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Abstract
Purpose  Residential mobility is considered as a potential source of confounding in studies assessing environmental expo-
sures, including in studies of electromagnetic field (EMF) exposures and childhood leukemia.
Methods  We present a hybrid simulation study where we simulate a synthetic dataset based on an existing study and use it 
to assess the sensitivity of EMF–leukemia associations to different scenarios of uncontrolled confounding by mobility under 
two major hypotheses of the infectious etiology of childhood leukemia. We then used the findings to conduct sensitivity 
analysis and empirically offset the potential bias due to unmeasured mobility in the California Power Line Study dataset.
Results  As expected, the stronger the assumed relationship between mobility and exposure and outcome, the greater 
the potential bias. However, no scenario created a bias strong enough to completely explain away previously observed 
associations.
Conclusions  We conclude that uncontrolled confounding by residential mobility had some impact on the estimated effect of 
EMF exposures on childhood leukemia, but that it was unlikely to be the primary explanation behind previously observed 
largely consistent, but unexplained associations.

Keywords  Childhood leukemia · Simulation · Residential mobility · Electromagnetic fields

Introduction

Residential mobility is considered as a potential source of 
bias in studies assessing environmental exposures since 
the majority of studies consider exposures at only a sin-
gle residential address. Mobility has been hypothesized to 
explain observed association [1] between electromagnetic 
fields (EMF) and childhood leukemia. Mobility can affect 

an association through study selection and participation, 
through exposure misclassification, or even as a confounder 
[2, 3].

Mobility has been known to be associated with character-
istics such as lower socioeconomic status (SES) [4], which 
are related to a subject’s exposure to magnetic fields [5, 6]. 
SES can be related to the type, quality, and number of appli-
ances within a home, as well as the location of the home 
with regards to overhead powerlines [5, 6]. Type of dwelling 
(single-family home vs. apartment) is also associated with 
exposure to EMF [7, 8] as well as with mobility [3, 9].

Increased mobility is also associated with older age of 
child at diagnosis, and younger maternal age at birth [4] 
which can impact a child’s risk for leukemia. Mobility may 
also be related to increased exposure to viruses or other 
infections possibly associated with risk of childhood leu-
kemia [1, 10, 11]. There are two competing theories on the 
possible infectious etiology of childhood leukemia. In the 
“population mixing” hypothesis, the disease can develop as 
a rare response to a relatively common infection introduced 
to a previously isolated population [10]. In such a case, 
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exposure to infections would be associated with a greater 
risk of childhood leukemia. Alternatively, the “delayed 
infection” hypothesis suggests a protective effect of infec-
tions in early childhood in the development of leukemia 
through normal immune system development [12]. Possi-
ble routes of early childhood infection include having older 
siblings, breastfeeding, and attending daycare [13–17].

We previously attempted to assess the effect of mobil-
ity on the EMF–leukemia relationship in a California 
Power  Lines Study (CAPS) [3]. As the information on 
mobility was available only for cases, we determined vari-
ables predictive of mobility among cases: child’s age, mater-
nal age at birth, SES, race/ethnicity, parity, and dwelling 
type. We used a variety of approaches, including propensity 
score methods to control for those variables. Given the limi-
tations in the available data and previous work, we extend 
this effort by simulation and sensitivity analysis.

In this paper, we present a hybrid simulation study [18] 
assessing the impact of unmeasured residential mobility on 
EMF–leukemia associations. The aims of this study are (1) 
to simulate a synthetic case–control study based on avail-
able CAPS data, and to use it to assess the sensitivity of the 
plausible EMF–leukemia associations to different scenarios 
of uncontrolled confounding by mobility, and (2) to use the 
simulation findings to conduct sensitivity analysis and offset 
the potential bias due to uncontrolled confounding by mobil-
ity in the empirical study of the associations between EMF 
exposures on childhood leukemia in CAPS.

Methods

We first conducted a simulation study that generated 
case–control data using inputs on the interrelations of child-
hood leukemia, EMF, and mobility conditional on other 
covariates from an existing case–control study, CAPS. We 
then analyzed the simulated dataset to investigate the extent 
to which not adjusting for various scenarios of confounding 
by mobility could explain the magnitude and the direction 
of the associations between EMF exposures and childhood 
leukemia. Finally, we assessed the empirical relationship 
between EMF exposures and childhood leukemia in CAPS 
by offsetting potential confounding by mobility as seen in 
the simulation study.

CAPS is a case–control study that enrolled childhood 
leukemia cases younger than 16 years diagnosed in Cali-
fornia between 1988 and 2008. Cases were identified from 
the California Cancer Registry (CCR; www.ccrca​l.org) and 
matched to the California Birth Registry (CBR; California 
Department of Public Health, Vital Statistics Branch). Con-
trols were randomly selected from the CBR and matched to 
cases 1:1. Controls were excluded if they were diagnosed 
with any type of cancer in California before the matched 
case’s date of diagnosis. Out of 6,645 eligible childhood leu-
kemia cases identified from the CCR, 4,879 were matched 
to birth records and had accurate geocoding of both birth 
and diagnosis addresses. Similarly, 4,835 controls met these 
criteria (for birth address only). Details of this study have 
been previously described [19]. Cases were required to be 

Table 1   Input values for the 
relationship between the 
covariates and distance to 
powerlines, calculated magnetic 
fields, and leukemia in CAPS 
used to develop the synthetic 
cohort

Mobility ORs not estimated due to no information for controls
CAPS California Powerlines Study, m meters, kV kilvolts, μT microTesla, CF calculated fields, OR odds 
ratio, p probability, SES socioeconomic status
a Effect of covariates on living < 50 m from a 200+ kV line, adjusted for all other covariates
b Effect of covariates on having ≥ 0.4, adjusted for all other covariates
c Effect of covariates on leukemia risk, adjusted for all other covariates and distance
d Effect of covariates on leukemia risk, adjusted for all other covariates and calculated fields
e Cells n < 5

Covariate < 50 m to 
200+ kV 
line
(OR)a

≥ 0.4 μT
(OR)b

Dis-
tance → leu-
kemia
(OR)c

CF → leukemia
(OR)d

Prevalence 
in CAPS
(0 < p < 1)

Male sex 1.01 0.37 0.96 0.96 0.56
Asian race (v. non-Hispanic White) 2.19 1.98 1.24 1.24 0.11
Black race (v. non-Hispanic White) 0.52e 1.34e 0.63 0.63 0.07
Hispanic (v. non-Hispanic White) 1.44 1.45 1.20 1.20 0.50
Other race (v. non-Hispanic White) 1.96e N/Ae 1.06 1.06 0.02
< 1 year old (v. 10–15 years old) 1.12e 1.11e 0.91 0.91 0.07
1–5 years old (v. 10–15 years old) 1.81 1.24 0.99 0.99 0.64
6–9 years old (v. 10–15 years old) 0.45 0.67 0.97 0.97 0.17
High SES 0.62 0.63 1.05 1.05 0.30

http://www.ccrcal.org
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both born and diagnosed in California, but as controls were 
selected from the CBR, they were not required to be residing 
in California at the time of their case’s diagnosis. Hence, the 
mobility of controls is unknown.

First, we analyzed CAPS data to extract information on 
the prevalences of our EMF exposures: living < 50 m from 
an overhead powerline of 200 kV or greater and exposure to 
calculated magnetic fields of 0.4 μT or greater. The preva-
lence of childhood leukemia, as well as, residential mobility 
among cases, was also retrieved.

We used CAPS to estimate odds ratios (ORs) between 
the variables used in previous analyses [20, 21] and distance 
to high-voltage overhead powerlines, calculated magnetic 
fields, and childhood leukemia to the extent possible with 
the available data using both cases and controls. Table 1 lists 
the ORs and prevalences of our selected characteristics to 
both exposures of interest as well as to leukemia.

Second, we simulated data for a new mobility variable 
as well as new exposure and outcome variables using the 
parameters in Table 1 based on a causal structure of mobil-
ity as a confounder in the EMF–leukemia association shown 
in the two directed acyclic graphs (DAGs). These DAGs 
were used to depict plausible scenarios based on accepted 
theory or evidence. Figure 1 is based on the population mix-
ing hypothesis while Fig. 2 is based on the delayed infection 
hypothesis. We simulated the new variables using equations 
with the defined parameter values in Table 1. All variables 
were binary. Mobility was drawn from a Bernoulli trial, B[1, 
p], where p was the probability of observing the variable as 1 

(versus the reference 0) in the study. Since mobility informa-
tion was not available for controls, we used the prevalence 
among cases for initial simulation values. In future analyses, 
mobility can be simulated using similar equations as those 
below taken from previous analyses [3]. For the exposures, 
we used indicator variables for the most highly exposed chil-
dren (living < 50 m to a 200+ kV line; exposed to ≥ 0.4 μT 
calculated fields).

In particular, the probability of living < 50 m to an over-
head powerline of 200 kV or greater used in the simulations 
was specified as:

 where PL stands for powerlines
The corresponding equation for exposure to ≥ 0.4 μT cal-

culated fields was:

1∕(1 + exp(−(log − odds
(

PLbackground = 1
)

+ log
(

ORage <1−PL

)

× age < 1

+ log
(

ORage 1−5−PL

)

× age 1 − 5

+ log
(

ORage 6−9−PL

)

× age 6 − 9

+ log
(

ORmale−PL

)

×male + log
(

ORhigh SES−PL

)

× high SES + log
(

ORHispanic−PL

)

× Hispanic

+ log
(

ORother race−PL

)

× other race

+ log
(

ORasian race−PL

)

× asian race

+ log
(

ORblack race−PL

)

× black race

+ log
(

ORmoved−PL

)

×moved

EMF exposures Leukemia

Z

Mobility

(+) (+)

Fig. 1   DAG of a main causal structure under the population mixing 
hypothesis where mobility is positively associated with both EMF 
exposure and childhood leukemia and Z is the set of other associated 
measured factors. Z includes age, sex, SES, maternal age, parity, race/
ethnicity, and dwelling type. DAG directed acyclic graph, SES socio-
economic status

EMF exposures Leukemia

Z

Mobility

(+) (-)

Fig. 2   DAG of a main causal structure under the delayed infection 
hypothesis where mobility is positively associated with EMF expo-
sure and a protective factor for childhood leukemia and Z is the set of 
other associated measured factors. Z includes age, sex, SES, maternal 
age, parity, race/ethnicity, and dwelling type. DAG directed acyclic 
graph, SES socioeconomic status
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where CF stands for calculated fields.
Similarly, the probability of leukemia given these expo-

sures and the other variables was specified as:

where EMF would be either distance or calculated fields.
The ORs for the covariates in the equations above are 

the same as Table 1, save for mobility, which is discussed 
below. The background prevalences of the exposure and 
outcome variables were based on their proportions in 
CAPS. To determine if confounding by mobility or other 
variables could affect previous findings of EMF–leukemia 
associations, we set the true effect of those associations 
as null.

We copied our dataset 1,000 times and simulated as many 
Monte Carlo samples of our new variables. We repeated 
this for different values for the association of mobility with 
leukemia (ORmoved-Leuks) as well as mobility with the EMF 
exposures (ORmoved-PL/CFs). For the population mixing 
hypothesis (Fig. 1), we ran models where the association 
between mobility and outcome were assumed to be 1.3, 2.0, 
or 3.0 in accordance with moderate previous findings [10]. 
In the case of the delayed infection hypothesis (Fig. 2), we 
assumed the mobility-leukemia association to be negative 
and varied it at 0.3, 0.6 and 0.9 also based on the previous 
literature [22]. The mobility–EMF associations were the 
same under both hypotheses: they were assumed to be posi-
tive but small. We assessed scenarios of the EMF–mobility 

1∕(1 + exp(−(log − odds
(

CFbackground = 1
)

+ log
(

ORage <1−CF

)

× age < 1 + log
(

ORage 1−5−CF

)

× age 1 − 5 + log
(
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(
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(
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association at 1.3, 2.0 and 3.0 to simulate a small, moderate, 
or large effect of mobility, respectively. Each of the gen-
erated samples were run through a “fully-adjusted-minus-
mobility” model that included all other variables except 
mobility. In this model, any difference from null in the coef-
ficient of the exposure would be due to mobility. The result-
ing 1,000 ORs from each model of the 1,000 replicates of 
the hybrid simulated datasets were summarized using the 
median as the point estimate and the 2.5th and 97.5th per-
centiles as the lower and upper limits of the 95% simulation 
interval in each scenario.

Finally, to address the second main aim of this study, we 
used methods and formulas described by Arah et al. [23, 
24] to obtain the estimated bias generated by uncontrolled 
mobility in our simulated dataset and used it as a fixed off-
set in the empirically estimated associations between EMF 
exposures and childhood leukemia based on the real CAPS 
dataset. The formula used to derive the offset was given by:

Offset = log(OREMF_Leuk)*Exposure where OREMF_Leuk is 
the observed biased OR for the association between EMF 
and leukemia when all other variables, except for mobility, 
are accounted for in the simulated datasets wherein EMF had 
no effect on leukemia. The observed OREMF_Leuk from the 
simulated datasets could, thus, only be due to uncontrolled 
confounding by mobility and is a bias factor on the OR scale. 
Offsetting this bias factor from the empirically estimated 
EMF–leukemia OR is equivalent to dividing this biased 
empirical EMF–leukemia OR by the bias factor to obtain a 
mobility-adjusted EMF–leukemia OR [23, 24].

The main empirical analysis adjusted the variables sex, 
age, SES and race/ethnicity using a complete-case analysis. 
Sensitivity analyses involved using multiple imputations on 
observations with missing values for the variables SES and 
race/ethnicity (ten imputations per missing value). We also 
included other predictors of mobility documented previ-
ously [3]: maternal age at birth, parity, and dwelling type in 
complete-case scenarios.

All analyses were conducted using SAS software version 
9.3. Copyright © 2017 SAS Institute Inc.

Results

The complete-case analysis included 9,244 subjects of which 
4,659 were cases and 4,585 were controls. 61% of cases had 
moved between time of birth and diagnosis. The simulated 
impact of uncontrolled confounding by mobility on the asso-
ciations between EMF exposures and childhood leukemia 
under the population mixing hypothesis is presented at the 
top of Table 2. For the analyses involving distance, remov-
ing mobility from the model increased the ORs up to 1.31. 
However, even with mobility associated with both exposure 
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and outcome with an OR of 3.0, there was not enough bias 
introduced to explain a previously observed association of 
1.41 [21]. Naturally, as the effect of mobility increased, so 
did the amount of bias generated by leaving it out of the 
model. A similar trend was seen for calculated fields, where 
again, previously observed associations (such as OR of 1.50) 
were not reached [20].

The bottom of Table 2 shows the results of the simula-
tions under the delayed infection hypothesis. It shows similar 
trends to the population mixing hypothesis but in the oppo-
site direction. Scenario 3 with a mobility-exposure OR of 
3.0 and mobility–leukemia exposure of 0.3 showed similar 
levels of bias to the maxed-out scenarios under the popula-
tion mixing hypothesis. Several scenarios with mobility–leu-
kemia at an OR of 0.9 showed almost no bias remaining in 
the model, even when mobility was omitted, but this could 
be due to the fact that the chosen association was so weak.

The results of using offsets in CAPS to account for the 
potential bias of mobility is also presented in Table 2. For 
the population mixing hypothesis, as expected, the greater 
the potential bias introduced by mobility, the closer to null 
the association became when accounting for it, for both dis-
tance and calculated fields. However, even in our scenario 
with the greatest bias introduced, the effect of large calcu-
lated fields on the incidence of childhood leukemia is not 
erased completely, even if the effect is imprecise. In the case 
of the delayed infection hypothesis, accounting for the bias 
pulled the ORs away from the null.

Using multiple imputation on the same variables did not 
change the results (results not shown). When maternal age 
at birth and parity were included in the model, the results 
were almost identical (Table S1), suggesting that although 
these variables are predictive of mobility, they do not appear 
to alter the EMF–leukemia relationship.

The associations were stronger for a site-visited sub-
set: 1.73 (0.82–3.66) for distance and 1.99 (0.84–4.72) 
for magnetic fields. When site-visited dwelling classifica-
tion was included, all the estimates increased in magnitude 
(Table S2), with the bias-adjusted distance ORs ranging 
from 1.28 to 1.62 for the population mixing hypothesis 
and from 1.66 to 2.25 under the delayed infection hypoth-
esis. However, the sample size was greatly reduced for 
these analyses. In all cases, both exposures still showed 
associations with increased risk of childhood leukemia, 
even after accounting for the potential bias introduced by 
unmeasured mobility.

Discussion

In this paper, we created a synthetic case–control study 
based on information from CAPS on EMF exposures and 
childhood leukemia as well as related characteristics and 

used the computed bias from the simulation experiments to 
adjust the real CAPS dataset for uncontrolled confounding 
by residential mobility. We simulated different scenarios 
using the synthesized variables and examined whether the 
reported associations between EMF exposures and child-
hood leukemia could be affected by unmeasured residen-
tial mobility, which could represent either infectious etiol-
ogy of childhood leukemia or other ways mobility could 
affect such a relationship.

In our study, although mobility appeared to be an impor-
tant factor to adjust for, we find associations close to those 
previously found in CAPS: 1.41 for the association between 
living < 50 m from a high-voltage-powerline and 1.50 for 
the association between exposure to ≥ 0.4 μT of calculated 
magnetic fields, except for strong postulated associations 
between mobility and both exposure and outcome. For 
mobility were to be truly responsible for the observed asso-
ciations, the relationship between mobility and both EMF 
exposures and childhood leukemia would have to be strong 
(ORs > 3.0 in both cases). However, as previously assessed 
among the cases in CAPS, mobility did not appear to be 
associated greatly with EMF exposures [3]. Stronger trends 
were seen under both hypotheses. Of note were scenarios in 
the delayed infection hypothesis where mobility-leukemia 
had an OR of 0.9. In the distance analyses, omitting mobil-
ity from the fully adjusted model still showed a null effect. 
For calculated fields, we saw an OR of 1.02 as well as 1.01. 
This does not lend support to the delayed infection hypoth-
esis, at least in CAPS.

The most interesting finding was using the bias offsets in 
CAPS. It appeared as though mobility might play a role in 
the observed association between both EMF exposures and 
childhood leukemia. The ‘unadjusted’ ORs, however, were 
also lower than previously observed in CAPS analyses [20, 
21]. Even with our “strongest mobility” scenario, neither 
bias-adjusted association of EMF exposure with leukemia 
appeared to be null, although the confidence intervals were 
relatively wider than before bias-adjustment. This further 
suggests that mobility alone might not completely explain 
away previously observed associations, unless the true asso-
ciations are extreme. This also does not rule out other risk 
factors that could explain them away. Information on infec-
tions, for example, was not available in this study to assess 
the infectious etiology theories more rigorously.

The additional models with maternal age and parity 
included did not appear to change the results at all, sug-
gesting that while they may be related to mobility, they 
are not substantially related to EMF exposures to have 
an effect on their relationship. Dwelling type, however, 
increased all ORs in magnitude, including the estimated 
bias introduced by mobility in the simulated datasets. This 
suggests that dwelling type is a major cofactor of mobility. 
Unfortunately, the subset for this analysis included only 
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240 subjects which also led to wide confidence intervals. 
Further analysis of dwelling type with additional identifi-
cation of this information for subjects in CAPS is planned.

Strengths of this study include the use of CAPS, which 
itself has a relatively large sample size to increase power, 
and used population registries to obtain data, eliminating 
potential for participation bias due to self-selection. Expo-
sure assessment was also conducted blindly with respect to 
case–control status, reducing the risk for information bias 
due to recorder bias.

Potential limitations of this study involve residential 
mobility itself. In CAPS, it was defined by the distance 
between a case’s birth address and diagnosis address of 
more than 50 m, but this could be misclassified. Addi-
tionally, we used the prevalence of mobility only among 
cases because it was unavailable among controls which 
may not accurately reflect the source population distribu-
tion of residential mobility. In addition, previous studies 
have shown a discrepancy in mobility among cases and 
controls [25–27]. Finally, as only initial and final address 
information was available, it is possible for a case to have 
moved, then returned to their birth home before being 
diagnosed, but we expect this to be rare.

Conclusion

Uncontrolled confounding by residential mobility appears 
to have impact on the estimated effects of EMF expo-
sures, namely proximity to high-voltage powerlines and 
increased magnetic field exposure, on childhood leukemia. 
However, it is unlikely to be the primary driving force 
behind previously observed largely consistent, but unex-
plained associations.
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