison

exists between two entities in a given sentence and, if so, which entity is preferred over the

other. High-quality CPC models can significantly benefit applications such as comparative

question answering and review-based recommendation. Among the existing approaches, non-

deep learning methods suffer from inferior performances. The state-of-the-art graph neural

network-based ED-GAT [MMW20] only considers syntactic information while ignoring the

critical semantic relations and the sentiments to the compared entities. We propose Senti-

ment Analysis Enhanced COmparative Network (SAECON) which improves CPC accuracy

with a sentiment analyzer that learns sentiments to individual entities via domain adaptive

knowledge transfer. Experiments on the CompSent-19 [PBF19] dataset present a significant

improvement on the F1 scores over the best existing CPC approaches.
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7.1 Motivation and Background

Comparative preference classification (CPC) is a natural language processing (NLP) task

that predicts whether a preference comparison exists between two entities in a sentence and,

if so, which entity wins the game. For example, given the sentence: Python is better suited

for data analysis than MATLAB due to the many available deep learning libraries, a decisive

comparison exists between Python and MATLAB and comparatively Python is preferred

over MATLAB in the context.

The CPC task can profoundly impact various real-world application scenarios. Search

engine users may query not only factual questions but also comparative ones to meet their

specific information needs [GMR17]. Recommendation providers can analyze product re-

views with comparative statements to understand the advantages and disadvantages of the

product comparing with similar ones.

Several models have been proposed to solve this problem. [PBF19] first formalize the

CPC problem, build and publish the CompSent-19 dataset, and experiment with numerous

general machine learning models such as Support Vector Machine (SVM), representation-

based classification, and XGBoost. However, these attempts consider CPC as a sentence

classification while ignoring the semantics and the contexts of the entities [MMW20].

ED-GAT [MMW20] marks the first entity-aware CPC approach that captures long-

distance syntactic relations between the entities of interest by applying graph attention

networks (GAT) to dependency parsing graphs. However, we argue that the disadvantages

of such an approach are clear. Firstly, ED-GAT replaces the entity names with “entityA”

and “entityB” for simplicity and hence deprives their semantics. Secondly, ED-GAT has a

deep architecture with ten stacking GAT layers to tackle the long-distance issue between

compared entities. However, more GAT layers result in a heavier computational workload

and reduced training stability. Thirdly, although the competing entities are typically con-

nected via multiple hops of dependency relations, the unordered tokens along the connection
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path cannot capture either global or local high-quality semantic context features.

In this work, we propose a Sentiment Analysis Enhanced COmparative classification

Network (SAECON), a CPC approach that considers not only syntactic but also semantic

features of the entities. The semantic features here refer to the context of the entities from

which a sentiment analysis model can infer the sentiments toward the entities. Specifically,

the encoded sentence and entities are fed into a dual-channel context feature extractor to

learn the global and local context. In addition, an auxiliary Aspect-Based Sentiment Analysis

(ABSA) module is integrated to learn the sentiments towards individual entities which are

greatly beneficial to the comparison classification.

ABSA aims to detect the specific emotional inclination toward an aspect within a sen-

tence [MPC18, HPH19, PO20, CQ20, WSY20]. For example, the sentence I liked the service

and the staff but not the food suggests positive sentiments toward service and staff but a

negative one toward food. These aspect entities, such as service, staff, and food, are studied

individually.

The well-studied ABSA approaches can be beneficial to CPC when the compared enti-

ties in a CPC sentence are considered as the aspects in ABSA. Incorporating the individual

sentiments learned by ABSA methods into CPC has several advantages. Firstly, for a com-

parison to hold, the preferred entity usually receives a positive sentiment while its rival gets

a relatively negative one. These sentiments can be easily extracted by the strong ABSA

models. The contrast between the sentiments assigned to the compared entities provides a

vital clue for an accurate CPC. Secondly, the ABSA models are designed to target the sen-

timents toward phrases, which bypasses the complicated and noisy syntactic relation path.

Thirdly, considering the scarcity of the data resource of CPC, the abundant annotated data

of ABSA can provide sufficient supervision signal to improve the accuracy of CPC.

There is one challenge that blocks the knowledge transfer of sentiment analysis from the

ABSA data to the CPC task: domain shift. Existing ABSA datasets are centered around

specific topics such as restaurants and laptops, while the CPC data has mixed topics [PBF19]
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that are all distant from restaurants. In other words, sentences of ABSA and CPC datasets

are drawn from different distributions, also known as domains. The difference in the dis-

tributions is referred to as a domain shift [GL15, HLN18] and it is harmful to an accurate

knowledge transfer. To mitigate the domain shift, we design a domain adaptive layer to

remove the domain-specific feature such as topics and preserve the domain-invariant fea-

ture such as sentiments of the text so that the sentiment analyzer can smoothly transfer

knowledge from sentiment analysis to comparative classification.

Syntactic GCNBiLSTM

Text Encoding Dependency Parsing

Senti. feature Dom. Cls.

concat concat
CPC Cls. CPC Loss

GRL
…

CPC data
…

ABSA data
or

or

Split to 2

Sentiment Analyser

Domain Loss

ABSA LossSentiment 
Classification

CPC ABSA

CPC: Python is better suited for data analysis than MATLAB … (Python      ; MATLAB      )
ABSA (aux.): The fajitas were great to taste, but not to see. (fajitas     )

softmax

softmax

softmax

CPC global semantic feature
CPC local syntactic feature
Sentiment feature

<latexit sha1_base64="NkraBzhtR/1Zq4vD1wegTQzBlOM=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0s48MqDStWtuXOQVeIVpAoFmoPKV38YsUSiskxQY3qeG1s/pdpyJnBW7icGY8omdIS9jCoq0fjp/NYZOc+UIQkjnZWyZK7+nkipNGYqg6xTUjs2y14u/uf1Ehve+ClXcWJRscWiMBHERiR/nAy5RmbFNCOUaZ7dStiYaspsFk8egrf88ipp12veVa3+cFlt3BZxlOAUzuACPLiGBtxDE1rAYAzP8ApvjnRenHfnY9G65hQzJ/AHzucPJg2NqA==</latexit>e1
<latexit sha1_base64="Wvs5UcsOrFvlU2xdknzt2wlkXVQ=">AAAB73icbVDLSgNBEOz1GddX1KOXwRDwFHaDqMegF48RzAOSZZmd9CZDZh/OzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHcFqeBKO863tba+sbm1Xdqxd/f2Dw7LR8dtlWSSYYslIpHdgCoUPMaW5lpgN5VIo0BgJxjfzvzOE0rFk/hBT1L0IjqMecgZ1UbqVtF3bfTrfrni1Jw5yCpxC1KBAk2//NUfJCyLMNZMUKV6rpNqL6dScyZwavczhSllYzrEnqExjVB5+fzeKakaZUDCRJqKNZmrvydyGik1iQLTGVE9UsveTPzP62U6vPZyHqeZxpgtFoWZIDohs+fJgEtkWkwMoUxycythIyop0yYi24TgLr+8Str1mntZq99fVBo3RRwlOIUzOAcXrqABd9CEFjAQ8Ayv8GY9Wi/Wu/WxaF2zipkT+APr8wdr9I7r</latexit>e2 <latexit sha1_base64="NkraBzhtR/1Zq4vD1wegTQzBlOM=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0s48MqDStWtuXOQVeIVpAoFmoPKV38YsUSiskxQY3qeG1s/pdpyJnBW7icGY8omdIS9jCoq0fjp/NYZOc+UIQkjnZWyZK7+nkipNGYqg6xTUjs2y14u/uf1Ehve+ClXcWJRscWiMBHERiR/nAy5RmbFNCOUaZ7dStiYaspsFk8egrf88ipp12veVa3+cFlt3BZxlOAUzuACPLiGBtxDE1rAYAzP8ApvjnRenHfnY9G65hQzJ/AHzucPJg2NqA==</latexit>e1

<latexit sha1_base64="Wvs5UcsOrFvlU2xdknzt2wlkXVQ=">AAAB73icbVDLSgNBEOz1GddX1KOXwRDwFHaDqMegF48RzAOSZZmd9CZDZh/OzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHcFqeBKO863tba+sbm1Xdqxd/f2Dw7LR8dtlWSSYYslIpHdgCoUPMaW5lpgN5VIo0BgJxjfzvzOE0rFk/hBT1L0IjqMecgZ1UbqVtF3bfTrfrni1Jw5yCpxC1KBAk2//NUfJCyLMNZMUKV6rpNqL6dScyZwavczhSllYzrEnqExjVB5+fzeKakaZUDCRJqKNZmrvydyGik1iQLTGVE9UsveTPzP62U6vPZyHqeZxpgtFoWZIDohs+fJgEtkWkwMoUxycythIyop0yYi24TgLr+8Str1mntZq99fVBo3RRwlOIUzOAcXrqABd9CEFjAQ8Ayv8GY9Wi/Wu/WxaF2zipkT+APr8wdr9I7r</latexit>e2

CPC task, repr. of <latexit sha1_base64="NkraBzhtR/1Zq4vD1wegTQzBlOM=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0s48MqDStWtuXOQVeIVpAoFmoPKV38YsUSiskxQY3qeG1s/pdpyJnBW7icGY8omdIS9jCoq0fjp/NYZOc+UIQkjnZWyZK7+nkipNGYqg6xTUjs2y14u/uf1Ehve+ClXcWJRscWiMBHERiR/nAy5RmbFNCOUaZ7dStiYaspsFk8egrf88ipp12veVa3+cFlt3BZxlOAUzuACPLiGBtxDE1rAYAzP8ApvjnRenHfnY9G65hQzJ/AHzucPJg2NqA==</latexit>e1

CPC task, repr. of 
<latexit sha1_base64="Wvs5UcsOrFvlU2xdknzt2wlkXVQ=">AAAB73icbVDLSgNBEOz1GddX1KOXwRDwFHaDqMegF48RzAOSZZmd9CZDZh/OzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHcFqeBKO863tba+sbm1Xdqxd/f2Dw7LR8dtlWSSYYslIpHdgCoUPMaW5lpgN5VIo0BgJxjfzvzOE0rFk/hBT1L0IjqMecgZ1UbqVtF3bfTrfrni1Jw5yCpxC1KBAk2//NUfJCyLMNZMUKV6rpNqL6dScyZwavczhSllYzrEnqExjVB5+fzeKakaZUDCRJqKNZmrvydyGik1iQLTGVE9UsveTPzP62U6vPZyHqeZxpgtFoWZIDohs+fJgEtkWkwMoUxycythIyop0yYi24TgLr+8Str1mntZq99fVBo3RRwlOIUzOAcXrqABd9CEFjAQ8Ayv8GY9Wi/Wu/WxaF2zipkT+APr8wdr9I7r</latexit>e2

ABSA task repr. of
<latexit sha1_base64="pHdDR6REmoPL7mt9dGEpthB1MDg=">AAAB8nicbVDLSgMxFM3UVx1fVZdugqXgqswUUZdFNy4r2AdMh5JJ77ShmWRIMkIZ+hluXCji1q9x59+YtrPQ1gMJh3Pu5d57opQzbTzv2yltbG5t75R33b39g8OjyvFJR8tMUWhTyaXqRUQDZwLahhkOvVQBSSIO3WhyN/e7T6A0k+LRTFMIEzISLGaUGCsFNRj4rv0aLgwqVa/uLYDXiV+QKirQGlS++kNJswSEoZxoHfheasKcKMMoh5nbzzSkhE7ICAJLBUlAh/li5RmuWWWIY6nsEwYv1N8dOUm0niaRrUyIGetVby7+5wWZiW/CnIk0MyDoclCccWwknt+Ph0wBNXxqCaGK2V0xHRNFqLEpuTYEf/XkddJp1P2reuPhstq8LeIoozN0ji6Qj65RE92jFmojiiR6Rq/ozTHOi/PufCxLS07Rc4r+wPn8AcFKj50=</latexit>e

<latexit sha1_base64="NkraBzhtR/1Zq4vD1wegTQzBlOM=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0s48MqDStWtuXOQVeIVpAoFmoPKV38YsUSiskxQY3qeG1s/pdpyJnBW7icGY8omdIS9jCoq0fjp/NYZOc+UIQkjnZWyZK7+nkipNGYqg6xTUjs2y14u/uf1Ehve+ClXcWJRscWiMBHERiR/nAy5RmbFNCOUaZ7dStiYaspsFk8egrf88ipp12veVa3+cFlt3BZxlOAUzuACPLiGBtxDE1rAYAzP8ApvjnRenHfnY9G65hQzJ/AHzucPJg2NqA==</latexit>e1
<latexit sha1_base64="Wvs5UcsOrFvlU2xdknzt2wlkXVQ=">AAAB73icbVDLSgNBEOz1GddX1KOXwRDwFHaDqMegF48RzAOSZZmd9CZDZh/OzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHcFqeBKO863tba+sbm1Xdqxd/f2Dw7LR8dtlWSSYYslIpHdgCoUPMaW5lpgN5VIo0BgJxjfzvzOE0rFk/hBT1L0IjqMecgZ1UbqVtF3bfTrfrni1Jw5yCpxC1KBAk2//NUfJCyLMNZMUKV6rpNqL6dScyZwavczhSllYzrEnqExjVB5+fzeKakaZUDCRJqKNZmrvydyGik1iQLTGVE9UsveTPzP62U6vPZyHqeZxpgtFoWZIDohs+fJgEtkWkwMoUxycythIyop0yYi24TgLr+8Str1mntZq99fVBo3RRwlOIUzOAcXrqABd9CEFjAQ8Ayv8GY9Wi/Wu/WxaF2zipkT+APr8wdr9I7r</latexit>e2

<latexit sha1_base64="pHdDR6REmoPL7mt9dGEpthB1MDg=">AAAB8nicbVDLSgMxFM3UVx1fVZdugqXgqswUUZdFNy4r2AdMh5JJ77ShmWRIMkIZ+hluXCji1q9x59+YtrPQ1gMJh3Pu5d57opQzbTzv2yltbG5t75R33b39g8OjyvFJR8tMUWhTyaXqRUQDZwLahhkOvVQBSSIO3WhyN/e7T6A0k+LRTFMIEzISLGaUGCsFNRj4rv0aLgwqVa/uLYDXiV+QKirQGlS++kNJswSEoZxoHfheasKcKMMoh5nbzzSkhE7ICAJLBUlAh/li5RmuWWWIY6nsEwYv1N8dOUm0niaRrUyIGetVby7+5wWZiW/CnIk0MyDoclCccWwknt+Ph0wBNXxqCaGK2V0xHRNFqLEpuTYEf/XkddJp1P2reuPhstq8LeIoozN0ji6Qj65RE92jFmojiiR6Rq/ozTHOi/PufCxLS07Rc4r+wPn8AcFKj50=</latexit>e

<latexit sha1_base64="RXaHw4onq9+AApJKCDGAY01x210=">AAACAXicbVDLSsNAFJ3UV42vqBvBTbAUXJWkiLqsunFZwT6gDWEyvWmHTiZhZiKUUDf+ihsXirj1L9z5N07aLLT1wFwO59zL3HuChFGpHOfbKK2srq1vlDfNre2d3T1r/6At41QQaJGYxaIbYAmMcmgpqhh0EwE4Chh0gvFN7nceQEga83s1ScCL8JDTkBKstORbR1XwXVOXui5mP8JqRDDLrqa+VXFqzgz2MnELUkEFmr711R/EJI2AK8KwlD3XSZSXYaEoYTA1+6mEBJMxHkJPU44jkF42u2BqV7UysMNY6MeVPVN/T2Q4knISBbozX1Euern4n9dLVXjpZZQnqQJO5h+FKbNVbOdx2AMqgCg20QQTQfWuNhlhgYnSoZk6BHfx5GXSrtfc81r97qzSuC7iKKNjdIJOkYsuUAPdoiZqIYIe0TN6RW/Gk/FivBsf89aSUcwcoj8wPn8AVheU7g==</latexit>A

<latexit sha1_base64="c9dR/qsVyFs2k5P/g6OoOfYr7WM=">AAACWXicbVHPS8MwFE6rm7P+qu7opTgGHmS0Q9Tj1IvHCe4HbKWkabqFpUlJUmGU/pMeBPFf8WC69aDbHuTl43vfI+99CVNKpHLdL8Pc26/VDxqH1tHxyemZfX4xlDwTCA8Qp1yMQygxJQwPFFEUj1OBYRJSPAoXz2V99I6FJJy9qWWK/QTOGIkJgkpTgZ22ceBZOnV1strTBKo5gjR/LKxpyGkkl4m+8nkR5PTGK7Rii+3uYOVOrdTawG65HXcVzjbwKtACVfQD+2MacZQlmClEoZQTz02Vn0OhCKJYj5lJnEK0gDM80ZDBBEs/XzlTOG3NRE7MhT5MOSv2b0cOE1kOqJXl5nKzVpK7apNMxQ9+TliaKczQ+qE4o47iTmmzExGBkaJLDSASRM/qoDkUECn9GZY2wdtceRsMux3vrtN9vW31nio7GuASXIFr4IF70AMvoA8GAIFP8GPUjLrxbRpmw7TWUtOoeprgX5jNX7hqs3w=</latexit>

hl,1
<latexit sha1_base64="y9e2H1mttNIGznvZBt1WMP0E8uk=">AAACWXicbVHPS8MwFE6rm7P+qu7oJTgGHmS0RdTj1IvHCe4HbKWkabaFpU1JUmGU/pMeBPFf8WC69aDbHiT58r3vkfe+hCmjUjnOl2Hu7dfqB41D6+j45PTMPr8YSJ4JTPqYMy5GIZKE0YT0FVWMjFJBUBwyMgwXz2V++E6EpDx5U8uU+DGaJXRKMVKaCuy0TQLX0punN6s9iZGaY8Tyx0JfQs4iuYz1kc+LIGc3bmFtk94OqSylO1ivCOyW03FWAbeBW4EWqKIX2B+TiOMsJonCDEk5dp1U+TkSimJGdEOZJCnCCzQjYw0TFBPp5ytnCtjWTASnXOiVKLhi/1bkKJZlg1pZTi43cyW5KzfO1PTBz2mSZookeP3QNGNQcVjaDCMqCFZsqQHCgupeIZ4jgbDSn2FpE9zNkbfBwOu4dx3v9bbVfarsaIBLcAWugQvuQRe8gB7oAww+wY9RM+rGt2mYDdNaS02jqmmCf2E2fwGzVrN8</latexit>

hl,2
<latexit sha1_base64="wwN01hq+SqLfS+g84rHEo6+CbBU=">AAACWXicbVFNS8MwGE6rm7N+VXf0UhwDDzLaIepx6sXjBPcBWylpmm5haVKSVBilf9KDIP4VD6ZbD7rthbx58rzPy/uRMKVEKtf9Msy9/Vr9oHFoHR2fnJ7Z5xdDyTOB8ABxysU4hBJTwvBAEUXxOBUYJiHFo3DxXMZH71hIwtmbWqbYT+CMkZggqDQV2GkbB56lXVc7qz1NoJojSPPHQj9CTiO5TPSVz4sgpzfeTrZbWJuk3CmVWhrYLbfjrszZBl4FWqCyfmB/TCOOsgQzhSiUcuK5qfJzKBRBFOvSmcQpRAs4wxMNGUyw9PPVZgqnrZnIibnQhylnxf7NyGEiywa1spxcbsZKcldskqn4wc8JSzOFGVoXijPqKO6Ua3YiIjBSdKkBRILoXh00hwIipT/D0kvwNkfeBsNux7vrdF9vW72nah0NcAmuwDXwwD3ogRfQBwOAwCf4MWpG3fg2DbNhWmupaVQ5TfDPzOYvrkGzfA==</latexit>

hs,1

<latexit sha1_base64="8DYmbEnnfAb1ZdsMhFnOZoLSsZw=">AAACWXicbVHPS8MwFE6rm7P+qu7opTgGHmS0RdTj1IvHCe4HbKWkabaFpUlJUmGU/pMeBPFf8WC69aDbHuTly/fe4733JUopkcp1vwxzb79WP2gcWkfHJ6dn9vnFQPJMINxHnHIxiqDElDDcV0RRPEoFhklE8TBaPJfx4TsWknD2ppYpDhI4Y2RKEFSaCu20jUPP0s7XzmpPEqjmCNL8sdCPiNNYLhN95fMizOmNt5P1d7CyzN0m/SK0W27HXZmzDbwKtEBlvdD+mMQcZQlmClEo5dhzUxXkUCiCKNZNMolTiBZwhscaMphgGeQrZQqnrZnYmXKhD1POiv1bkcNElgPqzHJzuRkryV2xcaamD0FOWJopzNC60TSjjuJOKbMTE4GRoksNIBJEz+qgORQQKf0ZlhbB21x5Gwz8jnfX8V9vW92nSo4GuARX4Bp44B50wQvogT5A4BP8GDWjbnybhtkwrXWqaVQ1TfDPzOYvqSazfA==</latexit>

hs,2

<latexit sha1_base64="9yX92g7ZEiukIA+wQA2qRh36s/A="></latexit>

hs
<latexit sha1_base64="dM3+Oes9MLnRkxI4Tq6iTjoIBH8="></latexit>

hg,1
<latexit sha1_base64="oGrHJ+hv1kLKwRCcFB7+ugG5F5w="></latexit>

hg,2

<latexit sha1_base64="5Jl0kJAJEd3mAmmmH1K9Gp2Oqpg="></latexit>

S0

<latexit sha1_base64="YZzZ442xgeKguspvSzdsF4ayk/c="></latexit>

Gs
<latexit sha1_base64="YZzZ442xgeKguspvSzdsF4ayk/c="></latexit>

Gs

<latexit sha1_base64="5Jl0kJAJEd3mAmmmH1K9Gp2Oqpg="></latexit>

S0
<latexit sha1_base64="5Jl0kJAJEd3mAmmmH1K9Gp2Oqpg="></latexit>

S0

<latexit sha1_base64="dMkfgCnHzbdOfw62ec2P/Z5JHMY="></latexit>Ls

<latexit sha1_base64="DluBzdICLJpv7dR3qGV4aRrlP9U="></latexit>Ld

<latexit sha1_base64="ONG7f0TBL2+goO5OJjwSUvo2ptg=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaKqMuiGxcuKtgHtEPJpJk2NJMZk0yhDP0ONy4UcevHuPNvzLSz0NYDgcM593JPjh8Lro3jfKPC2vrG5lZxu7Szu7d/UD48aukoUZQ1aSQi1fGJZoJL1jTcCNaJFSOhL1jbH99mfnvClOaRfDTTmHkhGUoecEqMlbxeSMyIEpHez/q0X644VWcOvErcnFQgR6Nf/uoNIpqETBoqiNZd14mNlxJlOBVsVuolmsWEjsmQdS2VJGTaS+ehZ/jMKgMcRMo+afBc/b2RklDraejbySykXvYy8T+vm5jg2ku5jBPDJF0cChKBTYSzBvCAK0aNmFpCqOI2K6Yjogg1tqeSLcFd/vIqadWq7mW19nBRqd/kdRThBE7hHFy4gjrcQQOaQOEJnuEV3tAEvaB39LEYLaB85xj+AH3+APyrkj8=</latexit>Lc
<latexit sha1_base64="Z6UAG+lRXxJjWRPnXOwtKvt+qHo=">AAACBXicbVDLSsNAFL2prxpfUZe6CJaCq5IUUZdFQVy4qGAf0IYwmU7boZNJmJkIJXTjxl9x40IRt/6DO//GSRtEWw8MnHvOvcy9J4gZlcpxvozC0vLK6lpx3dzY3NresXb3mjJKBCYNHLFItAMkCaOcNBRVjLRjQVAYMNIKRpeZ37onQtKI36lxTLwQDTjtU4yUlnzrsNwNkRpixNKbiY/Nn+pKV75VcirOFPYicXNSghx13/rs9iKchIQrzJCUHdeJlZcioShmZGJ2E0lihEdoQDqachQS6aXTKyZ2WSs9ux8J/biyp+rviRSFUo7DQHdmS8p5LxP/8zqJ6p97KeVxogjHs4/6CbNVZGeR2D0qCFZsrAnCgupdbTxEAmGlgzN1CO78yYukWa24p5Xq7UmpdpHHUYQDOIJjcOEManANdWgAhgd4ghd4NR6NZ+PNeJ+1Fox8Zh/+wPj4BjxNmGs=</latexit>Fc

<latexit sha1_base64="HZkRLiVzB/GcjX+aqC/J7aEKc20=">AAACFHicbVDLSsNAFJ34rPEVdelmsBQEoSRF1GVREBcuKtgHtCFMJpN26GQSZiZCCf0IN/6KGxeKuHXhzr9x0gasrQcGzjn3Xube4yeMSmXb38bS8srq2nppw9zc2t7Ztfb2WzJOBSZNHLNYdHwkCaOcNBVVjHQSQVDkM9L2h1d5vf1AhKQxv1ejhLgR6nMaUoyUtjzrpNKLkBpgxLLbsYfNX3mdy1kVeFbZrtoTwEXiFKQMCjQ866sXxDiNCFeYISm7jp0oN0NCUczI2OylkiQID1GfdDXlKCLSzSZHjWFFOwEMY6EfV3Dizk5kKJJyFPm6M19Sztdy879aN1XhhZtRnqSKcDz9KEwZVDHME4IBFQQrNtIEYUH1rhAPkEBY6RxNHYIzf/IiadWqzlm1dndarl8WcZTAITgCx8AB56AObkADNAEGj+AZvII348l4Md6Nj2nrklHMHIA/MD5/AFignmc=</latexit>Fd

<latexit sha1_base64="pb+XVXWl91Xqjnf/dnAhjGz0Duw=">AAACI3icbVDLSsNAFJ34rPEVdelmsBRclaSIiquiIC5cVLAPaEOYTCbt0MkkzEyEEvovbvwVNy6U4saF/+KkDVhbDwycc+69zL3HTxiVyra/jJXVtfWNzdKWub2zu7dvHRy2ZJwKTJo4ZrHo+EgSRjlpKqoY6SSCoMhnpO0Pb/J6+4kISWP+qEYJcSPU5zSkGCltedZVpRchNcCIZfdjD5u/8nZJBua8kp5Vtqv2FHCZOAUpgwINz5r0ghinEeEKMyRl17ET5WZIKIoZGZu9VJIE4SHqk66mHEVEutn0xjGsaCeAYSz04wpO3fmJDEVSjiJfd+ZLysVabv5X66YqvHQzypNUEY5nH4UpgyqGeWAwoIJgxUaaICyo3hXiARIIKx2rqUNwFk9eJq1a1Tmv1h7OyvXrIo4SOAYn4BQ44ALUwR1ogCbA4Bm8gnfwYbwYb8bE+Jy1rhjFzBH4A+P7B95qpHI=</latexit>Fs

Figure 7.1: Pipeline of SAECON. “Cls.” is short for classifier.

7.2 SAECON

In this section, we first formalize the problem and then explain SAECON in detail. The

pipeline of SAECON is depicted in Figure 7.1 with essential notations. Sentences from two

domains shown in the gray box are fed into text encoder and dependency parser. The resul-

tant representations of the entities from three substructures are discriminated by different

colors shown in the legend.
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7.2.1 Problem Statement

CPC Given a sentence s from the CPC corpus Dc with n tokens and two entities e1 and

e2, a CPC model predicts whether there exists a preference comparison between e1 and e2

in s and if so, which entity is preferred over the other. Potential results can be Better (e1

wins), Worse (e2 wins), or None (no comparison exists).

ABSA Given a sentence s′ from the ABSA corpus Ds with m tokens and one entity e′,

ABSA identifies the sentiment (positive, negative, or neutral) associated with e′.

We denote the source domains of the CPC and ABSA datasets by Dc and Ds. Dc and

Ds contain samples that are drawn from Dc and Ds, respectively. Dc and Ds are similar but

different in topics which produces a domain shift. We use s to denote sentences in Dc ∪Ds

and E to denote the entity sets for simplicity in later discussion. |E| = 2 if s ∈ Dc and

|E| = 1 otherwise.

7.2.2 Text Feature Representations

A sentence is encoded by its word representations via a text encoder and parsed into a

dependency graph via a dependency parser [CM14]. Text encoder, such as GloVe [PSM14]

and BERT [DCL19], maps a word w into a low dimensional embedding w ∈ Rd0 . GloVe

assigns a fixed vector while BERT computes a token1 representation by its textual context.

The encoding output of s is denoted by S0 = {w1, . . . , e1, . . . , e2, . . . ,wn} where ei denotes

the embedding of entity i, wi denotes the embedding of a non-entity word, and wi, ej ∈ Rd0 .

The dependency graph of s, denoted by Gs, is obtained by applying a dependency parser

to s such as Stanford Parser [CM14] or spaCy2. Gs is a syntactic view of s [MT17, LTB16]

1BERT generates representations of wordpieces which can be substrings of words. If a word is broken
into wordpieces by BERT tokenizer, the average of the wordpiece representations is taken as the word
representation. The representations of the special tokens of BERT, [CLS] and [SEP], are not used.

2https://spacy.io
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that is composed of vertices of words and directed edges of dependency relations. Advan-

tageously, complex syntactic relations between distant words in the sentence can be easily

detected with a small number of hops over dependency edges [MMW20].

7.2.3 Contextual Features for CPC

Global Semantic Context To model more extended context of the entities, we use a bi-

directional LSTM (BiLSTM) to encode the entire sentence in both directions. Bi-directional

recurrent neural network is widely used in extracting semantics [LJS19]. Given the indices

of e1 and e2 in s, the global context representations hg,1 and hg,2 are computed by averaging

the hidden outputs from both directions.

−→
hg,i,
←−
hg,i = BiLSTM(S0)[ei.index], i = 1, 2

hg,i =
1

2

(−→
hg,i +

←−
hg,i

)
,hg,i ∈ Rdg .

Local Syntactic Context In SAECON, we use a dependency graph to capture the syntac-

tically neighboring context of entities that contains words or phrases modifying the entities

and indicates comparative preferences. We apply a Syntactic Graph Convolutional Network

(SGCN) [BTA17, MT17] to Gs to compute the local context feature hl,1 and hl,2 for e1 and e2,

respectively. SGCN operates on directed dependency graphs with three major adjustments

compared with GCN [KW17]: considering the directionality of edges, separating parameters

for different dependency labels3, and applying edge-wise gating to message passing.

GCN is a multilayer message propagation-based graph neural network. Given a vertex v

in Gs and its neighbors N (v), the vertex representation of v on the (j + 1)th layer is given

as

h(j+1)
v = ρ

 ∑
u∈N (v)

W(j)h(j)
u + b(j)

 ,

3Labels are defined as the combinations of directions and dependency types. For example, edge ((u, v),
nsubj) and edge ((v, u), nsubj−1) have different labels.
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where ρ(·) denotes an aggregation function such as mean and sum, W(j) ∈ Rd(j+1)×d(j) and

b(j) ∈ Rd(j+1)
are trainable parameters, and d(j+1) and d(j) denote latent feature dimensions

of the (j + 1)th and the jth layers, respectively.

SGCN improves GCN by considering different edge directions and diverse edge types, and

assigns different parameters to different directions or labels. However, there is one caveat:

the directionality-based method cannot accommodate the rich edge type information; the

label-based method causes combinatorial over-parameterization, increased risk of overfitting,

and reduced efficiency. Therefore, we naturally arrive at a trade-off of using direction-specific

weights and label-specific biases.

The edge-wise gating can select impactful neighbors by controlling the gates for message

propagation through edges. The gate on the jth layer of an edge between vertices u and v

is defined as

g(j)uv = σ
(
h(j)

u · β(j)
duv

+ γ
(j)
luv

)
, g(j)uv ∈ R,

where duv and luv denote the direction and label of edge (u, v), β
(j)
duv

and γ
(j)
luv

are trainable

parameters, and σ(·) denotes the sigmoid function.

Summing up the aforementioned adjustments on GCN, the final vertex representation

learning is

h(j+1)
v = ρ

 ∑
u∈N (v)

g(j)uv

(
W

(j)
duv

h(j)
u + b

(j)
luv

) .

Vectors of S0 serve as the input representations h(0)
v to the first SGCN layer. The represen-

tations corresponding to e1 and e2 are the output {hl,1,hl,2} with dimension dl.

7.2.4 Sentiment Analysis with Knowledge Transfer from ABSA

We have discussed in Section 7.1 that ABSA inherently correlates with the CPC task. There-

fore, it is natural to incorporate a sentiment analyzer into SAECON as an auxiliary task

to take advantage of the abundant training resources of ABSA to boost the performance
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on CPC. There are two paradigms for auxiliary tasks: (1) incorporating fixed parameters

that are pretrained solely with the auxiliary dataset; (2) incorporating the architecture only

with untrained parameters and jointly optimizing them from scratch with the main task

simultaneously [LWZ18, HLN18, WP18].

Option (1) ignores the domain shift between Dc and Ds, which degrades the quality of

the learned sentiment features since the domain identity information is noisy and unrelated

to the CPC task. SAECON uses option (2). For a smooth and efficient knowledge transfer

from Ds to Dc under the setting of option (2), the ideal sentiment analyzer only extracts

the textual feature that is contingent on sentimental information but orthogonal to the

identity of the source domain. In other words, the learned sentiment features are expected

to be discriminative on sentiment analysis but invariant with respect to the domain shift.

Therefore, the sentiment features are more aligned with the CPC domain Dc with reduced

noise from domain shift.

In SAECON, we use a gradient reversal layer (GRL) and a domain classifier (DC) [GL15]

for the domain adaptive sentiment feature learning that maintains the discriminativeness and

the domain-invariance. GRL+DC is a straightforward, generic, and effective modification to

neural networks for domain adaptation [KGC19, GFL19, BPS19, LWZ18]. It can effectively

close the shift between complex distributions [GL15] such as Dc and Ds.

Let A denote the sentiment analyzer which alternatively learns sentiment information

from Ds and provides sentimental clues to the compared entities in Dc. Specifically, each

CPC instance is split into two ABSA samples with the same text before being fed into A
(see the “Split to 2” in Figure 7.1). One takes e1 as the queried aspect the other takes e2.

A(S0, Gs, E) =

hs,1,hs,2 if s ∈ Dc,

hs if s ∈ Ds.

hs,1, hs,2, and hs ∈ Rds . These outputs are later sent through a GRL to not only the CPC

and ABSA predictors shown in Figure 7.1 but also the DC to predict the source domain yd
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of s where yd = 1 if s ∈ Ds otherwise 0. GRL, trainable by backpropagation, is transparent

in the forward pass (GRLα(x) = x). It reverses the gradients in the backward pass as

∂GRLα

∂x
= −αI.

Here x is the input to GRL, α is a hyperparameter, and I is an identity matrix. During

training, the reversed gradients maximize the domain loss, forcing A to forget the domain

identity via the backpropagation and mitigating the domain shift. Therefore, the outputs of

A stay invariant to the domain shift. But as the outputs of A are also optimized for ABSA

predictions, the distinctiveness with respect to sentiment classification is retained.

Finally, the selection of A is flexible as it is architecture-agnostic. In this work, we use

the LCF-ASC aspect-based sentiment analyzer proposed by [PO20] in which two scales of

representations are concatenated to learn the sentiments to the entities of interest.

7.2.5 Objective and Optimization

SAECON optimizes three classification errors overall for CPC, ABSA, and domain classi-

fication. For CPC task, features for local context, global context, and sentiment are con-

catenated: hei = [hg,i;hl,i;hs,i], i ∈ {1, 2}, and hei ∈ Rds+dg+dl . Given Fc, Fs, Fd, and

F below denoting fully-connected neural networks with non-linear activation layers, CPC,

ABSA, domain predictions are obtained by

ŷc = δ(Fc([F(he1);F(he2)])) (CPC only),

ŷs = δ(Fs(hs)) (ABSA only),

ŷd = δ(Fd(GRL(A(S0, Gs, E)))) (Both tasks),

where δ denotes the softmax function. With the predictions, SAECON computes the cross

entropy losses for the three tasks as Lc, Ls, and Ld, respectively. The label of Ld is yd. The

computations of the losses are omitted due to the space limit.
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In summary, the objective function of the proposed model SAECON is given as follows,

L = Lc + λsLs + λdLd + λreg(L2),

where λs and λd are two weights of the losses, and λ is the weight of an L2 regularization.

We denote λ = {λs, λd, λ}. In the actual training, we separate the iterations of CPC data

and ABSA data and input batches from the two domains alternatively. Alternative inputs

ensure that the DC receives batches with different labels evenly and avoid overfitting to either

domain label. A stochastic gradient descent based optimizer, Adam [KB15], is leveraged to

optimize the parameters of SAECON. Algorithm 2 explains the alternative training paradigm

in detail.

7.3 Experiments

7.3.1 Experimental Settings

Dataset CompSent-19 is the first public dataset for the CPC task released by [PBF19]. It

contains sentences with entity annotations. The ground truth is obtained by comparing the

entity that appears earlier (e1) in the sentence with the one that appears later (e2). The

dataset is split by convention [PBF19, MMW20]: 80% for training and 20% for testing.

During training, 20% of the training data of each label composes the development set for

model selection. The detailed statistics are given in Table 7.1.

Three datasets of restaurants released in SemEval 2014, 2015, and 2016 [PGP14, PGP15,

XTP16] are utilized for the ABSA task. We join their training sets and randomly sample

instances into batches to optimize the auxiliary objective Ls. The proportions of POS, NEU,

and NEG instances are 65.8%, 11.0%, and 23.2%.

Note. The rigorous definition of None in CompSent-19 is that the sentence does not

contain a comparison between the entities rather than that entities are both preferred or

disliked. Although the two definitions are not mutually exclusive, we would like to provide
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Algorithm 2: Optimization of SAECON with two alternative tasks

Input: Loss weights λ; Learning rate η

Data: Dc and Ds.

1 while not converge do

2 {s, E}, task ←− getAltSample(Dc, Ds)

3 S0 ←− TextEncode(s)

4 Gs ←− DepParse(s)

5 if task is CPC then

6 {hg,i}, {hl,i} (i = 1, 2)←− methods in Section 7.2.3.

7 hs,1,hs,2 ←− A(S0, Gs, E)

8 Lc,Ld ←− methods in Section 7.2.5

9 optimize({Lc, λdLd, λreg(L2)}, η)

10 else

// sentiment analysis

11 hs ←− A(S0, Gs, E)

12 Ls,Ld ←− methods in Section 7.2.5

13 optimize({λsLs, λdLd, λreg(L2)}, η)

a clearer background of the CPC problem.

Imbalanced Data CompSent-19 is badly imbalanced (see Table 7.1). None instances

dominate in the dataset. The other two labels combined only account for 27%. This critical

issue can impair the model performance. Three methods to alleviate the imbalance are

tested. Flipping labels : Consider the order of the entities, an original Better instance will

become a Worse one and vice versa if querying (e2, e1) instead. We interchange the e1

and e2 of all Better and Worse samples so that they have the same amount. Upsampling :

We upsample Better and Worse instances with duplication to the same amount of None.

Weighted loss : We upweight the underpopulated labels Better and Worse when computing
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Dataset Better Worse None Total

Train 872 (19%) 379 (8%) 3,355 (73%) 4,606

Development 219 (19%) 95 (8%) 839 (73%) 1,153

Test 273 (19%) 119 (8%) 1,048 (73%) 1,440

Total 1,346 (19%) 593 (8%) 5,242 (73%) 7,199

Flipping labels 1,251 (21%) 1,251 (21%) 3,355 (58%) 5,857

Upsampling 3,355 (33%) 3,355 (33%) 3,355 (33%) 10,065

Table 7.1: Statistics of CompSent-19. The rows of Flipping labels and Upsampling show the

numbers of the augmented datasets to mitigate label imbalance.

the classification loss. Their effects are discussed in Section 7.3.2.

Evaluation Metric The F1 score of each label and the micro-averaging F1 score are

reported for comparison. We use F1(B), F1(W), F1(N), and micro-F1 to denote them. The

micro-F1 scores on the development set are used as the criteria to pick the best model over

training epochs and the corresponding test performances are reported.

Reproducibility The implementation of SAECON is publicly available on GitHub4. De-

tails for reproduction are given in Section 7.5.1.

Baseline Models Seven models experimented in [PBF19] and the state-of-the-art ED-

GAT [MMW20] are considered for performance comparison and described in Section 7.5.4.

Fixed BERT embeddings are used in our experiments same as ED-GAT for comparison

fairness.

4https://github.com/zyli93/SAECON
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7.3.2 Performances on CPC

Comparing with Baselines We report the best performances of baselines and SAECON in

Table 7.25. “-B” and “-G” denote different versions of the model using BERT [DCL19] and

GloVe [PSM14] as the input embeddings, respectively. SAECON with BERT embeddings

achieves the highest F1 scores comparing with all baselines, which demonstrates the supe-

rior ability of SAECON to accurately classify entity comparisons. The F1 scores for None,

i.e., F1(N), are consistently the highest in all rows due to the data imbalance where None

accounts for the largest percentage. Worse data is the smallest and thus is the hardest to

predict precisely. This also explains why models with higher micro-F1 discussed later usually

achieve larger F1(W) given that their accuracy values on the majority class (None) are al-

most identical. BERT-based models outperform GloVe-based ones, indicating the advantage

of contextualized embeddings.

In later discussion, the reported performances of SAECON and its variants are based

on the BERT version. The performances of the GloVe-based SAECON demonstrate similar

trends.

Ablation Studies Ablation studies demonstrate the unique contribution of each part

of the proposed model. Here we verify the contributions of the following modules: (1) The

bi-directional global context extractor (BiLSTM); (2) The syntactic local context extractor

(SGCN); (3) The domain adaptation modules of A (GRL); (4) The entire auxiliary sentiment

analyzer, including its dependent GRL+DC (A+GRL for short). The results are presented

in Table 7.3. In Table 7.3, row “−X” denotes a variant without module X. Removing A will

also remove GRL+DC.

Four points worth noting. Firstly, the SAECON with all modules achieves the best perfor-

mance on three out of four metrics, demonstrating the effectiveness of all modules (SAECON

vs. the rest); Secondly, the synergy of A and GRL improves the performance (−(A+GRL)

5All reported improvements over the best baselines are statistically significant with p-value < 0.01.
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Model Micro. F1(B) F1(W) F1(N)

Majority 68.95 0.0 0.0 81.62

SE-Lin 79.31 62.71 37.61 88.42

SE-XGB 85.00 75.00 43.00 92.00

SVM-Tree 68.12 53.35 13.90 78.13

BERT-CLS 83.12 69.62 50.37 89.84

AvgWE-G 76.32 48.28 20.12 86.34

AvgWE-B 77.64 53.94 26.88 87.47

ED-GAT-G 82.73 70.23 43.30 89.84

ED-GAT-B 85.42 71.65 47.29 92.34

SAECON-G 83.78 71.06 45.90 91.05

SAECON-B 86.74 77.10 54.08 92.64

Table 7.2: Performance comparisons between SAECON and baselines on F1 scores (%).

vs. SAECON) whereas the A without domain adaptation hurts the classification accuracy

instead (−GRL vs. SAECON), which indicates that the auxiliary sentiment analyzer is ben-

eficial to CPC accuracy only with the assistance of GRL+DC modules; Thirdly, removing

the global context causes the largest performance deterioration (−BiLSTM vs. SAECON),

showing the significance of long-term information. This observation is consistent with the

findings of [MMW20] in which eight to ten stacking GAT layers are used for global feature

learning; Finally, the performances also drop after removing the SGCN (−SGCN vs. SAE-

CON) but the drop is less than removing the BiLSTM. Therefore, local context plays a less

important role than the global context (−SGCN vs. −BiLSTM).

Hyperparameter Searching We demonstrate the influences of several key hyperpa-

rameters. Such hyperparameters include the initial learning rate (LR, η), feature dimen-

sions (d = {dg, dl, ds}), regularization weight λ, and the configurations of SGCN such as

directionality, gating, and layer numbers.
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Variants Micro. F1(B) F1(W) F1(N)

SAECON 86.74 77.10 54.08 92.64

−BiLSTM 85.21 72.94 43.86 92.63

−SGCN 86.53 76.22 51.38 92.24

−GRL 86.53 76.16 49.77 92.93

−(A+GRL) 85.97 74.82 52.44 92.45

Table 7.3: Ablation studies between SAECON and its variants with modules disabled.

For LR, d, and λ in Figures 7.2a, 7.2b, and 7.2c, we can observe a single peak for F1(W)

(green curves) and fluctuating F1 scores for other labels and the micro-F1 (blue curves). In

addition, the peaks of micro-F1 occur at the same positions of F1(W). This indicates that

the performance on Worse is the most influential factor to the micro-F1. These observations

help us locate the optimal settings and also show the strong learning stability of SAECON.

Figure 7.2d focuses on the effect of SGCN layer numbers. We observe clear oscillations

on F1(W) and find the best scores at two layers. More layers of GCN result in oversmooth-

ing [KW17] and hugely downgrade the accuracy, which is eased but not entirely fixed by the

gating mechanism. Therefore, the performances slightly drop on larger layer numbers.

Table 7.4 shows the impact of directionality and gating. Turning off either the direction-

ality or the gating mechanism (“✗✓” or “✓✗”) leads to degraded F1 scores. SGCN without

modifications (“✗✗”) drops to the poorest micro-F1 and F1(W). Although its F1(N) is the

highest, we hardly consider it a good sign. Overall, the benefits of the directionality and

gating are verified.

Alleviating Data Imbalance The label imbalance severely impairs the model perfor-

mance, especially on the most underpopulated label Worse. The aforementioned imbalance

alleviation methods are tested in Table 7.5. The Original (OR) row is a control experiment

using the raw CompSent-19 without any weighting or augmentation.
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Figure 7.2: Searching and sensitivity for four key hyperparameters of SAECON in F1 scores.

The optimal solution is the weighted loss (WL vs. the rest). One interesting observation is

that data augmentation such as flipping labels and upsampling cannot provide a performance

gain (OR vs. FL and OR vs. UP). Weighted loss performs a bit worse on F1(N) but

consistently better on the other metrics, especially on Worse, indicating that it effectively
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Directed Gating Micro. F1(B) F1(W) F1(N)

✓ ✓ 86.74 77.10 54.08 92.64

✗ ✓ 86.18 75.72 49.78 92.40

✓ ✗ 85.35 74.03 43.27 92.34

✗ ✗ 85.35 73.39 35.78 93.04

Table 7.4: Searching and sensitivity for the directionality and gating of SGCN by F1 scores

(%).

alleviates the imbalance issue. In practice, static weights found via grid search are assigned to

different labels when computing the cross entropy loss. We leave the exploration of dynamic

weighting methods such as the Focal Loss [LGG17] for future work.

Methods Micro. F1(B) F1(W) F1(N)

Weighted loss (WL) 86.74 77.10 54.08 92.64

Original (OR) 85.97 73.80 46.15 92.90

Flipping labels (FL) 84.93 73.07 42.45 91.99

Upsampling (UP) 85.83 73.11 46.36 92.95

Table 7.5: Performance analysis for mitigating data imbalance with F1 scores (%).

Alternative Training One novelty of SAECON is the alternative training that allows

the sentiment analyzer to learn both tasks across domains. Here we analyze the impacts of

different batch ratios (BR) and different domain shift handling methods during the training.

BR controls the number of ratio of batches of the two alternative tasks in each training

cycle. For example, a BR of 2 : 3 sends 2 CPC batches followed by 3 ABSA batches in each

iteration.

Figure 7.3a presents the entire training time for ten epochs with different BR. A larger

BR takes shorter time. For example, a BR of 1:1 (the leftmost bar) takes a shorter time than
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CPC sentences with sentiment predictions by A Label ∆

S1: This is all done via the gigabit [Ethernet:POS] interface, rather than the much

slower [USB:NEG] interface.
Better +2

S2: Also, [Bash:NEG] may not be the best language to do arithmetic heavy opera-

tions in something like [Python:NEU] might be a better choice.
Worse −1

S3: It shows how [JavaScript:POS] and [PHP:POS] can be used in tandem to make

a user’s experience faster and more pleasant.
None 0

S4: He broke his hand against [Georgia Tech:NEU] and made it worse playing

against [Virginia Tech:NEU].
None 0

Table 7.6: Case studies for the effect of the sentiment analyzer A.
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Figure 7.3: Analyses for batch ration (BR). The values of micro-F1 are actual numbers minus

0.85 for the convenience of visualization.

1:5 (the yellow bar). Figure 7.3b presents the micro-F1 scores for different BR. We observe

two points: (1) The reported performances differ slightly; (2) Generally, the performance

is better when the CPC batches are less than ABSA ones. Overall, the hyperparameter

selection tries to find a “sweet spot” for effectiveness and efficiency, which points to the BR

of 1:1.
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Figure 7.4 depicts the performance comparisons of SAECON (green bars), SAECON−GRL

(the “−GRL” in Figure 7.3, orange bars), and SAECON with pretrained and fixed param-

eters of A (the option (1) mentioned in Section 7.2.4, blue bars). They represent different

levels of domain shift mitigation: The pretrained and fixed A does NOT handle the domain

shift at all; The variant −GRL only attempts to implicitly handle the shift by alternative

training with different tasks to converge in the middle although the domain difference can

be harmful to both objectives; SAECON, instead, explicitly uses GRL+DC to mitigate the

domain shift between Ds and Dc during training.

As a result, SAECON achieves the best performance especially on F1(W), −GRL gets

the second, and the “option (1)” gets the worst. These demonstrate that (1) the alternative

training (blue vs. green) for an effective domain adaptation is necessary and (2) there exists a

positive correlation between the level of domain shift mitigation and the model performance,

especially on F1(W) and F1(B). A better domain adaptation produces higher F1 scores in

the scenarios where datasets in the domain of interest, i.e., CPC, is unavailable.
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Figure 7.4: Visualization of the domain shift mitigation.

7.3.3 Case Study

In this section, we qualitatively exemplify the contribution of the sentiment analyzer A.

Table 7.6 reports four example sentences from the test set of CompSent-19. The entities
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e1 and e2 are highlighted together with the corresponding sentiment predicted by A. The

column “Label” shows the ground truth of CPC. The “∆” column computes the sentiment

distances between the entities. We assign +1, 0, and −1 to sentiment polarities of POS,

NEU, and NEG, respectively. ∆ is computed by the sentiment polarity of e1 minus that of

e2. Therefore, a positive distance suggests that e1 receives a more positive sentiment from

A than e2 and vice versa. In S1, sentiments to Ethernet and USB are predicted positive

and negative, respectively, which can correctly imply the comparative label as Better. S2

is a Worse sentence with Bash predicted negative, Python predicted neutral, and a resultant

negative sentiment distance −1. For S3 and S4, the entities are assigned the same polarities.

Therefore, the sentiment distances are both zeros. We can easily tell that preference com-

parisons do not exist, which is consistent with the ground truth labels. Due to the limited

space, more interesting case studies are presented in Section 7.5.5.

7.4 Summary

This chapter proposes SAECON, a CPC model that incorporates a sentiment analyzer to

transfer knowledge from ABSA corpora. Specifically, SAECON utilizes a BiLSTM to learn

global comparative features, a syntactic GCN to learn local syntactic information, and a

domain adaptive auxiliary sentiment analyzer that jointly learns from ABSA corpora and

CPC corpora for a smooth knowledge transfer. An alternative joint training scheme enables

the efficient and effective information transfer. Qualitative and quantitative experiments

verified the superior performance of SAECON. For future work, we will focus on a deeper

understanding of CPC data augmentation and an exploration of weighting loss methods for

data imbalance.
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7.5 Supplementary Materials

This section contains the supplementary materials. Here we provide additional supporting

information in four aspects, including additional description for the training, the repro-

ducibility details of SAECON, brief introductions of baselines, and additional case studies.

7.5.1 Implementation of SAECON

The proposed SAECON is implemented in Python (3.6.8) with PyTorch (1.5.0) and run

with a single 16GB Nvidia V100 GPU. The source code of SAECON is publicly available on

GitHub6 and comprehensive instructions on how to reproduce our model are also provided.

The implementation of SGCN is based on PyTorch Geometric7. The implementation of

our sentiment analyzer A is adapted from the official source code of LCF-ASC [PO20]8. The

dependency parser used in SAECON is from spaCy 9. The pretrained embedding vectors of

GloVe are downloaded from the office site10. The pretrained BERT model is obtained from

the Hugging Face model repository11. The implementation of the gradient reversal package

is available on GitHub12. We would like to appreciate the authors of these packages for their

precious contributions.

6https://github.com/zyli93/SAECON

7https://github.com/rusty1s/pytorch_geometric

8https://github.com/HieuPhan33/LCFS-BERT

9https://spacy.io/

10https://nlp.stanford.edu/projects/glove/

11https://huggingface.co/bert-base-uncased

12https://github.com/janfreyberg/pytorch-revgrad
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7.5.2 Default Hyperparameters

The default hyperparameter settings for the results reported in Section 7.3.2 are given in

Table 7.7.

Hyperparameter Setting

GloVe embeddings pretrained, 100 dims (d0)

BERT version bert-base-uncased

BERT numeric config. 12 heads, 12 layers, 768 dims (d0)

BERT parameters pretrained by Hugging Face

Dependency parser spaCy, pretrained model

Batch config. size = 16, batch ratio = 1 : 1

Init. learning rate (η) 5× 10−4

CPC loss weight 2 : 4 : 1 (B:W:N)

λ ({λ, λs, λd}) {1× 10−4, 1, 1}
Activation function ReLU (f(x) = max(0, x))

d ({dg, dl, ds}) {240, 240, 240}
Optimizer Adam (β1 = 0.9, β2 = 0.999)

Learning rate scheduler StepLR (steps = 3, γ = 0.8)

GRL config. α = 1.0 (Default setting)

SGCN numeric config. 2 layers (768−→256−→240)

SGCN architectural config.. Directed, Gated

Data augmentation Off (weighted loss only)

Table 7.7: Default hyperparameter settings for SAECON.
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7.5.3 Reproduction of ED-GAT

We briefly introduce the reproduction of the state-of-the-art baseline, ED-GAT, in both

GloVe and BERT versions. We implement ED-GAT with the same software packages as

SAECON such as PyTorch-Geometric, spaCy, and PyTorch, and run it within the same ma-

chine environment. The parameters all follow the original ED-GAT setting [MMW20] except

the dimension of GloVe. It is set to 300 in the original paper but 100 in our experiments for

the fairness of comparison. The number of layers is select as 8 and the hidden size is set to

300 for each layer with 6 attention heads. We trained the model for 15 epochs with Adam

optimizer with a batch size of 32.

7.5.4 Baseline models

We briefly introduce the compared models in Section 7.3.2.

Majority-Class A simple model which chooses the majority label in the training set as

the prediction of each test instance.

SE Sentence Embedding encodes the sentences into low-dimensional sentence represen-

tations using pretrained language encoders [CKS17, BAP15] and then feeds them into a

classifier for comparative preference prediction. SE has two versions [PBF19] with different

classifiers, namely SE-Lin with a linear classifier and SE-XGB with an XGBoost classifier.

SVM-Tree This method [TL15] applies convolutional kernel methods to CSI task. We

follow the experimental settings of [MMW20].

AvgWE A word embedding-based method that averages the word embeddings of the

sentence as the sentence representation and then feeds this representation into a classifier.

The input embeddings have several options, such as GloVe [PSM14] and BERT [DCL19].

These variants are denoted by AvgWE-G and AvgWE-B separately.

BERT-CLS Using the representation of the token “[CLS]” generated by BERT [DCL19]
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as the sentence embedding and a linear classifier to conduct comparative preference classifi-

cation.

ED-GAT Entity-aware Dependency-based Graph Attention Network [MMW20] is the

first entity-aware model that analyzes the entity relations via the dependency graph and

multi-layer graph attention layer.

7.5.5 Additional Case Studies

In this section, we present four supplementary examples for case study in Table 7.8 which

have different sentiments compared with their counterparts in Table 7.6. S1 shows a NEU

versus NEG comparison which results in a sentiment distance +1 and a CPC prediction

Better. “Ruby” is not praised in this sentence so it has NEU. But “Perl” is assigned a

negative emotion through a simple inference. S2 shows a stronger contrast between the

entities. “Mid Missouri” is said “much worse” while the “South Georgia” is “much warmer”,

which clearly indicates the sentiments and the comparative classification results.

S3 and S4 are two sentences both with two parallel negative entities. The sport equip-

ment in S3 is sold “poorly” and the drinks in S4 are “ten times worse” both indicating

negative sentiments. Therefore, the labels are None.
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Supplementary CPC sentences with sentiment predictions by A Label ∆

S1: [Ruby:NEU] wasn’t designed to “exemplify best practices”, it was to be a better

[Perl:NEG].
Better +1

S2: And from my experience the ticks are much worse in [Mid Missouri:NEG] than

they are in [South Georgia:POS] which is much warmer year round.
Worse −2

S3: As an industry rule, [hockey:NEG] and [basketball:NEG] sell comparatively

poorly everywhere.
None 0

S4: [Milk:NEG], [juice:NEG] and soda make it ten times worse. None 0

Table 7.8: Additional case studies for the effect of sentiment analyzer A (see Section 7.5.5).
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CHAPTER 8

Conclusion

We conclude the dissertation in this chapter. In previous chapters, we introduced the moti-

vation of incorporating multimodal data into preference analysis and recommendation and

past endeavors on a variety of topics related to utilizing different data modalities. Then we

demonstrated five projects as examples for utilizing network structures, user and item at-

tribute information, geographical information, and review text to improve recommendation

performance. The benefit of incorporating these data types into recommendations has been

demonstrated by the diverse evaluation methods. Therefore, the following conclusions are

drawn.

Firstly, recommender systems inherently carry different data modalities such as graph

structures, attribute information, and natural language. Incorporating different types of

information properly can boost the performance of recommendation tasks such as CTR

prediction, POI recommendation, and rating prediction. For example, question routing

performance is enhanced with the help of the graph and text.

Secondly, different data modalities make possible the interpretation of decision-making.

In this dissertation, we explored the following three different methods for prediction expla-

nation: explaining by finding salient features and their interactions in InterHAt, explaining

by decomposing motivation in GEAPR, and explaining by profiling user attention and item

property and capturing their overlap.

Finally, we noticed that upgrades on modules and architecture provide a stronger per-

formance improvement. For example, heterogeneous embedding in NeRank achieves better
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performance than homogeneous methods. As the deep learning toolkit grows, the recom-

mendation with multimodality data will continue to be optimized.

We propose a few directions for future work: (1) In this dissertation, several modalities

are utilized including network, attribute, and text. However, there are other modalities

that can be considered as well such as image and video. Some existing works explored

integrating image representation into preference learning which can be further incorporated

into recommender systems; (2) For the explanation of the recommendation, this dissertation

covers two ways: explaining via salient features and explaining via salient aspects. Another

possible technical direction is to recommend via automatic explanation generation. However,

the technical difficulty is the lack of training data; (3) New social media emerged recently

such as AR/VR-based platforms. Certain adjustments are in need for these new media to

recommend items in these scenarios. How to deal with the new challenges remains to be

explored.
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