
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Composing crosscutting concerns : a service-oriented view

Permalink
https://escholarship.org/uc/item/8h25s5tq

Authors
Menarini, Massimiliano
Menarini, Massimiliano

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8h25s5tq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Composing Crosscutting Concerns: A Service-Oriented View

A dissertation submitted in partial satisfaction of the requirements for

the degree Doctor of Philosophy

in

Computer Science

by

Massimiliano Menarini

Committee in charge:

Professor Ingolf Krüger, Chair

Professor Bernd Finkbeiner

Professor Ranjit Jhala

Professor Sorin Lerner

Professor Ramesh Rao

Professor Maurizio Seracini

2012

Copyright

Massimiliano Menarini, 2012

All rights reserved.

iii

SIGNATURE PAGE

The Dissertation of Massimiliano Menarini is approved, and it is acceptable

in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2012

iv

DEDICATION

To my brother and sister who followed me across the ocean, and to my

parents that are home.

v

EPIGRAPH

Per correr miglior acque alza le vele

omai la navicella del mio ingegno,

che lascia dietro a sé mar sì crudele;

Dante Alighieri, Divina Commedia

Purgatorio I, 1-3

vi

TABLE OF CONTENTS

Signature Page ... iii

Dedication ... iv

Epigraph .. v

Table of Contents .. vi

List of Abbreviations .. xi

List of Figures ... xv

List of Tables ... xvii

Acknowledgements .. xviii

Vita .. xxii

Abstract of the Dissertation .. xxvi

Introduction ... 1

Chapter 1 Crosscutting Concerns ... 6

Application Domains ... 7

Model-based Engineering .. 8

Model-Based Engineering in Embedded Systems 9

Requirements for Modeling Languages ... 11

Rich Services Pattern ... 15

Model-Based Development Process ... 19

Summary .. 26

vii

Acknowledgement .. 26

Chapter 2 Fault Tolerance: A Case Study in Handling Cross-Cutting Concerns

with Rich Services ... 27

The CoCoME Case Study .. 28

Reliable Web Services ... 32

Failure Hypothesis ... 33

Failure Detection .. 35

Failure Mitigation .. 36

Implementation and Experiments ... 39

Summary .. 45

Acknowledgement .. 46

Chapter 3 Exploiting Cross-Cutting Concerns in Verifying Fault Tolerance

Properties ... 47

The CLS Case Study ... 47

Modeling the RAS ... 51

Modeling the RIS... 54

Deployment and Failure Hypothesis.. 56

Generating the Verification Model ... 57

Summary .. 61

Acknowledgement .. 61

viii

Chapter 4 Modeling Crosscutting Concerns ... 63

Service/Data Connector .. 64

Match, an Extended Join Operator .. 69

RIS and Causality .. 73

Summary .. 75

Acknowledgement .. 76

Chapter 5 Orca: a Language for Modeling Crosscutting Concerns 78

Introduction to Orc .. 79

Orchestration with Aspects ... 86

Introduction to Orca .. 86

Expression Interfaces .. 90

Aspect Composition Operator... 92

A Graphical Model of Orca Expressions ... 94

Aspect Semantics .. 98

Match Operator in Orca ... 100

Summary .. 101

Chapter 6 Managing Model Consistency .. 103

Multi-View Models and Consistency Challenges 105

The BART Case Study ... 107

Inconsistency Example .. 116

ix

UML Model Consistency Requirements... 122

Solving UML Consistency ... 125

Queries and Constraints Semantics ... 126

Notational Preliminaries and System Formalization 133

Abstract Specification Language .. 135

Specification Language Semantics ... 137

Notion of Consistency ... 139

Consistency of the BART Case Study... 144

Discussion .. 158

Summary .. 163

Acknowledgement .. 163

Chapter 7 Related Work ... 165

Requirements Models .. 165

Architectures ... 168

Embedded Systems Implementation Techniques 174

Service-Oriented Reliability ... 179

Quality Assurance .. 182

Aspect-Oriented Modeling ... 185

Acknowledgement .. 187

Chapter 8 Conclusions and Outlook ... 190

x

References .. 193

xi

LIST OF ABBREVIATIONS

AATC Advanced Automatic Train Control

ABS Anti-lock Braking System

ACL Access Control List

ADL Architecture Description Language

AOM Aspect-Oriented Modeling

AOP Aspect-Oriented Programming

API Application Programming Interface

BART Bay Area Rapid Transit System

BPEL4WS Business Process Execution Language for Web Services

CAN Bus Controller Area Network Bus

CLS Central Locking System

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-The-Shelf

CTL Computation Tree Logic

ECU Electronic Control Unit

ESB Enterprise Service Bus

xii

FMEA Failure Modes and Effects Analysis

FSM Finite State Machine

FTA Fault Tree Analysis

FT-CORBA Fault Tolerant CORBA

FT-SOAP Fault Tolerant SOAP

HMSC High Level MSC

HTTP Hypertext Transfer Protocol

IPS Interaction Pattern Specifications

LET Logical Execution Time

LSC Live Sequence Chart

LTL Propositional Linear Temporal Logic

MARTE Modeling and Analysis of Real-Time and Embedded Systems

MBE Model-Based Engineering

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MOTT Message Origination Time Tag

MSC Message Sequence Chart

xiii

OCL Object Constraint Language

OEM Original Equipment Manufacturer

OMG Object Management Group

ORB Object Request Broker

PIM Platform Independent Model

PSM Platform Specific Model

QoS Quality of Service

RAS Rich Application Service

RIS Rich Infrastructure Service

RSML Requirements State Machine Language

RT-CORBA Real Time CORBA

RTRM Run-Time Resource Management

S3EL Service-Oriented Software & Systems Engineering Laboratory

SADL Service Architecture Description Language

SADT Structured Analysis and Design Technique

SASS Structured Analysis and System Specification

SAT Satisfiability

xiv

SCR Software Cost Reduction

SDC Service/Data Connector

SLA Service Level Agreement

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SRD Structured Requirements Definition

SSA Structured System Analysis

TDL Timing Definition Language

UCSD University of California San Diego

UDDI Universal Description, Discovery, and Integration

UML Unified Modeling Language

UMO Universal Message Object

VSL Value Specification Language

WS-BPEL Web Services Business Process Execution Language

WS-CDL Web Services Choreography Description Language

WSDL Web Services Description Language

XML Extensible Markup Language

xv

LIST OF FIGURES

Figure 1. Composite Rich Services ... 16

Figure 2. Model-based development process for Rich Services 20

Figure 3. Domain model for services addressing failure management 23

Figure 4. Product Exchange interaction specification ... 29

Figure 5. Trading System, Enterprise Rich Service view ... 30

Figure 6. Update Repository Interaction ... 31

Figure 7. Use case diagram for the Central Locking System (CLS) case study . 49

Figure 8. CLS-1 ... 51

Figure 9. UNLK-1 .. 52

Figure 10. UNLK-2 .. 54

Figure 11. UNLK-3_Managed .. 55

Figure 12. Deployment architecture ... 56

Figure 13. From MSCs to State Machines .. 59

Figure 14. Promela code for the LS role. ... 60

Figure 15. Rich Service with SDC specifications ... 65

Figure 16. Message Sequence Chart referred in the SDC specifications 66

Figure 17. An example of an Aspect MSC ... 67

Figure 18. Result of composing MSC1 and aMSC using the Match operator ... 72

Figure 19. Orca abstract syntax BNF ... 79

Figure 20. Dependency relations introduced by Orc operators 81

Figure 21. Example of variable used in passing messages 88

Figure 22. Example of variables used by multiple calls ... 89

https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741637
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741638
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741639
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741640
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741641
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741642
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741643
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741644
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741645
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741646
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741647
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741648
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741649
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741650
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741651
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741652
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741653
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741654
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741655
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741656
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741657

xvi

Figure 23. Joinpoints and aspects in Orca ... 90

Figure 24. Orca Extensions to Orc, abstract syntax BNF 91

Figure 25. Example of Orc >> in graphical form .. 95

Figure 26. Example of Orc << in graphical form .. 96

Figure 27. Example of Orc | in graphical form .. 96

Figure 28. Orca pointcut interfaces in graphical form ... 97

Figure 29. Domain Model for the BART tracks .. 107

Figure 30. BART AATC system use case ... 110

Figure 31. Train speed sequence diagram ... 111

Figure 32. BART Check Train Status sequence diagram 112

Figure 33. Domain model of BART roles... 114

Figure 34. State machine diagram for BART train controller 115

Figure 35. Three different perspectives of the BART case study 117

Figure 36. Core elements .. 128

Figure 37. Definition of a run ... 130

Figure 38. Ontology for distributed real time systems semantics 131

Figure 39. Subset of the UML Component metamodel 147

Figure 40. Subset of the UML Message metamodel .. 148

Figure 41. Subset of the UML Transition metamodel .. 149

Figure 42. Subset of the MARTE TimedConstraints metamodel 150

Figure 43. TDL V-Cluster-Life-Cycle ... 171

https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741659
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741660
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741665
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741666
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741667
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741668
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741669
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741670
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741679

xvii

LIST OF TABLES

Table 1. Failure management experimental results .. 42

Table 2. CLS Requirements (simplified). .. 48

Table 3. Requirements for UML consistency management. 123

Table 4. Translation rules for UML Metamodel elements 146

https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741680
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741681
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741682
https://d.docs.live.net/6801cf903a68b6e3/Ph.D.%20Thesis/Massimiliano%20Menarini%20-%20Ph.D.%20Thesis%20-%20Draft.docx#_Toc330741683

xviii

ACKNOWLEDGEMENTS

I would like to acknowledge my advisor Professor Ingolf Krüger for his

support and advice. This work would not have been possible without his help. I

want to thanks all my coauthors and all members of my research team for

their valuable suggestions. In particular I thank Barry Demchak and Filippo

Seracini for their support in getting this thesis written. Finally, I thank all the

members of my thesis committee for reading this manuscript and providing

feedback.

Chapter 1, in part, is a reprint of material as appeared in C. Farcas, E.

Farcas, I. H. Krueger, and M. Menarini, “Addressing the Integration Challenge

for Avionics and Automotive Systems - From Components to Rich Services,” in

The Proceedings of the IEEE Special Issue on Aerospace and Automotive

Software, K. V. Prasad (Ed.), vol. 98, no. 4. IEEE, Apr. 2010, pp. 562-583. The

dissertation author was the primary investigator and author of the text used in

this chapter.

Chapter 2, in part, is a reprint of material as appeared in V. Ermagan, I.

H. Krüger, and M. Menarini, “A Fault Tolerance Approach for Enterprise

Applications,” in Proceedings of the IEEE International Conference on Services

Computing (SCC). Jul. 2008. The dissertation author was the primary

investigator and author of the text used in this chapter.

Chapter 3, in part, is a reprint of material as appeared in C. Farcas, E.

Farcas, I. H. Krueger, and M. Menarini, “Addressing the Integration Challenge

xix

for Avionics and Automotive Systems - From Components to Rich Services,” in

The Proceedings of the IEEE Special Issue on Aerospace and Automotive

Software, K. V. Prasad (Ed.), vol. 98, no. 4. IEEE, Apr. 2010, pp. 562-583. The

dissertation author was the primary investigator and author of the text used in

this chapter.

Chapter 4, in part, is a reprint of material as appeared V. Ermagan, I. H.

Krüger, and M. Menarini, “Aspect Oriented Modeling Approach to Define

Routing in Enterprise Service Bus Architectures,” in MiSE '08: Proceedings of the

2008 international workshop on Models in software engineering, Leipzig,

Germany. New York, NY, USA: ACM, May 2008, pp. 15-20. The dissertation

author was the primary investigator and author of the text used in this chapter.

Chapter 6, in part, is a reprint of material as appeared in E. Farcas, I.

Krueger, and M. Menarini, “Consistency Management of UML Model,” Real-

time Simulation Technologies: Principles, Methodologies, and Applications, K.

Popovici and P. J. Mosterman (Eds.), ch. 12, p. 38, CRC Press, 2012. The

dissertation author was the primary investigator and author of the text used in

this chapter.

Chapter 7, in part, is a reprint of material as appeared in 5 papers:

1) in C. Farcas, E. Farcas, I. H. Krueger, and M. Menarini, “Addressing the

Integration Challenge for Avionics and Automotive Systems - From

Components to Rich Services,” in The Proceedings of the IEEE Special Issue on

xx

Aerospace and Automotive Software, K. V. Prasad (Ed.), vol. 98, no. 4. IEEE,

Apr. 2010, pp. 562-583.

2) V. Ermagan, I. H. Krüger, and M. Menarini, “A Fault Tolerance Approach for

Enterprise Applications,” in Proceedings of the IEEE International Conference

on Services Computing (SCC). Jul. 2008.

3) V. Ermagan, I. H. Krüger, and M. Menarini, “Aspect Oriented Modeling

Approach to Define Routing in Enterprise Service Bus Architectures,” in MiSE

'08: Proceedings of the 2008 international workshop on Models in software

engineering, Leipzig, Germany. New York, NY, USA: ACM, May 2008, pp. 15-20.

4) E. Farcas, I. Krueger, and M. Menarini, “Consistency Management of UML

Model,” Real-time Simulation Technologies: Principles, Methodologies, and

Applications, K. Popovici and P. J. Mosterman (Eds.), ch. 12, p. 38, CRC Press,

2012.

5) E. Farcas, I. Krueger, and M. Menarini, “Modeling with UML and Its Real-Time

Profiles,” Real-time Simulation Technologies: Principles, Methodologies, and

Applications, K. Popovici and P. J. Mosterman (Eds.), ch. 5, p. 36, CRC Press,

2012

The dissertation author was the primary investigator and author of the text

used in this chapter.

© 2010 IEEE. Reprinted, with permission, from C. Farcas, E. Farcas, I. H.

Krueger, and M. Menarini, Addressing the Integration Challenge for Avionics

and Automotive Systems - From Components to Rich Services, The

xxi

Proceedings of the IEEE Special Issue on Aerospace and Automotive Software,

and 04/2010

© 2008 IEEE. Reprinted, with permission, from V. Ermagan, I. H. Krüger,

and M. Menarini, A Fault Tolerance Approach for Enterprise Applications,

Proceedings of the IEEE International Conference on Services Computing

(SCC), and 07/2008

This work is based on an earlier work: Aspect Oriented Modeling

Approach to Define Routing in Enterprise Service Bus Architectures, in

Proceedings of the 2008 international workshop on Models in software

engineering (MiSE '08), © ACM, 2008.

http://doi.acm.org/10.1145/1370731.1370735

Copyright 2012 From Real-time Simulation Technologies: Principles,

Methodologies, and Applications by K. Popovici and P. J. Mosterman.

Reproduced by permission of Taylor and Francis Group, LLC, a division of

Informa plc.

xxii

VITA

2003 Laurea, University of Bologna, Italy

2004-2005 Software Architect for California Institute for Telecommunications

and Information Technology

2008 Master of Science, University of California, San Diego

2012 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

I. Krüger, M. Menarini, F. Seracini, M. Fuchs, and J. Kohl, “Improving the

Development Process for Automotive Diagnostics,” Proceedings of the 2012

International Conference on Software and Systems Process (ICSSP), Zurich,

Switzerland, pp. 63-67, IEEE, 2012.

I. Krüger, B. Demchak, and M. Menarini, “Dynamic Service Composition and

Deployment with OpenRichServices,” Software Service and Application

Engineering, vol. 7365, M. Heisel, Ed. pp. 120–146,Springer Berlin / Heidelberg,

2012.

E. Farcas, I. Krueger, and M. Menarini, “Modeling with UML and its Real-Time

Profiles,” Real-time Simulation Technologies: Principles, Methodologies, and

Applications, K. Popovici and P. J. Mosterman (Eds.), ch. 5, p. 30, CRC Press,

2012.

E. Farcas, I. Krueger, and M. Menarini, “Consistency Management of UML

Model,” Real-time Simulation Technologies: Principles, Methodologies, and

Applications, K. Popovici and P. J. Mosterman (Eds.), ch. 12, p. 38, CRC Press,

2012.

C. Farcas, E. Farcas, I. H. Krueger, and M. Menarini, “Addressing the

Integration Challenge for Avionics and Automotive Systems - From

Components to Rich Services,” in The Proceedings of the IEEE Special Issue on

Aerospace and Automotive Software, K. V. Prasad (Ed.), vol. 98, no. 4. IEEE,

Apr. 2010, pp. 562-583.

I. Krueger, C. Farcas, E. Farcas, and M. Menarini, “Requirements Modeling for

Embedded Realtime Systems,” Model-Based Engineering of Embedded Real-

Time Systems, H. Giese, B. Rumpe, and B. Schätz (Eds.), Lecture Notes in

xxiii

Computer Science (LNCS), vol. 6100, ch. 7, pp. 155-199, Berlin, Heidelberg:

Springer-Verlag, 2010.

J. Oldevik, M. Menarini, and I. Krüger, “Model Composition Contracts,” in

Proceedings of the 12th International Conference on Model Driven

Engineering Languages and Systems (MODELS'09),, A. Schürr and B. V. Selic

(Eds.), vol. LNCS 5795, Denver, Colorado, USA, Berlin, Heidelberg: Springer

Verlag, Oct. 2009, pp. 531-545.

I. H. Krüger, M. Meisinger, and M. Menarini, “Interaction-based Runtime

Verification for Systems of Systems Integration,” Journal of Logic and

Computation, Nov. 2008.

B. Demchak, V. Ermagan, E. Farcas, T.-J. Huang, I. Krüger, and M. Menarini, “A

Rich Services Approach to CoCoME,” The Common Component Modeling

Example, Comparing Software Component Models, A. Rausch, R. Reussner, R.

Mirandola, and F. Plásil (Eds.), Lecture Notes in Computer Science, vol. 5153,

pp. 85-115, Springer Berlin / Heidelberg, Aug. 2008.

V. Ermagan, I. H. Krüger, and M. Menarini, “A Fault Tolerance Approach for

Enterprise Applications,” in Proceedings of the IEEE International Conference

on Services Computing (SCC). Jul. 2008.

B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, and M. Menarini,

“Rich Services: Addressing Challenges of Ultra-Large-Scale Software-Intensive

Systems,” in Proceedings of the ICSE 2nd International Workshop on Ultra-

Large-Scale Software-Intensive Systems (ULSSIS 2008), Leipzig, Germany. New

York, NY, USA: ACM, May 2008, pp. 29-32.

V. Ermagan, I. H. Krüger, and M. Menarini, “Aspect Oriented Modeling

Approach to Define Routing in Enterprise Service Bus Architectures,” in MiSE

'08: Proceedings of the 2008 international workshop on Models in software

engineering, Leipzig, Germany. New York, NY, USA: ACM, May 2008, pp. 15-20.

V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, and M. Menarini, “A Service-

Oriented Approach to Failure Management,” in Proceedings of the Dagstuhl

Workshop on Model-Based Development of Embedded Systems (MBEES). Apr.

2008.

V. Ermagan, I. H. Krüger, and M. Menarini, “Model-Based Failure Management

for Distributed Reactive Systems,” Composition of Embedded Systems.

Scientific and Industrial Issues. 13th Monterey Workshop 2006 Paris, France,

October 16-18, 2006 Revised Selected Papers, F. Kordon and O. Sokolsky

(Eds.), Lecture Notes in Computer Science, vol. 4888, pp. 53-74, Springer Berlin

/ Heidelberg, Dec. 2007.

M. Arrott, B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, and M.

Menarini, “Rich Services: The Integration Piece of the SOA Puzzle,” in

xxiv

Proceedings of the IEEE International Conference on Web Services (ICWS), Salt

Lake City, Utah, USA. IEEE, Jul. 2007, pp. 176-183.

V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, and M. Menarini, “A Service-

Oriented Blueprint for COTS Integration: the Hidden Part of the Iceberg,” in

Proceedings of the ICSE Second International Workshop on Incorporating

COTS Software into Software Systems: Tools and Techniques (IWICSS'07),

Minneapolis, MN, USA. Washington, DC, USA: IEEE Computer Society, May

2007, p. 10.

I. H. Krüger, M. Meisinger, and M. Menarini, “Runtime Verification of

Interactions: From MSCs to Aspects,” Runtime Verification, 7th International

Workshop, RV 2007, Vancover, Canada, March 13, 2007, Revised Selected

Papers, O. Sokolsky and S. Tasiran (Eds.), Lecture Notes in Computer Science,

vol. 4839, pp. 63-74, Springer Berlin / Heidelberg, Mar. 2007.

V. Ermagan, T.-J. Huang, I. Krüger, M. Meisinger, M. Menarini, and P. Moorthy,

“Towards Tool Support for Service-Oriented Development of Embedded

Automotive Systems,” in Proceedings of the Dagstuhl Workshop on Model-

Based Development of Embedded Systems (MBEES'07), Informatik-Bericht

2007-01. Fakultät für Informatik, Technische Universität Braunschweig, Jan.

2007.

V. Ermagan, I. Krueger, M. Menarini, J.-I. Mizutani, K. Oguchi, and D. Weir,

“Towards Model-Based Failure-Management for Automotive Software,” in

Proceedings of the ICSE Fourth International Workshop on Software

Engineering for Automotive Systems (SEAS'07), Minneapolis, MN, USA.

Washington, DC, USA: IEEE Computer Society, 2007, p. 8.

I. H. Krüger, M. Meisinger, and M. Menarini, “Applying Service-Oriented

Development to. Complex System: a BART case study,” Reliable Systems on

Unreliable Networked Platforms, 12th Monterey Workshop 2005, Laguna

Beach, CA, USA, September 22-24, 2005. Revised Selected Papers, F. Kordon

and J. Sztipanovits (Eds.), Lecture Notes in Computer Science, vol. 4322, pp.

26-46, Springer Berlin / Heidelberg, 2007.

I. H. Krüger and M. Menarini, “Queries and Constraints: A Comprehensive

Semantic Model for UML2,” Models in Software Engineering. Workshops and

Symposia at MoDELS 2006, Genoa, Italy, October 1-6, 2006, Reports and

Revised Selected Papers, T. Kühne (Ed.), Lecture Notes in Computer Science,

vol. 4364, pp. 327-328, Springer Berlin / Heidelberg, 2007.

I. H. Krüger, M. Meisinger, M. Menarini, and S. Pasco, “Rapid Systems of

Systems Integration - Combining an Architecture-Centric Approach with

Enterprise Service Bus Infrastructure,” in Proceedings of the 2006 IEEE

International Conference on Information Reuse and Integration (IRI'06),

Waikoloa, Hawaii, USA. IEEE Systems, Man, and Cybernetics Society, Sep. 2006,

pp. 51-56.

xxv

F. Doucet, M. Menarini, I. H. Krüger, R. Gupta, and J.-P Talpin, “A Verification

Approach for GALS Integration of Synchronous Components,” Electronic

Notes in Theoretical Computer Science, vol. 146, no. 2, pp. 105-131, Jan. 2006.

FIELD OF STUDY

Major Field: Software Engineering

Sub-fields: Software Architecture

 Service-Oriented Systems

 Software Reliability Methods

 Formal Methods

xxvi

ABSTRACT OF THE DISSERTATION

ABSTRACT OF THE DISSERTATION

Composing Crosscutting Concerns: A Service-Oriented View

by

Massimiliano Menarini

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Ingolf Krüger, Chair

Developing complex distributed software systems challenges the

methodologies currently available for the crucial task of integrating

crosscutting concerns. Crosscutting concerns are concerns that, albeit

important, do not fit into the problem decomposition schema chosen for an

application architecture. While service-oriented architectures (SOAs) have

been proposed as a viable solution for this integration problem, the current

state of the art is still insufficient.

xxvii

This dissertation extends the current body of work on service-oriented

systems to ease the integration of crosscutting concerns in large scale systems,

though the applicability of this work spans from large enterprise systems-of-

systems to the embedded systems domain. To achieve this result, the research

presented here leverages two key elements: 1) an architectural blueprint

called Rich Services, which supports the hierarchical decomposition of systems

into a set of services communicating via a message based infrastructure, and

2) a model-based approach to capturing systems requirements and modeling

systems according to the Rich Service blueprint.

This manuscript presents three contributions: 1) an aspect-oriented

language for interaction models that support Rich Service compositions, 2) a

technique that addresses failure management, which is an important

example of a crosscutting concern, and 3) an approach to verifying the

consistency of different views of the same system in different modeling

languages.

The contributions presented in this dissertation are validated using case

studies from the business applications and the automotive domains. The

business application example is an important representative of problems

relating to enterprise applications, and the automotive case study exemplifies

the problems found in embedded systems.

1

INTRODUCTION

The complexity of developing software systems has increased in the last

years due to increasingly complex requirements and need for distribution [1].

In fact, with the advent of the Internet, many software systems that were

traditionally local to a single computer started to interact with remote servers.

This is especially true with the current push for Cloud based technologies.

Examples of distributed systems do not limit themselves to internet related

technologies. Complex embedded systems, such as cars, are also distributed

systems with the additional complexity of real-time requirements.

A winning strategy to tackle these types of complex systems is

decomposition. For distributed systems this means identifying communication

interfaces and interaction patterns between each component. A viable

approach in this domain leverages service-oriented architectures (SOAs).

SOAs promise loosely coupled components and support the challenges of

geographically distributed systems, where components are managed by

different companies.

This thesis focuses on two domains that have different requirements:

embedded and enterprise systems. A first difference is that embedded

systems are often real-time while enterprise systems promise only best effort

response time. Another difference is that embedded systems are often

required to optimize their responses to prioritize critical events while enterprise

systems typically strive to optimize the global throughput. Moreover,

2

embedded systems are subject to power constraints and computation power

limitations while enterprise systems can often leverage seemingly unlimited

resources of large data centers.

In my research, however, I have realized that clear cut boundaries

between embedded and enterprise systems have been blurring. On the

embedded system side, phones are now shipping with four CPU cores and

cars are connecting to the internet and driving themselves. On the other

hand, new trends in data centers research focus on minimizing the power

consumption of server computers for example leveraging virtualization to

share existing resources between multiple applications. Virtualization poses

new challenges in the enforcement of quality of service, and requires

techniques to prioritize and even move computations.

While some of the requirements of embedded and enterprise systems

are converging, there are still big differences. However, I identified a

fundamental common denominator in developing both types of systems:

managing interactions. From an abstract point of view, the composition of

different subsystem entails defining how they interact and ensure that some

properties of these interactions are fulfilled. Thus, the remainder of this thesis

focuses on methodologies to model interactions, compose them, verify that

the models are correct, and use the models in the development of real

systems. In particular, I address the key problem of how to compose concerns

that are crosscutting the main business logic of the application.

3

Crosscutting concerns are an active area of research in computer

science. Albeit important, crosscutting concerns are not yet fully understood.

The most successful treatment of such concerns is articulated mainly at code

level with aspect-oriented programming. So far, however, composition of

aspects is poorly understood and rarely exploited beyond trivial code

examples (e.g. the classical case study for aspects is “logging”). While some

work has been done in the context of aspect-oriented modeling [2] and

aspect-oriented workflows [3], [4], composition of aspects is still plagued by

the problem of unanticipated interactions. Rich Services embodies

architectural principles that support composition of crosscutting concerns

explicitly, but a language to model the composition of crosscutting

interactions is needed. I discuss crosscutting concerns and the Rich Service

blueprint in Chapter1.

In this thesis I first show case studies about fault tolerance. Fault

tolerance is a crosscutting concern that is arguably more complex than

“logging”, the standard example on which aspect-oriented programming

(AOP) has proven successful. Using thes case studies I can show how complex

crosscutting concerns challenge the current state of the art and how Rich

Services address the existing problems. In this context, Chapter 2 introduces

and enterprise system example, CoCoME, and describes a first contribution:

how to leverage Rich Services for fault tolerance.

Leveraging the understanding of crosscutting concerns, applied to

CoCoME in Chapter 2, I show how service models can be exploited for

4

verification. Using Rich Services and the architectural principles it embodies,

Chapter 3 introduces a formal approach to verify system reliability. In this

case, the case study is from the automotive domain: a car central locking

system.

While the case studies and approaches presented in Chapters 2 and 3

solve the specific problem of failure management, they do not address

crosscutting concerns in general. The key element that is missing in these

approaches is a clear articulation of composition of crosscutting concerns.

After understanding the issues of the current approaches in supporting

crosscutting concerns composition, the next step is to establish a foundation

for composing crosscutting concerns. To this end Chapter 4 discusses how to

model crosscutting concerns in general. This chapter introduces an extension

to message sequence charts (MSCs) that supports aspects.

A core contribution of this thesis is an orchestration language, which

supports crosscutting concerns, and addresses the limitations of other aspect-

oriented techniques. This language, that I call Orca, extends the Orc [5]

orchestration language. Orc is an elegant language; it addresses many

orchestration requirements with just 3 operators, and has a well understood

formal semantics. Orca extends Orc by adding operators that extract

message flows from expressions variables; the orchestration of aspects is then

performed using Orc itself.

5

Orca provides a formal definition to the modeling technique

introduced in Chapter 4, and is a good candidate to act as a general

framework to formally describe Rich Services. Chapter 5 presents Orca.

A final requirement for a seamless integration of crosscutting concerns

in a model based approach is model consistency. Chapter 6 discusses the

issue of model consistency. In particular, it presents an approach to deal with

the consistency of different models of the same system, even when the

models use different languages, a common situation in real world system

development. While this chapter does not use Orca directly as its target

modeling language, the system model used in it is an abstraction to which the

Orca model "compiles into". The semantic model presented is intended to

work with Orca and other modeling languages as well.

Another important part of this thesis is Chapter 7 that covers a broad

spectrum of related work, and Chapter 8, which contains my concluding

remarks and an outlook on future research.

6

CHAPTER 1

CROSSCUTTING CONCERNS

In this chapter I outline an approach to software development based

on a service-oriented architecture. The goal of this approach is solving the

integration issues that still dominate software development. This approach

leverages two key elements: models, capturing the application domain and

the business logic, and a service architecture that fosters decoupling and

separation of concerns. The service-oriented solutions I propose here leverage

both an improved architectural pattern and a model-based development

process.

The main problem the architecture presented here addresses is the

integration of different software features. The goal of the Rich Service pattern

presented in this chapter is decoupling the different services and support the

composition of features that cross-cut the main application business logic.

Crosscutting concerns are concerns that cross-cut the structure that

has been chosen in the decomposition of a problem. For example, at the

programming level, crosscutting concerns do not fit neatly in the chosen class

hierarchy. The concept of aspect-oriented programming was introduced [6]

to solve this issue in software code. Similarly, aspect-oriented techniques have

been introduced in modeling languages to address crosscutting concerns at

the software model level [7–9].

7

This chapter presents both an architectural pattern and an associated

development process which support managing crosscutting concerns. This

approach results from the acknowledgement that crosscutting concerns are

an inevitable byproduct of the creation of large systems and successful

system development must support them.

APPLICATION DOMAINS

The service-oriented approach I present in this thesis supports different

domains with different characteristics. In particular, the approach addresses

two seemingly very different domains, large, distributed enterprise systems and

embedded automotive systems. While the implementation technologies and

some of the requirements of these two domains are vastly different, they have

a key element in common, they are complex distributed systems, often

developed in different authority domains with the need for reusing existing

components.

While the implementation details for these domains are different, the

abstract model of how the various part interacts, and how crosscutting

concerns must be addressed is similar. In this work I propose the use of model-

based engineering. In fact, modeling techniques allows for separate logical

and physical models. Logical models specify how systems satisfy their business,

functional, and nonfunctional requirements at an abstract level. Physical

models specify how the system is implemented and deployed on real

hardware.

8

The use of model-based techniques enables the approach presented

here to solve similar problems in different domains. To support integration of

crosscutting concerns of large and complex systems, the proposed approach

uses a service-oriented logical model. Such model supports the creation of

independent services addressing the different requirements of the system.

Mappings to domain-specific physical models support the creation of

concrete systems in the different domains.

MODEL-BASED ENGINEERING

Various terms are used in the literature to denote the use of models in

the development process (e.g., Model-Driven Architecture (MDA) [10], model-

based design [11], model-driven engineering (MDE) [12], and model

integrated computing [13], [14]). We use the general term MBE for Model-

Based Engineering as a superset for all model-based approaches.

To tackle complexity, MBE approaches support multiple perspectives,

with associated modeling languages, each focusing on a particular subset of

system properties. Each perspective can cover a separate aspect of the

same part of the system, or depict the same aspect with different notations to

clarify or stress a modeling concept. For instance, we could use a sequence

diagram to show the communication protocol between two class instances

and two state machine diagrams to describe the proper ordering of method

calls. These two perspectives clearly overlap.

9

A popular language to model enterprise software systems is the Unified

Modeling Language (UML) from the Object Management Group (OMG). It

comprises many languages (fourteen types of diagrams), each emphasizing a

different structural or behavioral modeling aspect. The most recent version is

UML 2.3, whose specification consists of the UML Superstructure [15] defining

the notation and semantics for diagrams and the UML Infrastructure [16]

defining the language on which the Superstructure is based. Constraints can

be expressed in the textual Object Constraint Language (OCL) [17].

A specific type of MBE is the Model-Driven Architecture (MDA) [10], an

approach that distinguishes between a Platform Independent Model (PIM)

and a Platform Specific Model (PSM). The PIM captures the core system

entities and their interactions without specifying how these are implemented.

PIM can be mapped to multiple PSMs, each capturing all deployment

aspects for a given architecture. UML is the language choice of MDA, where

both PIM and PSM are expressed as UML models.

MODEL-BASED ENGINEERING IN EMBEDDED SYSTEMS

Embedded systems are often developed by integrating components

that have been designed and implemented by different teams, often

specialized in different disciplines such as mechanical, electronics, and

software engineering. As the system behavior emerges from the interplay of

multiple distributed components, a key challenge is the correct integration of

all these components. System integration is often performed in vertical design

10

chains such as in automotive, and the development chain typically involves

several tools that are not integrated.

In the automotive domain, model-based approaches leveraging tools

such as MATLAB® [18] and Simulink® [19] from the MathWorks and ASCET [20]

from ETAS are used to model control functions and generate implementations

for different platforms. However, in practice, there is no formal model for

integration that is exchanged between parties. Consequently, it is impossible

to validate the design and anticipate problems in putting together the various

components in the later phases of the development. The lack of an

integrated model also limits the reuse of functions across models and

generations of cars.

Models of interactions and MBE hold promise for overcoming these

exemplar challenges. Models can serve as a common interface between

requirements and architecture specification – using models is the only

systematic way to ensure that parties can communicate across all

development phases from requirements to acceptance tests. The ultimate

goal of MBE is that engineers will spend most of their time modeling the system

under consideration, and then generate code for a specific target platform.

This goal is already supported by various tools (including MATLAB® /Simulink®),

but the models often do not include all aspects of the system, as explained

above. When automatic code generation is not feasible at the level of the

entire system, there is still significant benefit if modeling is used for

11

requirements gathering and architecture verification before deploying the

actual system.

In the past decade, significant advances in the area of model

specification, transformation, analysis, and synthesis, have brought the vision

of MBE within reach. Challenges for a comprehensive methodology include

providing modeling techniques that result in a consistent, integrated

specification. Models must be expressive enough to support both generic and

domain-specific aspects of the system. Moreover, proper modeling languages

must guarantee model reusability, support integration, and enable model

execution. To this end, a seamless tool suite that supports the modeling

language is a key requirement to make MBE a viable solution.

REQUIREMENTS FOR MODELING LANGUAGES

In the following, I present a set of requirements that a modeling

language should meet to support a comprehensive MBE methodology for

service-oriented systems. Such language could support both enterprise and

real-time systems. I have identified these requirements based on the

experience gathered working on several projects. Some of these projects

required developing large scale enterprise systems-of-systems, others, in

collaboration with automotive industry partners, focused on automotive

embedded systems. The list is not intended to be exhaustive, as further

requirements have been presented elsewhere (e.g., [21]). The focus of these

requirements is the specification capabilities of a modeling language for

12

services. The requirements do not cover the entire end-to-end MBE approach

or the tools necessary to implement it.

 Consistency. A modeling language should allow grouping of requirements,

structure, behavior, and analysis in a single, integrated system model.

Therefore, the language should allow consistency checking for models

expressed in different notations, developed in different design iterations, or

models that are part of different views/slices of the same system.

 Traceability. Requirements should be mappable to a precise specification

of the system and from there to implementation while the mapping should

be kept current during the system evolution. Traceability also applies to

models at different levels of abstraction enabling conformance checking

for refinement operations.

 Realizability. Models often represent partial specifications that are refined

in successive iterations in the development cycle. Models also represent

different views on the system. The underlying question is whether the

models allow a system to be constructed such that all requirements are

fulfilled. At the very least, we would like to know which requirements stand

in the way of realizability.

 Distribution and integration. System behavior emerges as the interplay of

the functionality provided by sub-systems, often developed independently

by different parties. Thus, models should be capable of expressing

concurrency, synchronization, and integration constraints. For example, in

the automotive domain the Original Equipment Manufacturer (OEM) is

13

responsible for the integration of sub-systems. Modeling should support

overarching system specification addressing the integration requirements

as well as concerns that cut across the individual components such as

resource optimization across the integrated system.

 Interdisciplinary domains. Embedded systems design involves multiple

domains such as mechanical, electronics, and software. The system

components are often designed at different stages in the development

process, by different teams, using different tools and languages. A

common modeling language should ease integration and tradeoff

analysis, and it should reduce the need for disruptive feedback iteration

cycles.

 Non-functional properties. A modeling language should allow specifying

non-functional properties (e.g., security, authentication requirements,

performance, reliability, and power consumption) associated with

behaviors, refinement relationships, deployment models, etc. Moreover,

because my goal is to have a modeling language that can support

multiple domains, the set of non-functional properties should not be

predefined and the language should support the specification of

application-specific properties.

 Resource models. Those models are useful both for enterprise and

embedded systems. Enterprise systems can often run on clouds or grids

where the hardware is shared between multiple applications. Therefore,

the ability to clearly specify the resource requirements of the application is

14

key to properly define a service level agreement with the resource

provider and fairly share bandwidth and computation power with other

applications. On the other hand, embedded systems interact with the

physical world, and are constrained by the resources provided by the

hardware and software platforms. Therefore, a specification should

support modeling of platforms and resources, as well as allocation and

optimization of resources to meet functional and non-functional

requirements.

 Timing. Time plays a critical role in real-time systems and, therefore, a

modeling notation should express timing requirements in various temporal

models: (i) causal models, which are concerned only with the order of

activities, (ii) synchronous models, which use the concept of simultaneity of

events at discrete time instants, (iii) real-time scheduled models, which

take physical durations and the timing of activities as influenced by CPU

speed, scheduler, utilization, etc., into account and (iv) logical time

models (e.g., Giotto [22], [23]), which consider that activities take a fixed

logical amount of time, assuming that the platform can execute all

activities to meet their constraints.

 Heterogeneous models of computation and communication. Real-time

systems are often embedded systems that control physical processes,

which are often represented in terms of mathematical models. A modeling

specification should support continuous behaviors, discrete event-based or

time-based behaviors, or combinations thereof.

15

Some requirements expressed here are common to all applications

domains, while others (e.g., heterogeneous models of computation and

communication) are specific of the embedded domain. However, a

language that wants to address all these domains should satisfy all

requirements.

RICH SERVICES PATTERN

SOAs have emerged as an accepted solution to integrate

heterogeneous systems. SOA-based approaches typically use standards-

based infrastructure to map existing systems into standardized forms of

services. Services can then be orchestrated by means of choreography

engines and specialized languages in different ways to provide new business

value to different stakeholders. New functionality can be created by either

adding new services or changing the message flow among existing services.

Because of these features, many SOA projects are particularly amenable to

agile development processes.

SOAs are typically flat, meaning that a composed service is obtained

by finding and aggregating different services available across the net. There is

no structure or interface in place to decompose the system according to

different concerns. Moreover, each composed service needs to take into

account not only the main business concerns but all the crosscutting concerns

such as encryption, authentication, failure management etc. However, the

integration of the particular concerns of the enterprise and automotive

domains requires a scalable framework that provides decoupling between

16

the various concerns and allows for subsystem integration and multiple

hierarchical decomposition choices. The Rich Services architecture [24] is a

type of SOA that addresses these issues and provides a direct and easy

deployment mapping to various middleware including Enterprise Service

Buses (ESBs) [25].

Figure 1 depicts our logical service-oriented architecture, inspired by

ESB architecture/implementations [25–27]. The main element of the

architecture is the notion of Rich Service [24], which, in the most generic form,

encapsulates various capabilities and functionalities pertaining to the business

logic and the applicable concerns.

We start with a set of Rich Application Services (RASs)  that

encapsulate core application functionality, defining the business flow. In most

applications, existing services (provided by subsystems or system components)

Figure 1. Composite Rich Services

Messenger

Router/Interceptor

Policy

S
e

rv
ic

e
/D

a
ta

C
o

n
n

e
c

to
r

Messenger

Router/Interceptor

S.n.Failure

Manager

...

<<Rich Service>> S

S
e

rv
ic

e
/D

a
ta

C
o

n
n

e
c

to
r

...

<<Rich Service>> S.n

Service/Data

Connector
} <<

Rich

Infrastructure

Services

>>
Encryption

Service/Data

Connector

Logging

Service/Data

Connector

Failure

Manager

Service/Data

Connector

...

Service/Data

Connector

S.1

Service/Data

Connector

S.2

Service/Data

Connector

}

<<

Rich

Application

Services
>>

S.n.2

Service/Data

Connector

S.n.m

Service/Data

Connector

}

<<

Rich

Application

Services

>>

S.n.1

Service/Data

Connector

Service/Data

Connector

S.n.Logging

Service/Data

Connector

S.n.Encryption

Service/Data

Connector

S.n.Policy ...

Service/Data

Connector
Service/Data

Connector

<<

Rich

Infrastructure

Services
>>}

 Business logic

 Adapters

Hierarchical

decomposition

 Dynamic change of message flow

 Decoupling

 Crosscutting concerns

17

can map 1:1 to RAS. To facilitate the interaction between services and hide

their internal complexity, we attach to each RAS a Service/ Data Connector

 , which performs the necessary adaptation of the service inputs and

outputs, presents the service capabilities to other services, and encapsulates

their value-added internal logic. In the tradition of [28], [29], we associate

both a structural and a behavioral view with the Service/Data Connectors.

The RASs are decoupled through a message-based communication

infrastructure. The Messenger layer is responsible for transmitting messages

between services and provides the means for implementing the service

orchestration. Encapsulated Rich Services are connected to the

communication infrastructure via their own Service/Data Connectors . This

approach is very important for future-proofing system design – the Connectors

do not just integrate existing services; they also prepare services for future

integration into other larger systems.

We then focus on the crosscutting concerns expressed as services.

Using the same architectural pattern, we distinguish between the Rich

Application Services  (RASs) and Rich Infrastructure Services (RISs) . In

contrast with RAS that implement business logic, the RISs do not initiate any

communication by themselves, but reroute or filter messages defined by RASs.

Examples of RISs are policy enforcement, encryption, and authentication.

The Router/Interceptor layer intercepts messages placed on the

Messenger and then routes them among all services involved in providing a

18

particular capability. RISs connect to the Router/Interceptor to define the

proper RASs orchestration. Hence, new services can be plugged into the

architecture without changing the existing services. To integrate an

encryption mechanism, for instance, only the communication infrastructure

needs to be aware of the encryption RIS: the Router/Interceptor changes the

routing tables to ensure that every message sent to the external network is first

processed by this service.

This two-layer communication infrastructure enables loose coupling

and seamless communication between services. The use of a

Router/Interceptor layer removes dependencies between services and their

relative locations in the logical hierarchy. Thus, services from different levels of

the hierarchy - possibly from different authority domains in the case of large

business systems - can interact with each other seamlessly with the help of

appropriate infrastructure services and routing tables.

To address complexity, any Rich Service, instead of being a simple

functionality block, could be hierarchically decomposed into further Rich

Services . A Rich Service S that exports functionality to some client – perhaps

an external integration framework – is implemented by RASs S.1, S.2, through

S.n., along with the associated RISs (Figure 1). Likewise, Rich Services S.1 and

S.2 are shown as simple Rich Services whose interfaces are defined by

Service/Data Connectors. Rich Service S.n is shown decomposed into another

Rich Service, whose interface is also defined and exposed by a Service/Data

connector; it has its own message bus, router, RASs, and RISs. Note that both

19

RASs and RISs can be further decomposed into Rich Services. In addition, RISs

(e.g., Policy used in different Rich Services) can be instances of the same

service, different services, or parts of a larger crosscutting service from a

different system model view. This design strategy enables flexible deployment

choices that can take into account specific platform enhancements

(including, but not limited to, hardware-optimized cryptographic engines,

enterprise -wide access control lists (ACL), policy enforcers).

MODEL-BASED DEVELOPMENT PROCESS

The Rich Services hierarchical framework manages the complexity of

enterprise systems-of-systems integration and automotive applications by

decomposing complex problems into primary and crosscutting concerns,

providing flexible encapsulation for these concerns, and generating a model

that can be easily leveraged into a deployment. The associated model-

based development process [30], outlined in Figure 2, encompasses activities

from the high-level use case elicitation through physical network deployment.

The top part of the picture represents the logical architecture loop, which

deals mostly with platform-independent models (PIM); on the other hand, the

lower part of the picture represents the deployment loop and entails the

creation of platform-specific models (PSM).

20

Our process leverages the spiral development process [31] model and

embraces agile development methodologies. Requirements often resolve to

partial specifications, and refinements or additions of requirements at one

stage can trigger iterations beginning at some appropriate earlier stage. Thus,

the artifacts produced at some stage are fed back into new iterations of the

development process where they are revisited and refined.

This iterative process accommodates architectural spiking. This means

taking a partial set of use cases and generating a system architecture and

implementation based on them, then adding more and more use cases over

subsequent rounds. Architectural spiking allows domain and application

knowledge to be developed incrementally instead of in grand exercises,

thereby managing complexity and mitigating development risks.

Figure 2. Model-based development process for Rich Services

Rich Services Virtual Network

 Rich Services

RAS4

Services

Service S1

Roles

U1

U2

U3

U4

U5

Use Case Graph

Concerns
C1 C2 C3

C4
CC1

CC2CC3

Domain Model

R1 R2

R3 R4

R5 R6

R1 R2

msg

R3

CC1

CC2

Role Domain Model

R1 R2

R3 R4

R5 R6

CC1 CC2 CC3

Router/Interceptor

Messenger/Communicator

RAS1 RAS2

CC1 CC4 CC5

Router/Interceptor

Messenger/Communicator

RAS5 RAS6RAS3

S

/

D

S

/

D

RIS:

RIS:

S
e

rv
ic

e
 E

li
c

it
a

ti
o

n
R

ic
h

 S
e

rv
ic

e
 A

rc
h

it
e

c
tu

re

RAS7

Preliminary

Infrastructure Design

RAS1 RAS2 RAS3

RAS5 RAS6 RAS7

Deployment

H8

H5 H7H6

D
e

v
e

lo
p

m
e

n
t

Implementation

A
n

a
ly

si
s

M
a

p
p

in
g

A
n

a
ly

si
s

Id
e

n
ti
fi
c

a
ti
o

n

D
e

fi
n

it
io

n

C
o

n
so

lid
a

ti
o

n

Verification,

Validation,

and

Refinement

Hierarchic

composition
Refinement

Logical

Model

S
y

st
e

m
 A

rc
h

it
e

c
tu

re

D
e

fi
n

it
io

n

Deployment Loop

Logical Architecture Loop

H1 H2 H3

H5 H6 H7

H4

RAS1

RAS5 RAS6 RAS7

CC2

CC4 CC5

CC3

CC1RAS7

RAS5 RAS6

RAS4RAS3

RAS2 CC2 CC3

H4 CC4 CC5

H1 RAS1 H2 RAS2 H3 RAS3 H9 CC1

PIM

PSM

21

A major feature of the Rich Services development process is that

crosscutting concerns are identified early. In fact, addressing such concerns

as afterthoughts increases the integration costs and leads to incomplete or

incorrect system implementations

The first phase, Service Elicitation, captures the system requirements in a

service repository. At the same time a domain model is created. This model

integrates the main business concerns with functional requirements and

crosscutting system concerns such as security, access control, encryption,

fault tolerance, tracing, and transaction support. For each concern, we can

leverage an existing technique of requirements gathering. For instance, for

security we can employ elements from the Common Criteria [32] to determine

assets, risks, and mitigation strategies. In the automotive domain, the

approach of SPUR [33] can be used for modeling increasingly important

attributes such as security, privacy, usability, and reliability.

We define services as interaction patterns between roles [34] for the

realization of each use case. The service repository is the collection of all

identified services. Each service “orchestrates” interactions among system

entities to achieve a specific goal [35]. Within a service, roles exchange

messages, thereby switching from one state to another. A Message Sequence

Chart [28] can be used to capture the interaction and various role states. The

complete set of states and state transitions of a role obtained from all services

in which it participates defines its full behavior.

22

In the second phase, Rich Services Architecture, we use the role

domain model and the service repository to define a hierarchic set of Rich

Services as a logical model of the system. Of the many possible hierarchical

decompositions, the ones we choose for consideration are driven by client

values such as architecture comprehensibility, business manageability,

performance, and organization domains. The most important value

determines the dominant decomposition.

In the process of creating RASs and RISs, it is common to discover

additional opportunities for crosscutting processing such as Quality of Service

(QoS) property monitoring [36], failure detection and mitigation [37], and role

interaction monitoring. Strictly speaking, these concerns reflect functional and

non-functional facets of requirements, which may generate additional use

cases resulting in re-iteration of one or more stages of the Service Elicitation

phase. However, for crosscutting concerns having only local effect, such

iterations can be safely deferred. For more global concerns, spiraling back to

a previous development stage is usually warranted. In complex systems as

encountered in the avionics and automotive domains, domain modeling may

result in multiple largely orthogonal system views representing corresponding

crosscutting concerns. In such situations, each view may generate its own

Rich Service model, and each view may be represented as one or more RISs

in the models for the other views.

23

In Figure 3, for instance, we depict a class diagram capturing the

relations between services and failure management. We see two types of

services. Unmanaged services address regular interactions that do not take

into account the crosscutting concern of managing failures. The model is

enriched with managed services which take care of detecting failures and

recovering from them. Following the Rich Service approach we have

decoupled the two issues. We first define the regular services (unmanaged);

then, we group the concern of detecting failures and managing them in a

different service (managed), which modifies the regular service behavior. This

is represented in the class diagram by managed services having a reference

to the service they manage.

The collection of Rich Services defined at this point represents the Rich

Services logical model of the system, or Rich Services Repository, which is

transformed in the System Architecture Definition phase into a deployment

model and implementation. We model interactions between RASs as

Figure 3. Domain model for services addressing failure management

Atom

Service
Unmanaged

Service

Managed

Service

Fault

Detector Mitigator

Detection

Strategy

Mitigation

Strategy

Composite

Interaction

Specification
*

m
a

n
a

g
e

s

24

messages across a communication facility, which are subject to routing by a

Router/Interceptor layer. Interactions involving RISs are implemented by using

the Router/Interceptor layer to weave RAS-to-RAS messages into a RAS-to-RIS-

to-RAS template (or other similar interception-based processing). With such an

interception capability, using role interaction monitors and Quality of Service

monitors to assess the correctness and quality of services is possible without

disturbing the RAS (or RIS) processing already in place. Similar reasoning

applies to failure detection/mitigation and other crosscutting processing.

Because the logic needed to orchestrate the message flow is captured by

MSCs [28], we can leverage our work on state machine generation to

synthesize the routing required [34]. Alternative options are to describe the

orchestration logic by means of Web Services Business Process Execution

Language (WS-BPEL) or, a discussed in Chapter 5, using Orca.

The third phase, System Architecture Definition, establishes a

relationship between the Rich Services model of the system and its

implementation. We first inventory and analyze the subsystems and software

components already available, the topology of the existing systems in terms of

computational, input/output, control, and storage nodes, and available

networks. Operational and maintenance use cases are also refined at this

point to address the system evolution concerns.

We create an idealized network of the identified Rich Services, where

each RAS is represented as a virtual host connected to a common bus. This

stage focuses on logical connections between RASs and their message

25

exchange patterns, recognizing that duplication of services may occur.

Analysis of the message flow, volume and frequency of the data exchange,

and the relationships between the virtual hosts to implement the business logic

is important to identify possible bottlenecks and best places to address the

crosscutting concerns.

Based on the virtual network of the previous stage and the current Rich

Services architecture of the system, we design a preliminary infrastructure to

accommodate the current understanding of the system. With the platform

identified, we can proceed to develop the code for each Rich Service.

In the last stage – deployment, we perform a mapping of the

implemented Rich Services to the middleware running on physical hosts.

Depending on the system requirements and the available resources, some

services can be duplicated, whereas other duplicated services can be

replaced with proxies for unique services. Furthermore, levels in the hierarchy

can be flattened. The resulting view is still a projection of the overall system

model, just tailored for a particular deployment platform to yield better

performance, or to improve some other relevant quality aspect. Approaches

such as [38] can be incorporated into a Rich Services process, thereby shifting

the virtual network mapping to runtime, and taking advantage of a network

manager’s ability to dynamically allocate services to available network

resources.

26

SUMMARY

In this chapter I presented an architectural pattern and a development

process that support separation of concerns and enable composition of

crosscutting concerns. In the rest of this thesis I will present specific examples

of crosscutting concerns, identify shortcomings with the existing approaches

for addressing them, and provide a new modeling language to address these

shortcomings.

ACKNOWLEDGEMENT

This chapter, in part, is a reprint of material as appeared in C. Farcas, E.

Farcas, I. H. Krueger, and M. Menarini, “Addressing the Integration Challenge

for Avionics and Automotive Systems - From Components to Rich Services,” in

The Proceedings of the IEEE Special Issue on Aerospace and Automotive

Software, K. V. Prasad (Ed.), vol. 98, no. 4. IEEE, Apr. 2010, pp. 562-583. The

dissertation author was the primary investigator and author of the text used in

this chapter.

© 2010 IEEE. Reprinted, with permission, from C. Farcas, E. Farcas, I. H.

Krueger, and M. Menarini, Addressing the Integration Challenge for Avionics

and Automotive Systems - From Components to Rich Services, The

Proceedings of the IEEE Special Issue on Aerospace and Automotive Software,

and 04/2010

27

CHAPTER 2

FAULT TOLERANCE: A CASE STUDY IN HANDLING CROSS-CUTTING

CONCERNS WITH RICH SERVICES

In the previous chapter I presented an approach for modeling the

crosscutting concerns using Rich Services. In this chapter I discuss an example

of crosscutting concern that is fundamental to both embedded and

enterprise systems: fault tolerance. In fact, building reliable composite systems

from unreliable services has emerged as an important aspect of system of

systems integration and has captivated researchers’ attention in recent years.

Many attempts have been made towards building reliable and fault tolerant

services [39], [40]; however, a comprehensive approach has yet to emerge.

A viable solution for failure management has to fulfill few key

requirements. First, it has to be scalable and support geographical and

organizational distribution. To that end, a the solution should separate the

business logic from the fault handling logic, making it possible to add fault

tolerance to composite services that are only available as Commercial-Off-

The-Shelf (COTS) applications. Second, because the supporting technology in

this domain is rapidly evolving, a solution should be technology independent.

Various failure types in the application domain, such as servers failing to

respond, or race conditions in accessing a database concurrently, should be

addressed, and appropriate recovery policies should be exploited and

activated based on the type of failure detected [41]. Self-healing

28

architectural approaches such as [42] suggest that the detection mechanism

should be decoupled from the entities that provide the recovery. This

decoupling facilitates the reuse of both types of components in addition to

dynamic modifications to recovery policies without the need to modify the

detection mechanism.

Rich Services, thanks to the decoupling provided by RIS and RAS, are

good candidates to address the set of requirements identified for failure

management. This chapter presents an approach to address fault

management in enterprise systems and uses the CoCoME system as case

study.

THE COCOME CASE STUDY

The CoCoME Trading System case study models an Enterprise with a

collection of Stores (e.g., department stores). The application simulates the

behavior of a typical enterprise: customers pick up products and pay for them

at the cash desks, managers can view stock reports, and they can order

products from various suppliers to restock the store. Each Store has an

Inventory that keeps track of the locally available products. There is also an

enterprise-wide repository – Enterprise Repository – that can be synchronized

with the Inventories of each store. All systems (Stores, Enterprise, Bank,

Suppliers) communicate by means of Web Services.

29

Here I focus on a particular use case – Product Exchange. If a Store is

running low on some products, it can request to receive supplies from other

nearby stores. If some nearby store has enough stock of the requested

products, a product exchange is arranged. This process is managed by an

enterprise-wide Dispatcher. Figure 4 depicts this use case using a simple MSC.

The Trading System case study presented here was derived from the

case study for the CoCoME modeling contest [43]. The version presented here

Figure 4. Product Exchange interaction specification

LOOP

ALT

requestExchange(ProductList)

msc Product Exchange

queryStockItems(s,ProductList)

available(ProductStockList)

Wait Time2

<= 10 s

confirmRequest

exchangeArranged(goods, amounts)

exchangeRejected

<s: Nearby Stores>

Requesting

Store Dispatcher

Enterprise

Repository

Optimize Cost-Effective Exchange

Choose Providing Stores

unarranged

arranged

Update Repository

Arrange Exchange

Wait Time

<= 5 min

30

is slightly modified to include support for failure management. This modified

CoCoME allow for the evaluation of the failure management technique for

the Web Services presented in this chapter.

Figure 5 depicts part of the logical model for the Trading System. It

captures the structural elements that appear in the case. For the purposes of

this example the model includes three Stores in the Enterprise. The internal

structure of the Stores is not shown in the figure.

Figure 4 depicts the interaction of the Product Exchange use case that

forms the basis of the case study. A Store (playing the role Requesting Store)

requests the Dispatcher to receive some products from a nearby store

(requestExchange(ProductList)). The Dispatcher confirms that the request has

been accepted and starts the Update Repository interaction. When the

Enterprise Repository has been synchronized with the Inventory of the Nearby

Stores, the Dispatcher gathers the data on the requested products, decides

Figure 5. Trading System, Enterprise Rich Service view

Messenger

Router/Interceptor

S
e

rv
ic

e
/D

a
ta

C
o

n
n

e
c

to
r

<<Rich Service>> Enterprise

Dispatcher

Detector

Service/Data

Connector

Store Request

Detector

Service/Data

Connector

Ignore

Mitigator

Service/Data

Connector

Retry

Mitigator

Service/Data

Connector

Substitution

Mitigator

Service/Data

Connector

Parallel

Mitigator

Service/Data

Connector

Locator

Service/Data

Connector

Dispatcher

Service/Data

Connector

Store2

Service/Data

Connector

Store1

Service/Data

Connector

Store0

Service/Data

Connector

31

which stores should provide them, and arranges the Exchange. If this process

is successful, the Dispatcher returns the information about the products to the

Requesting Store; otherwise, it informs the Requesting Store that the exchange

has been rejected.

In the Update Repository interaction (Figure 6), the Dispatcher requests

the Store Locator to identify the nearby stores and to send them a request for

flushing their recent inventory updates. This activity is needed to synchronize

the Enterprise Repository with the Repository of the Stores. The store locator

identifies which stores are nearby the Requesting Store and forwards the

request to them. Nearby Stores then flush their inventory to the Dispatcher,

which updates the Enterprise Repository accordingly and confirms the

Figure 6. Update Repository Interaction

LOOP <*>

LOOP <*>

Dispatcher
Nearby

Store *

Enterprise

Repository

Confirm

Time<30s

Store

Locator

msc Update Repository

flushCompleted

requestFlush

update(Store,ProductStockList)

Flush(Store,ProductStockList)

requestFlush

confirmFlush

FindNearbyStores

Flushed

UnFlushed

32

reception of the data. When all Nearby Stores have flushed their data, a flush

complete message is generated. A deadline of thirty seconds is defined

between the request event and the flush completion.

RELIABLE WEB SERVICES

Reliability of Web Services is an active area of research. In order to

address fault tolerance in Web Services, first we need to identify and classify

the typical failures that can occur during service execution. Three classes of

failures are identified in the literature: behavioral and business logic failures,

operational failures and quality of service failures [44]. Business logic failures

refer to cases where the service fails to complete its task, or delivers incorrect

results, because of computational or logical failures. Operational failures refer

to failures of the underlying middleware and communication infrastructure

that the hosting servers rely on. Quality of service failures refer to failures in

delivering the service with the promised quality of service properties. Service

Level Agreement (SLA) failures are in this class. An SLA is a contractual

agreement between a service provider and its consumers. It often mandates

response times and other quality of service metrics. The focus of this chapter is

on behavioral and quality of service failures.

A second step is to investigate failure detection mechanisms. Two

predominant levels of detection have been studied in the literature. The

simple case is to detect and mitigate the failures at the single invocation level.

The approach presented here supports a more complex failure detection

based on an interaction pattern among multiple participants/roles in service

33

choreography. As discussed later in the chapter, current Web service

techniques focus mainly on exception handling techniques resulting in single

invocation based detection.

A model-based approach to failure management for Rich Service-

based SOAs is introduced as follows. First I present a failure model, including

the notion of a failure hypothesis. Then I introduce an approach to defining

Detectors that identify occurrence of failures at run time. Finally, I introduce

strategy-based Mitigators that provide recovery mechanisms after a failure is

detected. This approach has the following benefits: 1) it can base the

identification of a failure on the system model, 2) the logic to detect an error is

separated from the logic to recover from it, 3) the mitigation strategies can be

reused in different contexts.

FAILURE HYPOTHESIS

A failure hypothesis captures the assumptions about which parts of the

system can fail, and how many faults are allowed to happen concurrently

(and in which combinations) for the system to still be considered fail-safe. In a

model-based approach, this information is used as an input for validation and

verification activities.

I consider mainly two types of failures: failures where a service does not

complete its task, or where an error causes an unexpected message flow. The

approach presented in this chapter can deal with both types of failures. It can

detect unexpected message flow by comparing the messages exchanged

with the sequences defined in the MSCs. Furthermore, the model presented

34

here allows for the specification of deadlines between events enabling the

detection of failures where messages are not sent. This capability is important

in the web service domain to address the requirements of SLA. Deadline

assertions can be leveraged to encode SLA, and detect possible violations.

In the CoCoME Trading System case study, the failure hypothesis is as

follows: Stores can get permanently disconnected, Stores can fail

intermittently (refusing to respond with a given probability), and the

Dispatcher can fail by not identifying that all Stores have flushed. For example,

let’s analyze a subtle race condition that can occur in the implementation of

the case study. Consider the following scenario. An arbitrary number of

nearby stores can be selected as candidates for an exchange and requested

to flush their inventories. The Dispatcher uses a relational database to keep

track of how many stores have answered. At the end of each flush cycle, the

Dispatcher decides if the update is finished and, if so, it triggers the

flushCompleted message. The use of a database for storing this information is

justified by the fact that, for scalability reasons, the Dispatcher is implemented

as a set of servers that listen to flush requests. The problem is that depending

on the isolation level for transactions supported by the database, a race

condition can occur such that the information about a store flush is lost. This

could be observed if the database used in the implementation supports only

the dirty read isolation level. This is a failure that falls into the category of

Dispatcher not identifying that all stores have flushed.

35

In my experiments, I have added failure injection code to the system to

trigger the failures defined in the Failure Hypothesis. Thus, even failures that

seldom occur, such as the mentioned race condition, can be evaluated

quantitatively.

FAILURE DETECTION

Recall that the model of a service with failure specification consists of

an interaction pattern, augmented with deadline specifications. From this

model, failure Detectors we can automatically derived. Such detectors

monitor the compliance with both the interaction pattern and the deadlines

[45]. Because the Rich Service architecture implements such interactions via a

messaging infrastructure, Detectors can leverage the interface between the

Rich Services and the messaging infrastructure to detect differences between

the runtime behavior and the model. In the Web Services domain, the

implementation of the participating services of a composite Web Service may

not be available to the developer. Usually these are heterogeneous services

from different geographical and authority domains. The proposed technique,

by leveraging the communication infrastructure in order to detect and

mitigate failures, enables the implementation of reliable composite services.

Because it does not require any change to the constituent services, this

technique is a good candidate for addressing failures in the web service

composition domain.

The Rich Service framework provides this capability by enabling the RISs

to intercept and reroute messages transparently. A RAS does not need to be

36

aware of the RISs that process and possibly even alter the messages the RAS

sends and receives. As a result, RISs can be used to construct Detectors – this

decouples RASs from the corresponding Detectors. Each Detector receives

and monitors the messages specified by an MSC and detects a failure if the

communication does not match the specified interaction pattern.

In order to guarantee that an interaction failure can be detected

within finite time, a deadline between the starting and ending messages of

the interaction can be specified. This also captures SLA in the model and

supports detecting potential SLA violations. For example, Figure 6 shows a

deadline of 30 seconds for the Update Repository service to complete.

As a result, the approach proposed can detect behavioral failures

where a service does not respond within the defined time interval, or when

the interactions take place with messages in an order different than specified.

Upon detection of a failure, the Detector activates the Mitigator responsible

for recovering from the detected failure.

FAILURE MITIGATION

In the literature ([42], [46], [47]) two classes of mitigation strategies are

applied to the web service composition domain: backward and forward

recovery. Backward recovery is mainly achieved by transaction-based

mechanisms resulting in a “roll-back” of actions that have not gone through

as a whole. The main forward mitigation strategies studied in the Web Services

domain are: ignoring the failed invocation (Ignore), retrying the same

37

invocation to the same service (Retry), and retrying the same invocation but

substituting the called service with an alternative but “equivalent” service

(Substitute). Another fault tolerance pattern is the parallel execution of the

same invocation on multiple equivalent services and taking the first response

or voting on all responses (Parallel). In most cases, a combination of these

strategies is applied (Composite), such as retrying for a specified number of

times and then substituting the callee with an alternative service. The work in

this chapter focuses on forward recovery mitigation strategies.

The goal is to reuse the standard mitigation strategies mentioned

above. Mitigators are logical components activated by Detectors when a

failure is identified. Mitigators are specified as RISs and are responsible for

recovering from the failure; they are given enough context information to be

able to apply the standard mitigation strategy correctly.

We can analyze, for instance, how the Substitute strategy is applied in

the case study. A generic Mitigator sends the request to an alternative service

in case of a failure. In our case study, the request is the flush request sent to

Store 1. If the Detector identifies that the request has failed, it triggers the

substitution Mitigator providing, as context information, the failed message

sent to Store 1 with its parameters. An application specific configuration

defines the alternative service provider for Store 1 (Store 3). Different Detectors

can trigger the same Mitigator implementation to deal with failures of different

Stores, provided that they supply the correct context information.

38

The case study uses the Ignore strategy to mitigate the Dispatcher

failure described earlier. In this case, the Detector invokes the ignore Mitigator

if the 30 second deadline is not met. The Detector provides the Mitigator with

some context information about the state of the system and the next required

action as parameters. The Mitigator receives a state machine that defines the

expected message sequence and the current state in the message

sequence. If the current state is such that all flushes have been performed but

no message flushCompleted has been sent, the Ignore Mitigator executes the

next step defined by the state machine sending the flushCompleted

message.

Retry, Substitute, and Parallel are used in the case study to mitigate the

Store connection failures. The failure hypothesis defines different ways a Store

can fail to respond. It can, for example, fail intermittently or it can stop

responding forever. To evaluate which mitigation strategy better addresses

which failure, next section presents a set of experimental results.

Finally, because in the presence of multiple failures a single mitigation

strategy does not provide complete reliability, the approach proposed

supports Composite mitigation strategies. A Composite Mitigator is achieved

by adding multiple Detector / Mitigator pairs identifying and recovering from

the same failures. If the first Detector detects a failure, the associated

Mitigator is triggered. The second Detector continues to observe the

messages exchanged and can execute the second mitigation strategy in

case the first one was unsuccessful.

39

IMPLEMENTATION AND EXPERIMENTS

In order to measure the reliability and the performance overhead of

the approach proposed, I implemented the Trading System case study and

conducted a number of experiments. This section describes the

implementation details and the experimental results.

The challenge in implementing the case study was (a) to find a

mapping of Rich Services into a deployment architecture, and (b) to leverage

this deployment architecture for representing Detectors and Mitigators at

runtime. I address challenge (a) by using Mule, an open source Java ESB, as

an implementation platform. I implement RAS as Mule Universal Message

Objects (UMOs) (for details, see the following paragraphs). I address

challenge (b) by using Mule interceptors to implement Detectors and

Mitigators.

Implementation based on Mule. The Rich Services architectural

blueprint is inspired by ESB technologies. In particular, the Messenger and the

Router/Interceptor components of the blueprint map nicely to the

infrastructure provided by various ESB platforms. To establish the

independence of the Rich Services architectural pattern and my fault

tolerance approach from a specific implementation platform, I deployed the

same service- and failure models on two different ESB target platforms: Mule

ESB [25], and ServiceMix [48]. Both are open source frameworks based on

Java; however, they reflect different implementation decisions. Mule is

lightweight and does not mandate a specific format or medium for messages

40

being exchanged. ServiceMix, on the other hand, converts all messages to an

Extensible Markup Language (XML) standard format and uses ActiveMQ to

transfer them between services. For reasons of brevity, in the remainder of the

paper we focus on the Mule implementation.

Use of UMOs to implement RAS. The main functionality blocks of any

Mule application are the UMOs. They are Java classes that are instantiated by

the ESB and send and receive messages via Mule Application Programming

Interface (API). Mule provides facilities to connect such UMOs to a variety of

communication technologies. In particular, the case study implementation

exposes services as standard web services using Hypertext Transfer Protocol

(HTTP) and Simple Object Access Protocol (SOAP). Mule facilitates the

creation of UMOs by allowing the programmer to write regular Java classes

and an XML configuration file. The ESB uses Java reflection to identify the right

method to call depending on the message received. Mule UMOs are used to

implement Stores, Dispatcher, and Store Locator as separate application

services.

Use of Mule Interceptors to implement Detectors and Mitigators. The

implementation of Detectors and Mitigators is done using Mule Interceptors.

Interceptors are used in Mule 1.x series (the case study implementation uses

Mule 1.4.3) to transparently inject additional behavior when messages are

sent or received by services. In the Mule framework, using Interceptors is the

logical choice for implementing a Detector that observes the messages

exchanged and compares them with the expected communication modeled

41

by an MSC. Mitigators are also executed as part of an interceptor. The

interceptor first detects if a failure has happened, then allows the specified

Mitigator to process the message as needed. Mitigators can use the Mule API

to dispatch additional messages. For example, the Parallel and Substitution

Mitigators use application specific information on an alternative store to send

the request flush to. The application is not aware of the fact that the request is

forwarded to an alternative store. The Parallel Mitigator, in particular, sends

the request to the alternative store even if there is no failure. Only the first flush

received is passed to the Dispatcher. I performed experiments with multiple

mitigation strategies to demonstrate the flexibility of the approach; changing

between different strategies and combining different strategies was a matter

of minutes.

Implement Detectors using state machines. Each Detector has a state

machine associated with it that recognizes the language specified by the

MSC [45]. This is convenient because, as discussed earlier, these state

machines can be automatically generated. The detector can, therefore,

observe the messages exchanged and take the corresponding transition in

the generated state machine. If no transition exists with the given message

guard the Detector identifies a message order failure.

42

Keep track of the session identifier. Because of the concurrency of

client requests, multiple interactions implementing the same pattern are

active in the system at a given time. All calls carry a session ID that enables

Detectors to update the state machine and other information on a per session

basis. Furthermore, each Detector can start a timer is deactivated by

receiving the message that ends the deadline. If the timer is not deactivated,

the Detector triggers the specified Mitigator depending on the current state of

the system when the timer expires. The timers are implemented using the

Table 1. Failure management experimental results

Experiments
Detectors/Mitigators 100 Requests

Faults
Request Time (ms)

ret ign sub par Success Failure Max Min Avg

O
n

e
 F

lu
sh

 p
e

r
R

e
q

u
e

st

No Failure X X X X 100 0 0 8667 206 2109

No Failure   X X 100 0 0 9385 226 2258

10% Dispatcher

Failure
X X X X 91 9 9 8167 204 2191

10% Dispatcher

Failure
X  X X 100 0 9 30921 170 4684

10%

Dispatcher/Stores

Failure

X X X X 74 26 26 10141 193 2039

10%

Dispatcher/Stores

Failure

 X X X 92 8 15 7256 229 1928

10%

Dispatcher/Stores

Failure

  X X 100 0 23 30401 172 5200

100% First Store

Failure
 X X X 0 100 200 N/A N/A N/A

100% First Store,

10% Backup Store

Failure

X X  X 90 10 110 11561 170 2463

100% First Store,

10% Backup Store

Failure

(order: retry,

substitute)

 X  X 95 5 205 11873 273 2653

100% First Store,

10% Backup Store

Failure

(order: substitute,

retry)

 X  X 100 0 108 12042 218 2481

No Failure X X X  100 0 0 13070 238 2936

10% Stores Failure X X X  100 0 17 11197 145 2709

Tw
o

 10% Dispatcher

Failure
X X X X 93 7 7 9636 337 2888

10% Stores Failure   X X 98 2 21 30035 404 3482

43

Quartz Java library. For each session the Detector keeps track of the state

machine’s state, the timer state, and the message parameters.

Experiments Description. The first two columns of Table 1 describe the

type of experiment executed. The difference between experiments with One

Flush per Request versus the ones with Two is in the Store locator behavior. In

the first case, the store locator identifies just one nearby store and issues just

one flush request. In the second, two nearby stores are identified and two

requests are issued. The second column describes the failure injection

behavior during the experiment. The Failure injection is performed using a

certain probability function. The first type of failure we inject is in the

Dispatcher. A 10% Dispatcher Failure means that every time the flush is

concluded (all stores have flushed), there is a 10% probability that the

dispatcher does not recognize it and does not issue the flushCompleted

message. In a run with 10% Stores Failure, with a 10% probability a store might

not respond when requested to flush. ‘Two’ experiments show a more

complex failure injection. 100% First Store, 10% Backup Store Failure means that

the store that is requested to flush is completely down (always returning an

exception) but the backup store (used by the Substitute mitigation strategy)

has only a 10% chance of failing. In the ‘two’ experiments, the order in which

the mitigation strategies are applied is important. Therefore, the table also

contains the order in which the strategies are applied. All results in the

columns named Success, Failure and Faults are based on 100 exchange

request runs. All timings are expressed in milliseconds. In the

44

Detectors/Mitigators columns, specifying the retry, ignore, substitute, and

parallel execution mitigation strategies, we have a  if the Mitigator and the

corresponding Detector are loaded in the system, and an X otherwise. More

than a  is present in a line for composite mitigations.

Experimental Results The experiments were conducted on a dual core

Linux virtual machine with all services running locally, communicating via HTTP

on the loopback device. In these experiments, the test case triggers product

exchange requests concurrently from two stores. Each of the two stores

requests 10 exchanges, each exchange includes 10 different products. The

store then waits 15 seconds and starts requesting again. The given test case is

intended to permit an evaluation of the overhead introduced by Detectors

and Mitigators and is not intended to reproduce a normal usage scenario.

The experiment results can be summarized as follows: the Detector and

Mitigator approach, leveraging the Mule ESB framework, increases the

reliability of web service composition without changing the component

services. It allows encoding and enforcing SLAs that mandate timing

requirements on service execution. Furthermore, the performance cost of

using this approach is very limited.

Overhead Evaluation. The first two lines of Table 1 evaluate the cost of

adding Detectors and Mitigators when there are no errors. This is an important

measurement to validate our claim that the cost of using this approach is not

too high. The results show an average increase of 7% in execution time. The

45

network delay was minimized by using local communication. Therefore, the

result evaluates the overhead of executing the detection over the normal

processing of the service.

Failure Management Performance. The rest of the table shows various

failures being triggered and how the presence of Detectors and Mitigators

can mask the injected faults. The overall result is that by using the proper

Detectors and a suitable set of the standard Mitigators, all of the injected

failures could be masked.

SUMMARY

This chapter described how to leverage the Rich Service pattern to

address an important crosscutting concern: failure management. The

approach presented leverages the Rich Services blueprint, and the fact that it

is based on a messaging infrastructure, to implement Detectors as RISs that

monitor the interactions of a service by intercepting messages exchanged.

This decouples the business logic from the fault tolerance components.

Mitigators are also RISs that are activated by a Detector upon failure

detection, and are responsible for recovering from the failure. Mitigators are

strategy based and hence are decoupled from the failure detection logic.

Using the case study I evaluated the performance of all recovery strategies

commonly used in the Web Services domain.

From the measurements of the performance overhead and the

reliability of the CoCoME trading system I conclude that, even in the case of

multiple failures, by using a composition of different mitigation strategies the

46

system can recover from all injected failures. This comes at the fairly modest

price of 7% overhead in response time on average in the absence of failures.

In the next chapter I present a different type of experiment. Instead of

testing the implementation of a rich service system to evaluate the

performance of RIS in improving its reliability, I execute a formal verification of

the system model to prove that properties are satisfied even when failures

occur.

ACKNOWLEDGEMENT

This chapter, in part, is a reprint of material as appeared in V. Ermagan,

I. H. Krüger, and M. Menarini, “A Fault Tolerance Approach for Enterprise

Applications,” in Proceedings of the IEEE International Conference on Services

Computing (SCC). Jul. 2008, The dissertation author was the primary

investigator and author of the text used in this chapter.

© 2008 IEEE. Reprinted, with permission, from V. Ermagan, I. H. Krüger,

and M. Menarini, A Fault Tolerance Approach for Enterprise Applications,

Proceedings of the IEEE International Conference on Services Computing

(SCC), and 07/2008

47

CHAPTER 3

EXPLOITING CROSS-CUTTING CONCERNS IN VERIFYING FAULT

TOLERANCE PROPERTIES

In this chapter I extend to embedded systems the study of fault

tolerance discussed in Chapter 2 for enterprise systems. The case study I use in

this chapter is the central locking system. Here I present a verification

approach that follows the rich service process presented in Chapter 1. I

create interaction models for the Central Locking System (CLS) case study

and use them to generate model checking code. I use this code to formally

verify properties of the CLS in presence of failures.

To leverage the proposed Rich Services pattern, I developed notations

and theories that support the description and manipulation of services

accordingly. To this end I created a dedicate Service Architecture Description

Language (SADL). My goal is to apply the principle of separation of concerns.

The RAS models are assumed to have no software bug or hardware failure.

Detection of failures and recovery from them is a concern addressed by RIS.

THE CLS CASE STUDY

For the embedded systems domain I chose a case study from the

automotive domain. I demonstrate my service-oriented model-based

approach using the central locking system. The CLS is simple enough to be

described here and has requirements that show the main challenges

common to the automotive domain.

48

In modern high-end cars, CLSs are very complex and require the

integration and cooperation of up to 20 electronic control units (ECUs). In fact,

a complex set of comfort functions are connected to the locking and

unlocking of the vehicle. Examples include the movement of the driver’s seat,

the setting of radio presets, and, in some cases, the automatic control of

windows and moon roof. Other functions are related to vehicle security, such

as engaging and disengaging alarm systems and engine electronic locks.

Finally, safety and regulatory aspects of the CLS impose additional constraints,

such as unlocking the doors in case of accidents or locking them after a

certain speed is reached. Consequently, implementing a CLS for cars is a

complex integration problem, and the resulting system must guarantee tight

real time constraints and adherence to various regulations imposed by

different bodies in different countries. Table 2 depicts a small subset of the

CLS’s functional and quality requirements.

Figure 7 shows a use case diagram derived from these requirements,

capturing two actors: the driver and the system. A line connecting an actor to

Table 2. CLS Requirements (simplified).

Functional Requirements

Unlock the door when the key fob unlock button is pressed.

Lock the door when the key fob lock button is pressed.

Unlock all doors when an impact is detected.

Quality Requirements

The time between an impact and the door unlock must be less than

0.1 seconds.

The emergency door unlock must be guaranteed even in presence

of ECUs failures.

49

a use case indicates participation in the use case execution. For instance, the

driver takes part in the unlocking and locking operations, whereas the system

takes part in crash management.

Both of the unlocking and locking use cases include a sub use case to

make the car lights blink. The unlocking operation also includes an

authentication use case, while the locking operation includes arming the

security module in the car. The crash management use case includes a sub

use case performing the immediate unlocking of all doors.

The next step is to identify the proper roles for the entities interacting in

the services implied by use cases and requirements. Note that this step

disentangles the logical model from deployment concerns: a role is the

behavioral contribution a deployment component makes to a given service.

In other words, a role is a behavioral proxy for a deployment component in a

Figure 7. Use case diagram for the Central Locking System (CLS) case study

Unlocking includes

includes

includes

includes

includes

Driver

System

*

*

*

*

*

*
Locking

Manage Crash

Light System Blinking

Enable SM

Immediate Unlock

Authentication

50

service specification; we also say that the deployment component “plays”

that role. Roles such as the driver and the key fob are directly mentioned in

the requirements and use cases. Other roles are inferred by knowledge of

existing system implementations and are part of the design.

For example, a CLS controller manages the interactions that occur

during the locking and unlocking, a security manager supports the execution

of the authentication use case. For this case study, I identified seven roles: the

car key fob (KF), a lock motor (LM), a security manager (SM), a database (DB)

(which is usually played by a Controller Area Network (CAN) Bus or other in-

vehicle bus), an impact sensor (IS), the light system (LS), and a lock controller

(CONTROL).

Having identified the roles and use cases, I proceed with the definition

of services. In the Rich Services framework there are two types of services: rich

application services (RAS) and rich infrastructure services (RIS). RAS capture

interaction patterns between roles to perform a function directly useful to the

system user (a business function). On the other hand, infrastructure services

change the interaction patterns to enrich or modify some functionality

leveraging the service infrastructure (e.g., authentication and encryption of

communication). These functions do not provide business value by themselves

but need to be applied to other interactions (through an infrastructure or

middleware). Another important example of RIS is a failure management

service that identifies deviations of the expected behavior of other services

51

and injects mitigation strategies to recover from them. This results in an end-to-

end view of failure management across the subsystems in the vehicle.

MODELING THE RAS

I capture the interactions defining services using MSC. I model the basic

scenario where the vehicle is initially locked. A key fob is used to remotely

unlock or lock the doors. Unlocking and locking can iterate indefinitely. In

parallel, the impact sensing operation is performed – when an impact occurs,

the system unlocks all doors. We separate the locking and unlocking

operations into two services: LCK1 (UNLK1) performs the (un)locking the doors

and signaling the light system (LS), whereas LCK2 (UNLK2), performs the key

fob authentication and arms the security manager (SM).

Figure 8. CLS-1

PAR

JOIN JOIN

UNLK-1

UNLK-2

LCK-1

LCK-2

UNLK-3_Managed

52

Figure 8 shows this model as a high level MSC (HMSC) capturing the

global view of the CLS RAS of our case study. The two boxes labeled JOIN

represent an operation that performs each of the interactions defined by the

operands (in this case LCK1 and LCK2, and UNLK1 and UNLK2 respectively) in

parallel but synchronizes them on common messages.

Figure 9 and Figure 10 specify the interactions UNLK1 and UNLK2,

respectively. When the driver tries to unlock the doors, the lock controller

notifies the security manager to authenticate the key fob. When the key fob

ID is validated, then the unlocking operation is successful. Since the unlocking

operation and the ID verification runs simultaneously, it is appropriate to join

Figure 9. UNLK-1

KF CONTROL LM LS

INITIAL LCKD INITIAL INITIAL

unlck

unlck

unlck_ok

door_unld_sig

UNLDINITIAL INITIAL INITIAL

ok

53

UNLK1 and UNLK2 services to run simultaneously and synchronize through the

same messages they share. This means that a single unlck message from KF to

CONTROL starts both interactions. Also, a single ok message from CONTROL to

KF indicates the completion of both interactions. The 2 UNLK MSCs are

combined using the join operator. This operator ensures that both interactions

are completed before the shared ok message is returned. This description

technique specifies the scenario in which both the opening of the door and

the authentication are successful. In this case we don’t care in which order

the messages are sent. Additional scenarios are needed to describe what

happens in case of failure of the authentication. For example, those

additional scenarios could enforce that if the authentication fails the door is

never opened. The power of the notation used is that additional scenarios

may impose constraints on message ordering (i.e. the security manager

should confirm the id before the unlock request is sent to the lock manager).

In UNLK-1, CONTROL is initially in the locked (LCKD) state. After

unlocking the doors, CONTROL also sends a signal to LS, to handle the blinking

of the light system. After finishing the unlocking process, CONTROL reaches the

unlocked (UNLD) state.

Figure 11 shows a scenario where a crash occurs and the related

unlocking procedure is performed. Upon impact, an Impact Sensor (IS) sends

an Impact message to CONTROL, which has the command center role of the

CLS. CONTROL sends an unlck message to LM, upon receipt of the Impact

message. The service ends by CONTROL receiving the acknowledgement of

54

the unlocking from LM. Out of the many possible failure scenarios, for this

example, I chose a scenario based on a deadline. Hence, an additional

constraint, identified by the dotted arrow in the diagram, is that the interval

between the impact message and the acknowledgement of the door being

unlocked must be less than 10 milliseconds.

MODELING THE RIS

The MSCs presented in the previous section define the required

behavior of the application. From such models, an automaton accepting the

modeled interactions can be derived for each modeled lifeline (service role).

Such automata can be used at runtime to identify deviations from the

expected behaviors. For brevity, this case study focuses on just one level of

the hierarchy of the CLS model. Ref. [28] contains an algorithm to obtain state

Figure 10. UNLK-2

KF CONTROL SM DB

INITIAL LCKD INITIAL INITIAL

unlck

handle_id

get_id

id

id

INITIALINITIAL UNLD INITIAL

ok

55

machines from MSCs and HMSCs. As demonstrated in the previous chapter,

leveraging the Rich Services framework, it is also possible to observe the

interactions performed by RASs and implement such state machines in a RIS.

Thus, leveraging RISs, it is possible to separate the management of failures in

infrastructure services, and enhance the system logic not only to detect but

also to recover from errors. For this purpose, a failure hypothesis is needed. The

failure hypothesis identifies the type of errors (originating from software or

hardware faults) and their combinations, in presence of which the system

must still behave correctly.

The process of detecting failures is completely independent from the

physical deployment of the system. In fact, errors are identified by the lack of

adherence to the interaction pattern defined by a service. However, a failure

hypothesis needs to identify dependencies between which component

Figure 11. UNLK-3_Managed

CONTROL

LCKD

unlck

unlck_ok

UNLD

IS

INITIAL

Impact

FINAL

LM

INITIAL

INITIAL

deadline1 T=10ms

56

performs a given function and how such component can fail. In the CLS case

study the assumption is that when an ECU fails, then all its software functions

fail together.

DEPLOYMENT AND FAILURE HYPOTHESIS

The failure hypothesis proposed in this approach is closely related with

the deployment architecture. In the deployment diagram from Figure 12, a

CAN Bus connects the different subsystems: ImpactSensor1, ImpactSensor2,

SecurityManager, DataBase, FailManager, LockMotor, and Controller. The

KeyFob is connected to the rest of the system via a wireless connection and

with an adapter to the CAN Bus. Each component can play one or multiple

roles defined as lifelines in the MSCs. The Failure Manager component plays a

special role (called M). This role performs the mitigation part of the managed

Figure 12. Deployment architecture

CAN Bus

Wireless Connection

KeyFob
Plays KF

Can Fail

Wireless

to CAN

Database
Plays DB

Can Fail

Controller
Plays CONTROL

Plays LS

Can Fail

Security

Manager
Plays SM

Can Fail

Lock Motor

Plays LM

Impact

Sensor 1
Plays IS

Can Fail

Impact

Sensor 2
Plays IS

Can Fail

Failure

Manager
Plays M

Can Fail

57

service as depicted in Figure 13. The failure hypothesis is that all components

except the lock motor can fail. Also, the wireless channel can fail completely,

whereas the CAN Bus can only fail by losing one message per run. This failure

hypothesis is completed by a global constraint on the number of concurrent

failures allowed – in this case, just one entity per run can fail. I picked this

scenario as it covers an important class of failures, i.e., when the number of

failures has a finite upper bound. The SADL developed to support the creation

of failsafe systems allows specification of all these concerns.

To support fail safety, a RIS, need to be able to specify both how to

detect errors, and how to recover from them. Different domains use different

techniques and follow different rules. Chapter 2 explored the domain of

enterprise applications and proposed a method to make an enterprise system

reliable by implementing RIS that support the standard fault tolerance

techniques used in this domain. The creation of fail-safe systems in the

automotive domain benefits from a domain specific language supporting

techniques targeting this domain.

GENERATING THE VERIFICATION MODEL

The Service-Oriented Software & Systems Engineering Laboratory (S3EL)

at UCSD has developed a modeling tool called M2Code [49] that is able to

generate state machines from interaction descriptions. Additional tools were

then added by me and other members of the S3EL team to M2Code.

M2Code now supports automatically weaving failure detector / mitigator

state machine templates into the generated state machines following the

58

Rich Services pattern [50]. M2Code takes as input a SADL specification and

generates both implementation code and models to support formal

verification.

The generation of such implementations is based on the synthesis

algorithm presented in Ref. [45]. I briefly outline the main steps of this

transformation here; and refer the reader to Ref. [45] for a complete

treatment of the subject.

The input for this algorithm is a set of MSCs described in the SADL

developed for M2Code. The algorithm uses a closed-world assumption with

respect to the interaction sequences that occur in the system under

consideration. For each role of the MSC set an automaton is obtained by

successive application of the following four transformation steps:

1. projection of the given MSCs onto the role of interest

2. state marker insertion, i.e. adding missing start and end states before

and after every interaction pattern

3. transformation into an automaton by identifying the MSCs as transition

paths, and by adding intermediate states accordingly

4. optimization of the resulting automata

59

This synthesis algorithm works fully automatically for causal MSCs [51],

and correctly transforms choice, repetition, concurrency/interleaving and join

[28] in MSCs. Because the algorithm is based on syntactic manipulation of the

given MSCs it is oblivious to the underlying MSC semantics - as long as the

semantics of the target component model matches the one used for the

MSCs serving as input to the algorithm.

Figure 13 shows how lifelines in MSCs are converted to state machines.

Each transition is marked with a message sent or received by the lifeline. To

model failures, the state machine generated by the algorithm described

earlier is modified by adding a sink state (lower part of Figure 13). Using this

approach, I was able to verify that the CLS models were correct and ensure

that the car gets unlocked during an accident even in presence of failures

under the given failure hypothesis.

Figure 13. From MSCs to State Machines

service unlocking_2

service unlocking_1

managed service m_impact manages service impact

detector

mitigator

unlck

unlck_ok

Impact

deadline1

T=10ms

LMCONTROLIS

unlck

unlck_ok

LMCONTROLM

...

...

? Impact

! unlck

? unlck_ok

CONTROL

...

...

? Impact

! unlck

? unlck_ok

CONTROL

60

Figure 14 shows a fragment of the Promela code that the tool

generates. The Promela code implements the state machines derived via the

outlined transformation algorithm. The code from Figure 10 models an

automaton for the LS role of our case study. The automaton is simple, there

are only two states. State __JS0_26 is the regular state the automaton is in

while the LS role is executing correctly. The _Sink state models a failure state

in which the LS role can enter. The full Promela model contains one Proctype

for each role in the CLS model and has, in addition, models for the mapping

of roles to components, as well as the failure hypothesis. Using this Promela

model generated by M2Code the SPIN model checker can be used to

formally verify properties of the system.

Figure 14. Promela code for the LS role.

Proctype LS (chan _CL3, kill_CL3, _ERR, kill_ERR)

 bool killedChan;

 mtype msg;

/* Set initial state */

 if :: goto end___JS0_26 fi;

/* State transition function */

 end___JS0_26:

 if

 ::d_step CL3?[door_lckd_sig] -> CL3?msg;

 goto end___JS0_26

 ::d_step CL3?[door_unld_sig] -> CL3?msg;

 goto end___JS0_26

 ::d_step _ERR?[kill] -> _ERR?msg;

 goto end_Sink

 fi;

 end_Sink:

 skip;

61

SUMMARY

The case study presented in this chapter differs from the one presented

in the previous one in two substantial ways. First of all, the approach in this

chapter is based on a formal model of the system while the previous case

study is based on an implementation. The goal here is to leverage simple

models to generate a Promela program. This program can be used to formally

verify properties of the system under all considered failure scenarios. Second,

in this chapter I focus on an embedded system while in the previous one the

case study was an enterprise system. However, I use the same detection and

mitigation techniques in both case studies.

The two chapters complement each other. In fact, chapter 5 analyzes

the execution performance of different failure detectors and mitigators

implemented in an enterprise system, while this one presents a methodology

to formally verify the impact of these detectors and mitigators without

implementing them but just from their models. More details about the

verification approach presented in this chapter and the tool chain supporting

it are published in Ref. [50], [52].

ACKNOWLEDGEMENT

This chapter, in part, is a reprint of material as appeared in C. Farcas, E.

Farcas, I. H. Krueger, and M. Menarini, “Addressing the Integration Challenge

for Avionics and Automotive Systems - From Components to Rich Services,” in

The Proceedings of the IEEE Special Issue on Aerospace and Automotive

Software, K. V. Prasad (Ed.), vol. 98, no. 4. IEEE, Apr. 2010, pp. 562-583. The

62

dissertation author was the primary investigator and author of the text used in

this chapter.

© 2010 IEEE. Reprinted, with permission, from C. Farcas, E. Farcas, I. H.

Krueger, and M. Menarini, Addressing the Integration Challenge for Avionics

and Automotive Systems - From Components to Rich Services, The

Proceedings of the IEEE Special Issue on Aerospace and Automotive Software,

and 04/2010

63

CHAPTER 4

MODELING CROSSCUTTING CONCERNS

In the previous chapters I discussed how SOAs help to successfully

integrate complex distributed systems in different domains. The Rich Service

pattern simplifies integration further by decoupling crosscutting concerns from

the flow of the business logic. I demonstrated the capabilities of the Rich

Service pattern to address crosscutting concerns using fault tolerance as an

example. In particular, I presented two case studies, one from the embedded

systems domain and the other from the enterprise systems domain.

The examples presented in Chapter 2 and 3 cover one specific

example of crosscutting concern: failure management. While the Rich Service

pattern is not specifically developed for one type of concern, the SADL and

the mitigation patterns discussed in the previous chapters are specific to

failure management. To fully realize the promises of Rich Services a generic

language to specify and compose crosscutting concerns must be devised.

The problem of decoupling the main flow of a program from the

specification of crosscutting concerns has also been addressed in the

programming world by aspect-oriented programming. To realize systems

based on Rich Services I need to provide similar facilities for service models.

Thus, in this chapter I analyze how the concept of aspect can be extended to

modeling languages. To this end, I leverage the Rich Service architectural

blueprint together with Aspect-Oriented Modeling (AOM) techniques [7–9]. In

64

particular, I present work on aspects for MSCs, a simple yet powerful graphical

notation to describe interactions that can be used to compose RIS to RAS.

The outline of this chapter is the following: first, I describe how the Rich

Service pattern defines the interface between services and how this interface

can be modeled. Second, I examine how current MSCs operators can be

extended to allow an AOM approach to composition of RASs and RISs. Third, I

discuss issues with respect to causality and address how those issues reduce

the expressive power of the new operator if the weaving is done at run-time

(as it can be done in ESB leveraging the router/interceptor layer). Finally, I

discuss how the presented aspect technique is an important element of a

Rich Service approach.

SERVICE/DATA CONNECTOR

In the Rich Service pattern each service is connected to the

communication infrastructure via a Service/Data Connector (SDC). The SDC

encapsulates the internal structure and behavior of a Rich Service and exports

an interface that defines the communication patterns that the Rich Service

can engage in with the external world. To define the structure and the

behavior of such interfaces I can use MSCs. An SDC exports the internal roles

(services) that the external world can see as well as the interaction patterns

that the exposed roles are allowed to participate in.

Rich Services support two composition approaches. First, a RAS can act

as an orchestrator, meaning that it utilizes other RASs to provide the

65

composite service. Second, a RIS can intercept messages produced by RASs

and route them as input to other RASs to produce the composite result. These

two approaches support the Orchestration [53] and the Choreography [54]

composition models respectively.

All interactions between a Rich Service layer and services on other

layers happen via messages exchanged through the Service/Data Connector

(SDC). The SDC represents both the structural and the behavioral interface for

a service. I use MSCs to specify this interface. The structural elements are: the

names on the life lines (Roles), the messages names, direction, and their

parameter types. The behavioral element is the message sequence captured

Figure 15. Rich Service with SDC specifications

Messenger

Router/Interceptor

S
e

rv
ic

e
/D

a
ta

C
o

n
n

e
c

to
r

<<Rich Service>> RS1

RIS1

Service/Data

Connector

RAS2

Service/Data

Connector

RAS1

Service/Data

Connector

MSC1

Internal: R1, R2

External: R3

MSC1

Internal: R1

External: R2, R3

MSC1

Internal: R2

External: R1, R3

66

by the MSC. Therefore, I associate a set of MSCs with each SDC. To clearly

define the interface I also specify which role is internal to the interface and

which role is external.

Figure 15 shows a simple example of a Rich Service with the definition

of the SDC for two internal RASs and for the SDC to the external world. Each

SDC contains references to one or more MSCs that define the interactions

allowed through that SDC (in this case the reference of MSC1 from Figure 16).

Moreover, the SDC defines which role is internal to the SDC and which one is

external. Internal roles are the roles in the interaction that are played by the

Rich Service that owns the SDC, while external roles are played by some other

RASs. Figure 15 shows that in MSC1, RAS1 plays the role of R1, RAS2 plays role

R2, and role R3 is played by some Rich Service outside the scope of RS1.

The use of MSCs enables precise description of the communication

behavior of each RAS. For such interaction specifications, under the constraint

that MSCs are causal, the algorithm described in [45] can be leveraged to

Figure 16. Message Sequence Chart referred in the SDC specifications

R1 R2 R3

m1(p1)

m2(p2)

MSC1

67

generate one state machine for each role. This state machine accepts the

language defined by the complete set of message patterns that the role can

engage in. As a result, a set of state machines defines the interface of each

SDC, and therefore, the behavior at the interface of any RAS. The MSC of

Figure 16 has been created with the M2Code tool [50]. As discussed in the

previous chapter, the tool implements the state machine generation

algorithm and support MSCs. However, the tool has not been extended to

support the Aspect MSC notation and the Match operator introduced here.

The focus of this chapter is on how to model the SDC of RIS. The goal of

RIS is to leverage the flexible Router/Interceptor layer of Rich Services to

address the crosscutting concerns by modifying the message flow in the ESB.

RIS provides a centralized place to define such crosscutting concerns.

Because the system behavior is defined by modeling the interaction patterns

between services, the message routing and filtering of a RIS should be

specified by modeling how the communication patterns change. This goal is

very similar to the goal of Aspect-Oriented Modeling (AOM) techniques [2]. To

Figure 17. An example of an Aspect MSC

R3

aMSC

|R[1,2]

X |* as M

Encrypt

M

enc(M)

68

describe the routing capabilities of the RIS, the work presented here leverages

the rich literature on AOM. In particular, the language proposed is inspired by

Ref. [55].

I describe the SDC of a RIS by means of Aspect MSC. Aspect MSCs

represent an extension of normal MSCs where the message name and role

name of some elements is replaced by a special expression. I do not describe

in detail the syntax of Aspect MSC here instead I introduce them via an

example. In fact, the goal of this chapter is to explain how interaction models

and aspects can capture in general the Rich Service composition. In the next

chapter, I present in detail a more powerful textual language that capture

interactions and aspects and can provide a formalization of Rich Services.

Figure 17 contains an example of an Aspect MSC. Roles that start with

a “|” symbol represent template roles. The name is given as a regular

expression that has to match a role name in the normal MSC. Template

messages starts with “|” or with “X|”. In the first case, they simply identify the

message that matches the following regular expression. In the second case,

they indicate that the matched message must be removed during the

composition. A regular expression follows the “|” and optionally an “as”

followed by an identifier name. The identifier is then bound to the matched

message. The picture in Figure 17 for example, defines an Aspect MSC that

matches whenever Role R1 or R2 send a message to Role R3. The given

69

message is not sent to the role R3, but instead it is sent to the role Encrypt

which forwards it encrypted to role R3.

The SDC of a RIS is, therefore, specified by an Aspect MSC. Optionally, it is

possible to state in the RIS SDC to which MSCs in the Rich Service the RIS is

applied. In case I do not specify any MSC, the RIS applies to all interactions of

the Rich Service containing the RIS. To compose an Aspect MSC with normal

MSCs in the next section I define an operator that recognizes the new syntax

and uses it to weave the aspects.

MATCH, AN EXTENDED JOIN OPERATOR

Here I use the same semantic framework used to define MSCs as a

basis for defining the semantics of the composition operator for Aspect MSCs.

This is based on the notion of message streams [56] and predicates over such

streams. A comprehensive description of the MSC semantics I am referring to

can be found in [28].

Two core properties of aspect-oriented programming identified in

literature are quantification and obliviousness [57]. Quantification identifies on

what elements of the original program the modification is applied.

Obliviousness requires that the application programmer does not need to be

aware of the aspects that will be applied. The aspect composition operator

can be analyzed according to those two properties. I believe, in order to help

engineers better understand the resulting system during development and

debugging, it is important to define the aspect composition at the level of

70

MSCs instead of defining it on the state machines translation. This provides the

opportunity to view and debug all the resulting composed interactions at the

MSC level.

The Join operator in the current MSC language is a good candidate to

provide a basis for Aspect composition. Join is a parallel composition operator

that synchronizes on common messages. Common messages, in this case, are

defined as messages with the same name and where their sender and

receiver roles’ names also match. Join does not distinguish between messages

that are specified to match and messages that are intended to add

behavior. Everything that does match is synchronized and everything else

adds messages in parallel. The Join operator, therefore, composes two MSCs

and adds to the behavior specified in the second MSC to the one specified in

the first. It quantifies on the common messages and the developer of each

MSC does not need to be aware that it will be composed with another MSC.

Thus, Join is suitable for aspects composition. There are some differences

between what Aspect MSCs want to achieve and what Join does:

• An aspects specify which messages are in the model to execute the

matching and which messages are there to add behavior. An aspect

composition operator must understand that difference.

• The new behavior specified must be added only when there is a

match.

• The matching strategy is more complicated (regular expressions

instead of string equivalence).

71

• Messages can be specified by variables that are assigned by matching

messages.

• Join matches once, while Aspect should be applied every time the

given communication pattern is observed.

Given the similarity between the needs of Aspect MSCs for composition

and the current Join operator I introduce a new operator Match for Aspect

composition based on Join. Given an Aspect MSC () and a MSC (), I

informally define the semantics of Match with the following two cases: 1) If

there exists an instantiation, , of all patterns defined in such that

all messages defined as patterns (starting with “|” or “X|” matches to

messages in according to the Join match rule. Then, the semantics of

Match is the same of Join between the and except for the

following differences: the messages matching instantiated template

messages marked for deletion (starting with “X|”) are removed from the

resulting MSC. Messages defined by an identifier in the are replaced

with the message matching the definition. While Join matched only once, the

Match with is repeated for all occurrences of the template in the

original MSC. Therefore, once the has been applied for the first time,

the operator looks for more occurrences of the template captured by ,

possibly with a different instantiation

 , and applies the aspect again.

2) If no instantiation exists, the result of the composition is the original

 .

72

Figure 18 shows an example of the Match operator. It is the

composition of MSC1 from Figure 16 and aMSC from Figure 17. The only

template message in aMSC is the first one: “X|* as M”. The pattern specifies

every message from the source role to the destination role. Because the

source role is also a pattern, “|R[1,2]”, matching messages are all messages

from R1 to R3 and from R2 to R3. The only message in MSC1 that matches the

pattern is “m2(p2)” from R2 to R3. The composition in Figure 18, therefore, has

the matching message removed. Moreover, the composed MSC has the

additional role Encrypt, the message “m2(p2)” from R2 to Encrypt, and the

encrypted message from Encrypt to R3. As shown in the figure, the identifier

“M” has been replaced with the matching message, “m2(p2)”.

While this graphical notation is useful for specifying crosscutting

concerns and for understanding how to model RISs in general, to formally

define Match and analyze its properties a formal language defining aspects

Figure 18. Result of composing MSC1 and aMSC using the Match operator

R1 R2 R3

m1(p1)

m2(p2)

MSC1 + aMSC

Encrypt

enc(m2(p2))

73

and their composition is needed. In the later chapters I provide such a

language.

RIS AND CAUSALITY

In the MSC dialect I used in this chapter MSCs must be causal. A causal

MSC restricts the sequence of messages exchanged such that when a role

receive a message it can always locally decide the next step [51]. Causal

MSCs, therefore, ensure that the global communication patterns specified by

MSCs is the composition of the local communication patterns accepted by

the state machines generated for each role by our tools. To have a valid

composition, the result of Match must be causal. In general, there is no

limitation for the set of template messages (starting with “|” or “X|”) in an

Aspect MSC to be causal, as long as the resulting composition is causal.

Middleware such as ESBs enable an application to intercept messages

before they are received or sent by a service and perform arbitrary processing

of the messages. For example, a message can be discarded, routed to

another destination, or modified before being forwarded. It would be useful to

be able to leverage these capabilities to plug RISs in the system at run time. To

this end an implementation can insert a message interceptor at the interface

of each RAS. This interceptor can use a state machine obtained from an

Aspect MSC to observe the communication during run-time and decide if the

Aspect MSC is applicable. The definitions of Aspect MSC and Match given in

the previous section, however, is not suitable for run-time weaving using the

Router / Interceptor layers implemented by ESBs. In fact, this run time weaving

74

is possible only if the pattern that has to be matched is causal. In this case, the

monitor can observe messages locally exchanged by RASs. If the template

messages that are part of the Aspect MSC have to be identified at run time

by a local monitor, the monitor has to choose locally whether the observed

communication matches the aspect or not. This implies the local choice that

is guaranteed only if the pattern is represented by a causal MSC.

Another restriction to enable the weaving of the aspect at runtime is

that a causal dependence exists between detecting that the aspect applies

and modifying the communication pattern. In fact, if the weaving is applied

by statically analyzing the model, aspects can advise the MSC by inserting

behavior before the interaction that identify the match is executed. As an

example, consider the Aspect MSC of Figure 17. As identified while discussing

Figure 18, there is a match in MSC1 and it is on the message “m2(p2)” from R2

to R3. In this example, the changes to the communication pattern of MSC1

follow the detection of the match. However, I could easily add other

messages to aMSC before the template message. The composition operator,

once it has identified the match, can insert the additional messages in the

composed MSC before the matching message. However, in case of run time

weaving using the message routing and interception facilities of an ESB, there

would be a paradox. The aspect would need to send messages before

receiving the messages which allows it to identify the need to send them. The

following restrictions enable support for run time weaving of Aspect MSCs:

75

• Normal messages are allowed only after the last template message.

Therefore, the run-time monitor can determine that the aspect applies

before having to modify the behavior.

• Only one template removing a message is allowed, and it needs to be

after all the other template messages. This restriction could be relaxed

to let n messages to be removed (as long as they are at the end of the

sequence). However, this would introduce arbitrary delays in message

forwarding.

• Finally, the set of template messages in an Aspect MSC, once

instantiated, must form a causal MSC.

With the cited restrictions RISs that can be weaved in an ESB-based

application at run time. Therefore, it is possible to keep the crosscutting

concerns addressed by RIS separated from the business logic throughout the

development phases, from design and modeling phase to deployment. This

restricted version of the Aspect MSC language is, thus, suitable for capturing

the routing information that the ESB framework uses to transparently modify

the execution of deployed services.

SUMMARY

The Aspect MSC language presented in this chapter is a good

candidate for providing a general purpose language to model systems

according to the Rich Service pattern. Services can be composed describing

their interaction patterns. Moreover, crosscutting concerns implemented by

RIS can be injected using aspect composition. This approach, therefore,

76

provide an improvement over the techniques described for failure-

management in the previous chapters.

An aspect-oriented technique generalizes the failure management

service approaches presented in Chapters 2 and 3 if it has the following

characteristics. First it has to deal with time in a way that can be used to

define deadlines and, in general, timing properties. Second, it has to be

grounded in a formal model, which can be leveraged to synthetize code and

verification models.

Next chapter introduces an orchestration language that fulfills the

properties mentioned above. This language, called Orca, supports the

orchestration of services, including sequential and parallel composition, has

facilities for synchronizing parallel services, and supports composition of

aspects.

ACKNOWLEDGEMENT

This chapter, in part, is a reprint of material as appeared V. Ermagan, I.

H. Krüger, and M. Menarini, “Aspect Oriented Modeling Approach to Define

Routing in Enterprise Service Bus Architectures,” in MiSE '08: Proceedings of the

2008 international workshop on Models in software engineering, Leipzig,

Germany. New York, NY, USA: ACM, May 2008, pp. 15-20. The dissertation

author was the primary investigator and author of the text used in this chapter.

This work is based on an earlier work: Aspect Oriented Modeling

Approach to Define Routing in Enterprise Service Bus Architectures, in

77

Proceedings of the 2008 international workshop on Models in software

engineering (MiSE '08), © ACM, 2008.

http://doi.acm.org/10.1145/1370731.1370735

78

CHAPTER 5

ORCA: A LANGUAGE FOR MODELING CROSSCUTTING CONCERNS

In the previous chapters I discussed different case studies involving

integration of complex software systems. In particular, I identified as a key

issue the composition of crosscutting concerns and I introduced model-based

techniques to address such composition.

In this chapter I propose a simple algebra to capture interactions and

address the composition of crosscutting concerns: I call it Orca. Orca extends

the Orc language proposed by Misra and Cook [5]. The extension addresses

composition of crosscutting concerns. The need for this work arises from the

observation that providing a usable service ADL requires the use of graphical

modeling languages and the introduction of multiple operators to cope with

the different needs of different application. Providing a direct formalization of

such language can be challenging. In contrast Orc is very concise (it has only

four operators) and the extension I propose here adds just one composition

operator for aspects. This simplified the semantic model for the language.

As demonstrated in the previous chapters, Interaction models can be

leveraged for different purpose in the development process and used to

create various types of artifacts. For example, in this thesis, I used these

models for code generation: I generated both implementation of interaction

monitors and model checking code to verify formal properties. In other work

[58] I leveraged interaction models for instrumenting applications and perform

79

run time verification of various properties. Orca can capture all interaction

patterns I used in my case studies. Furthermore, it is also possible to map it to

graphical notations. Therefore, it is a good candidate for the creation of an

ADL that can address interaction models in different domains.

INTRODUCTION TO ORC

The power of Orc lies in its parsimony and its clearly defined semantics.

For this reason, Orc represents an attractive platform to extend with an aspect

operator. The result of adding aspect composition to Orc is Orca.

The complete Orc language consists of two parts: a workflow language

(formed by the Orc workflow operators) and the Cor functional language. The

complete language name is Orc/Cor. This combination allows programmers

to create complete workflow-oriented applications. Consistent with [59], for

the purposes of defining Orca, I consider only the workflow part of the

language and refer to it as Orc. The extension of Orca to Orc/Cor (that is a

possible solution for creating complete RIS definitions) is future research.

Figure 19 presents a brief definition of the Orc syntax. Ref. [60] presents

a complete definition of Orc; including a formal operational and denotational

semantics. Orc programs are made of a goal expression and a set of

𝑓 𝑔 𝑞 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑝̄ |𝐸 𝑝̄ |𝑓 𝑥 𝑔|𝑓 𝑔|𝑓 𝑥 𝑔|𝑓 𝑔

𝑝 𝑐𝑡𝑢𝑎𝑙𝑠 𝑥|𝑚

 𝑝̄ 𝑖𝑡𝑒𝑠 𝑝̄ |𝑋 𝑝̄

𝐸 𝑝̄ 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠 𝐸 𝑥̅ 𝑒

Figure 19. Orca abstract syntax BNF

80

expression definitions. Orc expressions define the operations the Orc program

performs. The execution of an Orc program corresponds to the evaluation of

the goal expression and of all the other expressions referenced by the goal.

The basic building blocks of Orc expressions are sites and operators.

Sites are primitive operations that accept a list of values as parameters,

execute some computation, and can return a result. In Orc, a site call can

return at most one value. The return of a call is a publication. A site can

publish either a tuple value (including a simple scalar) or a signal, which

represent a publication without content. An extension of the Orc language

introduces a new return type (halt) and operator (otherwise). With this

extension, a site can return a value, a signal, or halt. When a site halts, it

reports that it will not return a value. Operators define dependencies between

different site calls.

The semantics of Orc defines a set of events and the dependencies

between them. Events are site calls, site publications and binding of values to

variables. I have already described sites. The site invocation is represented by

a site call event. The event representing a site terminating its processing and

returning a value is the site publication event. Once a value is published, or if it

is defined directly in an Orc expression, it can be bound to a variable and

used in the remaining of the Orc expression evaluation. This is represented by

a binding event.

81

A key aspect of Orc is that its operators establish dependencies

between events. For example the operator in the expression 𝑓 𝑔

establishes a relation between the publication event of 𝑓 and the call event

of 𝑔. Figure 20 depicts this dependency. The return of the call to site 𝑓 (publish

event) depends on the event representing the call to 𝑓. The event call to 𝑔

depends on the publication of site 𝑓 because of the Orc operator .

A call to a site can execute only if all call parameters have value. If an

Orc expression refers to a site with a parameter list containing variables, Orc

delays the execution of the call until all variables are bound to values. The

binding of variables to values can happen in two ways: either a value is

assigned to a parameter in an expression call, or the variable is bound to the

value of a site publication. An Orc expression can call a site in two ways: it

can explicitly name the site (i.e., given a site named :), or it can use a

variable that gets bound to the site name in the execution the expression (i.e.,

given the variable named 𝑋: 𝑋).

Orc provides a number of predefined sites, including , , , and

 . never publishes anything, and can be used to terminate the

execution of an expression. 𝑥 publishes a signal if 𝑥 is true, and publishes

Figure 20. Dependency relations introduced by Orc operators

Call f Publish f Call g
Dependency

introduced by

call semantics

Dependency

introduced by

>> operator

82

nothing if 𝑥 is false. publishes a tuple whose members are the

values of call parameters (〈 〉). 𝑥 publishes a signal after 𝑥

milliseconds. Other sites, including user-defined sites, may perform any

operation on the parameters: including transforming parameters, retrieving or

persisting results, interfacing with other systems, and performing calculations.

The Orc BNF syntax in Figure 19 has 4 sets. The set 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 contains

all proper Orca expressions, the set 𝑐𝑡𝑢𝑎𝑙𝑠 contains the actual parameters of

calls, the set 𝑖𝑡𝑒𝑠 contains all valid sites, and the set 𝐷𝑒 𝑛𝑖𝑡𝑖𝑜𝑛𝑠 contains the

definitions of named Orc expressions. Actual parameters are the entities used

in sites and expression calls. They can be either variables (𝑥) or values (𝑚). Site

calls have two forms. They use the site name (𝑝̄) or a variable that is

assigned to the site name (𝑋 𝑝̄). The parameters (𝑝̄) used in site and

expression calls are tuples of 𝑐𝑡𝑢𝑎𝑙𝑠. The syntax of Orc also specifies

expression definitions. A definition has a name and a set of formal parameters

on the left of the symbol, and an expression on the right. Expressions are site

calls, calls to other expressions (named in a definition), or combinations of

other expressions joined by composition operators.

Orc defines four composition operators. 𝑓 𝑥 𝑔 is serial composition.

Values published by expression 𝑓 are assigned to the variable 𝑥, and the value

assigned to 𝑥 is available in expression 𝑔. A separate copy of 𝑔 is executed for

each value published by 𝑓. If 𝑓 does not publish a result, 𝑥 is assigned no

value, and 𝑔 is not executed. Serial composition is right-associative. Note that

𝑓 𝑔 is a convenience notation where 𝑓 publishes a value which is not used

83

in the rest of the expression. Notice, however, that a new instance of 𝑔 is

executed for each publication of 𝑓.

𝑓 𝑔 is symmetric parallel composition. Expression 𝑓 is executed in

parallel with expression 𝑔. If both 𝑓 and 𝑔 contain only site calls, the parallel

composition can publish 0, 1, or 2 results; otherwise, it can publish a stream of

results in the time order they are published by 𝑓 and 𝑔. If 𝑓 and 𝑔 publish no

results, the parallel composition publishes no results, too. Parallel composition is

fully associative.

𝑔 𝑥 𝑓 is asymmetric parallel composition. Expression 𝑓 is executed in

parallel with 𝑔. When 𝑓 publishes a value, it is assigned to 𝑥, and 𝑓 stops its

execution. If any site call in 𝑔 depends on the value of 𝑥, when one of such

calls is reached, the call is delayed until 𝑥 has a value. If 𝑥 is never assigned a

value (because 𝑓 never publishes one), the calls in 𝑔 that depends on 𝑥 are

never executed.

𝑓 𝑔 is otherwise composition. The new operator otherwise (),

introduced together with the halt return value, runs an alternative expression 𝑔

if the primary expression 𝑓 halts without returning any value. An expression

halts when all sites called halted and no more sites that can be called (i.e.,

they depend of variables not assigned to values).

Below I give some simple examples inspired by the copious examples in

[5]:

84

Example 1

 𝑥 𝑒𝑚𝑎𝑖𝑙 𝑥 news news.com

First calls a news feed site to get a single news story, then passes

the news returned to an email site that sends it to a particular mailbox. If no

story is available, none is e-mailed.

Example 2

 𝑥 𝑒𝑚𝑎𝑖𝑙 𝑥 news news.com

This expression calls both a and news feed site to get a single

story from each, then passes each story (if any are available) to the email site.

Example 3

(𝑙𝑒𝑡 𝑥 𝑦 𝑥 𝑦) 𝑐 𝑏

(𝑒𝑚𝑎𝑖𝑙 𝑐 news news.com 𝑒𝑚𝑎𝑖𝑙 𝑏 news news.com)

This is a slightly more complex example. This expression calls a

news feed site and publishes the story to variable 𝑥. Simultaneously, calls a

 news feed site and publishes the story to a variable y. The site waits for

both 𝑥 and 𝑦 to have values before publishing a tuple containing both stories.

The tuple is bound to 𝑐 𝑏 and passed to separate copies of the 𝑒𝑚𝑎𝑖𝑙 site,

one mails the story (𝑐), and another mails the story (𝑏). This example

demonstrates three composition operators and binding of variables. The

compound asymmetric parallel composition is an example of joining two

85

separately executing expressions; a convenience notation for a join would be

 .

Example 4

𝑙𝑒𝑡 𝑥 𝑥 ((𝑡𝑖𝑚𝑒𝑟 𝑙𝑒𝑡 one))

This example introduces the use of a timeout. The expression calls a

 news feed site and publishes a story if one is available within one second;

otherwise “ one” is published.

Example 5

 𝑒 𝑠 𝑛 (𝑙𝑒𝑡 𝑥 𝑥 (𝑛 (𝑡𝑖𝑚𝑒𝑟 𝑙𝑒𝑡 𝑜𝑛𝑒)))

 𝑦 𝑒𝑚𝑎𝑖𝑙 𝑦 news news.com 𝑒 𝑠 𝑛

 𝑒 𝑠

This is a more complex expression that uses timeouts. The expression

defines a 𝑒 𝑠 function that fetches a story from a news feed, timing out after

one second. Either way, it sends the result as an e-mail, and repeats the

process. To call the 𝑒 𝑠 function we use a news site name as parameter (i.e.,

).

Example 6

(𝑖𝑓 𝑓𝑙𝑎𝑔 𝑒 𝑠) (𝑖𝑓 𝑓𝑙𝑎𝑔 𝑒 𝑠)

This expression creates a parallel execution consisting of two

expressions. If the flag value is true, the first expression starts a news feed;

86

otherwise, it does nothing. If the flag is false, the second expression starts a

 news feed; otherwise, it does nothing.

ORCHESTRATION WITH ASPECTS

Orc is a powerful and elegant language to describe interactions;

however, it is missing an important piece needed to define Rich Services:

addressing crosscutting concerns. To describe a RIS in Orc an expression

describing the orchestration of RAS must be changed to also contain the

services required by the RIS. Orca expands the capability of Orc to address

the injection of crosscutting concerns in exiting expressions without modifying

them.

My goal in creating Orca has been to address the injection of

additional computation (or the removal of it) in the middle of an expression.

This enables users to keep their crosscutting concerns specified in a modular

way as required by the rich service pattern. Orca can be applied beyond

modeling rich services. In fact, modularizing computation that cross-cut a

workflow has application in other fields such as workflow-evolution and

software policy management just to name two.

INTRODUCTION TO ORCA

Orca introduces two new elements to the Orc language. The first

element is the concept of expression interface. The second element is the

aspect composition operator.

87

An expression interface extends the expression definition feature of Orc

by decoupling the expression implementation from its definition. Expression

interfaces are a key element for aspect composition. In fact, aspect-oriented

techniques generally can be used to modify the behavior of an application

only on a given set of points in the base code (called joinpoint). Each aspect

provides an expression that selects a subset of such joinpoints where the

aspect must be applied (called pointcut). The role of an interface for aspects

it is then to limit how a given expression can be modified by aspects.

An aspect weaver uses interfaces to identify what joinpoints in the

pointcut can be advised with the given aspect. This is a key requirement for

model based development. In fact, during the development of complex

system models inconsistencies arise and a proper modeling language must

help the developer in identifying and resolving such inconsistencies. I discuss

the consistency issues in model based development in the next chapter.

The aspect composition operator must identify the set of joinpoint

which will be modified in the original expression. To this end the aspect

composition operator in Orca has two parts: a pointcut and advice. The

poincut is an expression that identifies joinpoints. It must identify the

expressions it applies to and which elements in the expression. The advice is

an Orca expression that can defines interaction patterns between the

joinpoints in the pointcut and other sites.

88

In my approach I chose to use variables in expression definitions as

joinpoints. In fact, Orc variables establish communication between the output

of and expression and the input of other expressions. They are the perfect

point to inject a modification of the interaction pattern.

Let’s consider the Orc expression 𝑖𝑡𝑒 𝑥 𝑖𝑡𝑒 𝑥 𝑦 𝑖𝑡𝑒 𝑦 .

Figure 21 shows a representation of how variables are used in the expression.

When 𝑖𝑡𝑒 publishes a value, 𝑖𝑡𝑒 is called (spawning a new instance of 𝑖𝑡𝑒

for each published value). The input of 𝑖𝑡𝑒 call is the value published by

 𝑖𝑡𝑒 . The same thing happens for values published by 𝑖𝑡𝑒 and consumed by

 𝑖𝑡𝑒 . The figure depicts that the variables can be considered identifying a

communication channel between two calls. The difference between a

variable and a traditional communication channel is that there are as many

different instances 𝑖𝑡𝑒 and 𝑖𝑡𝑒 for as many values are published by the

preceding sites.

A slightly more complex example expression is the following: 𝑖𝑡𝑒

 𝑖𝑡𝑒 𝑖𝑡𝑒 . Figure 22 depicts the communication pattern of this

expression. In this case 𝑖𝑡𝑒 receives the input of two variables. The control

structure is the same of the previous example: a new instance of 𝑖𝑡𝑒 is run

for each value published by 𝑖𝑡𝑒 and similarly a new 𝑖𝑡𝑒 is intantiated for

Figure 21. Example of variable used in passing messages

Site1 Site2 Site3yx

89

each publication of 𝑖𝑡𝑒 . The communication between the variable and

 𝑖𝑡𝑒 is now different. In fact, each value published by 𝑖𝑡𝑒 must be passed

not only to one 𝑖𝑡𝑒 call, but also to all calls executed by a given instance of

 𝑖𝑡𝑒 .

Figure 22. Example of variables used by multiple calls

From the examples in the previous paragraphs, it can be can inferred

that variables represent multiple communication channels even an infinite

number of them. Each such channel transfer a single value output by a

process (publishing site) to the input channel of an unknown number of

instances (all sites called by the expression that use the variable as

parameters in the call).

In Orca I interpret each variable as a representative for a class of

publish/subscribe channels. For each of such channels only one site or

expression publishes one value to the channel. All sites and expressions using

the variable in their call are subscribers to the channel. Once a value I

published to the variable, the variable sends this value to all subscribers.

With this publish/subscribe view each variable can be split in an input

part that receives the value published to the variable, and an output part that

publish the value to all subscribers. Orca joinpoint is defined between the

SiteA SiteB SiteCj k

90

input and output part of each variable. Therefore, it is possible to intercept all

messages being published to a variable and add additional behavior to

them. It is also possible to forward messages to the output part of the variable

and tap into the interaction following the publication of such variable.

Figure 23 depicts how a variable can act as a joinpoint in Orca. Each

variable has an input part, where the value published by some site is

published, and an output part, where the value is pushed out of the variable

to all its subscribers. An aspect is able to weave an arbitrary expression in

between the input and the output of a variable. Thus, the expression can

modify the input value before passing it out. However, being an arbitrary

expression, an aspect can also ignore the input value or send values to the

output even if no input is received. This makes the Orca definition of aspect

very powerful.

EXPRESSION INTERFACES

The concept of interface has been introduced, and its usefulness

proved, in many modern programming languages. Interfaces are a key

concept to modularize code and foster reuse. Because one goal of Orca is to

Figure 23. Joinpoints and aspects in Orca

AspectJoinpoint

k

Input Output

k

Input

k

Output

Expr

91

simplify the composition of Orc expressions the first contribution of Orca is an

expression interface. An expression interface has two parts. The first one is the

interface return signature and the second part is the call signature. By

introducing interfaces, Orca forces developers to explicitly define the data

types that are exchanged. In an Orc expression definition types are implicitly

defined by the sites that use the information or return it. To abstract from the

implementation details, interfaces do not depend on sites. Therefore, the

information on input and output types must be explicitly provided.

The second line of Figure 24 shows the definition of interfaces in Orca.

An interface has a return signature (represented by 𝑡 in the figure), a call

signature (𝑥 𝑡̅̅ ̅̅ in the figure), and a pointcut signature ([𝑡̅̅ ̅̅] in the figure).

The return signature contains a quantifier and a type definition 𝑡. is

a Boolean expression that defines the acceptable values of the natural

number 𝑞 of values published by the expression interface. Moreover, 𝑡

represents the type of values published by the interface.

The call signature is similar to a signature in an expression definition. It

contains the interface name followed by a comma separated list of

parameter names (variables 𝑥). The main difference is that for each variable

𝑓 𝑔 𝑞 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

 𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 𝑡 𝑥 𝑡̅̅ ̅̅ [𝑡̅̅ ̅̅]

𝐸 𝑝̄ 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠 𝐸 𝑥̅ [̅] 𝑒

 𝑠𝑝𝑒𝑐𝑡𝑠 𝐸 𝑝̄ [𝑚̄]| 𝑚| 𝑚 𝑝

Figure 24. Orca Extensions to Orc, abstract syntax BNF

92

after the column we have a type definition 𝑡.

Finally the pointcut signature is optional and contains a comma

separated list of tuples. Each of such tuple contains a variable name and a

type. The variable name is used to specify which variable used by an

expression implementing the interface can be advised. The type element

specifies the type that can be passed to the variable.

I define Orca types using Java types. Therefore, valid interfaces are for

example: 𝑞 𝑏 𝑒𝑐𝑡 𝑎𝑝 𝑒𝑦 𝑡𝑟𝑖𝑛𝑔 𝑎𝑙𝑢𝑒 𝑏 𝑒𝑐𝑡 , which defines a IMap

interface which accepts a variable key of type String and a variable value of

type Object and publishes exactly one value of type Object, and 𝑞

 𝑛𝑢𝑙𝑙 𝑒𝑡𝑟𝑜𝑛𝑜𝑚𝑒 , which defines an IMetronome interface with no

parameters and publishes an infinite number of signals (null maps nicely to a

value for an Orc signal).

ASPECT COMPOSITION OPERATOR

The aspect composition operator extends Orc by supporting injecting

behavior in an existing Orc program. Most of the aspect oriented languages

support this by breaking the interfaces of the underlying languages. A set of

join points are selected by means of a pointcut definition and they are

modified by means of advices. However, the programmer of the base code

does not have much control on what join point can be selected and how

they can be modified. Orca takes a different approach. By leveraging the

expression interface defined in the previous section, Orca clearly defines the

93

input and output requirements for each join point. An Orca aspect can then

advise the expression implementing an interface but it is constrained to

respect the input and output requirements of each join point in the pointcut.

This gives the programmer of the base code the opportunity to clearly define

where the program can be modified and what it expects to send and receive

at any given point.

Line 4 of Figure 24 presents the syntax used for aspects in Orca. An

aspect is a normal Orc expression which calls expressions that have a pointcut

signature defined for their interfaces. The main difference from a normal call is

that for each tuple in the pointcut signature a name is required. The pointcut

matches each name to the corresponding variable inside the called

expression. Using these names with the opertator it is then possible to

receive or send values from the pointcut variables. The syntax for receiving or

sending values is similar to a site call in Orc. 𝑚, where 𝑚 is the name used in

the pointcut, publishes the values received by the variable. 𝑚 𝑝 , on the

other hand, does not publish any value but send each value passed to the

parameter p in the site call to the output of the pointcut variable.

Example 7

 𝑒 𝑠 𝑒 𝑠 𝑒𝑒 𝑛 [𝑦] (𝑙𝑒𝑡 𝑥 𝑥 (𝑛 (𝑡𝑖𝑚𝑒𝑟 𝑙𝑒𝑡 𝑜𝑛𝑒)))

 𝑦 𝑒𝑚𝑎𝑖𝑙 𝑦 news news.com 𝑒 𝑠 𝑛

 𝑞 𝑛𝑢𝑙𝑙 𝑒 𝑠 𝑒𝑒 𝑓𝑒𝑒 𝑖𝑡𝑒 [𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑟𝑖𝑛𝑔]

 𝑖𝑙𝑡𝑒𝑟 𝑒 𝑠 𝑛 𝑒 𝑠 𝑛 [𝑚] 𝑚 𝑚𝑠𝑔 𝑖𝑙𝑡𝑒𝑟 𝑚𝑠𝑔 𝑚𝑠𝑔 𝑚 𝑚𝑠𝑔

 𝑖𝑙𝑡𝑒𝑟 𝑒 𝑠

94

This example is an evolution of Example 5. It demonstrates the use of

aspects in Orca. In this example I changed the definition of the 𝑒 𝑠

expression to include the 𝑒 𝑠 𝑒𝑒 interface. 𝑒 𝑠 𝑒𝑒 has no return value

(meaning that once executed it calls itself forever without returning). It also

defines one 𝑖𝑡𝑒 parameter which represents the news feed site called inside

the 𝑒 𝑠 expression. Finally, the interface defines a pointcut specification.

The 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 parameter in the interface pointcut is of type 𝑡𝑟𝑖𝑛𝑔. This means

that all messages received from the pointcut variable or sent to it must be

strings.

The expression 𝑖𝑙𝑡𝑒𝑟 𝑒 𝑠 𝑛 applies an aspect to 𝑒 𝑠. This example

show how nicely the aspect syntax in Orca merges with the classic Orc

language. 𝑚 is a site that publishes the values published to the message

variable inside the base code (𝑦 in 𝑒 𝑠). 𝑚 𝑚𝑠𝑔 is a site that publishes

the value of 𝑚𝑠𝑔 to the message variable in the base code (𝑦 in 𝑒 𝑠). Using

aspects enables the expression 𝑖𝑙𝑡𝑒𝑟 𝑒 𝑠 to modify the message that is

emailed inside 𝑒 𝑠.

A GRAPHICAL MODEL OF ORCA EXPRESSIONS

In this section I present graphical models of Orca expressions. These

models are generated by a tool that supports deigning Orca expressions in

graphical form. The tool is also able to transform the model and render it in

textual form as an Orca expression.

95

In its graphical form, an Orca expression definition is represented by a

box; the name of the expression in the top left corner of the box while the

parameters are represented by a list of smaller boxes under the expression

name. Figure 25 is an example of an expression definition. In this example, the

expression name is Exp1 and it has only one parameter called P1.

Figure 25. Example of Orc >> in graphical form

Each call in the graphical representation of an expression definition is a

rounded box; on the top left part of the box there is the name of the called

site or expression. Each call parameter is represented by a small rectangle on

the box border. The first of such rectangles (blue) is used to represent

execution causality (used in expressions such as << and >>), the other

rectangles (red) have the parameter name written next to them.

Variables are represented by a circle. The variable name is written

inside the circle. In Orc variables are used with two operators << and >>. The

type of operator used is represented in the graphical language as an arrow

inside the variable circle. If the arrow is solid, it means that the operator used

in Orc is >>, otherwise the operator is <<.

Figure 25 shows an example of using the >> operator in the graphical

language. The equivalent Orc expression is 𝐸𝑥𝑝 𝑙𝑒𝑡 𝑥 𝑖𝑡𝑒 .

96

In the example, the let box has a val parameter which is assigned the P1

expression parameter. The variable is called 𝑥 and the solid line indicates the

use of the >> operator. Finally the publication of the variable start an instance

of the 𝑖𝑡𝑒 call, however, 𝑖𝑡𝑒 does not accept any parameter.

Figure 26. Example of Orc << in graphical form

Figure 26 show an example using the << operator. The expression

represented in the figure is the following: 𝐸𝑥𝑝 𝑙𝑒𝑡 𝑦 𝑦 𝑖𝑡𝑒 . In this

case, the expression has no parameter defined. The 𝑙𝑒𝑡 site is connected to

the variable 𝑦 with 2 arrows. One is connected to the parameter 𝑎𝑙 and

indicate that the value of 𝑦 must be used in the call (equivalent to the Orc

syntax 𝑙𝑒𝑡 𝑦). The second arrow connects 𝑦 to the blue rectangle and

indicates dependency (i.e., the call to 𝑙𝑒𝑡 depends on the first value being

published to 𝑦, in Orc 𝑙𝑒𝑡 𝑦).

Figure 27. Example of Orc | in graphical form

Figure 27 shows the parallel operator of Orc being rendered in

graphical form. In the graphic notation the dependency is explicitly modeled

97

by arrows. Arrows from a call box to a variable indicates that the call must

happen before any other call using the variable (arrows from the variable to

the parameter rectangles in call boxes) and before any call depending on

the variable (blue rectangle in the call boxes). For example, Figure 27

represents the following expression: 𝐸𝑥𝑝 𝑙𝑒𝑡 | 𝑖𝑡𝑒 . 𝑙𝑒𝑡 and 𝑖𝑡𝑒

execute in parallel because there is no dependency defined between them.

Finally, Figure 28 shows how pointcut interfaces are rendered in the

graphical representation of Orca. The pictures show an interface definition

with two pointcut variables MainService and SecondaryService (green boxes

in the figure). These definitions are connected to 𝑥 and 𝑦 respectively. The

association of an interface pointcut definition to a variable in the definition is

represented by splitting the arrow inside the variable in 2 and connecting

these arrows to the pointcut parameter.

Figure 28. Orca pointcut interfaces in graphical form

The Orca expression definition corresponding to Figure 28 is the

following: 𝐸𝑥𝑝 [𝑥 𝑦] 𝑙𝑒𝑡 𝑦 𝑦 𝑖𝑡𝑒 𝑥 𝐸𝑥𝑝 𝑒𝑠𝑡 . The

graphical too does not show the types of all variables in the interface nor the

98

return quantifier and type. Types are modeled as attributes of the boxes and

now shown in the picture. The return quantifier is still not supported by the tool

and left for future work.

ASPECT SEMANTICS

Orca introduces two changes to Orc: interfaces (with types and return

quantifier) and aspect sites (the 𝑛𝑎𝑚𝑒 used to define the aspects). Interfaces

do not change the semantics of the language. They make explicit what types

can be produced and consumed by sites. In Orc this information is implicit in

the site definition. Also the quantifier does not change the semantics. It is just

information that helps the programmer in composing services by knowing how

many values they will publish. In Orc this information if implicit, still it can be

obtained reading the description of sites.

The only part of an Orca interface that has the potential to change the

semantics of Orc is the pointcut definition. To keep the semantics of Orca as

close as possible the one of Orc, pointcut just identify variables that can be

advised by aspects. However, if an expression is not called in the context of

an aspect Orca defines the behavior of the expression call to be identical to

Orc’s. An expression is considered to be called in the context of an aspect if

parameters are defined for the pointcuts. For example, considering the

definition of the expression 𝑒 𝑠 from Example 7 above, if the expression is

called as 𝑒 𝑠 𝑛 the semantics is the same of Orc, if it is called as 𝑒 𝑠 𝑛 [𝑚]

it is considered to be in the context of an aspect and the semantics changes.

99

I give an informal description of how aspects work using the example in

Figure 28. The figure shows that the communication inside the 2 variables, 𝑥

and 𝑦, of expression 𝐸𝑥𝑝 is split in 2. For example, the value published by the

site 𝑖𝑡𝑒 is sent to the pointcut variable 𝑎𝑖𝑛 𝑒𝑟 𝑖𝑐𝑒. The input of the

 𝑎𝑖𝑛 𝑒𝑟 𝑖𝑐𝑒 variable is then sent to the original output of the 𝑥 variable. When

𝐸𝑥𝑝 is used in an aspect, i.e. an expression that calls it assigning a name to

the pointcut variables, messages are routed through the pointcut variable.

For example, an aspect that uses 𝐸𝑥𝑝 would look like:

𝐸𝑥𝑝 𝑡 𝑡 [] | 𝑥 𝑥 | 𝑚𝑎𝑥 . This is a regular

Orc expression, however, it uses pointcuts (in square brackets) and the aspect

operator . The meaning of 𝑠𝑝𝑒𝑐𝑡 is the following. It calls the expression 𝐸𝑥𝑝

regularly, however, it exposes 𝐸𝑥𝑝 internal variables, 𝑥 and 𝑦. These variables

can be intercepted using the aspect operator and are named and

respectively. When 𝑖𝑡𝑒 called inside 𝐸𝑥𝑝 publishes a value, instead of being

stored in variable 𝑥 and passed on to execute the internal call to 𝐸𝑥𝑝 , the

value is captured and re-published by . From the value is published

to 𝑠𝑝𝑒𝑐𝑡’s 𝑥 variable. Consequently, 𝑥 is called. 𝑥 publishes the

value of 𝑥 in Aspect to the 𝑥 variable in 𝐸𝑥𝑝 . In this example 𝑥 value is just

intercepted and passed back without modification. Different is the situation

for 𝐸𝑥𝑝 variable 𝑦. In this case the publication to the variable is captured by

 . However, its value is forgotten (by using instead of 𝑦) and for each

publication to the variable the value is replaced with the string “max”.

100

MATCH OPERATOR IN ORCA

In Chapter 4 I introduced Aspect MSCs, an aspect-oriented modeling

technique for describing interactions and crosscutting concerns. The

approach is based on MSCs and uses an operator called Match for aspect

composition. After introducing Orca I can present a mapping between the

Aspect MSC models an Orca expression and show how the Mach operator

functionality can be implemented in Orca.

The first step is to map MSC diagrams to Orc expressions. MSCs have

roles and messages while Orca orchestrates site calls via variables. Therefore,

Orca uses sites to represent roles and variables to represent messages. Each

message sent to a particular role is a call to the corresponding site having the

variable containing the message as call parameter. With this mapping the

MSC1 from Figure 16 can be represented in Orca as:

𝑙𝑒𝑡 𝑚 𝑝 𝑥 𝑥 𝑙𝑒𝑡 𝑚 𝑝 𝑦 𝑦 . The call to without

parameters is introduced to specify that the first message is produced by .

The 𝑙𝑒𝑡 call is used to publish the messages sent by each role into the proper

variables.

To represent an Aspect MSC Orca uses interfaces and aspect

operators. For example the aMSC in Figure 17 can be represented using the

interface 𝑎 []. In this interface I have not included the types because

the aMSC did not support them. Implementing this interface in , its

signature becomes: 𝑎 [𝑦]. And the aspect becomes: 𝑎

 [] | 𝑚 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑚 𝑒𝑚 𝑒𝑚 .

101

While the result of the translation proposed returns an interaction

equivalent to the composition with the Match operator. There is an important

difference. In Orca I chose to force the explicit use of interfaces to define

pointcuts. This means that a regular expression approach that such as the one

proposed in Aspect MSCs is impossible. In Aspect MSC an aspect includes a

pointcut expression which automatically extracts joinpoints from other MSCs.

On the other hand, Orca requires that each expression specifies the pointcut

by implementing an interface. This architectural choice is a tradeoff. On the

one hand Orca requires more manual work to add and modify pointcuts; on

the other hand the author of an expression is in control to how the expression

can be modified. By choosing this approach I traded convenience for model

maintainability.

SUMMARY

This chapter introduced the Orca orchestration language. Orca can

model both the orchestration of services (by means of expressions) and

crosscutting concerns (by means aspects). Orca can also encode MSCs and

Aspect MSC. Thus, it is a perfect candidate for modeling systems according to

the Rich Service pattern.

While a prototypical tool exists to model Orca expressions and

manipulate them in graphical form, a complete tool chain is needed to

support all development activities. In particular, Orca needs a run time

execution environment similar to the tools available for Orc. Additional future

102

work includes porting the tools developed for MSCs and part of the M2Code

tool chain to Orca.

103

CHAPTER 6

MANAGING MODEL CONSISTENCY

Systems models are always decomposed according to some dominant

concern. However, software systems always need to address multiple

concerns. Some concerns are then bound to cross-cut the hierarchies

according to which the system has been decomposed. This fact, known as

the tyranny of the dominant decomposition [61], is addressed in the rich

services pattern using infrastructure services. I introduced examples of aspect-

oriented modeling languages that help in specifying RIS and address

crosscutting concerns. In particular, Chapter 5 presents Orca, an orchestration

language that supports specification of crosscutting concerns as aspects.

However, to fulfill my vision of an end-to-end model-based approach, that

supports the integration of large scale software systems, two issues stand still in

the way.

The first issue is managing the consistency of the models used in my

approach. In fact, model-based development of large systems requires

composing multiple documents, each capturing part of the system, in a

coherent model. Large systems imply that some of the services, and their

models, are developed by different organizations. This is the case, for

example, in the automotive industry, where OEMs and their multiple suppliers

develop different parts of the car. A key requirement for this type of

104

development is to manage inconsistencies and contradictions that always

arise when systems are developed by different teams.

The second issue originates from the fact that different languages are

used to model different aspects of a system. This is important not only because

my approach targets diverse domains, such as enterprise and embedded

domains; but also because, even in the same domain, different teams of

domain experts are trained in using different languages and notations to

model their parts of the system. Thus, a viable approach for large systems in

different domains must be able to cope with the diverse notations already

existing. The problem of addressing consistency is then even more challenging

because it has to assess consistency of different views of the same system that

use different representations.

While in this thesis I focus on interaction models, which are key to the

development of service-oriented systems, I am well aware that they are only a

part of the whole picture. In any real system there is the need for other types

of models. For example, in Chapter 3 I use a failure hypothesis model that

models how services can fail in relation to their deployment on different

hardware devices.

In this chapter I address these two remaining issues. I present a solution

for the issue of managing consistency across multiple languages using the

UML that is comprise of a rich set of graphical languages. In particular, I focus

on embedded systems models by using Modeling and Analysis of Real-Time

105

and Embedded Systems (MARTE) a profile of the UML for embedded systems.

My solution uses and approach that I called query and constraints [62], which

supports mapping different graphical languages to a common kernel close to

the implementation domain. I can use a similar approach for mapping

different interaction models to Orca. As a case study I use the Bay Area Rapid

Transit System (BART) system. This case study nicely combines elements that

are typical of embedded and enterprise systems.

In this chapter I discuss the topic of model consistency as a separate

topic from the work presented in previous chapters. Instead of using Orca and

MSCs as languages for modeling systems according to the rich service

pattern, I present the consistency work using a UML case study. As previously

mentioned, this separate contribution is important for supporting model base

development in real development scenarios. While the abstract model used

as target for integration in this chapter could supports systems modeled in

Orca, the necessary integration with the previous work is left for future work.

MULTI-VIEW MODELS AND CONSISTENCY CHALLENGES

When using multiple modeling perspectives, the central question from

an engineering point of view is this: is the modeled system realizable? Oddly,

the UML is an example of a modeling language that while being used in real

development projects, does not provide a complete formal semantics. This

fact alone leaves issues such as model consistency unsolved. In discussing the

UML consistency problem in detail, I explain how it originates or is worsened by

the tradeoffs in the language design, and propose an avenue to solve it.

106

My first task in presenting the problem of model consistency is to clearly

define what kind of consistency I am interested in and how to effectively

determine whether or not a model is consistent. The UML is a broad-spectrum

language with an informally defined semantics, which serves the goal to be

inclusive with respect to modeling styles and domains. However, this creates

the first hurdle that must be overcome to define consistency. Any approach

aiming at defining consistency needs to explicitly or implicitly define a precise

semantics for the UML. A rich body of work exists in the literature on defining

multi-view or multi-perspective consistency based on UML semantics

definitions. I have presented an extensive analysis of this work in Ref.[63].

Although the consistency problem has been extensively studied in the

literature, a solution has been elusive – especially in the context of the UML

with its rich set of inter-related description techniques for system structure and

behavior. Existing approaches to defining UML model consistency lead to

complex definitions of the notion of consistency, or address only a subset of

the available modeling notations. My goal is to create a consistency checking

approach that is flexible enough to be able to target the full UML language.

My approach does not force a developer to fully define the semantics of all

UML notations; only the semantics of a subset (profile) of the UML used in the

specification must be defined.

The main novelty of the consistency checking approach presented in

this chapter is in the comprehensive, yet simple mechanism introduced for

specifying consistency rules. Instead of analyzing the semantics of the UML at

107

the metamodel level and extracting consistency rules between different

diagram types, I define a simple execution framework (similar to a “virtual

machine”), based on a target ontology whose concepts map one-to-one to

elements of the system class we are interested in modeling, i.e. distributed,

reactive systems. All UML diagram types are then treated as model generators

for this virtual machine; each diagram selects entities of the virtual machine

and constrains their structure or behavior. Model consistency is then simply

defined as the presence of virtual machine behaviors under the specified

constraints.

THE BART CASE STUDY

To show the modeling capabilities of the UML, we use a simplified

example of the Bay Area Rapid Transit [64] system, particularly the part of the

train system that controls speed and acceleration of the trains. BART is the

commuter rail train system in the San Francisco Bay area. A full description of

Figure 29. Domain Model for the BART tracks

Train Car
*

Track

Segment
Track

*
Gate

*

0..1

Switch

0..1

*

108

the case study is beyond the scope of this chapter, so we will exemplify some

of the UML diagrams that can be used for modeling such a system – use case,

class, sequence, and state diagrams.

The BART system automatically controls over 50 trains, most of them

consisting of 10 cars. Tracks are unidirectional and sections of the track

network are shared by trains of different lines. A track is partitioned into track

segments, which may be bounded by gates. A gate can be viewed as a

traffic light, establishing the right-of-way where tracks join at switches. Figure

29 depicts a domain model for the BART track system, showing in a UML class

diagram the relationships between physical entities such as train, track, and

gate. Such models facilitate establishing a common language for eliciting

requirements from domain experts. Typically, specifying relationships and

multiplicity constraints on a domain model leads to further discussions with the

stakeholders to clarify the domain. For example, gates are not necessarily

associated with switches, but can be used just to control the traffic flow.

Other work [64] describes the Advanced Automatic Train Control

(AATC) system, which controls the train movement for BART. One important

AATC requirement is to optimize train speeds and the spacing between the

trains to increase throughput on the congested parts of the network, while

constantly ensuring train safety. The specification strictly defines certain safety

conditions that must never be violated, such as “a train must never enter a

segment closed by a gate”, or “the distance between trains must always

109

exceed the safe stopping distance of the following train under any

circumstances”.

The system is controlled automatically. Onboard operators have limited

responsibility: they signal the system when the platforms are clear so a train

can depart a station and they can operate the trains manually when a

problem arises. Use case diagrams are useful in identifying the system

boundaries (the control system that must be designed) and the external

actors that interact with the system. Typically in UML, actors are human actors

that use an application, but in embedded systems actors can be external

physical resources such as devices and sensors. Nevertheless, actors represent

logical roles, so a physical resource could play several roles in UML models.

Figure 30 depicts a simple use case diagram for BART. Actors that interact with

the AATC system are the Train and the Train Operator and so they are part of

the system environment. The use cases depict the high-level goals of the

system without details on how these goals are accomplished.

110

AATC consists of computers at train stations, a radio communications

network that links the stations with the trains, and two AATC controllers on

board of each train - the two controllers are at the front and back of the train.

A track is not a loop. Thus, at the end of the line, the front and back controllers

exchange roles, and the train moves in the other direction. Each station

controls a local part of the track network. Stations communicate with

neighboring stations using land-based network links. Trains receive

acceleration and brake commands from the station computers via the radio

communication network. The train AATC controller (from the lead car) is

responsible for operating the brakes and motors of all cars in the train. The

radio network has the capability of providing ranging information (from

wayside radios to train radios and back) that allows the system to track train

positions.

Figure 30. BART AATC system use case

AATC System

Train

Train

Operator

Maintain

distance from

leading train

Stop at

stations

Depart

stations

111

The system operates in half a second cycles. In each cycle, the station

control computer receives train information, computes commands for all

trains under its control, and forwards these commands to the train controllers.

Figure 31 shows a sequence diagram depicting the interactions between

three roles called Train, Station AATC, and Train Controller. Note that the

Station AATC system obtains the status information directly from the Train by

using the radio network, not from the Train Controller.

Figure 31. Train speed sequence diagram

sd Control Train Speed

loop

Train StationAATC TrainController

Check Train Status

ref

Issue New Commands

ref

112

The sequence diagram features interaction frames, introduced in UML

2.0. A frame provides the boundary of a diagram and a place to show the

diagram label (e.g., “Control Train Speed” in Figure 31). Frames also allow

specifying combined fragments with operators and guards. Common

examples of operators are LOOP for repetitive sequences, ALT for mutually

exclusive fragments, and PAR for parallel execution of fragments. Figure 31

uses a LOOP operator to show that the system repeats the sequence of

checking the train position and issuing new commands. Another operator is

REF, which creates a reference to an interaction specified in another

diagram. This REF operator allows composing primitive sequence diagrams

into complex sequence diagrams. The expressiveness of UML 2 increased with

Figure 32. BART Check Train Status sequence diagram

sd Check Train Status

Train

status(MOTT,speed,acc,range)

alt

computeTrainPosition

[status valid]

updateTrainStatus(MOTT,speed,acc,position)

EnvironmentalModelStationAATC

113

the addition of these operators, which are borrowed from Message Sequence

Charts (MSCs) [28], [65].

Figure 32 depicts a simplified Check Train Status sequence diagram as

referenced in Figure 31. The Train sends status information regarding its speed,

acceleration, and range. The Station AATC system computes the train position

from the status information and updates its Environmental Model. Status

messages and commands are time-stamped in the so-called Message

Origination Time Tag (MOTT). When a Train sends status information to a

station, it attaches the time it sends the message as a MOTT. When the Station

AATC estimates the train position, it attaches the original MOTT to the

estimate. Furthermore, when the Station AATC sends a command, it again

attaches the original MOTT, and the Train Controller checks the MOTT before

executing the command. The station’s control algorithm takes the MOTT,

track information, and train status into account to compute new commands

that never violate the safety conditions. To ensure this, each station computer

is attached to an independent safety control computer that validates all

computed commands for conformance with the safety conditions.

114

The actors in sequence diagrams (e.g., Train, StationAATC, etc) are

logical roles – in modeling the interactions, we concentrate on specific use

cases and abstract from any concrete deployment architectures. In essence,

a role shows part of the behavior the system displays during execution. What

concrete deployment entity plays this role is left for a later modeling stage.

The natural modeling entities for roles in the UML are Classifiers – with the

understanding that multiple roles may be aggregated into a single Classifier.

The roles related to computing commands and safety are omitted from Figure

32, as they are relevant for another sequence diagram, called Issue New

Commands, shown later in this chapter. The roles visible in a sequence

diagram are a subset of the roles of the entire system.

Figure 33 shows a simplified domain model with the roles mentioned so

far. We use the notation of a class diagram without the multiplicities – for a

role domain model we are interested in the roles that communicate and the

links between them. The same diagram can be seen as a simplified

Communication diagram, showing the communication links without the

messages being exchanged. The role domain model is part of the logical

Figure 33. Domain model of BART roles

Train

StationAATC SafetyControlEnvironmentalModel

TrainController

115

architecture, as roles are logical entities that are later mapped onto physical

components to define the technical architecture. A component can play

several logical roles.

If a train does not receive a valid command within two seconds of the

timestamp contained in the MOTT accompanying the status, it goes into

emergency braking. Figure 34 shows the behavior of the Train Controller as a

state-machine diagram with two states for normal operation and emergency

mode.

In state-machine diagrams we show states as boxes with rounded

corners. Arrows denote state transitions. Labels on arrows indicate (i) the

trigger (such as a message received), (ii) a guard (a condition that must be

true for the transition to be taken) in angular brackets, separated from (iii) the

action (to be performed when the transition is taken) by a “/”. Actions include

assignments to state variables and the sending of messages. All three pasts of

a transition are optional. A solid circle indicates the initial “pseudo” state.

Figure 34. State machine diagram for BART train controller

/ last_mott=0

Normal operation

[Timer - last_mott >= 2s]

Emergency mode

command (MOTT, param) / last_mott=mott

[emergency

resolution]

116

This example shows a frequently used pattern in modeling time with the

basic capabilities of the UML: time is represented as an explicit parameter in

messages exchanged among actors and these actors then perform explicit

time arithmetic to determine transition triggers.

INCONSISTENCY EXAMPLE

I revisit the example from the Bay Area Rapid Transit (BART) system,

introduced in Chapter 3. BART is the commuter rail train system in the San

Francisco Bay area. The BART system automatically controls over 50 trains on a

large track network with several different lines. Figure 35 shows three modeling

perspectives of BART using UML 2.3 and the MARTE profile. Figure 35a shows

the component diagram defining the structure of the system. Figure 35b

shows a sequence diagram which models the train commands computation

and delivery. Finally, Figure 35c and Figure 35d shows state-machine diagrams

describing the Emergency Brake system component. In this case study I

discuss an inconsistency that can arise when modeling behavior in the

different diagrams, namely sequence and state-machine diagrams.

117

Figure 35. Three different perspectives of the BART case study

The focus of this case study is on the Advanced Automatic Train

Control (AATC) system, which controls the train movement for BART. The AATC

a

b

c d

Wait Commands Reset Timer

Commands Received

Emergency Brake

[after (2000,ms)]

stm <<timedProcessing>> Emergency Brake
{on=ChronometricEmergency}

Wait Commands Reset Timer

Emergency Brake

Commands Received

[after (2000,ms)]

/ Ack

Reset Emergency

Emergency Solved

Commands Received

Emergency Brake

stm <<timedProcessing>> Emergency Brake Refined
{on=ChronometricEmergency}

Slow Safety ComputerFast Computer Train

Station AATC

Environment Model

Safety Control

«call» «send»

Train Controller

Emergency Brake

«send»

«send»
«call»

cd BART Components

Station AATC Environmental Model Safety Control Train Controller Emergency Brake

Trains Commands

Commands Received

Control Train

{(t1[i]-t0[i])<(2000,ms)}

@t0

@t1

{(t0[i+1]-t0[i])>(500,ms)
jitter(t0)<(10,ms)}

sd <<timedProcessing>> Control Trains
{on = ChronometricSystem}

Compute Commands

Send Commands

Commands

Ack

118

system consists of computers at train stations, a radio communications

network that links the stations with the trains, and AATC controllers on board of

each train. Most of the control computation is done at the stations. Each

station is responsible for controlling all trains in its area. Trains receive

acceleration and brake commands from the station via the radio

communication network. The train controller is responsible for operating the

brakes and motors of all cars in the train. Controlling the trains must occur

efficiently with a high throughput of trains on the congested parts of the

network, while ensuring train safety. The station’s control algorithm takes the

track information, train speed and acceleration, train position estimation, and

information from the neighboring stations into account to compute new

commands that never violate the safety conditions. To ensure this, each

station computer is attached to an independent safety control computer that

validates all computed commands for conformance with the safety

conditions.

The component diagram for AATC is depicted in Figure 35a. It has three

nodes: two for the train station and one for the train. The first node, Fast

Computer, represents the station computer that computes the commands to

be sent to all trains under the control of that station. It contains two

components: one represents the Station AATC control system and the other

called Environmental Model, which models the physical environment of a

station. The Station AATC uses the Environmental Model to compute

commands to send to trains. The second node, Slow Safety Computer,

119

contains the Safety Control component, which checks all commands sent by

the Station AATC for safety before forwarding them to each train. The safety

computation is based on a simpler model than the one used to compute

commands and, therefore, requires less computation resources. However, the

Slow Safety Computer is required to have high reliability. The third node in the

figure is the Train. It has two components: the Train Controller manages the

train accelerations and decelerations, and the Emergency Brake is activated

only in case of an emergency and stops the train as quickly as possible.

The AATC system operates in half a second cycles. In each cycle, the

station receives train information, computes commands for all trains under its

control, and forwards these commands to the train controllers. The Station

AATC system obtains the status information regarding train speed,

acceleration, and range by using the radio network, which allows the system

to track train positions. The Station AATC system computes the train position

from the status information and updates its Environmental Model. Then, the

Station AATC interacts with the Environmental Model and the Safety Control

components to compute and send the new commands, as depicted in the

sequence diagram from Figure 35b. The behavior specified in the diagram is

the following:

 Station AATC sends a request to Environmental Model to compute the

commands for the train.

 Environmental Model computes the commands, taking into account

all parameters such as passenger comfort (e.g., not too strong braking

120

and acceleration changes), train schedule, engine wear, and most

importantly safety.

 After receiving the commands from Environmental Model, Station

AATC sends the commands to Safety Control to ensure the commands

computed are safe.

 Safety Control checks that the commands do not exceed maximum

bounds for safety. If the commands are safe, Safety Control forwards

them to Train Controller.

 Train Controller informs Emergency Brake that the commands have

been received.

 Emergency Brake acknowledges the commands received.

 Finally, Train Controller controls the train engine according to the

commands received.

The model in Figure 35b is annotated with MARTE time constraints to

specify the real-time requirements of the BART case study. I annotated two

time instants t0 and t1 using TimedInstantObservations as defined in MARTE,

which is indicated by the graphical representations @t0 and @t1. A

TimedInstantObservation denotes an instant in time associated with an event

occurrence (e.g., send or receive of a message) and observed on a given

clock. T0 is the instant when the message Compute Commands is sent by

Station AATC whereas t1 is the time instant when the message Commands

Received is received by Emergency Brake. Because the system operates in

121

cycles, the notation t0[i] and t1[i] represents the generic ith instantiation of the

interaction scenario.

Given those two instants, I leverage MARTE to define three time

constraints in our system. Commands to trains become invalid after two

seconds. If a train does not receive a valid command within two seconds, it

goes into emergency braking. Therefore, with the time constraint (t1[i]-t0[i]) <

(2000,ms) we limit the duration of each iteration of this scenario to two

seconds. The AATC control algorithm needs to take this timing constraint, track

information, and train status into account to compute new commands that

never violate the train safety. The second constraint, (t0[i+1]-t0[i]) > (500,ms),

imposes that between each instantiation of the scenario at least half a

second passes. Finally, the last constraint, jitter(t0) < (10,ms), limits the jitter of

the t0 event enforcing that between each iteration of the event at t0 there

are between 500 and 510 ms.

In normal operations, the AATC system computes the train commands

in fixed time cycles. However, in case of a detected emergency condition,

the system has to react immediately and take appropriate measures to

ensure maximum safety of passengers and equipment. Figure 35c and Figure

35d present state-machine diagrams for the Emergency Brake component. A

train will continue to exercise a command until a new one arrives or until that

command expires, two seconds after the originating time. The state-machine

diagram for the Emergency Brake has states for waiting for commands and

entering emergency mode if the timer of two seconds expires. When

122

commands are received, the timer is reset. These state machines are two

different versions of the same perspective where the one in Figure 35d is a

refined version that enables restarting the system after an emergency brake. If

we consider the three graphs from Figure 35a, Figure 35b, and Figure 35c

together, we have an inconsistent model: the state-machine diagram Figure

35c does not acknowledge the Commands Received call from Train

Controller – contrary to what the sequence diagram from Figure 35b

demands. Replacing the diagram from Figure 35c with Figure 35d, we obtain

a consistent model.

UML MODEL CONSISTENCY REQUIREMENTS

I have identified 12 important requirements (collected in Table 3) by

analyzing the requirements discussed in the literature for current approaches

to model consistency. Requirements R1 to R3 in Table 3 originate from the

observation that any strategy to manage model consistency should not limit

the freedom of developers. This entails that developers should be allowed to

modify models even if they introduce some inconsistencies. This idea is

introduced in [66], where the authors observe that inconsistency is necessary

and often desirable in some phase of the development cycle. For example, in

the inception phase of a large project with different stakeholders involved,

each stakeholder pursues different goals and, during the collection of

requirements, this can lead to inconsistent views that must be identified and

reconciled in subsequent iterations. Other arguments in support of

Requirements R1-R3 have been documented elsewhere [67–69]. The common

123

denominator of all arguments is that effective modeling techniques must

support decomposing the problem into independent subproblems. This is the

case when in order to solve complex problems; engineers decompose various

aspects of the system and reason about each aspect in isolation.

Alternatively, this occurs when in order to solve complex problems efficiently,

different teams work in parallel on different aspects of the system.

A second observation is that each model caters to different needs that

arise during the development process. For example, informal models are used

to gather requirements and exchange ideas between stakeholders and

developers during requirements gathering [35]. Later in the development

process more formal models are used to describe the structure or the

behavior of certain parts of the system. In this phase, formal models are used

to verify properties of a system or to generate part of the implementation

Table 3. Requirements for UML consistency management.

 Requirement Description

R1
Inconsistent models can be introduced and kept in the system specification for a certain amount

of time.

R2 Inconsistencies should be discovered automatically and tracked during the evolution of model.

R3 Support should be provided to the developer to resolve inconsistencies when convenient.

R4
Support multiple modeling languages (for example, different UML notations or even non-UML

languages).

R5 Support different levels of abstraction.

R6 Support the extension or specialization of languages.

R7 Support Horizontal consistency.

R8 Support Vertical consistency.

R9 Support Static consistency.

R10 Support Dynamic consistency.

R11 Tool support (or translations to available tools).

R12 Scalability to large models.

124

code. This second observation is the source of the additional requirements R4

to R6 in Table 3.

To evaluate consistency management techniques the notion of

consistency must be clearly defined. The scientific literature examines different

notions of consistency. A distinction can be made between Horizontal and

Vertical consistency [70], [71]. Horizontal consistency involves different

perspectives on the same system model. For example, on the one hand, to

describe the communication between a client and a server, it is possible to

use a UML sequence diagram to capture the protocol and a state diagram to

capture the server behavior. The two diagrams are different views on the

same system and should be horizontally consistent. On the other hand,

Vertical consistency addresses views of the same aspect of one system, but at

different levels of abstraction, often in relation to the evolution of one model

during different phases of the development process. For example, an abstract

model created during requirements gathering must agree with a more

detailed model used for code generation in a later step of the development

process. Another important distinction is between Static and Dynamic

consistency [72]. Static consistency addresses syntactical and structural model

dependencies while Dynamic consistency ensures the consistency of

executable models. Four requirements (R7 to R10 in Table 3) capture these 4

notions of consistency.

The final two requirements address practical use of consistency

management techniques. Requirement R11 recognizes that consistency

125

checking must be supported by a tool chain. Requirement R12 recognizes

that industrial systems are large scale and this implies they have large system

models. Therefore, scalability of the chosen technique to large models is an

important requirement.

SOLVING UML CONSISTENCY

None of the approaches available in the literature fully address all

requirements of Table 3. The common challenge of previous work is in losing

track of the abstractions implemented in the models that are checked for

consistency.

Previous work has taken two routes: either analyzing the semantics of

the diagrams at the metamodel level (or defining consistency rules between

different notation types from there) or translating the models into an existing

formal language leveraged for verification. In contrast, the approach I follow

here defines an explicit ontology that captures the target domain of the

models. Based on this target ontology I define a simple execution framework

(similar to a “virtual machine”). The ontology concepts map one-to-one onto

elements of the system class I am interested in modeling.

The main novelty of the consistency checking approach presented

here is in the comprehensive, yet simple mechanism introduced for specifying

consistency rules. By defining a simple “virtual machine” containing the

abstraction used in our models, I can treat all UML diagram types as model

generators for this virtual machine. Each diagram selects entities of the virtual

126

machine and constrains their structure or behavior. Model consistency is then

simply defined as the presence of virtual machine behaviors under the

specified constraints.

I encode constraints as a set of logic propositions over elements of the

target ontology, and reduce the verification of virtual machine behaviors to a

satisfiability problem. While the work presented here is specific to the UML, the

same approach can be leveraged to integrate other modeling languages

(such as the Orca language described in the previous chapter) with UML-like

models.

For the proposed approach to work, first I tailor the UML to the target

domain. I leverage the UML MARTE profile to target embedded real-time

systems. For the purposes of this chapter, I limit the scope of the discussion to a

subset of the MARTE notations, rich enough to show the value of the

consistency verification technique I am proposing. In particular, in this chapter

I include State Diagrams, Component Diagrams, and Interaction Diagrams. In

the Discussion section below, I analyze avenues for extending this approach

to a richer subset of UML 2.0 and to other modeling languages.

QUERIES AND CONSTRAINTS SEMANTICS

To provide the backdrop for my definition of model consistency, I

provide a formal semantic framework based on an abstract model of

distributed reactive systems, similar to a “virtual machine”. I call this model of

our target domain the “abstract semantic space”. In this space, I show how

127

each element of a model can be interpreted as a constraint on the system.

The consistency property can then be trivially defined over the “abstract

semantic space” as the existence of a system in that domain that satisfies all

constraints imposed by the models.

The semantics is based on two elements: queries and constraints. Each

model element of a UML specification is interpreted as a set of (query,

constraint) tuples. Each query selects some elements in the “abstract

semantic space” that we have defined where the corresponding constraint

defines a restriction on the structure or behavior of these elements in a system

satisfying the specification. The key benefits of this approach are: (i) a

mathematically simple, yet comprehensive definition of consistency, (ii) the

ability to tie the reasoning about consistency to entities of the target domain –

resulting in a non-generic model subclass to which the consistency notion

applies, and (iii) the interpretation of model elements as constraints over the

target domain.

This consistency checking approach contrasts with other translation-

based approaches in the literature in the way I perform the translation. In fact,

the target model of my translation abstracts the main components of the

target implementation domain. The semantics is then specified by directly

mapping each element of the UML model onto some configuration of the

target model. The first step is to define an ontology for real-time distributed

systems. This ontology is used to assign precise semantics to the UML models

used and is formalized with Queries and Constraints. This step allows me to

128

formally reason about the specification (using first order logic). After the

formalization, I present the grammar of a language to describe systems based

on the target ontology formalism. This step enables the translation of UML

models to the new domain. The final steps are the definition of the semantics

for the abstract language and, based on such semantics, the definition of

consistency.

Figure 36. Core elements

129

Figure 36 captures the core elements of my ontology for distributed

systems with real-time constraints. A real-time system in this ontology is

described by five types of elements: two elements, Entities and Channels, form

the structural configuration of the system; another two, Messages and

Properties, define the behavior; and the Clock captures real-time constraints.

An Entity captures the concept of a process in a distributed system. An

Entity has local variables, captures state information, has computational

capabilities, and can communicate with other Entities by means of sending

and receiving messages over a set of channels. Channels are the

communication infrastructure. Each entity that must send or receive messages

does so leveraging some specific channels. Channels transport Messages.

When a message is sent on a channel, all entities that are using there

channels eventually receive the message. Properties can be used to capture

variables and their state. Each entity has a named set of properties that can

be evaluated at run-time. Finally, the Clock captures the time relative to an

entity. I could have used different notions of time, the choice depends on the

type of system I am modeling and the profile of the UML in use. MARTE

supports not only the type of time modeled here, but also other time models,

for example, modeling of synchronous reactions.

Figure 36 shows these five core elements forming the abstract state of

the system. At each instant the structural part of the system state is defined by

the existing Entities and Channels. The behavioral part is defined by the

Messages exchanged on each Channel and by the internal state of each

130

Entity defined by the valuation of its Properties. Timing relations are expressed

by the collections of all clocks associated to entities. Each Entity has its own

reference of time given by the clock. At any given instant, different clocks

can have different time values. It is interesting to note that, because the state

comprises both a behavioral and a structural part, it is possible to represent a

reconfiguration of the system as a change of state.

Figure 37. Definition of a run

Based on the concept of state, I can now define a run as an infinite

sequence of states (cf.Figure 37). In turn, I now define the semantics of a

system based on runs. Figure 38 shows the full ontology that used to assign a

semantics to the UML. A system is defined by a set of runs. A specification

defines a set of acceptable runs. The specification can constrain the

acceptable runs by specifying the initial states and the acceptable transitions.

Run

Time

StateStateStateStateStateState... ...

131

Figure 38. Ontology for distributed real time systems semantics

Another interesting element of Figure 38 is the definition of

Specification. A Specification can either be composite or elementary. Every

elementary specification is made up of two elements: Query and Constraint.

A Query selects states from all possible runs while the corresponding Constraint

UML Diagram
UML

Specification

Specification

Composite

Specification

Elementary

Specification

Query

Constraint

*

Defines

1*

System Run

Defines

1 *

State

1

*

Sequence

Evaluation

Channel Entity

*
*

Message

*

1

Property

1

*

*

Clock

1

1

Instant

Defines 1*1

*

Send
Time

11 Now

1

1

*

Source

*

132

defines the characteristics for the run to be acceptable. Think of the selection

as an operator that is applied to all possible runs. All states selected by the

Query are compared with the rules specified in the constraints. If they match,

the run is accepted as part of the system whereas if they do not match, the

run is discarded.

An important point to notice is how time is treated in the ontology.

Each Entity has access to one private Clock. The Clock Defines a series of

Instants. At any given time the Clock refers to one of the instants as Now. Each

message has one Send Time (an instant on the clock of the entity that sends

the message) and one Source entity (the sender of the message). Therefore, it

is possible to reason about when each message was sent and by which entity.

Messages can be received by different Entities at different times. When an

Entity that has subscribed to a channel receives a message, it can identify the

local entity time using its clock and obtain the time of the sending entity from

the message. Depending on the system and the requirements, it is possible to

define synchronization strategies between the clocks so as to be able to

reason about times of events across different clocks.

I can now give a formalization of the semantics informally described

above. To this end, I first formalize the concepts of state and run as a

foundation for the semantics of a distributed system specification. Then I

present a simple grammar for a specification based on Queries and

Constraints and use the formal definitions introduced before to provide a

semantic for it.

133

NOTATIONAL PRELIMINARIES AND SYSTEM FORMALIZATION

I represent sets with capital Greek letters. For instance, the set of

properties will be represented by . Each element of the set will be

represented by the corresponding lowercase letter. For instance, a property in

 would be represented by . A function from a domain to a co-domain

is expressed as . A tuple is defined as 𝑦 𝑦 𝑦 and

 𝑦 𝑦 is the projection operator returning the 𝑖 element of the tuple.

Given a set 𝑋, 𝑋 is the powerset of 𝑋 where |𝑋| returns the cardinality of 𝑋.

Furthermore, with we indicate the set of Boolean values (true and false),

with the set of natural numbers, with the set of natural numbers without ,

and with the set of natural numbers with its supremum .

A stream [56] is a finite or infinite sequence of messages. Given a set of

messages : is the set of finite sequences over , the set of infinite

sequences, and with the union of those two sets. The infix dot operator 𝑥 𝑖

returns the 𝑖 element of a stream 𝑥. The notation 𝑥 𝑖 returns the prefix

stream of length 𝑖, whereas 𝑥 𝑖 returns the tail stream obtained by removing

the first 𝑖 elements from 𝑥. The concatenation of two streams 𝑥 and 𝑥 is

denoted as 𝑥 𝑥 . This notation is overloaded to work with sets of streams

𝑋 𝑋 such that the resulting set contains all streams of the form 𝑥 𝑥 where

𝑥 𝑋 𝑥 𝑋 .

I can now give a formal definition of the elements of our ontology. For

the two structural elements, Entities and Channels, I define two sets: the set

of Entities and the set of Channels. A channel valuation relates the channels

134

(elements of the set) to Messages exchanged over the channels. Because a

Channel can be used to send multiple messages at any given moment, for

every channel we define a set of messages currently sent over it.

Furthermore, for each Entity we define a set of Properties. A special

property encodes the current time of entity ’s Clock.

State is defined by: (i) a structural configuration formed by Entities and

Channels; (ii) a behavioral configuration formed by Messages on each

Channel, and valuation of Properties for each Entity; and (iii) the current time

value of the Clock property for each Entity.

Properties are intended to encode the state of an Entity. To abstract

from the concrete data types used to define the variable space we define a

set of functions . Each is a function defined from the values of a tuple

of Properties to a Boolean: { } . This allows for easy

translation of UML specifications. For instance, if we want to model a UML

Deployment Diagram specifying that a node would run a particular program

P, we can define a function run and have it evaluate to true on the entity

corresponding to the node (run(P)=true). The evaluation of the function set

over an entity is defined as { }.

I can now define structural configuration as:

 𝑜𝑛𝑓

I define behavioral configuration as:

135

 𝑜𝑛𝑓 ({ } { } { })

The state is then defined as:

 𝑡𝑎𝑡𝑒 𝑜𝑛𝑓 𝑜𝑛𝑓 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒

Where 𝑡𝑎𝑡𝑒 is an element of the 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 set containing all

possible states.

I can now define the concept of a run using streams:

 𝑢𝑛 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 . The semantics of a system specification in this

framework emerges as the set of admissible runs:

 𝑦𝑠𝑡𝑒𝑚 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒

ABSTRACT SPECIFICATION LANGUAGE

In this section I define the abstract language used to specify queries

and constraints (and, therefore, systems). The benefits of defining this

language are twofold. First, it provides an explicit context for mapping

specifications (both composite and elementary) to systems in the semantic

framework. Second, it provides a target language for the UML translation. The

goal of the language is not to introduce a new textual syntax, and, therefore,

we keep it simple by ignoring punctuation and other syntactic sugar

necessary for a complete textual language definition.

I present the grammar of the language in a Backus-Naur Form (BNF)

using production rules of the following form:

136

〈 〉 𝑎𝑙𝑡
〈 〉

 𝑎𝑙𝑡
〈 〉

 𝑎𝑙𝑡
〈 〉

Non-terminals are enclosed in angular brackets, the symbol separates

alternative productions, optional terms are enclosed in square brackets, and

the notation { } represents the repetition of term { } for 0 or more times.

〈 〉 〈 〉〈 〉
〈 〉 〈 〉〈 〉 〈 〉
〈 〉 {〈 〉} 〈 〉
〈 〉 []{[]〈 〉} 〈 〉
〈 〉 〈 〉〈 〉
〈 〉 〈 〉 〈 〉〈 〉{〈 〉}

〈 𝐸 〉 〈 〉 {〈 〉}
〈 〉〈 〉
〈 〉〈 〉〈 〉

Operator definitions are not part of this grammar. Instead, they will be

introduced when necessary in the translation of UML. In particular, I express all

unary operators with the non-terminal 〈 - 〉 and binary operators

with 〈 - 〉. 〈 〉 is a Boolean formula from property names to

Boolean. Using this grammar, we can specify a system based on the ontology

using Queries and Constraints. In the next section, I define the semantics of

such specifications.

Using the 〈 〉 optional operators and , it is possible to

affect the structure of the system. to creates new entities and channels,

removes them.

Time is addressed in this language as a property of entities. In particular,

the notation 𝑛𝑒𝑥𝑡 𝑡 indicates the value of an entity clock in the first state

137

where the value is greater than 𝑡. With 𝑛𝑒𝑥𝑡 I am able to reason about next

states without constraining their occurrence to a particular time value.

Moreover, the messages contain the 〈 〉 entity and the sending 〈 〉

of the message in its parameter list.

SPECIFICATION LANGUAGE SEMANTICS

An elementary specification 〈 - 〉 is captured in my abstract

language by a tuple 〈 〉, 〈 〉. The goal of a specification is to

define what runs are part of a system implementing such a specification. The

〈 〉 identifies what parts of the run the specification is constraining while

the 〈 〉 specifies how those parts are constrained. A run that fulfills a

pair of query and constraint is such that in all states following a state where

the query is true the constraint is true. Therefore, an 〈 - 〉 encodes a

transition function between two states.

I define a 〈 〉 as a communication context selecting the states

that follow a particular message interaction, and a Boolean formula over

properties, which identifies states to constrain. A query thus addresses both the

contents of channels (the channel history) and predicates over local data

state of the relevant entities. I define the channel configuration as:

 ({ })

This definition captures the part of a state that specifies the channel

configuration and the messages being exchanged in the given state. The

semantics ⟦𝑞⟧ of a 〈 〉 𝑞 is, therefore,

138

 𝑞 〈 〉 ⟦𝑞⟧ 𝑎

where is a finite stream of channel configurations, the channel

history is a set of such streams, and the assertion 𝑎 is a function from

a set of properties to Boolean values.

I define a helper function

𝑞𝑢𝑒𝑟𝑦 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 { }

that, given a 〈 〉 semantics and a run, returns a set of tuples containing:

(i) the indexes of the states where one of the message histories is matched

and (ii) the corresponding set of entities for which the evaluation of the

function is true. This helper function returns all states in the run where the next

state must be constrained. It also returns the specific entities to be constrained

in each state.

〈 〉 is defined as a tuple of channel configurations, Boolean

functions over properties, and one of the three quantifiers { }. Similar to

the queries definition, we define the semantics of 〈 〉 as:

 𝑐 〈 〉 ⟦𝑐⟧ 𝑎 { }

We can define a helper function

𝑐𝑜𝑛𝑠𝑡𝑟 𝑎 { } { } 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒

where 𝑐𝑜𝑛𝑠𝑡𝑟 takes as arguments a run, the result of a query operation, and

the semantics of a constraint. This function returns true if the constraint is

satisfied. To be satisfied, the channel configuration of the selected states must

139

match the specified by the constraint. Moreover, how the rest of the

constraints is satisfied depends on the choice among the three quantifiers

{ }. If the chosen quantifier is , the assertion 𝑠 must evaluate to true in

all entities selected. If the quantifier is , the assertion 𝑠 must evaluate to true in

some entity not part of the selected ones. Finally, if the quantifier is the

selected entities must not be present in the selected states.

Now I can define a 〈 〉 in the semantic domain as a set of tuples of

the form (query, constraint), and the System corresponding to the

specification as the set of all possible runs that fulfill all such tuples (query,

constraints) of the set.

Formally:

〈 〉 { 〈 〉 〈 〉 〈 〉 〈 〉}

⟦〈 〉⟧ { 𝑢𝑛 𝑢𝑛 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 𝑠 〈 〉 𝑞

 𝑞𝑢𝑒𝑟𝑦 𝑠 𝑢𝑛 𝑐𝑜𝑛𝑠𝑡𝑟 𝑠 𝑞 𝑢𝑛 }

NOTION OF CONSISTENCY

In this chapter I am interested in defining dynamic consistency for real-

time distributed systems. This is the reason why I have tailored the semantic

framework to this domain rather than staying within the generality of the UML

language metamodel. Given the semantic framework presented in the

previous section, it is now straightforward to define dynamic consistency for

models in this system class. First, I define horizontal consistency and then

vertical consistency.

140

I define horizontal consistency as follows: a specification is horizontally

consistent if the system it defines admits at least one run. A specification 〈 〉

is made of multiple views at the same level of abstraction (in my formalism this

means multiple sets of query and constraint tuples).

Definition 1. A specification 〈 〉 such that ⟦〈 〉⟧

 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 is horizontally consistent iff

⟦〈 〉⟧ .

This definition captures the idea that the specification is

implementable. There are two possibilities for a system to fulfill this property.

Either there are no contradictions in the specification, or the admissible runs

do not match any query that defines inconsistent constraints. There is nothing

wrong in using different perspectives to constrain the system behavior

specified by other perspectives. However, if a perspective constrains the

behavior of the system such that no run satisfying the specifications of that

perspective is allowed in the final system, there can be a consistency

problem. A stricter rule for horizontal consistency requires that the system has

at least one run admissible for each perspective, meaning that there is at least

one run satisfying some queries of each perspective specification.

Definition 2. A specification 〈 〉 such that ⟦〈 〉⟧

 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 and 〈 〉 made of

specifications 〈 〉 called perspectives such that

⟦〈 〉⟧ ⋂ ⟦〈 〉⟧ is horizontally consistent iff

141

 〈 〉 𝑢𝑛 ⟦〈 〉⟧ 𝑠 〈 〉 such that

𝑞𝑢𝑒𝑟𝑦 𝑠 𝑢𝑛 .

A possible problem with my first definition of horizontal consistency is

that there could be a system specification with no runs satisfying any query of

the general specification. The consistency specification for such system is

vacuously satisfied (i.e., runs are possible because selectors never match). The

second definition solves this problem requiring that some runs matching the

specification queries are present.

The two definitions of horizontal consistency given support two different

usage scenarios. In fact, there are two main reasons to create a specification.

First, I can be interested in constraining how the system works in a given

scenario. The scenario I want to constraint must, therefore, be possible and

the corresponding query must select some runs. Definition 2 caters to this type

of usage. A different use case is when I want to specify recovery from some

failure of the system. For example, I may identify that a given interaction can

happen as a result of a failure even if the specification would not allow for it.

In this case, the goal is to describe the detection and recovery from a given

failure. Consistency Definition 1 caters to this usage scenario.

Vertical consistency is defined between two specifications at different

level of abstraction. I define this consistency notion by a containment relation

between runs. Given a more abstract specification and a more

concrete specification vertical consistency is defined as follows: a

142

concrete specification is consistent with an abstract specification

if all runs allowed in the concrete system specification are also allowed in the

abstract one. Moreover, the abstract system allows runs that the concrete

system does not allow. This definition requires that the concrete systems admit

a strict subset of the runs admitted by the abstract one.

Definition 3. Two specifications 〈 〉 and 〈 〉, where the

first is the abstract and the second the concrete

specification, are vertically consistent iff ⟦〈 〉⟧

⟦〈 〉⟧.

Given the definitions of 〈 〉 and ⟦〈 〉⟧ of the previous section, I

can now define a modularity theorem. I first observe that each specification

has a set of tuples containing one query and one constraint. Therefore, each

of these tuples defines a set of runs. From the definition of ⟦〈 〉⟧, I infer a

lemma asserting that the semantics of a complex 〈 〉 (i.e., formed by

multiple tuples of query and constraint) is the intersection of the semantics of

all the sub-specifications formed by single query/constraint tuples. The

modularity theorem states that for any complex specification 〈 〉it is always

possible to identify two sub-specifications such that the intersection of the runs

permitted by the two contains exactly the runs permitted by the original

specification. Moreover, the theorem states that, such sub-specifications can

be obtained by taking two subsets of the tuples of the original specification,

provided that all tuples of the original specification are in at least one of the

143

two sub-specifications. The lemma and theorem are formally defined as

follows.

Lemma 1. Given a specification 〈 〉

⟦〈 〉⟧ ⋂ ⟦{𝑡}⟧

 〈 〉

Proof. Lemma 1 can be proven by observing that the definition of ⟦〈 〉⟧ is

such that if a specification contains a single query/constraint tuple 𝑡, the

quantification in 𝑠 〈 〉 return a single element. Therefore:

⟦{𝑡}⟧ { 𝑢𝑛 𝑢𝑛 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 𝑞 𝑞𝑢𝑒𝑟𝑦 𝑡 𝑢𝑛 𝑐𝑜𝑛𝑠𝑡𝑟 𝑡 𝑞 𝑢𝑛 }

Given the definition of intersection: ⋂ 𝑠 {𝑒 𝑠 𝑒 𝑠}, and

replacing the specification of the semantics of a query/constraint tuple into

the definition of intersection we obtain

⋂ ⟦{𝑡}⟧

 〈 〉

 {𝑒 𝑡 〈 〉 𝑒

 { 𝑢𝑛 𝑢𝑛 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 𝑞

 𝑞𝑢𝑒𝑟𝑦 𝑡 𝑢𝑛 𝑐𝑜𝑛𝑠𝑡𝑟 𝑡 𝑞 𝑢𝑛 }}

From this, by replacing 𝑒 with the definition of 𝑢𝑛 we obtain

⋂ ⟦{𝑡}⟧

 〈 〉

 { 𝑢𝑛 𝑡 〈 〉 𝑢𝑛 𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 𝑞

 𝑞𝑢𝑒𝑟𝑦 𝑡 𝑢𝑛 𝑐𝑜𝑛𝑠𝑡𝑟 𝑡 𝑞 𝑢𝑛 }

which is the definition of ⟦〈 〉⟧. This proves the lemma. □

144

The Modularity theorem asserts that complex query/constraint

specifications can be split into two simpler ones without losing information.

Theorem 1. Modularity. Given a specification 〈 〉 such that

|〈 〉| (i.e., the specification is complex),

 〈 𝐸 〉 〈 𝐸 〉 such that

〈 〉 〈 〉 〈 〉 〈 〉

|〈 〉| |〈 〉|

〈 〉 〈 〉 〈 〉

⟦〈 〉⟧ ⟦〈 〉⟧ ⟦〈 〉⟧

The proof of Theorem 1 derives easily from Lemma 1. In fact, because

the semantics of a specification is equivalent to the intersection of the

semantics of all its constituent query and constraint tuples, we can use the

commutative and associative properties of intersection to prove Theorem 1.

CONSISTENCY OF THE BART CASE STUDY

To show how the methodology outlined in this chapter applies to

consistency checking in the context of the UML for real-time, I provide a

translation from the UML and from its MARTE profile to the abstract language

introduced. Translating the entire UML and MARTE metamodels is beyond the

scope of this chapter. Instead, I chose a simple subset of the UML and MARTE

that uses three graphical notations: Component Diagrams, Sequence

Diagrams, and State Diagrams, which are used in the example of Figure 35.

145

Furthermore, I translate MARTE timed constraints as they are used in the

example.

The translation from UML models to the query and constraint language

assigns a precise semantics to each model. Several options for assigning

semantics to each notation exist. Sequence Diagram, for instance, can be

interpreted existentially (at least the specified behavior must be possible) or

universally (precisely the specified behavior is required) [28] . The decision of

interpreting the diagrams existentially or universally depends on what is the

goal of the specification. For example, in a requirements document an

Interaction can exemplify one of many possible scenarios and the existential

interpretation would be correct. For real-time systems modeling I interpret

sequence diagrams universally. All messages exchanged in the system must

be represented in diagrams. This interpretation of sequence diagrams is a

good choice for the application domain of the case study. In fact, one of the

key uses of communication models in real-time systems is to analyze the

network traffic and ensure that real-time constraints can be met. Therefore, a

complete view of which messages are exchanged over the communication

channels is necessary.

My translation strategy interprets every element of a UML graph as a

query and constraint tuple. I introduce an operator to compose those

elementary specifications – this closes the loop with the introduction of the

abstract query/constraint syntax. For demonstration purposes, I introduce the

parallel operator. This operator is applied between any two specifications in

146

the translation and returns the specification containing all query and

constraint tuples of the operand specifications.

 〈 〉

⟦ ⟧ {𝑠 𝑠 𝑠 }

Table 4 provides translation rules for some of the interesting model

elements used in the example. The entire set of rules is beyond the scope of

this chapter. Each rule provides a set of query/constraint tuples that can be

composed in a specification using the parallel operator. To support the

translations I define a small set of helper functions.

The function 𝑡𝑜 is used to convert two elements of the UML

metamodel, MessageOccurencesSpecification and Triggers, into objects

Table 4. Translation rules for UML Metamodel elements

Name
Metamodel

Element
Translation

UML::

BasicComponents::

Component

Figure 5
 {} 𝑡𝑟𝑢𝑒
 {} 𝐸 𝑦𝑝𝑒 𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑛𝑎𝑚𝑒

UML::

BasicInteractions::

MessageOccurence

Specification

Figure 6

 𝑒𝑠𝑠𝑎𝑔𝑒 𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝑡
 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑖𝑠𝑡𝑜𝑟𝑦 { } 𝑙𝑜𝑐 𝑡
 𝑡𝑜 { } 𝑡𝑟𝑢𝑒

UML::

BehaviorStateMachines::

Transition

Figure 7

 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡
𝑠 𝑠𝑜𝑢𝑟𝑐𝑒 𝑠 𝑡𝑎𝑟𝑔𝑒𝑡
 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑖𝑠𝑡𝑜𝑟𝑦 { 𝑡𝑟𝑖𝑔𝑔𝑒𝑟} 𝑡𝑎𝑡𝑒

 𝑠 𝑙𝑜𝑐 𝑡
 𝑡𝑜 𝑡𝑎𝑡𝑒 𝑠 𝑙𝑜𝑐 𝑛𝑒𝑥𝑡 𝑡

TimedConstraints::

TimedConstraint
Figure 8

 𝑖𝑚𝑒 𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

 {} 𝑒 𝑎𝑙 𝑡𝑟𝑢𝑒

 𝑠𝑔 𝑟𝑜𝑚 𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛
 𝑟𝑜𝑝 𝑟𝑜𝑚 𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛

147

suitable for the abstract language. Informally,

MessageOccurencesSpecifications represents on sequence diagram lifelines

of the events related to message sending and receiving (plus execution of

actions and other details not considered in my simplified model). The function

𝑡𝑜 expresses the translation from OccurencesSpecification elements of

the UML metamodel to messages in the abstract language specification.

Figure 39. Subset of the UML Component metamodel

Similarly, the 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑖𝑠𝑡𝑜𝑟𝑦 function applied to a model element of

type MessageOccurencesSpecification returns the sequence of messages

that maps to the Events in the lifeline before the one defined by the given

MessageOccurencesSpecification. Intuitively, this function returns the history

necessary for a query to select the correct interactions before applying the

constraint to match the message event defined by the

MessageOccurencesSpecification model element. I do not describe the

details of how this translation is performed because it is beyond the scope of

this chapter. In fact, the UML metamodel is very complex. Extracting relations

UML::Classes::

Interfaces::Interface

UML::Classes::

Dependencies::

NamedElement

UML::

CompositeStructures::

StructuredClasses::Class

IsIndirectlyInstantiated: Boolean

Component

* *

{readOnly}
required

* *

{readOnly}
provided

148

between events and specification elements in different diagrams often

requires the exploration of a deep class hierarchy. For example, leveraging

the metamodel (shown in Figure 40) to extract the history of events before a

given message in a sequence diagram implies several steps. First, identifying

the Lifeline the OccurrenceSpecification is covered by. Second, leveraging

the fact that the set of events of a lifeline is ordered, extract all the

OccurrenceSpecifications that precedes the given one. Third, scroll the

ordered list of OccurrenceSpecifications in the history and navigate their

event property to obtain the corresponding Events. Finally, using reflection,

identify the events that are related to sending and receiving messages and

use this information to generate the list of message specifications.

Figure 40. Subset of the UML Message metamodel

The four translations given in Table 4 map the elements of UML and

MARTE metamodels depicted in Figure 39, Figure 40, Figure 41, and Figure 42

to query and constraint tuples. The first line of the table gives a translation for

MessageOccurrenceSpecification

OccurrenceSpecification

UML::

CommonBehaviors::

Communications::Event

*

1 event

Lifeline

*

1

events

covered

{ordered}
Interaction Fragment

Interaction

fragment

enclosingInteraction0..1

*

UML::

CommonBehaviors::

BasicBehaviors::Behavior

149

Figure 39. This part of the metamodel defines UML components in a

component diagram. The simple model in the figure captures the relation

between Components and Interfaces which can be required or provided by

the Component. My translation simply asserts that a specification of a

component always imposes the existence of an entity with a property called

EType and value equal to the component name in the UML diagram.

Figure 41. Subset of the UML Transition metamodel

The translation of line 2 of Table 4 defines constraints imposed by a

MessageOccurrenceSpecification in a UML sequence diagram. The query

UML::CommonBehaviors::

Communications::Trigger

UML::Classes::

Kernel::

Namespace

Kind: TransitionKind

Transition

0..1

trigger

*

/isComposite: Boolean

/isOrthogonal: Boolean

/isSimple: Boolean

/isSubmachineState: Boolean

State

0..1

0..1
{subsets ownedElement}

stateInvariant

FinalState

{subset owner}
owningState

UML::Classes::

Kernel::Constraint

0..1

* deferrableTigger

UML::

CommonBehaviors::

BasicBehaviors::

Behavior

0..1

0..1 effect

{subset
ownedElement}

0..1

{subset ownedRule}
guard

0..1

0..1 0..1

{subset ownedElement}
entry

0..1 0..1

{subset ownedElement}
exit

0..1 0..1

{subset ownedElement}
doActivity

UML::Classes::

Kernel::

NamedElement

Vertex

source1

outgoing*

1

*

target

incoming

150

extracts the message history before the given

MessageOccurrenceSpecification. As already mentioned discussing

ExtractHistory, this is not a trivial operation. Figure 40 presents the relevant

subset of the UML model for sequence diagrams. Interactions are the type of

behavior specified by this type of diagram. In particular, an Interaction is a

type of Interaction Fragment that can be composed of other such fragments.

Special types of Interaction Fragments are Occurrence Specifications which

reference communication Events and Lifelines. An example of such

specifications is MessageOccurrenceSpecifications which represents

messages exchanged according to the interaction modeled. The constraint in

my translation is the existence of the message corresponding to the

MessageOccurrenceSpecification. This translation covers only events that are

messages. Other types of events cause properties in some entity to be set and

are not covered in the example.

Figure 42. Subset of the MARTE TimedConstraints metamodel

The third line of Table 4 defines a translation for state machines

transitions. To support this translation I introduce an entity property named

State. Figure 41 depicts the relevant subset of the UML metamodel for state

TimedInstantConstraint

TimedConstraint TimedInstantObsevation

1..* observation

1

event

InstantPredicate

EventOccurrence

1

specification

1 eocc
UML::

CommonBehaviors::

Communications::Event

VSL::TimeExpressions::

InstantExpression

151

machine diagrams. According to the UML metamodel a Transition has a

source and target Vertex, and State is a type of Vertex. A transition can be

taken only if the guard constraint is true and, in this case, is taken when a

given trigger occurs. Moreover, a transition can have an effect, which is a

Behavior. An example of Behavior is the Interaction (depicted in Figure 40). In

the case study, the translation is simplified to address just triggers and effects

that are messages. The query part of Transition translation selects entities

where the State variable coincides with the source state of the model. Other

propositions in the query can be used to restrict the selection to only specific

entities. In fact, state diagrams define the behavior of particular model

elements. For example, the state diagram of Figure 35c only applies to the

component Emergency Brake. In this case, the query should also limit the

selection to states of the entity Emergency Brake. This can be achieved by

adding to the query another clause that selects only entities of the correct

type (i.e., 𝐸 𝑦𝑝𝑒). The other part of the query limits the

selection to states where the trigger message is present. The constraint simply

forces the next state of the selected entities to have the target state in the

State property.

Finally the last line of Table 4 defines the translation for MARTE

TimedInstantConstraint. Figure 42 (which is adapted from [73]) shows the

relevant MARTE metamodel. A TimedInstantConstraint has a specification that

is a predicate over a set of observations (TimedInstantObservations). Each

observation identifies an event occurrence. EventOccurrences relates MARTE

152

observations to UML Event elements. The translation of InstantPredicates must

somehow interpret the Value Specification Language (VSL) instant expression

defined in MARTE’s VSL language. To this end, the translation uses an 𝑒 𝑎𝑙

Boolean function that evaluates a VSL expression. Moreover, it uses two

functions, 𝑠𝑔 𝑟𝑜𝑚 𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛𝑠 and 𝑟𝑜𝑝 𝑟𝑜𝑚 𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛𝑠, to obtain the

messages and properties that correspond to the events referred to by the

observation of a predicate. By observing Figure 42 it is evident that identifying

the event associated to a Timed Constraint is complex. Obtaining messages

and properties from events requires a good understanding of the UML

metamodel and the exploration of many nested relations. While complex,

those functions can be implemented in a program. The translation then

selects the correct messages and entities in the query part of the specification

and asserts that the specification in VSL evaluates to true in the constraint.

I can now show how to detect inconsistency with this query and

constraint framework using the example of Figure 35. Thanks to the modularity

theorem defined in the previous section, I can split each specification into

simpler specifications. In particular, because the intersection of the

specifications obtained with the modularity theorem is equivalent to the

original specification, inconsistency can be proved by just translating a subset

of the model and proving that such subset is inconsistent (no runs allowed).

For example, I translate the model element of Figure 35b that

represents the sending of an Ack message from the Emergency Brake to the

Train Controller. This translation, according to Table 4, would look like

153

 { } { 𝑡 } 𝐸 𝑦𝑝𝑒

 𝑙𝑜𝑐 𝑡

 {()} 𝐸 𝑦𝑝𝑒

The translation of Figure 35c transition triggered by the Commands

Received message is

 { 𝑡 } 𝐸 𝑦𝑝𝑒 𝑡𝑎𝑡𝑒

 𝑙𝑜𝑐 𝑡 𝑡 𝑡

 {} 𝐸 𝑦𝑝𝑒 𝑡𝑎𝑡𝑒 𝑙𝑜𝑐 𝑛𝑒𝑥𝑡 𝑡

and

 {} 𝐸 𝑦𝑝𝑒 𝑡𝑎𝑡𝑒 𝑙𝑜𝑐 𝑡

 {} 𝐸 𝑦𝑝𝑒 𝑡𝑎𝑡𝑒 𝑙𝑜𝑐 𝑛𝑒𝑥𝑡 𝑡

Let us analyze the type of runs that satisfy the translation of the

sequence diagram. We can observe that, for a run to satisfy the specification,

if in a state there is a Commands Received message received by the

Emergency Brake component, it must send an Ack message. In the sequence

diagram translation we do not specify if there is some other action local to the

Emergency Brake. In fact, the simplified translation for sequence diagrams

deals only with messages sent and received, not local actions. So the

message can be returned immediately (next state) or after some local

transitions (that is the meaning of {} , which represents a sequence of zero or

154

more states where the channel is empty). The specification, however, is clear

in identifying that no other messages are sent or received by Emergency

Brake before returning a message.

The translation of the state diagram of Figure 35c triggers a transition

from Wait Commands to Reset Timer when the Commands Received

message is received by Emergency Brake. We can identify the inconsistency

by observing that all runs that fulfill our translation for Figure 35c never send

the Ack message. The intersection of sets of runs identified by the two

specifications is, therefore, empty. Thus the two specifications are inconsistent.

In my formalism, I can prove consistency by composing query and

constraint tuples and identifying contradictions. In particular, I chose to

encode queries and constraints using Propositional Linear Temporal Logic

formulae (LTL)[74]. The encoding changes for each definition of consistency. I

can then prove that a system is consistent according to the chosen definition

by proving that the LTL formula that encodes such definition is satisfiable. This

proof can be automated by means of a satisfiability (SAT) solver for LTL

formulas. Examples of algorithms for assessing satisfiability of propositional LTL

formulas and tools implementing them can be found in [75], [76].

In this chapter I do not give a complete translation for all definitions.

Instead, I use the example of inconsistent specification from Figure 35b and

Figure 35c and encode the query and constraint specification to prove

inconsistency according to Definition 1. For each tuple of query () and

155

constraint () I create the implication , where is the next operator in

LTL. If I can find a set of variables that satisfies the disjunction of all these

implications the specification is consistent according to Definition 1.

I capture this in the following theorem.

Theorem 2. Consistency D1 Satisfiability. Given a specification

〈 〉, 〈 〉 is consistent according to consistency

Definition 1 if and only if the expression

⋀ 〈 〉 is satisfiable.

Proof. In this theorem I assume that messages in the channels history are

encoded using appropriate variables and nested temporal operators. The

exact discussion of how to encode these messages is beyond the scope of

this chapter. The proof of Theorem 2 follows from the definition of ⟦〈 〉⟧. In

fact, the semantics of 〈 〉 is defined as the set of runs that satisfy all

query/constraint tuples. I encode each tuple as an implication in LTL that is

true if a run satisfies it. The conjunction of all the LTL implications is true only if a

run satisfies all of them. If the formula in Theorem 2 is not satisfiable, there exists

no run that can satisfy all implications at the same time, thus ⟦〈 〉⟧ is empty.

On the other hand, if the expression is satisfiable, there exists at least one run

that can satisfy all queries and constraints, thus ⟦〈 〉⟧ is non-empty. This

proves Theorem 2. □

Let’s now consider how Theorem 1 and Theorem 2 apply to the

example. From Theorem 1 I know that to prove inconsistency I am not required

156

to compose all the queries and constraints. Instead I can split the specification

into two subspecifications and the original one will be equivalent to the

intersection of the new specifications. Then, if I can prove that one of the two

is empty we know that the full specification must be inconsistent. I chose to

compose only the specifications of Figure 35b and Figure 35c. I prove that this

subspecification is inconsistent (i.e., has an empty set of runs) and from

Theorem 1 I obtain that the full specification is also inconsistent.

Consider all runs satisfying the translation of the transition from Wait

Commands to Reset Timer in Figure 35c. I identify all runs with a trigger

message Commands Received and a transition in the entity Emergency Brake

with State changing from “Wait Commands” to “Reset Timer”.

Because the constraint of this specification is the query of the

translation for the transition from Reset Timer to Wait Commands in Figure 35c,

if I compose the two specifications I obtain all runs where Emergency Brake

reacts to a Commands Received by changing two states without sending any

message.

I can now compose the current system into the translation of the Ack

message specification in Figure 35b and discover that one of the next states

of the runs selected must send an Ack message before any other messages is

received by Emergency Brake. However, from state Wait Commands the

system can exit only if the trigger message Commands Received is received.

Therefore, by exploring specification tuples I can argue that because the

157

Clock time greater than 𝑡 , at which the Ack message must be sent by the

sequence diagram constraint, is finite and the specification of the state

diagram does not allow any transition that sends messages without receiving

anything from the state that it enters after the trigger message, there is a

contradiction, and, therefore, the specifications are inconsistent.

The translation of the state diagram specification in Figure 35d limited

to the transition from Reset Timer to Wait Commands is:

 {} 𝐸 𝑦𝑝𝑒 𝑡𝑎𝑡𝑒 𝑙𝑜𝑐 𝑡

 { } 𝐸 𝑦𝑝𝑒 𝑡𝑎𝑡𝑒

 𝑙𝑜𝑐 𝑛𝑒𝑥𝑡 𝑡

With this change the composition of the specifications for the state

machine identifies a sequence of states initiated by the trigger message

Commands Received that ends with the sending of an Ack message. In the

composition with the specification from Figure 35b the state where the Ack

message is sent must happen at a time 𝑛𝑒𝑥𝑡(𝑛𝑒𝑥𝑡 𝑡) that is greater than 𝑡 .

Therefore, there is no contradiction between constraints, and, thus, no

inconsistency. To prove that the entire specification is consistent all remaining

elements must be translated. While this process it long and error prone if

performed by hand, the existence of automated tools for solving the

satisfiability problem makes it a viable solution.

158

DISCUSSION

In this chapter, I demonstrated an approach for consistency

management based on queries and constraints on a reduced subset of the

UML and its MARTE profile. The goal of this work was to demonstrate the

feasibility of the approach by providing a case study where I was able to

identify inconsistencies in UML models. Thus, the translation I gave assigned a

semantics only to a subset of the modeling elements defined in the UML and

MARTE. However, even using this reduced subset I was still able to detect and

formally verify the inconsistency between models of the BART case study

including timing constraints. Because the given translation binds query and

constraint tuples to single entities in the UML metamodel, an extension to the

full language definition of UML 2.0 and its different profiles is straightforward,

albeit complex. Such an extension requires giving a precise semantics for

each diagram, and therefore, deciding how each syntactic element of each

diagram contributes to its semantics.

Tailoring this consistency notion to a particular target domain (real-time

distributed systems in this case) may, at first, seem limiting. However, I believe

that a completely general definition of consistency for a general purpose

language such as the UML ultimately limits the applicability of consistency

checking to very abstract models, or to purely structural notions of consistency

(without taking the notion of behavior into account). This claim is supported

by a thorough analysis of related work performed in [63].

159

Different decisions in how to interpret diagrams can lead to different

translations. For example, I decided to interpret sequence diagrams

universally regarding the messages exchanged. Each message represented in

the diagram is exchanged and messages not represented are not. In contrast,

state transitions are not part of my translation of sequence diagrams. This is

why I set the Clock in the query of row 2 of Table 4 as greater than the time

the previous message was sent without setting a specific interval. This is

equivalent to a commitment to eventually have a state in which the

constraint is true.

The definitions of horizontal and vertical consistency given seem

adequate for the domain of real-time systems. However, when a richer subset

of the UML or other languages, such as Orca, will be translated and more

experience acquired in verifying their consistency, I see potential for

reevaluating the definitions. One possible area of concern with the current

definition arises when I allow side effects between the queries and constraints

of multiple diagrams, in other words, non-local constraints. In this case I could

change the definition of horizontal consistency, for instance, to yield

inconsistency if the majority of the queries do not match.

The benefit of moving from the abstract domain of UML metamodels to

the query and constraint abstract language is that the translation rules define

the semantics and implicitly also the consistency rules. I can then avoid

enumerating a long list of consistency rules and obtaining a very simple

definition of consistency.

160

With this approach I have converted the problem of detecting the

consistency of graphs based on the UML metamodel to verifying emptiness of

sets. The sets are defined by logical formulae, each defining the effect of one

model element on the system runs. The composition of specifications is

defined by set intersection. Additionally I have presented a modularity

theorem (Theorem 1) that enables reasoning on separate subsets of the

query/constraint specifications. This setup is amenable to translation into

propositional linear temporal logic and supports use of many automatic

formal verification tools, such as SAT solvers. I have also provided Theorem 2

that affirms the equivalence of proving that an LTL expression is satisfiable with

horizontal consistency of the corresponding specification.

I can now evaluate the query and constraint approach proposed by

identifying how it addresses the 12 requirements identified in Table 3.

R1. Support inconsistent models. My approach addresses this

requirement by not forcing the user to remove inconsistencies. Models that

are inconsistent can be identified by identifying the tuples that are in

contradiction. More modeling elements can be added and more

contradictions detected before the system is made consistent.

R2. Automatic inconsistency discovery. Inconsistencies are discovered

by hand in this example. The goal was to show the complexity of the problem

and a possible solution. It is possible, however, to automate translation (which

leverages the UML metamodel used by all UML modeling tools) and detection

161

to discover inconsistencies automatically. Furthermore, inconsistencies can be

tracked by identifying the subset of specifications that are in contradiction.

R3. Support inconsistency resolution. The support to resolve

inconsistencies is provided by the ability to identify a small subset of the

specification that is sufficient to prove the inconsistency (this property stems

from the Modularity Theorem).

R4. Support multiple modeling languages. The query and constraint

approach supports multiple languages by creating different translation rules

from the UML metamodel to the abstract target language. It could also

support languages that are not the UML as long as they are based on a

metamodel and a translation is provided.

R5. Support different levels of abstraction. I have identified different

consistency rules and translation rules to support different levels of abstraction.

R6. Support extensions. I demonstrated the support for extensions of

UML providing a translation rule for the MARTE profile.

R7. Support Horizontal consistency. I provided two horizontal

consistency definitions.

R8. Support Vertical consistency. I provided one definition for vertical

consistency.

162

R9. Support Static consistency. This approach supports static

consistency by querying entity properties and channel messages and by

constraining them.

R10. Support Dynamic consistency. The approach supports dynamic

consistency by constraining the properties of different states in admissible runs.

Leveraging LTL logic and the Clock it is possible to set constraints on

consecutive states or future states.

R11. Provide tool support. While I haven’t provided any tool support for

this approach, I have demonstrated that a translation of the consistency

problem to satisfiability of LTL formulae exists (Theorem 2). The translation from

the UML to another domain can be automated and because queries and

constraints can be encoded in LTL, existing SAT solvers for this logic can be

leveraged to automate the verification.

R12. Address scalability. Thanks to the modularity theorem my

approach does not require reasoning about the entire model to identify

inconsistencies. This makes it applicable to large models. However, depending

on how the different specifications are interconnected, to ensure that no

inconsistency exists, it may be necessary to compose a large number of

tuples, which could slow down the identification of inconsistencies on some

models.

From this requirement analysis I conclude that the query and constraint

approach proposed is a step towards a more comprehensive consistency

163

management approach for UML models. This approach can also be

extended to incorporate interaction models based on Orca or aspect

oriented MSCs. However, more work is required to implement tools to

automate the approach and experiment with the effective scalability of such

tools by testing them on large industrial-scale system models.

SUMMARY

This chapter covered the last key requirement for a complete model

based approach: model consistency. The approach to model consistency

presented here addresses not only the modeling techniques introduced in this

thesis, but also many different languages. For this reason the case study and

models in this chapter are not based on models of interactions and

crosscutting concerns according to the Rich Service pattern. Instead the case

study uses different graphical languages from the UML profile MARTE. In fact,

supporting multiple languages is a key feature for a successful consistency

management technique.

ACKNOWLEDGEMENT

This chapter, in part, is a reprint of material as appeared in E. Farcas, I.

Krueger, and M. Menarini, “Consistency Management of UML Model,” Real-

time Simulation Technologies: Principles, Methodologies, and Applications, K.

Popovici and P. J. Mosterman (Eds.), ch. 12, p. 38, CRC Press, 2012. The

dissertation author was the primary investigator and author of the text used in

this chapter.

164

Copyright 2012 From Real-time Simulation Technologies: Principles,

Methodologies, and Applications by K. Popovici and P. J. Mosterman.

Reproduced by permission of Taylor and Francis Group, LLC, a division of

Informa plc.

165

CHAPTER 7

RELATED WORK

This chapter presents work related to the different areas relevant to the

research presented in this thesis. This survey analyzes prior work related to

model-based engineering (MBE) for software-intensive systems both in the

enterprise and embedded domains. In particular, the survey covers service-

oriented techniques, aspect-oriented modeling, architectures used in

embedded and enterprise systems, and techniques for quality assurance and

reliability of service-oriented systems.

In summary, the survey shows important advances towards systematic

engineering processes for these domains. However, it reveals the lack of

comprehensive and seamless integration of requirements, architecture,

implementation, and verification and validation models across all

development activities. In particular, crosscutting concerns are not

satisfactorily addressed in the engineering process.

REQUIREMENTS MODELS

Requirements engineering is arguably one of the most important and

least-well understood [77] development activities. Errors made during the

activities that pertain to requirements analysis and management are hard to

detect and costly to fix as time progresses through the development process.

Requirements need to articulate values of the stakeholders of the system

under consideration. Stakeholders include (and are not limited to) the

166

customer who commissions and accepts the system, regulatory bodies,

marketing and production entities, suppliers, integrators, developers,

architects and maintainers, and end-users. There are multiple ways of

classifying requirements, such as business, product, and process requirements,

or with different criteria: functional and non-functional requirements (e.g.,

usability [78], performance and efficiency [79–81], reliability [82], [83], and

interoperability [84], [85]). Consequently, models, techniques and tools for

documenting and managing requirements necessarily need to be able to

reflect the various different views that each stakeholder group brings to the

table.

Modeling plays an important role in all requirement engineering

activities, serving as a common interface to domain analysis, requirements

elicitation, specification, assessment, documentation, and evolution. The

choice of modeling notations is often a tradeoff between readability and

powerful reasoning techniques: natural language is very flexible but it is often

an expression of subjective reasoning [86–88]; applied / semi-formal models

(e.g., entity-relationship diagrams, UML diagrams, structured analysis) typically

have a graphical representation, which is very useful when communicating

with stakeholders and for simulations; and formal notations (e.g., KAOS, i*, SCR,

RML) capture precise semantics, which supports rich verification techniques.

To better support different application domains UML profiles, such as the UML

Profile for Schedulability, Performance, and Time [89] have been proposed.

167

KAOS [88], [90] and i* [91] focus on goal-based hierarchies for system

objectives, actors and actions that they are capable of, and iterative

refinement of goals using AND/OR decompositions. The resulting models rely

on temporal logic for verification of agents’ plans, fulfillment of commitments,

and other system properties.

There are several similar approaches for structured analysis, including

Structured Analysis and Design Technique (SADT) [92], Structured Analysis and

System Specification (SASS) [38], Structured System Analysis (SSA) [93], and

Structured Requirements Definition (SRD) [94]. For instance, SADT provides a

data model linked through consistency rules with a model for operations,

supports the formalization of the declarative part of the system (through

activity diagrams), but uses natural language for the requirements. SSA adds

data access diagrams, whereas SRD introduces the idea of building separate

models for each perspective and then merging them.

Software Cost Reduction (SCR) [95], [96] method uses a tabular

notation for specifying requirements, a formal Finite State Machine (FSM)

based model, and modeling constructs such as modes, terms, conditions,

variables, and events to describe the system and its behavior. The Four-

Variable Model [97–99] extends the method to entire systems by including

critical aspects of timing and accuracy as mathematical relations on

monitored and con-trolled variables. CoRE [100] goes further by providing

structuring mechanisms for variables (e.g., aggregation or generalization),

168

models (e.g., and/or decomposition), and tables (e.g., refinement

relationships).

Requirements State Machine Language (RSML) [101–103] uses both

tabular and graphical notations borrowed from Statecharts. The high-level

state machine model decouples the specification of requirements from

design aspects and enables formal analysis of the entire system for

correctness and robustness.

ARCHITECTURES

Component based. An important example of component-based frameworks

is Common Object Request Broker Architecture (CORBA) [104]. CORBA is

made of a set of specifications, which standardize how to invoke remote

objects. It is a rich specification, which covers the infrastructure needed to

create robust distributed applications. In particular, a specialization of the

CORBA specification targeting embedded systems (CORBA/e) is being

currently finalized [105]. Real-time CORBA [106] is designed for applications

with real-time requirements; it provides interfaces and policies that allow

applications to configure and manage processor, network, and memory

resources. Open-source implementations of Real- Time CORBA ORBs (Object

Request Broker), such as ZEN [107] and TAO [108], have shown that it is

possible to provide QoS guarantees in middleware. RT-CORBA has also been

used to evaluate performance in run-time evaluation of inter-action models

[36].

169

Another choice for real-time distributed software is the Honeywell’s

MetaH [109] specification language. It describes how different elements of a

system such as software components, hardware, and communication

subsystems are integrated to form the final application. A suite of visual tools

help the MetaH developer to add components, edit them, define the

scheduling, partition the application, and analyze the timing behavior. The

toolset includes formal verification, schedulability analysis, and reliability

analysis based on Markov chains. Components may be annotated in the

graphical editor with real-time properties, such as execution time and failure

modes. MetaH code generator produces glue code that includes such

properties.

Initially prototyped in the context of autonomous helicopter flight

control, Giotto [22] is a time-triggered high-level programming language that

expresses the reactivity of the application related to the external environment.

A Giotto program defines several operational modes, each one invoking a set

of periodic tasks and allowing mode changes at predefined points in time.

Giotto is a real-time extension to traditional programming languages, and has

similarities with architecture description languages (ADLs) [110]. In particular,

Giotto is similar to MetaH [109], the difference being that Giotto is time-

triggered, platform independent, and does not restrict the implementation to

a particular scheduling scheme. Giotto introduced the concept of Logical

Execution Time (LET), which abstracts from the physical execution time and,

thereby, from both the execution platform and the communication topology.

170

Moreover, for single-processor embedded control systems, the Giotto

methodology was integrated with Simulink [19] to allow streamlined

operations from the design to the implementation phase [23].

The Timing Definition Language (TDL) [111], a successor of Giotto, is a

high-level description language for specifying the explicit timing requirements

of an application, which may be constructed out of several components

(called modules). A TDL module communicates with the physical environment

through sensors and actuators, performs computation in tasks, and defines

different operational modes that can be changed at run-time. Similar to

Giotto, TDL is based on the Logical Execution Time abstraction. In addition, TDL

allows modularization of applications [112], ECU consolidation, and the

transparent distribution [113] of multi-mode real-time components. TDL

provides a complete tool chain for transparent distribution with a run-time

system [114] that enforces LET semantics and automatic generation of

communications schedule [115] and glue code [116].

With transparent distribution [113], the observable behavior of a TDL

application is exactly the same at run-time, no matter if all components are

executed on a single node or if they are distributed across multiple nodes.

Thus, TDL components can be developed without having the execution on a

potentially distributed platform in mind, as the distribution is visible only for the

system integrator who specifies the mapping of components to computation

nodes.

171

Particularly attractive for the automotive domain, TDL modules can be

developed independently of each other, by different suppliers. Each module

has its own V-Life-Cycle as seen in Figure 43 for modules M1, M2 and M3;

therefore, the system is developed in a V-Cluster-Life-Cycle [112]. In the

automotive domain, the functional model is often developed in Simulink. This

fact led to proposals to integrate TDL into Simulink (e.g., [117]).

SOA. A different architectural style is the service-oriented architecture.

Successfully applied originally in the telecommunications domain a service

has become a common term in many application domains, especially in the

context of web services [118]. So far, however, services have been used

mainly as an implementation concept.

In the telecommunication domain, for example, the notion of service is

expressed by the term feature, which is used to describe self-contained

Figure 43. TDL V-Cluster-Life-Cycle

aa

requirements

functional
model

application
code

test

verification

validation

eg, TDL+
Simulink

gener ated

requirements

functional
model

application
code

test

verification

validation

eg, TDL+
Simulink

gener ated

requirements

functional
model

application
code

test

verification

validation

eg, TDL+
Simulink

gener ated

M1

M2

M3

172

pieces of functionality and is used to structure components’ interfaces [119].

Feature interactions [120] should not lead to inconsistent behaviors. This

service notion focuses on the local interface of each component, but the

interplay between services is considered only afterwards. Consequently,

current definitions of services limit themselves to syntactical definition for

operations clients can invoke on a service; however, a behavioral model of

allowed service inter-actions is needed. This limited view of the service scope

is at the origin of the absence of a service as modeling entity in common

modeling languages such as UML [15], [16] and SysML [121].

The aim of service-oriented architectures is to make services first-class

elements of the system development process, starting from early models of

the requirements all the way to the system design, construction, and

verification. To support this approach, comprehensive service theories have

been proposed. They provide a semantic framework to interpret the service

models [122].

Implementations of service-oriented frameworks exploit the lessons

learned from component based frameworks, such as CORBA. Compared to

CORBA, SOA frameworks aim to reduce the coupling between components

and simplify the implementation of the framework. For example, in the Internet

domain, web services architecture [118] leverage Internet standard protocols

to provide an interoperable, loosely coupled framework to implement

distributed applications. The core Web Service technologies are Web Services

Description Language (WSDL) interfaces [123], the Universal Description,

173

Discovery, and Integration (UDDI) [124] standard for service discovery, and the

Simple Object Access Protocol (SOAP) [125].

Service-oriented approaches focus on the composition of basic

services to provide higher level functions. The main web service based

standards to compose services are Web Services Business Process Execution

Language (WS-BPEL) [126] and Web Services Choreography Description

Language (WS-CDL) [127]. WS-BPEL is an OASIS standard that defines a

workflow language to specify a centralized composition of web services. A

BPEL engine executes a BPEL XML document by calling web services

according to the workflow captured by it. A different approach is the one

taken by WS-CDL, which captures a global view of the composition. The

specification defines the role of each service involved in the composition; all

parties involved are responsible to implement their part of the composition.

Autosar [128], an automotive-specific framework that lever-ages some

of the ideas from SOA, tackles the integration problem by specifying

appropriate standards for interfaces among different components; thus,

software modules provided by different suppliers will be easier to integrate.

System functions modeling and function testing is a major concern. Ultimately,

Autosar aims at application-centric development of automotive software by

decoupling functions from the underlying platform through virtualization. A

similar approach, [129] de-scribes execution of SOA applications on a virtual

network that is late-bound to a physical network, essentially creating a SOA

overlay network.

174

EMBEDDED SYSTEMS IMPLEMENTATION TECHNIQUES

Traditionally, embedded applications are developed either by using a

classical sequential language such as C/C++ and Java, or by using a parallel

language, that is, a real-time programming language such as Ada [130],

CSP[131], and Real-Time Java[132]. Sequential languages lack concurrency,

whereas parallel languages support concurrency and communication as first-

class concepts.

Synchronous languages. As reactive systems continuously interact with

their environment, the speed of the interaction is dictated by the environment

and not by the computing system. The synchronous model is based on the

assumption that all computation or communication activities take no time.

Thus, synchronous languages define reactions as atomic. The implementation

may approximate synchrony by reacting to an event before another event

appears. The compiler verifies synchrony, reactivity, and determinism. The

compiler checks synchrony based on the maximum input frequency and the

worst-case execution times obtained from static code analysis. For reactivity,

the compiler must prove the absence of infinite cycles. Determinism is related

to the problem of causality, which can be easily verified by requiring

dependencies to be acyclic. However, the programmers may specify static

cyclic dependencies that lead to deterministic programs if actually there are

no cycles at run-time.

Synchronous languages are classified under two categories: imperative

and declarative languages. The imperative languages such as Esterel [133],

175

Statecharts [134], Argos [135], and SyncCharts [136] have explicit control flows

and are appropriate for control-intensive applications such as bus inter-faces,

controllers, supervision of complex systems, and real-time process control. The

declarative languages - for example, Lustre [137], [138] and Signal [139] - use

a data-flow model and are appropriate for data-intensive applications such

as signal processing and steady process-control applications.

The Esterel language is based on the semantics of the finite-state Mealy

machine [140], which ensures a deterministic behavior. Esterel is an imperative

language that provides high-level, modular constructs that lead to a structure

of reactive programs. An Esterel program is defined by a collection of

modules and a main module; a module may be instantiated within another

module and exports its data declarations to the parent module. Esterel

implements communication through signals. Modules must have a defined

interface to be able to communicate. A signal is available only at the instant

when it was produced, and signals are instantaneously broadcasted - any

module can react to the signal. Esterel pro-vides a set of primitives for

expressing concurrency, sequencing, communication, and preemption.

Regarding other imperative languages, Statecharts [134] has a

graphical formalism and is not fully synchronous. It is used to model complex

discrete controllers that need several modes of operation and a switching

mechanism; Statecharts extend the concept of finite-state machines with

hierarchy, parallel composition, and broadcast communication. Argos [135]

176

simplifies the formalism of Statecharts and provides full synchrony, and

SyncCharts [136] extend Argos to yield the power of Esterel.

Lustre [137], [138] is a declarative language that supports only the

data-flow systems that can be implemented as bounded automata-like

programs in the sense of Esterel. In Lustre, any variable and expression

represents a flow, which is a pair of a possible infinite sequence of values and

a clock. Lustre has data operators and temporal operators; synchrony in Lustre

means that all operators respond instantaneously to their input. Data

operators (e.g., arithmetic, relational, conditional opera-tors, and imported

functions described for example in C) operate pointwise on the sequences of

values of their operands. Temporal operators (e.g., pre, follow by, when, and

current) manipulate flows [138]. A Lustre program has a cyclic behavior

defined by a basic clock. The clock of any flow may be smaller than the basic

clock. In addition, the Signal language [139] allows for creating faster flows.

Tools and Platform. Model-based development techniques are useful

only if supported by a powerful set of tools. Tool support is critical to enable

the creation and exploitation of models. Models are used in the automotive

and avionics domains to capture sys-tem architecture, control loops,

electronic components behavior, mechanical characteristics, safety

properties, etc. Models are then exploited to generate implementations,

automate the generation and execution of test cases, perform formal

verifications on important systems properties, and support the con-figuration

of product lines, just to mention few applications.

177

Both in the academic and the industrial world, tools and underlying

theories have been developed to fulfill each of those functions. An example

of an industrial tool used to create control models in the automotive domain is

Matlab/Simulink. This tool is used to generate code implementing the models;

moreover, the Simulink Design Verifier tool is able to create test cases to verify

the correctness of the models. Matlab/Simulink is targeted to modeling

continuous systems, but it can also model discrete controllers by means of

Stateflow; furthermore, TTPMatlink models distributed systems by including the

time-triggered communication intro the Simulink model.

Other tools provide standard model-checking techniques to verify the

correctness of some model. For example, the SPIN model checker [141]

provides a modeling language called Promela and is able to verify complex

protocols with concurrency by exploiting a partial order reduction algorithm.

In the academic domain, SPIN has been used to verify safety properties of

interaction models for automotive systems in [142]. Similarly, [143] explores

model checking of interaction-based specifications; it uses temporal logic to

give a semantics for live sequence charts (LSCs), reducing the verification of

LSCs to the model checking of temporal logic formulae. Another ex-ample is

[144], which addresses model checking of message sequence charts.

TDL offers a VisualTDL Editor [145], which through a graphical user

interface enables the developer to visually model TDL components and their

timing requirements. It can be used as a stand-alone tool or as an integrated

Simulink editor similar to Stateflow. The VisualTDL Editor translates the visual

178

representation into TDL code, and the functionality code is automatically

generated with the Simulink add-on Real-TimeWorkshop Embedded Coder

(RTWEC). For each TDL module, the compiler generates the so-called

embedded code (E-Code [146]), which describes the timing constraints of the

module, and the glue code (E-Code is platform independent [116], but it

requires the binding with user-defined functions and a corresponding run-time

environment). The run-time system consists of the E-Machine for E-Code

execution, a TDL Scheduler, and a TDLComm layer responsible with

transferring the information over the network [147]. The run-time system

interacts with the underlying real-time operating system via a Run-Time

Resource Management (RTRM) layer [148]. This run-time environment ensures

that the LET semantics are met in both single-node and distributed systems,

and that the execution follows strict hard real-time guarantees.

Without the benefit of LET, other techniques are required to create

robust programs from code that is not fail proof. In [149] for example, a

technique to obtain failure-tolerant systems by composing intolerant systems is

proposed. Systems are com-posed with two types of components – detectors

and correctors. The paper proves that that these are sufficient to create fail-

safe and non-masking tolerant systems, respectively.

[150] extends this approach to non-fusion-closed systems; it introduces

history variables as needed to maintain the required information. Another

related approach to automate the implementation of fail-safe systems is

presented in [151]. It proposes a technique to synthesize fault-tolerant

179

programs from computation tree logic (CTL) specifications. It allows

generating not only the program behavior but also detectors and correctors

to ensure that the system is resilient to failures. The drawback of this technique

is that it is subject to the state explosion problem.

The synchronous approach is used in modeling tools such as Scade

[152], [153], which supports the development of real-time controllers on non-

distributed platforms or distributed platforms like the Timed-Triggered

Architecture [154]. The Scade suite supports the design of continuous

dataflows (based on Lustre [138]) with discrete parts realized by a state-

machine editor (based on Esterel [133]). The computational models are

compatible by transforming values and signals [152]. The Scade Suite is used

by Airbus for the development of the critical software embedded in several

aircrafts [155].

SERVICE-ORIENTED RELIABILITY

One direction of the existing work on fault tolerance for services is to

focus on the perspective of the service provider. Corresponding approaches

propose techniques for increasing the reliability and availability of a service

with respect to its clients. For instance, a number of attempts have been

made to apply techniques from Fault Tolerant CORBA (FT-CORBA) [156] to the

Web Services domain. Fault Tolerant SOAP (FT-SOAP) [157] follows the service

approach in fault tolerant CORBA and provides transparent fault tolerance by

upgrading SOAP with additional components to support fault detection and

replication management. FT-SOAP extends WSDL to inform the clients of the

180

replica information. FT-Web [40], on the other hand, follows the interception

approach from FT-CORBA and proposes an infrastructure where a dispatcher

acts as a proxy for client requests, and sends them to service replicas in

parallel. [158] applies path monitoring techniques by adding unique

identification numbers to requests and performing distributed logging. Failure

detection is based on centralized statistical analysis of the logged paths. Ref.

[159] uses a probabilistic model to detect the faulty components and

attempts to mitigate by restarting the components, or by rebooting the servers

hosting them.

Other approaches to fault tolerant services concentrate on centralized

service composition or orchestration. Here the goal is to build reliable service

composition from unreliable services. Approaches such as [46] and [42]

propose techniques to use Business Process Execution Language for Web

Services (BPEL4WS) [53] compensation and fault handlers to achieve fault

tolerant composition. Due to the nature of BPEL4WS fault handlers, detection is

only possible on a single-invocation basis as opposed to more complex

interaction based detection. Common forward recovery policies such as

ignoring, retrying, substitution, and parallel execution of alternatives can be

supported in these techniques. [160] proposes a connector that is used to

invoke the composed services, thus acting as the fault-containment element.

Assertions based on SOAP exceptions can be declared in the connector, and

if not fulfilled, recovery policies can be activated.

181

A number of transaction-based approaches also exist. In [47], both

service providers and the orchestrator explicitly declare their transactional

semantics and requirements in an XML-based language. A middleware

component acts as an intermediary service and harmonizes these

transactional requirements. [161] suggests mining the logs of the service

workflow in order to extract a model for the real workflow of the service based

on transactions and improves recovery of the transactions where possible.

A number of fault tolerance approaches also exist in the Grid services

domain. Ref. [39] suggests a primary-backup mechanism based on

notifications for the Grid Services. Grid Workflow [162] proposes a workflow

description language that allows users to define recovery strategies for cases

where a task fails to complete, in the Grid Services domain.

While all the approaches presented here helps in increasing the

reliability of service oriented systems, they consider the service as a single

invocation/response pair. Thus their applicability is limited to this simple

interaction pattern. Because I consider services as generic interactions that

can exhibit more complex pattern I must provide an improved solution. The

solution to the reliability problem I present in this thesis is based on the rich

service pattern (presented in Chapter 1) and on interceptors that monitor

complex interactions. When a failure in the execution of the complex

interactions it detected my approach can apply all forward mitigation

strategies described above. I present this technique in Chapter 2.

182

QUALITY ASSURANCE

A key element in both automotive and enterprise systems is the

requirement for high reliability. The Reliability of a system measures the ability

of it to perform its intended service [163]. A failure occurs when the system

deviates from its intended behavior. In particular, a system enters in an

erroneous state when its state is such that it can lead to a failure; the

difference between the valid state and the erroneous one is the error. A fault

is the cause that leads to erroneous state of the system [164].

From a theoretical point of view, the resilience to failures of a program

can be analyzed by identifying what is the effect of a fault on the program

result. Different categories of tolerance have been identified: masking

tolerance, non-masking tolerance, and fail-safe tolerance [165].

A key question for assessing the quality of airplanes and other vehicles

is how safe they are. In fact, verification only shows that a system performs

according to the given specification. However, the question of how safe is the

specification cannot be answered by just looking to the quality of the

software or of the system in isolation. For example, for a car that is parked in a

garage a failure of the Anti-lock Braking System (ABS) braking system is not as

unsafe as for a car that is speeding on an icy highway. In [41], for example, it is

discussed the importance of embedding the software quality assurance

process in a system-wide quality process. To assess the safety of a vehicle, it is

not possible to limit the analysis to the quality and reliability of the code.

183

Both industries engage in extensive system quality processes such as

different flavors of Failure Modes and Effects Analysis (FMEA) [166], [167] and

Fault Tree Analysis (FTA) [168] to identify and mange possible faults. Extensions

of FMEA and FTA for software systems have been proposed; Ref. [169], for

instance, discusses software FMEA techniques, and Ref. [170] discusses

Software FTA. Nevertheless, these approaches need to be complemented by

an end-to-end interaction view.

In the embedded world, different strategies and standards have been

proposed to increase the reliability of systems. For example, Fault Tolerant

CORBA [156] extends the CORBA framework to provide failover, redundancy,

detection and recovery from failures. FT-CORBA approach aims to be

transparent to the application level and embed the support for replication,

request retry, redirection to alternative servers.

Attempts to support fail-safe computation for web services via

replication have been proposed in FT-SOAP [157] and FT-Web [40]. The first

approach requires a change in the SOAP standard, whereas the second does

not.

In general, we can distinguish two strategies to recover from failures:

backward recovery and forward recovery. Backward recovery techniques

aim to return the system to a previous consistent state. These include

transaction-based approaches such as split transactions [171]. In particular,

research has focused in avoiding blocking commits using protocols such as

184

the ones presented in Ref. [172] and the Paxos consensus protocol [173].

Transaction-based approaches for the web services domain are presented in

[174] and [175]. Forward recovery, on the other hand, aims to move the

system to a new state that is correct. WS-BPEL [126], for example, includes

provisions for detecting faults (services that do not respond as expected) and

fault handlers to perform recovery activities. In this context, [42] uses the WS-

BPEL language to specify the service composition and a rule-based system to

recover from errors.

Verifying timing constraints. In the real-time systems encountered in the

automotive and avionics domains, a critical constraint is the deadline, that is,

the time instant before which a computational activity must deliver its results.

Deadline requirements are typically verified with schedulability analysis based

on analytical theory. An alternative is to provide a model of the real-time

application and verify it with formal methods. There is also ongoing research

[176], [177] in integrating scheduling theory into formal methods.

Schedulability analysis ([178], [179]) checks for a certain scheduling algorithm

whether all activities will meet their timing constraints, even in the worst-case

behavior of the system; it does not check whether the timing constraints are

appropriate for the requirements of the application – instead, formal methods

can verify functional and high-level timing requirements such as sampling and

actuating times, data avail-ability, or data consistency.

The common approaches for deriving models are to use formalism such

as process algebra [131], [180] and Petri nets or to model the system as a

185

state-transition graph [181]. The algebraic approach can be verified by proof

theoretic approaches, such as theorem provers [182], [183]. A state-transition

model can be verified by model checking [184], or reachability analysis.

Modeling timing attributes is done by including clock variables or a tick

process in the untimed models, which perform state changes by transitions or

by time steps. Timed formalisms include timed transition systems [185], timed

automata [186], and real-time temporal logic [187]. There are several tools

available for verifying real-time systems (Kronos [188], Uppaal [189], Verus

[190] and hybrid systems (HyTech [191]). Nevertheless, it is a challenge to build

models that represent complex systems, are compositional, include timing

constraints, and model the system scheduler [192]. For example, Ref. [193]

addresses the problem of obtaining a timed model from the application

software composed with the timing constraints induced by both the

environment and the execution platform. The methodology was implemented

in the Taxys tool [194], which can be used only for real-time systems

programmed in Esterel extended with C functions.

ASPECT-ORIENTED MODELING

The increasing success of Aspect-Oriented Programming techniques

(AOP) in software development has led to the idea of extending AOP to the

modeling and design levels in the software development lifecycle.

Researchers have proposed various Aspect-Oriented Modeling (AOM)

techniques and have adopted them to address the need for separation of

concerns in complex systems. A large body of work on AOM has been

186

focused on structural models, while fewer approaches also consider

behavioral models. Song et al. [195] proposes template class and sequence

diagrams to specify aspect models. Additional binding information is needed

to instantiate the template aspect models and composition is facilitated by

using composition directives. Whittle et al. [55] use Interaction Pattern

Specifications (IPS) to capture aspectual scenarios and use binding

information provided by the designer to instantiate these models. They

propose three special composition operators to compose the aspectual

models with the non-aspectual scenarios. In this paper we use template MSCs

(Aspect MSC) to capture aspect models. Bindings to other MSCs can be

explicit or can be automatically performed by matching regular expressions.

The only operator defined is the Match operator.

Jezequel et al. [196] propose a semantic-based composition of aspects

in high-level MSCs. They use a basic MSC to capture the pointcut and one to

capture the advice of the aspect. Whenever the pointcut is matched the

advice MSC replaces the pointcut MSC. By leveraging the semantics of the

Match operator, we define the pointcut and the advice in the same template

MSC, reducing the overhead of redefining the common messages in multiple

places.

A number of approaches have introduced aspects into state machine

diagrams. Whittle et al. [55] propose a new aspect composition language for

UML state diagrams. They can support complex pointcuts and specify the

pointcut and the advice in the same diagram. However, I believe that

187

specifying and composing the scenarios at the sequence diagram level is

important since it allows the designer to view and debug all the resulting

composed interactions at the MSC level.

In [197], [198], composition patterns have been proposed as a solution

to capture crosscutting concerns as patterns. In composition patterns,

template classes and sequence diagrams are used to define the crosscutting

concerns and pattern binding is used to compose the pattern with concrete

model elements. However, pointcut definition for composing the crosscutting

concerns with the concrete model elements are less flexible than approaches

such as [55] and the one presented in Chapters 4 and 5.

ACKNOWLEDGEMENT

This chapter, in part, is a reprint of material as appeared in 5 papers:

1) in C. Farcas, E. Farcas, I. H. Krueger, and M. Menarini, “Addressing the

Integration Challenge for Avionics and Automotive Systems - From

Components to Rich Services,” in The Proceedings of the IEEE Special Issue on

Aerospace and Automotive Software, K. V. Prasad (Ed.), vol. 98, no. 4. IEEE,

Apr. 2010, pp. 562-583.

2) V. Ermagan, I. H. Krüger, and M. Menarini, “A Fault Tolerance Approach for

Enterprise Applications,” in Proceedings of the IEEE International Conference

on Services Computing (SCC). Jul. 2008.

3) V. Ermagan, I. H. Krüger, and M. Menarini, “Aspect Oriented Modeling

Approach to Define Routing in Enterprise Service Bus Architectures,” in MiSE

188

'08: Proceedings of the 2008 international workshop on Models in software

engineering, Leipzig, Germany. New York, NY, USA: ACM, May 2008, pp. 15-20.

4) E. Farcas, I. Krueger, and M. Menarini, “Consistency Management of UML

Model,” Real-time Simulation Technologies: Principles, Methodologies, and

Applications, K. Popovici and P. J. Mosterman (Eds.), ch. 12, p. 38, CRC Press,

2012.

5) E. Farcas, I. Krueger, and M. Menarini, “Modeling with UML and Its Real-Time

Profiles,” Real-time Simulation Technologies: Principles, Methodologies, and

Applications, K. Popovici and P. J. Mosterman (Eds.), ch. 5, p. 36, CRC Press,

2012

The dissertation author was the primary investigator and author of the text

used in this chapter.

© 2010 IEEE. Reprinted, with permission, from C. Farcas, E. Farcas, I. H.

Krueger, and M. Menarini, Addressing the Integration Challenge for Avionics

and Automotive Systems - From Components to Rich Services, The

Proceedings of the IEEE Special Issue on Aerospace and Automotive Software,

and 04/2010

© 2008 IEEE. Reprinted, with permission, from V. Ermagan, I. H. Krüger,

and M. Menarini, A Fault Tolerance Approach for Enterprise Applications,

Proceedings of the IEEE International Conference on Services Computing

(SCC), and 07/2008

This work is based on an earlier work: Aspect Oriented Modeling

Approach to Define Routing in Enterprise Service Bus Architectures, in

189

Proceedings of the 2008 international workshop on Models in software

engineering (MiSE '08), © ACM, 2008.

http://doi.acm.org/10.1145/1370731.1370735

Copyright 2012 From Real-time Simulation Technologies: Principles,

Methodologies, and Applications by K. Popovici and P. J. Mosterman.

Reproduced by permission of Taylor and Francis Group, LLC, a division of

Informa plc.

190

CHAPTER 8

CONCLUSIONS AND OUTLOOK

In this thesis I presented techniques to support model-based

development of service-oriented systems. The key differentiator of a service-

oriented architecture versus component-oriented ones is focus on managing

the interaction patterns between the different parts of the system. Thus, I

introduced modeling techniques for specification and composition of

interaction patterns.

I applied my model-based approach to two different domains:

embedded and enterprise systems. While different in many ways, these

domains have to common challenge of integrating different subsystems that

are distributed and, often, developed by different teams. I found that the

introduction of interaction models, along with techniques for the composition

of these models, is beneficial in both domains.

In particular, I identified that the main problem in service composition

arise when composing crosscutting concerns. When decomposing a software

system, engineers chose the main concerns of the application and usually

decompose the system according to such concerns. Unfortunately, additional

concerns always exist and they often cross-cut the services created

according to the chosen decomposition.

A fundamental problem with current, “flat”, service-oriented

architectures is that they do not easily support composition of crosscutting

191

concerns. To address the limitations of current service architectures the Rich

Service pattern, presented in Chapter 1, introduces hierarchical

decomposition, message routing, and 2 different types of services: Application

and Infrastructure services. In my thesis, I proposed aspect-oriented modeling

languages for interactions as a tool for modeling Rich Services.

I demonstrated the Rich Service approach and different models of

interactions with aspects on three case studies. The central locking system

(CLS) case study, which describes the locking and unlocking of a car, covers

the embedded system domain. The CoCoME case study, which presents a

distributed managements system for a company having multiple stores,

covers the enterprise systems domain. Finally the BART case study, which

describes the automated control system for an train network, has elements

from both the embedded systems domain and the enterprise systems one.

In this thesis I focused my attention of one particular type of

crosscutting concern, failure management. For this problem I introduced

techniques to model system properties and improve reliability by generating

monitors, applying mitigation techniques, and formally verify which system

properties are maintained if failures occur.

Two key contributions of this thesis are: a comprehensive interaction

language that supports aspects, called Orca, and a technique to assess

consistency of different models of the same system developed using different

modeling languages. Orca provides a simple language that can be used to

192

formalize the different notations I use to model Rich Services. The consistency

management approach, on the other hand, guarantee that my technique

can be combined with existing modeling approach, an required feature for

using my approach in real development projects.

This thesis advances the state of the art in model-based system

development; in particular, in the field of service-oriented architecture. More

work is still needed in developing a proper tool chain and in integrating the

Orca language with other modeling techniques. However, in this thesis I have

collected enough evidence to validate the claim that: the use of Rich

Services and aspect-oriented modeling techniques is a viable avenue for

improving the development of both embedded and enterprise systems.

193

REFERENCES

[1] K. V. Prasad, M. Broy, and I. Krüger, “Scanning Advances in Aerospace

& Automobile Software Technology,” Proceedings of the IEEE, vol. 98,

no. 4, pp. 510–514, 2010.

[2] AOM ’09: Proceedings of the 13th workshop on Aspect-oriented

modeling. New York, NY, USA: ACM, 2009.

[3] A. Charfi, H. Müller, and M. Mezini, “Aspect-Oriented Business Process

Modeling with AO4BPM ,” in Modelling Foundations and Applications,

vol. 6138, T. Kühne, B. Selic, M.-P. Gervais, and F. Terrier, Eds. Springer

Berlin / Heidelberg, 2010, pp. 48–61.

[4] A. Charfi and M. Mezini, “Aspect-Oriented Web Service Composition

with AO4BPEL,” in Web Services, vol. 3250, L.-J. Zhang and M. Jeckle,

Eds. Springer Berlin / Heidelberg, 2004, pp. 168–182.

[5] J. Misra and W. Cook, “Computation Orchestration,” Software and

Systems Modeling, vol. 6, no. 1, pp. 83–110, 2007.

[6] T. Elrad, R. E. Filman, and A. Bader, “Aspect-oriented programming:

Introduction,” Commun. ACM, vol. 44, no. 10, pp. 29–32, Oct. 2001.

[7] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters, “Semantics-based

composition for aspect-oriented requirements engineering,” in AOSD

’07: Proceedings of the 6th international conference on Aspect-oriented

software development, 2007, pp. 36–48.

[8] R. B. France, I. Ray, G. Georg, and S. Ghosh, “Aspect-oriented

approach to early design modelling,” IEE Proceedings - Software, vol.

151, no. 4, pp. 173–186, Aug. 2004.

[9] D. Stein, S. Hanenberg, and R. Unland, “Expressing different conceptual

models of join point selections in aspect-oriented design,” in AOSD ’06:

Proceedings of the 5th international conference on Aspect-oriented

software development, 2006, pp. 15–26.

[10] Object Management Group, Model Driven Architecture (MDA) v1.0.1,

omg/03-06-01. OMG, 2003.

[11] G. Nicolescu and P. Mosterman, Model-Based Design for Embedded

Systems. CRC Press.

[12] R. France and B. Rumpe, “Model-driven Development of Complex

Software: A Research Roadmap,” in 2007 Future of Software

Engineering, Washington, DC, USA, 2007, pp. 37–54.

194

[13] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S.

 eema, “Developing applications using model-driven design

environments,” Computer, vol. 39, no. 2, pp. 33–40, 2006.

[14] J. Sztipanovits and G. Karsai, “Model-Integrated Computing,”

Computer, vol. 30, no. 4, pp. 110–111, 1997.

[15] Object Management Group, Unified Modeling Language (OMG UML),

Superstructure, Version 2.3, formal/2010-05-05. OMG, 2010.

[16] Object Management Group, Unified Modeling Language (OMG UML),

Infrastructure, Version 2.3, formal/2010-05-03. OMG, 2010.

[17] J. Warmer and A. Kleppe, The object constraint language: precise

modeling with UML. Addison-Wesley Longman Publishing Co., 1998.

[18] The MathWorks, “MATLAB.” [Online]. Available:

http://www.mathworks.com/products/matlab/. [Accessed: 08-Jun-

2012].

[19] The Mathworks, “Simulink - Simulation and Model-Based Design.”

[Online]. Available: http://www.mathworks.com/products/simulink/.

[Accessed: 06-Apr-2012].

[20] ETAS, “ASCET.” [Online]. Available:

http://www.etas.com/en/products/ascet_software_products.php.

[Accessed: 08-Jun-2012].

[21] S. Gérard, H. Espinoza, F. Terrier, and B. Selic, “Modeling Languages for

Real-Time and Embedded Systems - Requirements and Standards-Based

Solutions,” in Model-Based Engineering of Embedded Real-Time Systems,

vol. 6100, Springer Berlin / Heidelberg, 2011, pp. 129–154.

[22] B. Horowitz, “Giotto: A Time-Triggered Language for Embedded

Programming,” University of California, Berkeley, 2003.

[23] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree, “From

Control Models to Real-Time Code using Giotto,” IEEE Control Syst.Mag.,

vol. 23, no. 1, pp. 50–64, Feb. 2003.

[24] M. Arrott, B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger,

and M. Menarini, “Rich Services: The Integration Piece of the SOA

Puzzle,” in Proceedings of the IEEE International Conference on Web

Services (ICWS), 2007, pp. 176–183.

[25] MuleSoft, “Mule ESB - Open Source ESB Community.” [Online].

Available: http://www.mulesoft.org/. [Accessed: 19-Jun-2012].

195

[26] I. H. Krüger, M. Meisinger, M. Menarini, and S. Pasco, “Rapid Systems of

Systems Integration - Combining an Architecture-Centric Approach with

Enterprise Service Bus Infrastructure,” in Proceedings of the 2006 IEEE

International Conference on Information Reuse and Integration (IRI’06),

2006, p. 51―56.

[27] V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, and M. Menarini, “A

Service-Oriented Blueprint for COTS Integration: the Hidden Part of the

Iceberg,” in Proceedings of the ICSE Second International Workshop on

Incorporating COTS Software into Software Systems: Tools and

Techniques (IWICSS’07), 2007, p. 10.

[28] I. H. Krüger, “Distributed System Design with Message Sequence Charts,”

Fakultät für Informatik, Technischen Universität München, 2000.

[29] M. Broy and I. Krüger, “Interaction Interfaces - Towards a scientific

foundation of a methodological usage of Message Sequence Charts,”

in Proceedings of the Second IEEE International Conference on Formal

Engineering Methods (ICFEM’98), 1998, pp. 2–13.

[30] B. Demchak, C. Farcas, E. Farcas, and I. H. Krüger, “The Treasure Map

for Rich Services,” in Proceedings of the 2007 IEEE International

Conference on Information Reuse and Integration (IRI), 2007, p.

400―405.

[31] B. W. Boehm, “A spiral model of software development and

enhancement,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

[32] ational Institute of Standards and Technology (IST), “ ational

Information Assurance Partnership (NIAP) - The Common Criteria

Evaluation and Validation Scheme.” [Online]. Available:

http://www.niap-ccevs.org/cc-scheme/. [Accessed: 19-Jun-2012].

[33] T. G. K. Venkatesh Prasad, “The Case for Modeling Security, Privacy,

Usability and Reliability (SPUR),” in Automotive Software, 2006.

[34] I. H. Krüger and R. Mathew, “Component Synthesis from Service

Specifications,” in Scenarios: Models, Transformations and Tools,

International Workshop, Dagstuhl Castle, Germany, September 7-12,

2003, Revised Selected Papers, vol. 3466, S. Leue and T. J. Systä, Eds.

Springer Berlin / Heidelberg, 2005, p. 255―277.

[35] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of

Software. Addison-Wesley Professional, 2003.

[36] J. Ahluwalia, I. H. Krüger, M. Meisinger, and W. Phillips, “Model-Based

Run-Time Monitoring of End-to-End Deadlines,” in Proceedings of the 5th

196

ACM international conference on Embedded Software (EMSOFT’05),

 ew York, Y, USA, 2005, p. 100―109.

[37] V. Ermagan, I. Krüger, and M. Menarini, “Model-Based Failure

Management for Distributed Reactive Systems,” in Composition of

Embedded Systems. Scientific and Industrial Issues, 2007, vol. 4888/2007,

pp. 53–74.

[38] T. DeMarco, “Structured analysis and system specification,” in Classics in

software engineering, Upper Saddle River, NJ, USA: Yourdon Press, 1979,

pp. 409–424.

[39] X. Zhang, D. Zagorodnov, M. Hiltunen, K. Marzullo, and R. D. Schlichting,

“Fault-tolerant grid services using primary-backup: feasibility and

performance,” in Cluster Computing, 2004 IEEE International Conference

on, 2004, pp. 105 – 114.

[40] G. T. Santos, L. C. Lung, and C. Montez, “FTWeb: a fault tolerant

infrastructure for Web services,” in Ninth IEEE International EDOC

Enterprise Computing Conference, 2005, pp. 95–105.

[41] N. Leveson, SafeWare : system safety and computers. Reading, Mass.:

Addison-Wesley, 1995.

[42] A. Liu, Q. Li, L. Huang, and M. Xiao, “A Declarative Approach to

Enhancing the Reliability of BPEL Processes,” in Web Services, 2007. ICWS

2007. IEEE International Conference on, 2007, pp. 272–279.

[43] B. Demchak, V. Ermagan, E. Farcas, T.-J. Huang, I. Krüger, and M.

Menarini, “A Rich Services Approach to CoCoME,” in The Common

Component Modeling Example: Comparing Software Component

Models, A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, Eds.

Berlin/Heidelberg: Springer-Verlag, 2008, p. 85―115.

[44] A. Erradi, P. Maheshwari, and V. Tosic, “Recovery Policies for Enhancing

Web Services Reliability,” in Web Services, 2006. ICWS ’06. International

Conference on, 2006, pp. 189–196.

[45] I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts,” in

Proceedings of the IFIP WG10.3/WG10.5 international workshop on

Distributed and Parallel Embedded Systems (DIPES’98), 1999, pp. 61–71.

[46] G. Dobson, “Using WS-BPEL to Implement Software Fault Tolerance for

Web Services,” in Software Engineering and Advanced Applications,

2006. SEAA ’06. 32nd EUROMICRO Conference on, 2006, pp. 126 –133.

197

[47] T. Mikalsen, S. Tai, and I. Rouvellou, “Transactional attitudes: Reliable

composition of autonomous Web services,” in Workshop on

Dependable Middleware-based Systems, 2002.

[48] “Apache ServiceMix ESB.” [Online]. Available:

http://servicemix.apache.org. [Accessed: 26-Jan-2009].

[49] I. H. Krüger, D. Gupta, R. Mathew, P. Moorthy, W. Phillips, S. Rittmann,

and J. Ahluwalia, “Towards a Process and Tool-Chain for Service-

Oriented Automotive Software Engineering,” in Proceedings of the ICSE

2004 Workshop on Software Engineering for Automotive Systems (SEAS),

2004.

[50] V. Ermagan, T.-J. Huang, I. Krüger, M. Meisinger, M. Menarini, and P.

Moorthy, “Towards Tool Support for Service-Oriented Development of

Embedded Automotive Systems,” in Proceedings of the Dagstuhl

Workshop on Model-Based Development of Embedded Systems

(MBEES’07), Informatik-Bericht 2007-01, 2007.

[51] B. Finkbeiner and I. Krüger, “Using Message Sequence Charts for

Component-Based Formal Verification,” in Specification and Verification

of Component-Based Systems Workshop at OOPSLA 2001, 2001.

[52] V. Ermagan, I. Krueger, M. Menarini, J.-I. Mizutani, K. Oguchi, and D.

Weir, “Towards Model-Based Failure-Management for Automotive

Software,” in Proceedings of the ICSE Fourth International Workshop on

Software Engineering for Automotive Systems (SEAS’07), 2007, p. 8.

[53] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K.

Liu, D. Roller, D. Smith, and S. Thatte, Business Process Execution

Language for Web Services (BPEL4WS) 1.1. 2003.

[54] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A.

Karp, H. Kuno, M. Lemon, G. Pogossiants, S. Sharma, and S. Williams,

Web Services Conversation Language (WSCL) 1.0. W3C, 2002.

[55] J. Whittle, A. Moreira, J. Araújo, P. K. Jayaraman, A. M. Elkhodary, and R.

Rabbi, “An Expressive Aspect Composition Language for UML State

Diagrams,” in MoDELS, 2007, pp. 514–528.

[56] M. Broy and K. Stolen, Specification and Development of Interactive

Systems Focus on Streams, Interfaces, and Refinement. Springer, 2001.

[57] R. E. Filman and D. P. Friedman, “Aspect-Oriented Programming is

Quantification and Obliviousness,” Workshop on Advanced Separation

of Concerns, vol. 2000, 2000.

198

[58] I. H. Krüger, M. Meisinger, and M. Menarini, “Interaction-Based Runtime

Verification for Systems of Systems Integration,” J Logic Computation,

vol. 20, no. 3, pp. 725–742, Jun. 2010.

[59] D. Kitchin, A. Quark, W. Cook, and J. Misra, “The Orc Programming

Language,” in Formal Techniques for Distributed Systems, vol. 5522, D.

Lee, A. Lopes, and A. Poetzsch-Heffter, Eds. Springer Berlin / Heidelberg,

2009, pp. 1–25.

[60] I. Wehrman, D. Kitchin, W. R. Cook, and J. Misra, “Properties of the

Timed Operational and Denotational Semantics of Orc,” University of

Texas at Austin, Department of Computer Sciences, Technical Report TR-

07-65, 2007.

[61] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton,Jr., “ degrees of

separation: multi-dimensional separation of concerns,” in Proceedings of

the 21st international conference on Software engineering, New York,

NY, USA, 1999, pp. 107–119.

[62] I. H. Krüger and M. Menarini, “Queries and Constraints: A

Comprehensive Semantic Model for UML2,” in Models in Software

Engineering, vol. 4364, T. Kühne, Ed. Springer-Verlag Berlin Heidelberg,

2007, p. 327―328.

[63] E. Farcas, I. Krueger, and M. Menarini, “Chapter 12: Consistency

Management of UML Model,” in Real-time Simulation Technologies:

Principles, Methodologies, and Applications, K. Popovici and P. J.

Mosterman, Eds. CRC Press, 2012, pp. 289–328.

[64] V. Winter, F. Kordon, and M. Lemoine, “The BART Case Study,” in Formal

Methods for Embedded Distributed Systems, Springer US, 2004, pp. 3–22.

[65] ITU, Message sequence charts (MSC). ITU-TS Recommendation Z.120.

1996.

[66] A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,

“Inconsistency handling in multiperspective specifications,” Software

Engineering, IEEE Transactions on, vol. 20, no. 8, pp. 569–578, 1994.

[67] S. Easterbrook and B. useibeh, “Using ViewPoints for inconsistency

management,” Software Engineering Journal, vol. 11, no. 1, pp. 31–43,

1996.

[68] S. Easterbrook, “Learning from inconsistency,” in Proceedings of the 8th

International Workshop on Software Specification and Design

(IWSSD’96), 1996, pp. 136–140.

199

[69] S. Easterbrook, J. Callahan, and V. Wiels, “V&V through inconsistency

tracking and analysis,” in Software Specification and Design, 1998.

Proceedings. Ninth International Workshop on, 1998, pp. 43–49.

[70] W. Hongyuan, F. Tie, Z. Jiachen, and Z. Ke, “Consistency check

between behaviour models,” in Communications and Information

Technology, 2005. ISCIT 2005. IEEE International Symposium on, 2005, vol.

1, pp. 486–489.

[71] G. Engels, J. M. Küster, R. Heckel, and L. Groenewegen, “A

methodology for specifying and analyzing consistency of object-

oriented behavioral models,” SIGSOFT Softw. Eng. Notes, vol. 26, no. 5,

pp. 186–195, 2001.

[72] H. Malgouyres and G. Motet, “A UML model consistency verification

approach based on meta-modeling formalization,” in Proceedings of

the 2006 ACM symposium on Applied computing, Dijon, France, 2006,

pp. 1804–1809.

[73] Object Management Group, UML Profile for Modeling and Analysis of

Real-Time and Embedded systems (MARTE) Version 1.0, formal/2009-11-

02. OMG, 2009.

[74] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium

on Foundations of Computer Science (FOCS 1977), 1977, pp. 46–57.

[75] V. Goranko, A. Kyrilov, and D. Shkatov, “Tableau Tool for Testing

Satisfiability in LTL: Implementation and Experimental Analysis,”

Electron.Notes Theor.Comput.Sci., vol. 262, pp. 113–125, 2010.

[76] K. Y. Rozier and M. Y. Vardi, “LTL satisfiability checking,” in Proceedings

of the 14th international SPIN conference on Model checking software,

Berlin, Heidelberg, 2007, vol. Berlin, Germany, pp. 149–167.

[77] M. Shaw, “Prospects for an engineering discipline of software,” IEEE

Software, vol. 7, no. 6, pp. 15–24, Nov. 1990.

[78] J. L. Bennett, “Managing to meet usability requirements: Establishing

and meeting software development goals,” Visual Display Terminals:

Usability Issues and Health Concerns, pp. 161–184, 1984.

[79] B. ixon, “Representing and using performance requirements during the

development of information systems,” in Advances in Database

Technology — EDBT ’94, vol. 779, Springer Berlin / Heidelberg, 1994, pp.

187–200.

[80] P. J. Guinan, J. G. Cooprider, and S. Faraj, “Enabling software

development team performance during requirements definition: a

200

behavioral versus technical approach,” Information Systems Research,

vol. 9, no. 2, pp. 101–125, Jun. 1998.

[81] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-based

performance prediction in software development: a survey,” IEEE

Transactions on Software Engineering, vol. 30, no. 5, pp. 295– 310, May

2004.

[82] D. Del Gobbo, M. apolitano, J. Callahan, and B. Cukic, “Experience in

developing system requirements specification for a sensor failure

detection and identification scheme,” in High-Assurance Systems

Engineering Symposium, 1998. Proceedings. Third IEEE International, 1998,

pp. 209–212.

[83] C. Smidts, M. Stutzke, and R. W. Stoddard, “Software reliability modeling:

an approach to early reliability prediction,” IEEE Transactions on

Reliability, vol. 47, no. 3, pp. 268–278, Sep. 1998.

[84] L. Chung and J. do Prado Leite, “On non-functional requirements in

software engineering,” in Conceptual Modeling: Foundations and

Applications, vol. 5600, Springer Berlin / Heidelberg, 2009, pp. 363–379.

[85] S. Lauesen, Software Requirements: Styles & Techniques, 1st ed.

Addison-Wesley Professional, 2002.

[86] P. Zave, “Classification of research efforts in requirements engineering,”

ACM Comput. Surv., vol. 29, no. 4, pp. 315–321, Dec. 1997.

[87] P. Zave and M. Jackson, “Four dark corners of requirements

engineering,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 1, pp. 1–30,

Jan. 1997.

[88] A. Dardenne, S. Fickas, and A. van Lamsweerde, “Goal-directed

concept acquisition in requirements elicitation,” in Proceedings of the

6th international workshop on Software specification and design, Los

Alamitos, CA, USA, 1991, pp. 14–21.

[89] Object Management Group, UML Profile for Schedulability,

Performance, and Time, v1.1, formal/05-01-02. OMG, 2005.

[90] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed

requirements acquisition,” in Selected Papers of the Sixth International

Workshop on Software Specification and Design, Amsterdam, The

Netherlands, 1993, pp. 3–50.

[91] E. S.-K. Yu, “Towards modelling and reasoning support for early-phase

requirements engineering,” in Proceedings of the Third IEEE International

201

Symposium on Requirements Engineering, Washington, DC, USA, 1997,

pp. 226–235.

[92] D. T. Ross and K. E. Schoman Jr, “Structured analysis for requirements

definition,” in Classics in software engineering, Upper Saddle River, NJ,

USA: Yourdon Press, 1979, pp. 363–386.

[93] C. P. Gane and T. Sarson, Structured Systems Analysis: Tools and

Techniques. Prentice Hall Professional Technical Reference, 1979.

[94] K. Orr, Structured requirements definition. Topeka, KS: Ken Orr and

Associates Inc, 1981.

[95] K. L. Heninger, J. W. Kallander, D. L. Parnas, and J. E. Shore, “Software

requirements for the A-7 E aircraft,” aval Research Lab., Washington

D.C., 1978.

[96] K. L. Heninger, “Specifying Software Requirements for Complex Systems:

 ew Techniques and Their Application,” IEEE Transactions on Software

Engineering, vol. 6, no. 1, pp. 2–13, 1980.

[97] D. L. Parnas and J. Madey, “Functional Documentation for Computer

Systems Engineering,” McMaster University, CRL, Telecommunications

Research Institute of Ontario (TRIO), Hamilton, Ont., Canada, CRL Report

237, 1991.

[98] C. Heitmeyer, B. Labaw, and D. Kiskis, “Consistency checking of SCR-

style requirements specifications,” in Proceedings of the Second IEEE

International Symposium on Requirements Engineering, Washington,

DC, USA, 1995, pp. 56–63.

[99] C. Heitmeyer and D. Mandrioli, Formal Methods for Real-Time

Computig. New York, NY, USA: John Wiley and Sons, 1996.

[100] S. Faulk, J. Brackett, P. Ward, and J. Kirby, “The Core method for real-

time requirements,” IEEE Software, vol. 9, no. 5, pp. 22–33, 1992.

[101] M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart,

“Software requirements analysis for real-time process-control systems,”

IEEE Transactions on Software Engineering, vol. 17, no. 3, pp. 241–258,

1991.

[102] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese,

“Requirements specification for process-control system,” IEEE

Transactions on Software Engineering, vol. 20, no. 9, pp. 684–707, 1994.

[103] M. P. E. Heimdahl and . G. Leveson, “Completeness and consistency

in hierarchical state-based requirements,” IEEE Transactions on Software

202

Engineering, Special issue: best papers of the 17th International

Conference on Software Engineering (ICSE-17), vol. 22, no. 6, pp. 363–

377, 1996.

[104] Object Management Group, Common Object Request Broker

Architecture (CORBA) 3.1. OMG, 2008.

[105] Object Management Group, Common Object Request Broker

Architecture (CORBA) For Embedded (CORBAe), Version 1.0, vol.

ptc/2008–02–02. OMG, 2008.

[106] Object Management Group, Real-time CORBA, Version 1.2. 2002.

[107] R. Klefstad, D. C. Schmidt, and C. O’Ryan, “Towards highly configurable

real-time object request brokers,” in Proceedings of the Fifth IEEE

International Symposium on Object-Oriented Real-time Distributed

Computing (ISORC), Los Alamitos, CA, USA, 2002, pp. 437–447.

[108] D. C. Schmidt, D. L. Levine, and S. Mungee, “The design of the TAO real-

time object request broker,” Comput.Commun., vol. 21, no. 4, pp. 294–

324, 1998.

[109] S. Vestal, MetaH Users Manual, Version 1.27. 3660 Technology Drive,

Minneapolis, MN 55418: Honeywell Technology Center, 1998.

[110] P. Clements, “A survey of architecture description languages,” in

Proceedings of the 8th International Workshop on Software Specification

and Design, 1996, pp. 16–25.

[111] Chrona, “Scientific foundations - technology - chrona.” [Online].

Available: http://www.chrona.com/en/technology/scientific-

foundations/. [Accessed: 06-Apr-2012].

[112] E. Farcas, C. Farcas, W. Pree, and J. Templ, “Real-Time Component

Integration Based on Transparent Distribution,” in Proceedings of the

2nd workshop on Software Engineering for Automotive Systems (SEAS)

at 27th ACM International Conference on Software Engineering (ICSE),

St. Louis, 2005.

[113] E. Farcas, C. Farcas, W. Pree, and J. Templ, “Transparent Distribution of

Real-Time Components Based on Logical Execution Time,” in

Proceedings of ACM SIGPLAN/SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems (LCTES), Chicago, Illinois,

USA, 2005, pp. 31–39.

[114] C. Farcas and W. Pree, “A Deterministic Infrastructure for Real-Time

Distributed Systems,” in Proceedings of the ECRTS Workshop on

203

Operating Systems Platforms for Embedded Real-Time applications

(OSPERT), 2007.

[115] E. Farcas and W. Pree, “Hyperperiod Bus Scheduling and Optimizations

for TDL Components,” in Proceedings of the 12th IEEE Conference on

Emerging Technologies and Factory Automation (ETFA), 2007, p.

1262―1269.

[116] C. Farcas and W. Pree, “Virtual Execution Environment for Real-Time TDL

Components,” in Proceedings of the 12th IEEE Conference on Emerging

Technologies and Factory Automation (ETFA), 2007, p. 93―100.

[117] W. Pree, G. Stieglbauer, and J. Templ, “Simulink Integration of

Giotto/TDL,” in Automotive Software – Connected Services in Mobile

Networks, vol. 4147, Springer, 2006, pp. 137–154.

[118] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,

and D. Orchard, Eds., Web Services Architecture. W3C, 2004.

[119] C. Prehofer, “Plug-and-play composition of features and feature

interactions with statechart diagrams,” Software and Systems Modeling,

vol. 3, no. 3, pp. 221–234, 2004.

[120] P. Zave, “Feature interactions and formal specifications in

telecommunications,” Computer, vol. 26, no. 8, pp. 20–28, 30, 1993.

[121] Object Management Group, OMG Systems Modeling Language (OMG

SysMLTM), Version 1.2, vol. formal/2010–06–01. OMG, 2010.

[122] M. Broy, I. H. Krüger, and M. Meisinger, “A formal model of services,”

ACM Trans. Softw. Eng. Methodol., vol. 16, no. 1, Feb. 2007.

[123] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web

Services Description Language (WSDL) 1.1. W3C, 2001.

[124] UDDI Version 3.0.2. OASIS, 2004.

[125] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A.

Karmarkar, and Y. Lafon, Eds., SOAP Version 1.2 Part 1: Messaging

Framework (Second Edition). W3C, 2007.

[126] OASIS, Web Services Business Process Execution Language Version 2.0,

vol. OASIS Standard. 2007.

[127] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C.

Barreto, Eds., Web Services Choreography Description Language

Version 1.0. W3C, 2005.

204

[128] AUTOSAR, “Automotive Open System Architecture.” [Online]. Available:

http://www.autosar.org. [Accessed: 19-Jun-2012].

[129] D. Skvorc, S. Srbljic, and M. Podravec, “Virtual etwork for Development

and Execution of Service-Oriented Applications,” in International

conference on Networking and Services (ICNS ’06), 2006, p. 96.

[130] S. T. Taft and R. A. Duff, Ada 95 Reference Manual: Language and

Standard Libraries, vol. 1246. Springer, 1995.

[131] C. A. R. Hoare, CSP--Communicating Sequential Processes. Prentice

Hall, 1985.

[132] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M.

Turnbull, The Real-Time Specification for Java. Addison Wesley, 2000.

[133] G. Berry, The Esterel v5 Language Primer - Version v5 91. 06902 Sophia-

Antipolis CDX, France: INRIA, 2000.

[134] D. Harel, “Statecharts: A visual formalism for complex systems,” Science

of Computer Programming, vol. 8, no. 3, p. 231―274, Jun. 1987.

[135] F. Maraninchi, “The Argos language: Graphical representation of

automata and description of reactive systems,” in IEEE Workshop on

Visual Languages, Kobe, Japan, 1991.

[136] C. André, “Representation and analysis of reactive behaviors: a

synchronous approach,” in Proceedings of CESA’96, Lille, France, 1996.

[137] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “Lustre: A declarative

language for programming synchronous systems,” in 14th ACM

Symposium on Principles of Programming Languages, Munich, Germany,

1987, pp. 178–188.

[138] . Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous

data-flow programming language Lustre,” Proceedings of the IEEE, vol.

79, no. 9, p. 1305―1320, Sep. 1991.

[139] P. L. Guernic, T. Gautier, M. L. Borgne, and C. de Marie, “Programming

real-time applications with Signal,” Proceedings of the IEEE, vol. 79, no. 9,

p. 1321―1335, Sep. 1991.

[140] F. C. Hennie, Finite-state Models for Logical Machines. John Wiley &

Sons, 1968.

[141] G. J. Holzmann, The Spin Model Checker. Addison-Wesley Professional,

2003.

205

[142] V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, and M. Menarini, “A

Service-Oriented Approach to Failure Management,” in Tagungsband

des Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung

eingebetteter Systeme IV, 2008.

[143] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps, “Temporal Logic

for Scenario-Based Specifications,” in Tools and Algorithms for the

Construction and Analysis of Systems, Springer Berlin / Heidelberg, 2005,

pp. 445–460.

[144] R. Alur and M. Yannakakis, “Model Checking of Message Sequence

Charts,” in Proceedings of the 10th International Conference on

Concurrency Theory, London, UK, 1999, pp. 114–129.

[145] A. Werner, “Visual TDL - The Timing Description Language Integrated in

Simulink,” Department of Computer Science, University of Salzburg,

Austria, 2005.

[146] C. M. Kirsch, M. A. A. Sanvido, and T. A. Henzinger, “A Programmable

Microkernel for Real-Time Systems,” in Proc. ACM/USENIX Conference on

Virtual Execution Environments (VEE), 2005, pp. 35–45.

[147] G. Menkhaus, S. Fischmeister, M. Holzmann, and C. Farcas, “Towards

Efficient Use of Shared Communication Media in the Timed Model,” in

11th IEEE Real Time and Embedded Technology and Applications

Symposium (RTAS 2005), 2005, pp. 342–351.

[148] C. Farcas, “Towards Portable Real-Time Software Components,”

Department of Computer Science, University of Salzburg, Austria, 2006.

[149] A. Arora and S. S. Kulkarni, “Component based design of multitolerant

systems,” IEEE Transactions on Software Engineering, vol. 24, no. 1, pp.

63–78, 1998.

[150] F. C. Gärtner and A. Jhumka, “Automating the Addition of Fail-Safe

Fault-Tolerance: Beyond Fusion-Closed Specifications,” in Formal

Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,

2004, pp. 183–198.

[151] P. C. Attie, A. Arora, and E. A. Emerson, “Synthesis of fault-tolerant

concurrent programs,” ACM Trans.Program.Lang.Syst., vol. 26, no. 1, pp.

125–185, 2004.

[152] J.-L. Camus and B. Dion, Efficient Development of Airborne Software

with Scade Suite. Esterel Technologies, 2003.

206

[153] P. Caspi and P. Raymond, “From Control system design to embedded

code: the synchronous data-flow approach,” in 40th IEEE Conference

on Decision and Control, 2001, pp. 3278–3283.

[154] H. Kopetz and G. Bauer, “The Time Triggered Architecture,” Proceedings

of the IEEE - Special Issue on Modeling and Design of Embedded

Software, vol. 91, no. 1, pp. 112–126, 2002.

[155] G. Durrieu, O. Laurent, C. Seguin, and V. Wiels, “Formal Proof and Test

Case Generation for Critical Embedded Systems Using Scade,” in

Building the Information Society, vol. 156/2004, Springer, 2004, pp. 499–

504.

[156] Object Management Group, Fault Tolerant CORBA, vol. formal/04–03–

21 chapter 23. OMG, 2009.

[157] D. Liang, C.-L. Fang, C. Chen, and F. Lin, “Fault tolerant Web service,” in

Software Engineering Conference, 2003. Tenth Asia-Pacific, 2003, pp.

310–319.

[158] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and E.

Brewer, “Path-based failure and evolution management,” in

Proceedings of the 1st conference on Symposium on Networked

Systems Design and Implementation, 2004, pp. 309–322.

[159] K. R. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D. Schlichting,

“Automatic model-driven recovery in distributed systems,” in Reliable

Distributed Systems, 2005. SRDS 2005. 24th IEEE Symposium on, 2005, pp.

25 – 36.

[160] N. Salatge and J.-C. Fabre, “Fault Tolerance Connectors for Unreliable

Web Services,” in Dependable Systems and Networks, 2007. DSN ’07.

37th Annual IEEE/IFIP International Conference on, 2007, pp. 51 –60.

[161] S. Bhiri, W. Gaaloul, and C. Godart, “Discovering and Improving

Recovery Mechanisms of Composite Web Services,” in Web Services,

2006. ICWS ’06. International Conference on, 2006, pp. 99 –110.

[162] S. Hwang and C. Kesselman, “Grid workflow: a flexible failure handling

framework for the grid,” in High Performance Distributed Computing,

2003. Proceedings. 12th IEEE International Symposium on, 2003, pp. 126 –

137.

[163] P. A. Lee and T. Anderson, Fault tolerance, principles and practice, vol.

2nd. Springer-Verlag, 1990.

207

[164] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Concepts

and Taxonomy of Dependable and Secure Computing,” IEEE Trans.

Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[165] S. S. Kulkarni and A. Ebnenasir, “Automated synthesis of multitolerance,”

in Dependable Systems and Networks, 2004 International Conference

on, 2004, pp. 209–218.

[166] US Gov., Procedures for Performing a Failure Mode, Effects and

Criticality Analysis, vol. MIL-STD-1629A. Military Standard, 1980.

[167] Committee Automotive Quality And Process Improvement, Potential

Failure Mode and Effects Analysis in Design (Design FMEA) and Potential

Failure Mode and Effects Analysis in Manufacturing and Assembly

Processes (Process FMEA) and Effects Analysis for Machinery (Machinery

FMEA), vol. J1739. SAE, 2002.

[168] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault Tree

Handbook. Washington, DC: U.S. Nuclear Regulatory Commission, 1981.

[169] P. L. Goddard, “Software FMEA techniques,” in Reliability and

Maintainability Symposium, 2000. Proceedi gs. Annual, 2000, pp. 118–

123.

[170] . G. Leveson and P. R. Harvey, “Analyzing Software Safety,” IEEE

Transactions on Software Engineering, vol. 9, no. 5, pp. 569–579, 1983.

[171] C. Pu, G. E. Kaiser, and . C. Hutchinson, “Split-Transactions for Open-

Ended Activities,” in Proceedings of the 14th International Conference

on Very Large Data Bases, 1988, pp. 26–37.

[172] D. Skeen, “ onblocking commit protocols,” in Proceedings of the 1981

ACM SIGMOD international conference on Management of data, Ann

Arbor, Michigan, 1981, pp. 133–142.

[173] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM

Trans. Database Syst., vol. 31, no. 1, pp. 133–160, 2006.

[174] P. Pires, M. Benevides, and M. Mattoso, “Building Reliable Web Services

Compositions,” in Web, Web-Services, and Database Systems, vol. 2593,

Springer, 2003, pp. 59–72.

[175] S. Tai, T. Mikalsen, E. Wohlstadter, N. Desai, and I. Rouvellou,

“Transaction policies for service-oriented computing,” Data Knowl.Eng.,

vol. 51, no. 1, pp. 59–79, Oct. 2004.

208

[176] E. Fersman, “A Generic Approach to Schedulability Analysis of Real-

Time Systems,” Faculty of Science and Technology, UPPSALA University,

2003.

[177] V. A. Braberman, “Modeling and Checking Real-Time System Designs,”

Departamento de Computación, Universidad de Buenos Aires, 2000.

[178] J. W. S. Liu, Real-Time Systems. Prentice-Hall, 2000.

[179] G. C. Buttazzo, Hard real-time computing systems: predictable

scheduling algorithms and applications, vol. 1st. Kluwer Academic

Publishers, 1997.

[180] R. Milner, Communicating and Mobile Systems: The Pi Calculus.

Cambridge University Press, 1999.

[181] D. Harel, Modeling Reactive Systems With Statecharts : The Statemate

Approach. McGraw-Hill, 1998.

[182] S. Owre, J. M. Rushby, and . Shankar, “PVS: A prototype verification

system,” in 11th International Conference on Automated Deduction

(CADE), London, UK, 1992, vol. 607, pp. 748–752.

[183] L. C. Paulson, Isabelle: A Generic Theorem Prover. Springer-Verlag Berlin

/ Heidelberg, 1994.

[184] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,

2000.

[185] T. A. Henzinger, Z. Manna, and A. Pnueli, “Temporal Proof

Methodologies for Timed Transition-Systems,” Information and

Computation, vol. 112, no. 2, pp. 273–337, Aug. 1994.

[186] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

Computer Science, vol. 126, no. 2, pp. 183–235, Apr. 1994.

[187] R. Alur and T. A. Henzinger, “Logics and models of real time: a survey,”

in Real Time: Theory in Practice, vol. 600/1992, Springer, 1992, pp. 74–106.

[188] S. Yovine, “Kronos: A verification tool for real-time systems,” International

Journal on Software Tools for Technology Transfer (STTT), vol. 1, no. 1–2,

pp. 123–133, 1997.

[189] K. Larsen, P. Petterson, and W. Yi, “Uppaal in a nutshell,” International

Journal on Software Tools for Technology Transfer (STTT), vol. 1, no. 1–2,

pp. 134–152, 1997.

[190] S. Campos, E. Clarke, W. Marrero, and M. Minea, “Verus: A Tool for

Quantitative Analysis of Finite-State Real-Time Systems,” in Proc.

209

Workshop on Languages, Compilers and Tools for Real-Time Systems,

1995, pp. 70–78.

[191] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker

for hybrid systems,” International Journal on Software Tools for

Technology Transfer (STTT), vol. 1, no. 1–2, pp. 110–122, 1997.

[192] J. Sifakis, “Modeling Real-Time Systems - Challenges and Work

Directions,” in Proceedings of the International Workshop on Embedded

Software (EMSOFT), 2001, vol. 2211, pp. 373–389.

[193] J. Sifakis, S. Tripakis, and S. Yovine, “Building Models of Real-Time Systems

from Application Software,” in Proceedings of the IEEE - Special Issue on

Modeling and Design of Embedded Software, 2003, vol. 91, pp. 100–111.

[194] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine,

“Taxys: a tool for the development and verification real-time embedded

systems,” in Lecture Notes in Computer Science, Paris, France, 2001, vol.

2102, pp. 391–395.

[195] E. Song, R. Reddy, R. France, I. Ray, G. Georg, and R. Alexander,

“Verifiable composition of access control and application features,” in

SACMAT ’05: Proceedings of the tenth ACM symposium on Access

control models and technologies, 2005, pp. 120–129.

[196] J. Klein, L. Hélouët, and J.-M. Jézéquel, “Semantic-based weaving of

scenarios,” in AOSD ’06: Proceedings of the 5th international

conference on Aspect-oriented software development, 2006, pp. 27–38.

[197] S. Clarke and R. J. Walker, “Towards a standard design language for

AOSD,” in AOSD ’02: Proceedings of the 1st international conference on

Aspect-oriented software development, 2002, pp. 113–119.

[198] S. Clarke and R. J. Walker, “Composition patterns: an approach to

designing reusable aspects,” in ICSE ’01: Proceedings of the 23rd

International Conference on Software Engineering, 2001, pp. 5–14.

