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ABSTRACT OF THE THESIS 

 

Modeling the potential distribution of endangered, endemic Hibiscus brackenridgei on Oahu to 

assess the impacts of climate change and prioritize conservation 

 

by 

 

Corey Marie Rovzar 

 

Master of Arts in Geography 

University of California, Los Angeles, 2012 

Professor Thomas W. Gillespie, Chair 

 

In the Hawaiian dry forest, 45% of all tropical dry forest trees and shrubs are on the federal 

threatened and endangered species list.  Research is needed to focus on understanding the current 

range of these endangered species, the factors that affect their current and future distributions, 

and ultimately, possible areas for the most successful restoration to be undertaken.  This research 

uses species distribution modeling to predict the potential range of Hibiscus brackenridgei, the 

state flower of Hawaii and a federally endangered species found on Oahu.  We used presence 

data and the modeling algorithm Maxent to model the current potential distribution of H. 

brackenridgei, identify climate and environmental variables that influence the species’ 

distribution, and model the species’ predicted future distribution based on a range of projected 

climate change scenarios.  Statistical analysis suggests that the Maxent models accurately predict 
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the species' distribution, and therefore, may be useful for conservation management.  Comparing 

the current model with the future models of changes for 2060-2089, changes in the potential 

niche of H. brackenridgei only range from -4% to 14%.  This suggests that the predicted changes 

in climate, under both low (B2a) and high (A2a) global emissions scenarios, may not 

significantly impact the future distribution of H. brackenridgei on Oahu.  We identified a total of 

115 km
2 

of very highly (≥0.70) and highly (≥ 0.50) suitable habitat which represents potential 

areas where restoration projects could be implemented.  This research suggests that threats like 

habitat loss, fire, invasive species, and grazing may be more important than climate for the future 

conservation of Hawaiian dry forest species. 
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INTRODUCTION 

Tropical dry forests in Hawaii are among the most endangered forest types in the world with 

45% of endemic trees and shrubs on the federal threatened and endangered species list (Pau et al. 

2009).  While Hawaiian dry forest ecosystems  previously contained high species richness and 

endemism compared with other habitats in Hawaii (Rock 1913), over 90% of the dry forest area 

has now been destroyed resulting in widespread species loss (Bruegmann 1996; Cabin et al. 

2000; Sakai et al. 2002).  However, despite their conservation importance, there is little 

information on the current distribution of Hawaiian dry forest species or information on potential 

sites for endangered species restoration (Pau et al. 2009).  

 Hibiscus brackenridgei, the state flower of Hawaii, is a federally endangered species 

found in the Hawaiian dry forest (Wagner et al. 1990).  The species is native to lowland 

dry/mesic forests and shrublands and occurs on slopes, cliffs, and arid ledges between elevations 

of 24-490 meters (Mansker 2002).  On Oahu, the species is scattered throughout the Wai’anae 

Mountains from Puu Pane to Kealia-Kawaihapai and the Dillingham Military Reservation (U.S. 

Fish and Wildlife 1999; Oahu Army Natural Resources Program  2010).  According to the US 

Fish and Wildlife Service, only five populations are known to remain on Oahu (Mansker 2002; 

Oahu Army Natural Resources Program 2010).  Primary threats to the species include grazing by 

feral ungulates, invasive plants, fire, and land degradation (Cabin et al. 2000).  There has been 

minimal research regarding the plant’s life history especially regarding pollination, biology, 

longevity, environmental requirements, and limiting conditions (Mansker 2002).  Furthermore, it 

is unclear how climate change will impact the species range. 

 Species distribution modeling is one method for evaluating the potential niche of a 

species and has been increasingly used to address problems across a variety of fields including 
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biogeography, ecology, conservation biology, and climate change science (Guisan & Thuiller 

2005; Gillespie et al. 2008; Franklin 2009; Richardson & Whittaker 2010; Feeley & Silman 

2011).  Species distribution models relate a species’ geographic/spatial distribution to 

environmental predictor variables, such as climate, and can be used to map both current and 

future species’ distributions (Graham et al. 2004; Guisan & Thuiller 2005).   

Species distribution model algorithms require occurrence information of the target 

species in one of two forms: presence/absence data (typically from field surveys) or presence 

only data which can be from field surveys and/or  museum or voucher specimens.  By evaluating 

this data, a probability of species occurrence can be modeled for areas with an absence of 

location data (Zaniewski et al. 2002).  Analyzing the current extent of a species range and 

generating a predictive model for its distribution allows for a better understanding of its current 

endangerment and offers insight into areas which may be most suitable for regenerating 

populations.  Species distribution modeling has been shown to be a powerful tool in improving 

research in conservation and restoration (Araújo & Williams 2000; Elith et al. 2006) and is 

especially useful in tropical regions with deficient geographic locality data resulting from small 

sample sizes or imprecise locations of specimens (Graham et al. 2004).  Evaluating factors which 

influence the distribution of endangered populations enables conservation programs to improve 

their overall success (Corsi et al. 1999). 

Previous findings suggest that geographic distribution is a principle factor for evaluating 

patterns of endangerment for individual species on the Hawaiian Islands (Sakai et al. 2002).  

Although there has been ongoing restoration of endangered dry forest tree species in Hawaii, 

none have used species distribution modeling to evaluate potential restoration sites.  

This research had three primary objectives.  First, we modeled the potential distribution 
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of H. brackenridgei on Oahu under current conditions and identify the climate and 

environmental variables with the greatest effect on its distribution.  Second, we model future 

(2060-2089) distributions of H. brackenridgei under two climate model scenarios to assess the 

threat of climate change on the species.  Third, we identified priority areas for conservation 

based upon current and future predictions of habitat suitability. 

METHODS 

Study Site 

This research was undertaken on the island of Oahu, Hawaii, which is approximately 3.7 million 

years old and covers an area of 1,546 km
2
 (Fig. 1; Fleischer et al. 1998).  Its two major mountain 

ranges, the Wai’anae’s in the west and Ko’olau’s in the east, are extinct shield volcanoes that 

roughly parallel each other.  Oahu’s dominant climatic variation is rainfall, with the rainy season 

between November and March and the dry season from April to October.  Native tropical dry 

forests, scrublands, and grasslands historically occur in the low elevations and rainshadow sides 

of Oahu.   

Data Collection 

This research considered 49 geographic point locations for H. brackenridgei, the only known 

living occurrences on Oahu (Fig. 2; Oahu Army Natural Resources Program  2010).  Only 

presence data were evaluated for this study.  Although 49 geographic point locations were 

considered, some of them fell within the same grid cell (1 km
2
).  As a result, Maxent only 

included 16 occurrences in the model while the other presence data were considered to be 

duplicates. 

Environmental Variables 

We downloaded climate data from WorldClim version 1.4 (Hijmans et al. 2005).  These include 
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19 bioclimatic variables at a 1 km (30 arc second) pixel resolution which are derived from 

monthly temperature and rainfall estimates, and represent biologically meaningful variables for 

characterizing species distributions.  We used elevation data from NASA’s Shuttle Radar 

Topography Mission (SRTM) to calculate slope and aspect using ArcGIS 10 (ESRI, Redlands, 

CA, USA).  Additionally, we included soil order (9 categories) and great group (31 categories) in 

our model and converted the shapefiles from vector to raster format (Hawaii Statewide GIS 

Program 2011).  Land use data developed from Landsat ETM satellite imagery taken in 2000 

was also included in our model (National Oceanic and Atmospheric Administration Coastal 

Services Center 2012).  Before adding soil order, great group, and land use to our model, we 

resampled each variable at a 30 arc second resolution. 

Lastly, we downloaded projected future climate variables for 2060-2089 from the 

International Center for Tropical Agriculture (CIAT) which contains empirically downscaled 

climate change data (Ramirez & Jarvis 2008).  The CIAT initially downloaded this data from the 

IPCC data portal and then reformatted each climate variable from the WorldClim database with a 

spline interpolation algorithm.  This research utilized an ensemble of Global Circulation Models 

(GCMs) in order to provide a robust estimate of temperature and precipitation changes.  

Ensemble averages have been found to better represent observed climate patterns compared with 

individual models by filtering out individual model biases (Cubasch et al. 2001; Giorgi & 

Mearns 2002; Randall et al. 2007; Beaumont et al. 2008).  We created the GCM ensemble by 

averaging climate projections from CSIRO-MK2, HCCPR HADCM3, NIES99, and CCCMA-

GCM2. We used two Special Report on Emissions Scenarios (SRES) to model potentially 

different outcomes of climate change as they relate to greenhouse gas emissions.  The first, A2a, 

is a scenario that assumes high global energy requirements and therefore, higher greenhouse gas 
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emissions.  In contrast, the B2a scenario assumes lower energy requirements and thus, lower 

emissions. Both scenarios involve higher regional, versus global, economic growth (Nakicenovic 

2000).  These scenarios were chosen because they represent widely used end-members from a 

range of potential future emissions levels (Beaumont & Hughes 2002; Thuiller et al. 2005; 

Araújo et al. 2006; Svenning & Skov 2006; Tuck et al. 2006; Beaumont et al. 2008).  

Despite the widespread use of statistical downscaling methods to infer climate change 

impacts, it is important to acknowledge the shortcomings of this approach (Wiens & Bachelet 

2010).  Statistical downscaling assumes that large-scale atmospheric processes as well as 

regional forcing influence regional climate (Tabor & Williams 2010).  Additionally, statistical 

downscaling assumes stability between climate relationships at different scales and compounds 

uncertainty of the coarser GCMs due to the interpolation or extrapolation of patterns to finer 

resolutions (Gonzalez et al. 2010; Wiens & Bachelet 2010).  However, because GCM outputs are 

biologically coarse, statistical downscaling is a viable solution for appropriately scaling species 

distribution models to a level relevant for conservation planning (Seo et al. 2009).  Furthermore, 

statistically downscaled climate data with grid sizes of 1 km
2
 are globally available and are at a 

sufficient resolution for identifying suitable areas for restoration.   

Modeling Algorithm 

We used the modeling algorithm Maxent to model the distribution of H. brackenridgei.  Maxent 

is a machine-learning program that applies maximum-entropy techniques to predict the 

probability of species occurrence based on species locality data and environmental limitations 

(Phillips et al. 2006).  Compared with other modeling methods, Maxent performs best with both 

spatially biased data and limited presence data (Elith et al. 2006; Pearson et al. 2007; Loiselle et 

al. 2008; Riordan & Rundel 2009; Costa et al. 2010).  Additionally, Maxent measures the 
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contribution of each environmental variable to the predicted species distribution which allows for 

an understanding of variable importance (Ortega-Huerta & Peterson 2008; Kumar & Stohlgren 

2009).  Accurate absence data often does not exist or is difficult to obtain, resulting in the need to 

rely on presence-only records (Graham et al. 2004; Elith & Leathwick 2007; Riordan & Rundel 

2009).  Maxent only requires presence data and can be utilized across a range of sample sizes 

(Phillips et al. 2006).  Despite a lack of absence data, previous research suggests that presence-

only data is effective for species distribution modeling (Elith et al. 2006).  For this study, we 

used Maxent version 3.3.3a to generate species distribution models (Philips et al. 2006).  We 

added the 19 bioclimatic variables, slope, aspect, land use, soil, and the species' geographic point 

locations into Maxent and used default parameters to produce a model of the probability of H. 

brackenridgei occurrence on Oahu based on these environmental variables.  After generating the 

model, we performed principal component analysis (PCA) on the 19 bioclimatic variables using 

a correlation matrix to reduce dimensionality and correlations and re-ran the model using the 

appropriate variables. 

Next, we projected the model under both the A2a and B2a scenarios to generate two 

future habitat suitability maps for comparison with the contemporary model.  To assess the 

significance of any changes, we conducted paired t-tests between the current and future model 

probabilities.  

Restoration Application 

In order to provide insights for conservation, we created a habitat suitability index which assigns 

a categorical value for a range of probabilities.  Areas with a probability of occurrence ≥ 0.70 

correspond with very high suitability.  Similarly, areas between 0.50 - 0.70 probability 

correspond with high suitability, 0.30 - 0.50 with medium suitability, 0.10 - 0.30 with low 
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suitability, and 0.00 - 0.10 with not suitable.  To evaluate the practical usefulness of the predicted 

climate change impacts on the potential distribution of H. brackenridgei, we generated a robust 

model considering both current and future a2a climate changes.  Areas classified by habitat 

suitability under current conditions only changed categories if the future changes in probability 

were significant enough to either downgrade or elevate the suitability status of the area. For 

example, very highly suitable areas have probabilities between 0.70-1.00.  If a very highly 

suitable area with a probability of 0.70 under current conditions decreased by 0.10 in the future, 

then the area became highly suitable (0.50 - 0.70) under the robust model.  Similarly, an area 

could experience a significant increase in probability and therefore, elevate in habitat suitability 

status.  This approach considers the overall magnitude of change and enables potential changes 

in climate to be evaluated conservatively.  We then overlayed our model onto landownership, 

Oahu reserve, and currently managed H. brackenridgei site shapefiles to evaluate the 

effectiveness of current management in protecting suitable habitat for H. brackenridgei  (Hawaii 

Statewide GIS Program 2011; Oahu Army Natural Resources Program 2010).  Furthermore, we  

Lastly, to visualize restoration areas, we created GIS pixel boundary layers in Keyhole 

Markup Language (KML) format for the very high, high, and medium habitat suitability 

categories and overlaid them on satellite imagery using Google Earth (http://earth.google.com; 

Fig. 3).  This allowed for a high resolution analysis of areas which may be suitable for restoration 

based on present and future distribution models.   

Model Validation 

Validating a species distribution model is essential if it is to be used for conservation purposes 

(Elith et al. 2011).  To measure the predictive success of a model, available data will often times 

be divided into training and test groups.  However, this method is inappropriate for this study 

http://earth.google.com/
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owing to small sample size (Pearson et al. 2007).  Instead, we conducted 10 bootstrap iterations 

to evaluate the performance of the model in predicting the species' potential distribution.  

Bootstrapping involves sampling the data-set randomly with replacement and analyzing the 

mean and range from the bootstrap samples to validate the model (Pearson et al. 2007).  This 

study considers both threshold-dependent and threshold-independent metrics for model 

validation.  Omission rate is a threshold-dependent metric which represents the fraction of test 

localities located outside the predicted area.  For presence-only data, maintaining a low omission 

rate is essential for generating informative predictions of a species' potential distribution 

(Riordan & Rundel 2009).  Because H. brackenridgei is immobile and unlikely to be present in 

unsuitable areas, there was high confidence that the presence data are correct.  As a result, 

omission generated by any presence record was attributed to model error.  We selected a 

minimum training presence threshold which identifies pixels at least as suitable as the species' 

recorded localities and allows for determining the minimum predicted area possible (Pearson et 

al. 2007).  In addition, we evaluated the Area under the Receiver Operating Curve (AUC) which 

is a threshold-independent metric.  With presence-only data, the AUC curve represents the 

probability that a presence location is ranked higher than a background locality chosen randomly 

(Phillips et al. 2006; Phillips & Dudik 2008).  The AUC value ranges between 0 and 1.0 with a 

random prediction of 0.5 (Riordan & Rundel 2009).  Models generating AUC values greater than 

0.75 are considered potentially useful for predicting a species' distribution (Elith et al. 2011).  A 

one-tailed Wilcoxon rank sum test was used to evaluate if the model AUC was higher than the 

0.5 AUC score of the random prediction.  

RESULTS 

Model Predictions  
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Demonstrated by the AUC score (0.95), the model was successful in reliably predicting the 

distribution of H. brackenridgei on Oahu.  Compared to the random prediction (0.5), the AUC 

score was highly statistically significant (AUC=0.95, p < 0.001, one-tailed Wilcoxon rank sum 

test of AUC, stdev= 0.027).  This suggests that the model is potentially useful for predicting the 

distribution of H. brackenridgei and that the climate and topographic variables have a discernible 

effect on the species’ regional distribution. In addition, the ROC omission rate at a minimum 

training presence was zero, suggesting that no test localities fell outside of the predicted suitable 

areas.  This is attributed to the assumption that the presence data were accurate due to the 

immobility of the species and high confidence that the species would not be found in unsuitable 

habitat.  The current and future species distribution models display the highest probability of 

occurrence in north-western Oahu along the outer ridges of the Waianae mountain range (Fig. 3, 

4, 5).  

Variable Contribution 

PCA analysis of the 19 bioclimatic variables reduced the dimensionality of our data set to 

precipitation of the driest month, mean diurnal temperature range, slope, and aspect.  Together, 

these variables were associated with 32.7%, 29.3%, 27.5%, and 10.5%, respectively, of the 

variability in contemporary H. brackenridgei distribution.  Variables highly correlated with mean 

diurnal temperature range include isothermality, annual temperature range, and temperature 

seasonality.  Thus, mean diurnal temperature range represents overall temperature variability.  

Variables highly correlated with precipitation of the driest month include precipitation of the 

driest quarter, precipitation seasonality, and precipitation of the warmest quarter.  We interpreted 

these correlations as representing summer precipitation.  We ran our models using mean diurnal 

temperature range and precipitation of the driest month because they produced the best AUC 



10 

 

scores compared with their correlated variables.  We excluded the other bioclimatic variables, 

soil, and landuse because they contributed < 1% to the models.  

Impact of Climate Change 

The A2a change detection shows a maximum decrease of 4% and a maximum increase of 14% 

change in suitability while the B2a change detection suggests a maximum decrease of 3% and a 

maximum increase of 13%. Although the changes are statistically significant (p < .001), 

ultimately they are not practically useful for conservation management.  The robust model shows 

that only two areas predicted very highly suitable in the current model experienced significant 

change which downgraded them to highly suitable (Fig 6.).  Similarly, only one area predicted 

highly suitable under current conditions downgraded to medium suitability.  This suggests that 

although climate variables are important for the distribution of H. brackenridgei, climate change, 

at least for the time period and emissions scenarios studied here, may not significantly affect the 

species’ range. 

Visualizing Restoration 

Comparing areas predicted highly and very highly suitable with land variables relevant to 

conservation shows that the model may benefit conservation management efforts for H. 

brackenridgei (Table 1).  Considering all highly and very highly suitable areas, 49% falls within 

public land while 26% is private land. Furthermore, only 24% of these areas is found within 

current protected and managed areas for H. brackenridgei.  The land use for these areas is 

dominated by scrub/shrub (80%), followed by evergreen forest (8.7%), grassland (7.8%), 

cultivated land (1.7%), developed (0.9%), and bare land (0.9%).  Thus, the highly and very 

highly suitable areas may be practical sites for restoration due to the high percentage of favorable 

land cover.  
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DISCUSSION  

This research shows that it is possible to model the potential distribution of species with low 

numbers of occurrences over small areas.  Most Pacific islands are geographically isolated and 

small, resulting in high numbers of endangered species and high extinction rates (Gillespie et al. 

2008).  As a result, conservation on these islands is a priority, and new methods are needed to 

improve its efficiency.  While previous studies identify both climate change and land use change 

as primary threats to reserve effectiveness (Araújo et al. 2004; Thomas et al. 2004; Whittaker et 

al. 2005; Rodgriguez et al. 2007), our findings suggest only modest impacts of climate change by 

the late 21
st
 century.  Our study supports the growing notion that species distribution modeling is 

a cost-effective tool which allows for the analysis of the potential impacts climate change may 

have on a species range as well as the ability of the current reserve to protect future suitable 

habitat (Rodríguez et al. 2007).  This research provides a framework for modeling climate 

change impacts on the distribution of endangered species on small, remote Pacific islands.  

Evaluating changes in species range which may result from climate change allows for reserves to 

make changes necessary to ultimately protect endangered species from extinction.  

Currently protected and managed areas for H. brackenridgei account for only 24% of 

combined highly and very highly suitable habitat.  Thus, current management may not provide 

adequate protection for habitat most suitable for the species both in the present and future.  Our 

model suggests that restoration of H. brackenridgei should be prioritized in the north-western 

Waianae mountains of Oahu in order to allow for the most efficient and successful conservation 

of the species.  This area contains little development and is dominated by scrub, evergreen 

forests, and grasslands, and thus, suitable for restoration. Furthermore, a number of protected 

areas occur in this region including Kaena Park, the Honouliuli Forest Reserve and the Makua 
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Military Reserve, which will help protect the restored populations from anthropogenic 

disturbance.  Although restoration within designated conservation sites would provide protection 

for the planted individuals, it is important to consider other suitable sites due to the carrying 

capacity within each reserve.  

In order to use species distribution models to inform conservation, it is beneficial to have 

a visualization tool which facilitates interaction between scientists and project managers.  Google 

Earth is a free visualization tool which not only facilitates data analysis and communication of 

results, but also enables scientists to engage their target audience (Guralnick et al. 2007).  For 

endangered species distribution modeling, Google Earth bridges the gap between researchers and 

project managers by improving communication.  Through collaboration, scientists may provide 

valuable information regarding potential restoration sites while project managers contribute their 

insights for the best conservation methods.  Ultimately, Google Earth is a transformative tool 

which will facilitate the application of species distribution models in conservation management 

plans. For restoration of H. brackenridgei, Google Earth allows for a greater understanding of 

the underlying vegetation and topography and their suitability for the species (Fig. 7). 

Our research suggests that climate change may not significantly impact the range of H. 

brackenridgei.  As a result, other factors may pose a greater threat to the conservation of the 

species, such as fire and competition with invasive species.  For example, in 2007, the Waialua 

fire caused much of the Wai’anae mountain habitat to burn, resulting in the destruction of mature 

plants while increasing the number of seedlings and immature plants.  After the fire, non-native 

grasses dominated the habitat and outcompeted H. brackenridgei seedlings resulting in 

difficulties for the endangered population’s regeneration (Oahu Army Natural Resources 

Program 2010).  Furthermore, invasive grasses threaten dry forest species by hindering their 
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germination, establishment, and growth, as well as increasing the frequency and intensity of fires 

(Hughes et al. 1991; D’Antonio & Vitousek 1992; Cabin et al. 2002).  More frequent and intense 

fires results in a positive feedback loop in which woody vegetation further declines causing fire-

adapted grasses to expand which perpetuates fire events (D’Antonio & Vitousek 1992; Cabin et 

al. 2002).  Climate change may indirectly impact the distribution of H. brackenridgei by favoring 

the expansion of invasive grasses.  However, more research is needed to understand how each 

invasive species in the Hawaiian dry forest will respond to future climate change.  Understanding 

of the overall impact of different threats on the species will allow for selection of restoration sites 

that will provide the species with the greatest chance of survival.  Because of the difficulty in 

accessing the individuals in unmanaged regions of the Waianae Mountains, we suggest that 

restoration be prioritized in these already managed areas predicted to be highly or very highly 

suitable.  

The high probability of species occurrence in the northwest region of Oahu is most likely 

due to the combination of mean diurnal temperature range, precipitation of the driest month, 

slope, and aspect.  Mean diurnal temperature range (calculated by subtracting the mean of the 

monthly minimum temperature from the mean of the monthly maximum) provides insight into 

temperature variation.  For most regions in the world, the diurnal temperature range has 

decreased resulting from an increase in minimum temperature relative to maximum temperature 

(Karl et al. 1993; Mitchell et al. 1995; Wu, Q. 2010).  For this model, areas with a higher 

probability of occurrence correlated with larger mean diurnal temperature ranges. This suggests 

that increasing minimum temperatures will restrict the range of H. brackenridgei while areas that 

maintain a greater difference between the maximum and minimum monthly temperatures will be 

most suitable for the species. Another variable driving the modeled distribution is precipitation of 
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the driest month. This variable represents the dry season which distinguishes dry from wet 

tropical forests and drives species richness within the dry forest (Pau et al. 2012).  The livelihood 

of H. brackenridgei depends upon the persistence of a dry season which significantly impacts the 

species’ distribution.  Lastly, H. brackenridgei populations tend to grow best on steep slopes, and 

are therefore, more likely to be found along the ridges of mountain ranges.  However, while these 

variables may be important drivers for the distribution of H. brackenridgei, our research suggests 

that future changes in these climate variables not be great enough to severely impact the species 

range. 

Although the model provides insights for the restoration of H. brackenridgei, it should 

not be used as an absolute identification of the species’ range.  Because the distribution values 

are estimated from climate and environmental variables, many other factors, such as dispersal 

and competition, are not considered, which will ultimately affect the distribution of the species 

(Pearson & Dawson 2003).  While a higher resolution analysis would reduce the number of 

suitable areas and thus, provide greater specificity, the coarse resolution provides valuable 

information regarding current management for H.brackenridgei.  Additionally, the presence data 

used may be biased by collecting site accessibility within a habitat as well as the tendency for 

collection to occur in clusters (Kadmon et al. 2004; Moerman & Estabrook 2006; Schulman et al. 

2007; Loiselle et al. 2008; Feely & Silman 2011).  Many of the locality points occur in the 

northwest corner which may introduce locational bias.  The overall effect of limited presence 

data is the tendency for species distribution models to underestimate species’ ranges and 

therefore, overestimate habitat loss and risk of extinction (Feely & Silman 2011).  It is also 

important to recognize the limitations of the modeling program.  It has been argued that to 

increase the accuracy of Maxent there must be improved regularization and greater applications 
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of the model to evaluate its success (Ortega-Huerta & Peterson 2008).   

Future work would benefit greatly from increased field survey.  Random or systematic 

sampling in the field would minimize locational bias and improve the accuracy of the model 

(Feely & Silman 2011).  Another way to improve the accuracy of the model is to include more 

variables, especially remotely sensed metrics of leaf area index (LAI) and canopy moisture and 

structure, which have been found to complement climatic variables resulting in better 

distribution models (Saatchi et al. 2008).  Modeling the distribution of the species at a higher 

resolution may allow for a greater understanding of the impacts of climate change within micro-

climates.  However, to study climate change impacts concomitant improvements in the spatial 

resolution of climate models would also be required.  Lastly, modeling the impact of threats 

other than climate change on the distribution of H. brackenridgei can provide further insight for 

management decisions. 

CONCLUSION 

Our results suggest that although climate variables are important drivers, climate change may not 

pose a significant threat to the distribution of H. brackenridgei on Oahu.  As a result, it is 

important for research to evaluate other factors which may pose a greater threat to the species.  

Furthermore, comparing areas predicted to be very highly (≥ 0.70) or highly (≥ 0.50) suitable 

with information regarding the current protection of the species suggests that there is room for 

improvement regarding management of H. brackenridgei on Oahu.  This research provides a 

template for modeling other endangered dry forest species on Oahu.  Comparing predicted 

distributions of individual species and evaluating overlapping ranges would allow for an 

understanding of the threat of climate change as well as identification of potential restoration 

sites for dry forest communities.  Furthermore, this research suggests that threats such as habitat 
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loss, grazing, fire, and invasive species may have a greater impact than climate change on the 

future preservation of dry forest species on Oahu.  Beyond Oahu, endangered dry forest species 

should be modeled for all the Hawaiian Islands in order to devise a management strategy for 

conservation of the Hawaiian dry forest ecosystem.     
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Figure 1: Vegetation zones of Oahu from Price et al. 2008. Arid, very dry, moderately dry, and 

seasonal mesic zones represent dry forest regions. 
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Figure 2: The map displays the only known natural individuals of H.brackenridgei on Oahu. 
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Figure 3: Predicted habitat suitability for H. brackenridgei modeled under current conditions. 
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Figure 4: Predicted habitat suitability for H. brackenridgei projected onto future B2a emissions 

scenario conditions. 
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Figure 5: Predicted habitat suitability for H. brackenridgei projected onto future A2a emissions 

scenario conditions. 
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Figure 6: Final robust model considering both current conditions and future A2a projections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

Classified Land Variable High/Very High Suitable  

Areas Within (km
2
) 

Percent of Total High/Very 

High Areas Within (%) 

Public Land 56  49 

Private Land 30   26 

Protected Areas 16  14 

Currently Managed Areas 12  10 

Developed Land 1  0.9 

Cultivated Land 2  1.7 

Grassland 9  7.8 

Evergreen Forest 10  8.7 

Scrub/Shrub 92  80 

Bare Land 1  0.9 

 

Table 1: High/very high suitable areas (≥ 0.5) within each classified land variable. Additionally, 

percent of the total high/very high areas (115 km
2
) found in each variable is given. 
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Figure 7: Examples of Google Earth visualization for areas classified as a) very high suitability, 

b) high suitability, and c) medium suitability 
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