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Developing complex distributed software systems challenges the 

methodologies currently available for the crucial task of integrating 

crosscutting concerns. Crosscutting concerns are concerns that, albeit 

important, do not fit into the problem decomposition schema chosen for an 

application architecture. While service-oriented architectures (SOAs) have 

been proposed as a viable solution for this integration problem, the current 

state of the art is still insufficient. 



xxvii 

This dissertation extends the current body of work on service-oriented 

systems to ease the integration of crosscutting concerns in large scale systems, 

though the applicability of this work spans from large enterprise systems-of-

systems to the embedded systems domain. To achieve this result, the research 

presented here leverages two key elements: 1) an architectural blueprint 

called Rich Services, which supports the hierarchical decomposition of systems 

into a set of services communicating via a message based infrastructure, and 

2) a model-based approach to capturing systems requirements and modeling 

systems according to the Rich Service blueprint. 

This manuscript presents three contributions: 1) an aspect-oriented 

language for interaction models that support Rich Service compositions, 2) a 

technique that addresses failure management, which is an important 

example of a crosscutting concern, and 3) an approach to verifying the 

consistency of different views of the same system in different modeling 

languages. 

The contributions presented in this dissertation are validated using case 

studies from the business applications and the automotive domains. The 

business application example is an important representative of problems 

relating to enterprise applications, and the automotive case study exemplifies 

the problems found in embedded systems.  
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INTRODUCTION 

The complexity of developing software systems has increased in the last 

years due to increasingly complex requirements and need for distribution [1]. 

In fact, with the advent of the Internet, many software systems that were 

traditionally local to a single computer started to interact with remote servers. 

This is especially true with the current push for Cloud based technologies. 

Examples of distributed systems do not limit themselves to internet related 

technologies. Complex embedded systems, such as cars, are also distributed 

systems with the additional complexity of real-time requirements. 

A winning strategy to tackle these types of complex systems is 

decomposition. For distributed systems this means identifying communication 

interfaces and interaction patterns between each component. A viable 

approach in this domain leverages service-oriented architectures (SOAs). 

SOAs promise loosely coupled components and support the challenges of 

geographically distributed systems, where components are managed by 

different companies. 

This thesis focuses on two domains that have different requirements: 

embedded and enterprise systems. A first difference is that embedded 

systems are often real-time while enterprise systems promise only best effort 

response time. Another difference is that embedded systems are often 

required to optimize their responses to prioritize critical events while enterprise 

systems typically strive to optimize the global throughput. Moreover, 
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embedded systems are subject to power constraints and computation power 

limitations while enterprise systems can often leverage seemingly unlimited 

resources of large data centers. 

In my research, however, I have realized that clear cut boundaries 

between embedded and enterprise systems have been blurring. On the 

embedded system side, phones are now shipping with four CPU cores and 

cars are connecting to the internet and driving themselves. On the other 

hand, new trends in data centers research focus on minimizing the power 

consumption of server computers for example leveraging virtualization to 

share existing resources between multiple applications. Virtualization poses 

new challenges in the enforcement of quality of service, and requires 

techniques to prioritize and even move computations. 

While some of the requirements of embedded and enterprise systems 

are converging, there are still big differences. However, I identified a 

fundamental common denominator in developing both types of systems: 

managing interactions. From an abstract point of view, the composition of 

different subsystem entails defining how they interact and ensure that some 

properties of these interactions are fulfilled. Thus, the remainder of this thesis 

focuses on methodologies to model interactions, compose them, verify that 

the models are correct, and use the models in the development of real 

systems. In particular, I address the key problem of how to compose concerns 

that are crosscutting the main business logic of the application. 



3 

 

Crosscutting concerns are an active area of research in computer 

science. Albeit important, crosscutting concerns are not yet fully understood. 

The most successful treatment of such concerns is articulated mainly at code 

level with aspect-oriented programming. So far, however, composition of 

aspects is poorly understood and rarely exploited beyond trivial code 

examples (e.g. the classical case study for aspects is “logging”). While some 

work has been done in the context of aspect-oriented modeling [2] and 

aspect-oriented workflows [3], [4], composition of aspects is still plagued by 

the problem of unanticipated interactions. Rich Services embodies 

architectural principles that support composition of crosscutting concerns 

explicitly, but a language to model the composition of crosscutting 

interactions is needed. I discuss crosscutting concerns and the Rich Service 

blueprint in Chapter1. 

In this thesis I first show case studies about fault tolerance. Fault 

tolerance is a crosscutting concern that is arguably more complex than 

“logging”, the standard example on which aspect-oriented programming 

(AOP) has proven successful. Using thes case studies I can show how complex 

crosscutting concerns challenge the current state of the art and how Rich 

Services address the existing problems. In this context, Chapter 2 introduces 

and enterprise system example, CoCoME, and describes a first contribution: 

how to leverage Rich Services for fault tolerance. 

Leveraging the understanding of crosscutting concerns, applied to 

CoCoME in Chapter 2, I show how service models can be exploited for 
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verification. Using Rich Services and the architectural principles it embodies, 

Chapter 3 introduces a formal approach to verify system reliability. In this 

case, the case study is from the automotive domain: a car central locking 

system.  

While the case studies and approaches presented in Chapters 2 and 3 

solve the specific problem of failure management, they do not address 

crosscutting concerns in general. The key element that is missing in these 

approaches is a clear articulation of composition of crosscutting concerns. 

After understanding the issues of the current approaches in supporting 

crosscutting concerns composition, the next step is to establish a foundation 

for composing crosscutting concerns. To this end Chapter 4 discusses how to 

model crosscutting concerns in general. This chapter introduces an extension 

to message sequence charts (MSCs) that supports aspects.  

A core contribution of this thesis is an orchestration language, which 

supports crosscutting concerns, and addresses the limitations of other aspect-

oriented techniques. This language, that I call Orca, extends the Orc [5] 

orchestration language. Orc is an elegant language; it addresses many 

orchestration requirements with just 3 operators, and has a well understood 

formal semantics. Orca extends Orc by adding operators that extract 

message flows from expressions variables; the orchestration of aspects is then 

performed using Orc itself. 
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Orca provides a formal definition to the modeling technique 

introduced in Chapter 4, and is a good candidate to act as a general 

framework to formally describe Rich Services. Chapter 5 presents Orca. 

A final requirement for a seamless integration of crosscutting concerns 

in a model based approach is model consistency. Chapter 6 discusses the 

issue of model consistency. In particular, it presents an approach to deal with 

the consistency of different models of the same system, even when the 

models use different languages, a common situation in real world system 

development. While this chapter does not use Orca directly as its target 

modeling language, the system model used in it is an abstraction to which the 

Orca model "compiles into". The semantic model presented is intended to 

work with Orca and other modeling languages as well. 

Another important part of this thesis is Chapter 7 that covers a broad 

spectrum of related work, and Chapter 8, which contains my concluding 

remarks and an outlook on future research. 
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CHAPTER 1 

CROSSCUTTING CONCERNS 

In this chapter I outline an approach to software development based 

on a service-oriented architecture. The goal of this approach is solving the 

integration issues that still dominate software development. This approach 

leverages two key elements: models, capturing the application domain and 

the business logic, and a service architecture that fosters decoupling and 

separation of concerns. The service-oriented solutions I propose here leverage 

both an improved architectural pattern and a model-based development 

process. 

The main problem the architecture presented here addresses is the 

integration of different software features. The goal of the Rich Service pattern 

presented in this chapter is decoupling the different services and support the 

composition of features that cross-cut the main application business logic. 

Crosscutting concerns are concerns that cross-cut the structure that 

has been chosen in the decomposition of a problem. For example, at the 

programming level, crosscutting concerns do not fit neatly in the chosen class 

hierarchy. The concept of aspect-oriented programming was introduced [6] 

to solve this issue in software code. Similarly, aspect-oriented techniques have 

been introduced in modeling languages to address crosscutting concerns at 

the software model level [7–9]. 
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This chapter presents both an architectural pattern and an associated 

development process which support managing crosscutting concerns. This 

approach results from the acknowledgement that crosscutting concerns are 

an inevitable byproduct of the creation of large systems and successful 

system development must support them.  

APPLICATION DOMAINS 

The service-oriented approach I present in this thesis supports different 

domains with different characteristics. In particular, the approach addresses 

two seemingly very different domains, large, distributed enterprise systems and 

embedded automotive systems. While the implementation technologies and 

some of the requirements of these two domains are vastly different, they have 

a key element in common, they are complex distributed systems, often 

developed in different authority domains with the need for reusing existing 

components. 

While the implementation details for these domains are different, the 

abstract model of how the various part interacts, and how crosscutting 

concerns must be addressed is similar. In this work I propose the use of model-

based engineering. In fact, modeling techniques allows for separate logical 

and physical models. Logical models specify how systems satisfy their business, 

functional, and nonfunctional requirements at an abstract level. Physical 

models specify how the system is implemented and deployed on real 

hardware. 
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The use of model-based techniques enables the approach presented 

here to solve similar problems in different domains. To support integration of 

crosscutting concerns of large and complex systems, the proposed approach 

uses a service-oriented logical model. Such model supports the creation of 

independent services addressing the different requirements of the system. 

Mappings to domain-specific physical models support the creation of 

concrete systems in the different domains. 

MODEL-BASED ENGINEERING 

Various terms are used in the literature to denote the use of models in 

the development process (e.g., Model-Driven Architecture (MDA) [10], model-

based design [11], model-driven engineering (MDE) [12], and model 

integrated computing [13], [14]). We use the general term MBE for Model-

Based Engineering as a superset for all model-based approaches. 

To tackle complexity, MBE approaches support multiple perspectives, 

with associated modeling languages, each focusing on a particular subset of 

system properties. Each perspective can cover a separate aspect of the 

same part of the system, or depict the same aspect with different notations to 

clarify or stress a modeling concept. For instance, we could use a sequence 

diagram to show the communication protocol between two class instances 

and two state machine diagrams to describe the proper ordering of method 

calls. These two perspectives clearly overlap.  
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A popular language to model enterprise software systems is the Unified 

Modeling Language (UML) from the Object Management Group (OMG). It 

comprises many languages (fourteen types of diagrams), each emphasizing a 

different structural or behavioral modeling aspect. The most recent version is 

UML 2.3, whose specification consists of the UML Superstructure [15] defining 

the notation and semantics for diagrams and the UML Infrastructure [16] 

defining the language on which the Superstructure is based. Constraints can 

be expressed in the textual Object Constraint Language (OCL) [17]. 

A specific type of MBE is the Model-Driven Architecture (MDA) [10], an 

approach that distinguishes between a Platform Independent Model (PIM) 

and a Platform Specific Model (PSM). The PIM captures the core system 

entities and their interactions without specifying how these are implemented. 

PIM can be mapped to multiple PSMs, each capturing all deployment 

aspects for a given architecture. UML is the language choice of MDA, where 

both PIM and PSM are expressed as UML models. 

MODEL-BASED ENGINEERING IN EMBEDDED SYSTEMS 

Embedded systems are often developed by integrating components 

that have been designed and implemented by different teams, often 

specialized in different disciplines such as mechanical, electronics, and 

software engineering. As the system behavior emerges from the interplay of 

multiple distributed components, a key challenge is the correct integration of 

all these components. System integration is often performed in vertical design 
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chains such as in automotive, and the development chain typically involves 

several tools that are not integrated. 

In the automotive domain, model-based approaches leveraging tools 

such as MATLAB® [18] and Simulink® [19] from the MathWorks and ASCET [20] 

from ETAS are used to model control functions and generate implementations 

for different platforms. However, in practice, there is no formal model for 

integration that is exchanged between parties. Consequently, it is impossible 

to validate the design and anticipate problems in putting together the various 

components in the later phases of the development. The lack of an 

integrated model also limits the reuse of functions across models and 

generations of cars. 

Models of interactions and MBE hold promise for overcoming these 

exemplar challenges. Models can serve as a common interface between 

requirements and architecture specification – using models is the only 

systematic way to ensure that parties can communicate across all 

development phases from requirements to acceptance tests. The ultimate 

goal of MBE is that engineers will spend most of their time modeling the system 

under consideration, and then generate code for a specific target platform. 

This goal is already supported by various tools (including MATLAB® /Simulink®), 

but the models often do not include all aspects of the system, as explained 

above. When automatic code generation is not feasible at the level of the 

entire system, there is still significant benefit if modeling is used for 
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requirements gathering and architecture verification before deploying the 

actual system.  

In the past decade, significant advances in the area of model 

specification, transformation, analysis, and synthesis, have brought the vision 

of MBE within reach. Challenges for a comprehensive methodology include 

providing modeling techniques that result in a consistent, integrated 

specification. Models must be expressive enough to support both generic and 

domain-specific aspects of the system. Moreover, proper modeling languages 

must guarantee model reusability, support integration, and enable model 

execution. To this end, a seamless tool suite that supports the modeling 

language is a key requirement to make MBE a viable solution. 

REQUIREMENTS FOR MODELING LANGUAGES 

In the following, I present a set of requirements that a modeling 

language should meet to support a comprehensive MBE methodology for 

service-oriented systems. Such language could support both enterprise and 

real-time systems. I have identified these requirements based on the 

experience gathered working on several projects. Some of these projects 

required developing large scale enterprise systems-of-systems, others, in 

collaboration with automotive industry partners, focused on automotive 

embedded systems. The list is not intended to be exhaustive, as further 

requirements have been presented elsewhere (e.g., [21]). The focus of these 

requirements is the specification capabilities of a modeling language for 
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services. The requirements do not cover the entire end-to-end MBE approach 

or the tools necessary to implement it. 

 Consistency. A modeling language should allow grouping of requirements, 

structure, behavior, and analysis in a single, integrated system model. 

Therefore, the language should allow consistency checking for models 

expressed in different notations, developed in different design iterations, or 

models that are part of different views/slices of the same system.  

 Traceability. Requirements should be mappable to a precise specification 

of the system and from there to implementation while the mapping should 

be kept current during the system evolution. Traceability also applies to 

models at different levels of abstraction enabling conformance checking 

for refinement operations. 

 Realizability. Models often represent partial specifications that are refined 

in successive iterations in the development cycle. Models also represent 

different views on the system. The underlying question is whether the 

models allow a system to be constructed such that all requirements are 

fulfilled. At the very least, we would like to know which requirements stand 

in the way of realizability.  

 Distribution and integration. System behavior emerges as the interplay of 

the functionality provided by sub-systems, often developed independently 

by different parties. Thus, models should be capable of expressing 

concurrency, synchronization, and integration constraints. For example, in 

the automotive domain the Original Equipment Manufacturer (OEM) is 
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responsible for the integration of sub-systems. Modeling should support 

overarching system specification addressing the integration requirements 

as well as concerns that cut across the individual components such as 

resource optimization across the integrated system. 

 Interdisciplinary domains. Embedded systems design involves multiple 

domains such as mechanical, electronics, and software. The system 

components are often designed at different stages in the development 

process, by different teams, using different tools and languages. A 

common modeling language should ease integration and tradeoff 

analysis, and it should reduce the need for disruptive feedback iteration 

cycles. 

 Non-functional properties. A modeling language should allow specifying 

non-functional properties (e.g., security, authentication requirements, 

performance, reliability, and power consumption) associated with 

behaviors, refinement relationships, deployment models, etc. Moreover, 

because my goal is to have a modeling language that can support 

multiple domains, the set of non-functional properties should not be 

predefined and the language should support the specification of 

application-specific properties. 

 Resource models. Those models are useful both for enterprise and 

embedded systems. Enterprise systems can often run on clouds or grids 

where the hardware is shared between multiple applications. Therefore, 

the ability to clearly specify the resource requirements of the application is 
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key to properly define a service level agreement with the resource 

provider and fairly share bandwidth and computation power with other 

applications. On the other hand, embedded systems interact with the 

physical world, and are constrained by the resources provided by the 

hardware and software platforms. Therefore, a specification should 

support modeling of platforms and resources, as well as allocation and 

optimization of resources to meet functional and non-functional 

requirements.  

 Timing. Time plays a critical role in real-time systems and, therefore, a 

modeling notation should express timing requirements in various temporal 

models: (i) causal models, which are concerned only with the order of 

activities, (ii) synchronous models, which use the concept of simultaneity of 

events at discrete time instants, (iii) real-time scheduled models, which 

take physical durations and the timing of activities as influenced by CPU 

speed, scheduler, utilization, etc., into account and (iv) logical time 

models (e.g., Giotto [22], [23]), which consider that activities take a fixed 

logical amount of time, assuming that the platform can execute all 

activities to meet their constraints.  

 Heterogeneous models of computation and communication. Real-time 

systems are often embedded systems that control physical processes, 

which are often represented in terms of mathematical models. A modeling 

specification should support continuous behaviors, discrete event-based or 

time-based behaviors, or combinations thereof.  
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Some requirements expressed here are common to all applications 

domains, while others (e.g., heterogeneous models of computation and 

communication) are specific of the embedded domain. However, a 

language that wants to address all these domains should satisfy all 

requirements.  

RICH SERVICES PATTERN 

SOAs have emerged as an accepted solution to integrate 

heterogeneous systems. SOA-based approaches typically use standards-

based infrastructure to map existing systems into standardized forms of 

services. Services can then be orchestrated by means of choreography 

engines and specialized languages in different ways to provide new business 

value to different stakeholders. New functionality can be created by either 

adding new services or changing the message flow among existing services. 

Because of these features, many SOA projects are particularly amenable to 

agile development processes. 

SOAs are typically flat, meaning that a composed service is obtained 

by finding and aggregating different services available across the net. There is 

no structure or interface in place to decompose the system according to 

different concerns. Moreover, each composed service needs to take into 

account not only the main business concerns but all the crosscutting concerns 

such as encryption, authentication, failure management etc. However, the 

integration of the particular concerns of the enterprise and automotive 

domains requires a scalable framework that provides decoupling between 
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the various concerns and allows for subsystem integration and multiple 

hierarchical decomposition choices. The Rich Services architecture [24] is a 

type of SOA that addresses these issues and provides a direct and easy 

deployment mapping to various middleware including Enterprise Service 

Buses (ESBs) [25]. 

Figure 1 depicts our logical service-oriented architecture, inspired by 

ESB architecture/implementations [25–27]. The main element of the 

architecture is the notion of Rich Service [24], which, in the most generic form, 

encapsulates various capabilities and functionalities pertaining to the business 

logic and the applicable concerns. 

We start with a set of Rich Application Services (RASs)  that 

encapsulate core application functionality, defining the business flow. In most 

applications, existing services (provided by subsystems or system components) 

 

Figure 1. Composite Rich Services 
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can map 1:1 to RAS. To facilitate the interaction between services and hide 

their internal complexity, we attach to each RAS a Service/ Data Connector 

 , which performs the necessary adaptation of the service inputs and 

outputs, presents the service capabilities to other services, and encapsulates 

their value-added internal logic. In the tradition of [28], [29], we associate 

both a structural and a behavioral view with the Service/Data Connectors. 

The RASs are decoupled through a message-based communication 

infrastructure. The Messenger   layer is responsible for transmitting messages 

between services and provides the means for implementing the service 

orchestration. Encapsulated Rich Services are connected to the 

communication infrastructure via their own Service/Data Connectors  . This 

approach is very important for future-proofing system design – the Connectors 

do not just integrate existing services; they also prepare services for future 

integration into other larger systems. 

We then focus on the crosscutting concerns expressed as services. 

Using the same architectural pattern, we distinguish between the Rich 

Application Services  (RASs) and Rich Infrastructure Services (RISs)  . In 

contrast with RAS that implement business logic, the RISs do not initiate any 

communication by themselves, but reroute or filter messages defined by RASs. 

Examples of RISs are policy enforcement, encryption, and authentication.  

The Router/Interceptor   layer intercepts messages placed on the 

Messenger and then routes them among all services involved in providing a 
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particular capability. RISs connect to the Router/Interceptor to define the 

proper RASs orchestration. Hence, new services can be plugged into the 

architecture without changing the existing services. To integrate an 

encryption mechanism, for instance, only the communication infrastructure 

needs to be aware of the encryption RIS: the Router/Interceptor changes the 

routing tables to ensure that every message sent to the external network is first 

processed by this service. 

This two-layer communication infrastructure enables loose coupling 

and seamless communication between services. The use of a 

Router/Interceptor layer removes dependencies between services and their 

relative locations in the logical hierarchy. Thus, services from different levels of 

the hierarchy - possibly from different authority domains in the case of large 

business systems - can interact with each other seamlessly with the help of 

appropriate infrastructure services and routing tables. 

To address complexity, any Rich Service, instead of being a simple 

functionality block, could be hierarchically decomposed into further Rich 

Services  . A Rich Service S that exports functionality to some client – perhaps 

an external integration framework – is implemented by RASs S.1, S.2, through 

S.n., along with the associated RISs (Figure 1). Likewise, Rich Services S.1 and 

S.2 are shown as simple Rich Services whose interfaces are defined by 

Service/Data Connectors. Rich Service S.n is shown decomposed into another 

Rich Service, whose interface is also defined and exposed by a Service/Data 

connector; it has its own message bus, router, RASs, and RISs. Note that both 
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RASs and RISs can be further decomposed into Rich Services. In addition, RISs 

(e.g., Policy used in different Rich Services) can be instances of the same 

service, different services, or parts of a larger crosscutting service from a 

different system model view. This design strategy enables flexible deployment 

choices that can take into account specific platform enhancements 

(including, but not limited to, hardware-optimized cryptographic engines, 

enterprise -wide access control lists (ACL), policy enforcers). 

MODEL-BASED DEVELOPMENT PROCESS 

The Rich Services hierarchical framework manages the complexity of 

enterprise systems-of-systems integration and automotive applications by 

decomposing complex problems into primary and crosscutting concerns, 

providing flexible encapsulation for these concerns, and generating a model 

that can be easily leveraged into a deployment. The associated model-

based development process [30], outlined in Figure 2, encompasses activities 

from the high-level use case elicitation through physical network deployment. 

The top part of the picture represents the logical architecture loop, which 

deals mostly with platform-independent models (PIM); on the other hand, the 

lower part of the picture represents the deployment loop and entails the 

creation of platform-specific models (PSM). 
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Our process leverages the spiral development process [31] model and 

embraces agile development methodologies. Requirements often resolve to 

partial specifications, and refinements or additions of requirements at one 

stage can trigger iterations beginning at some appropriate earlier stage. Thus, 

the artifacts produced at some stage are fed back into new iterations of the 

development process where they are revisited and refined. 

This iterative process accommodates architectural spiking. This means 

taking a partial set of use cases and generating a system architecture and 

implementation based on them, then adding more and more use cases over 

subsequent rounds. Architectural spiking allows domain and application 

knowledge to be developed incrementally instead of in grand exercises, 

thereby managing complexity and mitigating development risks. 

 

Figure 2. Model-based development process for Rich Services 
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A major feature of the Rich Services development process is that 

crosscutting concerns are identified early. In fact, addressing such concerns 

as afterthoughts increases the integration costs and leads to incomplete or 

incorrect system implementations 

The first phase, Service Elicitation, captures the system requirements in a 

service repository. At the same time a domain model is created. This model 

integrates the main business concerns with functional requirements and 

crosscutting system concerns such as security, access control, encryption, 

fault tolerance, tracing, and transaction support. For each concern, we can 

leverage an existing technique of requirements gathering. For instance, for 

security we can employ elements from the Common Criteria [32] to determine 

assets, risks, and mitigation strategies. In the automotive domain, the 

approach of SPUR [33] can be used for modeling increasingly important 

attributes such as security, privacy, usability, and reliability. 

We define services as interaction patterns between roles [34] for the 

realization of each use case. The service repository is the collection of all 

identified services. Each service “orchestrates” interactions among system 

entities to achieve a specific goal [35]. Within a service, roles exchange 

messages, thereby switching from one state to another. A Message Sequence 

Chart [28] can be used to capture the interaction and various role states. The 

complete set of states and state transitions of a role obtained from all services 

in which it participates defines its full behavior. 
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In the second phase, Rich Services Architecture, we use the role 

domain model and the service repository to define a hierarchic set of Rich 

Services as a logical model of the system. Of the many possible hierarchical 

decompositions, the ones we choose for consideration are driven by client 

values such as architecture comprehensibility, business manageability, 

performance, and organization domains. The most important value 

determines the dominant decomposition. 

In the process of creating RASs and RISs, it is common to discover 

additional opportunities for crosscutting processing such as Quality of Service 

(QoS) property monitoring [36], failure detection and mitigation [37], and role 

interaction monitoring. Strictly speaking, these concerns reflect functional and 

non-functional facets of requirements, which may generate additional use 

cases resulting in re-iteration of one or more stages of the Service Elicitation 

phase. However, for crosscutting concerns having only local effect, such 

iterations can be safely deferred. For more global concerns, spiraling back to 

a previous development stage is usually warranted. In complex systems as 

encountered in the avionics and automotive domains, domain modeling may 

result in multiple largely orthogonal system views representing corresponding 

crosscutting concerns. In such situations, each view may generate its own 

Rich Service model, and each view may be represented as one or more RISs 

in the models for the other views. 
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In Figure 3, for instance, we depict a class diagram capturing the 

relations between services and failure management. We see two types of 

services. Unmanaged services address regular interactions that do not take 

into account the crosscutting concern of managing failures. The model is 

enriched with managed services which take care of detecting failures and 

recovering from them. Following the Rich Service approach we have 

decoupled the two issues. We first define the regular services (unmanaged); 

then, we group the concern of detecting failures and managing them in a 

different service (managed), which modifies the regular service behavior. This 

is represented in the class diagram by managed services having a reference 

to the service they manage.  

The collection of Rich Services defined at this point represents the Rich 

Services logical model of the system, or Rich Services Repository, which is 

transformed in the System Architecture Definition phase into a deployment 

model and implementation. We model interactions between RASs as 

 

Figure 3. Domain model for services addressing failure management 
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messages across a communication facility, which are subject to routing by a 

Router/Interceptor layer. Interactions involving RISs are implemented by using 

the Router/Interceptor layer to weave RAS-to-RAS messages into a RAS-to-RIS-

to-RAS template (or other similar interception-based processing). With such an 

interception capability, using role interaction monitors and Quality of Service 

monitors to assess the correctness and quality of services is possible without 

disturbing the RAS (or RIS) processing already in place. Similar reasoning 

applies to failure detection/mitigation and other crosscutting processing. 

Because the logic needed to orchestrate the message flow is captured by 

MSCs [28], we can leverage our work on state machine generation to 

synthesize the routing required [34]. Alternative options are to describe the 

orchestration logic by means of Web Services Business Process Execution 

Language (WS-BPEL) or, a discussed in Chapter 5, using Orca. 

The third phase, System Architecture Definition, establishes a 

relationship between the Rich Services model of the system and its 

implementation. We first inventory and analyze the subsystems and software 

components already available, the topology of the existing systems in terms of 

computational, input/output, control, and storage nodes, and available 

networks. Operational and maintenance use cases are also refined at this 

point to address the system evolution concerns. 

We create an idealized network of the identified Rich Services, where 

each RAS is represented as a virtual host connected to a common bus. This 

stage focuses on logical connections between RASs and their message 
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exchange patterns, recognizing that duplication of services may occur. 

Analysis of the message flow, volume and frequency of the data exchange, 

and the relationships between the virtual hosts to implement the business logic 

is important to identify possible bottlenecks and best places to address the 

crosscutting concerns. 

Based on the virtual network of the previous stage and the current Rich 

Services architecture of the system, we design a preliminary infrastructure to 

accommodate the current understanding of the system. With the platform 

identified, we can proceed to develop the code for each Rich Service. 

In the last stage – deployment, we perform a mapping of the 

implemented Rich Services to the middleware running on physical hosts. 

Depending on the system requirements and the available resources, some 

services can be duplicated, whereas other duplicated services can be 

replaced with proxies for unique services. Furthermore, levels in the hierarchy 

can be flattened. The resulting view is still a projection of the overall system 

model, just tailored for a particular deployment platform to yield better 

performance, or to improve some other relevant quality aspect. Approaches 

such as [38] can be incorporated into a Rich Services process, thereby shifting 

the virtual network mapping to runtime, and taking advantage of a network 

manager’s ability to dynamically allocate services to available network 

resources. 
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SUMMARY 

In this chapter I presented an architectural pattern and a development 

process that support separation of concerns and enable composition of 

crosscutting concerns. In the rest of this thesis I will present specific examples 

of crosscutting concerns, identify shortcomings with the existing approaches 

for addressing them, and provide a new modeling language to address these 

shortcomings. 
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CHAPTER 2 

FAULT TOLERANCE: A CASE STUDY IN HANDLING CROSS-CUTTING 

CONCERNS WITH RICH SERVICES 

In the previous chapter I presented an approach for modeling the 

crosscutting concerns using Rich Services. In this chapter I discuss an example 

of crosscutting concern that is fundamental to both embedded and 

enterprise systems: fault tolerance. In fact, building reliable composite systems 

from unreliable services has emerged as an important aspect of system of 

systems integration and has captivated researchers’ attention in recent years. 

Many attempts have been made towards building reliable and fault tolerant 

services [39], [40]; however, a comprehensive approach has yet to emerge.  

A viable solution for failure management has to fulfill few key 

requirements. First, it has to be scalable and support geographical and 

organizational distribution. To that end, a the solution should separate the 

business logic from the fault handling logic, making it possible to add fault 

tolerance to composite services that are only available as Commercial-Off-

The-Shelf (COTS) applications. Second, because the supporting technology in 

this domain is rapidly evolving, a solution should be technology independent. 

Various failure types in the application domain, such as servers failing to 

respond, or race conditions in accessing a database concurrently, should be 

addressed, and appropriate recovery policies should be exploited and 

activated based on the type of failure detected [41]. Self-healing 
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architectural approaches such as [42] suggest that the detection mechanism 

should be decoupled from the entities that provide the recovery. This 

decoupling facilitates the reuse of both types of components in addition to 

dynamic modifications to recovery policies without the need to modify the 

detection mechanism. 

Rich Services, thanks to the decoupling provided by RIS and RAS, are 

good candidates to address the set of requirements identified for failure 

management. This chapter presents an approach to address fault 

management in enterprise systems and uses the CoCoME system as case 

study. 

THE COCOME CASE STUDY 

The CoCoME Trading System case study models an Enterprise with a 

collection of Stores (e.g., department stores). The application simulates the 

behavior of a typical enterprise: customers pick up products and pay for them 

at the cash desks, managers can view stock reports, and they can order 

products from various suppliers to restock the store. Each Store has an 

Inventory that keeps track of the locally available products. There is also an 

enterprise-wide repository – Enterprise Repository – that can be synchronized 

with the Inventories of each store. All systems (Stores, Enterprise, Bank, 

Suppliers) communicate by means of Web Services.  
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Here I focus on a particular use case – Product Exchange. If a Store is 

running low on some products, it can request to receive supplies from other 

nearby stores. If some nearby store has enough stock of the requested 

products, a product exchange is arranged. This process is managed by an 

enterprise-wide Dispatcher. Figure 4 depicts this use case using a simple MSC. 

The Trading System case study presented here was derived from the 

case study for the CoCoME modeling contest [43]. The version presented here 

 

Figure 4. Product Exchange interaction specification 
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is slightly modified to include support for failure management. This modified 

CoCoME allow for the evaluation of the failure management technique for 

the Web Services presented in this chapter. 

Figure 5 depicts part of the logical model for the Trading System. It 

captures the structural elements that appear in the case. For the purposes of 

this example the model includes three Stores in the Enterprise. The internal 

structure of the Stores is not shown in the figure. 

Figure 4 depicts the interaction of the Product Exchange use case that 

forms the basis of the case study. A Store (playing the role Requesting Store) 

requests the Dispatcher to receive some products from a nearby store 

(requestExchange(ProductList)). The Dispatcher confirms that the request has 

been accepted and starts the Update Repository interaction. When the 

Enterprise Repository has been synchronized with the Inventory of the Nearby 

Stores, the Dispatcher gathers the data on the requested products, decides 

 

Figure 5. Trading System, Enterprise Rich Service view 
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which stores should provide them, and arranges the Exchange. If this process 

is successful, the Dispatcher returns the information about the products to the 

Requesting Store; otherwise, it informs the Requesting Store that the exchange 

has been rejected. 

In the Update Repository interaction (Figure 6), the Dispatcher requests 

the Store Locator to identify the nearby stores and to send them a request for 

flushing their recent inventory updates. This activity is needed to synchronize 

the Enterprise Repository with the Repository of the Stores. The store locator 

identifies which stores are nearby the Requesting Store and forwards the 

request to them. Nearby Stores then flush their inventory to the Dispatcher, 

which updates the Enterprise Repository accordingly and confirms the 

 

Figure 6. Update Repository Interaction 
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reception of the data. When all Nearby Stores have flushed their data, a flush 

complete message is generated. A deadline of thirty seconds is defined 

between the request event and the flush completion. 

RELIABLE WEB SERVICES 

Reliability of Web Services is an active area of research. In order to 

address fault tolerance in Web Services, first we need to identify and classify 

the typical failures that can occur during service execution. Three classes of 

failures are identified in the literature: behavioral and business logic failures, 

operational failures and quality of service failures [44]. Business logic failures 

refer to cases where the service fails to complete its task, or delivers incorrect 

results, because of computational or logical failures. Operational failures refer 

to failures of the underlying middleware and communication infrastructure 

that the hosting servers rely on. Quality of service failures refer to failures in 

delivering the service with the promised quality of service properties. Service 

Level Agreement (SLA) failures are in this class. An SLA is a contractual 

agreement between a service provider and its consumers. It often mandates 

response times and other quality of service metrics. The focus of this chapter is 

on behavioral and quality of service failures. 

A second step is to investigate failure detection mechanisms. Two 

predominant levels of detection have been studied in the literature. The 

simple case is to detect and mitigate the failures at the single invocation level. 

The approach presented here supports a more complex failure detection 

based on an interaction pattern among multiple participants/roles in service 
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choreography. As discussed later in the chapter, current Web service 

techniques focus mainly on exception handling techniques resulting in single 

invocation based detection. 

A model-based approach to failure management for Rich Service-

based SOAs is introduced as follows. First I present a failure model, including 

the notion of a failure hypothesis. Then I introduce an approach to defining 

Detectors that identify occurrence of failures at run time. Finally, I introduce 

strategy-based Mitigators that provide recovery mechanisms after a failure is 

detected. This approach has the following benefits: 1) it can base the 

identification of a failure on the system model, 2) the logic to detect an error is 

separated from the logic to recover from it, 3) the mitigation strategies can be 

reused in different contexts. 

FAILURE HYPOTHESIS 

A failure hypothesis captures the assumptions about which parts of the 

system can fail, and how many faults are allowed to happen concurrently 

(and in which combinations) for the system to still be considered fail-safe. In a 

model-based approach, this information is used as an input for validation and 

verification activities.  

I consider mainly two types of failures: failures where a service does not 

complete its task, or where an error causes an unexpected message flow. The 

approach presented in this chapter can deal with both types of failures. It can 

detect unexpected message flow by comparing the messages exchanged 

with the sequences defined in the MSCs. Furthermore, the model presented 
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here allows for the specification of deadlines between events enabling the 

detection of failures where messages are not sent. This capability is important 

in the web service domain to address the requirements of SLA. Deadline 

assertions can be leveraged to encode SLA, and detect possible violations. 

In the CoCoME Trading System case study, the failure hypothesis is as 

follows: Stores can get permanently disconnected, Stores can fail 

intermittently (refusing to respond with a given probability), and the 

Dispatcher can fail by not identifying that all Stores have flushed. For example, 

let’s analyze a subtle race condition that can occur in the implementation of 

the case study. Consider the following scenario. An arbitrary number of 

nearby stores can be selected as candidates for an exchange and requested 

to flush their inventories. The Dispatcher uses a relational database to keep 

track of how many stores have answered. At the end of each flush cycle, the 

Dispatcher decides if the update is finished and, if so, it triggers the 

flushCompleted message. The use of a database for storing this information is 

justified by the fact that, for scalability reasons, the Dispatcher is implemented 

as a set of servers that listen to flush requests. The problem is that depending 

on the isolation level for transactions supported by the database, a race 

condition can occur such that the information about a store flush is lost. This 

could be observed if the database used in the implementation supports only 

the dirty read isolation level. This is a failure that falls into the category of 

Dispatcher not identifying that all stores have flushed.  
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In my experiments, I have added failure injection code to the system to 

trigger the failures defined in the Failure Hypothesis. Thus, even failures that 

seldom occur, such as the mentioned race condition, can be evaluated 

quantitatively. 

FAILURE DETECTION 

Recall that the model of a service with failure specification consists of 

an interaction pattern, augmented with deadline specifications. From this 

model, failure Detectors we can automatically derived. Such detectors 

monitor the compliance with both the interaction pattern and the deadlines 

[45]. Because the Rich Service architecture implements such interactions via a 

messaging infrastructure, Detectors can leverage the interface between the 

Rich Services and the messaging infrastructure to detect differences between 

the runtime behavior and the model. In the Web Services domain, the 

implementation of the participating services of a composite Web Service may 

not be available to the developer. Usually these are heterogeneous services 

from different geographical and authority domains. The proposed technique, 

by leveraging the communication infrastructure in order to detect and 

mitigate failures, enables the implementation of reliable composite services. 

Because it does not require any change to the constituent services, this 

technique is a good candidate for addressing failures in the web service 

composition domain.  

The Rich Service framework provides this capability by enabling the RISs 

to intercept and reroute messages transparently. A RAS does not need to be 
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aware of the RISs that process and possibly even alter the messages the RAS 

sends and receives. As a result, RISs can be used to construct Detectors – this 

decouples RASs from the corresponding Detectors. Each Detector receives 

and monitors the messages specified by an MSC and detects a failure if the 

communication does not match the specified interaction pattern. 

In order to guarantee that an interaction failure can be detected 

within finite time, a deadline between the starting and ending messages of 

the interaction can be specified. This also captures SLA in the model and 

supports detecting potential SLA violations. For example, Figure 6 shows a 

deadline of 30 seconds for the Update Repository service to complete.  

As a result, the approach proposed can detect behavioral failures 

where a service does not respond within the defined time interval, or when 

the interactions take place with messages in an order different than specified. 

Upon detection of a failure, the Detector activates the Mitigator responsible 

for recovering from the detected failure. 

FAILURE MITIGATION 

In the literature ([42], [46], [47]) two classes of mitigation strategies are 

applied to the web service composition domain: backward and forward 

recovery. Backward recovery is mainly achieved by transaction-based 

mechanisms resulting in a “roll-back” of actions that have not gone through 

as a whole. The main forward mitigation strategies studied in the Web Services 

domain are: ignoring the failed invocation (Ignore), retrying the same 
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invocation to the same service (Retry), and retrying the same invocation but 

substituting the called service with an alternative but “equivalent” service 

(Substitute). Another fault tolerance pattern is the parallel execution of the 

same invocation on multiple equivalent services and taking the first response 

or voting on all responses (Parallel). In most cases, a combination of these 

strategies is applied (Composite), such as retrying for a specified number of 

times and then substituting the callee with an alternative service. The work in 

this chapter focuses on forward recovery mitigation strategies.  

The goal is to reuse the standard mitigation strategies mentioned 

above. Mitigators are logical components activated by Detectors when a 

failure is identified. Mitigators are specified as RISs and are responsible for 

recovering from the failure; they are given enough context information to be 

able to apply the standard mitigation strategy correctly.   

We can analyze, for instance, how the Substitute strategy is applied in 

the case study. A generic Mitigator sends the request to an alternative service 

in case of a failure. In our case study, the request is the flush request sent to 

Store 1. If the Detector identifies that the request has failed, it triggers the 

substitution Mitigator providing, as context information, the failed message 

sent to Store 1 with its parameters. An application specific configuration 

defines the alternative service provider for Store 1 (Store 3). Different Detectors 

can trigger the same Mitigator implementation to deal with failures of different 

Stores, provided that they supply the correct context information. 
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The case study uses the Ignore strategy to mitigate the Dispatcher 

failure described earlier. In this case, the Detector invokes the ignore Mitigator 

if the 30 second deadline is not met. The Detector provides the Mitigator with 

some context information about the state of the system and the next required 

action as parameters. The Mitigator receives a state machine that defines the 

expected message sequence and the current state in the message 

sequence. If the current state is such that all flushes have been performed but 

no message flushCompleted has been sent, the Ignore Mitigator executes the 

next step defined by the state machine sending the flushCompleted 

message. 

Retry, Substitute, and Parallel are used in the case study to mitigate the 

Store connection failures. The failure hypothesis defines different ways a Store 

can fail to respond. It can, for example, fail intermittently or it can stop 

responding forever. To evaluate which mitigation strategy better addresses 

which failure, next section presents a set of experimental results. 

Finally, because in the presence of multiple failures a single mitigation 

strategy does not provide complete reliability, the approach proposed 

supports Composite mitigation strategies. A Composite Mitigator is achieved 

by adding multiple Detector / Mitigator pairs identifying and recovering from 

the same failures. If the first Detector detects a failure, the associated 

Mitigator is triggered. The second Detector continues to observe the 

messages exchanged and can execute the second mitigation strategy in 

case the first one was unsuccessful. 
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IMPLEMENTATION AND EXPERIMENTS 

In order to measure the reliability and the performance overhead of 

the approach proposed, I implemented the Trading System case study and 

conducted a number of experiments. This section describes the 

implementation details and the experimental results. 

The challenge in implementing the case study was (a) to find a 

mapping of Rich Services into a deployment architecture, and (b) to leverage 

this deployment architecture for representing Detectors and Mitigators at 

runtime. I address challenge (a) by using Mule, an open source Java ESB, as 

an implementation platform. I implement RAS as Mule Universal Message 

Objects (UMOs) (for details, see the following paragraphs). I address 

challenge (b) by using Mule interceptors to implement Detectors and 

Mitigators.  

Implementation based on Mule. The Rich Services architectural 

blueprint is inspired by ESB technologies. In particular, the Messenger and the 

Router/Interceptor components of the blueprint map nicely to the 

infrastructure provided by various ESB platforms. To establish the 

independence of the Rich Services architectural pattern and my fault 

tolerance approach from a specific implementation platform, I deployed the 

same service- and failure models on two different ESB target platforms: Mule 

ESB [25], and ServiceMix [48]. Both are open source frameworks based on 

Java; however, they reflect different implementation decisions. Mule is 

lightweight and does not mandate a specific format or medium for messages 
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being exchanged. ServiceMix, on the other hand, converts all messages to an 

Extensible Markup Language (XML) standard format and uses ActiveMQ to 

transfer them between services. For reasons of brevity, in the remainder of the 

paper we focus on the Mule implementation. 

Use of UMOs to implement RAS. The main functionality blocks of any 

Mule application are the UMOs. They are Java classes that are instantiated by 

the ESB and send and receive messages via Mule Application Programming 

Interface (API). Mule provides facilities to connect such UMOs to a variety of 

communication technologies. In particular, the case study implementation 

exposes services as standard web services using Hypertext Transfer Protocol 

(HTTP) and Simple Object Access Protocol (SOAP). Mule facilitates the 

creation of UMOs by allowing the programmer to write regular Java classes 

and an XML configuration file. The ESB uses Java reflection to identify the right 

method to call depending on the message received. Mule UMOs are used to 

implement Stores, Dispatcher, and Store Locator as separate application 

services.  

Use of Mule Interceptors to implement Detectors and Mitigators. The 

implementation of Detectors and Mitigators is done using Mule Interceptors. 

Interceptors are used in Mule 1.x series (the case study implementation uses 

Mule 1.4.3) to transparently inject additional behavior when messages are 

sent or received by services. In the Mule framework, using Interceptors is the 

logical choice for implementing a Detector that observes the messages 

exchanged and compares them with the expected communication modeled 
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by an MSC. Mitigators are also executed as part of an interceptor. The 

interceptor first detects if a failure has happened, then allows the specified 

Mitigator to process the message as needed. Mitigators can use the Mule API 

to dispatch additional messages. For example, the Parallel and Substitution 

Mitigators use application specific information on an alternative store to send 

the request flush to. The application is not aware of the fact that the request is 

forwarded to an alternative store. The Parallel Mitigator, in particular, sends 

the request to the alternative store even if there is no failure. Only the first flush 

received is passed to the Dispatcher. I performed experiments with multiple 

mitigation strategies to demonstrate the flexibility of the approach; changing 

between different strategies and combining different strategies was a matter 

of minutes. 

Implement Detectors using state machines. Each Detector has a state 

machine associated with it that recognizes the language specified by the 

MSC [45]. This is convenient because, as discussed earlier, these state 

machines can be automatically generated. The detector can, therefore, 

observe the messages exchanged and take the corresponding transition in 

the generated state machine. If no transition exists with the given message 

guard the Detector identifies a message order failure.   
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Keep track of the session identifier. Because of the concurrency of 

client requests, multiple interactions implementing the same pattern are 

active in the system at a given time. All calls carry a session ID that enables 

Detectors to update the state machine and other information on a per session 

basis. Furthermore, each Detector can start a timer is deactivated by 

receiving the message that ends the deadline. If the timer is not deactivated, 

the Detector triggers the specified Mitigator depending on the current state of 

the system when the timer expires. The timers are implemented using the 

Table 1. Failure management experimental results 
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Tw
o
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Quartz Java library. For each session the Detector keeps track of the state 

machine’s state, the timer state, and the message parameters. 

Experiments Description.  The first two columns of Table 1 describe the 

type of experiment executed. The difference between experiments with One 

Flush per Request versus the ones with Two is in the Store locator behavior. In 

the first case, the store locator identifies just one nearby store and issues just 

one flush request. In the second, two nearby stores are identified and two 

requests are issued. The second column describes the failure injection 

behavior during the experiment. The Failure injection is performed using a 

certain probability function. The first type of failure we inject is in the 

Dispatcher. A 10% Dispatcher Failure means that every time the flush is 

concluded (all stores have flushed), there is a 10% probability that the 

dispatcher does not recognize it and does not issue the flushCompleted 

message. In a run with 10% Stores Failure, with a 10% probability a store might 

not respond when requested to flush. ‘Two’ experiments show a more 

complex failure injection. 100% First Store, 10% Backup Store Failure means that 

the store that is requested to flush is completely down (always returning an 

exception) but the backup store (used by the Substitute mitigation strategy) 

has only a 10% chance of failing. In the ‘two’ experiments, the order in which 

the mitigation strategies are applied is important. Therefore, the table also 

contains the order in which the strategies are applied. All results in the 

columns named Success, Failure and Faults are based on 100 exchange 

request runs. All timings are expressed in milliseconds. In the 
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Detectors/Mitigators columns, specifying the retry, ignore, substitute, and 

parallel execution mitigation strategies, we have a  if the Mitigator and the 

corresponding Detector are loaded in the system, and an X otherwise. More 

than a  is present in a line for composite mitigations. 

Experimental Results The experiments were conducted on a dual core 

Linux virtual machine with all services running locally, communicating via HTTP 

on the loopback device. In these experiments, the test case triggers product 

exchange requests concurrently from two stores. Each of the two stores 

requests 10 exchanges, each exchange includes 10 different products. The 

store then waits 15 seconds and starts requesting again. The given test case is 

intended to permit an evaluation of the overhead introduced by Detectors 

and Mitigators and is not intended to reproduce a normal usage scenario.  

The experiment results can be summarized as follows: the Detector and 

Mitigator approach, leveraging the Mule ESB framework, increases the 

reliability of web service composition without changing the component 

services. It allows encoding and enforcing SLAs that mandate timing 

requirements on service execution. Furthermore, the performance cost of 

using this approach is very limited.  

Overhead Evaluation. The first two lines of Table 1 evaluate the cost of 

adding Detectors and Mitigators when there are no errors. This is an important 

measurement to validate our claim that the cost of using this approach is not 

too high. The results show an average increase of 7% in execution time. The 
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network delay was minimized by using local communication. Therefore, the 

result evaluates the overhead of executing the detection over the normal 

processing of the service.  

Failure Management Performance.  The rest of the table shows various 

failures being triggered and how the presence of Detectors and Mitigators 

can mask the injected faults. The overall result is that by using the proper 

Detectors and a suitable set of the standard Mitigators, all of the injected 

failures could be masked.  

SUMMARY 

This chapter described how to leverage the Rich Service pattern to 

address an important crosscutting concern: failure management. The 

approach presented leverages the Rich Services blueprint, and the fact that it 

is based on a messaging infrastructure, to implement Detectors as RISs that 

monitor the interactions of a service by intercepting messages exchanged. 

This decouples the business logic from the fault tolerance components. 

Mitigators are also RISs that are activated by a Detector upon failure 

detection, and are responsible for recovering from the failure. Mitigators are 

strategy based and hence are decoupled from the failure detection logic. 

Using the case study I evaluated the performance of all recovery strategies 

commonly used in the Web Services domain. 

From the measurements of the performance overhead and the 

reliability of the CoCoME trading system I conclude that, even in the case of 

multiple failures, by using a composition of different mitigation strategies the 
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system can recover from all injected failures. This comes at the fairly modest 

price of 7% overhead in response time on average in the absence of failures. 

In the next chapter I present a different type of experiment. Instead of 

testing the implementation of a rich service system to evaluate the 

performance of RIS in improving its reliability, I execute a formal verification of 

the system model to prove that properties are satisfied even when failures 

occur. 

ACKNOWLEDGEMENT 

This chapter, in part, is a reprint of material as appeared in V. Ermagan, 

I. H. Krüger, and M. Menarini, “A Fault Tolerance Approach for Enterprise 

Applications,” in Proceedings of the IEEE International Conference on Services 

Computing (SCC). Jul. 2008, The dissertation author was the primary 

investigator and author of the text used in this chapter. 

© 2008 IEEE. Reprinted, with permission, from V. Ermagan, I. H. Krüger, 

and M. Menarini, A Fault Tolerance Approach for Enterprise Applications, 

Proceedings of the IEEE International Conference on Services Computing 

(SCC), and 07/2008 

 



 

47 

CHAPTER 3 

EXPLOITING CROSS-CUTTING CONCERNS IN VERIFYING FAULT 

TOLERANCE PROPERTIES 

In this chapter I extend to embedded systems the study of fault 

tolerance discussed in Chapter 2 for enterprise systems. The case study I use in 

this chapter is the central locking system. Here I present a verification 

approach that follows the rich service process presented in Chapter 1. I 

create interaction models for the Central Locking System (CLS) case study 

and use them to generate model checking code. I use this code to formally 

verify properties of the CLS in presence of failures. 

To leverage the proposed Rich Services pattern, I developed notations 

and theories that support the description and manipulation of services 

accordingly. To this end I created a dedicate Service Architecture Description 

Language (SADL). My goal is to apply the principle of separation of concerns. 

The RAS models are assumed to have no software bug or hardware failure. 

Detection of failures and recovery from them is a concern addressed by RIS. 

THE CLS CASE STUDY 

For the embedded systems domain I chose a case study from the 

automotive domain. I demonstrate my service-oriented model-based 

approach using the central locking system. The CLS is simple enough to be 

described here and has requirements that show the main challenges 

common to the automotive domain. 
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In modern high-end cars, CLSs are very complex and require the 

integration and cooperation of up to 20 electronic control units (ECUs). In fact, 

a complex set of comfort functions are connected to the locking and 

unlocking of the vehicle. Examples include the movement of the driver’s seat, 

the setting of radio presets, and, in some cases, the automatic control of 

windows and moon roof. Other functions are related to vehicle security, such 

as engaging and disengaging alarm systems and engine electronic locks. 

Finally, safety and regulatory aspects of the CLS impose additional constraints, 

such as unlocking the doors in case of accidents or locking them after a 

certain speed is reached. Consequently, implementing a CLS for cars is a 

complex integration problem, and the resulting system must guarantee tight 

real time constraints and adherence to various regulations imposed by 

different bodies in different countries. Table 2 depicts a small subset of the 

CLS’s functional and quality requirements. 

Figure 7 shows a use case diagram derived from these requirements, 

capturing two actors: the driver and the system. A line connecting an actor to 

Table 2. CLS Requirements (simplified). 

Functional Requirements 

Unlock the door when the key fob unlock button is pressed. 

Lock the door when the key fob lock button is pressed. 

Unlock all doors when an impact is detected. 

Quality Requirements 

The time between an impact and the door unlock must be less than 

0.1 seconds. 

The emergency door unlock must be guaranteed even in presence 

of ECUs failures. 
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a use case indicates participation in the use case execution. For instance, the 

driver takes part in the unlocking and locking operations, whereas the system 

takes part in crash management. 

Both of the unlocking and locking use cases include a sub use case to 

make the car lights blink. The unlocking operation also includes an 

authentication use case, while the locking operation includes arming the 

security module in the car. The crash management use case includes a sub 

use case performing the immediate unlocking of all doors. 

The next step is to identify the proper roles for the entities interacting in 

the services implied by use cases and requirements. Note that this step 

disentangles the logical model from deployment concerns: a role is the 

behavioral contribution a deployment component makes to a given service. 

In other words, a role is a behavioral proxy for a deployment component in a 

 

Figure 7. Use case diagram for the Central Locking System (CLS) case study 
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service specification; we also say that the deployment component “plays” 

that role. Roles such as the driver and the key fob are directly mentioned in 

the requirements and use cases. Other roles are inferred by knowledge of 

existing system implementations and are part of the design.  

For example, a CLS controller manages the interactions that occur 

during the locking and unlocking, a security manager supports the execution 

of the authentication use case. For this case study, I identified seven roles: the 

car key fob (KF), a lock motor (LM), a security manager (SM), a database (DB) 

(which is usually played by a Controller Area Network (CAN) Bus or other in-

vehicle bus), an impact sensor (IS), the light system (LS), and a lock controller 

(CONTROL). 

Having identified the roles and use cases, I proceed with the definition 

of services. In the Rich Services framework there are two types of services: rich 

application services (RAS) and rich infrastructure services (RIS). RAS capture 

interaction patterns between roles to perform a function directly useful to the 

system user (a business function). On the other hand, infrastructure services 

change the interaction patterns to enrich or modify some functionality 

leveraging the service infrastructure (e.g., authentication and encryption of 

communication). These functions do not provide business value by themselves 

but need to be applied to other interactions (through an infrastructure or 

middleware). Another important example of RIS is a failure management 

service that identifies deviations of the expected behavior of other services 
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and injects mitigation strategies to recover from them. This results in an end-to-

end view of failure management across the subsystems in the vehicle. 

MODELING THE RAS 

I capture the interactions defining services using MSC. I model the basic 

scenario where the vehicle is initially locked. A key fob is used to remotely 

unlock or lock the doors. Unlocking and locking can iterate indefinitely. In 

parallel, the impact sensing operation is performed – when an impact occurs, 

the system unlocks all doors. We separate the locking and unlocking 

operations into two services: LCK1 (UNLK1) performs the (un)locking the doors 

and signaling the light system (LS), whereas LCK2 (UNLK2), performs the key 

fob authentication and arms the security manager (SM). 

 
Figure 8. CLS-1 
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Figure 8 shows this model as a high level MSC (HMSC) capturing the 

global view of the CLS RAS of our case study. The two boxes labeled JOIN 

represent an operation that performs each of the interactions defined by the 

operands (in this case LCK1 and LCK2, and UNLK1 and UNLK2 respectively) in 

parallel but synchronizes them on common messages. 

Figure 9 and Figure 10 specify the interactions UNLK1 and UNLK2, 

respectively. When the driver tries to unlock the doors, the lock controller 

notifies the security manager to authenticate the key fob. When the key fob 

ID is validated, then the unlocking operation is successful. Since the unlocking 

operation and the ID verification runs simultaneously, it is appropriate to join 

 
Figure 9. UNLK-1 
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UNLK1 and UNLK2 services to run simultaneously and synchronize through the 

same messages they share. This means that a single unlck message from KF to 

CONTROL starts both interactions. Also, a single ok message from CONTROL to 

KF indicates the completion of both interactions. The 2 UNLK MSCs are 

combined using the join operator. This operator ensures that both interactions 

are completed before the shared ok message is returned. This description 

technique specifies the scenario in which both the opening of the door and 

the authentication are successful. In this case we don’t care in which order 

the messages are sent. Additional scenarios are needed to describe what 

happens in case of failure of the authentication. For example, those 

additional scenarios could enforce that if the authentication fails the door is 

never opened. The power of the notation used is that additional scenarios 

may impose constraints on message ordering (i.e. the security manager 

should confirm the id before the unlock request is sent to the lock manager). 

In UNLK-1, CONTROL is initially in the locked (LCKD) state. After 

unlocking the doors, CONTROL also sends a signal to LS, to handle the blinking 

of the light system. After finishing the unlocking process, CONTROL reaches the 

unlocked (UNLD) state. 

Figure 11 shows a scenario where a crash occurs and the related 

unlocking procedure is performed. Upon impact, an Impact Sensor (IS) sends 

an Impact message to CONTROL, which has the command center role of the 

CLS. CONTROL sends an unlck message to LM, upon receipt of the Impact 

message. The service ends by CONTROL receiving the acknowledgement of 
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the unlocking from LM. Out of the many possible failure scenarios, for this 

example, I chose a scenario based on a deadline. Hence, an additional 

constraint, identified by the dotted arrow in the diagram, is that the interval 

between the impact message and the acknowledgement of the door being 

unlocked must be less than 10 milliseconds.  

MODELING THE RIS 

The MSCs presented in the previous section define the required 

behavior of the application. From such models, an automaton accepting the 

modeled interactions can be derived for each modeled lifeline (service role). 

Such automata can be used at runtime to identify deviations from the 

expected behaviors. For brevity, this case study focuses on just one level of 

the hierarchy of the CLS model. Ref. [28] contains an algorithm to obtain state 

 

Figure 10. UNLK-2 
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machines from MSCs and HMSCs. As demonstrated in the previous chapter, 

leveraging the Rich Services framework, it is also possible to observe the 

interactions performed by RASs and implement such state machines in a RIS. 

Thus, leveraging RISs, it is possible to separate the management of failures in 

infrastructure services, and enhance the system logic not only to detect but 

also to recover from errors. For this purpose, a failure hypothesis is needed. The 

failure hypothesis identifies the type of errors (originating from software or 

hardware faults) and their combinations, in presence of which the system 

must still behave correctly.  

The process of detecting failures is completely independent from the 

physical deployment of the system. In fact, errors are identified by the lack of 

adherence to the interaction pattern defined by a service. However, a failure 

hypothesis needs to identify dependencies between which component 

 

Figure 11. UNLK-3_Managed 
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performs a given function and how such component can fail. In the CLS case 

study the assumption is that when an ECU fails, then all its software functions 

fail together.  

DEPLOYMENT AND FAILURE HYPOTHESIS 

The failure hypothesis proposed in this approach is closely related with 

the deployment architecture. In the deployment diagram from Figure 12, a 

CAN Bus connects the different subsystems: ImpactSensor1, ImpactSensor2, 

SecurityManager, DataBase, FailManager, LockMotor, and Controller. The 

KeyFob is connected to the rest of the system via a wireless connection and 

with an adapter to the CAN Bus. Each component can play one or multiple 

roles defined as lifelines in the MSCs. The Failure Manager component plays a 

special role (called M). This role performs the mitigation part of the managed 

 

Figure 12. Deployment architecture 
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service as depicted in Figure 13. The failure hypothesis is that all components 

except the lock motor can fail. Also, the wireless channel can fail completely, 

whereas the CAN Bus can only fail by losing one message per run. This failure 

hypothesis is completed by a global constraint on the number of concurrent 

failures allowed – in this case, just one entity per run can fail. I picked this 

scenario as it covers an important class of failures, i.e., when the number of 

failures has a finite upper bound. The SADL developed to support the creation 

of failsafe systems allows specification of all these concerns.  

To support fail safety, a RIS, need to be able to specify both how to 

detect errors, and how to recover from them. Different domains use different 

techniques and follow different rules. Chapter 2 explored the domain of 

enterprise applications and proposed a method to make an enterprise system 

reliable by implementing RIS that support the standard fault tolerance 

techniques used in this domain. The creation of fail-safe systems in the 

automotive domain benefits from a domain specific language supporting 

techniques targeting this domain. 

GENERATING THE VERIFICATION MODEL 

The Service-Oriented Software & Systems Engineering Laboratory (S3EL) 

at UCSD has developed a modeling tool called M2Code [49] that is able to 

generate state machines from interaction descriptions. Additional tools were 

then added by me and other members of the S3EL team to M2Code. 

M2Code now supports automatically weaving failure detector / mitigator 

state machine templates into the generated state machines following the 
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Rich Services pattern [50]. M2Code takes as input a SADL specification and 

generates both implementation code and models to support formal 

verification. 

The generation of such implementations is based on the synthesis 

algorithm presented in Ref. [45]. I briefly outline the main steps of this 

transformation here; and refer the reader to Ref. [45] for a complete 

treatment of the subject. 

The input for this algorithm is a set of MSCs described in the SADL 

developed for M2Code. The algorithm uses a closed-world assumption with 

respect to the interaction sequences that occur in the system under 

consideration. For each role of the MSC set an automaton is obtained by 

successive application of the following four transformation steps: 

1. projection of the given MSCs onto the role of interest  

2. state marker insertion, i.e. adding missing start and end states before 

and after every interaction pattern 

3. transformation into an automaton by identifying the MSCs as transition 

paths, and by adding intermediate states accordingly 

4. optimization of the resulting automata 
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This synthesis algorithm works fully automatically for causal MSCs [51], 

and correctly transforms choice, repetition, concurrency/interleaving and join 

[28] in MSCs. Because the algorithm is based on syntactic manipulation of the 

given MSCs it is oblivious to the underlying MSC semantics - as long as the 

semantics of the target component model matches the one used for the 

MSCs serving as input to the algorithm. 

Figure 13 shows how lifelines in MSCs are converted to state machines. 

Each transition is marked with a message sent or received by the lifeline. To 

model failures, the state machine generated by the algorithm described 

earlier is modified by adding a sink state (lower part of Figure 13). Using this 

approach, I was able to verify that the CLS models were correct and ensure 

that the car gets unlocked during an accident even in presence of failures 

under the given failure hypothesis.  

 

Figure 13. From MSCs to State Machines 
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Figure 14 shows a fragment of the Promela code that the tool 

generates. The Promela code implements the state machines derived via the 

outlined transformation algorithm. The code from Figure 10 models an 

automaton for the LS role of our case study. The automaton is simple, there 

are only two states. State __JS0_26 is the regular state the automaton is in 

while the LS role is executing correctly. The _Sink state models a failure state 

in which the LS role can enter. The full Promela model contains one Proctype 

for each role in the CLS model and has, in addition, models for the mapping 

of roles to components, as well as the failure hypothesis. Using this Promela 

model generated by M2Code the SPIN model checker can be used to 

formally verify properties of the system.  

Figure 14. Promela code for the LS role. 

Proctype LS (chan _CL3, kill_CL3, _ERR, kill_ERR)  

 

 bool killedChan; 

 mtype msg; 

/* Set initial state */ 

 if :: goto end___JS0_26 fi;  

  

/* State transition function */ 

 end___JS0_26:  

  if  

  ::d_step CL3?[door_lckd_sig] -> CL3?msg;  

          goto end___JS0_26 

  ::d_step CL3?[door_unld_sig] -> CL3?msg; 

          goto end___JS0_26 

  ::d_step _ERR?[kill] -> _ERR?msg;  

          goto end_Sink 

  fi;  

 

 end_Sink:  

 skip; 



61 

 

SUMMARY 

The case study presented in this chapter differs from the one presented 

in the previous one in two substantial ways. First of all, the approach in this 

chapter is based on a formal model of the system while the previous case 

study is based on an implementation. The goal here is to leverage simple 

models to generate a Promela program. This program can be used to formally 

verify properties of the system under all considered failure scenarios. Second, 

in this chapter I focus on an embedded system while in the previous one the 

case study was an enterprise system. However, I use the same detection and 

mitigation techniques in both case studies. 

The two chapters complement each other. In fact, chapter 5 analyzes 

the execution performance of different failure detectors and mitigators 

implemented in an enterprise system, while this one presents a methodology 

to formally verify the impact of these detectors and mitigators without 

implementing them but just from their models. More details about the 

verification approach presented in this chapter and the tool chain supporting 

it are published in Ref. [50], [52]. 
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CHAPTER 4 

MODELING CROSSCUTTING CONCERNS 

In the previous chapters I discussed how SOAs help to successfully 

integrate complex distributed systems in different domains. The Rich Service 

pattern simplifies integration further by decoupling crosscutting concerns from 

the flow of the business logic. I demonstrated the capabilities of the Rich 

Service pattern to address crosscutting concerns using fault tolerance as an 

example. In particular, I presented two case studies, one from the embedded 

systems domain and the other from the enterprise systems domain. 

The examples presented in Chapter 2 and 3 cover one specific 

example of crosscutting concern: failure management. While the Rich Service 

pattern is not specifically developed for one type of concern, the SADL and 

the mitigation patterns discussed in the previous chapters are specific to 

failure management. To fully realize the promises of Rich Services a generic 

language to specify and compose crosscutting concerns must be devised. 

The problem of decoupling the main flow of a program from the 

specification of crosscutting concerns has also been addressed in the 

programming world by aspect-oriented programming. To realize systems 

based on Rich Services I need to provide similar facilities for service models. 

Thus, in this chapter I analyze how the concept of aspect can be extended to 

modeling languages. To this end, I leverage the Rich Service architectural 

blueprint together with Aspect-Oriented Modeling (AOM) techniques [7–9]. In 
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particular, I present work on aspects for MSCs, a simple yet powerful graphical 

notation to describe interactions that can be used to compose RIS to RAS. 

The outline of this chapter is the following: first, I describe how the Rich 

Service pattern defines the interface between services and how this interface 

can be modeled. Second, I examine how current MSCs operators can be 

extended to allow an AOM approach to composition of RASs and RISs. Third, I 

discuss issues with respect to causality and address how those issues reduce 

the expressive power of the new operator if the weaving is done at run-time 

(as it can be done in ESB leveraging the router/interceptor layer). Finally, I 

discuss how the presented aspect technique is an important element of a 

Rich Service approach. 

SERVICE/DATA CONNECTOR 

In the Rich Service pattern each service is connected to the 

communication infrastructure via a Service/Data Connector (SDC). The SDC 

encapsulates the internal structure and behavior of a Rich Service and exports 

an interface that defines the communication patterns that the Rich Service 

can engage in with the external world. To define the structure and the 

behavior of such interfaces I can use MSCs. An SDC exports the internal roles 

(services) that the external world can see as well as the interaction patterns 

that the exposed roles are allowed to participate in. 

Rich Services support two composition approaches. First, a RAS can act 

as an orchestrator, meaning that it utilizes other RASs to provide the 
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composite service. Second, a RIS can intercept messages produced by RASs 

and route them as input to other RASs to produce the composite result. These 

two approaches support the Orchestration [53] and the Choreography [54] 

composition models respectively. 

All interactions between a Rich Service layer and services on other 

layers happen via messages exchanged through the Service/Data Connector 

(SDC). The SDC represents both the structural and the behavioral interface for 

a service. I use MSCs to specify this interface. The structural elements are: the 

names on the life lines (Roles), the messages names, direction, and their 

parameter types. The behavioral element is the message sequence captured 

 

Figure 15. Rich Service with SDC specifications 
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by the MSC. Therefore, I associate a set of MSCs with each SDC. To clearly 

define the interface I also specify which role is internal to the interface and 

which role is external. 

Figure 15 shows a simple example of a Rich Service with the definition 

of the SDC for two internal RASs and for the SDC to the external world. Each 

SDC contains references to one or more MSCs that define the interactions 

allowed through that SDC (in this case the reference of MSC1 from Figure 16). 

Moreover, the SDC defines which role is internal to the SDC and which one is 

external. Internal roles are the roles in the interaction that are played by the 

Rich Service that owns the SDC, while external roles are played by some other 

RASs. Figure 15 shows that in MSC1, RAS1 plays the role of R1, RAS2 plays role 

R2, and role R3 is played by some Rich Service outside the scope of RS1. 

The use of MSCs enables precise description of the communication 

behavior of each RAS. For such interaction specifications, under the constraint 

that MSCs are causal, the algorithm described in [45] can be leveraged to 

 

Figure 16. Message Sequence Chart referred in the SDC specifications 
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generate one state machine for each role. This state machine accepts the 

language defined by the complete set of message patterns that the role can 

engage in. As a result, a set of state machines defines the interface of each 

SDC, and therefore, the behavior at the interface of any RAS. The MSC of 

Figure 16 has been created with the M2Code tool [50]. As discussed in the 

previous chapter, the tool implements the state machine generation 

algorithm and support MSCs. However, the tool has not been extended to 

support the Aspect MSC notation and the Match operator introduced here. 

The focus of this chapter is on how to model the SDC of RIS. The goal of 

RIS is to leverage the flexible Router/Interceptor layer of Rich Services to 

address the crosscutting concerns by modifying the message flow in the ESB. 

RIS provides a centralized place to define such crosscutting concerns. 

Because the system behavior is defined by modeling the interaction patterns 

between services, the message routing and filtering of a RIS should be 

specified by modeling how the communication patterns change. This goal is 

very similar to the goal of Aspect-Oriented Modeling (AOM) techniques [2]. To 

 

Figure 17. An example of an Aspect MSC 
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describe the routing capabilities of the RIS, the work presented here leverages 

the rich literature on AOM. In particular, the language proposed is inspired by 

Ref. [55]. 

I describe the SDC of a RIS by means of Aspect MSC. Aspect MSCs 

represent an extension of normal MSCs where the message name and role 

name of some elements is replaced by a special expression. I do not describe 

in detail the syntax of Aspect MSC here instead I introduce them via an 

example. In fact, the goal of this chapter is to explain how interaction models 

and aspects can capture in general the Rich Service composition. In the next 

chapter, I present in detail a more powerful textual language that capture 

interactions and aspects and can provide a formalization of Rich Services.  

Figure 17 contains an example of an Aspect MSC. Roles that start with 

a “|” symbol represent template roles. The name is given as a regular 

expression that has to match a role name in the normal MSC. Template 

messages starts with “|” or with “X|”. In the first case, they simply identify the 

message that matches the following regular expression. In the second case, 

they indicate that the matched message must be removed during the 

composition. A regular expression follows the “|” and optionally an “as” 

followed by an identifier name. The identifier is then bound to the matched 

message. The picture in Figure 17 for example, defines an Aspect MSC that 

matches whenever Role R1 or R2 send a message to Role R3. The given 
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message is not sent to the role R3, but instead it is sent to the role Encrypt 

which forwards it encrypted to role R3. 

The SDC of a RIS is, therefore, specified by an Aspect MSC. Optionally, it is 

possible to state in the RIS SDC to which MSCs in the Rich Service the RIS is 

applied. In case I do not specify any MSC, the RIS applies to all interactions of 

the Rich Service containing the RIS. To compose an Aspect MSC with normal 

MSCs in the next section I define an operator that recognizes the new syntax 

and uses it to weave the aspects. 

MATCH, AN EXTENDED JOIN OPERATOR 

Here I use the same semantic framework used to define MSCs as a 

basis for defining the semantics of the composition operator for Aspect MSCs. 

This is based on the notion of message streams [56] and predicates over such 

streams. A comprehensive description of the MSC semantics I am referring to 

can be found in [28].  

Two core properties of aspect-oriented programming identified in 

literature are quantification and obliviousness [57]. Quantification identifies on 

what elements of the original program the modification is applied. 

Obliviousness requires that the application programmer does not need to be 

aware of the aspects that will be applied. The aspect composition operator 

can be analyzed according to those two properties. I believe, in order to help 

engineers better understand the resulting system during development and 

debugging, it is important to define the aspect composition at the level of 
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MSCs instead of defining it on the state machines translation. This provides the 

opportunity to view and debug all the resulting composed interactions at the 

MSC level.  

The Join operator in the current MSC language is a good candidate to 

provide a basis for Aspect composition. Join is a parallel composition operator 

that synchronizes on common messages. Common messages, in this case, are 

defined as messages with the same name and where their sender and 

receiver roles’ names also match. Join does not distinguish between messages 

that are specified to match and messages that are intended to add 

behavior. Everything that does match is synchronized and everything else 

adds messages in parallel. The Join operator, therefore, composes two MSCs 

and adds to the behavior specified in the second MSC to the one specified in 

the first. It quantifies on the common messages and the developer of each 

MSC does not need to be aware that it will be composed with another MSC. 

Thus, Join is suitable for aspects composition. There are some differences 

between what Aspect MSCs want to achieve and what Join does: 

• An aspects specify which messages are in the model to execute the 

matching and which messages are there to add behavior. An aspect 

composition operator must understand that difference.  

• The new behavior specified must be added only when there is a 

match.  

• The matching strategy is more complicated (regular expressions 

instead of string equivalence).  
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• Messages can be specified by variables that are assigned by matching 

messages.  

• Join matches once, while Aspect should be applied every time the 

given communication pattern is observed. 

Given the similarity between the needs of Aspect MSCs for composition 

and the current Join operator I introduce a new operator Match for Aspect 

composition based on Join. Given an Aspect MSC (    ) and a MSC (   ), I 

informally define the semantics of Match with the following two cases: 1) If 

there exists an instantiation,        , of all patterns defined in      such that 

all messages defined as patterns (starting with “|” or “X|” matches to 

messages in     according to the Join match rule. Then, the semantics of 

Match is the same of Join between the         and     except for the 

following differences: the messages matching instantiated template 

messages marked for deletion (starting with “X|”) are removed from the 

resulting MSC. Messages defined by an identifier in the      are replaced 

with the message matching the definition. While Join matched only once, the 

Match with         is repeated for all occurrences of the template in the 

original MSC. Therefore, once the         has been applied for the first time, 

the operator looks for more occurrences of the template captured by     , 

possibly with a different instantiation  
 
      , and applies the aspect again. 

2) If no instantiation         exists, the result of the composition is the original 

   . 
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Figure 18 shows an example of the Match operator. It is the 

composition of MSC1 from Figure 16 and aMSC from Figure 17. The only 

template message in aMSC is the first one: “X|* as M”. The pattern specifies 

every message from the source role to the destination role. Because the 

source role is also a pattern, “|R[1,2]”, matching messages are all messages 

from R1 to R3 and from R2 to R3. The only message in MSC1 that matches the 

pattern is “m2(p2)” from R2 to R3. The composition in Figure 18, therefore, has 

the matching message removed. Moreover, the composed MSC has the 

additional role Encrypt, the message “m2(p2)” from R2 to Encrypt, and the 

encrypted message from Encrypt to R3. As shown in the figure, the identifier 

“M” has been replaced with the matching message, “m2(p2)”. 

While this graphical notation is useful for specifying crosscutting 

concerns and for understanding how to model RISs in general, to formally 

define Match and analyze its properties a formal language defining aspects 

 

Figure 18. Result of composing MSC1 and aMSC using the Match operator 
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and their composition is needed. In the later chapters I provide such a 

language. 

RIS AND CAUSALITY 

In the MSC dialect I used in this chapter MSCs must be causal. A causal 

MSC restricts the sequence of messages exchanged such that when a role 

receive a message it can always locally decide the next step [51]. Causal 

MSCs, therefore, ensure that the global communication patterns specified by 

MSCs is the composition of the local communication patterns accepted by 

the state machines generated for each role by our tools. To have a valid 

composition, the result of Match must be causal. In general, there is no 

limitation for the set of template messages (starting with “|” or “X|”) in an 

Aspect MSC to be causal, as long as the resulting composition is causal.  

Middleware such as ESBs enable an application to intercept messages 

before they are received or sent by a service and perform arbitrary processing 

of the messages. For example, a message can be discarded, routed to 

another destination, or modified before being forwarded. It would be useful to 

be able to leverage these capabilities to plug RISs in the system at run time. To 

this end an implementation can insert a message interceptor at the interface 

of each RAS. This interceptor can use a state machine obtained from an 

Aspect MSC to observe the communication during run-time and decide if the 

Aspect MSC is applicable. The definitions of Aspect MSC and Match given in 

the previous section, however, is not suitable for run-time weaving using the 

Router / Interceptor layers implemented by ESBs. In fact, this run time weaving 



74 

 

is possible only if the pattern that has to be matched is causal. In this case, the 

monitor can observe messages locally exchanged by RASs. If the template 

messages that are part of the Aspect MSC have to be identified at run time 

by a local monitor, the monitor has to choose locally whether the observed 

communication matches the aspect or not. This implies the local choice that 

is guaranteed only if the pattern is represented by a causal MSC.  

Another restriction to enable the weaving of the aspect at runtime is 

that a causal dependence exists between detecting that the aspect applies 

and modifying the communication pattern. In fact, if the weaving is applied 

by statically analyzing the model, aspects can advise the MSC by inserting 

behavior before the interaction that identify the match is executed. As an 

example, consider the Aspect MSC of Figure 17. As identified while discussing 

Figure 18, there is a match in MSC1 and it is on the message “m2(p2)” from R2 

to R3. In this example, the changes to the communication pattern of MSC1 

follow the detection of the match. However, I could easily add other 

messages to aMSC before the template message. The composition operator, 

once it has identified the match, can insert the additional messages in the 

composed MSC before the matching message. However, in case of run time 

weaving using the message routing and interception facilities of an ESB, there 

would be a paradox. The aspect would need to send messages before 

receiving the messages which allows it to identify the need to send them. The 

following restrictions enable support for run time weaving of Aspect MSCs: 
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• Normal messages are allowed only after the last template message. 

Therefore, the run-time monitor can determine that the aspect applies 

before having to modify the behavior.  

• Only one template removing a message is allowed, and it needs to be 

after all the other template messages. This restriction could be relaxed 

to let n messages to be removed (as long as they are at the end of the 

sequence). However, this would introduce arbitrary delays in message 

forwarding.  

• Finally, the set of template messages in an Aspect MSC, once 

instantiated, must form a causal MSC.  

With the cited restrictions RISs that can be weaved in an ESB-based 

application at run time. Therefore, it is possible to keep the crosscutting 

concerns addressed by RIS separated from the business logic throughout the 

development phases, from design and modeling phase to deployment. This 

restricted version of the Aspect MSC language is, thus, suitable for capturing 

the routing information that the ESB framework uses to transparently modify 

the execution of deployed services.  

SUMMARY 

The Aspect MSC language presented in this chapter is a good 

candidate for providing a general purpose language to model systems 

according to the Rich Service pattern. Services can be composed describing 

their interaction patterns. Moreover, crosscutting concerns implemented by 

RIS can be injected using aspect composition. This approach, therefore, 
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provide an improvement over the techniques described for failure-

management in the previous chapters.  

An aspect-oriented technique generalizes the failure management 

service approaches presented in Chapters 2 and 3 if it has the following 

characteristics. First it has to deal with time in a way that can be used to 

define deadlines and, in general, timing properties. Second, it has to be 

grounded in a formal model, which can be leveraged to synthetize code and 

verification models. 

Next chapter introduces an orchestration language that fulfills the 

properties mentioned above. This language, called Orca, supports the 

orchestration of services, including sequential and parallel composition, has 

facilities for synchronizing parallel services, and supports composition of 

aspects.  
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CHAPTER 5 

ORCA: A LANGUAGE FOR MODELING CROSSCUTTING CONCERNS 

In the previous chapters I discussed different case studies involving 

integration of complex software systems. In particular, I identified as a key 

issue the composition of crosscutting concerns and I introduced model-based 

techniques to address such composition. 

In this chapter I propose a simple algebra to capture interactions and 

address the composition of crosscutting concerns: I call it Orca. Orca extends 

the Orc language proposed by Misra and Cook [5]. The extension addresses 

composition of crosscutting concerns. The need for this work arises from the 

observation that providing a usable service ADL requires the use of graphical 

modeling languages and the introduction of multiple operators to cope with 

the different needs of different application. Providing a direct formalization of 

such language can be challenging. In contrast Orc is very concise (it has only 

four operators) and the extension I propose here adds just one composition 

operator for aspects. This simplified the semantic model for the language. 

As demonstrated in the previous chapters, Interaction models can be 

leveraged for different purpose in the development process and used to 

create various types of artifacts.  For example, in this thesis, I used these 

models for code generation: I generated both implementation of interaction 

monitors and model checking code to verify formal properties. In other work 

[58] I leveraged interaction models for instrumenting applications and perform 
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run time verification of various properties. Orca can capture all interaction 

patterns I used in my case studies. Furthermore, it is also possible to map it to 

graphical notations. Therefore, it is a good candidate for the creation of an 

ADL that can address interaction models in different domains. 

INTRODUCTION TO ORC 

The power of Orc lies in its parsimony and its clearly defined semantics. 

For this reason, Orc represents an attractive platform to extend with an aspect 

operator. The result of adding aspect composition to Orc is Orca. 

The complete Orc language consists of two parts: a workflow language 

(formed by the Orc workflow operators) and the Cor functional language. The 

complete language name is Orc/Cor. This combination allows programmers 

to create complete workflow-oriented applications. Consistent with [59], for 

the purposes of defining Orca, I consider only the workflow part of the 

language and refer to it as Orc. The extension of Orca to Orc/Cor (that is a 

possible solution for creating complete RIS definitions) is future research. 

Figure 19 presents a brief definition of the Orc syntax. Ref. [60] presents 

a complete definition of Orc; including a formal operational and denotational 

semantics. Orc programs are made of a goal expression and a set of 

𝑓 𝑔 𝑞   𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

𝑒  𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠     𝑝̄ |𝐸 𝑝̄ |𝑓  𝑥  𝑔|𝑓  𝑔|𝑓  𝑥  𝑔|𝑓 𝑔

𝑝   𝑐𝑡𝑢𝑎𝑙𝑠   𝑥|𝑚

  𝑝̄   𝑖𝑡𝑒𝑠     𝑝̄ |𝑋 𝑝̄ 

𝐸 𝑝̄  𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠   𝐸 𝑥̅  𝑒

 

Figure 19. Orca abstract syntax BNF 
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expression definitions. Orc expressions define the operations the Orc program 

performs. The execution of an Orc program corresponds to the evaluation of 

the goal expression and of all the other expressions referenced by the goal. 

The basic building blocks of Orc expressions are sites and operators. 

Sites are primitive operations that accept a list of values as parameters, 

execute some computation, and can return a result. In Orc, a site call can 

return at most one value. The return of a call is a publication. A site can 

publish either a tuple value (including a simple scalar) or a signal, which 

represent a publication without content. An extension of the Orc language 

introduces a new return type (halt) and operator (otherwise). With this 

extension, a site can return a value, a signal, or halt. When a site halts, it 

reports that it will not return a value. Operators define dependencies between 

different site calls. 

The semantics of Orc defines a set of events and the dependencies 

between them. Events are site calls, site publications and binding of values to 

variables. I have already described sites. The site invocation is represented by 

a site call event. The event representing a site terminating its processing and 

returning a value is the site publication event. Once a value is published, or if it 

is defined directly in an Orc expression, it can be bound to a variable and 

used in the remaining of the Orc expression evaluation. This is represented by 

a binding event.  
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A key aspect of Orc is that its operators establish dependencies 

between events. For example the    operator in the expression 𝑓   𝑔 

establishes a relation between the publication event of 𝑓 and the call event 

of 𝑔. Figure 20 depicts this dependency. The return of the call to site 𝑓 (publish 

event) depends on the event representing the call to 𝑓. The event call to 𝑔 

depends on the publication of site 𝑓 because of the Orc operator   . 

A call to a site can execute only if all call parameters have value. If an 

Orc expression refers to a site with a parameter list containing variables, Orc 

delays the execution of the call until all variables are bound to values. The 

binding of variables to values can happen in two ways: either a value is 

assigned to a parameter in an expression call, or the variable is bound to the 

value of a site publication. An Orc expression can call a site in two ways: it 

can explicitly name the site (i.e., given a site named  :    ), or it can use a 

variable that gets bound to the site name in the execution the expression (i.e., 

given the variable named 𝑋:  𝑋  ). 

Orc provides a number of predefined sites, including  ,   ,    , and 

      .   never publishes anything, and can be used to terminate the 

execution of an expression.    𝑥  publishes a signal if 𝑥 is true, and publishes 

 

Figure 20. Dependency relations introduced by Orc operators 
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nothing if 𝑥 is false.              publishes a tuple whose members are the 

values of call parameters (〈       〉).        𝑥  publishes a signal after 𝑥 

milliseconds. Other sites, including user-defined sites, may perform any 

operation on the parameters: including transforming parameters, retrieving or 

persisting results, interfacing with other systems, and performing calculations. 

The Orc BNF syntax in Figure 19 has 4 sets. The set 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 contains 

all proper Orca expressions, the set  𝑐𝑡𝑢𝑎𝑙𝑠 contains the actual parameters of 

calls, the set  𝑖𝑡𝑒𝑠 contains all valid sites, and the set 𝐷𝑒  𝑛𝑖𝑡𝑖𝑜𝑛𝑠 contains the 

definitions of named Orc expressions. Actual parameters are the entities used 

in sites and expression calls. They can be either variables (𝑥) or values (𝑚). Site 

calls have two forms. They use the site name (  𝑝̄ ) or a variable that is 

assigned to the site name (𝑋 𝑝̄ ). The parameters (𝑝̄) used in site and 

expression calls are tuples of  𝑐𝑡𝑢𝑎𝑙𝑠. The syntax of Orc also specifies 

expression definitions. A definition has a name and a set of formal parameters 

on the left of the   symbol, and an expression on the right. Expressions are site 

calls, calls to other expressions (named in a definition), or combinations of 

other expressions joined by composition operators.  

Orc defines four composition operators. 𝑓  𝑥  𝑔 is serial composition. 

Values published by expression 𝑓 are assigned to the variable 𝑥, and the value 

assigned to 𝑥 is available in expression 𝑔. A separate copy of 𝑔 is executed for 

each value published by 𝑓. If 𝑓 does not publish a result, 𝑥 is assigned no 

value, and 𝑔 is not executed. Serial composition is right-associative. Note that 

𝑓  𝑔 is a convenience notation where 𝑓 publishes a value which is not used 
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in the rest of the expression. Notice, however, that a new instance of 𝑔 is 

executed for each publication of 𝑓. 

𝑓  𝑔 is symmetric parallel composition. Expression 𝑓 is executed in 

parallel with expression 𝑔. If both 𝑓 and 𝑔 contain only site calls, the parallel 

composition can publish 0, 1, or 2 results; otherwise, it can publish a stream of 

results in the time order they are published by 𝑓 and 𝑔. If 𝑓 and 𝑔 publish no 

results, the parallel composition publishes no results, too. Parallel composition is 

fully associative. 

𝑔  𝑥  𝑓 is asymmetric parallel composition. Expression 𝑓 is executed in 

parallel with 𝑔. When 𝑓 publishes a value, it is assigned to 𝑥, and 𝑓 stops its 

execution. If any site call in 𝑔 depends on the value of 𝑥, when one of such 

calls is reached, the call is delayed until 𝑥 has a value. If 𝑥 is never assigned a 

value (because 𝑓 never publishes one), the calls in 𝑔 that depends on 𝑥 are 

never executed. 

𝑓 𝑔 is otherwise composition. The new operator otherwise ( ), 

introduced together with the halt return value, runs an alternative expression 𝑔 

if the primary expression 𝑓 halts without returning any value. An expression 

halts when all sites called halted and no more sites that can be called (i.e., 

they depend of variables not assigned to values). 

Below I give some simple examples inspired by the copious examples in 

[5]: 
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Example 1 

    𝑥  𝑒𝑚𝑎𝑖𝑙 𝑥  news news.com   

First calls a     news feed site to get a single news story, then passes 

the news returned to an email site that sends it to a particular mailbox. If no 

story is available, none is e-mailed. 

Example 2 

        𝑥  𝑒𝑚𝑎𝑖𝑙 𝑥  news news.com   

This expression calls both a     and     news feed site to get a single 

story from each, then passes each story (if any are available) to the email site. 

Example 3 

( 𝑙𝑒𝑡 𝑥 𝑦  𝑥       𝑦     )   𝑐 𝑏  

(𝑒𝑚𝑎𝑖𝑙 𝑐  news news.com   𝑒𝑚𝑎𝑖𝑙 𝑏  news news.com  )
 

This is a slightly more complex example. This expression calls a     

news feed site and publishes the story to variable 𝑥. Simultaneously, calls a 

    news feed site and publishes the story to a variable y. The     site waits for 

both 𝑥 and 𝑦 to have values before publishing a tuple containing both stories. 

The tuple is bound to  𝑐 𝑏  and passed to separate copies of the 𝑒𝑚𝑎𝑖𝑙 site, 

one mails the     story (𝑐), and another mails the     story (𝑏). This example 

demonstrates three composition operators and binding of variables. The 

compound asymmetric parallel composition is an example of joining two 
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separately executing expressions; a convenience notation for a join would be 

            . 

Example 4 

𝑙𝑒𝑡 𝑥  𝑥  (    ( 𝑡𝑖𝑚𝑒𝑟       𝑙𝑒𝑡   one  )) 

This example introduces the use of a timeout. The expression calls a 

    news feed site and publishes a story if one is available within one second; 

otherwise “ one” is published. 

Example 5 

 𝑒 𝑠 𝑛  (𝑙𝑒𝑡 𝑥  𝑥  (𝑛  ( 𝑡𝑖𝑚𝑒𝑟       𝑙𝑒𝑡   𝑜𝑛𝑒  )))

 𝑦  𝑒𝑚𝑎𝑖𝑙 𝑦  news news.com    𝑒 𝑠 𝑛 

 𝑒 𝑠     

 

This is a more complex expression that uses timeouts. The expression 

defines a  𝑒 𝑠 function that fetches a story from a news feed, timing out after 

one second. Either way, it sends the result as an e-mail, and repeats the 

process. To call the  𝑒 𝑠 function we use a news site name as parameter (i.e., 

   ). 

Example 6 

(𝑖𝑓 𝑓𝑙𝑎𝑔   𝑒 𝑠     )  (𝑖𝑓  𝑓𝑙𝑎𝑔   𝑒 𝑠     ) 

This expression creates a parallel execution consisting of two 

expressions. If the flag value is true, the first expression starts a     news feed; 
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otherwise, it does nothing. If the flag is false, the second expression starts a 

    news feed; otherwise, it does nothing. 

ORCHESTRATION WITH ASPECTS 

Orc is a powerful and elegant language to describe interactions; 

however, it is missing an important piece needed to define Rich Services: 

addressing crosscutting concerns. To describe a RIS in Orc an expression 

describing the orchestration of RAS must be changed to also contain the 

services required by the RIS. Orca expands the capability of Orc to address 

the injection of crosscutting concerns in exiting expressions without modifying 

them. 

My goal in creating Orca has been to address the injection of 

additional computation (or the removal of it) in the middle of an expression. 

This enables users to keep their crosscutting concerns specified in a modular 

way as required by the rich service pattern. Orca can be applied beyond 

modeling rich services. In fact, modularizing computation that cross-cut a 

workflow has application in other fields such as workflow-evolution and 

software policy management just to name two. 

INTRODUCTION TO ORCA 

Orca introduces two new elements to the Orc language. The first 

element is the concept of expression interface. The second element is the 

aspect composition operator. 
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An expression interface extends the expression definition feature of Orc 

by decoupling the expression implementation from its definition. Expression 

interfaces are a key element for aspect composition. In fact, aspect-oriented 

techniques generally can be used to modify the behavior of an application 

only on a given set of points in the base code (called joinpoint). Each aspect 

provides an expression that selects a subset of such joinpoints where the 

aspect must be applied (called pointcut). The role of an interface for aspects 

it is then to limit how a given expression can be modified by aspects. 

An aspect weaver uses interfaces to identify what joinpoints in the 

pointcut can be advised with the given aspect. This is a key requirement for 

model based development. In fact, during the development of complex 

system models inconsistencies arise and a proper modeling language must 

help the developer in identifying and resolving such inconsistencies. I discuss 

the consistency issues in model based development in the next chapter. 

The aspect composition operator must identify the set of joinpoint 

which will be modified in the original expression. To this end the aspect 

composition operator in Orca has two parts: a pointcut and advice. The 

poincut is an expression that identifies joinpoints. It must identify the 

expressions it applies to and which elements in the expression. The advice is 

an Orca expression that can defines interaction patterns between the 

joinpoints in the pointcut and other sites. 
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In my approach I chose to use variables in expression definitions as 

joinpoints. In fact, Orc variables establish communication between the output 

of and expression and the input of other expressions. They are the perfect 

point to inject a modification of the interaction pattern. 

Let’s consider the Orc expression  𝑖𝑡𝑒  𝑥   𝑖𝑡𝑒  𝑥  𝑦   𝑖𝑡𝑒  𝑦 . 

Figure 21 shows a representation of how variables are used in the expression. 

When  𝑖𝑡𝑒  publishes a value,  𝑖𝑡𝑒  is called (spawning a new instance of  𝑖𝑡𝑒  

for each published value). The input of  𝑖𝑡𝑒  call is the value published by 

 𝑖𝑡𝑒 . The same thing happens for values published by  𝑖𝑡𝑒  and consumed by 

 𝑖𝑡𝑒 . The figure depicts that the variables can be considered identifying a 

communication channel between two calls. The difference between a 

variable and a traditional communication channel is that there are as many 

different instances  𝑖𝑡𝑒  and  𝑖𝑡𝑒  for as many values are published by the 

preceding sites. 

A slightly more complex example expression is the following:  𝑖𝑡𝑒    

 𝑖𝑡𝑒        𝑖𝑡𝑒      . Figure 22 depicts the communication pattern of this 

expression. In this case  𝑖𝑡𝑒  receives the input of two variables. The control 

structure is the same of the previous example: a new instance of  𝑖𝑡𝑒  is run 

for each value published by  𝑖𝑡𝑒  and similarly a new  𝑖𝑡𝑒  is intantiated for 

 

Figure 21. Example of variable used in passing messages 

Site1 Site2 Site3yx
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each publication of  𝑖𝑡𝑒 . The communication between the variable   and 

 𝑖𝑡𝑒  is now different. In fact, each value published by  𝑖𝑡𝑒  must be passed 

not only to one  𝑖𝑡𝑒  call, but also to all calls executed by a given instance of 

 𝑖𝑡𝑒 . 

 

Figure 22. Example of variables used by multiple calls 

From the examples in the previous paragraphs, it can be can inferred 

that variables represent multiple communication channels even an infinite 

number of them. Each such channel transfer a single value output by a 

process (publishing site) to the input channel of an unknown number of 

instances (all sites called by the expression that use the variable as 

parameters in the call).  

In Orca I interpret each variable as a representative for a class of 

publish/subscribe channels. For each of such channels only one site or 

expression publishes one value to the channel. All sites and expressions using 

the variable in their call are subscribers to the channel. Once a value I 

published to the variable, the variable sends this value to all subscribers.  

With this publish/subscribe view each variable can be split in an input 

part that receives the value published to the variable, and an output part that 

publish the value to all subscribers. Orca joinpoint is defined between the 

SiteA SiteB SiteCj k
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input and output part of each variable. Therefore, it is possible to intercept all 

messages being published to a variable and add additional behavior to 

them. It is also possible to forward messages to the output part of the variable 

and tap into the interaction following the publication of such variable. 

 

Figure 23 depicts how a variable can act as a joinpoint in Orca. Each 

variable has an input part, where the value published by some site is 

published, and an output part, where the value is pushed out of the variable 

to all its subscribers. An aspect is able to weave an arbitrary expression in 

between the input and the output of a variable. Thus, the expression can 

modify the input value before passing it out. However, being an arbitrary 

expression, an aspect can also ignore the input value or send values to the 

output even if no input is received. This makes the Orca definition of aspect 

very powerful. 

EXPRESSION INTERFACES 

The concept of interface has been introduced, and its usefulness 

proved, in many modern programming languages. Interfaces are a key 

concept to modularize code and foster reuse. Because one goal of Orca is to 

 

Figure 23. Joinpoints and aspects in Orca 
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simplify the composition of Orc expressions the first contribution of Orca is an 

expression interface. An expression interface has two parts. The first one is the 

interface return signature and the second part is the call signature. By 

introducing interfaces, Orca forces developers to explicitly define the data 

types that are exchanged. In an Orc expression definition types are implicitly 

defined by the sites that use the information or return it. To abstract from the 

implementation details, interfaces do not depend on sites. Therefore, the 

information on input and output types must be explicitly provided. 

The second line of Figure 24 shows the definition of interfaces in Orca. 

An interface has a return signature (represented by    𝑡  in the figure), a call 

signature (  𝑥 𝑡̅̅ ̅̅   in the figure), and a pointcut signature ([  𝑡̅̅ ̅̅ ] in the figure). 

The return signature contains a quantifier   and a type definition 𝑡.   is 

a Boolean expression that defines the acceptable values of the natural 

number 𝑞    of values published by the expression interface. Moreover, 𝑡 

represents the type of values published by the interface. 

The call signature is similar to a signature in an expression definition. It 

contains the interface name followed by a comma separated list of 

parameter names (variables 𝑥). The main difference is that for each variable 

𝑓 𝑔 𝑞   𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

   𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠      𝑡   𝑥 𝑡̅̅ ̅̅  [  𝑡̅̅ ̅̅ ]

𝐸 𝑝̄  𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠   𝐸   𝑥̅ [ ̅]  𝑒

   𝑠𝑝𝑒𝑐𝑡𝑠   𝐸 𝑝̄ [𝑚̄]| 𝑚| 𝑚 𝑝 

 

Figure 24. Orca Extensions to Orc, abstract syntax BNF 
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after the column we have a type definition 𝑡. 

Finally the pointcut signature is optional and contains a comma 

separated list of tuples. Each of such tuple contains a variable name and a 

type. The variable name is used to specify which variable used by an 

expression implementing the interface can be advised. The type element 

specifies the type that can be passed to the variable. 

I define Orca types using Java types. Therefore, valid interfaces are for 

example:  𝑞     𝑏 𝑒𝑐𝑡   𝑎𝑝  𝑒𝑦  𝑡𝑟𝑖𝑛𝑔  𝑎𝑙𝑢𝑒  𝑏 𝑒𝑐𝑡 , which defines a IMap 

interface which accepts a variable key of type String and a variable value of 

type Object and publishes exactly one value of type Object, and  𝑞  

  𝑛𝑢𝑙𝑙   𝑒𝑡𝑟𝑜𝑛𝑜𝑚𝑒  , which defines an IMetronome interface with no 

parameters and publishes an infinite number of signals (null maps nicely to a 

value for an Orc signal). 

ASPECT COMPOSITION OPERATOR 

The aspect composition operator extends Orc by supporting injecting 

behavior in an existing Orc program. Most of the aspect oriented languages 

support this by breaking the interfaces of the underlying languages. A set of 

join points are selected by means of a pointcut definition and they are 

modified by means of advices. However, the programmer of the base code 

does not have much control on what join point can be selected and how 

they can be modified. Orca takes a different approach. By leveraging the 

expression interface defined in the previous section, Orca clearly defines the 
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input and output requirements for each join point. An Orca aspect can then 

advise the expression implementing an interface but it is constrained to 

respect the input and output requirements of each join point in the pointcut. 

This gives the programmer of the base code the opportunity to clearly define 

where the program can be modified and what it expects to send and receive 

at any given point. 

Line 4 of Figure 24 presents the syntax used for aspects in Orca. An 

aspect is a normal Orc expression which calls expressions that have a pointcut 

signature defined for their interfaces. The main difference from a normal call is 

that for each tuple in the pointcut signature a name is required. The pointcut 

matches each name to the corresponding variable inside the called 

expression. Using these names with the   opertator it is then possible to 

receive or send values from the pointcut variables. The syntax for receiving or 

sending values is similar to a site call in Orc.  𝑚, where 𝑚 is the name used in 

the pointcut, publishes the values received by the variable.  𝑚 𝑝 , on the 

other hand, does not publish any value but send each value passed to the 

parameter p in the site call to the output of the pointcut variable. 

Example 7 

 𝑒 𝑠  𝑒 𝑠 𝑒𝑒  𝑛 [𝑦]  (𝑙𝑒𝑡 𝑥  𝑥  (𝑛  ( 𝑡𝑖𝑚𝑒𝑟       𝑙𝑒𝑡   𝑜𝑛𝑒  )))

 𝑦  𝑒𝑚𝑎𝑖𝑙 𝑦  news news.com    𝑒 𝑠 𝑛 

 𝑞    𝑛𝑢𝑙𝑙  𝑒 𝑠 𝑒𝑒  𝑓𝑒𝑒   𝑖𝑡𝑒 [𝑚𝑒𝑠𝑠𝑎𝑔𝑒  𝑡𝑟𝑖𝑛𝑔]

 𝑖𝑙𝑡𝑒𝑟 𝑒 𝑠 𝑛   𝑒 𝑠 𝑛 [𝑚]   𝑚  𝑚𝑠𝑔   𝑖𝑙𝑡𝑒𝑟 𝑚𝑠𝑔  𝑚𝑠𝑔   𝑚 𝑚𝑠𝑔  

 𝑖𝑙𝑡𝑒𝑟 𝑒 𝑠     

 



94 

 

This example is an evolution of Example 5. It demonstrates the use of 

aspects in Orca. In this example I changed the definition of the  𝑒 𝑠 

expression to include the  𝑒 𝑠 𝑒𝑒  interface.  𝑒 𝑠 𝑒𝑒  has no return value 

(meaning that once executed it calls itself forever without returning). It also 

defines one  𝑖𝑡𝑒 parameter which represents the news feed site called inside 

the  𝑒 𝑠  expression. Finally, the interface defines a pointcut specification. 

The 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 parameter in the interface pointcut is of type  𝑡𝑟𝑖𝑛𝑔. This means 

that all messages received from the pointcut variable or sent to it must be 

strings.  

The expression  𝑖𝑙𝑡𝑒𝑟 𝑒 𝑠 𝑛  applies an aspect to  𝑒 𝑠. This example 

show how nicely the aspect syntax in Orca merges with the classic Orc 

language.  𝑚 is a site that publishes the values published to the message 

variable inside the base code (𝑦 in  𝑒 𝑠).   𝑚 𝑚𝑠𝑔   is a site that publishes 

the value of 𝑚𝑠𝑔  to the message variable in the base code (𝑦 in  𝑒 𝑠). Using 

aspects enables the expression  𝑖𝑙𝑡𝑒𝑟 𝑒 𝑠 to modify the message that is 

emailed inside  𝑒 𝑠. 

A GRAPHICAL MODEL OF ORCA EXPRESSIONS 

In this section I present graphical models of Orca expressions. These 

models are generated by a tool that supports deigning Orca expressions in 

graphical form. The tool is also able to transform the model and render it in 

textual form as an Orca expression. 
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In its graphical form, an Orca expression definition is represented by a 

box; the name of the expression in the top left corner of the box while the 

parameters are represented by a list of smaller boxes under the expression 

name. Figure 25 is an example of an expression definition. In this example, the 

expression name is Exp1 and it has only one parameter called P1.  

 

Figure 25. Example of Orc >> in graphical form 

Each call in the graphical representation of an expression definition is a 

rounded box; on the top left part of the box there is the name of the called 

site or expression. Each call parameter is represented by a small rectangle on 

the box border. The first of such rectangles (blue) is used to represent 

execution causality (used in expressions such as << and >>), the other 

rectangles (red) have the parameter name written next to them. 

Variables are represented by a circle. The variable name is written 

inside the circle. In Orc variables are used with two operators << and >>. The 

type of operator used is represented in the graphical language as an arrow 

inside the variable circle. If the arrow is solid, it means that the operator used 

in Orc is >>, otherwise the operator is <<. 

Figure 25 shows an example of using the >> operator in the graphical 

language. The equivalent Orc expression is 𝐸𝑥𝑝         𝑙𝑒𝑡     𝑥   𝑖𝑡𝑒    . 
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In the example, the let box has a val parameter which is assigned the P1 

expression parameter. The variable is called 𝑥 and the solid line indicates the 

use of the >> operator. Finally the publication of the variable start an instance 

of the  𝑖𝑡𝑒  call, however,   𝑖𝑡𝑒  does not accept any parameter.  

 

Figure 26. Example of Orc << in graphical form 

Figure 26 show an example using the << operator. The expression 

represented in the figure is the following: 𝐸𝑥𝑝     𝑙𝑒𝑡 𝑦  𝑦   𝑖𝑡𝑒    . In this 

case, the expression has no parameter defined. The 𝑙𝑒𝑡 site is connected to 

the variable 𝑦 with 2 arrows. One is connected to the parameter  𝑎𝑙 and 

indicate that the value of 𝑦 must be used in the call (equivalent to the Orc 

syntax 𝑙𝑒𝑡 𝑦 ). The second arrow connects 𝑦 to the blue rectangle and 

indicates dependency (i.e., the call to 𝑙𝑒𝑡 depends on the first value being 

published to 𝑦, in Orc 𝑙𝑒𝑡  𝑦  ). 

 

Figure 27. Example of Orc | in graphical form 

Figure 27 shows the parallel operator of Orc being rendered in 

graphical form. In the graphic notation the dependency is explicitly modeled 
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by arrows. Arrows from a call box to a variable indicates that the call must 

happen before any other call using the variable (arrows from the variable to 

the parameter rectangles in call boxes) and before any call depending on 

the variable (blue rectangle in the call boxes). For example, Figure 27 

represents the following expression: 𝐸𝑥𝑝       𝑙𝑒𝑡     |  𝑖𝑡𝑒    . 𝑙𝑒𝑡 and  𝑖𝑡𝑒 

execute in parallel because there is no dependency defined between them. 

Finally, Figure 28 shows how pointcut interfaces are rendered in the 

graphical representation of Orca. The pictures show an interface definition 

with two pointcut variables MainService and SecondaryService (green boxes 

in the figure). These definitions are connected to 𝑥 and 𝑦 respectively. The 

association of an interface pointcut definition to a variable in the definition is 

represented by splitting the arrow inside the variable in 2 and connecting 

these arrows to the pointcut parameter. 

 

Figure 28. Orca pointcut interfaces in graphical form 

The Orca expression definition corresponding to Figure 28 is the 

following: 𝐸𝑥𝑝        [𝑥 𝑦]   𝑙𝑒𝑡 𝑦  𝑦    𝑖𝑡𝑒    𝑥  𝐸𝑥𝑝      𝑒𝑠𝑡   . The 

graphical too does not show the types of all variables in the interface nor the 
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return quantifier and type. Types are modeled as attributes of the boxes and 

now shown in the picture. The return quantifier is still not supported by the tool 

and left for future work. 

ASPECT SEMANTICS 

Orca introduces two changes to Orc: interfaces (with types and return 

quantifier) and aspect sites (the  𝑛𝑎𝑚𝑒 used to define the aspects). Interfaces 

do not change the semantics of the language. They make explicit what types 

can be produced and consumed by sites. In Orc this information is implicit in 

the site definition. Also the quantifier does not change the semantics. It is just 

information that helps the programmer in composing services by knowing how 

many values they will publish. In Orc this information if implicit, still it can be 

obtained reading the description of sites.  

The only part of an Orca interface that has the potential to change the 

semantics of Orc is the pointcut definition. To keep the semantics of Orca as 

close as possible the one of Orc, pointcut just identify variables that can be 

advised by aspects. However, if an expression is not called in the context of 

an aspect Orca defines the behavior of the expression call to be identical to 

Orc’s. An expression is considered to be called in the context of an aspect if 

parameters are defined for the pointcuts. For example, considering the 

definition of the expression  𝑒 𝑠 from Example 7 above, if the expression is 

called as  𝑒 𝑠 𝑛  the semantics is the same of Orc, if it is called as  𝑒 𝑠 𝑛 [𝑚] 

it is considered to be in the context of an aspect and the semantics changes. 
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I give an informal description of how aspects work using the example in 

Figure 28. The figure shows that the communication inside the 2 variables, 𝑥 

and 𝑦, of expression 𝐸𝑥𝑝  is split in 2. For example, the value published by the 

site  𝑖𝑡𝑒  is sent to the pointcut variable  𝑎𝑖𝑛 𝑒𝑟 𝑖𝑐𝑒. The input of the 

 𝑎𝑖𝑛 𝑒𝑟 𝑖𝑐𝑒 variable is then sent to the original output of the 𝑥 variable. When 

𝐸𝑥𝑝  is used in an aspect, i.e. an expression that calls it assigning a name to 

the pointcut variables, messages are routed through the pointcut variable. 

For example, an aspect that uses 𝐸𝑥𝑝  would look like:    

𝐸𝑥𝑝  𝑡  𝑡  [     ] |     𝑥      𝑥  |          𝑚𝑎𝑥  . This is a regular 

Orc expression, however, it uses pointcuts (in square brackets) and the aspect 

operator  . The meaning of  𝑠𝑝𝑒𝑐𝑡 is the following. It calls the expression 𝐸𝑥𝑝  

regularly, however, it exposes 𝐸𝑥𝑝  internal variables, 𝑥 and 𝑦. These variables 

can be intercepted using the aspect operator   and are named    and    

respectively. When  𝑖𝑡𝑒  called inside 𝐸𝑥𝑝  publishes a value, instead of being 

stored in variable 𝑥 and passed on to execute the internal call to 𝐸𝑥𝑝 , the 

value is captured and re-published by    . From     the value is published 

to  𝑠𝑝𝑒𝑐𝑡’s 𝑥 variable. Consequently,     𝑥  is called.     𝑥  publishes the 

value of 𝑥 in Aspect to the 𝑥 variable in 𝐸𝑥𝑝 . In this example 𝑥 value is just 

intercepted and passed back without modification. Different is the situation 

for 𝐸𝑥𝑝  variable 𝑦. In this case the publication to the variable is captured by 

   . However, its value is forgotten (by using   instead of  𝑦  ) and for each 

publication to the variable the value is replaced with the string “max”. 
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MATCH OPERATOR IN ORCA 

In Chapter 4 I introduced Aspect MSCs, an aspect-oriented modeling 

technique for describing interactions and crosscutting concerns. The 

approach is based on MSCs and uses an operator called Match for aspect 

composition. After introducing Orca I can present a mapping between the 

Aspect MSC models an Orca expression and show how the Mach operator 

functionality can be implemented in Orca. 

The first step is to map MSC diagrams to Orc expressions. MSCs have 

roles and messages while Orca orchestrates site calls via variables. Therefore, 

Orca uses sites to represent roles and variables to represent messages. Each 

message sent to a particular role is a call to the corresponding site having the 

variable containing the message as call parameter. With this mapping the 

MSC1 from Figure 16 can be represented in Orca as:           

𝑙𝑒𝑡 𝑚  𝑝   𝑥     𝑥  𝑙𝑒𝑡 𝑚  𝑝   𝑦     𝑦 . The call to    without 

parameters is introduced to specify that the first message is produced by   . 

The 𝑙𝑒𝑡 call is used to publish the messages sent by each role into the proper 

variables. 

To represent an Aspect MSC Orca uses interfaces and aspect 

operators. For example the aMSC in Figure 17 can be represented using the 

interface  𝑎     [ ]. In this interface I have not included the types because 

the aMSC did not support them. Implementing this interface in     , its 

signature becomes:       𝑎     [𝑦]. And the aspect becomes: 𝑎      

      [ ] |    𝑚  𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑚  𝑒𝑚     𝑒𝑚 . 
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While the result of the translation proposed returns an interaction 

equivalent to the composition with the Match operator. There is an important 

difference. In Orca I chose to force the explicit use of interfaces to define 

pointcuts. This means that a regular expression approach that such as the one 

proposed in Aspect MSCs is impossible. In Aspect MSC an aspect includes a 

pointcut expression which automatically extracts joinpoints from other MSCs. 

On the other hand, Orca requires that each expression specifies the pointcut 

by implementing an interface. This architectural choice is a tradeoff. On the 

one hand Orca requires more manual work to add and modify pointcuts; on 

the other hand the author of an expression is in control to how the expression 

can be modified. By choosing this approach I traded convenience for model 

maintainability. 

SUMMARY 

This chapter introduced the Orca orchestration language. Orca can 

model both the orchestration of services (by means of expressions) and 

crosscutting concerns (by means aspects). Orca can also encode MSCs and 

Aspect MSC. Thus, it is a perfect candidate for modeling systems according to 

the Rich Service pattern. 

While a prototypical tool exists to model Orca expressions and 

manipulate them in graphical form, a complete tool chain is needed to 

support all development activities. In particular, Orca needs a run time 

execution environment similar to the tools available for Orc. Additional future 
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work includes porting the tools developed for MSCs and part of the M2Code 

tool chain to Orca. 
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CHAPTER 6 

MANAGING MODEL CONSISTENCY 

Systems models are always decomposed according to some dominant 

concern. However, software systems always need to address multiple 

concerns. Some concerns are then bound to cross-cut the hierarchies 

according to which the system has been decomposed. This fact, known as 

the tyranny of the dominant decomposition [61], is addressed in the rich 

services pattern using infrastructure services. I introduced examples of aspect-

oriented modeling languages that help in specifying RIS and address 

crosscutting concerns. In particular, Chapter 5 presents Orca, an orchestration 

language that supports specification of crosscutting concerns as aspects. 

However, to fulfill my vision of an end-to-end model-based approach, that 

supports the integration of large scale software systems, two issues stand still in 

the way. 

The first issue is managing the consistency of the models used in my 

approach. In fact, model-based development of large systems requires 

composing multiple documents, each capturing part of the system, in a 

coherent model. Large systems imply that some of the services, and their 

models, are developed by different organizations. This is the case, for 

example, in the automotive industry, where OEMs and their multiple suppliers 

develop different parts of the car. A key requirement for this type of 
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development is to manage inconsistencies and contradictions that always 

arise when systems are developed by different teams. 

The second issue originates from the fact that different languages are 

used to model different aspects of a system. This is important not only because 

my approach targets diverse domains, such as enterprise and embedded 

domains; but also because, even in the same domain, different teams of 

domain experts are trained in using different languages and notations to 

model their parts of the system. Thus, a viable approach for large systems in 

different domains must be able to cope with the diverse notations already 

existing. The problem of addressing consistency is then even more challenging 

because it has to assess consistency of different views of the same system that 

use different representations. 

While in this thesis I focus on interaction models, which are key to the 

development of service-oriented systems, I am well aware that they are only a 

part of the whole picture. In any real system there is the need for other types 

of models. For example, in Chapter 3 I use a failure hypothesis model that 

models how services can fail in relation to their deployment on different 

hardware devices.  

In this chapter I address these two remaining issues. I present a solution 

for the issue of managing consistency across multiple languages using the 

UML that is comprise of a rich set of graphical languages. In particular, I focus 

on embedded systems models by using Modeling and Analysis of Real-Time 
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and Embedded Systems (MARTE) a profile of the UML for embedded systems. 

My solution uses and approach that I called query and constraints [62], which 

supports mapping different graphical languages to a common kernel close to 

the implementation domain. I can use a similar approach for mapping 

different interaction models to Orca. As a case study I use the Bay Area Rapid 

Transit System (BART) system. This case study nicely combines elements that 

are typical of embedded and enterprise systems. 

In this chapter I discuss the topic of model consistency as a separate 

topic from the work presented in previous chapters. Instead of using Orca and 

MSCs as languages for modeling systems according to the rich service 

pattern, I present the consistency work using a UML case study. As previously 

mentioned, this separate contribution is important for supporting model base 

development in real development scenarios. While the abstract model used 

as target for integration in this chapter could supports systems modeled in 

Orca, the necessary integration with the previous work is left for future work. 

MULTI-VIEW MODELS AND CONSISTENCY CHALLENGES 

When using multiple modeling perspectives, the central question from 

an engineering point of view is this: is the modeled system realizable? Oddly, 

the UML is an example of a modeling language that while being used in real 

development projects, does not provide a complete formal semantics. This 

fact alone leaves issues such as model consistency unsolved. In discussing the 

UML consistency problem in detail, I explain how it originates or is worsened by 

the tradeoffs in the language design, and propose an avenue to solve it.  
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My first task in presenting the problem of model consistency is to clearly 

define what kind of consistency I am interested in and how to effectively 

determine whether or not a model is consistent. The UML is a broad-spectrum 

language with an informally defined semantics, which serves the goal to be 

inclusive with respect to modeling styles and domains. However, this creates 

the first hurdle that must be overcome to define consistency. Any approach 

aiming at defining consistency needs to explicitly or implicitly define a precise 

semantics for the UML. A rich body of work exists in the literature on defining 

multi-view or multi-perspective consistency based on UML semantics 

definitions. I have presented an extensive analysis of this work in Ref.[63]. 

Although the consistency problem has been extensively studied in the 

literature, a solution has been elusive – especially in the context of the UML 

with its rich set of inter-related description techniques for system structure and 

behavior. Existing approaches to defining UML model consistency lead to 

complex definitions of the notion of consistency, or address only a subset of 

the available modeling notations. My goal is to create a consistency checking 

approach that is flexible enough to be able to target the full UML language. 

My approach does not force a developer to fully define the semantics of all 

UML notations; only the semantics of a subset (profile) of the UML used in the 

specification must be defined. 

The main novelty of the consistency checking approach presented in 

this chapter is in the comprehensive, yet simple mechanism introduced for 

specifying consistency rules. Instead of analyzing the semantics of the UML at 
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the metamodel level and extracting consistency rules between different 

diagram types, I define a simple execution framework (similar to a “virtual 

machine”), based on a target ontology whose concepts map one-to-one to 

elements of the system class we are interested in modeling, i.e. distributed, 

reactive systems. All UML diagram types are then treated as model generators 

for this virtual machine; each diagram selects entities of the virtual machine 

and constrains their structure or behavior. Model consistency is then simply 

defined as the presence of virtual machine behaviors under the specified 

constraints. 

THE BART CASE STUDY 

To show the modeling capabilities of the UML, we use a simplified 

example of the Bay Area Rapid Transit [64] system, particularly the part of the 

train system that controls speed and acceleration of the trains. BART is the 

commuter rail train system in the San Francisco Bay area. A full description of 

 

Figure 29. Domain Model for the BART tracks 
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the case study is beyond the scope of this chapter, so we will exemplify some 

of the UML diagrams that can be used for modeling such a system – use case, 

class, sequence, and state diagrams. 

The BART system automatically controls over 50 trains, most of them 

consisting of 10 cars. Tracks are unidirectional and sections of the track 

network are shared by trains of different lines. A track is partitioned into track 

segments, which may be bounded by gates. A gate can be viewed as a 

traffic light, establishing the right-of-way where tracks join at switches. Figure 

29 depicts a domain model for the BART track system, showing in a UML class 

diagram the relationships between physical entities such as train, track, and 

gate. Such models facilitate establishing a common language for eliciting 

requirements from domain experts. Typically, specifying relationships and 

multiplicity constraints on a domain model leads to further discussions with the 

stakeholders to clarify the domain. For example, gates are not necessarily 

associated with switches, but can be used just to control the traffic flow.  

Other work [64] describes the Advanced Automatic Train Control 

(AATC) system, which controls the train movement for BART. One important 

AATC requirement is to optimize train speeds and the spacing between the 

trains to increase throughput on the congested parts of the network, while 

constantly ensuring train safety. The specification strictly defines certain safety 

conditions that must never be violated, such as “a train must never enter a 

segment closed by a gate”, or “the distance between trains must always 
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exceed the safe stopping distance of the following train under any 

circumstances”. 

The system is controlled automatically. Onboard operators have limited 

responsibility: they signal the system when the platforms are clear so a train 

can depart a station and they can operate the trains manually when a 

problem arises. Use case diagrams are useful in identifying the system 

boundaries (the control system that must be designed) and the external 

actors that interact with the system. Typically in UML, actors are human actors 

that use an application, but in embedded systems actors can be external 

physical resources such as devices and sensors. Nevertheless, actors represent 

logical roles, so a physical resource could play several roles in UML models. 

Figure 30 depicts a simple use case diagram for BART. Actors that interact with 

the AATC system are the Train and the Train Operator and so they are part of 

the system environment. The use cases depict the high-level goals of the 

system without details on how these goals are accomplished. 
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AATC consists of computers at train stations, a radio communications 

network that links the stations with the trains, and two AATC controllers on 

board of each train - the two controllers are at the front and back of the train. 

A track is not a loop. Thus, at the end of the line, the front and back controllers 

exchange roles, and the train moves in the other direction. Each station 

controls a local part of the track network. Stations communicate with 

neighboring stations using land-based network links. Trains receive 

acceleration and brake commands from the station computers via the radio 

communication network. The train AATC controller (from the lead car) is 

responsible for operating the brakes and motors of all cars in the train. The 

radio network has the capability of providing ranging information (from 

wayside radios to train radios and back) that allows the system to track train 

positions. 

 

Figure 30. BART AATC system use case 
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The system operates in half a second cycles. In each cycle, the station 

control computer receives train information, computes commands for all 

trains under its control, and forwards these commands to the train controllers. 

Figure 31 shows a sequence diagram depicting the interactions between 

three roles called Train, Station AATC, and Train Controller. Note that the 

Station AATC system obtains the status information directly from the Train by 

using the radio network, not from the Train Controller.  

 

Figure 31. Train speed sequence diagram 
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The sequence diagram features interaction frames, introduced in UML 

2.0. A frame provides the boundary of a diagram and a place to show the 

diagram label (e.g., “Control Train Speed” in Figure 31). Frames also allow 

specifying combined fragments with operators and guards. Common 

examples of operators are LOOP for repetitive sequences, ALT for mutually 

exclusive fragments, and PAR for parallel execution of fragments. Figure 31 

uses a LOOP operator to show that the system repeats the sequence of 

checking the train position and issuing new commands. Another operator is 

REF, which creates a reference to an interaction specified in another 

diagram. This REF operator allows composing primitive sequence diagrams 

into complex sequence diagrams. The expressiveness of UML 2 increased with 

 

Figure 32. BART Check Train Status sequence diagram 
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the addition of these operators, which are borrowed from Message Sequence 

Charts (MSCs) [28], [65].  

Figure 32 depicts a simplified Check Train Status sequence diagram as 

referenced in Figure 31. The Train sends status information regarding its speed, 

acceleration, and range. The Station AATC system computes the train position 

from the status information and updates its Environmental Model. Status 

messages and commands are time-stamped in the so-called Message 

Origination Time Tag (MOTT). When a Train sends status information to a 

station, it attaches the time it sends the message as a MOTT. When the Station 

AATC estimates the train position, it attaches the original MOTT to the 

estimate. Furthermore, when the Station AATC sends a command, it again 

attaches the original MOTT, and the Train Controller checks the MOTT before 

executing the command.  The station’s control algorithm takes the MOTT, 

track information, and train status into account to compute new commands 

that never violate the safety conditions. To ensure this, each station computer 

is attached to an independent safety control computer that validates all 

computed commands for conformance with the safety conditions. 
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The actors in sequence diagrams (e.g., Train, StationAATC, etc) are 

logical roles – in modeling the interactions, we concentrate on specific use 

cases and abstract from any concrete deployment architectures. In essence, 

a role shows part of the behavior the system displays during execution. What 

concrete deployment entity plays this role is left for a later modeling stage. 

The natural modeling entities for roles in the UML are Classifiers – with the 

understanding that multiple roles may be aggregated into a single Classifier. 

The roles related to computing commands and safety are omitted from Figure 

32, as they are relevant for another sequence diagram, called Issue New 

Commands, shown later in this chapter. The roles visible in a sequence 

diagram are a subset of the roles of the entire system.  

Figure 33 shows a simplified domain model with the roles mentioned so 

far. We use the notation of a class diagram without the multiplicities – for a 

role domain model we are interested in the roles that communicate and the 

links between them. The same diagram can be seen as a simplified 

Communication diagram, showing the communication links without the 

messages being exchanged. The role domain model is part of the logical 

 

Figure 33. Domain model of BART roles 
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architecture, as roles are logical entities that are later mapped onto physical 

components to define the technical architecture. A component can play 

several logical roles. 

If a train does not receive a valid command within two seconds of the 

timestamp contained in the MOTT accompanying the status, it goes into 

emergency braking. Figure 34 shows the behavior of the Train Controller as a 

state-machine diagram with two states for normal operation and emergency 

mode. 

In state-machine diagrams we show states as boxes with rounded 

corners. Arrows denote state transitions. Labels on arrows indicate (i) the 

trigger (such as a message received), (ii) a guard (a condition that must be 

true for the transition to be taken) in angular brackets, separated from (iii) the 

action (to be performed when the transition is taken) by a “/”. Actions include 

assignments to state variables and the sending of messages. All three pasts of 

a transition are optional. A solid circle indicates the initial “pseudo” state. 

 

Figure 34. State machine diagram for BART train controller 
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This example shows a frequently used pattern in modeling time with the 

basic capabilities of the UML: time is represented as an explicit parameter in 

messages exchanged among actors and these actors then perform explicit 

time arithmetic to determine transition triggers. 

INCONSISTENCY EXAMPLE 

I revisit the example from the Bay Area Rapid Transit (BART) system, 

introduced in Chapter 3. BART is the commuter rail train system in the San 

Francisco Bay area. The BART system automatically controls over 50 trains on a 

large track network with several different lines. Figure 35 shows three modeling 

perspectives of BART using UML 2.3 and the MARTE profile. Figure 35a shows 

the component diagram defining the structure of the system. Figure 35b 

shows a sequence diagram which models the train commands computation 

and delivery. Finally, Figure 35c and Figure 35d shows state-machine diagrams 

describing the Emergency Brake system component. In this case study I 

discuss an inconsistency that can arise when modeling behavior in the 

different diagrams, namely sequence and state-machine diagrams. 
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Figure 35. Three different perspectives of the BART case study 
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system consists of computers at train stations, a radio communications 

network that links the stations with the trains, and AATC controllers on board of 

each train. Most of the control computation is done at the stations. Each 

station is responsible for controlling all trains in its area. Trains receive 

acceleration and brake commands from the station via the radio 

communication network. The train controller is responsible for operating the 

brakes and motors of all cars in the train. Controlling the trains must occur 

efficiently with a high throughput of trains on the congested parts of the 

network, while ensuring train safety. The station’s control algorithm takes the 

track information, train speed and acceleration, train position estimation, and 

information from the neighboring stations into account to compute new 

commands that never violate the safety conditions. To ensure this, each 

station computer is attached to an independent safety control computer that 

validates all computed commands for conformance with the safety 

conditions. 

The component diagram for AATC is depicted in Figure 35a. It has three 

nodes: two for the train station and one for the train. The first node, Fast 

Computer, represents the station computer that computes the commands to 

be sent to all trains under the control of that station. It contains two 

components: one represents the Station AATC control system and the other 

called Environmental Model, which models the physical environment of a 

station. The Station AATC uses the Environmental Model to compute 

commands to send to trains. The second node, Slow Safety Computer, 



119 

 

contains the Safety Control component, which checks all commands sent by 

the Station AATC for safety before forwarding them to each train. The safety 

computation is based on a simpler model than the one used to compute 

commands and, therefore, requires less computation resources. However, the 

Slow Safety Computer is required to have high reliability. The third node in the 

figure is the Train. It has two components: the Train Controller manages the 

train accelerations and decelerations, and the Emergency Brake is activated 

only in case of an emergency and stops the train as quickly as possible. 

The AATC system operates in half a second cycles. In each cycle, the 

station receives train information, computes commands for all trains under its 

control, and forwards these commands to the train controllers. The Station 

AATC system obtains the status information regarding train speed, 

acceleration, and range by using the radio network, which allows the system 

to track train positions. The Station AATC system computes the train position 

from the status information and updates its Environmental Model. Then, the 

Station AATC interacts with the Environmental Model and the Safety Control 

components to compute and send the new commands, as depicted in the 

sequence diagram from Figure 35b. The behavior specified in the diagram is 

the following: 

 Station AATC sends a request to Environmental Model to compute the 

commands for the train. 

 Environmental Model computes the commands, taking into account 

all parameters such as passenger comfort (e.g., not too strong braking 
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and acceleration changes), train schedule, engine wear, and most 

importantly safety.  

 After receiving the commands from Environmental Model, Station 

AATC sends the commands to Safety Control to ensure the commands 

computed are safe.  

 Safety Control checks that the commands do not exceed maximum 

bounds for safety. If the commands are safe, Safety Control forwards 

them to Train Controller.  

 Train Controller informs Emergency Brake that the commands have 

been received.  

 Emergency Brake acknowledges the commands received.  

 Finally, Train Controller controls the train engine according to the 

commands received. 

The model in Figure 35b is annotated with MARTE time constraints to 

specify the real-time requirements of the BART case study. I annotated two 

time instants t0 and t1 using TimedInstantObservations as defined in MARTE, 

which is indicated by the graphical representations @t0 and @t1. A 

TimedInstantObservation denotes an instant in time associated with an event 

occurrence (e.g., send or receive of a message) and observed on a given 

clock. T0 is the instant when the message Compute Commands is sent by 

Station AATC whereas t1 is the time instant when the message Commands 

Received is received by Emergency Brake.  Because the system operates in 
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cycles, the notation t0[i] and t1[i] represents the generic ith instantiation of the 

interaction scenario. 

Given those two instants, I leverage MARTE to define three time 

constraints in our system. Commands to trains become invalid after two 

seconds. If a train does not receive a valid command within two seconds, it 

goes into emergency braking. Therefore, with the time constraint (t1[i]-t0[i]) < 

(2000,ms) we limit the duration of each iteration of this scenario to two 

seconds. The AATC control algorithm needs to take this timing constraint, track 

information, and train status into account to compute new commands that 

never violate the train safety. The second constraint, (t0[i+1]-t0[i]) >  (500,ms), 

imposes that between each instantiation of the scenario at least half a 

second passes. Finally, the last constraint, jitter(t0) < (10,ms), limits the jitter of 

the t0 event enforcing that between each iteration of the event at t0 there 

are between 500 and 510 ms. 

In normal operations, the AATC system computes the train commands 

in fixed time cycles. However, in case of a detected emergency condition, 

the system has to react immediately and take appropriate measures to 

ensure maximum safety of passengers and equipment. Figure 35c and Figure 

35d present state-machine diagrams for the Emergency Brake component. A 

train will continue to exercise a command until a new one arrives or until that 

command expires, two seconds after the originating time. The state-machine 

diagram for the Emergency Brake has states for waiting for commands and 

entering emergency mode if the timer of two seconds expires. When 
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commands are received, the timer is reset. These state machines are two 

different versions of the same perspective where the one in Figure 35d is a 

refined version that enables restarting the system after an emergency brake. If 

we consider the three graphs from Figure 35a, Figure 35b, and Figure 35c 

together, we have an inconsistent model: the state-machine diagram Figure 

35c does not acknowledge the Commands Received call from Train 

Controller – contrary to what the sequence diagram from Figure 35b 

demands. Replacing the diagram from Figure 35c with Figure 35d, we obtain 

a consistent model. 

UML MODEL CONSISTENCY REQUIREMENTS 

I have identified 12 important requirements (collected in Table 3) by 

analyzing the requirements discussed in the literature for current approaches 

to model consistency. Requirements R1 to R3 in Table 3 originate from the 

observation that any strategy to manage model consistency should not limit 

the freedom of developers. This entails that developers should be allowed to 

modify models even if they introduce some inconsistencies. This idea is 

introduced in [66], where the authors observe that inconsistency is necessary 

and often desirable in some phase of the development cycle. For example, in 

the inception phase of a large project with different stakeholders involved, 

each stakeholder pursues different goals and, during the collection of 

requirements, this can lead to inconsistent views that must be identified and 

reconciled in subsequent iterations. Other arguments in support of 

Requirements R1-R3 have been documented elsewhere [67–69]. The common 
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denominator of all arguments is that effective modeling techniques must 

support decomposing the problem into independent subproblems. This is the 

case when in order to solve complex problems; engineers decompose various 

aspects of the system and reason about each aspect in isolation. 

Alternatively, this occurs when in order to solve complex problems efficiently, 

different teams work in parallel on different aspects of the system.  

A second observation is that each model caters to different needs that 

arise during the development process. For example, informal models are used 

to gather requirements and exchange ideas between stakeholders and 

developers during requirements gathering [35]. Later in the development 

process more formal models are used to describe the structure or the 

behavior of certain parts of the system. In this phase, formal models are used 

to verify properties of a system or to generate part of the implementation 

Table 3. Requirements for UML consistency management. 

 Requirement Description 

R1 
Inconsistent models can be introduced and kept in the system specification for a certain amount 

of time. 

R2 Inconsistencies should be discovered automatically and tracked during the evolution of model. 

R3 Support should be provided to the developer to resolve inconsistencies when convenient. 

R4 
Support multiple modeling languages (for example, different UML notations or even non-UML 

languages). 

R5 Support different levels of abstraction. 

R6 Support the extension or specialization of languages. 

R7 Support Horizontal consistency. 

R8 Support Vertical consistency. 

R9 Support Static consistency. 

R10 Support Dynamic consistency. 

R11 Tool support (or translations to available tools). 

R12 Scalability to large models. 
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code. This second observation is the source of the additional requirements R4 

to R6 in Table 3. 

To evaluate consistency management techniques the notion of 

consistency must be clearly defined. The scientific literature examines different 

notions of consistency. A distinction can be made between Horizontal and 

Vertical consistency [70], [71]. Horizontal consistency involves different 

perspectives on the same system model. For example, on the one hand, to 

describe the communication between a client and a server, it is possible to 

use a UML sequence diagram to capture the protocol and a state diagram to 

capture the server behavior. The two diagrams are different views on the 

same system and should be horizontally consistent. On the other hand, 

Vertical consistency addresses views of the same aspect of one system, but at 

different levels of abstraction, often in relation to the evolution of one model 

during different phases of the development process. For example, an abstract 

model created during requirements gathering must agree with a more 

detailed model used for code generation in a later step of the development 

process. Another important distinction is between Static and Dynamic 

consistency [72]. Static consistency addresses syntactical and structural model 

dependencies while Dynamic consistency ensures the consistency of 

executable models. Four requirements (R7 to R10 in Table 3) capture these 4 

notions of consistency. 

The final two requirements address practical use of consistency 

management techniques. Requirement R11 recognizes that consistency 



125 

 

checking must be supported by a tool chain. Requirement R12 recognizes 

that industrial systems are large scale and this implies they have large system 

models. Therefore, scalability of the chosen technique to large models is an 

important requirement. 

SOLVING UML CONSISTENCY 

None of the approaches available in the literature fully address all 

requirements of Table 3. The common challenge of previous work is in losing 

track of the abstractions implemented in the models that are checked for 

consistency.  

Previous work has taken two routes: either analyzing the semantics of 

the diagrams at the metamodel level (or defining consistency rules between 

different notation types from there) or translating the models into an existing 

formal language leveraged for verification. In contrast, the approach I follow 

here defines an explicit ontology that captures the target domain of the 

models. Based on this target ontology I define a simple execution framework 

(similar to a “virtual machine”). The ontology concepts map one-to-one onto 

elements of the system class I am interested in modeling.  

The main novelty of the consistency checking approach presented 

here is in the comprehensive, yet simple mechanism introduced for specifying 

consistency rules. By defining a simple “virtual machine” containing the 

abstraction used in our models, I can treat all UML diagram types as model 

generators for this virtual machine. Each diagram selects entities of the virtual 
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machine and constrains their structure or behavior. Model consistency is then 

simply defined as the presence of virtual machine behaviors under the 

specified constraints. 

I encode constraints as a set of logic propositions over elements of the 

target ontology, and reduce the verification of virtual machine behaviors to a 

satisfiability problem. While the work presented here is specific to the UML, the 

same approach can be leveraged to integrate other modeling languages 

(such as the Orca language described in the previous chapter) with UML-like 

models. 

For the proposed approach to work, first I tailor the UML to the target 

domain. I leverage the UML MARTE profile to target embedded real-time 

systems. For the purposes of this chapter, I limit the scope of the discussion to a 

subset of the MARTE notations, rich enough to show the value of the 

consistency verification technique I am proposing. In particular, in this chapter 

I include State Diagrams, Component Diagrams, and Interaction Diagrams. In 

the Discussion section below, I analyze avenues for extending this approach 

to a richer subset of UML 2.0 and to other modeling languages. 

QUERIES AND CONSTRAINTS SEMANTICS 

To provide the backdrop for my definition of model consistency, I 

provide a formal semantic framework based on an abstract model of 

distributed reactive systems, similar to a “virtual machine”. I call this model of 

our target domain the “abstract semantic space”. In this space, I show how 



127 

 

each element of a model can be interpreted as a constraint on the system. 

The consistency property can then be trivially defined over the “abstract 

semantic space” as the existence of a system in that domain that satisfies all 

constraints imposed by the models. 

The semantics is based on two elements: queries and constraints. Each 

model element of a UML specification is interpreted as a set of (query, 

constraint) tuples. Each query selects some elements in the “abstract 

semantic space” that we have defined where the corresponding constraint 

defines a restriction on the structure or behavior of these elements in a system 

satisfying the specification. The key benefits of this approach are: (i) a 

mathematically simple, yet comprehensive definition of consistency, (ii) the 

ability to tie the reasoning about consistency to entities of the target domain – 

resulting in a non-generic model subclass to which the consistency notion 

applies, and (iii) the interpretation of model elements as constraints over the 

target domain. 

This consistency checking approach contrasts with other translation-

based approaches in the literature in the way I perform the translation. In fact, 

the target model of my translation abstracts the main components of the 

target implementation domain. The semantics is then specified by directly 

mapping each element of the UML model onto some configuration of the 

target model. The first step is to define an ontology for real-time distributed 

systems. This ontology is used to assign precise semantics to the UML models 

used and is formalized with Queries and Constraints. This step allows me to 



128 

 

formally reason about the specification (using first order logic). After the 

formalization, I present the grammar of a language to describe systems based 

on the target ontology formalism. This step enables the translation of UML 

models to the new domain. The final steps are the definition of the semantics 

for the abstract language and, based on such semantics, the definition of 

consistency. 

 

Figure 36. Core elements  
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Figure 36 captures the core elements of my ontology for distributed 

systems with real-time constraints. A real-time system in this ontology is 

described by five types of elements: two elements, Entities and Channels, form 

the structural configuration of the system; another two, Messages and 

Properties, define the behavior; and the Clock captures real-time constraints.  

An Entity captures the concept of a process in a distributed system. An 

Entity has local variables, captures state information, has computational 

capabilities, and can communicate with other Entities by means of sending 

and receiving messages over a set of channels. Channels are the 

communication infrastructure. Each entity that must send or receive messages 

does so leveraging some specific channels. Channels transport Messages. 

When a message is sent on a channel, all entities that are using there 

channels eventually receive the message. Properties can be used to capture 

variables and their state. Each entity has a named set of properties that can 

be evaluated at run-time. Finally, the Clock captures the time relative to an 

entity. I could have used different notions of time, the choice depends on the 

type of system I am modeling and the profile of the UML in use. MARTE 

supports not only the type of time modeled here, but also other time models, 

for example, modeling of synchronous reactions.  

Figure 36  shows these five core elements forming the abstract state of 

the system. At each instant the structural part of the system state is defined by 

the existing Entities and Channels. The behavioral part is defined by the 

Messages exchanged on each Channel and by the internal state of each 
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Entity defined by the valuation of its Properties. Timing relations are expressed 

by the collections of all clocks associated to entities. Each Entity has its own 

reference of time given by the clock. At any given instant, different clocks 

can have different time values. It is interesting to note that, because the state 

comprises both a behavioral and a structural part, it is possible to represent a 

reconfiguration of the system as a change of state. 

 

Figure 37. Definition of a run 

Based on the concept of state, I can now define a run as an infinite 

sequence of states (cf.Figure 37). In turn, I now define the semantics of a 

system based on runs. Figure 38 shows the full ontology that used to assign a 

semantics to the UML. A system is defined by a set of runs. A specification 

defines a set of acceptable runs. The specification can constrain the 

acceptable runs by specifying the initial states and the acceptable transitions. 

Run

Time

StateStateStateStateStateState... ...
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Figure 38. Ontology for distributed real time systems semantics 

Another interesting element of Figure 38 is the definition of 

Specification. A Specification can either be composite or elementary. Every 

elementary specification is made up of two elements: Query and Constraint. 

A Query selects states from all possible runs while the corresponding Constraint 
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defines the characteristics for the run to be acceptable. Think of the selection 

as an operator that is applied to all possible runs. All states selected by the 

Query are compared with the rules specified in the constraints. If they match, 

the run is accepted as part of the system whereas if they do not match, the 

run is discarded. 

An important point to notice is how time is treated in the ontology. 

Each Entity has access to one private Clock. The Clock Defines a series of 

Instants. At any given time the Clock refers to one of the instants as Now. Each 

message has one Send Time (an instant on the clock of the entity that sends 

the message) and one Source entity (the sender of the message). Therefore, it 

is possible to reason about when each message was sent and by which entity. 

Messages can be received by different Entities at different times. When an 

Entity that has subscribed to a channel receives a message, it can identify the 

local entity time using its clock and obtain the time of the sending entity from 

the message. Depending on the system and the requirements, it is possible to 

define synchronization strategies between the clocks so as to be able to 

reason about times of events across different clocks. 

I can now give a formalization of the semantics informally described 

above. To this end, I first formalize the concepts of state and run as a 

foundation for the semantics of a distributed system specification. Then I 

present a simple grammar for a specification based on Queries and 

Constraints and use the formal definitions introduced before to provide a 

semantic for it. 
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NOTATIONAL PRELIMINARIES AND SYSTEM FORMALIZATION 

I represent sets with capital Greek letters. For instance, the set of 

properties will be represented by  . Each element of the set will be 

represented by the corresponding lowercase letter. For instance, a property in 

  would be represented by  . A function from a domain   to a co-domain   

is expressed as      . A tuple is defined as 𝑦   𝑦  𝑦             and 

   𝑦  𝑦  is the projection operator returning the 𝑖   element of the tuple. 

Given a set 𝑋,   𝑋  is the powerset of 𝑋 where |𝑋| returns the cardinality of 𝑋. 

Furthermore, with   we indicate the set of Boolean values (true and false), 

with   the set of natural numbers, with    the set of natural numbers without  , 

and with    the set of natural numbers with its supremum  . 

A stream [56] is a finite or infinite sequence of messages. Given a set of 

messages  :    is the set of finite sequences over  ,    the set of infinite 

sequences, and with    the union of those two sets. The infix dot operator 𝑥 𝑖 

returns the 𝑖   element of a stream 𝑥. The notation 𝑥  𝑖 returns the prefix 

stream of length 𝑖, whereas 𝑥  𝑖 returns the tail stream obtained by removing 

the first 𝑖 elements from 𝑥. The concatenation of two streams 𝑥 and 𝑥  is 

denoted as 𝑥  𝑥 . This notation is overloaded to work with sets of streams 

𝑋  𝑋  such that the resulting set contains all streams of the form 𝑥  𝑥  where 

𝑥  𝑋  𝑥  𝑋 . 

I can now give a formal definition of the elements of our ontology. For 

the two structural elements, Entities and Channels, I define two sets: the set   

of Entities and the set   of Channels. A channel valuation relates the channels 
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(elements of the set  ) to Messages exchanged over the channels. Because a 

Channel can be used to send multiple messages at any given moment, for 

every channel   we define a set    of messages currently sent over it. 

Furthermore, for each Entity   we define a set    of Properties. A special 

property    encodes the current time of entity  ’s Clock. 

State is defined by: (i) a structural configuration formed by Entities and 

Channels; (ii) a behavioral configuration formed by Messages on each 

Channel, and valuation of Properties for each Entity; and (iii) the current time 

value of the Clock property for each Entity. 

Properties are intended to encode the state of an Entity. To abstract 

from the concrete data types used to define the variable space we define a 

set of functions  . Each     is a function defined from the values of a tuple 

of Properties to a Boolean:        {         } . This allows for easy 

translation of UML specifications. For instance, if we want to model a UML 

Deployment Diagram specifying that a node would run a particular program 

P, we can define a function run and have it evaluate to true on the entity 

corresponding to the node (run(P)=true). The evaluation of the function set   

over an entity   is defined as    {                  }. 

I can now define structural configuration as: 

 𝑜𝑛𝑓                 

I define behavioral configuration as: 
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 𝑜𝑛𝑓           ( {      }  {      } {      }) 

The state is then defined as: 

 𝑡𝑎𝑡𝑒    𝑜𝑛𝑓            𝑜𝑛𝑓             𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 

Where  𝑡𝑎𝑡𝑒 is an element of the  𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 set containing all 

possible states. 

I can now define the concept of a run using streams: 

 𝑢𝑛   𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒 . The semantics of a system specification in this 

framework emerges as the set of admissible runs: 

 𝑦𝑠𝑡𝑒𝑚     𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒   

ABSTRACT SPECIFICATION LANGUAGE 

In this section I define the abstract language used to specify queries 

and constraints (and, therefore, systems). The benefits of defining this 

language are twofold. First, it provides an explicit context for mapping 

specifications (both composite and elementary) to systems in the semantic 

framework. Second, it provides a target language for the UML translation. The 

goal of the language is not to introduce a new textual syntax, and, therefore, 

we keep it simple by ignoring punctuation and other syntactic sugar 

necessary for a complete textual language definition. 

I present the grammar of the language in a Backus-Naur Form (BNF) 

using production rules of the following form: 
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〈 〉   𝑎𝑙𝑡 
〈 〉

 𝑎𝑙𝑡 
〈 〉

   𝑎𝑙𝑡 
〈 〉

 

Non-terminals are enclosed in angular brackets, the symbol   separates 

alternative productions, optional terms are enclosed in square brackets, and 

the notation { }  represents the repetition of term { } for 0 or more times. 

〈         〉   〈     〉〈          〉
〈    〉   〈    〉〈    〉  〈         〉
〈     〉   {〈   〉} 〈         〉
〈          〉   [     ]{[  ]〈   〉} 〈         〉
〈   〉   〈          〉〈       〉
〈          〉   〈       〉 〈      〉〈    〉{〈     〉}  

〈   𝐸     〉   〈        〉 {〈        〉}   
〈           〉〈         〉  
〈         〉〈            〉〈         〉

 

Operator definitions are not part of this grammar. Instead, they will be 

introduced when necessary in the translation of UML. In particular, I express all 

unary operators with the non-terminal 〈  -        〉 and binary operators 

with 〈   -        〉. 〈        〉 is a Boolean formula from property names to 

Boolean. Using this grammar, we can specify a system based on the ontology 

using Queries and Constraints. In the next section, I define the semantics of 

such specifications. 

Using the 〈          〉 optional operators   and   , it is possible to 

affect the structure of the system.   to creates new entities and channels,    

removes them. 

Time is addressed in this language as a property of entities. In particular, 

the notation 𝑛𝑒𝑥𝑡 𝑡  indicates the value of an entity clock in the first state 
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where the value is greater than 𝑡. With 𝑛𝑒𝑥𝑡 I am able to reason about next 

states without constraining their occurrence to a particular time value. 

Moreover, the messages contain the 〈      〉 entity and the sending 〈    〉 

of the message in its parameter list.  

SPECIFICATION LANGUAGE SEMANTICS 

An elementary specification 〈    -    〉 is captured in my abstract 

language by a tuple 〈     〉, 〈          〉. The goal of a specification is to 

define what runs are part of a system implementing such a specification. The 

〈     〉 identifies what parts of the run the specification is constraining while 

the 〈          〉 specifies how those parts are constrained. A run that fulfills a 

pair of query and constraint is such that in all states following a state where 

the query is true the constraint is true. Therefore, an 〈    -    〉 encodes a 

transition function between two states. 

I define a 〈     〉 as a communication context selecting the states 

that follow a particular message interaction, and a Boolean formula over 

properties, which identifies states to constrain. A query thus addresses both the 

contents of channels (the channel history) and predicates over local data 

state of the relevant entities. I define the channel configuration    as: 

   (   {      }) 

This definition captures the part of a state   that specifies the channel 

configuration and the messages being exchanged in the given state. The 

semantics ⟦𝑞⟧ of a 〈     〉 𝑞 is, therefore,  
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 𝑞  〈     〉 ⟦𝑞⟧             𝑎          

where      is a finite stream of channel configurations, the channel 

history           is a set of such streams, and the assertion 𝑎 is a function from 

a set of properties to Boolean values. 

I define a helper function  

𝑞𝑢𝑒𝑟𝑦                   𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒  {        } 

that, given a 〈     〉 semantics and a run, returns a set of tuples containing: 

(i) the indexes of the states where one of the message histories is matched 

and (ii) the corresponding set of entities for which the evaluation of the 

function is true. This helper function returns all states in the run where the next 

state must be constrained. It also returns the specific entities to be constrained 

in each state. 

〈          〉 is defined as a tuple of channel configurations, Boolean 

functions over properties, and one of the three quantifiers {      }. Similar to 

the queries definition, we define the semantics of 〈          〉 as: 

 𝑐  〈          〉 ⟦𝑐⟧      𝑎        {      }   

We can define a helper function 

𝑐𝑜𝑛𝑠𝑡𝑟     𝑎        {      }  {        }   𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒    

where  𝑐𝑜𝑛𝑠𝑡𝑟 takes as arguments a run, the result of a query operation, and 

the semantics of a constraint. This function returns true if the constraint is 

satisfied. To be satisfied, the channel configuration of the selected states must 
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match the    specified by the constraint. Moreover, how the rest of the 

constraints is satisfied depends on the choice among the three quantifiers 

{      }. If the chosen quantifier is  , the assertion 𝑠 must evaluate to true in 

all entities selected. If the quantifier is  , the assertion 𝑠 must evaluate to true in 

some entity not part of the selected ones. Finally, if the quantifier is    the 

selected entities must not be present in the selected states. 

Now I can define a 〈    〉 in the semantic domain as a set of tuples of 

the form (query, constraint), and the System corresponding to the 

specification as the set of all possible runs that fulfill all such tuples (query, 

constraints) of the set. 

Formally: 

〈    〉  { 〈     〉 〈          〉  〈     〉 〈          〉} 

⟦〈    〉⟧  { 𝑢𝑛  𝑢𝑛   𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒   𝑠  〈    〉  𝑞

 𝑞𝑢𝑒𝑟𝑦 𝑠    𝑢𝑛  𝑐𝑜𝑛𝑠𝑡𝑟 𝑠   𝑞  𝑢𝑛 } 

NOTION OF CONSISTENCY 

In this chapter I am interested in defining dynamic consistency for real-

time distributed systems. This is the reason why I have tailored the semantic 

framework to this domain rather than staying within the generality of the UML 

language metamodel. Given the semantic framework presented in the 

previous section, it is now straightforward to define dynamic consistency for 

models in this system class. First, I define horizontal consistency and then 

vertical consistency. 
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I define horizontal consistency as follows: a specification is horizontally 

consistent if the system it defines admits at least one run. A specification 〈    〉 

is made of multiple views at the same level of abstraction (in my formalism this 

means multiple sets of query and constraint tuples).  

Definition 1. A specification 〈    〉 such that ⟦〈    〉⟧  

   𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒   is horizontally consistent iff 

⟦〈    〉⟧   . 

This definition captures the idea that the specification is 

implementable. There are two possibilities for a system to fulfill this property. 

Either there are no contradictions in the specification, or the admissible runs 

do not match any query that defines inconsistent constraints. There is nothing 

wrong in using different perspectives to constrain the system behavior 

specified by other perspectives. However, if a perspective constrains the 

behavior of the system such that no run satisfying the specifications of that 

perspective is allowed in the final system, there can be a consistency 

problem. A stricter rule for horizontal consistency requires that the system has 

at least one run admissible for each perspective, meaning that there is at least 

one run satisfying some queries of each perspective specification.  

Definition 2. A specification 〈    〉 such that ⟦〈    〉⟧  

   𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒   and 〈    〉 made of   

specifications 〈      〉 called perspectives such that 

⟦〈    〉⟧  ⋂ ⟦〈      〉⟧    is horizontally consistent iff 
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 〈      〉   𝑢𝑛  ⟦〈    〉⟧   𝑠  〈      〉 such that 

𝑞𝑢𝑒𝑟𝑦 𝑠    𝑢𝑛   . 

A possible problem with my first definition of horizontal consistency is 

that there could be a system specification with no runs satisfying any query of 

the general specification. The consistency specification for such system is 

vacuously satisfied (i.e., runs are possible because selectors never match). The 

second definition solves this problem requiring that some runs matching the 

specification queries are present. 

The two definitions of horizontal consistency given support two different 

usage scenarios. In fact, there are two main reasons to create a specification. 

First, I can be interested in constraining how the system works in a given 

scenario. The scenario I want to constraint must, therefore, be possible and 

the corresponding query must select some runs. Definition 2 caters to this type 

of usage. A different use case is when I want to specify recovery from some 

failure of the system. For example, I may identify that a given interaction can 

happen as a result of a failure even if the specification would not allow for it. 

In this case, the goal is to describe the detection and recovery from a given 

failure. Consistency Definition 1 caters to this usage scenario. 

Vertical consistency is defined between two specifications at different 

level of abstraction. I define this consistency notion by a containment relation 

between runs. Given a more abstract specification       and a more 

concrete specification       vertical consistency is defined as follows: a 
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concrete specification       is consistent with an abstract specification       

if all runs allowed in the concrete system specification are also allowed in the 

abstract one. Moreover, the abstract system allows runs that the concrete 

system does not allow. This definition requires that the concrete systems admit 

a strict subset of the runs admitted by the abstract one. 

Definition 3. Two specifications 〈     〉 and 〈     〉, where the 

first is the abstract and the second the concrete 

specification, are vertically consistent iff ⟦〈     〉⟧  

⟦〈     〉⟧. 

Given the definitions of 〈    〉 and ⟦〈    〉⟧ of the previous section, I 

can now define a modularity theorem. I first observe that each specification 

has a set of tuples containing one query and one constraint. Therefore, each 

of these tuples defines a set of runs. From the definition of ⟦〈    〉⟧, I infer a 

lemma asserting that the semantics of a complex 〈    〉 (i.e., formed by 

multiple tuples of query and constraint) is the intersection of the semantics of 

all the sub-specifications formed by single query/constraint tuples. The 

modularity theorem states that for any complex specification 〈    〉it is always 

possible to identify two sub-specifications such that the intersection of the runs 

permitted by the two contains exactly the runs permitted by the original 

specification. Moreover, the theorem states that, such sub-specifications can 

be obtained by taking two subsets of the tuples of the original specification, 

provided that all tuples of the original specification are in at least one of the 



143 

 

two sub-specifications. The lemma and theorem are formally defined as 

follows. 

Lemma 1. Given a specification 〈    〉 

⟦〈    〉⟧  ⋂ ⟦{𝑡}⟧

   〈    〉

 

Proof. Lemma 1 can be proven by observing that the definition of ⟦〈    〉⟧ is 

such that if a specification contains a single query/constraint tuple 𝑡, the    

quantification in  𝑠  〈    〉 return a single element. Therefore: 

⟦{𝑡}⟧  { 𝑢𝑛  𝑢𝑛   𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒   𝑞  𝑞𝑢𝑒𝑟𝑦 𝑡    𝑢𝑛  𝑐𝑜𝑛𝑠𝑡𝑟 𝑡   𝑞  𝑢𝑛 } 

Given the definition of intersection: ⋂ 𝑠     {𝑒  𝑠    𝑒  𝑠}, and 

replacing the specification of the semantics of a query/constraint tuple into 

the definition of intersection we obtain 

⋂ ⟦{𝑡}⟧

   〈    〉

 {𝑒  𝑡  〈    〉 𝑒

 { 𝑢𝑛  𝑢𝑛   𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒   𝑞

 𝑞𝑢𝑒𝑟𝑦 𝑡    𝑢𝑛  𝑐𝑜𝑛𝑠𝑡𝑟 𝑡   𝑞  𝑢𝑛 }} 

From this, by replacing 𝑒 with the definition of  𝑢𝑛 we obtain 

⋂ ⟦{𝑡}⟧

   〈    〉

 { 𝑢𝑛  𝑡  〈    〉  𝑢𝑛   𝑡𝑎𝑡𝑒 𝑛𝑖 𝑒𝑟𝑠𝑒   𝑞

 𝑞𝑢𝑒𝑟𝑦 𝑡    𝑢𝑛  𝑐𝑜𝑛𝑠𝑡𝑟 𝑡   𝑞  𝑢𝑛 } 

which is the definition of ⟦〈    〉⟧. This proves the lemma. □ 
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The Modularity theorem asserts that complex query/constraint 

specifications can be split into two simpler ones without losing information. 

Theorem 1. Modularity. Given a specification 〈    〉 such that 

|〈    〉|    (i.e., the specification is complex),  

 〈  𝐸  〉 〈  𝐸  〉  such that 
 

                  

〈     〉 〈    〉  〈     〉 〈    〉  

|〈     〉|    |〈     〉|    

〈     〉  〈     〉  〈    〉

 

⟦〈    〉⟧  ⟦〈     〉⟧  ⟦〈     〉⟧ 

The proof of Theorem 1 derives easily from Lemma 1. In fact, because 

the semantics of a specification is equivalent to the intersection of the 

semantics of all its constituent query and constraint tuples, we can use the 

commutative and associative properties of intersection to prove Theorem 1. 

CONSISTENCY OF THE BART CASE STUDY 

To show how the methodology outlined in this chapter applies to 

consistency checking in the context of the UML for real-time, I provide a 

translation from the UML and from its MARTE profile to the abstract language 

introduced. Translating the entire UML and MARTE metamodels is beyond the 

scope of this chapter. Instead, I chose a simple subset of the UML and MARTE 

that uses three graphical notations: Component Diagrams, Sequence 

Diagrams, and State Diagrams, which are used in the example of Figure 35. 
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Furthermore, I translate MARTE timed constraints as they are used in the 

example. 

The translation from UML models to the query and constraint language 

assigns a precise semantics to each model. Several options for assigning 

semantics to each notation exist. Sequence Diagram, for instance, can be 

interpreted existentially (at least the specified behavior must be possible) or 

universally (precisely the specified behavior is required) [28] . The decision of 

interpreting the diagrams existentially or universally depends on what is the 

goal of the specification. For example, in a requirements document an 

Interaction can exemplify one of many possible scenarios and the existential 

interpretation would be correct. For real-time systems modeling I interpret 

sequence diagrams universally. All messages exchanged in the system must 

be represented in diagrams. This interpretation of sequence diagrams is a 

good choice for the application domain of the case study. In fact, one of the 

key uses of communication models in real-time systems is to analyze the 

network traffic and ensure that real-time constraints can be met. Therefore, a 

complete view of which messages are exchanged over the communication 

channels is necessary. 

My translation strategy interprets every element of a UML graph as a 

query and constraint tuple. I introduce an operator to compose those 

elementary specifications – this closes the loop with the introduction of the 

abstract query/constraint syntax. For demonstration purposes, I introduce the 

parallel operator. This operator is applied between any two specifications in 
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the translation and returns the specification containing all query and 

constraint tuples of the operand specifications. 

    〈    〉 

⟦       ⟧  {𝑠 𝑠    𝑠   }  

Table 4 provides translation rules for some of the interesting model 

elements used in the example. The entire set of rules is beyond the scope of 

this chapter. Each rule provides a set of query/constraint tuples that can be 

composed in a specification using the parallel operator. To support the 

translations I define a small set of helper functions.  

The function 𝑡𝑜      is used to convert two elements of the UML 

metamodel, MessageOccurencesSpecification and Triggers, into objects 

Table 4. Translation rules for UML Metamodel elements 

Name 
Metamodel 

Element 
Translation 

UML:: 

BasicComponents:: 

Component 

Figure 5 
  {} 𝑡𝑟𝑢𝑒 
    {} 𝐸 𝑦𝑝𝑒    𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑛𝑎𝑚𝑒 

UML:: 

BasicInteractions:: 

MessageOccurence 

Specification 

Figure 6 

     𝑒𝑠𝑠𝑎𝑔𝑒 𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
𝑡                                           
   𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑖𝑠𝑡𝑜𝑟𝑦  {   }   𝑙𝑜𝑐  𝑡 
   𝑡𝑜    {   }  𝑡𝑟𝑢𝑒 

UML:: 

BehaviorStateMachines:: 

Transition 

Figure 7 

    𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛      𝑒𝑓𝑓𝑒𝑐𝑡 
𝑠     𝑠𝑜𝑢𝑟𝑐𝑒 𝑠     𝑡𝑎𝑟𝑔𝑒𝑡 
   𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑖𝑠𝑡𝑜𝑟𝑦 {   𝑡𝑟𝑖𝑔𝑔𝑒𝑟}   𝑡𝑎𝑡𝑒

 𝑠   𝑙𝑜𝑐  𝑡 
  𝑡𝑜        𝑡𝑎𝑡𝑒  𝑠   𝑙𝑜𝑐  𝑛𝑒𝑥𝑡 𝑡  

TimedConstraints:: 

TimedConstraint 
Figure 8 

    𝑖𝑚𝑒  𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
    

  {} 𝑒 𝑎𝑙        𝑡𝑟𝑢𝑒 

   𝑠𝑔 𝑟𝑜𝑚 𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛𝑠    𝑜𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛  
   𝑟𝑜𝑝 𝑟𝑜𝑚 𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛𝑠    𝑜𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛  
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suitable for the abstract language. Informally, 

MessageOccurencesSpecifications represents on sequence diagram lifelines 

of the events related to message sending and receiving (plus execution of 

actions and other details not considered in my simplified model). The function 

𝑡𝑜      expresses the translation from OccurencesSpecification elements of 

the UML metamodel to messages in the abstract language specification.  

 

Figure 39. Subset of the UML Component metamodel 

Similarly, the 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑖𝑠𝑡𝑜𝑟𝑦   function applied to a model element of 

type MessageOccurencesSpecification returns the sequence of messages 

that maps to the Events in the lifeline before the one defined by the given 

MessageOccurencesSpecification. Intuitively, this function returns the history 

necessary for a query to select the correct interactions before applying the 

constraint to match the message event defined by the 

MessageOccurencesSpecification model element. I do not describe the 

details of how this translation is performed because it is beyond the scope of 

this chapter. In fact, the UML metamodel is very complex. Extracting relations 
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UML::Classes::

Dependencies::
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StructuredClasses::Class
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Component

* *

{readOnly}
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between events and specification elements in different diagrams often 

requires the exploration of a deep class hierarchy. For example, leveraging 

the metamodel (shown in Figure 40) to extract the history of events before a 

given message in a sequence diagram implies several steps. First, identifying 

the Lifeline the OccurrenceSpecification is covered by. Second, leveraging 

the fact that the set of events of a lifeline is ordered, extract all the 

OccurrenceSpecifications that precedes the given one. Third, scroll the 

ordered list of OccurrenceSpecifications in the history and navigate their 

event property to obtain the corresponding Events. Finally, using reflection, 

identify the events that are related to sending and receiving messages and 

use this information to generate the list of message specifications. 

 

Figure 40. Subset of the UML Message metamodel 

The four translations given in Table 4 map the elements of UML and 

MARTE metamodels depicted in Figure 39, Figure 40, Figure 41, and Figure 42 

to query and constraint tuples. The first line of the table gives a translation for 

MessageOccurrenceSpecification

OccurrenceSpecification

UML::

CommonBehaviors::

Communications::Event

*

1 event
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*

1

events

covered

{ordered}
Interaction Fragment

Interaction

fragment

enclosingInteraction0..1

*

UML::

CommonBehaviors::

BasicBehaviors::Behavior
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Figure 39. This part of the metamodel defines UML components in a 

component diagram. The simple model in the figure captures the relation 

between Components and Interfaces which can be required or provided by 

the Component. My translation simply asserts that a specification of a 

component always imposes the existence of an entity with a property called 

EType and value equal to the component name in the UML diagram. 

 

Figure 41. Subset of the UML Transition metamodel 

The translation of line 2 of Table 4 defines constraints imposed by a 

MessageOccurrenceSpecification in a UML sequence diagram. The query 
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extracts the message history before the given 

MessageOccurrenceSpecification. As already mentioned discussing 

ExtractHistory, this is not a trivial operation. Figure 40 presents the relevant 

subset of the UML model for sequence diagrams. Interactions are the type of 

behavior specified by this type of diagram. In particular, an Interaction is a 

type of Interaction Fragment that can be composed of other such fragments. 

Special types of Interaction Fragments are Occurrence Specifications which 

reference communication Events and Lifelines. An example of such 

specifications is MessageOccurrenceSpecifications which represents 

messages exchanged according to the interaction modeled. The constraint in 

my translation is the existence of the message corresponding to the 

MessageOccurrenceSpecification. This translation covers only events that are 

messages. Other types of events cause properties in some entity to be set and 

are not covered in the example. 

 

Figure 42. Subset of the MARTE TimedConstraints metamodel 

The third line of Table 4 defines a translation for state machines 

transitions. To support this translation I introduce an entity property named 

State. Figure 41 depicts the relevant subset of the UML metamodel for state 

TimedInstantConstraint

TimedConstraint TimedInstantObsevation
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event
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1 eocc
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machine diagrams. According to the UML metamodel a Transition has a 

source and target Vertex, and State is a type of Vertex. A transition can be 

taken only if the guard constraint is true and, in this case, is taken when a 

given trigger occurs. Moreover, a transition can have an effect, which is a 

Behavior. An example of Behavior is the Interaction (depicted in Figure 40). In 

the case study, the translation is simplified to address just triggers and effects 

that are messages. The query part of Transition translation selects entities 

where the State variable coincides with the source state of the model. Other 

propositions in the query can be used to restrict the selection to only specific 

entities. In fact, state diagrams define the behavior of particular model 

elements. For example, the state diagram of Figure 35c only applies to the 

component Emergency Brake. In this case, the query should also limit the 

selection to states of the entity Emergency Brake. This can be achieved by 

adding to the query another clause that selects only entities of the correct 

type (i.e., 𝐸 𝑦𝑝𝑒                   ). The other part of the query limits the 

selection to states where the trigger message is present. The constraint simply 

forces the next state of the selected entities to have the target state in the 

State property. 

Finally the last line of Table 4 defines the translation for MARTE 

TimedInstantConstraint. Figure 42 (which is adapted from [73]) shows the 

relevant MARTE metamodel. A TimedInstantConstraint has a specification that 

is a predicate over a set of observations (TimedInstantObservations). Each 

observation identifies an event occurrence. EventOccurrences relates MARTE 
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observations to UML Event elements. The translation of InstantPredicates must 

somehow interpret the Value Specification Language (VSL) instant expression 

defined in MARTE’s VSL language. To this end, the translation uses an 𝑒 𝑎𝑙    

Boolean function that evaluates a VSL expression. Moreover, it uses two 

functions,  𝑠𝑔 𝑟𝑜𝑚 𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛𝑠 and  𝑟𝑜𝑝 𝑟𝑜𝑚 𝑏𝑠𝑒𝑟 𝑎𝑡𝑖𝑜𝑛𝑠, to obtain the 

messages and properties that correspond to the events referred to by the 

observation of a predicate. By observing Figure 42 it is evident that identifying 

the event associated to a Timed Constraint is complex. Obtaining messages 

and properties from events requires a good understanding of the UML 

metamodel and the exploration of many nested relations. While complex, 

those functions can be implemented in a program. The translation then 

selects the correct messages and entities in the query part of the specification 

and asserts that the specification in VSL evaluates to true in the constraint. 

I can now show how to detect inconsistency with this query and 

constraint framework using the example of Figure 35. Thanks to the modularity 

theorem defined in the previous section, I can split each specification into 

simpler specifications. In particular, because the intersection of the 

specifications obtained with the modularity theorem is equivalent to the 

original specification, inconsistency can be proved by just translating a subset 

of the model and proving that such subset is inconsistent (no runs allowed). 

For example, I translate the model element of Figure 35b that 

represents the sending of an Ack message from the Emergency Brake to the 

Train Controller. This translation, according to Table 4, would look like 



153 

 

  { } {                                    𝑡   } 𝐸 𝑦𝑝𝑒

                  𝑙𝑜𝑐  𝑡  

   {(                         )} 𝐸 𝑦𝑝𝑒                  

The translation of Figure 35c transition triggered by the Commands 

Received message is 

  {                                    𝑡   } 𝐸 𝑦𝑝𝑒                   𝑡𝑎𝑡𝑒

                𝑙𝑜𝑐  𝑡   𝑡   𝑡  

   {}  𝐸 𝑦𝑝𝑒                   𝑡𝑎𝑡𝑒               𝑙𝑜𝑐  𝑛𝑒𝑥𝑡 𝑡     

and 

  {}  𝐸 𝑦𝑝𝑒                   𝑡𝑎𝑡𝑒               𝑙𝑜𝑐  𝑡    

   {}  𝐸 𝑦𝑝𝑒                   𝑡𝑎𝑡𝑒                 𝑙𝑜𝑐  𝑛𝑒𝑥𝑡 𝑡     

Let us analyze the type of runs that satisfy the translation of the 

sequence diagram. We can observe that, for a run to satisfy the specification, 

if in a state there is a Commands Received message received by the 

Emergency Brake component, it must send an Ack message. In the sequence 

diagram translation we do not specify if there is some other action local to the 

Emergency Brake. In fact, the simplified translation for sequence diagrams 

deals only with messages sent and received, not local actions. So the 

message can be returned immediately (next state) or after some local 

transitions (that is the meaning of {} , which represents a sequence of zero or 
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more states where the channel is empty). The specification, however, is clear 

in identifying that no other messages are sent or received by Emergency 

Brake before returning a message. 

The translation of the state diagram of Figure 35c triggers a transition 

from Wait Commands to Reset Timer when the Commands Received 

message is received by Emergency Brake. We can identify the inconsistency 

by observing that all runs that fulfill our translation for Figure 35c never send 

the Ack message. The intersection of sets of runs identified by the two 

specifications is, therefore, empty. Thus the two specifications are inconsistent.  

In my formalism, I can prove consistency by composing query and 

constraint tuples and identifying contradictions. In particular, I chose to 

encode queries and constraints using Propositional Linear Temporal Logic 

formulae (LTL)[74]. The encoding changes for each definition of consistency. I 

can then prove that a system is consistent according to the chosen definition 

by proving that the LTL formula that encodes such definition is satisfiable. This 

proof can be automated by means of a satisfiability (SAT) solver for LTL 

formulas. Examples of algorithms for assessing satisfiability of propositional LTL 

formulas and tools implementing them can be found in [75], [76]. 

In this chapter I do not give a complete translation for all definitions. 

Instead, I use the example of inconsistent specification from Figure 35b and 

Figure 35c and encode the query and constraint specification to prove 

inconsistency according to Definition 1. For each tuple of query ( ) and 
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constraint ( ) I create the implication     , where   is the next operator in 

LTL. If I can find a set of variables that satisfies the disjunction of all these 

implications the specification is consistent according to Definition 1.  

I capture this in the following theorem. 

Theorem 2. Consistency D1 Satisfiability. Given a specification 

〈    〉, 〈    〉 is consistent according to consistency 

Definition 1 if and only if the expression 

⋀            〈    〉  is satisfiable. 

Proof. In this theorem I assume that messages in the channels history are 

encoded using appropriate variables and nested temporal operators. The 

exact discussion of how to encode these messages is beyond the scope of 

this chapter. The proof of Theorem 2 follows from the definition of ⟦〈    〉⟧. In 

fact, the semantics of 〈    〉 is defined as the set of runs that satisfy all 

query/constraint tuples. I encode each tuple as an implication in LTL that is 

true if a run satisfies it. The conjunction of all the LTL implications is true only if a 

run satisfies all of them. If the formula in Theorem 2 is not satisfiable, there exists 

no run that can satisfy all implications at the same time, thus ⟦〈    〉⟧ is empty. 

On the other hand, if the expression is satisfiable, there exists at least one run 

that can satisfy all queries and constraints, thus ⟦〈    〉⟧ is non-empty. This 

proves Theorem 2. □ 

Let’s now consider how Theorem 1 and Theorem 2 apply to the 

example. From Theorem 1 I know that to prove inconsistency I am not required 
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to compose all the queries and constraints. Instead I can split the specification 

into two subspecifications and the original one will be equivalent to the 

intersection of the new specifications. Then, if I can prove that one of the two 

is empty we know that the full specification must be inconsistent. I chose to 

compose only the specifications of Figure 35b and Figure 35c. I prove that this 

subspecification is inconsistent (i.e., has an empty set of runs) and from 

Theorem 1 I obtain that the full specification is also inconsistent. 

Consider all runs satisfying the translation of the transition from Wait 

Commands to Reset Timer in Figure 35c. I identify all runs with a trigger 

message Commands Received and a transition in the entity Emergency Brake 

with State changing from “Wait Commands” to “Reset Timer”. 

Because the constraint of this specification is the query of the 

translation for the transition from Reset Timer to Wait Commands in Figure 35c, 

if I compose the two specifications I obtain all runs where Emergency Brake 

reacts to a Commands Received by changing two states without sending any 

message. 

I can now compose the current system into the translation of the Ack 

message specification in Figure 35b and discover that one of the next states 

of the runs selected must send an Ack message before any other messages is 

received by Emergency Brake. However, from state Wait Commands the 

system can exit only if the trigger message Commands Received is received. 

Therefore, by exploring specification tuples I can argue that because the 
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Clock time greater than 𝑡 , at which the Ack message must be sent by the 

sequence diagram constraint, is finite and the specification of the state 

diagram does not allow any transition that sends messages without receiving 

anything from the state that it enters after the trigger message, there is a 

contradiction, and, therefore, the specifications are inconsistent. 

The translation of the state diagram specification in Figure 35d limited 

to the transition from Reset Timer to Wait Commands is: 

  {}  𝐸 𝑦𝑝𝑒                     𝑡𝑎𝑡𝑒                 𝑙𝑜𝑐  𝑡    

   {                           }  𝐸 𝑦𝑝𝑒                     𝑡𝑎𝑡𝑒

                  𝑙𝑜𝑐  𝑛𝑒𝑥𝑡 𝑡     

With this change the composition of the specifications for the state 

machine identifies a sequence of states initiated by the trigger message 

Commands Received that ends with the sending of an Ack message. In the 

composition with the specification from Figure 35b the state where the Ack 

message is sent must happen at a time 𝑛𝑒𝑥𝑡(𝑛𝑒𝑥𝑡 𝑡   ) that is greater than 𝑡 . 

Therefore, there is no contradiction between constraints, and, thus, no 

inconsistency. To prove that the entire specification is consistent all remaining 

elements must be translated. While this process it long and error prone if 

performed by hand, the existence of automated tools for solving the 

satisfiability problem makes it a viable solution. 
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DISCUSSION 

In this chapter, I demonstrated an approach for consistency 

management based on queries and constraints on a reduced subset of the 

UML and its MARTE profile. The goal of this work was to demonstrate the 

feasibility of the approach by providing a case study where I was able to 

identify inconsistencies in UML models. Thus, the translation I gave assigned a 

semantics only to a subset of the modeling elements defined in the UML and 

MARTE. However, even using this reduced subset I was still able to detect and 

formally verify the inconsistency between models of the BART case study 

including timing constraints. Because the given translation binds query and 

constraint tuples to single entities in the UML metamodel, an extension to the 

full language definition of UML 2.0 and its different profiles is straightforward, 

albeit complex. Such an extension requires giving a precise semantics for 

each diagram, and therefore, deciding how each syntactic element of each 

diagram contributes to its semantics. 

Tailoring this consistency notion to a particular target domain (real-time 

distributed systems in this case) may, at first, seem limiting. However, I believe 

that a completely general definition of consistency for a general purpose 

language such as the UML ultimately limits the applicability of consistency 

checking to very abstract models, or to purely structural notions of consistency 

(without taking the notion of behavior into account). This claim is supported 

by a thorough analysis of related work performed in [63]. 
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Different decisions in how to interpret diagrams can lead to different 

translations. For example, I decided to interpret sequence diagrams 

universally regarding the messages exchanged. Each message represented in 

the diagram is exchanged and messages not represented are not. In contrast, 

state transitions are not part of my translation of sequence diagrams. This is 

why I set the Clock in the query of row 2 of Table 4 as greater than the time 

the previous message was sent without setting a specific interval. This is 

equivalent to a commitment to eventually have a state in which the 

constraint is true. 

The definitions of horizontal and vertical consistency given seem 

adequate for the domain of real-time systems. However, when a richer subset 

of the UML or other languages, such as Orca, will be translated and more 

experience acquired in verifying their consistency, I see potential for 

reevaluating the definitions. One possible area of concern with the current 

definition arises when I allow side effects between the queries and constraints 

of multiple diagrams, in other words, non-local constraints. In this case I could 

change the definition of horizontal consistency, for instance, to yield 

inconsistency if the majority of the queries do not match. 

The benefit of moving from the abstract domain of UML metamodels to 

the query and constraint abstract language is that the translation rules define 

the semantics and implicitly also the consistency rules. I can then avoid 

enumerating a long list of consistency rules and obtaining a very simple 

definition of consistency.  
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With this approach I have converted the problem of detecting the 

consistency of graphs based on the UML metamodel to verifying emptiness of 

sets. The sets are defined by logical formulae, each defining the effect of one 

model element on the system runs. The composition of specifications is 

defined by set intersection. Additionally I have presented a modularity 

theorem (Theorem 1) that enables reasoning on separate subsets of the 

query/constraint specifications. This setup is amenable to translation into 

propositional linear temporal logic and supports use of many automatic 

formal verification tools, such as SAT solvers. I have also provided Theorem 2 

that affirms the equivalence of proving that an LTL expression is satisfiable with 

horizontal consistency of the corresponding specification. 

I can now evaluate the query and constraint approach proposed by 

identifying how it addresses the 12 requirements identified in Table 3. 

R1. Support inconsistent models. My approach addresses this 

requirement by not forcing the user to remove inconsistencies. Models that 

are inconsistent can be identified by identifying the tuples that are in 

contradiction. More modeling elements can be added and more 

contradictions detected before the system is made consistent. 

R2. Automatic inconsistency discovery. Inconsistencies are discovered 

by hand in this example. The goal was to show the complexity of the problem 

and a possible solution. It is possible, however, to automate translation (which 

leverages the UML metamodel used by all UML modeling tools) and detection 
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to discover inconsistencies automatically. Furthermore, inconsistencies can be 

tracked by identifying the subset of specifications that are in contradiction. 

R3. Support inconsistency resolution. The support to resolve 

inconsistencies is provided by the ability to identify a small subset of the 

specification that is sufficient to prove the inconsistency (this property stems 

from the Modularity Theorem). 

R4. Support multiple modeling languages. The query and constraint 

approach supports multiple languages by creating different translation rules 

from the UML metamodel to the abstract target language. It could also 

support languages that are not the UML as long as they are based on a 

metamodel and a translation is provided. 

R5. Support different levels of abstraction. I have identified different 

consistency rules and translation rules to support different levels of abstraction. 

R6. Support extensions. I demonstrated the support for extensions of 

UML providing a translation rule for the MARTE profile. 

R7. Support Horizontal consistency. I provided two horizontal 

consistency definitions. 

R8. Support Vertical consistency. I provided one definition for vertical 

consistency. 
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R9. Support Static consistency. This approach supports static 

consistency by querying entity properties and channel messages and by 

constraining them. 

R10. Support Dynamic consistency. The approach supports dynamic 

consistency by constraining the properties of different states in admissible runs. 

Leveraging LTL logic and the Clock it is possible to set constraints on 

consecutive states or future states. 

R11. Provide tool support. While I haven’t provided any tool support for 

this approach, I have demonstrated that a translation of the consistency 

problem to satisfiability of LTL formulae exists (Theorem 2). The translation from 

the UML to another domain can be automated and because queries and 

constraints can be encoded in LTL, existing SAT solvers for this logic can be 

leveraged to automate the verification. 

R12. Address scalability. Thanks to the modularity theorem my 

approach does not require reasoning about the entire model to identify 

inconsistencies. This makes it applicable to large models. However, depending 

on how the different specifications are interconnected, to ensure that no 

inconsistency exists, it may be necessary to compose a large number of 

tuples, which could slow down the identification of inconsistencies on some 

models. 

From this requirement analysis I conclude that the query and constraint 

approach proposed is a step towards a more comprehensive consistency 
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management approach for UML models. This approach can also be 

extended to incorporate interaction models based on Orca or aspect 

oriented MSCs. However, more work is required to implement tools to 

automate the approach and experiment with the effective scalability of such 

tools by testing them on large industrial-scale system models. 

SUMMARY 

This chapter covered the last key requirement for a complete model 

based approach: model consistency. The approach to model consistency 

presented here addresses not only the modeling techniques introduced in this 

thesis, but also many different languages. For this reason the case study and 

models in this chapter are not based on models of interactions and 

crosscutting concerns according to the Rich Service pattern. Instead the case 

study uses different graphical languages from the UML profile MARTE. In fact, 

supporting multiple languages is a key feature for a successful consistency 

management technique. 

ACKNOWLEDGEMENT 

This chapter, in part, is a reprint of material as appeared in E. Farcas, I. 

Krueger, and M. Menarini, “Consistency Management of UML Model,” Real-

time Simulation Technologies: Principles, Methodologies, and Applications, K. 

Popovici and P. J. Mosterman (Eds.), ch. 12, p. 38, CRC Press, 2012. The 

dissertation author was the primary investigator and author of the text used in 

this chapter. 



164 

 

Copyright 2012 From Real-time Simulation Technologies: Principles, 

Methodologies, and Applications by K. Popovici and P. J. Mosterman. 

Reproduced by permission of Taylor and Francis Group, LLC, a division of 

Informa plc. 



 

165 

CHAPTER 7 

RELATED WORK 

This chapter presents work related to the different areas relevant to the 

research presented in this thesis. This survey analyzes prior work related to 

model-based engineering (MBE) for software-intensive systems both in the 

enterprise and embedded domains. In particular, the survey covers service-

oriented techniques, aspect-oriented modeling, architectures used in 

embedded and enterprise systems, and techniques for quality assurance and 

reliability of service-oriented systems. 

In summary, the survey shows important advances towards systematic 

engineering processes for these domains. However, it reveals the lack of 

comprehensive and seamless integration of requirements, architecture, 

implementation, and verification and validation models across all 

development activities. In particular, crosscutting concerns are not 

satisfactorily addressed in the engineering process. 

REQUIREMENTS MODELS  

Requirements engineering is arguably one of the most important and 

least-well understood [77] development activities. Errors made during the 

activities that pertain to requirements analysis and management are hard to 

detect and costly to fix as time progresses through the development process. 

Requirements need to articulate values of the stakeholders of the system 

under consideration. Stakeholders include (and are not limited to) the 
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customer who commissions and accepts the system, regulatory bodies, 

marketing and production entities, suppliers, integrators, developers, 

architects and maintainers, and end-users. There are multiple ways of 

classifying requirements, such as business, product, and process requirements, 

or with different criteria: functional and non-functional requirements (e.g., 

usability [78], performance and efficiency [79–81], reliability [82], [83], and 

interoperability [84], [85]). Consequently, models, techniques and tools for 

documenting and managing requirements necessarily need to be able to 

reflect the various different views that each stakeholder group brings to the 

table. 

Modeling plays an important role in all requirement engineering 

activities, serving as a common interface to domain analysis, requirements 

elicitation, specification, assessment, documentation, and evolution. The 

choice of modeling notations is often a tradeoff between readability and 

powerful reasoning techniques: natural language is very flexible but it is often 

an expression of subjective reasoning [86–88]; applied / semi-formal models 

(e.g., entity-relationship diagrams, UML diagrams, structured analysis) typically 

have a graphical representation, which is very useful when communicating 

with stakeholders and for simulations; and formal notations (e.g., KAOS, i*, SCR, 

RML) capture precise semantics, which supports rich verification techniques. 

To better support different application domains UML profiles, such as the UML 

Profile for Schedulability, Performance, and Time [89] have been proposed.  
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KAOS [88], [90] and i* [91] focus on goal-based hierarchies for system 

objectives, actors and actions that they are capable of, and iterative 

refinement of goals using AND/OR decompositions. The resulting models rely 

on temporal logic for verification of agents’ plans, fulfillment of commitments, 

and other system properties.  

There are several similar approaches for structured analysis, including 

Structured Analysis and Design Technique (SADT) [92], Structured Analysis and 

System Specification (SASS) [38], Structured System Analysis (SSA) [93], and 

Structured Requirements Definition (SRD) [94]. For instance, SADT provides a 

data model linked through consistency rules with a model for operations, 

supports the formalization of the declarative part of the system (through 

activity diagrams), but uses natural language for the requirements. SSA adds 

data access diagrams, whereas SRD introduces the idea of building separate 

models for each perspective and then merging them.  

Software Cost Reduction (SCR) [95], [96] method uses a tabular 

notation for specifying requirements, a formal Finite State Machine (FSM) 

based model, and modeling constructs such as modes, terms, conditions, 

variables, and events to describe the system and its behavior. The Four-

Variable Model [97–99] extends the method to entire systems by including 

critical aspects of timing and accuracy as mathematical relations on 

monitored and con-trolled variables. CoRE [100] goes further by providing 

structuring mechanisms for variables (e.g., aggregation or generalization), 
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models (e.g., and/or decomposition), and tables (e.g., refinement 

relationships). 

Requirements State Machine Language (RSML) [101–103] uses both 

tabular and graphical notations borrowed from Statecharts. The high-level 

state machine model decouples the specification of requirements from 

design aspects and enables formal analysis of the entire system for 

correctness and robustness. 

ARCHITECTURES 

Component based. An important example of component-based frameworks 

is Common Object Request Broker Architecture (CORBA) [104]. CORBA is 

made of a set of specifications, which standardize how to invoke remote 

objects. It is a rich specification, which covers the infrastructure needed to 

create robust distributed applications. In particular, a specialization of the 

CORBA specification targeting embedded systems (CORBA/e) is being 

currently finalized [105]. Real-time CORBA [106] is designed for applications 

with real-time requirements; it provides interfaces and policies that allow 

applications to configure and manage processor, network, and memory 

resources. Open-source implementations of Real- Time CORBA ORBs (Object 

Request Broker), such as ZEN [107] and TAO [108], have shown that it is 

possible to provide QoS guarantees in middleware. RT-CORBA has also been 

used to evaluate performance in run-time evaluation of inter-action models 

[36]. 
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Another choice for real-time distributed software is the Honeywell’s 

MetaH [109] specification language. It describes how different elements of a 

system such as software components, hardware, and communication 

subsystems are integrated to form the final application. A suite of visual tools 

help the MetaH developer to add components, edit them, define the 

scheduling, partition the application, and analyze the timing behavior. The 

toolset includes formal verification, schedulability analysis, and reliability 

analysis based on Markov chains. Components may be annotated in the 

graphical editor with real-time properties, such as execution time and failure 

modes. MetaH code generator produces glue code that includes such 

properties.  

Initially prototyped in the context of autonomous helicopter flight 

control, Giotto [22] is a time-triggered high-level programming language that 

expresses the reactivity of the application related to the external environment. 

A Giotto program defines several operational modes, each one invoking a set 

of periodic tasks and allowing mode changes at predefined points in time. 

Giotto is a real-time extension to traditional programming languages, and has 

similarities with architecture description languages (ADLs) [110]. In particular, 

Giotto is similar to MetaH [109], the difference being that Giotto is time-

triggered, platform independent, and does not restrict the implementation to 

a particular scheduling scheme. Giotto introduced the concept of Logical 

Execution Time (LET), which abstracts from the physical execution time and, 

thereby, from both the execution platform and the communication topology. 
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Moreover, for single-processor embedded control systems, the Giotto 

methodology was integrated with Simulink [19] to allow streamlined 

operations from the design to the implementation phase [23]. 

The Timing Definition Language (TDL) [111], a successor of Giotto, is a 

high-level description language for specifying the explicit timing requirements 

of an application, which may be constructed out of several components 

(called modules). A TDL module communicates with the physical environment 

through sensors and actuators, performs computation in tasks, and defines 

different operational modes that can be changed at run-time. Similar to 

Giotto, TDL is based on the Logical Execution Time abstraction. In addition, TDL 

allows modularization of applications [112], ECU consolidation, and the 

transparent distribution [113] of multi-mode real-time components. TDL 

provides a complete tool chain for transparent distribution with a run-time 

system [114] that enforces LET semantics and automatic generation of 

communications schedule [115] and glue code [116]. 

With transparent distribution [113], the observable behavior of a TDL 

application is exactly the same at run-time, no matter if all components are 

executed on a single node or if they are distributed across multiple nodes. 

Thus, TDL components can be developed without having the execution on a 

potentially distributed platform in mind, as the distribution is visible only for the 

system integrator who specifies the mapping of components to computation 

nodes.  
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Particularly attractive for the automotive domain, TDL modules can be 

developed independently of each other, by different suppliers. Each module 

has its own V-Life-Cycle as seen in Figure 43 for modules M1, M2 and M3; 

therefore, the system is developed in a V-Cluster-Life-Cycle [112]. In the 

automotive domain, the functional model is often developed in Simulink. This 

fact led to proposals to integrate TDL into Simulink (e.g., [117]). 

SOA. A different architectural style is the service-oriented architecture. 

Successfully applied originally in the telecommunications domain a service 

has become a common term in many application domains, especially in the 

context of web services [118]. So far, however, services have been used 

mainly as an implementation concept.  

In the telecommunication domain, for example, the notion of service is 

expressed by the term feature, which is used to describe self-contained 

 

Figure 43. TDL V-Cluster-Life-Cycle 
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pieces of functionality and is used to structure components’ interfaces [119]. 

Feature interactions [120] should not lead to inconsistent behaviors. This 

service notion focuses on the local interface of each component, but the 

interplay between services is considered only afterwards. Consequently, 

current definitions of services limit themselves to syntactical definition for 

operations clients can invoke on a service; however, a behavioral model of 

allowed service inter-actions is needed. This limited view of the service scope 

is at the origin of the absence of a service as modeling entity in common 

modeling languages such as UML [15], [16] and SysML [121]. 

The aim of service-oriented architectures is to make services first-class 

elements of the system development process, starting from early models of 

the requirements all the way to the system design, construction, and 

verification. To support this approach, comprehensive service theories have 

been proposed. They provide a semantic framework to interpret the service 

models [122].  

Implementations of service-oriented frameworks exploit the lessons 

learned from component based frameworks, such as CORBA. Compared to 

CORBA, SOA frameworks aim to reduce the coupling between components 

and simplify the implementation of the framework. For example, in the Internet 

domain, web services architecture [118] leverage Internet standard protocols 

to provide an interoperable, loosely coupled framework to implement 

distributed applications. The core Web Service technologies are Web Services 

Description Language (WSDL) interfaces [123], the Universal Description, 
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Discovery, and Integration (UDDI) [124] standard for service discovery, and the 

Simple Object Access Protocol (SOAP) [125].  

Service-oriented approaches focus on the composition of basic 

services to provide higher level functions. The main web service based 

standards to compose services are Web Services Business Process Execution 

Language (WS-BPEL) [126] and Web Services Choreography Description 

Language (WS-CDL) [127]. WS-BPEL is an OASIS standard that defines a 

workflow language to specify a centralized composition of web services. A 

BPEL engine executes a BPEL XML document by calling web services 

according to the workflow captured by it. A different approach is the one 

taken by WS-CDL, which captures a global view of the composition. The 

specification defines the role of each service involved in the composition; all 

parties involved are responsible to implement their part of the composition.  

Autosar [128], an automotive-specific framework that lever-ages some 

of the ideas from SOA, tackles the integration problem by specifying 

appropriate standards for interfaces among different components; thus, 

software modules provided by different suppliers will be easier to integrate. 

System functions modeling and function testing is a major concern. Ultimately, 

Autosar aims at application-centric development of automotive software by 

decoupling functions from the underlying platform through virtualization. A 

similar approach, [129] de-scribes execution of SOA applications on a virtual 

network that is late-bound to a physical network, essentially creating a SOA 

overlay network.  
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EMBEDDED SYSTEMS IMPLEMENTATION TECHNIQUES 

Traditionally, embedded applications are developed either by using a 

classical sequential language such as C/C++ and Java, or by using a parallel 

language, that is, a real-time programming language such as Ada [130], 

CSP[131], and Real-Time Java[132]. Sequential languages lack concurrency, 

whereas parallel languages support concurrency and communication as first-

class concepts.  

Synchronous languages. As reactive systems continuously interact with 

their environment, the speed of the interaction is dictated by the environment 

and not by the computing system. The synchronous model is based on the 

assumption that all computation or communication activities take no time. 

Thus, synchronous languages define reactions as atomic. The implementation 

may approximate synchrony by reacting to an event before another event 

appears. The compiler verifies synchrony, reactivity, and determinism. The 

compiler checks synchrony based on the maximum input frequency and the 

worst-case execution times obtained from static code analysis. For reactivity, 

the compiler must prove the absence of infinite cycles. Determinism is related 

to the problem of causality, which can be easily verified by requiring 

dependencies to be acyclic. However, the programmers may specify static 

cyclic dependencies that lead to deterministic programs if actually there are 

no cycles at run-time.  

Synchronous languages are classified under two categories: imperative 

and declarative languages. The imperative languages such as Esterel [133], 



175 

 

Statecharts [134], Argos [135], and SyncCharts [136] have explicit control flows 

and are appropriate for control-intensive applications such as bus inter-faces, 

controllers, supervision of complex systems, and real-time process control. The 

declarative languages - for example, Lustre [137], [138] and Signal [139] - use 

a data-flow model and are appropriate for data-intensive applications such 

as signal processing and steady process-control applications.  

The Esterel language is based on the semantics of the finite-state Mealy 

machine [140], which ensures a deterministic behavior. Esterel is an imperative 

language that provides high-level, modular constructs that lead to a structure 

of reactive programs. An Esterel program is defined by a collection of 

modules and a main module; a module may be instantiated within another 

module and exports its data declarations to the parent module. Esterel 

implements communication through signals. Modules must have a defined 

interface to be able to communicate. A signal is available only at the instant 

when it was produced, and signals are instantaneously broadcasted - any 

module can react to the signal. Esterel pro-vides a set of primitives for 

expressing concurrency, sequencing, communication, and preemption.  

Regarding other imperative languages, Statecharts [134] has a 

graphical formalism and is not fully synchronous. It is used to model complex 

discrete controllers that need several modes of operation and a switching 

mechanism; Statecharts extend the concept of finite-state machines with 

hierarchy, parallel composition, and broadcast communication. Argos [135] 
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simplifies the formalism of Statecharts and provides full synchrony, and 

SyncCharts [136] extend Argos to yield the power of Esterel.  

Lustre [137], [138] is a declarative language that supports only the 

data-flow systems that can be implemented as bounded automata-like 

programs in the sense of Esterel. In Lustre, any variable and expression 

represents a flow, which is a pair of a possible infinite sequence of values and 

a clock. Lustre has data operators and temporal operators; synchrony in Lustre 

means that all operators respond instantaneously to their input. Data 

operators (e.g., arithmetic, relational, conditional opera-tors, and imported 

functions described for example in C) operate pointwise on the sequences of 

values of their operands. Temporal operators (e.g., pre, follow by, when, and 

current) manipulate flows [138]. A Lustre program has a cyclic behavior 

defined by a basic clock. The clock of any flow may be smaller than the basic 

clock. In addition, the Signal language [139] allows for creating faster flows.  

Tools and Platform. Model-based development techniques are useful 

only if supported by a powerful set of tools. Tool support is critical to enable 

the creation and exploitation of models. Models are used in the automotive 

and avionics domains to capture sys-tem architecture, control loops, 

electronic components behavior, mechanical characteristics, safety 

properties, etc. Models are then exploited to generate implementations, 

automate the generation and execution of test cases, perform formal 

verifications on important systems properties, and support the con-figuration 

of product lines, just to mention few applications.  
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Both in the academic and the industrial world, tools and underlying 

theories have been developed to fulfill each of those functions. An example 

of an industrial tool used to create control models in the automotive domain is 

Matlab/Simulink. This tool is used to generate code implementing the models; 

moreover, the Simulink Design Verifier tool is able to create test cases to verify 

the correctness of the models. Matlab/Simulink is targeted to modeling 

continuous systems, but it can also model discrete controllers by means of 

Stateflow; furthermore, TTPMatlink models distributed systems by including the 

time-triggered communication intro the Simulink model.  

Other tools provide standard model-checking techniques to verify the 

correctness of some model. For example, the SPIN model checker [141] 

provides a modeling language called Promela and is able to verify complex 

protocols with concurrency by exploiting a partial order reduction algorithm. 

In the academic domain, SPIN has been used to verify safety properties of 

interaction models for automotive systems in [142]. Similarly, [143] explores 

model checking of interaction-based specifications; it uses temporal logic to 

give a semantics for live sequence charts (LSCs), reducing the verification of 

LSCs to the model checking of temporal logic formulae. Another ex-ample is 

[144], which addresses model checking of message sequence charts.  

TDL offers a VisualTDL Editor [145], which through a graphical user 

interface enables the developer to visually model TDL components and their 

timing requirements. It can be used as a stand-alone tool or as an integrated 

Simulink editor similar to Stateflow. The VisualTDL Editor translates the visual 
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representation into TDL code, and the functionality code is automatically 

generated with the Simulink add-on Real-TimeWorkshop Embedded Coder 

(RTWEC). For each TDL module, the compiler generates the so-called 

embedded code (E-Code [146]), which describes the timing constraints of the 

module, and the glue code (E-Code is platform independent [116], but it 

requires the binding with user-defined functions and a corresponding run-time 

environment). The run-time system consists of the E-Machine for E-Code 

execution, a TDL Scheduler, and a TDLComm layer responsible with 

transferring the information over the network [147]. The run-time system 

interacts with the underlying real-time operating system via a Run-Time 

Resource Management (RTRM) layer [148]. This run-time environment ensures 

that the LET semantics are met in both single-node and distributed systems, 

and that the execution follows strict hard real-time guarantees.  

Without the benefit of LET, other techniques are required to create 

robust programs from code that is not fail proof. In [149] for example, a 

technique to obtain failure-tolerant systems by composing intolerant systems is 

proposed. Systems are com-posed with two types of components – detectors 

and correctors. The paper proves that that these are sufficient to create fail-

safe and non-masking tolerant systems, respectively.  

[150] extends this approach to non-fusion-closed systems; it introduces 

history variables as needed to maintain the required information. Another 

related approach to automate the implementation of fail-safe systems is 

presented in [151]. It proposes a technique to synthesize fault-tolerant 
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programs from computation tree logic (CTL) specifications. It allows 

generating not only the program behavior but also detectors and correctors 

to ensure that the system is resilient to failures. The drawback of this technique 

is that it is subject to the state explosion problem.  

The synchronous approach is used in modeling tools such as Scade 

[152], [153], which supports the development of real-time controllers on non-

distributed platforms or distributed platforms like the Timed-Triggered 

Architecture [154]. The Scade suite supports the design of continuous 

dataflows (based on Lustre [138]) with discrete parts realized by a state-

machine editor (based on Esterel [133]). The computational models are 

compatible by transforming values and signals [152]. The Scade Suite is used 

by Airbus for the development of the critical software embedded in several 

aircrafts [155].  

SERVICE-ORIENTED RELIABILITY 

One direction of the existing work on fault tolerance for services is to 

focus on the perspective of the service provider. Corresponding approaches 

propose techniques for increasing the reliability and availability of a service 

with respect to its clients. For instance, a number of attempts have been 

made to apply techniques from Fault Tolerant CORBA (FT-CORBA) [156] to the 

Web Services domain. Fault Tolerant SOAP (FT-SOAP) [157] follows the service 

approach in fault tolerant CORBA and provides transparent fault tolerance by 

upgrading SOAP with additional components to support fault detection and 

replication management. FT-SOAP extends WSDL to inform the clients of the 
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replica information. FT-Web [40], on the other hand, follows the interception 

approach from FT-CORBA and proposes an infrastructure where a dispatcher 

acts as a proxy for client requests, and sends them to service replicas in 

parallel. [158] applies path monitoring techniques by adding unique 

identification numbers to requests and performing distributed logging. Failure 

detection is based on centralized statistical analysis of the logged paths. Ref. 

[159] uses a probabilistic model to detect the faulty components and 

attempts to mitigate by restarting the components, or by rebooting the servers 

hosting them.  

Other approaches to fault tolerant services concentrate on centralized 

service composition or orchestration. Here the goal is to build reliable service 

composition from unreliable services. Approaches such as [46] and [42] 

propose techniques to use Business Process Execution Language for Web 

Services (BPEL4WS) [53] compensation and fault handlers to achieve fault 

tolerant composition. Due to the nature of BPEL4WS fault handlers, detection is 

only possible on a single-invocation basis as opposed to more complex 

interaction based detection. Common forward recovery policies such as 

ignoring, retrying, substitution, and parallel execution of alternatives can be 

supported in these techniques. [160] proposes a connector that is used to 

invoke the composed services, thus acting as the fault-containment element. 

Assertions based on SOAP exceptions can be declared in the connector, and 

if not fulfilled, recovery policies can be activated. 
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A number of transaction-based approaches also exist. In [47], both 

service providers and the orchestrator explicitly declare their transactional 

semantics and requirements in an XML-based language. A middleware 

component acts as an intermediary service and harmonizes these 

transactional requirements. [161] suggests mining the logs of the service 

workflow in order to extract a model for the real workflow of the service based 

on transactions and improves recovery of the transactions where possible.  

A number of fault tolerance approaches also exist in the Grid services 

domain. Ref. [39] suggests a primary-backup mechanism based on 

notifications for the Grid Services. Grid Workflow [162] proposes a workflow 

description language that allows users to define recovery strategies for cases 

where a task fails to complete, in the Grid Services domain.  

While all the approaches presented here helps in increasing the 

reliability of service oriented systems, they consider the service as a single 

invocation/response pair. Thus their applicability is limited to this simple 

interaction pattern. Because I consider services as generic interactions that 

can exhibit more complex pattern I must provide an improved solution. The 

solution to the reliability problem I present in this thesis is based on the rich 

service pattern (presented in Chapter 1) and on interceptors that monitor 

complex interactions. When a failure in the execution of the complex 

interactions it detected my approach can apply all forward mitigation 

strategies described above. I present this technique in Chapter 2. 
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QUALITY ASSURANCE 

A key element in both automotive and enterprise systems is the 

requirement for high reliability. The Reliability of a system measures the ability 

of it to perform its intended service [163]. A failure occurs when the system 

deviates from its intended behavior. In particular, a system enters in an 

erroneous state when its state is such that it can lead to a failure; the 

difference between the valid state and the erroneous one is the error. A fault 

is the cause that leads to erroneous state of the system [164].  

From a theoretical point of view, the resilience to failures of a program 

can be analyzed by identifying what is the effect of a fault on the program 

result. Different categories of tolerance have been identified: masking 

tolerance, non-masking tolerance, and fail-safe tolerance [165].  

A key question for assessing the quality of airplanes and other vehicles 

is how safe they are. In fact, verification only shows that a system performs 

according to the given specification. However, the question of how safe is the 

specification cannot be answered by just looking to the quality of the 

software or of the system in isolation. For example, for a car that is parked in a 

garage a failure of the Anti-lock Braking System (ABS) braking system is not as 

unsafe as for a car that is speeding on an icy highway. In [41], for example, it is 

discussed the importance of embedding the software quality assurance 

process in a system-wide quality process. To assess the safety of a vehicle, it is 

not possible to limit the analysis to the quality and reliability of the code.  
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Both industries engage in extensive system quality processes such as 

different flavors of Failure Modes and Effects Analysis (FMEA) [166], [167] and 

Fault Tree Analysis (FTA) [168] to identify and mange possible faults. Extensions 

of FMEA and FTA for software systems have been proposed; Ref. [169], for 

instance, discusses software FMEA techniques, and Ref. [170] discusses 

Software FTA. Nevertheless, these approaches need to be complemented by 

an end-to-end interaction view.  

In the embedded world, different strategies and standards have been 

proposed to increase the reliability of systems. For example, Fault Tolerant 

CORBA [156] extends the CORBA framework to provide failover, redundancy, 

detection and recovery from failures. FT-CORBA approach aims to be 

transparent to the application level and embed the support for replication, 

request retry, redirection to alternative servers.  

Attempts to support fail-safe computation for web services via 

replication have been proposed in FT-SOAP [157] and FT-Web [40]. The first 

approach requires a change in the SOAP standard, whereas the second does 

not.  

In general, we can distinguish two strategies to recover from failures: 

backward recovery and forward recovery. Backward recovery techniques 

aim to return the system to a previous consistent state. These include 

transaction-based approaches such as split transactions [171]. In particular, 

research has focused in avoiding blocking commits using protocols such as 
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the ones presented in Ref. [172] and the Paxos consensus protocol [173]. 

Transaction-based approaches for the web services domain are presented in 

[174] and [175]. Forward recovery, on the other hand, aims to move the 

system to a new state that is correct. WS-BPEL [126], for example, includes 

provisions for detecting faults (services that do not respond as expected) and 

fault handlers to perform recovery activities. In this context, [42] uses the WS-

BPEL language to specify the service composition and a rule-based system to 

recover from errors.  

Verifying timing constraints. In the real-time systems encountered in the 

automotive and avionics domains, a critical constraint is the deadline, that is, 

the time instant before which a computational activity must deliver its results. 

Deadline requirements are typically verified with schedulability analysis based 

on analytical theory. An alternative is to provide a model of the real-time 

application and verify it with formal methods. There is also ongoing research 

[176], [177] in integrating scheduling theory into formal methods. 

Schedulability analysis ([178], [179]) checks for a certain scheduling algorithm 

whether all activities will meet their timing constraints, even in the worst-case 

behavior of the system; it does not check whether the timing constraints are 

appropriate for the requirements of the application – instead, formal methods 

can verify functional and high-level timing requirements such as sampling and 

actuating times, data avail-ability, or data consistency. 

The common approaches for deriving models are to use formalism such 

as process algebra [131], [180] and Petri nets or to model the system as a 
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state-transition graph [181]. The algebraic approach can be verified by proof 

theoretic approaches, such as theorem provers [182], [183]. A state-transition 

model can be verified by model checking [184], or reachability analysis. 

Modeling timing attributes is done by including clock variables or a tick 

process in the untimed models, which perform state changes by transitions or 

by time steps. Timed formalisms include timed transition systems [185], timed 

automata [186], and real-time temporal logic [187]. There are several tools 

available for verifying real-time systems (Kronos [188], Uppaal [189], Verus 

[190] and hybrid systems (HyTech [191]). Nevertheless, it is a challenge to build 

models that represent complex systems, are compositional, include timing 

constraints, and model the system scheduler [192]. For example, Ref. [193] 

addresses the problem of obtaining a timed model from the application 

software composed with the timing constraints induced by both the 

environment and the execution platform. The methodology was implemented 

in the Taxys tool [194], which can be used only for real-time systems 

programmed in Esterel extended with C functions. 

ASPECT-ORIENTED MODELING 

The increasing success of Aspect-Oriented Programming techniques 

(AOP) in software development has led to the idea of extending AOP to the 

modeling and design levels in the software development lifecycle. 

Researchers have proposed various Aspect-Oriented Modeling (AOM) 

techniques and have adopted them to address the need for separation of 

concerns in complex systems. A large body of work on AOM has been 
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focused on structural models, while fewer approaches also consider 

behavioral models. Song et al. [195] proposes template class and sequence 

diagrams to specify aspect models. Additional binding information is needed 

to instantiate the template aspect models and composition is facilitated by 

using composition directives. Whittle et al. [55] use Interaction Pattern 

Specifications (IPS) to capture aspectual scenarios and use binding 

information provided by the designer to instantiate these models. They 

propose three special composition operators to compose the aspectual 

models with the non-aspectual scenarios. In this paper we use template MSCs 

(Aspect MSC) to capture aspect models. Bindings to other MSCs can be 

explicit or can be automatically performed by matching regular expressions. 

The only operator defined is the Match operator.  

Jezequel et al. [196] propose a semantic-based composition of aspects 

in high-level MSCs. They use a basic MSC to capture the pointcut and one to 

capture the advice of the aspect. Whenever the pointcut is matched the 

advice MSC replaces the pointcut MSC. By leveraging the semantics of the 

Match operator, we define the pointcut and the advice in the same template 

MSC, reducing the overhead of redefining the common messages in multiple 

places. 

A number of approaches have introduced aspects into state machine 

diagrams. Whittle et al. [55] propose a new aspect composition language for 

UML state diagrams. They can support complex pointcuts and specify the 

pointcut and the advice in the same diagram. However, I believe that 
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specifying and composing the scenarios at the sequence diagram level is 

important since it allows the designer to view and debug all the resulting 

composed interactions at the MSC level.  

In [197], [198], composition patterns have been proposed as a solution 

to capture crosscutting concerns as patterns. In composition patterns, 

template classes and sequence diagrams are used to define the crosscutting 

concerns and pattern binding is used to compose the pattern with concrete 

model elements. However, pointcut definition for composing the crosscutting 

concerns with the concrete model elements are less flexible than approaches 

such as [55] and the one presented in Chapters 4 and 5. 
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CHAPTER 8 

CONCLUSIONS AND OUTLOOK 

In this thesis I presented techniques to support model-based 

development of service-oriented systems. The key differentiator of a service-

oriented architecture versus component-oriented ones is focus on managing 

the interaction patterns between the different parts of the system. Thus, I 

introduced modeling techniques for specification and composition of 

interaction patterns. 

I applied my model-based approach to two different domains: 

embedded and enterprise systems. While different in many ways, these 

domains have to common challenge of integrating different subsystems that 

are distributed and, often, developed by different teams. I found that the 

introduction of interaction models, along with techniques for the composition 

of these models, is beneficial in both domains. 

In particular, I identified that the main problem in service composition 

arise when composing crosscutting concerns. When decomposing a software 

system, engineers chose the main concerns of the application and usually 

decompose the system according to such concerns. Unfortunately, additional 

concerns always exist and they often cross-cut the services created 

according to the chosen decomposition.  

A fundamental problem with current, “flat”, service-oriented 

architectures is that they do not easily support composition of crosscutting 
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concerns. To address the limitations of current service architectures the Rich 

Service pattern, presented in Chapter 1, introduces hierarchical 

decomposition, message routing, and 2 different types of services: Application 

and Infrastructure services. In my thesis, I proposed aspect-oriented modeling 

languages for interactions as a tool for modeling Rich Services. 

I demonstrated the Rich Service approach and different models of 

interactions with aspects on three case studies. The central locking system 

(CLS) case study, which describes the locking and unlocking of a car, covers 

the embedded system domain. The CoCoME case study, which presents a 

distributed managements system for a company having multiple stores, 

covers the enterprise systems domain. Finally the BART case study, which 

describes the automated control system for an train network, has elements 

from both the embedded systems domain and the enterprise systems one. 

In this thesis I focused my attention of one particular type of 

crosscutting concern, failure management. For this problem I introduced 

techniques to model system properties and improve reliability by generating 

monitors, applying mitigation techniques, and formally verify which system 

properties are maintained if failures occur. 

Two key contributions of this thesis are: a comprehensive interaction 

language that supports aspects, called Orca, and a technique to assess 

consistency of different models of the same system developed using different 

modeling languages. Orca provides a simple language that can be used to 
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formalize the different notations I use to model Rich Services. The consistency 

management approach, on the other hand, guarantee that my technique 

can be combined with existing modeling approach, an required feature for 

using my approach in real development projects. 

This thesis advances the state of the art in model-based system 

development; in particular, in the field of service-oriented architecture. More 

work is still needed in developing a proper tool chain and in integrating the 

Orca language with other modeling techniques. However, in this thesis I have 

collected enough evidence to validate the claim that: the use of Rich 

Services and aspect-oriented modeling techniques is a viable avenue for 

improving the development of both embedded and enterprise systems. 
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