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Robust Linear Regression: A Review and Comparison

Chun Yu ∗ and Weixin Yao, †

Abstract

Ordinary least-squares (OLS) estimators for a linear model are very sensitive

to unusual values in the design space or outliers among y values. Even one single

atypical value may have a large effect on the parameter estimates. This article aims

to review and describe some available and popular robust techniques, including

some recent developed ones, and compare them in terms of breakdown point and

efficiency. In addition, we also use a simulation study and a real data application

to compare the performance of existing robust methods under different scenarios.

Key words: Breakdown point; Robustness; Outliers; Linear Regression.

1 Introduction

Linear regression has been one of the most important statistical data analysis tools.

Given the independent and identically distributed (iid) observations (xi, yi), i = 1, . . . , n,
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in order to understand how the response yis are related to the covariates xis, we tradi-

tionally assume the following linear regression model

yi = xTi β + εi, (1.1)

where β is an unknown p × 1 vector, and the εis are i.i.d. and independent of xi with

E(εi | xi) = 0. The most commonly used estimate for β is the ordinary least-squares

(OLS) estimate which minimizes the sum of squared residuals

n∑
i=1

(yi − xTi β)2. (1.2)

However, it is well known that the OLS estimate is extremely sensitive to the outliers.

A single outlier can have large effect on the OLS estimate.

In this paper, we review and describe some available robust methods. In addition,

a simulation study and a real data application are used to compare different existing

robust methods. The efficiency and breakdown point (Donoho and Huber, 1983) are

two traditionally used important criteria to compare different robust methods. The

efficiency is used to measure the relative efficiency of the robust estimate compared

to the OLS estimate when the error distribution is exactly normal and there are no

outliers. Breakdown point is to measure the proportion of outliers an estimate can

tolerate before it goes to infinity. In this paper, finite sample breakdown point (Donoho

and Huber, 1983) is used and defined as follows: Let zi = (xi, yi). Given any sample

z = (zi, . . . ,zn), denote T (z) the estimate of the parameter β. Let z′ be the corrupted

sample where any m of the original points of z are replaced by arbitrary bad data. Then

the finite sample breakdown point δ∗ is defined as

δ∗ (z, T ) = min
1≤m≤n

{
m

n
: sup
z′
‖T (z′)− T (z)‖ =∞

}
, (1.3)
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where ‖·‖ is the Euclidean norm.

Many robust methods have been proposed to achieve high breakdown point or high

efficiency or both. M-estimates (Huber, 1981) are solutions of the normal equation with

appropriate weight functions. They are resistant to unusual y observations, but sensi-

tive to high leverage points on x. Hence the breakdown point of an M-estimate is 1/n.

R-estimates (Jackel, 1972) which minimize the sum of scores of the ranked residuals

have relatively high efficiency but their breakdown points are as low as those of OLS

estimates. Least Median of Squares (LMS) estimates (Siegel, 1982) which minimize the

median of squared residuals, Least Trimmed Squares (LTS) estimates (Rousseeuw, 1983)

which minimize the trimmed sum of squared residuals, and S-estimates (Rousseeuw and

Yohai, 1984) which minimize the variance of the residuals all have high breakdown point

but with low efficiency. Generalized S-estimates (GS-estimates) (Croux et al., 1994)

maintain high breakdown point as S-estimates and have slightly higher efficiency. MM-

estimates proposed by Yohai (1987) can simultaneously attain high breakdown point and

efficiencies. Mallows Generalized M-estimates (Mallows, 1975) and Schweppe General-

ized M-estimates (Handschin et al., 1975) downweight the high leverage points on x but

cannot distinguish “good” and “bad” leverage points, thus resulting in a loss of efficien-

cies. In addition, these two estimators have low breakdown points when p, the number

of explanatory variables, is large. Schweppe one-step (S1S) Generalized M-estimates

(Coakley and Hettmansperger, 1993) overcome the problems of Schweppe Generalized

M-estimates and are calculated in one step. They both have high breakdown points

and high efficiencies. Recently, Gervini and Yohai (2002) proposed a new class of high

breakdown point and high efficiency robust estimate called robust and efficient weighted

least squares estimator (REWLSE). Lee et al. (2012) and She and Owen (2011) proposed

a new class of robust methods based on the regularization of case-specific parameters

for each response. They further proved that the M-estimator with Huber’s ψ function
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is a special case of their proposed estimator. Wilcox (1996) and You (1999) provided

an excellent Monte Carlo comparison of some of the mentioned robust methods. This

article aims to provide a more complete review and comparison of existing robust meth-

ods including some recently developed robust methods. In addition, besides comparing

regression estimates for different robust methods, we also add the comparison of their

performance of outlier detection based on three criteria used by She and Owen (2011).

The rest of the paper is organized as follows. In Section 2, we review and describe

some of the available robust methods. In Section 3, a simulation study and a real data

application are used to compare different robust methods. Some discussions are given

in Section 4.

2 Robust Regression Methods

2.1 M-Estimates

By replacing the least squares criterion (1.2) with a robust criterion, M-estimate (Huber,

1964) of β is

β̂ = arg min
β

n∑
i=1

ρ

(
yi − xTi β

σ̂

)
, (2.1)

where ρ(·) is a robust loss function and σ̂ is an error scale estimate. The derivative of

ρ, denoted by ψ(·) = ρ′(·), is called the influence function. In particular, if ρ(t) = 1
2
t2,

then the solution is the OLS estimate. The OLS estimate is very sensitive to outliers.

Rousseeuw and Yohai (1984) indicated that OLS estimates have a breakdown point (BP)

of BP = 1/n, which tends to zero when the sample size n is getting large. Therefore,

one single unusual observation can have large impact on the OLS estimate.

One of the commonly used robust influence functions is Huber’s ψ function (Huber,

1981), where ψc(t) = ρ′(t) = max{−c,min(c, t)}. Huber (1981) recommends using
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c = 1.345 in practice. This choice produces a relative efficiency of approximate 95% when

the error density is normal. Another possibility for ψ(·) is Tukey’s bisquare function

ψc(t) = t{1 − (t/c)2}2
+. The use of c = 4.685 produces 95% efficiency. Bai, Yao, and

Boyer (2012) also applied Huber’s ψ function and Tukey’s bisquare function to provide

robust fitting of mixture regression models. If ρ(t) = |t|, then least absolute deviation

(LAD, also called median regression) estimates are achieved by minimizing the sum of

the absolute values of the residuals

β̂ = arg min
β

n∑
i=1

∣∣yi − xTi β∣∣ . (2.2)

The LAD is also called L1 estimate due to the L1 norm used. Although LAD is more

resistent than OLS to unusual y values, it is sensitive to high leverage outliers, and

thus has a breakdown point of BP = 1/n → 0 when the sample size n is getting large

(Rousseeuw and Yohai, 1984). Moreover, LAD estimates have a low efficiency of 0.64

when the errors are normally distributed. Similar to LAD estimates, the general mono-

tone M-estimates, i.e., M-estimates with monotone ψ functions, have a BP = 1/n → 0

as n becomes infinity due to lack of immunity to high leverage outliers (Maronna et al.,

2006). Yao et al. (2012) proposed to use a kernel function for ρ to provide a robust and

efficient estimate for nonparametric regression by data adaptively choosing the tuning

parameter. Their method can be also applied to linear regression.

2.2 LMS Estimates

The LMS estimates (Siegel, 1982) are found by minimizing the median of the squared

residuals

β̂ = arg min
β

Med{
(
yi − xTi β

)2}. (2.3)
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One good property of the LMS estimate is that it possesses a high breakdown point of

near 0.5. However, LMS estimates do not have a well-defined influence function because

of its convergence rate of n−
1
3 and thus have zero efficiency (Rousseeuw, 1984). Despite

these limitations, the LMS estimate can be used as an initial estimate for some other

high breakdown point and high efficiency robust methods.

2.3 LTS Estimates

The LTS estimate (Rousseeuw, 1983) is defined as

β̂ = arg min
β

q∑
i=1

r(i) (β)2 , (2.4)

where r(1) (β)2 ≤ · · · ≤ r(q) (β)2 are ordered squared residuals, q = [n (1− α) + 1], and

α is the proportion of trimming. Using q =
(
n
2

)
+1 ensures that the estimator has

a breakdown point of BP = 0.5, and the convergence rate of n−
1
2 (Rousseeuw, 1983).

Although highly resistent to outliers, LTS suffers badly in terms of very low efficiency,

which is about 0.08, relative to OLS estimates (Stromberg et al., 2000). The reason that

LTS estimates call attentions to us is that it is traditionally used as an initial estimate

for some other high breakdown point and high efficiency robust methods.

2.4 S-Estimates

S-estimates (Rousseeuw and Yohai, 1984) are defined by

β̂ = arg min
β

σ̂ (r1 (β) , · · · , rn (β)) , (2.5)
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where ri (β) = yi − xTi β and σ̂ (r1 (β) , · · · , rn (β)) is the scale M-estimate which is

defined as the solution of

1

n

n∑
i=1

ρ

(
ri (β)

σ̂

)
= δ, (2.6)

for any given β, where δ is taken to be EΦ [ρ (r)]. For the biweight scale, S-estimates

can attain a high breakdown point of BP = 0.5 and has an asymptotic efficiency of 0.29

under the assumption of normally distributed errors (Maronna et al., 2006).

2.5 Generalized S-Estimates (GS-Estimates)

Croux et al. (1994) proposed generalized S-estimates in an attempt to improve the low

efficiency of S-estimators. Generalized S-estimates are defined as

β̂ = arg min
β

Sn(β), (2.7)

where Sn(β) is defined as

Sn(β) = sup

{
S > 0;

(
n

2

)−1∑
i<j

ρ

(
ri − rj
S

)
≥ kn,p

}
, (2.8)

where ri = yi − xTi β, p is the number of regression parameters, and kn,p is a con-

stant which depends on n and p. Particularly, if ρ(x) = I(|x| ≥ 1) and kn,p =((
n
2

)
−
(
hp
2

)
+ 1
)
/
(
n
2

)
with hp = n+p+1

2
, generalized S-estimator yields a special case,

the least quartile difference (LQD) estimator, which is defined as

β̂ = arg min
β

Qn(r1, . . . , rn), (2.9)

where

Qn = {|ri − rj| ; i < j}(hp
2 ) (2.10)
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is the
(
hp
2

)
th order statistic among the

(
n
2

)
elements of the set {|ri − rj| ; i < j}. Gen-

eralized S-estimates have a breakdown point as high as S-estimates but with a higher

efficiency.

2.6 MM-Estimates

First proposed by Yohai (1987), MM-estimates have become increasingly popular and are

one of the most commonly employed robust regression techniques. The MM-estimates

can be found by a three-stage procedure. In the first stage, compute an initial consistent

estimate β̂0 with high breakdown point but possibly low normal efficiency. In the second

stage, compute a robust M-estimate of scale σ̂ of the residuals based on the initial

estimate. In the third stage, find an M-estimate β̂ starting at β̂0.

In practice, LMS or S-estimate with Huber or bisquare functions is typically used as

the initial estimate β̂0. Let ρ0(r) = ρ1 (r/k0), ρ(r) = ρ1 (r/k1), and assume that each of

the ρ-functions is bounded. The scale estimate σ̂ satisfies

1

n

n∑
i=1

ρ0

ri
(
β̂
)

σ̂

 = 0.5. (2.11)

If the ρ-function is biweight, then k0 = 1.56 ensures that the estimator has the asymp-

totic BP = 0.5. Note that an M-estimate minimizes

L(β) =
n∑
i=1

ρ

ri
(
β̂
)

σ̂

 . (2.12)

Let ρ satisfy ρ ≤ ρ0. Yohai (1987) showed that if β̂ satisfies L(β̂) ≤ L(β̂0), then β̂’s

BP is not less than that of β̂0. Furthermore, the breakdown point of the MM-estimate

depends only on k0 and the asymptotic variance of the MM-estimate depends only on

k1. We can choose k1 in order to attain the desired normal efficiency without affecting
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its breakdown point. In order to let ρ ≤ ρ0, we must have k1 ≥ k0; the larger the k1 is,

the higher efficiency the MM-estimate can attain at the normal distribution.

Maronna et al. (2006) provides the values of k1 with the corresponding efficiencies of

the biweight ρ-function. Please see the following table for more detail.

Efficiency 0.80 0.85 0.90 0.95

k1 3.14 3.44 3.88 4.68

However, Yohai (1987) indicates that MM-estimates with larger values of k1 are more

sensitive to outliers than the estimates corresponding to smaller values of k1. In practice,

an MM-estimate with bisquare function and efficiency 0.85 (k1 = 3.44) starting from a

bisquare S-estimate is recommended.

2.7 Generalized M-Estimates (GM-Estimates)

2.7.1 Mallows GM-estimate

In order to make M-estimate resistent to high leverage outliers, Mallows (1975) proposed

Mallows GM-estimate that is defined by

n∑
i=1

wiψ

ri
(
β̂
)

σ̂

xi = 0, (2.13)

where ψ(e) = ρ′(e) and wi =
√

1− hi with hi being the leverage of the ith observation.

The weight wi ensures that the observation with high leverage receives less weight than

the observation with small leverage. However, even “good” leverage points that fall in

line with the pattern in the bulk of the data are down-weighted, resulting in a loss of

effiency.
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2.7.2 Schweppe GM-estimate

Schweppe GM-estimate (Handschin et al., 1975) is defined by the solution of

n∑
i=1

wiψ

ri
(
β̂
)

wiσ̂

xi = 0, (2.14)

which adjusts the leverage weights according to the size of the residual ri. Carroll and

Welsch (1988) proved that the Schweppe estimator is not consistent when the errors

are asymmetric. Furthermore, the breakdown points for both Mallows and Schweppe

GM-estimates are no more than 1/(p+1), where p is the number of unknown parameters.

2.7.3 S1S GM-estimate

Coakley and Hettmansperger (1993) proposed Schweppe one-step (S1S) estimate , which

extends from the original Schweppe estimator. S1S estimator is defined as

β̂ = β̂0 +

 n∑
i=1

ψ′

ri
(
β̂0

)
σ̂wi

xix′i
−1

×
n∑
i=1

σ̂wiψ

ri
(
β̂0

)
σ̂wi

xi, (2.15)

where the weight wi is defined in the same way as Schweppe’s GM-estimate.

The method for S1S estimate is different from the Mallows and Schweppe GM-

estimates in that once the initial estimates of the residuals and the scale of the residuals

are given, final M-estimates are calculated in one step rather than iteratively. Coakley

and Hettmansperger (1993) recommended to use Rousseeuw’s LTS for the initial esti-

mates of the residuals and LMS for the initial estimates of the scale and proved that

the S1S estimate gives a breakdown point of BP = 0.5 and results in 0.95 efficiency

compared to the OLS estimate under the Gauss-Markov assumption.
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2.8 R-Estimates

The R-estimate (Jackel, 1972) minimizes the sum of some scores of the ranked residuals

n∑
i=1

an (Ri) ri = min, (2.16)

where Ri represents the rank of the ith residual ri, and an (·) is a monotone score function

that satisfies
n∑
i=1

an (i) = 0. (2.17)

R-estimates are scale equivalent which is an advantage compared to M-estimates. How-

ever, the optimal choice of the score function is unclear. In addition, most of R-estimates

have a breakdown point of BP = 1/n → 0 when n is close infinity. The bounded in-

fluence R-estimator proposed by Naranjo and Hettmansperger (1994) has a fairly high

efficiency when the errors have normal distribution. However, it is proved that their

breakdown point is no more than 0.2.

2.9 REWLSE

Gervini and Yohai (2002) proposed a new class of robust regression method called robust

and efficient weighted least squares estimator (REWLSE). REWLSE is a very attractive

robust estimator due to its simultaneously attaining maximum breakdown point and full

efficiency under normal errors. This new estimator is a type of weighted least squares

estimator with the weights adaptively calculated from an initial robust estimator.

Consider a pair of initial robust estimates of regression parameters and scale, β̂0 and

σ̂ respectively, the standardized residuals are defined as

ri =
yi − xTi β̂0

σ̂
.
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A large value of |ri| would suggest that (xi, yi) is an outlier. Define a measure of

proportion of outliers in the sample

dn = max
i>i0

{
F+(|r|(i))−

(i− 1)

n

}+

, (2.18)

where {·}+ denotes positive part, F+ denotes the distribution of |X| when X ∼ F ,

|r|(1) ≤ . . . ≤ |r|(n) are the order statistics of the standardized absolute residuals, and

i0 = max
{
i : |r|(i) < η

}
, where η is some large quantile of F+. Typically η = 2.5 as

chosen by Rousseeuw and Leroy (1987) and the cdf of a normal distribution is chosen

for F . Thus those bndnc observations with largest standardized absolute residuals are

eliminated (here bac is the largest integer less than or equal to a).

The adaptive cut-off value is tn = |r|(in) with in = n − bndnc. With this adaptive

cut-off value, the adaptive weights proposed by Gervini and Yohai (2002) are

wi =


1 if |ri| < tn

0 if |ri| ≥ tn.

(2.19)

Then, the REWLSE is

β̂ = (XTWX)−1XTWy, (2.20)

where W = diag(w1, · · · , wn),X = (x1, . . . ,xn)T , and y = (y1, · · · , yn)′.

If the initial regression and scale estimates with BP = 0.5 are chosen, the breakdown

point of the REWLSE is also 0.5. Furthermore, since the cut-off values are used in a way

resulting the REWLSE is asymptotically equivalent to the OLS estimates and hence has

full asymptotic efficiency under the normal-error model.
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2.10 Robust Regression Based on Regularization of Case-Specific

Parameters

She and Owen (2011) and Lee et al. (2012) proposed a new class of robust regression

methods using the case-specific indicators in a mean shift model with the regularization

method. A mean shift model for the linear regression is

y = Xβ + γ + ε, ε ∼ N(0, σ2I)

where y = (y1, · · · , yn)T , X = (x1, . . . ,xn)T ,γ = (γ1, . . . , γn)T , and the mean shift

parameter γi is nonzero when the ith observation is an outlier and zero, otherwise.

Due to the sparsity of γis, She and Owen (2011) and Lee et al. (2012) proposed to

estimate β and γ by minimizing the penalized least squares using L1 penalty:

L(β,γ) =
1

2
{y − (Xβ + γ)}T {y − (Xβ + γ)}+ λ

n∑
i=1

|γi| , (2.21)

where λ is a fixed regularization parameter for γ. Given the estimate γ̂, β̂ is the

OLS estimate with y replaced by y − γ. For a fixed β̂, the minimizer of (2.21) is

γ̂i = sgn(ri)(|γi| − λ)+, that is,

γ̂i =


0 if |ri| ≤ λ;

yi − xTi β̂ if |ri| > λ.

Therefore, the solution of (2.21) can be found by iteratively updating the above two

steps. She and Owen (2011) and Lee et al. (2012) proved that the above estimate is in

fact equivalent to the M-estimate if Huber’s ψ function is used. However, their proposed

robust estimates are based on different perspective and can be extended to many other

likelihood based models.
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Note, however, the monotone M-estimate is not resistent to the high leverage outliers.

In order to overcome this problem, She and Owen (2011) further proposed to replace

the L1 penalty in (2.21) by a general penalty. The objective function is then defined by

Lp(β,γ) =
1

2
{y − (Xβ + γ)}T {y − (Xβ + γ)}+

n∑
i=1

pλ(|γi|), (2.22)

where pλ(|·|) is any penalty function which depends on the regularization parameter λ.

We can find γ̂ by defining thresholding function Θ(γ;λ) (She, 2009). She (2009) and

She and Owen (2011) proved that for a specific thresholding function, we can always find

the corresponding penalty function. For example, the soft, hard, and smoothly clipped

absolute deviation (SCAD; Fan and Li (2001)) thresholding solutions of γ correspond

to L1, Hard, and SCAD penalty functions, respectively. Minimizing the equation (2.22)

yields a sparse γ̂ for outlier detection and a robust estimate of β. She and Owen (2011)

showed that the proposed estimates of (2.22) with hard or SCAD penalties are equivalent

to the M-estimates with certain redescending ψ functions and thus will be resistent to

high leverage outliers if a high breakdown point robust estimates are used as the initial

values. Yu et al. (2015) successfully extended this robust method to mixture models.

3 Examples

In this section, we use both simulation study and real data applications to compare

different robust methods in terms of parameter estimation and outlier detection. The

first statistical criterion we use to compare different estimates is the mean squared errors

(MSE). The other two are robust measures: robust bias (RB) and median absolute

deviation (MAD)(You, 1999). They are defined as:

RBi = median(β̂i)− βi,

14



and

MADi = median(|β̂i − βi|),

where i = 0, 1 for Example 1 and i = 0, 1, 2, 3 for Example 2.

We compare the OLS estimate with seven other commonly used robust regression

estimates: the M estimate using Huber’s ψ function (MH), the M estimate using Tukey’s

bisquare function (MT ), the S estimate, the LTS estimate, the LMS estimate, the MM

estimate (using bisquare weights and k1 = 4.68), and the REWLSE. Due to the limited

space, we cannot include all of our reviewed methods for comparison in our simulation

study, such as median regression, Mallows GM-estimate, Schweppe GM-estimate, the

S1S-estimator, and R-estimates. We mainly choose some methods that are popularly

used and can be found from existing R packages. R function rlm provides the imple-

mentation of MH and MT with stating psi function as Huber and Tukey, respectively.

LMS, LTS and S are computed using R function lqs with the option specified as “lms”,

“lts” and “S”, respectively. In these lqs computation procedures, resampling algorithm

is used. R package robust provides the implementation of MM and REWLSE and the

S-estimate is used as an initial estimate via random resampling. It is known that using

the initial S estimate in two-stage algorithm of MM achieves both high efficiency and

robustness (Yohai, 1987). Note that we did not include the case-specific regularization

methods proposed by She and Owen (2011) and Lee et al. (2012) since they are essen-

tially equivalent to M-estimators. All the computations in this article are done by R.

However, one can also implement those robust regression methods using SAS. In SAS,

“ROBUSTREG” procedure provides implementation of M, LTS, S and MM estimates

choosing “method=” to be “m”, “lts”, “s”, or “mm”, respectively.

Example 1. We generate n samples {(x1, y1), . . . , (xn, yn)} from the model

Y = X + ε,
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where X ∼ N(0, 1). In order to compare the performance of different methods, we

consider the following six cases for the error density of ε:

Case I: ε ∼ N(0, 1)- standard normal distribution.

Case II: ε ∼ t3 - t-distribution with degrees of freedom 3.

Case III: ε ∼ t1 - t-distribution with degrees of freedom 1 (Cauchy distribution).

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102) - contaminated normal mixture.

Case V: ε ∼ N (0,1) with 10% identical outliers in y direction (where we let the first

10% of y′s equal to 30).

Case VI: ε ∼ N (0,1) with 10% identical high leverage outliers (where we let the first

10% of x′s equal to 10 and their corresponding y′s equal to 50).

Tables 1 and 2 report MSE, RB and MAD of the parameter estimates for each

estimation method with sample size n = 20 and 100, respectively. The number of

replicates is 200. From the tables, we can see that MM and REWLSE have the overall

best performance throughout most cases and they are consistent for different sample

sizes. For Case I, since the error distribution is normal, the performance of each estimate

mainly depends on their efficiency. In this case, the OLS has the smallest MSE and MAD

which is reasonable since under normal errors OLS is the best estimate; MH , MT , MM,

and REWLSE have similar MSE to OLS, due to their high efficiency property; LMS,

LTS, and S have relative larger MSE due to their low efficiency property. If the efficiency

of some robust β̂R relative to β̂OLS is defined as the ratio of MSE of β̂OLS to MSE of β̂R,

the efficiencies of β̂LMS
0 and β̂LTS0 relative to β̂OLS0 do not exceed 28% for both β̂0 and

β̂1. The efficiencies of β̂S0 relative to β̂OLS0 are between 32.38% and 41.60%, but the best

efficiency of β̂S1 relative to β̂OLS1 is 29.5%. The efficiencies of other methods are much

higher. MM, REWLSE, MH , and MT have smaller RB than those of LMS, LTS and S
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estimators. For Case II, MH , MT , MM, and REWLSE work better than other estimates

in terms of MSE and MAD. For Case III, OLS has much larger MSE than other robust

estimators; MH , MT , MM, REWLSE and S have similar MSE, RB and MAD. For Case

IV, MH , MT , MM, and REWLSE have smaller MSE and MAD than others. From Case

V, we can see that when the data contain outliers in the y-direction, OLS is much worse

than any other robust estimates; MM, REWLSE, and MT are better than other robust

estimators. The reason why MT can perform better than MH is that Tukey’s bisquare

function can completely remove the effect of large outliers while Huber’s ψ function can

only reduce the effect of large outliers. Finally for Case VI, since there are high leverage

outliers, similar to OLS, both MT and MH perform poorly; MM and REWLSE work

better than other robust estimates.

In order to better compare the performance of different methods, Figure 1 shows

the plot of their MSE versus each case for the intercept (left side) and slope (right

side) parameters for example 1 when sample size n = 100. Since the lines for LTS

and LMS are above the other lines, S, MM, and REWLSE of the intercept and slopes

outperform LTS and LMS estimates throughout all six cases. In addition, the S estimate

has similar performance to MM and REWLSE when the error density of ε is Cauchy

distribution. However, MM and REWLSE perform better than S-estimates in other five

cases. Furthermore, the lines for MM and REWLSE almost overlap for all six cases. It

shows that MM and REWLSE are the overall best approaches in robust regression.

Example 2. Samples {(x1, y1), . . . , (xn, yn)} are generated from the model

Y = X1 +X2 +X3 + ε,

where Xi ∼ N(0, 1), i = 1, 2, 3 and Xi’s are independent. We consider the following six

cases for the error density of ε:
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Case I: ε ∼ N(0, 1)- standard normal distribution.

Case II: ε ∼ t3 - t-distribution with degrees of freedom 3.

Case III: ε ∼ t1 - t-distribution with degrees of freedom 1 (Cauchy distribution).

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102) - contaminated normal mixture.

Case V: ε ∼ N(0, 1) with 10% identical outliers in y direction (where we let the first

10% of y′s equal to 30).

Case VI: ε ∼ N(0, 1) with 10% identical high leverage outliers being X1 = 10, X2 = 10,

X3 = 10, and Y = 50.

Tables 3 - 6 show MSE, RB and MAD of the parameter estimates of each estimation

method for sample size n = 20 and n = 100, respectively. Figure 2 shows the plot of

their MSE versus each case for three slopes and the intercept parameters with sample

size n = 100. The results in Example 2 tell similar stories to Example 1. In summary,

MM and REWLSE have the overall best performance; OLS only works well when there

are no outliers since it is very sensitive to outliers; M-estimates (MH and MT ) work well

if the outliers are in y direction but are also sensitive to the high leverage outliers.

Example 3. In order to compare the performance of outlier detection, we con-

sider two cases: 5% and 10% high leverage outliers in the model. n = 100 samples

{(x1, y1), . . . , (xn, yn)} are generated from the model

Y = X1 +X2 +X3 + γ + ε,

where γ is a vector, ε ∼ N(0, 1), Xi ∼ N(0, 1), i = 1, 2, 3 and Xi’s are independent. We

modify the first O rows of predictor matrix X to be X1 = 10, X2 = 10, X3 = 10, where

O ∈ {5, 10}. The first O rows of γ are randomly generated from a uniform distribution
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between 11 and 13 and the remaining n − O rows of γ are all zeros. Therefore, the

first O observations are high leverage outliers. In order to compare the performance of

outlier detection of different methods, we use three benchmark proportions: M, S and

JD (She and Owen, 2011). M is the mean masking probability (fraction of undetected

true outliers), S denotes the mean swamping probability (fraction of good points labeled

as outliers), and JD means the joint outlier detection rate (fraction of simulations with

0 masking). Ideally, M ≈ 0, S ≈ 0 and JD ≈ 100%.

As can be seen from Table 7, S and MM have relatively small probabilities of both

masking and swamping, and LTS has smaller probability of masking but higher probabil-

ity of swamping in the presence of 5% outliers. When the proportion of outliers increases

to 10%, LMS, LTS, S, MM and REWLSE still have high joint identification rates which

are larger than 60%. LMS has lowest masking probability but also has highest swamping

probability. As expected, MH and MT have very high masking probabilities due to their

sensitivity to high leverage outliers.

Example 4: We next use the modified data on wood specific gravity (Rousseeuw,

1984; Rousseeuw and Leroy, 1987; Olive and Hawkins, 2011) to compare OLS with LTS,

LMS, S, and MM. The data set is shown in Table 9, which contains 20 points and four

of them (i = 4, 6, 8, 19) are outliers (Rousseeuw, 1984). A linear regression model is

used to investigate the influence of anatomical factors on wood specific gravity. The

estimates of the six parameters by OLS, LTS, S, MM, and LMS (LMS estimates are

provided by Rousseeuw (1984)) are shown in Table 8. LTS, S, and MM produce similar

coefficient estimates and are close to LMS estimates. However, the OLS estimates are

quite different from those robust estimates of LTS, S, MM, and LMS. Therefore, the

OLS estimates are greatly affected by the outliers.

Table 9 lists the standardized residuals (residuals divided by the estimated scale)

for OLS, LTS, S, MM, and LMS (the standardized residuals for LMS are provided by
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Rousseeuw (1984)). The corresponding estimated scales are σ̂OLS = 0.02412, σ̂LTS =

0.0065, σ̂S = 0.01351, σ̂MM = 0.01351, and σ̂LMS = 0.0195, respectively. It is not easy

to identify the outliers by looking at standardized residuals of OLS, but standardized

residuals of LTS, S, MM and LMS could correctly identify the four outliers and the

identified four outliers are exactly the same as which were spotted by LMS in Rousseeuw

(1984). Therefore, the naive method by looking at the standardized residuals of OLS

might miss the outliers due to the masking effect.

Figure 3 shows plots of the residuals versus the fitted values for OLS, LTS, S, MM

and LMS, respectively. There are obvious four outliers by looking at residual plots of

LTS, S, MM and LMS. However, the four outliers can not be easily detected by naively

looking at the residual plot of OLS due to the masking effect.

Example 5: Finally, we apply OLS, LTS, LMS, S, and MM estimators to an artificial

three-predictor data set which was created by Hawkins et al. (1984) to test the outlier

detection of these regression parameter estimates. The dataset contains outliers at

cases 1-10. The standardized residuals for OLS, LTS, LMS, S, and MM estimations are

given in Table 10. The standardized residuals show that LTS, S, LMS, and MM all

correctly flag the outliers and obtain similar coefficient estimation. Nonetheless, Hadi

and Simonoff (1993) indicated that MM estimator with high efficiency level masked true

outliers and swamped in the cases 11-14, but less-efficient versions of MM estimator (with

efficiencies up to about 80%) give results similar to LMS and LTS. Similar to example

4, OLS estimator fails to identify the outliers.

4 Discussion

In this article, we describe and compare different available robust methods. Table 11

summarizes the robustness attributes and asymptotic efficiency of most of the estima-
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tors we have discussed. Based on Table 11, it can be seen that MM-estimates and

REWLSE have both high breakdown point and high efficiency. Our simulation study

also demonstrated that MM-estimates and REWLSE have overall best performance

among all compared robust methods. However, Park et al. (2012) pointed out that

MM-estimates cannot detect any outliers when the contamination percentage is equal

to and above 30%. In terms of breakdown point and efficiency, GM-estimates (Mallows,

Schweppe), Bounded R-estimates, M-estimates, and LAD estimates are less attractive

due to their low breakdown points. Although LMS, LTS, S-estimates, and GS-estimates

are strongly resistent to outliers, their efficiencies are low. However, these high break-

down point robust estimates such as S-estimates and LTS are traditionally used as the

initial estimates for some other high breakdown point and high efficiency robust esti-

mates.

As one referee pointed out, although MM, S and LTS have high breakdown points,

the practical computation of these estimators is very challenging, especially for large

datasets (Stromberg et al., 2000; Hawkins and Olive, 2002). The commonly adopted

method is to use the elemental resampling algorithm to obtain a number of subsets of

data and calculate the initial regression estimate for each element set, and then compute

the robust regression estimate from a number of initial estimates. However, based on

Hawkins and Olive (2002), the theoretical properties of the above computed estimates

depend on the number of elemental sets and their high breakdown properties usually

require the number of elementary sets to go to infinity. For example, Hawkins and Olive

(2002) proved that LTS estimator computed from the elemental resampling techniques,

such as FAST-LTS algorithm, has zero breakdown point. In order to compute MM, S and

LTS estimators with high breakdown point, one should consider all possible elemental

sets. In addition, Olive and Hawkins (2011) and Park et al. (2012) pointed out that if a

practical initial estimator which has not been proved to be high breakdown is used in the
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implementation of the two-stage estimator such as S and MM estimator, the resulting

two-stage estimator may be neither consistent nor high breakdown.

We would also like to mention some other directions to provide regression estimates

which are robust to outliers. Lee (1989, 1993), Kemp and Santos Silva (2012), and Yao

and Li (2014) proposed modal regression to robustly estimate the regression function.

Modal regression focuses on “most likely” conditional values rather than the conditional

average or median. However, when the error distribution is homogeneous, modal re-

gression line is the same as traditional mean regression line, except for intercepts. In

addition, Linton and Xiao (2007), Yuan and De Gooijer (2007), Wang and Yao (2012),

Yao and Zhao (2013), and Chen et al. (2015) proposed to adaptively estimate the re-

gression functions by estimating the error density using kernel density estimation. Those

adaptive estimates are also demonstrated to be robust to outliers and heavy-tail error

distributions based on their simulation studies.
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Figure 1: Plot of MSE of intercept (left) and slope (right) estimates vs. different cases
for LMS, LTS, S, MM, and REWLSE, for Example 1 when n = 100.
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Table 1: Comparison of Different Estimates for Example 1 with n = 20

OLS MH MT LMS LTS S MM REWLSE

Case I: ε ∼ N(0, 1)

MSE(β̂0) 0.0644 0.0679 0.0685 0.2536 0.2332 0.1548 0.0679 0.0654

RB(β̂0) -0.0121 -0.0073 0.0011 -0.0093 -0.0482 -0.0045 0.0032 0.0105

MAD(β̂0) 0.1663 0.1570 0.1473 0.3669 0.3780 0.2519 0.1533 0.1593

MSE(β̂1) 0.0544 0.0578 0.0584 0.3117 0.2455 0.1843 0.0572 0.0563

RB(β̂1) -0.0021 -0.0060 -0.0145 -0.0002 0.0513 0.0247 0.0001 0.0041

MAD(β̂1) 0.1527 0.1574 0.1543 0.3159 0.3129 0.2667 0.1517 0.1527

Case II: ε ∼ t3
MSE(β̂0) 0.1337 0.0804 0.0829 0.2374 0.2259 0.1293 0.0825 0.0867

RB(β̂0) -0.0399 -0.0151 0.0064 -0.0052 0.0128 0.0122 -0.0055 0.0082

MAD(β̂0) 0.2353 0.1672 0.1746 0.3030 0.2925 0.2357 0.1754 0.1881

MSE(β̂1) 0.1867 0.0947 0.0952 0.2924 0.2836 0.1739 0.0902 0.1007

RB(β̂1) 0.0251 -0.0013 -0.0160 0.0223 0.0416 0.0055 -0.0097 -0.0037

MAD(β̂1) 0.1994 0.1744 0.1818 0.3598 0.3353 0.2496 0.1783 0.1965

Case III: ε ∼ t1
MSE(β̂0) 2201.5 0.2245 0.1655 0.2347 0.2388 0.1752 0.1764 0.1727

RB(β̂0) 0.0979 0.0227 0.0224 0.0253 0.0095 0.0053 0.0064 -0.0053

MAD(β̂0) 0.8252 0.2991 0.2553 0.2801 0.2876 0.2471 0.2646 0.3095

MSE(β̂1) 810.20 0.3723 0.2192 0.3962 0.4527 0.2209 0.2313 0.2272

RB(β̂1) -0.0127 0.0030 0.0010 -0.0924 -0.1014 -0.0541 -0.0075 0.0033

MAD(β̂1) 0.8094 0.3142 0.2659 0.3550 0.3046 0.2586 0.2808 0.2853

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102)

MSE(β̂0) 0.3494 0.0651 0.0641 0.2555 0.2431 0.1697 0.0621 0.0648

RB(β̂0) -0.0899 -0.0299 -0.0171 -0.0145 -0.0459 -0.0468 -0.0162 -0.0061

MAD(β̂0) 0.2961 0.1652 0.1763 0.3273 0.3424 0.2846 0.1696 0.1676

MSE(β̂1) 0.3261 0.0677 0.0601 0.3433 0.3164 0.1558 0.0585 0.0527

RB(β̂1) -0.0364 -0.0200 -0.0178 0.0161 -0.0069 -0.0055 -0.0169 -0.0214

MAD(β̂1) 0.2344 0.1536 0.1477 0.2996 0.2996 0.2492 0.1476 0.1556

Case V: ε ∼ N(0, 1) with outliers in y direction

MSE(β̂0) 9.4097 0.0966 0.0483 0.2238 0.1943 0.1306 0.0473 0.0423

RB(β̂0) 3.0130 0.2288 0.0267 -0.0356 -0.0230 0.0010 0.0267 0.0250

MAD(β̂0) 3.0130 0.2385 0.1330 0.3024 0.3062 0.2362 0.1290 0.1425

MSE(β̂1) 4.9846 0.0912 0.0608 0.3241 0.2599 0.1847 0.0603 0.0603

RB(β̂1) 0.0443 0.0126 -0.0045 0.0036 -0.0433 -0.0020 0.0013 -0.0004

MAD(β̂1) 1.3387 0.1793 0.1458 0.3305 0.3065 0.2313 0.1502 0.1500

Case VI: ε ∼ N(0, 1) with high leverage outliers

MSE(β̂0) 0.7718 0.8123 0.8293 0.2228 0.2021 0.1370 0.0718 0.0717

RB(β̂0) 0.2579 0.2347 0.2790 0.0491 0.0303 0.0084 0.0030 0.0009

MAD(β̂0) 0.5265 0.5485 0.5590 0.2981 0.2892 0.2422 0.1540 0.1559

MSE(β̂1) 13.397 13.738 13.878 0.3435 0.2287 0.1661 0.0772 0.0731

RB(β̂1) 3.6644 3.7123 3.7294 0.0129 0.0500 -0.0280 0.0126 0.0129

MAD(β̂1) 3.6644 3.7123 3.7294 0.2944 0.2882 0.2708 0.1603 0.1588
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Table 2: Comparison of Different Estimates for Example 1 with n = 100

TRUE OLS MH MT LMS LTS S MM REWLSE

Case I: ε ∼ N(0, 1)

MSE(β̂0) 0.0102 0.0117 0.0118 0.0675 0.0728 0.0315 0.0118 0.0109

RB(β̂0) 0.0049 -0.0037 -0.0031 0.0084 0.0357 0.0272 -0.0015 -0.0039

MAD(β̂0) 0.0724 0.0737 0.0730 0.1819 0.1829 0.1225 0.0734 0.0727

MSE(β̂1) 0.0105 0.0112 0.0114 0.0610 0.0762 0.0367 0.0114 0.0115

RB(β̂1) -0.0108 0.0002 -0.0032 -0.0167 -0.0028 -0.0007 -0.0047 -0.0035

MAD(β̂1) 0.0717 0.0700 0.0759 0.1670 0.1785 0.1188 0.0762 0.0761

Case II: ε ∼ t3
MSE(β̂0) 0.0355 0.0168 0.0164 0.0600 0.0612 0.0284 0.0165 0.0166

RB(β̂0) -0.0255 -0.0018 0.0037 0.0220 0.0051 0.0167 0.0052 0.0037

MAD(β̂0) 0.1133 0.0868 0.0736 0.1703 0.1849 0.1010 0.0767 0.0819

MSE(β̂1) 0.0394 0.0196 0.0189 0.0589 0.0661 0.0324 0.0187 0.0190

RB(β̂1) -0.0363 -0.0293 -0.0335 -0.0229 -0.0087 -0.0265 -0.0309 -0.0278

MAD(β̂1) 0.1235 0.0896 0.0927 0.1501 0.1625 0.1167 0.0892 0.1027

Case III: ε ∼ t1
MSE(β̂0) 8810.4 0.0405 0.0327 0.0713 0.0486 0.0304 0.0342 0.0339

RB(β̂0) 0.0687 -0.0213 0.0023 -0.0230 -0.0107 -0.0165 0.0020 -0.0250

MAD(β̂0) 1.1700 0.1385 0.1216 0.1720 0.1374 0.1040 0.1245 0.1235

MSE(β̂1) 27954 0.0396 0.0298 0.0667 0.0466 0.0337 0.0300 0.0302

RB(β̂1) -0.0347 0.0117 0.0011 0.0225 -0.0044 0.0188 0.0003 0.0006

MAD(β̂1) 1.1136 0.1300 0.1078 0.1556 0.1317 0.1083 0.1078 0.1060

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102)

MSE(β̂0) 49.49 0.0139 0.0131 0.0757 0.0752 0.0344 0.0130 0.0136

RB(β̂0) -0.0365 0.0036 -0.0012 0.0607 0.0293 0.0257 -0.0011 0.0002

MAD(β̂0) 0.1742 0.0723 0.0702 0.1990 0.1848 0.1289 0.0691 0.0716

MSE(β̂1) 1.4060 0.0125 0.0108 0.0576 0.0698 0.0291 0.0112 0.0112

RB(β̂1) -0.0209 -0.0072 -0.0073 0.0150 -0.0009 0.0012 -0.0092 -0.0140

MAD(β̂1) 0.1448 0.0725 0.0690 0.1675 0.1552 0.1070 0.0704 0.0734

Case V: ε ∼ N(0, 1) with outliers in y direction

MSE(β̂0) 8.9967 0.0500 0.0123 0.0701 0.0724 0.0313 0.0122 0.0125

RB(β̂0) 2.9916 0.1842 -0.0101 -0.0023 -0.0174 -0.0230 -0.0114 -0.0127

MAD(β̂0) 2.9916 0.1842 0.0838 0.1827 0.1889 0.1228 0.0782 0.0843

MSE(β̂1) 0.9034 0.0169 0.0115 0.0641 0.0708 0.0305 0.0113 0.0117

RB(β̂1) -0.0817 0.0101 0.0090 0.0105 0.0003 0.0149 0.0068 0.0001

MAD(β̂1) 0.6839 0.0819 0.0734 0.1725 0.1926 0.1060 0.0734 0.0759

Case VI: ε ∼ N(0, 1) with high leverage outliers

MSE(β̂0) 0.2942 0.3116 0.3198 0.0678 0.0615 0.0296 0.0123 0.0126

RB(β̂0) 0.3942 0.3645 0.3709 -0.0020 0.0094 -0.0134 -0.0028 -0.0048

MAD(β̂0) 0.4118 0.4124 0.4210 0.1694 0.1664 0.1165 0.0768 0.0752

MSE(β̂1) 13.269 13.621 13.740 0.0643 0.0616 0.0346 0.0119 0.0117

RB(β̂1) 3.6445 3.6860 3.7033 0.0010 -0.0321 0.0054 0.0101 0.0115

MAD(β̂1) 3.6445 3.6860 3.7033 0.1786 0.1647 0.1117 0.0634 0.0660
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Table 3: Comparison of Different Estimates for Example 2 with n = 20

TRUE OLS MH MT LMS LTS S MM REWLSE

Case I: ε ∼ N(0, 1)

MSE(β̂0) 0.0574 0.0612 0.0660 0.3700 0.2544 0.1870 0.0622 0.0613

RB(β̂0) 0.0136 0.0081 0.0053 -0.0068 -0.0673 -0.0435 -0.0033 -0.0016

MAD(β̂0) 0.1707 0.1879 0.1955 0.4187 0.3356 0.2912 0.1889 0.1871

MSE(β̂1) 0.0670 0.0732 0.0866 0.4648 0.3008 0.2550 0.0776 0.0730

RB(β̂1) -0.0259 -0.0253 -0.0256 -0.0359 0.0227 -0.0100 -0.0228 -0.0252

MAD(β̂1) 0.1723 0.1824 0.1955 0.4119 0.3317 0.2857 0.1795 0.1728

MSE(β̂2) 0.0642 0.0624 0.0667 0.4648 0.3275 0.2544 0.0647 0.0648

RB(β̂2) 0.0086 0.0026 -0.0010 0.0173 0.0365 -0.0386 0.0070 0.0014

MAD(β̂2) 0.1760 0.1664 0.1643 0.4029 0.3535 0.2994 0.1704 0.1748

MSE(β̂3) 0.0706 0.0751 0.0829 0.4202 0.3052 0.2283 0.0789 0.0748

RB(β̂3) -0.0099 0.0084 0.0026 -0.1113 -0.0516 -0.0244 0.0001 -0.0057

MAD(β̂3) 0.1680 0.1761 0.1859 0.3983 0.3461 0.2765 0.1802 0.1718

Case II: ε ∼ t3
MSE(β̂0) 0.1736 0.0927 0.0919 0.3861 0.2972 0.1970 0.0904 0.0949

RB(β̂0) 0.0416 0.0414 0.0292 0.1139 0.1070 0.0601 0.0300 0.0157

MAD(β̂0) 0.2544 0.2274 0.2110 0.4091 0.3620 0.2878 0.2024 0.1970

MSE(β̂1) 0.1959 0.1545 0.1560 0.5253 0.4219 0.2548 0.1557 0.1535

RB(β̂1) 0.0248 0.0135 0.0214 -0.0811 -0.0361 0.0100 0.0239 0.0150

MAD(β̂1) 0.2470 0.2329 0.2376 0.4159 0.3234 0.3009 0.2300 0.2317

MSE(β̂2) 0.2878 0.1690 0.1638 0.6129 0.3644 0.2437 0.1580 0.1614

RB(β̂2) -0.0509 -0.0188 -0.0179 -0.0465 -0.0039 0.0166 -0.0130 0.0082

MAD(β̂2) 0.2743 0.2432 0.2428 0.4551 0.3399 0.2901 0.2351 0.2399

MSE(β̂3) 0.2566 0.1383 0.1359 0.5529 0.4124 0.3023 0.1404 0.1380

RB(β̂3) 0.0433 0.0427 0.0071 0.0568 0.0804 -0.0006 0.0010 -0.0013

MAD(β̂3) 0.2517 0.2140 0.2364 0.4065 0.3745 0.2883 0.2346 0.2251

Case III: ε ∼ t1
MSE(β̂0) 33406 0.4019 0.3217 0.8503 0.4983 0.3847 0.3298 0.3258

RB(β̂0) -0.2515 -0.1037 -0.0377 -0.0176 -0.0483 -0.0501 -0.0545 -0.0510

MAD(β̂0) 0.9030 0.3429 0.3327 0.4471 0.3553 0.3459 0.2961 0.3172

MSE(β̂1) 2069.0 0.4238 0.3401 1.1884 0.6947 0.3958 0.3393 0.3424

RB(β̂1) -0.1555 -0.0913 -0.0909 0.0056 -0.0019 0.0112 -0.0561 -0.0483

MAD(β̂1) 1.0759 0.3655 0.3286 0.4701 0.3801 0.3219 0.3148 0.3274

MSE(β̂2) 3188.0 0.6564 0.4883 0.9200 0.6419 0.4245 0.4616 0.4526

RB(β̂2) 0.1034 0.0541 -0.0091 0.0396 0.0210 -0.0583 -0.0606 0.0026

MAD(β̂2) 0.9409 0.4642 0.3538 0.4468 0.4039 0.3362 0.3965 0.3491

MSE(β̂3) 1774.0 0.5386 0.4867 1.0639 0.6637 0.4577 0.4923 0.4951

RB(β̂3) 0.0863 0.0229 -0.0303 -0.1065 -0.0568 -0.0215 -0.0155 -0.0107

MAD(β̂3) 0.8467 0.3781 0.3606 0.4403 0.3913 0.3599 0.3615 0.3667
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Table 4: Comparison of Different Estimates for Example 2 with n = 20

TRUE OLS MH MT LMS LTS S MM REWLSE

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102)

MSE(β̂0) 0.4870 0.0919 0.0754 0.3972 0.2812 0.1929 0.0755 0.0721

RB(β̂0) 0.0447 0.0215 0.0108 -0.0390 0.0195 -0.0209 0.0184 0.0216

MAD(β̂0) 0.2980 0.2172 0.1838 0.4019 0.3822 0.3052 0.1875 0.1854

MSE(β̂1) 0.4734 0.1240 0.0983 0.5312 0.3103 0.2023 0.0976 0.1009

RB(β̂1) -0.0162 -0.0055 0.0090 -0.0115 -0.0055 0.0060 0.0003 0.0046

MAD(β̂1) 0.3040 0.2209 0.1990 0.3813 0.3508 0.2743 0.2090 0.2072

MSE(β̂2) 0.6811 0.1069 0.0861 0.4851 0.3101 0.2033 0.0939 0.1072

RB(β̂2) -0.0642 -0.0265 -0.0146 -0.0774 -0.0313 -0.0361 -0.0177 -0.0092

MAD(β̂2) 0.2557 0.1722 0.1594 0.4231 0.3303 0.2592 0.1612 0.1805

MSE(β̂3) 0.5937 0.1055 0.0798 0.5802 0.3336 0.2359 0.0773 0.0736

RB(β̂3) -0.0083 -0.0033 -0.0126 0.0150 -0.0341 -0.0323 -0.0065 -0.0055

MAD(β̂3) 0.3409 0.2131 0.1928 0.3499 0.3382 0.2876 0.1891 0.2133

Case V: ε ∼ N(0, 1) with outliers in y direction

MSE(β̂0) 9.8831 0.1470 0.0784 0.3489 0.2487 0.1643 0.0735 0.0739

RB(β̂0) 2.9410 0.2160 0.0030 -0.0628 -0.0392 -0.0053 0.0025 0.0110

MAD(β̂0) 2.9410 0.2655 0.1807 0.4015 0.3288 0.2530 0.1818 0.1760

MSE(β̂1) 4.6973 0.0918 0.0721 0.4046 0.2875 0.2069 0.0668 0.0697

RB(β̂1) -0.1366 -0.0105 -0.0385 0.0102 0.0221 -0.0005 -0.0243 -0.0134

MAD(β̂1) 1.3713 0.1846 0.1844 0.3920 0.3655 0.3075 0.1775 0.1846

MSE(β̂2) 6.1743 0.1736 0.1001 0.5268 0.2976 0.2143 0.0936 0.0955

RB(β̂2) -0.2108 -0.0370 -0.0079 0.0435 0.0053 -0.0081 -0.0117 -0.0304

MAD(β̂2) 1.667 0.2181 0.1775 0.3829 0.3649 0.2845 0.1833 0.1800

MSE(β̂3) 5.5139 0.1331 0.0781 0.3906 0.2896 0.2088 0.0746 0.0855

RB(β̂3) -0.2013 -0.0291 -0.0322 -0.0773 -0.0335 -0.0129 -0.0322 -0.0337

MAD(β̂3) 1.5581 0.2392 0.1874 0.3885 0.3493 0.2791 0.1889 0.1868

Case VI: ε ∼ N(0, 1) with high leverage outliers

MSE(β̂0) 0.9099 0.9893 1.0550 0.3347 0.29325 0.1537 0.0685 0.0679

RB(β̂0) 0.1594 0.1545 0.1863 0.0552 0.0736 0.0472 -0.0014 0.0098

MAD(β̂0) 0.6569 0.7016 0.7226 0.3627 0.3188 0.2750 0.1642 0.1783

MSE(β̂1) 13.504 13.770 13.8048 0.4387 0.3476 0.2132 0.0980 0.1090

RB(β̂1) 3.6694 3.7134 3.7218 -0.0265 0.0247 -0.0354 -0.0493 -0.0466

MAD(β̂1) 3.6694 3.7134 3.7218 0.3999 0.3257 0.2841 0.1791 0.1938

MSE(β̂2) 0.8393 0.9009 0.9702 0.3716 0.2452 0.1608 0.0797 0.0767

RB(β̂2) -0.2032 -0.1788 -0.1737 -0.0156 -0.0173 0.0307 -0.0401 -0.0091

MAD(β̂2) 0.6166 0.6425 0.6462 0.3405 0.2932 0.2346 0.1693 0.1795

MSE(β̂3) 0.7862 0.8487 0.9068 0.3964 0.3133 0.1900 0.0839 0.0919

RB(β̂3) -0.1069 -0.1278 -0.1327 -0.1022 -0.0969 -0.0599 -0.0260 -0.0374

MAD(β̂3) 0.6878 0.6706 0.7013 0.3196 0.3171 0.2757 0.1871 0.1830
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Table 5: Comparison of Different Estimates for Example 2 with n = 100

TRUE OLS MH MT LMS LTS S MM REWLSE

Case I: ε ∼ N(0, 1)

MSE(β̂0) 0.0086 0.0090 0.0090 0.0750 0.0778 0.0398 0.0089 0.0089

RB(β̂0) 0.0119 0.0089 0.0087 0.0127 0.0245 0.0100 0.0076 0.0080

MAD(β̂0) 0.0669 0.0684 0.0677 0.1862 0.1995 0.1329 0.0682 0.0649

MSE(β̂1) 0.0102 0.0111 0.0111 0.0660 0.0753 0.0459 0.0111 0.0111

RB(β̂1) -0.0025 -0.0062 -0.0053 -0.0016 -0.0077 -0.0222 -0.0067 -0.0065

MAD(β̂1) 0.0688 0.0704 0.0751 0.1559 0.1875 0.1653 0.0761 0.0761

MSE(β̂2) 0.0118 0.0121 0.0124 0.0682 0.0786 0.0488 0.0123 0.0120

RB(β̂2) 0.0084 0.0072 0.0106 0.0395 0.0055 -0.0150 0.0121 0.0045

MAD(β̂2) 0.0727 0.0710 0.0694 0.1742 0.1718 0.1570 0.0710 0.0713

MSE(β̂3) 0.0098 0.0102 0.0101 0.0621 0.0564 0.0372 0.0101 0.0101

RB(β̂3) 0.0073 0.0041 0.0065 -0.0005 -0.0019 -0.0026 0.0054 0.0048

MAD(β̂3) 0.0705 0.0702 0.0699 0.1714 0.1508 0.1172 0.0708 0.0703

Case II: ε ∼ t3
MSE(β̂0) 0.0214 0.0134 0.0137 0.0546 0.0554 0.0326 0.0138 0.0153

RB(β̂0) 0.0066 0.0019 -0.0013 -0.0362 -0.0202 -0.0162 -0.0002 0.0010

MAD(β̂0) 0.1103 0.0815 0.0787 0.1319 0.1640 0.1324 0.0790 0.0811

MSE(β̂1) 0.0271 0.0139 0.0139 0.0767 0.0703 0.0455 0.0137 0.0140

RB(β̂1) -0.0257 -0.0116 -0.0149 -0.034 0.0110 -0.0023 -0.0144 -0.0097

MAD(β̂1) 0.1135 0.0852 0.0818 0.1658 0.1618 0.1272 0.0781 0.0852

MSE(β̂2) 0.0320 0.0185 0.0177 0.0644 0.0601 0.0416 0.0181 0.0184

RB(β̂2) 0.0044 0.0170 0.0311 0.0078 0.0437 0.0196 0.0293 0.0250

MAD(β̂2) 0.1245 0.0901 0.0858 0.1618 0.1688 0.1369 0.0865 0.0846

MSE(β̂3) 0.0311 0.0190 0.0190 0.0709 0.0658 0.0451 0.0188 0.0203

RB(β̂3) 0.0022 -0.0037 0.0055 -0.0014 -0.0057 0.0235 0.0025 0.0038

MAD(β̂3) 0.1231 0.0968 0.0955 0.1731 0.1600 0.1442 0.0952 0.1002

Case III: ε ∼ t1
MSE(β̂0) 178.66 0.0378 0.0301 0.0624 0.0455 0.0305 0.0311 0.0330

RB(β̂0) -0.0912 -0.0267 -0.0017 -0.0239 -0.0108 -0.0169 -0.0087 -0.0124

MAD(β̂0) 0.9190 0.1154 0.1205 0.1607 0.1351 0.1170 0.1139 0.1185

MSE(β̂1) 72.519 0.0445 0.0333 0.0693 0.0634 0.0528 0.0359 0.0359

RB(β̂1) -0.1049 -0.0095 -0.0007 -0.0002 -0.0089 -0.0068 0.0021 -0.0002

MAD(β̂1) 0.7958 0.1288 0.1218 0.1686 0.1418 0.1494 0.1292 0.1349

MSE(β̂2) 198.19 0.0370 0.0342 0.0708 0.0658 0.0535 0.0352 0.0377

RB(β̂2) 0.0636 0.0200 0.0035 -0.0147 0.0183 -0.0044 0.0049 0.0068

MAD(β̂2) 0.6610 0.1184 0.1118 0.1645 0.1449 0.1573 0.1143 0.1268

MSE(β̂3) 68.1196 0.0389 0.0323 0.0579 0.0481 0.0446 0.0338 0.0325

RB(β̂3) -0.1051 -0.0111 -0.0265 -0.0210 -0.0284 -0.0221 -0.0283 -0.0293

MAD(β̂3) 0.812 0.1204 0.1232 0.1598 0.1339 0.1389 0.1294 0.1194
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Table 6: Comparison of Different Estimates for Example 2 with n = 100

TRUE OLS MH MT LMS LTS S MM REWLSE

Case IV: ε ∼ 0.95N(0, 1) + 0.05N(0, 102)

MSE(β̂0) 0.0600 0.0136 0.0120 0.0666 0.0697 0.0365 0.0119 0.0119

RB(β̂0) -0.0074 0.0002 -0.0004 -0.0182 -0.0302 -0.0182 -0.0026 -0.0037

MAD(β̂0) 0.1605 0.0811 0.0756 0.1874 0.1751 0.1370 0.0768 0.0771

MSE(β̂1) 0.0638 0.0162 0.01499 0.0661 0.0786 0.0499 0.0150 0.0154

RB(β̂1) -0.0306 0.0139 0.0106 0.0049 0.0037 0.0100 0.0118 0.0190

MAD(β̂1) 0.1640 0.0819 0.0832 0.1667 0.1835 0.1488 0.0829 0.0857

MSE(β̂2) 0.0522 0.0128 0.0120 0.0621 0.0679 0.0368 0.0120 0.0130

RB(β̂2) 0.0278 0.0125 0.0012 -0.0112 0.0070 -0.0040 0.0017 0.0040

MAD(β̂2) 0.1359 0.07363 0.0709 0.1876 0.1647 0.1328 0.0706 0.0749

MSE(β̂3) 0.0782 0.0170 0.0154 0.0706 0.0746 0.0422 0.0153 0.0156

RB(β̂3) -0.0063 -0.0031 0.0038 0.0036 0.0241 -0.0191 0.0048 0.0074

MAD(β̂3) 0.1804 0.0759 0.0823 0.1651 0.1791 0.1373 0.0824 0.0796

Case V: ε ∼ N(0, 1) with outliers in y direction

MSE(β̂0) 9.0524 0.0571 0.0116 0.0669 0.0776 0.0457 0.0115 0.0115

RB(β̂0) 3.0111 0.2139 0.0153 0.0299 0.0341 0.0315 0.0124 0.0088

MAD(β̂0) 3.0111 0.2139 0.0698 0.1735 0.1980 0.1384 0.0693 0.0708

MSE(β̂1) 0.9323 0.0137 0.0110 0.0574 0.0595 0.0378 0.0108 0.0116

RB(β̂1) -0.1124 0.0084 0.0098 0.0078 0.0304 0.0118 0.0104 0.0089

MAD(β̂1) 0.6464 0.0808 0.0712 0.1487 0.1520 0.1182 0.0685 0.0749

MSE(β̂2) 0.8554 0.01487 0.0121 0.0596 0.0675 0.0387 0.0120 0.0123

RB(β̂2) -0.1011 -0.0224 -0.0161 -0.0108 0.0105 -0.0219 -0.0133 -0.0162

MAD(β̂2) 0.6016 0.0822 0.0724 0.1605 0.1849 0.1479 0.0715 0.0695

MSE(β̂3) 0.8373 0.0161 0.0125 0.0706 0.0618 0.0378 0.0124 0.0130

RB(β̂3) -0.0809 0.0031 -0.0035 -0.0020 -0.0401 -0.0086 -0.0045 -0.0021

MAD(β̂3) 0.5779 0.0823 0.0774 0.1688 0.1731 0.1381 0.0774 0.0756

Case VI: ε ∼ N(0, 1) with high leverage outliers

MSE(β̂0) 0.2092 0.2077 0.2095 0.0594 0.0707 0.0435 0.0111 0.0114

RB(β̂0) 0.3088 0.2964 0.2991 -0.0003 -0.0203 -0.0215 -0.0107 -0.0131

MAD(β̂0) 0.3358 0.3399 0.3386 0.1531 0.1871 0.1335 0.0694 0.0720

MSE(β̂1) 13.303 13.683 13.726 0.0674 0.0759 0.0491 0.0114 0.0118

RB(β̂1) 3.6473 3.6979 3.7026 0.0183 -0.0120 0.0132 -0.0051 -0.0047

MAD(β̂1) 3.6473 3.6979 3.7026 0.1645 0.1842 0.1546 0.0758 0.0713

MSE(β̂2) 0.1728 0.1812 0.1858 0.0640 0.0683 0.0373 0.0120 0.0124

RB(β̂2) -0.1141 -0.1184 -0.1281 0.0054 -0.0184 0.0069 -0.0147 -0.0132

MAD(β̂2) 0.2689 0.2771 0.2796 0.1491 0.1676 0.1106 0.0712 0.0747

MSE(β̂3) 0.1557 0.1592 0.1600 0.0641 0.0603 0.0342 0.0132 0.0137

RB(β̂3) -0.1083 -0.1104 -0.1088 -0.0239 -0.0222 0.0047 -0.0045 0.0034

MAD(β̂3) 0.2561 0.2614 0.2637 0.1664 0.1564 0.1299 0.0724 0.0783
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Table 7: Outlier detection results for Example 3
5% outliers 10% outliers

M S JD M S JD
MH 0.976 0.008 0.000 0.983 0.009 0.000
MT 0.976 0.008 0.000 0.983 0.009 0.000
LMS 0.122 0.030 0.865 0.285 0.029 0.690
LTS 0.091 0.0249 0.900 0.332 0.025 0.645
S 0.088 0.008 0.905 0.365 0.008 0.625
MM 0.088 0.006 0.910 0.379 0.006 0.615
REWLSE 0.118 0.006 0.875 0.348 0.005 0.645

Table 8: Regression Estimates for Modified Data on Wood Specific Gravity

Estimators β1 β2 β3 β4 β5 Intercept

OLS 0.4407 -1.4750 -0.2612 0.0208 0.1708 0.4218
LTS 0.2384 -0.0699 -0.5695 -0.3839 0.6821 0.2880

S 0.2051 -0.1765 -0.5276 -0.4438 0.6163 0.3931
MM 0.2165 -0.0808 -0.5639 -0.3982 0.6046 0.3784
LMS 0.2687 -0.2381 -0.5357 -0.2937 0.4510 0.4347

Table 9: Modified Data on Wood Specific Gravity With Standardized Residuals From
OLS, LTS, S, MM and LMS

Residual/Scale

i xi1 xi2 xi3 xi4 xi5 xi6 yi OLS LTS S MM LMS

1 0.5730 0.1059 0.4650 0.5380 0.8410 1.000 0.5340 -0.7250 2.4231 0.5728 0.5937 -0.0827
2 0.6510 0.1356 0.5270 0.5450 0.8870 1.000 0.5350 0.0472 0.9400 0.3391 0.3306 0.0013
3 0.6060 0.1273 0.4940 0.5210 0.9200 1.000 0.5700 1.2425 0.0457 0.2364 0.0313 0.2836
4 0.4370 0.1591 0.4460 0.4230 0.9920 1.000 0.4500 0.3546 -31.878 -13.599 -14.067 -7.6137
5 0.5470 0.1135 0.5310 0.5190 0.9150 1.000 0.5480 1.0023 2.5153 1.2121 0.9750 0.9020
6 0.4440 0.1628 0.4290 0.4110 0.9840 1.000 0.4310 -0.4518 -36.752 -15.813 -16.268 -9.1023
7 0.4890 0.1231 0.5620 0.4550 0.8240 1.000 0.4810 0.9066 2.9574 0.5036 0.4830 0.3746
8 0.4130 0.1673 0.4180 0.430 0.9780 1.000 0.4230 -0.0349 -35.947 -15.623 -15.967 -8.9077
9 0.5360 0.1182 0.5920 0.4640 0.8540 1.000 0.4750 -0.3959 0.0457 -0.4185 -0.5688 -0.3746
10 0.6850 0.1564 0.6310 0.5640 0.9140 1.000 0.4860 -0.4150 -0.3174 -0.0580 -0.0245 -0.2071
11 0.6640 0.1588 0.5060 0.4810 0.8670 1.000 0.5540 1.9856 0.0457 -0.2014 -0.2003 0.0013
12 0.7030 0.1335 0.5190 0.4840 0.8120 1.000 0.5190 -1.1975 0.0457 -0.5225 -0.4747 -0.9656
13 0.6530 0.1395 0.6250 0.5190 0.8920 1.000 0.4920 -0.4854 0.8094 0.3226 0.2394 0.0013
14 0.5860 0.1114 0.5050 0.5650 0.8890 1.000 0.5170 -1.2610 -0.7948 -0.4711 -0.5230 -0.6709
15 0.5340 0.1143 0.5210 0.5700 0.8890 1.000 0.5020 -0.5865 0.6440 0.0307 0.0326 -0.1733
16 0.5230 0.1320 0.5050 0.6120 0.9190 1.000 0.5080 0.5237 0.0457 -0.1238 -0.0139 0.0013
17 0.5800 0.1249 0.5460 0.6080 0.9540 1.000 0.5200 -0.2548 -0.6450 0.0344 -0.0546 0.0013
18 0.4480 0.1028 0.5220 0.5340 0.9180 1.000 0.5060 0.2838 -0.9106 -0.4673 -0.6790 -0.1090
19 0.4170 0.1687 0.4050 0.4150 0.9810 1.000 0.4010 -1.0836 -42.291 -18.381 -18.770 -10.726
20 0.5280 0.1057 0.4240 0.5660 0.9090 1.000 0.5680 0.5450 0.0457 0.0141 -0.0990 0.0013
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Table 10: Hawkins, Bradu, and Kass Data With Standardized Residuals From OLS,
LTS, LMS, S and MM

i OLS LTS LMS S MM i OLS LTS LMS S MM

1 1.4999 14.040 16.535 12.371 12.293 39 -0.5745 -0.6933 -0.6690 -0.6965 -0.7829
2 1.7759 14.847 17.406 13.032 12.854 40 -0.0099 -0.0116 -0.0556 -0.1934 -0.4685
3 1.3295 15.055 17.782 13.262 13.140 41 -0.4982 -0.1584 -0.0101 -0.1632 -0.1335
4 1.1369 14.155 16.687 12.433 12.195 42 -0.4855 0.0740 0.1245 -0.1518 -0.5418
5 1.3583 14.693 17.316 12.928 12.763 43 0.7704 1.5833 1.6742 1.1729 0.8701
6 1.5240 14.297 16.857 12.631 12.616 44 -0.8093 -0.3356 -0.2317 -0.4228 -0.6398
7 2.0050 15.516 18.205 13.672 13.623 45 -0.3459 -0.4275 -0.4002 -0.4718 -0.5562
8 1.7026 15.063 17.706 13.239 13.106 46 -0.6416 0.0743 0.2280 -0.0659 -0.2753
9 1.2022 14.338 16.897 12.582 12.337 47 -0.6773 -1.3703 -1.4135 -1.2232 -1.1638
10 1.3477 14.901 17.538 13.048 12.763 48 -0.2427 0.1680 0.3074 0.1052 0.1034
11 -3.4830 -0.1701 0.4452 0.0769 -0.0610 49 0.2863 1.1861 1.4335 0.9974 1.0416
12 -4.1743 -0.4320 0.3040 -0.1144 -0.2274 50 -0.3093 -0.2452 -0.2225 -0.3114 -0.4384
13 -2.7174 0.4759 1.1097 0.7177 0.7903 51 0.3901 1.0390 1.2209 0.8315 0.8249
14 -1.6666 -0.7451 -0.6690 -0.3591 -0.2921 52 -0.5249 -0.8739 -0.8425 -0.7766 -0.6907
15 -0.2979 -0.8288 -0.8548 -0.7288 -0.6373 53 -0.0263 2.2484 2.6351 1.7225 1.2866
16 0.3819 0.5360 0.6539 0.4493 0.5690 54 0.7640 1.3158 1.4109 1.0068 0.8646
17 0.2885 0.4903 0.4754 0.2189 -0.0845 55 0.3242 0.6418 0.6607 0.3775 0.1196
18 -0.1802 0.2414 0.3621 0.1251 0.0473 56 0.3487 0.2622 0.2572 0.1322 0.0642
19 0.2917 0.7430 0.7921 0.4788 0.2351 57 0.2719 1.3283 1.5702 1.0443 0.9420
20 0.1486 0.4199 0.5334 0.3356 0.3832 58 0.1222 -0.1701 -0.1946 -0.2107 -0.2211
21 0.2952 1.3877 1.6517 1.1399 1.1110 59 -0.3336 0.1523 0.2389 -0.0022 -0.2144
22 0.4179 1.1949 1.2841 0.8442 0.5344 60 -0.6017 -0.1735 -0.1587 -0.3697 -0.7796
23 -0.1919 -1.0632 -1.2060 -1.0068 -1.0502 61 -0.0071 0.4612 0.4772 0.1987 -0.1570
24 0.6022 1.3358 1.4797 1.0306 0.8950 62 0.3028 1.4909 1.7243 1.1312 0.9165
25 -0.1403 0.1607 0.2234 -0.0158 -0.2167 63 0.2911 -0.1379 -0.2334 -0.2523 -0.3870
26 -0.2130 -0.5121 -0.6183 -0.6089 -0.8698 64 -0.3994 -0.6549 -0.6636 -0.6225 -0.6498
27 -0.6181 -1.080 -1.1022 -0.9628 -0.9281 65 -0.1370 1.4073 1.7357 1.1044 0.9328
28 -0.1136 0.9259 1.1510 0.6831 0.5220 66 -0.1169 -0.5340 -0.6690 -0.6609 -0.9578
29 0.1722 0.9506 1.1064 0.6807 0.4976 67 -0.2180 -0.6910 -0.7758 -0.7146 -0.8377
30 -0.5705 0.4733 0.6579 0.2399 -0.0686 68 0.2373 1.8989 2.1808 1.4271 1.0622
31 -0.1257 -0.1701 -0.0921 -0.1732 -0.0960 69 0.0814 0.4751 0.6002 0.3214 0.2680
32 0.2492 -0.0328 -0.1266 -0.2005 -0.4262 70 0.2082 1.8047 2.0823 1.3933 1.0981
33 -0.0479 -0.5604 -0.6690 -0.6050 -0.7397 71 0.0041 0.5359 0.6638 0.3755 0.2822
34 -0.3046 -0.1701 -0.1718 -0.3418 -0.6366 72 0.0611 0.4370 0.4695 0.1981 -0.0801
35 -0.1840 0.4784 0.6690 0.3729 0.3664 73 0.1951 1.5509 1.7583 1.1355 0.7729
36 -0.5241 -0.7504 -0.8263 -0.8108 -1.0700 74 -0.1719 -0.3801 -0.4942 -0.5459 -0.9029
37 -0.0999 0.1027 0.0587 -0.1279 -0.5094 75 -0.1588 1.4297 1.6891 1.0198 0.6185
38 0.5546 1.6095 1.8378 1.2772 1.1646
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Table 11: Breakdown Points and Asymptotic Efficiencies of Various Regression Estima-
tors

Estimator Breakdown Point Asymptotic Efficiency

High BP LMS 0.5 0
LTS 0.5 0.08

S-estimates 0.5 0.29
GS-estimates 0.5 0.67
MM-estimates 0.5 0.95

GM-estimates(S1S) 0.5 0.95
REWLSE 0.5 1.00

Low BP GM-estimates(Mallows,Schweppe) 1/(p+ 1) 0.95
Bounded R-estimates < 0.2 0.90-0.95

Monotone M-estimates 1/n 0.95
LAD 1/n 0.64
OLS 1/n 1.00

36



1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

0.
20

MSE vs. Cases for intercept

Case

M
S

E

a a a a a ab b b b b b

c c c c c c
d d

d
d d de e

e
e e e

a
b
c
d
e

LMS
LTS
S
MM
REWLSE

1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

0.
20

MSE vs. Cases for beta1

Case

M
S

E

a a a
a

a a
b

b b
b

b b

c c
c

c c c

d d
d

d d de e
e

e e e

a
b
c
d
e

LMS
LTS
S
MM
REWLSE

1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

0.
20

MSE vs. Cases for beta2

Case

M
S

E

a a a
a a ab b

b
b b b

c c c c c c

d d
d

d d de e
e

e e e

a
b
c
d
e

LMS
LTS
S
MM
REWLSE

1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

0.
20

MSE vs. Cases for beta3

Case

M
S

E

a a a a a
a

b b

b
b b

b
c c c c c c

d d
d

d d de e
e

e e e

a
b
c
d
e

LMS
LTS
S
MM
REWLSE

Figure 2: Plot of MSE of different regression parameter estimates vs. different cases for
LMS, LTS, S, MM, and REWLSE, for Example 2 when n = 100.
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Figure 3: Plots of residual versus fitted values for OLS, LTS, S, MM and LMS for
modified wood data
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