
UC Berkeley
UC Berkeley Previously Published Works

Title
Program synthesis for interactive-security systems

Permalink
https://escholarship.org/uc/item/8h27h8sb

Journal
Formal Methods in System Design, 51(2)

ISSN
0925-9856

Authors
Harris, William R
Jha, Somesh
Reps, Thomas W
et al.

Publication Date
2017-11-01

DOI
10.1007/s10703-017-0296-5
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8h27h8sb
https://escholarship.org/uc/item/8h27h8sb#author
https://escholarship.org
http://www.cdlib.org/


Form Methods Syst Des (2017) 51:362–394
DOI 10.1007/s10703-017-0296-5

Program synthesis for interactive-security systems

William R. Harris1 · Somesh Jha2 ·
Thomas W. Reps2,3 · Sanjit A. Seshia4

Published online: 16 September 2017
© Springer Science+Business Media, LLC 2017

Abstract Developing practical but secure programs remains an important and open problem.
Recently, the operating-system and architecture communities have proposed novel systems,
which we refer to as interactive-security systems. They provide primitives that a program can
use to perform security-critical operations, such as reading from andwriting to system storage
by restricting somemodules to execute with limited privileges. Developing programs that use
the low-level primitives provided by such systems to correctly ensure end-to-end security
guarantees while preserving intended functionality is a challenging problem. This paper
describes previous and proposed work on techniques and tools that enable a programmer
to generate programs automatically that use such primitives. For two interactive security
systems, namely the Capsicum capability system and the HiStar information-flow system,
we developed languages of policies that a programmer can use to directly express security
and functionality requirements, along with synthesizers that take a program and policy in
the language and generate a program that correctly uses system primitives to satisfy the
policy. We propose future work on developing a similar synthesizer for novel architectures
that enable an application to execute different modules in Secure Isolated Regions without
trusting any other software components on a platform, including the operating system.

Keywords Computer security · Program synthesis · Information flow · Capabilities · Secure
isolated regions

B William R. Harris
wharris@cc.gatech.edu

1 Georgia Institute of Technology, Atlanta, GA, USA

2 University of Wisconsin–Madison, Madison, WI, USA

3 GrammaTech Inc., Ithaca, NY, USA

4 University of California, Berkeley, Berkeley, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-017-0296-5&domain=pdf
http://orcid.org/0000-0002-7667-1287


Form Methods Syst Des (2017) 51:362–394 363

1 Introduction

Developing practical but secure programs remains a difficult, important, and open problem.A
significant portion of the security vulnerabilities inwidely-used applications allow an attacker
who can control inputs to the program to use the program to perform actions on system state
not intended by the application programmer or the system administrator. An attacker can
use a vulnerable application to violate the secrecy or integrity of information stored on
the system on which the application is executed (i.e., the application’s host system). Such
vulnerabilities include “Improper neutralization of special elements used in OS command
(‘OSCommand Injection’)” and “Buffer copywithout checking size of input (‘Classic Buffer
Overflow’),” which, in a recent audit of security-critical applications [62], were classified
in the Common Weakness Enumeration (CWE) by the SysAdmin, Audit, Networking, and
Security (SANS) Institute as the second-and-third-most-prevalent classes of vulnerabilities.
Suchvulnerabilities canbe found in networkutilities that typically read inputs directly froman
untrusted network and executewith the privilege to access arbitrary system resources [15,16],
and in file utilities and language interpreters that are often deployed to process untrusted data
or execute untrusted programs [9,10,17,66,67].

Even programs that do not contain vulnerabilities typically must share sensitive infor-
mation with other programs executing on their host (i.e., the application’s environment). In
such situations, the goal is that cooperative programs should be able to carry out desired
functionality using the sensitive information, but malicious programs should not be able to
violate the secrecy or integrity of the sensitive information. For example, a trusted logging
service may maintain a log file of important events—with the desired behavior being that
each program in the logging service’s environment can read the log, but can only modify the
log by appending to it (and cannot corrupt entries previously added to the log).

Conventional system-level securitymechanisms can enforce security guarantees for sensi-
tive information throughout a system, but do not provide mechanisms that an application run
by an unprivileged user can use to enforce the security of its sensitive information.Multi-level
secure systems [64] and SELinux [69] implement mandatory access control (MAC), which
allows a trusted user, typically an administrator, to specify an access-control policy that the
operating system enforces throughout the system by mediating each access of a resource by
a process. For example, an administrator of a MAC system can specify a policy that enforces
that if an untrusted user u reads information from a sensitive file, then u can never write
information to a public directory. However, such systems do not enable a program executed
by an unprivileged user to guarantee the security of its information. For example, the logging
service described above, executed by an unprivileged user on a MAC system, cannot prevent
other untrusted programs from directly modifying the log file that the service creates.

Programming languages, program analyses, and program rewriters can enforce that a
given program does not violate the security of sensitive information that is used only by
that program. However, they cannot enforce security guarantees about information shared by
the application with other programs on a system. In particular, information-flow languages
(i) analyze a program statically to determine that no execution of the program can violate
security [42,59], or (ii) monitor each program execution at runtime [23,34] to determine that
the monitored execution does not violate security. An Inline ReferenceMonitor (IRM) [21] is
instrumentation code, inserted into a programby an IRMrewriter, that checks throughout each
execution of the instrumentedprogram that the instrumentedprogramsatisfies a given security
policy. Such tools may be used, e.g., to check that a program that accesses a user’s credit-card
number does not leak any information about the credit-card number to a publicly-readable

123



364 Form Methods Syst Des (2017) 51:362–394

output channel. However, such tools cannot be used to enforce that if an application creates a
sensitive resource (e.g., the log file described above) and transfers control to an unmonitored
program in its environment, then the unmonitored program does not leak information from
or corrupt information in the sensitive resource.

However, recent work [7,20,37,68,71] has produced new operating systems that allow
a program that executes on behalf of an unprivileged user to protect the security of the
program’s sensitive information, even when the program executes a vulnerable program
module or transfers control to an untrusted program. Such operating systems extend the set
of system calls provided by a conventional operating system with security-specific system
calls. (We refer to such operating systems as interactive-security systems, and refer to the
system calls that they provide as security primitives.) At various points during a program’s
execution, it invokes security primitives to direct the system to protect the security of the
program’s sensitive information before transferring control to an untrusted program module
or to the program’s environment.

The goals of this paper are threefold. The first goal is to review previous work that
we have performed on developing automatic program instrumenters and synthesizers for
interactive-security operating systems, namely the Capsicum capability system [68] and the
HiStar Decentralized Information Flow system [71]; the synthesizer for HiStar has not been
described in previous work. The second goal is to review previous work that we have per-
formed on verifying programs that execute on interactive-security architectures that provide
Secure Isolated Regions [5,35], and to propose future work that will result in automatic pro-
gram rewriters and instrumenters for such architectures. The third goal is to relate both our
previous work and the proposed work to work performed by Veith et. al. [33].

Programming with capabilities on Capsicum. A primary goal of this paper is to review
previous work that we have performed on developing techniques and tools to make it easier to
program such systems. One example of an interactive-security system on which applications
can enforce strong security guarantees is the capability operating system Capsicum [68]
(starting with FreeBSD 9) [22]. For each process, Capsicum tracks (1) the set of capabilities
available to the process, where a capability is a file descriptor and an access right for the
descriptor, and (2) whether the process has the authority to grant to itself more capabilities
(i.e., open more files). Capsicum provides to each process a set of system calls that the
process uses to limit its capabilities and its authority. Thus, a process executing trusted code
in a program can first access system resources unrestricted by Capsicum, and then invoke
primitives to limit itself to have only the capabilities that it requires while executing an
untrusted program module. Thus, even if an attacker exploits a vulnerability in an untrusted
module that allows the attacker to attempt to perform arbitrary system operations, the attacker
will only be able to successfully carry out operations allowed by the limited capabilities set
by the trusted code.

The Capsicum primitives are sufficiently powerful that a programmer can rewrite a
practical program to satisfy a strong security guarantee by inserting only a few calls to
Capsicum primitives [68]. Unfortunately, a programmer who writes a program for Capsicum
must explicitly write code that executes imperative operations on capabilities, and reason
informally that the rewritten program satisfies the programmer’s implicit notion of correct
behavior. In practice, it is difficult for programmers to reason about the subtle, temporal
effects of the primitives. In fact, even Capsicum’s own developers have rewritten programs,
such as tcpdump, in a way that they tentatively thought was correct, only to discover later
that the program was incorrect and required a different rewriting [68]. Often, as in the case of
tcpdump, the difficulty results from satisfying the conflicting demands of ensuring—using

123



Form Methods Syst Des (2017) 51:362–394 365

a low-level set of system primitives—that a module that provides capabilities to its environ-
ment that are (i) sufficient for a benign environment to perform desired functionality but (ii)
insufficient for a malicious environment to violate desired security properties.

In previous work [30], we addressed the challenge of developing applications for Cap-
sicum. To do so, we designed a language of security policies with which a programmer can
explicitly specify the operations that untrusted program modules and the program’s envi-
ronment should and should not be able to perform on sensitive resources. Along with the
policy language, we created a program instrumenter that takes from the programmer (i) a
program that invokes no capability primitives, and (ii) a security policy for the program, and
automatically instruments the program to execute security primitives so that the resulting
program satisfies the policy. We refer to the process of instrumenting a program to satisfy a
policy as weaving the policy into the program (or simply “weaving,” for short), and refer to
a program instrumenter that implements the weaving process as a policy weaver.

Programming with information-flow labels on HiStar. Whereas a program that executes
on a capability system invokes primitives to restrict the operations that can be performed
by untrusted program modules executed by the program, a program on Decentralized
Information-Flow Control (DIFC) operating system invokes primitives to protect the secrecy
and integrity of its information from untrusted programs that execute in the program’s envi-
ronment. ADIFC systemmaps each object on the system (e.g., a process or file) to a label in a
partially-ordered set, mediates the flow of information between objects during an execution,
and only allows information to be transferred if the labels of the objects satisfy an ordering
condition [18,20,37,45,71]. Such systems provide primitives that a program can invoke to
update the labels of objects, according to a label semantics.

A program executing on a DIFC system can invoke primitives that enable it to enforce
strong information-flowguarantees; for example, the login service on theHiStarDIFC system
enforces that the password that a client provides to even an untrusted authenticator is not
leaked by the authenticator. Unfortunately, a programmer who writes a program for a DIFC
system must explicitly write a program that uses imperative label operations, and informally
reason that the program uses such operations correctly (i) to perform desired functionality
when interactingwith a cooperative environment, but (ii) to protect the secrecy and integrity of
its information when interacting with a malicious environment. Previous research [39,40,65]
has shown that programmers have difficulty using labels in the context of DIFC languages to
verify that a program does not leak information, or to rewrite a program that maintains labels
to enforce information-flow security. There has been little previous work onwriting programs
that maintain labels on a DIFC system to preserve the security of information shared with
untrusted programs [45], and such approaches typically require the programmer to reason
directly about the intricate semantics of label operations.

In this paper, we review a framework that we proposed for modular instrumentation that
enables a programmer to scalably instrument multiple mutually-untrusting modules to use
DIFC labels (in particular, the labels provided by HiStar) so that they satisfy end-to-end
security guarantees and functionality requirements. Our framework enables global security
and functionality requirements to be decomposed soundly into local guarantees for individ-
ual program modules. Such guarantees are then discharged using verification and synthesis
techniques developed in previous work [28,42].

Programming with secure isolated regions. The second primary goal of this paper is to
highlight further opportunities for automatically synthesizing secure programs for emerging
interactive-security systems. A key common feature of the interactive security systems con-

123



366 Form Methods Syst Des (2017) 51:362–394

sidered in previous work is that each is implemented at the level of the operating system,
which provides powerful primitives for isolating the memory spaces of distinct modules.
However, modern computer users often wish to perform resource-intensive computations on
their sensitive data on networked cloud servers, which may run operating systems that the
user cannot vet or trust.

Novel architectures provide special instructions that an application invokes to contain
segments of code and data in hardware-level Secure Isolated Regions (SIRs). In particular,
the SGX enclave feature supported by recent Intel processors [35] and the TrustZone feature
supported by many modern ARM processors [5] support an extended instruction-set archi-
tecture (ISA) that a user-level application can use to ensure confidentiality and integrity. Code
that executes in a SIR cannot be tampered with by other agents on a system. Data in a SIR
is encrypted when written to main memory, ensuring that even an adversary with complete
control over hardware connected to the core processor cannot learn information about the
application’s data or tamper with the data without being detected.

While instructions used to create andmaintain SIRs are powerful, they are difficult to use in
practice. The difficulty stems from the fact that a programmer must rewrite their application
to (i) use machine instructions that each protect individual memory regions, (ii) sanitize
untrusted inputs read directly from its environment, and (iii) ensure that only an acceptable
amount of information about sensitive information is directly released to its environment. In
this paper, we describe previous work that we have performed on verifying that programs
that use SIRs satisfy the above properties.We propose further work on synthesizing programs
automatically that use SIRs to satisfy the above properties.

This paper thus describes problems in program instrumentation under three significantly
different contexts: an operating system that provides capabilities, and operating system that
provides information-flow labels, and architectures that provide SIRs. However, a common
theme throughout the paper is that while each of the systems was designed to address a
distinct problem and does so by providing a distinct set of mechanisms, each system can
be viewed as a runtime environment that requires its applications to implement logic that
interacts with it actively, rather than simply being monitored passively. Our previous work
established that problems of instrumenting programs for capability and DIFC systems can
be addressed as instances of a general approach that reduces the problems to instances of
game-based synthesis. Adapting and extending such an approach to instrument programs to
correctly use SIRs remains an open problem.

Organization. This paper is organized as follows. Section 2 summarizes our previous work
on synthesizing programs that use capabilities. Section 3 presents our previous work on
synthesizing mutually-untrusting programs that use DIFC labels. Section 4 proposes future
work on synthesizing secure programs that use Secure Isolated Regions. Section 5 compares
our previous work to related work on secure programming, including work performed by
Veith et al.; Sect. 6 concludes.

2 Synthesizing programs for the capsicum capability system

In this section, we describe the problem of instrumenting programs for the Capsicum capa-
bility system, and our solution to the problem. In Sect. 2.1, we introduce a simplified version
of the gzip compression utility. In Sect. 2.2, we present a simple policy for the capabilities
that modules of gzip should provide to their environment. In Sect. 2.3, we describe how
capweave, our program instrumenter for Capsicum, instruments gzip to satisfy its policy.

123



Form Methods Syst Des (2017) 51:362–394 367

(a) (b)

Fig. 1 Pseudocode for the gzip compression utility, and its security policy. a gzip: a compression utility
consisting of two code segments, labeled gzip and loop. b gzip_pol: a capability policy for gzip,
represented as an automaton that accepts disallowed traces of states. Each state is described by the set of
capabilities that the program holds in the state

2.1 The gzip compression utility

Implementing efficient but secure programs that run on conventional operating systems has
proven to be a significant challenge. Figure 1a contains pseudocode for a version of the gzip
compression utility written in a simple low-level, intermediate imperative language. For now,
ignore the lines with control labels beginning with C; these lines are instrumentation code
introduced by our synthesizer, and are described below. When the compression module of
gzip,cmp, executes correctly, it reads uncompressed data from afile descriptor bound toin,
compresses the data read, writes the compressed data to a file descriptor bound to out, and
then jumps to loop. However, in previous versions of gzip, cmp contained vulnerabilities
that an attacker who could control the inputs to gzip could exploit to access arbitrary system
resources with the privileges of the user who executed gzip.

2.2 A policy for gzip

Ideally, a programmer would implement a version of gzip that is provably free of such
vulnerabilities; in practice, this goal has proven to be an intractable challenge because the
compressionmodule performs several, heavily-optimized operations that are difficult to prove
preserve memory safety. However, the security guarantees of gzip would be strengthened
significantly if it could be implemented so that (1) when loop jumps to cmp, the executing
process should hold (a) the rd access right for the descriptor stored in variable in (i.e., it
should hold the capability (in,rd)) and (b) the wr access right for the descriptor stored in
variable out. (2) When gzip executes cmp, the executing process should only hold the rd
access right for descriptors allocated at in and the wr access right for descriptors allocated

123



368 Form Methods Syst Des (2017) 51:362–394

at out. In previous work [30], we defined a language of capability policies as finite-state
machines over the control locations and access rights of the states of each run of a program.

A policy for gzip that formalizes the security guarantee stated above is given as the
automaton gzip_pol in Fig. 1b. gzip_pol defines a language of runs, defined to be
sequences of states that constitute policy violations. I.e., each symbol in the alphabet is
a projection of a program state to the capabilities held by the program. The alphabet is
finite because each symbol is defined over state projected to only capabilities bound to local
program variables. In Fig. 1b, sets of symbols are represented by properties that they satisfy.

gzip_pol accepts two classes of runs as violations. (1) Each run inwhichgzip transfers
control to its environment without the capability to read from the descriptor bound to in
or write to the descriptor bound to out corresponds to a run of gzip_pol that reaches
accepting state 2. (2) Each run in which the environment of gzip reaches a state in which it
can read from a descriptor that is not bound to in or write to a descriptor that is not bound
to out corresponds to a run of gzip_pol that reaches accepting state 3.

2.3 Instrumenting gzip

The complete gzip in Fig. 1a, including the capability operations in lines with labels begin-
ning with C, satisfies the capability policy gzip_pol, show in Fig. 1b. In lines 3–6, gzip
binds to loop an RPC service s0 with ambient authority, and jumps to loop, updating its
ambient authority and capabilities to those of s0. In lines 18–22, gzip binds to cmp an RPC
service without (1) ambient authority, (2) the wr access right for the descriptor stored in in,
and (3) the rd access right for the descriptor stored in out. gzip then jumps to module
cmp (represented in the policy automaton as the control location ENV, which denotes the
program’s environment). The result of executing the instrumented capability operations is
that programmemory can hold only the capabilities to read from the descriptor stored in vari-
able in and write to the descriptor stored in out, and cannot obtain any other capabilities.
gzip_pol thus remains in state 1 while the environment executes, and remains in state 0
when a module of gzip of executes.

The instrumentation algorithm implemented in our policy weaver for Capsicum,
capweave, can take as input the version of gzip that executes no capability operations
(i.e., gzip in Fig. 1a with the capability operations removed), and the capability policy
gzip_pol, and can automatically instrument gzip to execute the capability operations
depicted in Fig. 1a. The primary programming challenge addressed by capweave in the
context of gzip is to model soundly all possible executions of the untrusted cmp module
of gzip, which may include (1) cooperating executions in which cmp attempts to only read
from the descriptor stored in in and write to the descriptor stored in out and (2) malicious
executions in which cmp attempts to open arbitrary descriptors and perform arbitrary oper-
ations on the descriptors that it holds. The technique applied by capweave to address this
challenge is: (1) define a program gzip′ whose executions are the executions of multiple
possible instrumentations of gzip; (2) construct a finite over-approximation gzip′# of the
language of executions ofgzip′ that violategzip_pol; (3) usegzip′# to construct a safety
game G for which each play models an execution of gzip′, and each Attacker-winning play
models an execution of gzip′# that may result in a violation of gzip_pol; (4) try to find
a winning Defender strategy D of G; (5) from D, instrument gzip to execute capability
operations throughout each execution e that correspond to the actions chosen by D through
the play that models e.

Given program P , policy automaton A, and budget k ∈ N for the maximum number
of security primitives that an instrumented program can execute consecutively, capweave

123



Form Methods Syst Des (2017) 51:362–394 369

constructs a game GP,A,k = (Q0, Q1,Σ0,Σ1, τ0, τ1, QF ) in which each component is
defined as follows. Each Attacker state (i.e., each element in Q0) is a state of P abstracted to
its control location and state of capabilities, paired with the current state of A. Each Defender
state (i.e., each element in Q1) is a tuple consisting of the current control location of P ,
the current state of A, and the number of remaining primitives that may be executed, set
to k immediately after the program executes an instruction. Each Attacker action (i.e., each
element inΣ0) is an instruction in P , and each Defender action (i.e., each element inΣ1) is a
Capsicum primitive. The Attacker transition function τ0 and Defender transition function τ1
are defined by the effect of each program instruction and Capsicum primitive on capability
state, alongwith the transition relation of A. The accepting states QF are all states constructed
from an accepting state of A.

capweave thus requires information from its user in addition to a program and policy,
namely a budget for the number of primitives that an instrumented program may executed
consecutively. In practice, we have found that a user does not have to spend significant
effort to choose a sufficient budget, because practical programs that can be instrumented
to satisfy a policy typically can be instrumented to do so under a small budget. Extending
capweavewith an autotuner that chooses such a budget or proves its absence automatically
is a promising direction for future work.

A fragment of the game constructed by capweave to weave gzip to satisfy gzip_pol
is depicted in Fig. 2. Each game state consists of a pair of a gzip’ state and a gzip_pol
state, and is depicted in Fig. 2 as a node annotated with (1) the control location of the state
of gzip extended with a distinguishing extension character in the range ‘a’–‘e’, and (2) the
state of gzip_pol that it models. States in which gzip′ executes cmp are annotated with
a control location of the form ENVi to denote that the environment of gzip′ executes. Each
edge between states is annotated with a Capsicum operation on which the game transitions.
Variations of the capability operation to create an RPC service at line 18 in Fig. 1 are modeled
in Fig. 2 as sequences of capability operations chosen at control location 18a, followed by
either control location 18a0 or 18a1.

capweave actually constructs a game from a finite over-approximation gzip′# of the
language of executions of gzip′. Such an abstraction will, for example, merge “similar”
states that, e.g., differ only in the number of descriptors allocated at each allocation site, but
not in the capabilities assigned to each descriptor. To simplify the discussion, in Fig. 2, we
have depicted a fragment of the game related to the one that would actually be used, in this
case constructed directly from gzip′.

The game fragment in Fig. 2 depicts four plays that start from a state (18a, 0), which
models an execution at control location 18a that has driven gzip_pol to state 0. The game
states starting from state (18a, 0) model states reached after gzip completes execution of
line 15.

Along each play from (18a, 0), the Defender chooses a sequence of actions that model an
instrumentation of gzip that chooses (1) an ambient authority and (2) a set of capabilities
with which to create the RPC service that it invokes to execute cmp. The ambient authority
and capabilities chosen in each play are distinct. On the play from state (18a, 0) to state
(ENVa, 2), the Defender chooses actions that model an instrumentation that executes cmp
with the ambient authority and capabilities of memory, without the rd access right for the
descriptor stored in descriptor variable out. (ENVa, 2) is an Attacker-winning state because
itmodels a program state inwhichmemory does not hold therd access right for the descriptor
stored in inwhen gzip completes execution of loop, driving gzip_pol to the accepting
state 2.

123



370 Form Methods Syst Des (2017) 51:362–394

Fig. 2 Fragment of the game modeling runs of different possible instrumentations of gzip immediately
before executing line 23. Defender states are depicted as squares, Attacker states are depicted as circles,
and Attacker-winning states are depicted as doubled circles. Edges from Defender states are annotated with
potential capability operations. Edges from Attacker states are annotated with instructions of the original
program

On the play from (18a, 0) to (ENVb, 1) the Defender chooses actions that model an
instrumentation that executes cmpwith the ambient authority held by memory, the rd access
right for the descriptor stored in in, and the wr access right for the descriptor stored in out.
(ENVb, 1) is not an Attacker-winning state, but the Attacker may transition from (ENVb, 1)
to the state (ENVc, 3) by opening a newfile descriptorwith arbitrary access rights. (ENVc, 3)
is an Attacker-winning state because it models a program state in which the program executes
an untrusted module and memory holds a capability for a descriptor not bound to in or out,
driving gzip_pol to the accepting state 3.

On the play from (18a, 0) to (ENVd, 2), the Defender chooses actions that model an
instrumentation that executes cmp without ambient authority, and with the capabilities of
memory, except for the rd access right for the descriptor stored in descriptor variable in.
ENVd is an Attacker-winning state for a reason analogous to the reason that (ENVa, 2) is
an Attacker-winning state.

On the play from (18a, 0) to (ENVe, 1), the Defender chooses actions that model an
instrumentation that executes cmp without ambient authority, and with the capabilities held

123



Form Methods Syst Des (2017) 51:362–394 371

by memory, except for the rd access right for the descriptor stored in descriptor variable
out and the wr access right for the descriptor stored in descriptor variable in. (ENVe, 1) is
not an Attacker winning state, and the Attacker cannot choose any sequence of actions from
(ENVe, 1) that will drive the game to an Attacker-winning state. The trace of actions from
(18a, 0) to (ENVe, 1) is the trace of each execution of the instrumented gzip in Fig. 1 from
line 18 to the jump to cmp at line 23.

Given program P , policy automaton A, and instrumentation budget k, capweave solves
the game GP,A,k using a standard algorithm for solving two-player safety games [54]. The
algorithm, given game G, computes the states of G from which an Attacker can always win,
i.e., the set of attractors of G using an iterative reachability algorithm.

2.4 Key properties

The key correctness of property of capweave is that for each program P and policy automa-
ton A, capweave, given P and A, generates program P ′, the P ′ satisfies A. One proof of
correctness defines a game GP,A whose plays won by an attacker are exactly the runs of
some instrumentation of P that violate A. The proof then establishes that for each k, each
winning Defender strategy of GP,A,k (Sect. 2.3) is a winning strategy of GP,A. In previous
work [26], we gave precise definitions of language semantics, policy satisfaction, and the
constructions of games used by capweave and in its proof of correctness in previous work.

Weperformed an experimental evaluation of capweave to determine if it could be used to
instrument practical applications to satisfy policies that formalize practical security require-
ments. In particular, we formulated the requirements of the gzip and bzip2 compression
utilities, tar archiving utility, tcpdump and wget network utilities, and php language
interpreter, and used capweave to instrument each to satisfy its policy when run on Cap-
sicum. We found that capweave could consistently instrument the programs successfully
at scale, although in some cases it generated programs with sub-optimal performance. A full
description of our evaluation can be found in a previous presentation of our work [30].

3 Synthesizing programs for the HiStar DIFC system

3.1 Overview

This section illustrates, by means of an example, the DIFC instrumentation problem and our
modular instrumenter,Modlin. Section 3.1.1 reviews the design of a standard DIFC system.
Section 3.1.2 introduces a DIFC program user_info, which we use as a running exam-
ple, and its desired global flow policy, Global Flow. Section 3.1.3 describes how Modlin
instruments user_info to satisfy Global Flow.

3.1.1 Background: a generic DIFC system

We now describe a DIFC language difc as a simplification of the HiStar DIFC system [71];
a more detailed description of difc is given in Sect. 3.2.1, and amore detailed description of
HiStar is given in Sect. 3.4.1. A program execution is an iterative process. In each iteration, the
program’s environment non-deterministically chooses a module, which executes atomically
until completion.

The state of a difc program consists of memory and a set of objects, which model
persistent storage and communication channels, and an environment; each is associated with

123



372 Form Methods Syst Des (2017) 51:362–394

(a) (b)

Fig. 3 user_info: a DIFC program that contains two modules, add_ssn and get_addr that enable
users to maintain persistent key-value bindings storing persistent information. a add_ssn: takes a user ID
(stored in uid) and social-security number (stored in ssn) and binds the user ID to the social-security number
in a persistent dictionary. b get_addr: given a user’s ID (stored in uid), returns the user’s address, which
is publicly observable, but should not be corruptible

a label. When any module of the program attempts to read data from an object into memory,
the difc runtime only allows the read if the label of the object has the proper relationship
to the label of memory. In particular, a label is a map from each element in the space of
categories maintained by HiStar to one of three levels: Low, Mid, and High, ordered as
Low < Mid < High. A label L0 flows to label L1, denoted by L0 � L1, if each category c
has a level in L0 lower than or equal to its level in L1. A program can write to or create a file
f with a label L f if the label of memory flows to L f .
A program can create a fresh category, which its memory owns until the program returns

control to its environment. When any module of the program returns control to its environ-
ment, it can choose for the runtime system to update the label of the environment to any label
L such that the label of memory flows to L over all categories not owned by memory.

3.1.2 A simple information-management system

The module add_ssn (Fig. 3a) and module get_addr (Fig. 3b) can be used to store
and load sensitive information to a key-value store, respectively. For now, ignore the lines
with control labels: these are the instrumentation code introduced by our technique, and are
described in Sect. 3.1.3. When add_ssn begins execution, it checks if there is an SSN-
dictionary object bound to symbol /SSNS (line 6); if no such object is found, add_ssn
binds /SSNS to a freshly-created object (line 10). In either case,add_ssn adds to the object
at /SSNS a dictionary entry that binds the user identifier in uid to the SSN-value in ssn
(line 13), and returns (line 15).

When get_addr begins execution, it checks if there is an address-directory object bound
to symbol /SSNS (line 6); if no object is bound, then get_addr binds/ADDRS to a freshly-
created object (line 10), and populates the dictionary with the public addresses of all users
(line 11). In either case, get_addr loads the address of the user identifier stored in uid
bound in the object at /ADDRS (line 14) and returns the result (line 16).

The problem thatwe address, in the context of user_info, is to instrumentuser_info
to satisfy the following informal information-flow policy Global Flow. After add_ssn

123



Form Methods Syst Des (2017) 51:362–394 373

creates an object at /SSNS, no information may flow from the object at /SSNS to the public
output channel-object at /PUB_OUT. After get_addr creates an object at /ADDRS, no
information may flow from the public input channel-object at /PUB_IN to the object at
/ADDRS.

We will discuss the problem of instrumenting user_info to satisfy Global Flow by
invoking the label operations described in Sect. 3.1.1.

3.1.3 Instrumentation

A correct instrumentation of user_info. The complete version of add_ssn in Fig. 3a
and get_addr in Fig. 3b, including label operations, satisfies Global Flow. The complete
add_ssn (Fig. 3a), in addition to performing the operations on objects described in Sect.
3.1.2, performs the following label operations. Before add_ssn creates an object at /SSNS,
it creates a fresh category that it stores in category variable c (LBL1S0) and sets c to be
HIGH in the label used to create the fresh object (set in the operation label at LBLS1). When
add_ssn returns control to its environment, it updates the label of memory so that c is set
to MID (see LBLS2). Thus, no matter what operations on objects and labels the environment
executes, it cannot read information from /SSNS.

The complete get_addr (Fig. 3b), in addition to performing the operations on objects
described in Sect. 3.1.2, performs the following label operations. Before get_addr creates
an object at /ADDRS, it creates a fresh category that it stores in category variable c (LBLA0)
and sets c to be LOW in the label used to create the fresh object (set in the operation label at
LBLA1).When get_addr returns control to its environment, it updates the label ofmemory
so that c is set to MID (see LBLA2). Thus, no matter what operations on objects and labels
the environment executes, it cannot write information to /ADDRS. Thus the instrumentation
of add_ssn and get_addr satisfies Global Flow.

Challenges to instrumenting user_info. There are two significant challenges to instru-
menting practical DIFC programs, which are illustrated by the problem of instrumenting
user_info. The first challenge is scalability: an approach that monolithically instruments
add_ssn and get_addr must reason about all possible labels that may be used to cre-
ate the objects /SSNS and /ADDRS, as well as the possible labels of memory when either
add_ssn and get_addr return control to their environment. While such an approach may
feasibly instrument the toy program user_info, it will fail to instrument more than a few
modules of a program for a practical DIFC system (see Sect. 3.4).

The second challenge is expressiveness: the labels of a DIFC system only provide guaran-
tees about how information may flow between system objects and program memory. System
labels provide coarse granularity in the treatment of memory, in that all of memory is asso-
ciated with a single label. In the case of get_addr, labels on memory and objects alone
cannot be used to ensure the integrity of /ADDRS, because get_addr executes with a label
that allows it to write to /ADDRS, and loads data from uid, which may have low integrity.
The integrity of /ADDRS can only be ensured by (1) instrumenting add_ssn to use labels
so that its environment cannot directly modify /SSNS and (2) analyzing get_addr to
determine that while the environment can modify uid, no information flows from uid to
/ADDRS. Correctly instrumentingadd_ssn requires similar reasoning about both the labels
created by add_ssn for /SSNS and how information flows through memory and objects
during each execution of add_ssn.

123



374 Form Methods Syst Des (2017) 51:362–394

Fig. 4 Fragment of a proof that instrumentations of add_ssn and get_addr satisfy Global Flow. If (i)
add_ssn and get_addr satisfy given internal assumptions add_ssn-Internal and get_addr-Internal,
and (ii) instrumentations of add_ssn and get_addr satisfy external policies add_ssn-External and
get_addr-External constructed from add_ssn-Internal, get_addr-Internal, and given local policies
add_ssn-Local and get_addr-Local, then the composition of instrumentations satisfies Global Flow

Compositional DIFC instrumentation. This paper proposes a DIFC instrumenter, Mod-
lin, that can instrument practical programs for a DIFC system at scale under assumptions
about individual modules that can be discharged by traditional program analyses used in
information-flow languages [6,23,34,42,60,61]. The design of Modlin is based on two key
observations about practical DIFC programs. The first observation is that, in practice, each
individual module of a DIFC program has a natural local policy such that if each instrumen-
tation of a module satisfies its local policy, then the set of all instrumented modules satisfies
the global policy of the program. The second observation is that in practice, each uninstru-
mented module M of a DIFC program has a natural internal assumption on how information
flows through M’s memory that can be discharged by analyzing only M .

Modlin uses local policies and internal assumptions provided by the programmer
to instrument user_info by instrumenting each module of user_info indepen-
dently. The local and internal policies for get_addr are stated informally in Fig. 4;
the local and internal policies for add_ssn are similar. For get_addr, Modlin takes
as input a local policy get_addr-Local and internal assumption get_addr-Internal,
and for add_ssn, Modlin takes local policy get_addr-Local and internal assump-
tion get_addr-Internal. Modlin first checks that if instrumentations of get_addr and
add_ssn satisfy get_addr-Local and add_ssn-Local, respectively, then their compo-
sition satisfies Global Flow.

Modlin then uses get_addr-Local and get_addr-Internal to construct an external
policy get_addr-External, which describes only how information should flow through
objects when the environment of get_addr and add_ssn executes. If get_addr sat-
isfies get_addr-Internal and an instrumentation get_addr′ of get_addr satisfies
get_addr-External, then get_addr′ satisfies get_addr-Local. Modlin performs a
similar construction for add_ssn, add_ssn-Local, and add_ssn-Internal.

Modlin then instruments get_addr to satisfy get_addr-External and instruments
add_ssn to satisfy add_ssn-External by invoking a game-based instrumenter analogous
to capweave (see Sect. 2.3); the game-based instrumenter for information flow is described
in more detail in Sect. 3.4.2. The problems of deciding if get_addr and add_ssn satisfy
get_addr-Internal and add_ssn-Internal, respectively, can be discharged by a conven-
tional program analysis or type-checker for an information-flow language [23,42].

123



Form Methods Syst Des (2017) 51:362–394 375

(a) (b)

Fig. 5 Syntax of a core, b difc label operations

Figure 4 shows a fragment of the proof that if (i)Modlin correctly instruments add_ssn
and get_addr to satisfy the external policies add_ssn-External and get_addr-
External, respectively, and (ii) if add_ssn and get_addr each satisfy add_ssn-
Internal and get_addr-Internal, respectively, then the composition of instrumentations
of add_ssn and get_addr satisfies Global Flow. The inference rules depicted in Fig. 4
are described in detail in Sect. 3.3.

3.2 The instrumentation problem

In this section,we describe the technical details of theDIFC instrumentation problem. Section
3.2.1 defines the syntax and semantics of a DIFC programming languagedifc. Section 3.2.2
defines a policy language for non-interference. We use both definitions to define the problem
of instrumenting a difc program to satisfy a non-interference policy.

3.2.1 A language of DIFC programs

In this section, we first define a language of imperative programs core without DIFC fea-
tures. We then use core to define the syntax and semantics of our subject DIFC language,
difc.

core. A core program loads values from objects into memory, computes operations on the
loaded values, and writes the computed values to objects. The syntax of a core program is
given in Fig. 5a, and is defined over fixed finite sets of module symbols (MSYMS, which
contains a distinguished symbol ENV that models the program’s environment), control loca-
tions (LOC), object symbols (OSYMS), and data variables (DVAR). A core program is a
sequence of bindings, each from a module symbol to a sequence of operations, in which
each operation is annotated with a control location. An operation may compute a value from
values in data variables and store the result in a data variable (Eq. 2, where OP represents a set
of standard arithmetic operations over integers), may cause control flow to branch based on
the value in a data variable (Eq. 3), may read a value from an object to a data variable (Eq. 4),
may write a value in a data variable to an object (Eq. 5), may create an object (Eq. 6), or may
return control to its environment (Eq. 7). While add_ssn and get_addr as presented in
Fig. 3a, b cannot be expressed directly in the syntax specified in Fig. 5a, the syntactic forms
in Fig. 3a, b can be viewed as syntactic sugar for the forms in Fig. 5a.

A core state stores values in objects. Let O∗ be an infinite universe of objects. A value
store σ = (D, O, T, ρ) is a tuple of (1) a valuation of data variables D : DVAR → Z, (2) a
finite set of objects O ⊆ O∗ containing an object Mem that models the program memory,
(3) a map T : O → P(O) from each object to the set of objects whose information may taint

123



376 Form Methods Syst Des (2017) 51:362–394

it, (4) a partial map from object symbols to objects ρ : OSYMS ↪→ O , and (5) a map from
objects to data δ : O → Z. The components of a value store σ are denoted Dσ , Oσ , T σ ,
and ρσ ; the space of core stores is denoted V . A core state (L , σ ) is a control location
L ∈ LOC paired with a value store σ . The space of core states is denoted Qc = LOC× V .

A core program P defines a transition relation →P⊆ Qc ×Op× Qc using a transition
relation →C⊆ (V × Op) × V over core stores. An operation create(o) creates a fresh
object and binds it to symbol o. If a program P executes the operation ret, then it trans-
fers control to its environment. In the resulting post-state of the program, which we refer to
as an environment state, the environment may execute any unbounded sequence of difc
operations, or invoke a program module. A read from object o extends the objects that taint
memory with the set of objects that taint o and a write extends the objects that taint owith the
objects that taint memory. The difc semantics places no restriction on which objects are
tainted initially: instead, policies define what propagations of taint define information-flow
violations (see Sect. 3.2.2). The semantics of the other core operations is straightforward.

difc syntax. A difc program is a core program whose operations are the core opera-
tions extended with a set of label operations, given in Fig. 5b. The label operations are defined
over the space of category variables CVAR and the space of levels LVS = {Low,Mid,High}.
A label operation may create a fresh category (Eq. 8) or set the label to be used by the next
create or ret operation to the value of a label expression (Eq. 9). A label expression is
either an empty map (Eq. 10) or a label updated to bind a particular category to a particular
level (Eq. 11). For difc programs P and P ′ containing disjoint sets of module symbols, the
composition of P and P ′, denoted by P∪̇P ′, is the difc program containing the modules
of P and P ′.

difc semantics. Adifc state is a core state pairedwith a label store. LetC∗ be a countably
infinite set of categories. Let a label be a total function that maps each category to a level
(i.e., the class of labels is L = C∗ → LVS), and let a declassification be a set of categories
(i.e., the class of declassifications is D = P(C∗), where P(S) denotes the power-set of a set
S). A label store (C, λ, κ, Lo) is a tuple of (1) a finite set of categories C ⊆ C∗, (2) a store
label λ : O∗ → L, (3) a memory declassification κ ∈ D, and (4) an operation label Lo ∈ L
to be used by the next operation executed. We denote the space of label stores by Vd. For
label store σ , we denote the categories, store label, memory declassification, and operation
label of σ by Cσ , λσ , κσ , and Lσ

o , respectively. We refer to λσ (Mem) as the memory label
in σ . If a category c is in κσ , then we say that memory owns c. The space of difc states is
denoted by Qd = Qc × Vd.

The semantics of many difc operations are defined using a flows-to relation over labels,
which defines when information may flow from one object to another.

Definition 1 For labels L0 and L1 and categories C , L0 flows to L1 over C (denoted by
L0 �C L1) if the level of L0 is at least as low as the level of L1 at each category in C . That
is, L0 �C L1 if and only if for each category c ∈ C , L0(c) ≤ L1(c).

Typically, we will consider the flows-to relation over the universe of all categories C∗, and
thus will write � in place of �C∗ . We also often consider the flows-to relation over the set
of categories not declassified by memory. For label store σ , we use �σ to denote �C∗\κσ .

A difc program P defines a transition relation→P⊆ Qd×Op×Qd.→P is defined by
the transition relation →d⊆ (Vd × Op) × Vd that relates difc pre-stores, operations, and
post-stores. For data operations and control branches, P updates its value store as defined
by the semantics of core, and does not change its label store. The semantics of reads and

123



Form Methods Syst Des (2017) 51:362–394 377

Fig. 6 Semantic inference rules for difc. Conditions on labels are highlighted with a gray background. The
rules define a transition relation →d⊆ (Vd ×Op) × Vd from a difc pre-store and operation to a post-store

writes are given as inference rules in Fig. 6. For an operation that reads data from an object
o, P reads from o only if the label of o flows to the label of memory (Rule read); for an
operation that writes data to an object o, P writes to o only if the label of memory flows to
the label of o (Rule write). An operation create(o) updates the store by creating a fresh
object, as described in Sect. 3.1. An operation ret returns control to its environment with a
memory label equal to the operation label, and an empty declassification.

The label operation c := create_cat() creates a fresh category c, binds c to cat-
egory variable c, and adds c to the declassification of memory, and the label operation
set_op_lbl(LExp) sets the evaluation of LExp in the current label state to be the label
used by the next create or envret operation.

For each difc program P , we denote the set of all finite traces of difc states generated
by executions of P as T (P) ⊆ (Qd)

∗.

Definition 2 For core program P and difc program P ′, P ′ is an instrumentation of P
(denoted by P 
 P ′) if P is the core program produced by removing each label operation
in P ′.

In Definition 2, instrumentation is a syntactic relationship between programs. Such a rela-
tionship is overly restrictive to be satisfactory in practice, because while it allows an
instrumentation to perform additional label operations, it does not allow an instrumenta-
tion to maintain additional state that it uses to determine what label operations to perform at
each program point. However, Definition 2 suffices to explain our approach.

3.2.2 Policy language

A flow automaton defines a language of difc state traces that violate a desired policy. Each
symbol in the alphabet of the automaton describes a state q by referring only to the control
location of q and the set of all objects in q whose values have been tainted by the current
execution.

Definition 3 A flow automaton is a finite-state automaton in which the alphabet is the space
ΣFlow = LOC×(OSYMS → P(OSYMS)). The class of flow automata is denoted byAFlow.

A flow automaton N defines a language of difc-state traces in which the taint map in
each state of the trace is the taint map in the corresponding symbol of a string accepted by
N .

Definition 4 Let t = σ0, . . . , σn be a Qd-trace, and let N be a flow automaton.
t violates N if N accepts some trace tN = a0, . . . , an ∈ Σ∗

Flow such that for each
0 ≤ i ≤ n, control location Li , and map Ti : OSYMS → P(OSYMS), where ai = (Li , Ti ),
for each object symbol s ∈ OSYMS, T σi (ρσi (s)) = ⋃

s′∈Ti (s) ρσi (s′) holds.
For flow automaton N and difc program P , if each trace t ∈ T (P) does not violate N ,

then P satisfies N (denoted by P |� N ).

123



378 Form Methods Syst Des (2017) 51:362–394

(a) (b)

(c) (d)

Fig. 7 Flow automata that represent global and local policies of modules in user_info For each state q
and alphabet symbol a not shown on a transition from q, there is an implicit transition from q to itself on
a. a Global flow policy for user_info. b Local flow policy for add_ssn. c Internal flow assumption for
add_ssn. d External flow policy for add_ssn

Practical policies can typically be represented succinctly as upper bounds on acceptable taint
maps in particular states. Policies given in such a representation can then be translated to
flow automata as defined above.

Example 1 The global flow policy Global Flow can be expressed as a flow automaton G,
depicted in Fig. 7a. In Fig. 7a, line i of add_ssn (Sect. 3.1.2, Fig. 3a) is depicted as Si and
line i of get_addr (Fig. 3b) is depicted as Ai . Sets of transitions with the same source state
q and destination state q ′ on symbols Σ ′ ⊆ ΣFlow are represented as a single arrow from q
to q ′ annotated with a description of Σ ′. For example, “/PUB_IN in T (/ADDRS)” depicts
all policy symbols (L, T ) ∈ ΣFlow in which PUB_IN is in T (/ADDRS). All transitions from
a source state to itself are omitted.

A violation of G is a run of user_info in which either (1) add_ssn creates an SSN-
dictionary object (bound to /SSNS at line S10) and the information from the object then
flows to /PUB_OUT or (2) get_addr creates an address dictionary (bound to /ADDRS at
line A10) and information from /PUB_IN then flows to the address dictionary.

The DIFC labeling problem is to take a difc program P and non-interference policy N ,
and instrument P to satisfy N .

Definition 5 Let P be a difc program and let N ∈ AFlow be a non-interference automaton.
A solution to the DIFC labeling problem LABEL(P, N ) is a difc program P ′ such that

P ′ is an instrumentation of P (Definition 2) and P ′ satisfies N (Definition 4).

123



Form Methods Syst Des (2017) 51:362–394 379

Fig. 8 Inference rules for compositional instrumentation

3.3 Modular DIFC instrumentation

We have developed a DIFC instrumentation algorithm,Modlin, that instruments a program
to satisfy a global policy by instrumenting each module of the program independently. The
soundness of Modlin is supported by inference rules that relate compositions of modules,
the instrumentation relation (Definition 2), and satisfaction of flow policies (Sect. 3.2.2).
Such rules are analogous to, and inspired by, inference rules that support the soundness of
assume-guarantee reasoning [44] and modular verification [24] by relating compositions of
transition-system modules to satisfaction of properties expressed as formulas in temporal
logics. In Sect. 3.3.1, we present the inference rules in detail. In Sect. 3.3.2, we describe how
Modlin applies the inference rules to instrument an entire difc program by instrumenting
the modules of the program independently.

3.3.1 Inference rules

Distribution of instrumentation over composition. The composition of valid instrumentations
of two core programs P0 and P1 is a valid instrumentation of the composition of P0 and P1.
I.e., for core programs P0 and P1 and difc programs P ′

0 and P ′
1, if P

′
0 is a valid instrumen-

tation of P0 and P ′
1 is a valid instrumentation of P1, then P ′

0∪̇P ′
1 is a valid instrumentation

of P0∪̇P1 (Fig. 8, Rule Inst-Dist).
The key idea that supports the correctness of Rule Inst-Dist is that each individual module

is instrumented in isolation under the assumption that the instrumented versions of other pro-
gram modules, combined with the environment, may attempt to perform arbitrary sequences
of operations. Any instrumentation of the other program modules chosen by an instrumenter
trivially satisfies this assumption.

Elimination of conjunctions of flow automata. The problem of instrumenting a composition
of programs to satisfymultiple flow policies can be decomposed across modules and policies.
For each pair of flow automata N0, N1 ∈ AFlow, the conjunction of N0 and N1, denoted by
N0 ×Flow N1 is the flow automaton that accepts each trace accepted by N0 or N1 (thus,
program P satisfies N0 ×Flow N1 only if P satisfies both N0 and N1). For difc programs
P0, P1 ∈ difc and flow automata N0, N1 ∈ AFlow, if P0 satisfies N0 and P1 satisfies N1,
then the composition of P0 and P1 satisfies the conjunction of N0 and N1 (Fig. 8, Rule Flow-
C-E, for Flow Conjunction Elimination).

Example 2 Modlin applies Rule Flow-C-E to decompose the problem of instrumenting
user_info to satisfy the global policy Global Flow into the independent problems of
instrumenting get_addr to satisfy get_addr-Local (depicted in Sect. 3.2.2, Fig. 7b) and
instrumenting add_ssn to satisfy add_ssn-Local (not depicted in Fig. 7). This strategy is
beneficial because the conjunction of add_ssn-Local and get_addr-Local entailsGlobal
Flow.

123



380 Form Methods Syst Des (2017) 51:362–394

Introduction of guarded flow automata Instrumenting a module M to satisfy a flow policy N
can be decomposed to (1) proving that M satisfies a flow policy N0 and (2) instrumenting
M so that it performs no violation of N that is not also a violation of N0. Let N1 guarded

by N0, denoted by N0
Flow−−−→ N1, be the flow automaton that accepts each trace not accepted

by N0, or accepted by N1. For difc program P and flow policies N0, N1 ∈ AFlow, if (1) P

satisfies N0, (2) P ′ is a valid instrumentation of P , and (3) P ′ satisfies N0
Flow−−−→ N1, then

P ′ satisfies N1 (Fig. 8, Rule Flow-G-I for Flow Guard Introduction).
An internal flow policy for a program module M is conventionally defined by a set of

source objects I and sink objects O [42]. An internal flow policy (I, O) can be represented
as a flow automaton; the construction is straightforward, and we only illustrate it by example.

Example 3 Modlin can apply Rule Flow-C-E to decompose the problem of instrument-
ing get_addr to satisfy local policy get_addr-Local (Example 2) into instrumenting
get_addr to satisfy the external policy get_addr-External (Sect. 3.2.2, Fig. 7d) under
the assumption that each execution of the uninstrumented get_addr satisfies get_addr-
Internal (Fig. 7c). Note that get_addr-Internal only places a condition on subtraces of
user_info within get_addr—i.e., traces that occur after a state at control location A0
and up to a state at control location A16.

3.3.2 Compositional instrumentation

Modlin uses the above rules to instrument a program to satisfy an input flow policy.Mod-
lin takes as input (1) an uninstrumented program P , (2) a global flow policy G, and for
each module M ∈ P , a local flow policy LM and an internal flow policy IM . Modlin first
checks that the conjunction of policies

∏
M∈P LM entails policy G by performing a stan-

dard language-containment check. Modlin then applies a DIFC instrumenter Monolith,
developed as an extension of techniques presented in previous work [26] (and described in
detail in Sect. 3.4.2), to each module M ∈ P to find an instrumentation M ′ of M such that

M ′ satisfies the external policy IM
Flow−−−→ LM . If Monolith finds an instrumentation for

each module, then Modlin returns the composition ∪̇M∈PM ′ as an instrumentation of P
that satisfies G. For each module M , the internal assumption IM can be discharged with a
standard program analysis for an information-flow language [6,23,34,42,60,61].

The key property satisfied by Modlin is that for each program P and flow policy N , if
Modlin, given P and N , generates program P ′, then P ′ satisfies N . One proof thatModlin
satisfies such a property proceeds in two steps. The first step establishes that for each program
Q and M , if Monolith, given Q and M generates a program Q′, then Q′ satisfies M . We
provided a proof of this step in previous work [26]. The second step establishes that each
of the inference rules given in Sect. 3.3.1 is sound. We provided proofs of soundness in a
manuscript not previously published, which describes this work in greater detail [27].

3.4 Evaluation

Weperformed an empirical evaluation ofModlin in order the answer the followingquestions.
First, canModlin instrument a program to satisfy a global flow policy by instrumenting each
programmodule to satisfy a local flow policy? Second, canModlin use internal assumptions
to decompose the problem of instrumenting a module to satisfy a local flow policy into
a problem of instrumenting the module to satisfy a weaker external flow policy? Third,
do programs instrumented by Modlin perform comparably with programs instrumented

123



Form Methods Syst Des (2017) 51:362–394 381

by hand? To answer the above questions, we implemented Modlin as a tool, modstar,
that performs a source-to-source translation on the LLVM intermediate language [38] to
instrument programs to be run on theHiStar DIFC system.modstar uses a novelmonolithic
DIFC instrumenter, monostar (discussed in Sect. 3.4.2), to instrument each individual
module to satisfy its local external policy.

To determine if modstar could decompose global flow policies into local flow policies,
we wrote a desired global flow policy for a suite of four modules that, combined, implement
a mutually-untrusting login service [71]. For each module, we wrote a local flow policy that
we believed a correctly-instrumented version of the module should satisfy; we found that
the conjunction of all local flow policies served as a natural global flow policy for the entire
login service. We also wrote an internal flow assumption that we believed that each uninstru-
mented module satisfied; We then applied modstar to (1) check that conjunction of local
policies entailed the global policy and (2) instrument each module to satisfy its local policy,
assuming that the uninstrumented version of the program satisfies its internal flow assump-
tion. To evaluate the benefit of modstar’s modular approach, we applied monostar to
attempt to instrument monolithically all modules to satisfy the conjunction of external flow
policies.

In short, modstar successfully instrumented the program to satisfy its global flow pol-
icy by instrumenting each module in isolation, whereas monostar exhausted all system
resources when attempting to instrument all modules. A more nuanced view, discussed in
detail in Sect. 3.4.5, is that our results answer the above experimental questions affirmatively,
with some reservations.

We now describe our evaluation in more detail. Section 3.4.1 describes the semantics
of the HiStar operating system, an operating system that implements DIFC features that
extend the features of difc from Sect. 3.1.1. Section 3.4.2 describes how a monolithic
instrumenter soundly and accurately instruments programs to use HiStar label primitives.
Section 3.4.3 describes in more detail the policies of each module in the login service, and
the instrumented version of each module that modstar generates. Section 3.4.4 discusses
the results of the evaluation. Section 3.4.5 draws conclusions from the results.

3.4.1 The HiStar DIFC system

The HiStar DIFC operating system [71] maps each system object, i.e., each process, file, or
directory, to a label. Similarly to difc (Sect. 3.1), a label is a map from a space of categories
to an ordered level, and each process p can read from or write to a system object o depending
on the label of p and o.

Aprocess can create agate,which is labeled storage bound to amodule that another process
can call to execute a fixed operation with temporarily-elevated privilege. Each process p and
gate g has ownership of a set of categories, Op and Og , respectively. A process p can create
a gate g with a label Lg and ownership set Og if the label of p flows to Lg and the ownership
set of p contains Og . A process q can call g with a label L ′ that may have an arbitrary level
at every category owned by q or g, and has a level as high as the levels of both Lq and Lg

at every category not owned by q or g.
HiStar associates each process and gate with a verification set of categories. A process p

may create a gate g with a verification set that is a subset of the verification set of p. When a
process attempts to call a gate g, HiStar only allows the gate call to proceed if the verification
set of the calling process contains the verification set of g.

123



382 Form Methods Syst Des (2017) 51:362–394

3.4.2 A monolithic instrumenter for HiStar

Our implementation of Modlin for HiStar (modstar) invokes a monolithic instrumenter
monostar to instrument individual HiStar modules independently (see Sect. 3.3.2). There
are several challenges to developing a monolithic instrumenter to instrument even individual
modules for a practical DIFC system, such as HiStar, compared to the illustrative language
difc (Sect. 3.2.1). A primary challenge is that difc programs operate on a set of objects
that are bound to a fixed set of object symbols, but HiStar programs operate on a potentially-
unbounded set of linked labeled objects that reside on a filesystem. Modeling the semantics
of such programs is beyond the scope of existing DIFC instrumenters [20,28].

We thus developed a novel monolithic DIFC instrumenter [26], monostar, that applies
a logic-analysis engine [41] to model the set of system objects, links between objects, cat-
egories, and the level of each object at each category as a relational structure, and soundly
abstracts the potentially-unbounded set of states reached by a program as a three-valued log-
ical structure [47]. Rather than use sets of object symbols, as described in the definition of
policy automata in Sect. 3.2.2, monostar describes potentially-unbounded sets of objects
as formulas in first-order logic with transitive closure (FOLTC).

3.4.3 A mutually-untrusting login service

The HiStar mutually-untrusting login service [71] allows a client to supply a username u
and password-attempt value to request ownership of the private category for u (upriv), while
controlling to which objects on the system the client’s password-attempt may flow. The
login service is implemented as four distinct modules: a logging service auth_log, a map
auth_map from each user to their authentication gate, user-authenticator auth, and an
authentication client clnt. Each login session is performed by calling multiple gates, which
read from, write to, and create other objects, gates, and directories. The key goals of the
login service are that (1) auth should not grant ownership of its user’s private category until
the client that it interacts with provides the user’s password, (2) even when clnt interacts
with an untrustworthy authenticator, the authenticator should not be able to leak the client’s
password-attempt value, but (3) clnt should still be able to use auth_log to log when a
client requests ownership of a client’s category.

A session of the login service in which the client obtains ownership of the user’s private
category proceeds as follows. The initial system state contains gates for auth_log and
auth_map. Before a login session occurs, auth_log creates a log file log and creates
a gate logger that its environment can invoke to append a message to the log [Fig. 9, arc
(1)]. auth_map creates a gate map [arc (2)], which takes a user name u as input and returns
the auth gate registered for u.

clnt initiates a login session by calling map to obtain the auth gate for a desired
user [arc (3)]. clnt then calls the auth gate [arc (4)], and provides a session directory
seshdir writable by auth. Because seshdir is only a directory, not a gate, it is not
depicted in Fig. 9. In response, auth creates as children of seshdir a gate bound to a
password-checking module chk_pw [arc (5)] and a gate bound to a permission-granting
module grant [arc (6)] as children of seshdir. clnt then calls the chk_pw gate with
the client’s password-attempt value [arc (7)]. chk_pw checks whether the password-attempt
value supplied by clnt is actually correct, but clnt ensures that chk_pw executes with
only the capabilities to (a) receive the password-attempt value from clnt, and (b) after a
successful match of the hashed password-attempt value with the stored hash of the actual
password, returns an authorization token to clnt. clnt then provides the authentication

123



Form Methods Syst Des (2017) 51:362–394 383

Fig. 9 Gates created during an
authentication session of the
mutually-untrusting login service.
Each node denotes a gate; a solid
edge g → h denotes that in a
state in which the program
executes gate g, the program
creates gate h; a dashed edge
g → h denotes that in a state in
which the program executes gate
g, the program calls gate h

token, but not the password-attempt, to grant [arc (8)], which grants clnt ownership of
upriv, and uses logger to log the event to a public file [arc (9)], and clnt returns control
to the program that provided to it a password-attempt value, owning upriv.

We nowdescribe, for eachmoduleM of login, the local flowpolicy and internal assump-
tion ofM , and the instrumented version ofM generated byModlin that satisfiesM’s policies.
We also describe informally the access-rights policy of each module M , which are the con-
ditions under which M guarantees that its environment can read to or write from a given
object, or own a given user’s permission. I.e., access-right policies describe the assumptions
and guarantees that modules provide for a program to perform desired functionality.

auth_log policy. The local flow policy of auth_log specifies that information should
only flow tolog from the value of logger’s input at entry tologger. The internal assump-
tion of auth_log assumes that the uninstrumented auth_log only allows information
to flow from its input message to log. The access-right policy of auth_log specifies that
when auth_log and logger return control to their environment, the environment should
be able to read from log. When logger executes, it should be able to write to log.

auth_log instrumentation. The instrumented version of auth_log, generated by
modstar creates a category c, creates logwith a level that is low at c, creates the logger
gate with an ownership set that contains c, and returns control to the environment with a label
with level Mid at c, and with an ownership that does not contain c; thus, the environment can
read from but not write to log. The instrumented logger executes with ownership of c,
but returns control to its environment with level Mid at c, and without ownership of c. Thus
logger can write to log, but the environment of logger cannot.

auth_map policy. The local flow policy, internal assumption, and access-right policy for
auth_map are similar to the policy and assumption for auth_log. The local flow policy
for auth_map specifies that information should only flow to themap file map from the value
of map’s input at entry to map. The internal assumption is that auth_map only allows its
input request to affect the value in map. The access-right policy for auth_map specifies
that when auth_map and map return control to their environment, the environment should
be able to read from map.

auth_map instrumentation. The instrumented version of auth_map generated by
modstar uses label operations similar to the label operations used by the instrumented
version of auth_log generated by modstar; we omit a full description.

123



384 Form Methods Syst Des (2017) 51:362–394

auth policy. auth’s local flow policy specifies that information should only flow from the
user’s password file to a system object during an execution of chk_pw (which leaks a single
bit of the password file when checking its value). The internal assumption of auth is that
no module other than chk_pw allows information in the user’s password file to flow to any
other object.

auth’s access-rights policy specifieswhat access rightsauth should grant to the environ-
ment for the environment to own the user’s category exactly when the environment provides
the password and allows auth to log the attempt. I.e., (1) initially, the environment must
be able to call the auth gate, (2) when auth returns, the environment must be able to
call the chk_pw gate, (3) if chk_pw validates the given password, then the environment
must be able to call the grant gate, and (4) if the environment calls the grant gate, then
when grant returns, the environment should own the user u’s private category upriv. The
environment may only own upriv if the above sequence of events occurs.

auth instrumentation. The instrumented version of auth generated by modstar main-
tains the following key invariant on labels: the environment can only own upriv after calling
grant, but the environment cannot call grant until it owns an authentication-token cate-
gory tok. The environment can only own tok if it provides a client password to chk_pw that
matches the user’s password.

To maintain the above invariants, the instrumented auth, chk_pw, and grant exe-
cute the following label operations: (1) auth creates a category tok. (2) auth creates the
chk_pw gate so that the gate owns tok, and so that the gate’s verification set does not contain
tok. (3) auth creates the grant gate so that the gate’s verification set does contain tok;
thus the environment will not be able to call the grant gate unless it is in a state in which
it owns chk_pw. (4) If the chk_pw gate is called with a client password that matches the
password of user u, then chk_pw exits in a state that owns tok. Otherwise, chk_pw exits in
a state that does not own tok. (5) If the grant gate is called, then grant exits with a store
that owns the category upriv.

clnt policy. The local flow policy of clnt specifies that over all executions of clnt and
its environment, clnt’s password-attempt value should not flow to any object of the system
that is not a descendent of seshdir. The internal assumption of clnt specifies that over
all executions of clnt, the client’s password-attempt value flows only to a process calling
a gate that is the child of seshdir. The access-right policy of clnt specifies that its envi-
ronment should be able to write to seshdir.

clnt instrumentation. The instrumented version of clnt generated by modstar executes
the following label operations during each execution: (1) After clnt calls the auth gate
to create the session’s chk_pw and grant gates, clnt creates a category pw. (2) clnt
calls the chk_pw gate to execute with memory that is high at pw. (3) If the chk_pw gate
determines that the client provided apassword-attempt value thatmatched the actual password
of user u, then clnt calls the grant gate with memory in whose label pw is bound to Mid.

3.4.4 Results

Table 1 contains the results of our experiments. The measurements in Table 1 are divided
into (1) features of each program module, (2) features of the policies that we wrote for each
module, and (3) features of the performance of modstar. Each feature is described in the
caption of Table 1. Instrumenting each module takes no longer than approximately 30 min,

123



Form Methods Syst Des (2017) 51:362–394 385

Table 1 Experimental results

Program Policy modstar

Name LoC Label sites Loc. Int. Acc. Ext. time Instr. time Total time Mem. (GB)

auth_log 54 5 4 3 3 0min 29s 0min 04s 0min 33s 4.5

auth_map 157 6 4 3 3 0min 32s 0min 46s 1min 18s 7.0

auth 281 19 3 3 8 0min 24s 29min 33s 29min 57s 16.0

clnt 254 15 3 3 3 0min 41s 8min 41s 9min 22s 8.0

Under the “Program” header, “Name” gives the name of the instrumented program, “LoC” shows the number of
lines of code of the program, measured with the cloc utility (which does not count white space or comments);
“Label Sites” indicates the number of sites in the program that use a label when run on HiStar (e.g., when
creating an object). Under the “Policy” header, “Loc.,” “Int,” and “Acc.” show the number of states in the
module’s local flow, internal assumption, and access-right policies; Under the “modstar” header, “Ext. Time”
shows the amount of time required to construct an external policy from the module’s given local and internal
assumption; “Instr. Time” shows the amount of time required to rewrite the module; “Total Time” shows the
sum of times in “Ext. Time” and “Instr. Time”; “Mem” shows the peak memory used, expressed in gigabytes

and the sum of times taken to instrument all modules is less than 45 min (see column “Total
Time”). modstar takes almost as much or more time to construct the external policies
for auth_log and auth_map as it does to instrument each module to satisfy its policy.
This is likely due to the fact that modstar constructs the external policy by invoking
the Goal automaton library [63] to execute in separate processes; each time modstar
provides the automata toGoalwith an unoptimized, explicit representation of their transition
relations, and requiresGoal to determinize andminimize the final result.We believe that this
component of the implementation of modstar would benefit considerably from standard
optimizations.

When we applied monostar to attempt to monolithically instrument the entire login ser-
vice, monostar exhausted all memory allocated (up to 32 GB). Each module instrumented
by modstar executes with execution time of multiple of at most 1.1 over a version of the
module instrumented by hand by the HiStar developers.

3.4.5 Conclusions

Our experience using modstar to instrument login gives positive, if cautious, support that
Modlin can be applied to instrument programs for DIFC systems. The key positive result
supporting the utility of modstar is that given sufficient local flow and access-right policies
and internal assumptions, modstar can efficiently instrument large, modular programs to
satisfy practical information-flow policies.

Our belief, based onmanually auditing the loginmodules, is that existing programanalyses
for type-safe and memory-safe languages [6,23,34,42,60,61], could feasibly be adapted to a
manageable subset of C or LLVM to dischargemost of the internal flow policies in login: each
module operates on sensitive information is small regions of code, using simple operations.
However, modstar can make only weak guarantees about sensitive information that is
declassified by programmodules. In particular,modstarwas applied to instrument auth to
enforce that information about the user’s password is released during executions of chk_pw
(and not, e.g., by auth’s environment). However, modstar cannot be applied to instrument
a version of auth to release an acceptable amount of information about the user’s password;

123



386 Form Methods Syst Des (2017) 51:362–394

describing and enforcing acceptable declassification is itself a difficult problem [39,46,65]
that is outside the scope of our work.

We suspect that the effort required to use Modlin could be significantly lessened by
inferring many local policies directly for uninstrumented modules. For example, multiple
access-right policies simply assert that if a module is entered with sufficient rights to perform
required operations, then the module does not fail to perform the operations by unnecessarily
relinquishing access rights. However, many access-right policies, such as the access-right
policy for auth and, all local flow policies appear to require a high-level understanding
of the requirements of the instrumented module that not apparent from the uninstrumented
code.

An ideal DIFC instrumenter would generate a secure implementation of auth from a
completely naïve implementation of auth that merely checks a client’s password-attempt
value against a user’s password, logs the attempted login, and optionally grant ownership of
the user’s category. I.e., the naïve implementation not only would not contain any label oper-
ations, but would not create separate gates to check the password-attempt, log the attempt,
and grant ownership of the user’s category if the client’s password-attempt value matched.
Such a DIFC instrumenter would have to (1) partition the naïve implementation into multiple
modules M, (2) synthesize new code that creates and links objects O and gates G bound
to modules in M, and (3) synthesize label operations that ensure that O and the process
executing G have correct labels. Problems related to subproblem (1) are addressed by previ-
ous work on partitioning programs to ensure security and performance guarantees [8,11,12].
Subproblem (3) is addressed by Modlin. Problems related to subproblem (2) have been
addressed by recent techniques that synthesize programs that operate on relational and recur-
sive data structures [1,31], which can model the structure of objects and links between them.
Extending and composing techniques for solving all three problems is an interesting direction
of future work, but is beyond the scope of this paper.

In general, the problem of generating an optimal instrumentation in contexts where the
cost of a suboptimal instrumentation is significant is a critical problem. In practice, for DIFC
systems, the overhead ofMODLIN’s instrumentationwas negligible (Sect. 3.4.4).We suspect
that the overhead induced by instrumentation is negligible at least partly due to the fact that
label operations are implemented as efficient operations on maps and integers, whose costs
are quickly overshadowed by other common program operations, such as I/O.

The primary goal of our evaluation was to evaluateModlin’s effectiveness when attempt-
ing to instrument a suite of mutually-untrusting programs that must cooperate to perform
desired functionality, using a subtle protocol of DIFC primitives. We did not attempt to
evaluateModlin’s effectiveness in instrumenting programs at scale. We believe that in prin-
ciple, Modlin could scale well to larger programs, similarly to capweave, which scaled
to instrument the php interpreter. In general, program instrumenters for interactive-security
systems only need to model the state relevant to system state, namely the state of file descrip-
tors and other objects shared by processes. Even large applications that implement complex
functionality have relatively small modules of code that perform operations on such objects.
Evaluating the ability of Modlin to scale in practice is a promising direction for future work.

4 Future work: synthesizing programs that use secure isolated regions

Modern computer users can perform resource-intensive computations on their sensitive data
on networked cloud servers that provide computation as a service. In particular, a cloud

123



Form Methods Syst Des (2017) 51:362–394 387

server may run vulnerable systems infrastructure that can be compromised by a user who
runs an application co-located with a user’s computation. A malicious user may then exploit
the vulnerability to learn information about another user’s private data, or tamper with the
result of a user’s critical computation.

To address this problem, novel architectures have been developed that implement special
instructions that an application invokes to contain segments of code and data in hardware-
level Secure Isolated Regions (SIRs) (also called enclaves).1 In particular, the SGX enclave
feature supported by recent Intel processors [35] and the TrustZone feature supported by
recent ARM processors [5] support an extended instruction-set architecture (ISA) that a user-
level application can use to ensure confidentiality and integrity. Academic alternatives such
as the MIT Sanctum platform [14] provide similar features to user-level applications using a
combination of hardware and software. Code that executes in a SIR cannot be tampered with
by other agents on a system. Data in a SIR is encrypted when written to non-SIR memory
or persistent storage, ensuring that even an adversary with complete control over hardware
connected to the core processor cannot learn information about the application’s data or
tamper with the data without being detected.

Such hardware features are powerful [49], but present application programmers with new,
significant challenges. Figure 10a contains pseudocode for a simple reduce procedure, named
reduce, that could potentially be run on a cloud server as a component in a map-reduce
framework. The core functionality of reduce is to read as input a sequence of numeric
values as input (lines 3–9), compute their sum (lines 11–15), and output the sum. While the
core functionality is relatively simple, the implementation of reduce is complicated by the
fact that for it to trust the integrity of its inputs, it must establish an encrypted input channel
and read values from the input channel (lines 3–8). Similarly, for reduce to establish trust-
worthiness of its output, it must establish an encrypted output channel and write values to the
output channel (lines 18–19). Both channels are established using several low-level opera-
tions on memory that, if incorrect, could compromise the correctness of reduce. Moreover,
reduce must not inadvertently store a value with information about its sensitive inputs to
an address outside of its SIR.

Previous work on verification. We have performed previous work on verifying that an appli-
cation uses SIRs correctly [51,52]. In particular, our work addresses the problem of taking (1)
an application manually written to use SIRs, and (2) a policy denoting the sensitive informa-
tion operated on by the application and verifying that the application does not leak sensitive
information to an adversarial system. The key result of our work is a semi-automated design
methodology that a programmer follows to write an application that uses SIRs to satisfy
confidentiality properties. In particular, the programmer writes the program to use a commu-
nication library—one artifact resulting from the work—to marshal the communication of all
sensitive information to its environment. We manually verified that procedures in the library
reveal information given to them only to target storage.

The programmer also runs an automatic verifier—a second artifact resulting from the
work—on code assigned to run in a SIR to ensure that it only releases sensitive information
through the verified communication library. Verifying the property amounts to verifying
that code designated to execute in a SIR only (1) runs code designated to execute in a SIR
(as opposed to, e.g., incorrectly branching to untrusted code) and (2) only writes sensitive
information to memory addresses within a SIR. When successful, the verifier automatically
generates a formal proof of security.

1 We adopt the nomenclature of SIR from [51].

123



388 Form Methods Syst Des (2017) 51:362–394

(a) (b)

Fig. 10 Pseudocode for insecure and secure versions of areduce function used in amap-reduce framework.a
reduce: performs a reduction, in the context of amap-reduce framework. breduce_sec: a verified version
of reduce, adapted to use secure channels

Figure 10b contains reduce revised to use a secure channel developed in our work.
The implementation of core functionality in reduce (Fig. 10a, lines 9–15) is identical to
reduce_sec (Fig. 10b, lines 6–12). However, all code in reduce that manually estab-
lishes secure input (Fig. 10a, lines 3–8) and output channels (lines 18–19) are replaced with
usage of the verified Channel library (Fig. 10b, lines 3 and 15).

Proposedworkon synthesis.Our previouswork enables a programmer to verify that a program
that has already been manually written to use SIRs satisfies a desired confidentiality policy.
However, it does not address the problem of writing or rewriting an application to correctly
use SIRs. Writing an application to correctly use SIRs typically requires a developer to
write the application to execute low-level instructions so that multiple goals are satisfied
simultaneously. In particular, (1) the code segments designated to execute in a SIR must be
sufficiently expansive that they can perform desired computations on sensitive inputs. (2) The
code segments designated to execute in a SIR must be sufficiently compact that they do not
leak information about the sensitive information that they operate on, and that such a property
can be verified automatically. (3) Data thatmust be operated on both by code that executes in a
SIR and code that does not execute in a SIRmust be shared efficiently. (4) Code that executes
in a SIR but receives data not stored in a SIR must run sufficiently strong validation checks
on such data (which can be tampered with by the adversary in arbitrary ways) to ensure that
it can use the data while preserving the desired integrity of the computation that it performs.
(5) Such validation checks must be sufficiently permissive that if code that executes out of an
SIR is not corrupted by an adversary, then the entire application correctly performs desired
functionality.

Applications are verified by verifying that their components each satisfy key properties.
We provide a summary of the verification technique presented in detail in previous work [51,
Sec. 5]. Let U be the user application and L a small-time runtime library that provides core
primitives, such as memory management and encrypted channels. The application U can

123



Form Methods Syst Des (2017) 51:362–394 389

only communicate with the untrusted platform through the narrow interface provided by
L , which enables compositional verification. Verification is performed in two steps. (1) The
library L is manually verified to correctly implement a secure encrypted channel andmemory
management. Such verification, though not automatic, can be performed with reasonable
design effort because L is small. Furthermore, the verification task needs to be performed
only once across all applications that use L .

(2)U is verified to be correct, assuming that L implements a secure channel and memory
management. This amounts to verifying that U satisfies a relaxed definition of control-flow
integrity (CFI); i.e., the target of each jump executed byU is the address of an instruction in
L of the entry point of a implemented in L , andU does not access state used by cryptographic
operations implemented in L . U is verified by analyzing the machine code and generating
verification conditions in an SMT theory, which are discharged using an SMT solver.

Our previous work on the verification of applications that use SIRs is based on the assump-
tion that a programmer has already written an application with the above conditions in mind.
Given such an application, our verifier validates that the program uses SIRs to satisfy condi-
tions (1) and (2). However, it does not attempt to verify that the program shares data efficiently
(condition (3)) or that it satisfies desired integrity guarantees (condition (4)). In fact, integrity
properties of practical programs are typically difficult even to express because they are typi-
cally highly specific to its individual application. Finally, because the verifier operates only
on code that has been adapted to use SIRs, but not the original code as a reference, the ver-
ifier cannot be used to verify that the use of SIRs preserves critical functionality (condition
(5)). Specifications of core functionality that must be preserved, similar to desired integrity
properties, are typically each also highly specific to individual applications.

As future work, we propose to develop a synthesizer that takes an application that uses
no SIR primitives and instruments it to use SIR primitives so that it satisfies each of con-
ditions (1)–(5). We expect that developing such a synthesizer will be feasible based on
key observations that connect the problem with our previous work on developing synthesis
frameworks. In particular, a key result of our previous work developing the SyGuS synthesis
framework is that a program synthesizer can often be structured as a procedure that itera-
tively synthesizes a candidate program, runs a verifier to determine if the program satisfies
key properties, and uses the result of the verifier to generate the next candidate program—a
so-called counterexample-guided inductive synthesis (CEGIS) approach [2,58]. We believe
that it is highly feasible that we can develop a synthesizer that synthesizes programs that
satisfy properties (1) and (2) by iteratively running the verifier for SIR programs that we
have developed in previous work and inspecting its results to synthesize new candidate uses
of SIR primitives. Rich integrity properties (condition (4)) will be expressed as hyperprop-
erties [13]. Equivalence to an original program will be established by synthesizing relational
invariants that accompany the synthesized program.

5 Related work

Capability systems. Capabilities were introduced in the MULTICS system [48], and were
developed further in the capability systems PSOS [43] and EROS [50]. They provide capa-
bilities as a fine-grained mechanism that mediate each access that an application requests to
perform on a system resource, including loading and storing memory pages. The Capsicum
operating system [68] provides capabilities that mediate accesses at a coarser granularity
than the capabilities of PSOS or EROS: Capsicum capabilities only mediate accesses to file

123



390 Form Methods Syst Des (2017) 51:362–394

descriptors. However, because Capsicum capabilities only mediate accesses to file descrip-
tors, it was possible for Capsicum to be rapidly developed as an extension to FreeBSD9, a
widely-deployed version of UNIX. The work described in Sect. 2 describes the design and
evaluation of a program weaver that automatically instruments programs to use capabilities
on Capsicum.We suspect that such instrumentation techniques could be reapplied to generate
program weavers for other capability systems, such as EROS or PSOS, and that the utility
of such weavers may in fact be greater for such systems than for Capsicum, given that such
systems require applications to use capabilities at a finer granularity.

Programming for capability systems. Instrumenting programs for Capsicum encompasses
both partitioning a program into modules that execute in separate processes, and instrument-
ing the program modules that execute in each process to correctly invoke primitives that
manage capabilities. In this paper, we have primarily discussed the problem of instrument-
ing program modules. Partitioning a program consists of choosing which modules to bind
to RPC services and which capabilities to associate with each service, and is discussed in
detail in our previous work [30]. Previous work [8,12] automatically partitions programs so
that high and low confidentiality data are processed by separate processes, or on separate
hosts. The SOAP project [25] proposes a semi-automatic technique in which a programmer
annotates a program with a hypothetical sandbox, and a program analysis validates that the
sandbox does not introduce unexpected program behavior. In contrast, capweave automat-
ically instruments a program to invoke system calls that cause the program to execute in
different processes (if necessary), and instruments the program executing in each process to
use capabilities as necessary to satisfy a security policy.

Skalka and Smith [53] present an algorithm that takes a Java program instrumented with
capability security checks, and attempts to show statically that some checks are always
satisfied. Our work introduces a technique for instrumenting a program to use capability
primitives so that it interacts securely with program modules that are not trusted to execute
capability checks, either because the untrusted modules may contain vulnerabilities that can
be exploited to violate control-flow integrity, or the modules are provided by an untrusted
source.

DIFC operating systems. DIFC operating systems, such as Asbestos [20], HiStar [71], and
Flume [37], explicitly track the flow of information between system objects, such as pro-
cesses and files. The Laminar runtime system [45] explicitly tracks the flow of information
through both system and program memory objects. Such systems are designed so that a
program, in principle, can satisfy strong information-flow properties when interacting with
potentially-malicious programs. In practice, a programmer must (1) write a program to use
custom low-level instructions that operate on a persistent information-flow lattice, and (2)
informally reason that the rewritten program satisfies desired functionality and information-
flow guarantees. Modlin complements information-flow operating systems: it takes from a
programmer explicit non-interference and access-rights policies, and rewrites a program to
use label operations so that it satisfies the policies.

Prior work on labeling programs for the Flume operating system takes an uninstrumented
programandapolicy as a conjunctionofflow relations andnegations offlow relations between
threads, and automatically generates code that initializes the labels of each thread [19], or
chooses labels that the program should hold at each of its control locations to hold sufficient
access rights, but not allow insecure information flows [28]. However, both approaches must
be applied to instrument all modules in a program simultaneously. Both of the approaches
can be viewed as implementations of the monolithic DIFC instrumenter Monolith.

123



Form Methods Syst Des (2017) 51:362–394 391

In previous work [29], we proposed a technique that takes abstract models of the seman-
tics of a program, a policy, and an operating-system as visibly-pushdown automata [4], and
instruments the program by finding a modular strategy to a visibly-pushdown game [3].
Further work demonstrated that the reduction to visibly-pushdown games can be applied to
instrument programs to correctly operate on capabilities [30]. We have applied these tech-
niques to create Monolith, which is used as a component of modstar. While Monolith
can instrument programs to satisfy richer policies than policies supported by instrumenters
proposed in previous work [19,28], Monolith itself does not scale to instrument programs
as complex as the HiStar mutually-untrusting login service, unless the programs and policies
have been decomposed usingModlin.

Information-flow languages. Information-flow languages allow a programmer to ensure that
sensitive information flows securely through data objects internal to a program’s state, either
reasoning statically about all program executions [6,42,60,61], or dynamically monitoring a
single programexecution [23,34].Modlin instruments programs to interactwith anoperating
system to manage how sensitive resources are accessed by an uncontrolled environment.
Modlin uses internal assumptions about a given uninstrumented program, which could in
principle be discharged by the analyses and type-checkers provided by information-flow
languages.

An Inline Reference Monitor (IRM) [21] uses code placed in an untrusted program by an
IRMrewriter tomonitor the program’s behavior at runtime and halts the program immediately
before the program would violate the security policy. An IRM mediates only the operations
of the program in which it is instrumented. DIFC instrumenters, includingModlin, address
a different problem: to rewrite a program so that the program can ensure the security of
its resources as the program is granted control by, and returns controls to, uninstrumented
programs in its environment.

Compositional verification. Assume-guarantee reasoning [44] and compositional verifica-
tion [24] are techniques for efficiently model-checking transition systems that are composed
ofmultiple modules. Both techniques decompose the problem of checking that a large system
composed of multiple modules satisfies a global propertyG to smaller independent problems
of checking that each module M in G satisfies a guarded internal property of M .Modlin is
directly inspired by compositional verification. However, the goal ofModlin is to instrument
a modular program to satisfy a desired non-interference policy, not to check if the program
satisfies a temporal property.

Partial synthesis. Several techniques have been proposed for extending incomplete programs
(i.e., partial program models) to satisfy a desired property. Game-solving has been applied
to “repair” programs to satisfy temporal specifications [36]. Program sketching, as a form of
syntax-guided synthesis [2], takes a programwith “holes” for program expressions and state-
ments and a specification, and synthesizes a complete program by choosing an expression or
statement for each hole [55–58].Modlin can be thought of as a modular partial synthesizer
for a specific class of DIFC properties. For a generic partial program synthesizer S to be
applied to the problem that Modlin addresses, S would have to be able to instrument a
program implemented in a language that can model DIFC labels to satisfy properties that can
encode non-interference automata (see Sect. 3.2.2). However, S used in this fashion would
mimic Monolith, and would not support a modular approach, asModlin does.

123



392 Form Methods Syst Des (2017) 51:362–394

Language support for security. The general topic of this paper is synthesis of secure pro-
grams, which is related to a paper by Holzer et al. [33], which describes a tool that achieves
Secure Two-Party Computation [32,70] for ANSI C. Their work is based on a combination of
model-checking techniques and two-party computation based on garbled circuits—a primi-
tive introduced by Yao in 1982. The key insight is a nonstandard use of the bit-precise model
checker CBMC which enables them to translate C programs and “synthesize” equivalent
Boolean circuits. To achieve their goal, they modified the standard CBMC translation from
programs into Boolean formulas whose variables correspond to the memory bits manipulated
by the program. Because CBMC attempts to minimize the size of the formulas, the circuits
obtained by their tool chain are also succinct. To further improve the efficiency of the garbled
circuit evaluation, their tool performs optimizations on the circuits produced by CBMC. The
paper also has an extensive experimental evaluation. Several researchers are following up on
this line of work. As usual, Helmut Veith was a one of pioneers in this general research trend.
Helmut Veith was an incredible researchers and his insight and creativity will be missed by
the entire community.

6 Conclusion

Interactive security systems provided a small set of powerful primitives that enable an applica-
tion programmer to potentially write an application that satisfies a strong security guarantee.
However, such primitives do not enable programmers to specify the security requirements
of their program directly, much less verify that their application satisfies such a policy. Fur-
thermore, such systems typically require a programmer to provide guarantees in multiple
contexts: in particular, each module must not enable a malicious environment (e.g., injected
code in a Capsicum process or a malicious program on a HiStar system) to perform insecure
operations, but must allow a cooperative module (i.e., another module in the HiStar login
service) to perform desired functionality.

Themain contribution of our previousworkhas beenpolicy languages inwhich a developer
can express desired security policies and desired functionality directly, and program instru-
menters that take a program and a policy and instrument the program to satisfy the policy by
invoking primitives of an interactive-security system. To enable the scalable development of
programs consisting ofmultiplemodules that wish to cooperate in the presence of amalicious
environment, we have developed a framework for decomposing global information-flow and
functionality policies into per-module policies that can be discharged using previously devel-
oped techniques.

As computer end-users aim to perform operations on increasing amounts of their sensitive
data on cloud systems running untrusted software platforms, the importance of architectures
that enable an application to construct Secure Isolated Regions will continue to increase. Our
previous experience demonstrates that verifying that an application satisfies desired security
properties is challenging, but tractable. A promising direction for future work will be to
extend existing techniques for verifying that programs correctly construct SIRs to satisfy
high-level security properties to techniques for synthesizing such programs automatically.

Acknowledgements The authors wish to thank the many researchers and collaborators who contributed to
the work described in this paper, including JonathanAnderson,Manuel Costa, Akash Lal, Nuno Lopes, Roman
Manevich, Sriram Rajamani, Mooly Sagiv, Rohit Sinha, Kapil Vaswani, Robert Watson, and Nickolai Zel-
dovich. Thework described in this paper was supported, in part, by a gift fromRajiv andRitu Batra; byDARPA
underCooperativeAgreementHR0011-12-2-0012; byNSFunderGrants CCF-0904371, CNS-1228620, CNS-
1228782, and SATC-1526211; by the NSF STARSS Grant CNS-1528108; by SRC contracts 2460.001 and
2638.001; by a gift from Microsoft Research; by AFRL under DARPA CRASH Award FA8650-10-C-7088,

123



Form Methods Syst Des (2017) 51:362–394 393

DARPA MUSE Award FA8750-14-2-0270, DARPA STAC Award FA8750-15-C-0082, and DARPA XD3
Award HR0011-16-C-0059; by USAF and DARPA under Contract No. FA8650-15-C-7562; and by the UW-
Madison Office of the Vice Chancellor for Research and Graduate Education with funding from theWisconsin
Alumni Research Foundation. Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors, and do not necessarily reflect the views of the sponsoring agencies.

References

1. Albarghouthi A, Gulwani S, Kincaid Z (2013) Recursive program synthesis. In: CAV
2. Alur R, Bodík R, Juniwal G, Martin M M K, Raghothaman M, Seshia S A, Singh R, Solar-Lezama A,

Torlak E, Udupa A (2013) Syntax-guided synthesis. In: FMCAD
3. Alur R, La Torre S, Madhusudan P (2006) Modular strategies for recursive game graphs. Theor Comput

Sci 354(2):230–249
4. Alur R, Madhusudan P (2004) Visibly pushdown languages. In: STOC
5. ARM (2016) Products. https://www.arm.com/products/security-on-arm/trustzone. Accessed 9 Sept 2016
6. Barthe G, Fournet C, Grégoire B, Strub P-Y, Swamy N, Béguelin SZ (2014) Probabilistic relational

verification for cryptographic implementations. In: POPL
7. Bittau A, Marchenko P, Handley M, Karp B (2008) Wedge: splitting applications into reduced-privilege

compartments. In: NSDI
8. Brumley D, Song D X (2004) Privtrans: automatically partitioning programs for privilege separation. In:

USENIX security symposium
9. C. E. Board. CVE-2007-4476. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4476, Aug

2007
10. C. E. Board. GNU Tar and GNUCpio rmt_read__() function buffer overflow. http://xforce.iss.net/xforce/

xfdb/56803, Mar 2010
11. Cheung A, Arden O, Madden S, Myers AC (2012) Automatic partitioning of database applications.

PVLDB 5(11):1471–1482
12. Chong S, Liu J, Myers A C, Qi X, Vikram K, Zheng L, Zheng X (2007) Secure web application via

automatic partitioning. In: SOSP
13. Clarkson MR, Schneider FB (2010) Hyperproperties. J Comput Secur 18(6):1157–1210
14. Costan V, Lebedev I, Devadas S (2015) Sanctum: minimal hardware extensions for strong software

isolation. Cryptology ePrint Archive, Report 2015/564. http://eprint.iacr.org/
15. CVE-2004-1488. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1488, Feb 2005
16. CVE-2007-3798. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3798, July 2007
17. CVE-2010-0405. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0405, Apr 2010
18. Denning DE (1976) A lattice model of secure information flow. Commun ACM 19(5):236–243
19. Efstathopoulos P, Kohler E (2008) Manageable fine-grained information flow. In: EuroSys
20. Efstathopoulos P, Krohn M N, Vandebogart S, Frey C, Ziegler D, Kohler E, Mazières D, Kaashoek MF,

Morris R (2005) Labels and event processes in the Asbestos operating system. In: SOSP
21. Erlingsson Ú, Schneider FB (2000) IRM enforcement of Java stack inspection. In: SSP
22. FreeBSD 9.0-RELEASE announcement. http://www.freebsd.org/releases/9.0R/announce.html, Jan 2012
23. Giffin DB, Levy A, Stefan D, Terei D, Mazières D, Mitchell JC, Russo A (2012) Hails: protecting data

privacy in untrusted web applications. In: OSDI
24. Grumberg O, Long DE (1994) Model checking and modular verification. ACM Trans Program Lang Syst

16(3):843–871
25. Gudka K, Watson RNM, Hand S, Laurie B, Madhavapeddy A (2012) Exploring compartmentalization

hypothesis with SOAPP. In: AHANS 2012
26. Harris W (2014) Secure programming via game-based synthesis. PhD thesis, University of Wisconsin—

Madison
27. HarrisW, Zeldovich N, Jha S, Reps T,Manevich R, SagivM (2014)Modular synthesis of DIFC programs.

Technical report, Georgia Insitute of Technology
28. Harris WR, Jha S, Reps T (2010) DIFC programs by automatic instrumentation. In: CCS
29. Harris WR, Jha S, Reps T (2012) Secure programming via visibly pushdown safety games. In: CAV
30. Harris WR, Jha S, Reps T, Anderson J, Watson RNM (2013) Declarative, temporal, and practical pro-

gramming with capabilities. In: SSP
31. Hawkins P, Aiken A, Fisher K, Rinard MC, Sagiv M (2011) Data representation synthesis. In: PLDI
32. Hazay C, Lindell Y (2010) Efficient secure two-party protocols: techniques and constructions. Springer,

Berlin

123

https://www.arm.com/products/security-on-arm/trustzone
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4476
http://xforce.iss.net/xforce/xfdb/56803
http://xforce.iss.net/xforce/xfdb/56803
http://eprint.iacr.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1488
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3798
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0405
http://www.freebsd.org/releases/9.0R/announce.html


394 Form Methods Syst Des (2017) 51:362–394

33. Holzer A, Franz M, Katzenbeisser S, Veith H (2012) Secure two-party computations in ANSI C. In: CCS
34. Hriţcu C, Greenberg M, Karel B, Pierce BC, Morrisett G (2013) All your IFCException are belong to us.

In: SSP
35. Intel Software (2016) Intel SGX homepage. https://software.intel.com/en-us/sgx. Accessed 9 Sept 2016
36. Jobstmann B, Griesmayer A, Bloem R (2005) Program repair as a game. In: CAV
37. Krohn MN, Yip A, Brodsky MZ, Cliffer N, Kaashoek MF, Kohler E, Morris R (2007) Information flow

control for standard OS abstractions. In: SOSP
38. Lattner C (2011) http://llvm.org/, Nov 2011
39. Livshits B, Chong S (2013) Towards fully automatic placement of security sanitizers and declassifiers.

In: POPL
40. Livshits VB, Nori AV, Rajamani SK, Banerjee A (2009) Merlin: specification inference for explicit

information flow problems. In: PLDI
41. Manevich R (2011) http://www.cs.tau.ac.il/tvla, June 2011
42. Myers AC (1999) Jflow: practical mostly-static information flow control. In: POPL
43. Neumann PG, Boyer RS, Robinson L, Levitt KN, Boyer RS, Saxena AR (1980) A provably secure

operating system. Technical report CSL-116, Stanford Research Institute
44. Pnueli A (1985) Logics and models of concurrent systems. In: Apt KR (ed) In transition from global to

modular temporal reasoning about programs. Springer, New York
45. Roy I, PorterDE,BondMD,McKinleyKS,WitchelE (2009)Laminar: practical fine-graineddecentralized

information flow control. In: PLDI
46. Sabelfeld A, Sands D (2005) Dimensions and principles of declassification. In: CSFW-18
47. Sagiv S, Reps T, Wilhelm R (2002) Parametric shape analysis via 3-valued logic. ACM Trans Program

Lang Syst 24(3):217–298
48. Saltzer JH, Schroeder MD (1975) The protection of information in computer systems. Proc IEEE

63(9):1278–1308
49. Schuster F, Costa M, Fournet C, Gkantsidis C, Peinado M, Mainar-Ruiz G, Russinovich M (2015) VC3:

trustworthy data analytics in the cloud using SGX. In: SP
50. Shapiro JS, Smith JM, Farber DJ (1999) EROS: a fast capability system. In: SOSP
51. Sinha R, CostaM, Lal A, Lopes NP, Rajamani SK, Seshia SA, Vaswani K (2016) A design and verification

methodology for secure isolated regions. In: PLDI
52. Sinha R, Rajamani SK, Seshia SA,Vaswani K (2015)Moat: verifying confidentiality of enclave programs.

In: CCS
53. Skalka C, Smith SF (2000) Static enforcement of security with types. In: ICFP, pp 34–45
54. Sohail S, Somenzi F (2009) Safety first: a two-stage algorithm for LTL games. In: FMCAD
55. Solar-Lezama A, Arnold G, Tancau L, Bodík R, Saraswat VA, Seshia SA (2007) Sketching stencils. In:

PLDI
56. Solar-Lezama A, Jones CG, Bodík R (2008) Sketching concurrent data structures. In: PLDI
57. Solar-Lezama A, Rabbah RM, Bodík R, Ebcioglu K (2005) Programming by sketching for bit-streaming

programs. In: PLDI
58. Solar-Lezama A, Tancau L, Bodík R, Seshia SA, Saraswat VA (2006) Combinatorial sketching for finite

programs. In: ASPLOS
59. Swamy N, Chen J, Fournet C, Strub P-Y, Bhargavan K, Yang J (2011) Secure distributed programming

with value-dependent types. In: ICFP
60. Swamy N, Corcoran BJ, Hicks M (2008) Fable: a language for enforcing user-defined security policies.

In: SSP
61. Swamy N, Hicks M (2008) Verified enforcement of stateful information release policies. SIGPLAN Not

43(12):21–31
62. T. M. Corporation (2011) Cwe—2011 cwe/sans top 25 most dangerous software errors
63. Tsai M-H, Tsay Y-K, Hwang Y-S (2013) GOAL for games, omega-automata, and logics. In: CAV
64. U.S.D. of Defense. Trusted computer system evaluation criteria. DoD Standard 5200.28-STD, Dec 1985
65. Vaughan JA, Chong S (2011) Inference of expressive declassification policies. In: SSP
66. Vulnerability note VU#520827. http://www.kb.cert.org/vuls/id/520827, May 2012
67. Vulnerability note VU#381508. http://www.kb.cert.org/vuls/id/381508, July 2011
68. Watson RNM, Anderson J, Laurie B, Kennaway K (2010) Capsicum: practical capabilities for UNIX. In:

USENIX security symposium
69. Wright C, Cowan C, Smalley S, Morris J, Kroah-Hartman G (2002) Linux security modules: general

security support for the Linux kernel. In: USENIX security symposium
70. Yao A (1982) Protocols for secure computations. In: FOCS
71. Zeldovich N, Boyd-Wickizer S, Kohler E, Mazières D (2006) Making information flow explicit in HiStar.

In: OSDI

123

https://software.intel.com/en-us/sgx
http://llvm.org/
http://www.cs.tau.ac.il/tvla
http://www.kb.cert.org/vuls/id/520827
http://www.kb.cert.org/vuls/id/381508

	Program synthesis for interactive-security systems
	Abstract
	1 Introduction
	2 Synthesizing programs for the capsicum capability system
	2.1 The gzip compression utility
	2.2 A policy for gzip
	2.3 Instrumenting gzip
	2.4 Key properties

	3 Synthesizing programs for the HiStar DIFC system
	3.1 Overview
	3.1.1 Background: a generic DIFC system
	3.1.2 A simple information-management system
	3.1.3 Instrumentation

	3.2 The instrumentation problem
	3.2.1 A language of DIFC programs
	3.2.2 Policy language

	3.3 Modular DIFC instrumentation
	3.3.1 Inference rules
	3.3.2 Compositional instrumentation

	3.4 Evaluation
	3.4.1 The HiStar DIFC system
	3.4.2 A monolithic instrumenter for HiStar
	3.4.3 A mutually-untrusting login service
	3.4.4 Results
	3.4.5 Conclusions


	4 Future work: synthesizing programs that use secure isolated regions
	5 Related work
	6 Conclusion
	Acknowledgements
	References




