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Abstract

We formulate a refined SEIR epidemic model that explicitly includes a contact class C that either thwarts

pathogen invasion and returns to the susceptible class S or progresses successively through a latent class L,

a presymptomatic/asymptomatic class A, and a symptomatic class I. Individuals in both A and I may go

directly to an immune class V, and in I to a dead class D. Upon this SCLAIV formulation we impose a set of

drivers that can be used to develop policy to manage current Covid-19 and similar type disease outbreaks.

These drivers include surveillance, social distancing (rate and efficacy), social relaxation, quarantining (linked

to contact tracing), patient treatment/isolation and vaccination processes that can either be a non-negative

constant or an s-shaped switching curve. The latter are defined in terms of onset and switching times, initial

and final values, and abruptness of switching. We built a Covid-19 NMB-DASA web app to generate both

deterministic and stochastic solutions to our SCLAIV and drivers model and use incidence and mortality

data to provide both maximum-likelihood frequentist and Bayesian fitting of parameters. In the context

of South African and English Covid-19 incidence data we demonstrate how to both identify and evaluate

the role of drivers in ongoing outbreaks. In particular, we show that early social distancing in South Africa

likely averted around 80,000 observed cases (actual number is double if only half the case are observed)

during the months of June and July. We also demonstrated that incidence rates in South Africa will increase

to between a conservative estimate of 15 and 30 thousand observed cases per day (again, actual number

considerably higher) by the end of August if stronger social distancing measures are not effected during July

and August, 2020. On different a note, we show that comparably good local optimal fits of the English

data using surveillance, social distancing and social relaxation drivers can represent very different kinds

of outbreaks—one with close to 90% and another with under 8% immune individuals. This latter result

provides a cautionary tale of why fitting SEIR-like models to incidence or prevalence data can be extremely

problematic when not anchored by other critical measures, such as levels of immunity in the population.

Our presentation illustrates how our Covid-19 web app can be used by individuals without any programming

skills to carry out forensic and scenario analyses in spatially contained populations such as small countries

or metropolitan areas.

Keywords: SIR, corona virus, SARS-Cov-2, Policy evaluation, South Africa, England
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1 Introduction

The Covid-19 pandemic, currently sweeping the globe, is causing extraordinary disruption to the
global economy and ripping apart the social fabric of society [1, 2]. Rational planning of policies
implemented to avoid overloading healthcare systems, minimize death rates, and mitigate damage
to various sectors of local and global economies requires the best available epidemiological model
to underpin needed policy scenario evaluations [3,4]. These epidemic models must reliably forecast
the impacts of different human behavioral, societal healthcare, and patient care drivers related to
key epidemic outcomes [5]. These outcomes, assessed by fitting models to regional incidence and
mortality rate time series, include forecasts on hospitalization rates [6], extent to which incidence
and mortality curves may be flattened through social distancing, quarantining, and other mitigating
measures, as well as a possible second wave of incidence and mortality as mitigating measures are
relaxed [7].

All epidemic models, whether systems or agent-based, are built around an SEIR (susceptible,
exposed, infectious, recovered/removed) disease-class transition framework [8], with modifications
to this framework appropriate to the particular disease process at hand. The basic SEIR frame-
work, however, is inadequate for addressing certain key questions relating to the current Covid-19
pandemic. In particular, SEIR models do not explicitly separate out the contact and probability-of
transmission-per-contact processes associated with disease transmission, a component key to ex-
ploring the impact of contact tracing on the epidemic. Also, SEIR models do not explicitly include
a behavioral dynamics component related to reducing contact (i.e., social distancing) as incidence
increases during the initial phase of the epidemic. In the context of Covid-19, it appears impor-
tant to include both symptomatic and asymptomatic infectious state components, because this
dichotomy has been identified as of considerable relevance to managing Covid-19 outbreaks [9].

SEIR models can, of course, be elaborated to include age-structure, which is useful when age-
related effects on disease severity and mortality are evident [10], as is the case for Covid-19 [11].
Additionally, it is often useful for policy analyses to include a healthcare worker component [12],
because special measures are needed to keep these workers active, but safe. At some point, these
additional population structures should be included in future models, though at this time we can
still learn much from homogeneous SEIR models, provided we confine our analysis to well bounded
local or regional outbreaks where, as a first cut, spatial structure can be ignored [13].

The model we present here is an explicit contact compartmental version of the standard SEIR
model that also includes, as found in several other Covid-19 models, both asymptomatic (A) and
symptomatic (I) infections stages [14], as well as divides the exposed (E) stage into contact (C) and
latent (L) disease stages. The contact compartment represent individuals that have been exposed
to the pathogen, some of who return to the susceptible stage S having thwarted the infection
through physical, physiological, and innate immunological mechanisms. Others in C succumb to
infection and go on to the latent disease stage L (i.e., stage E in SEIR models). This division of E
into C and L stages makes the contact process explicit rather than implicit, thereby allowing the
effects of contact tracing to be explicitly incorporated into the dynamic model. Also, as discussed
elsewhere [15], we make explicit that individuals sometimes lumped together in class R in SEIR
models, have either recovered with immune (i.e., naturally vaccinate) in class V or are dead in
class D. Finally, we include a set of SCLAI shadow or response compartments to hold individuals
impacted by the processes, or drivers, used to manage the outbreak, including social distancing
and subsequent social relaxation, quarantining in response to contact tracing, isolating/treating
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infectious individuals, and rolling out vaccination programs once suitable vaccines become available
(Fig. 1). In addition, our model makes explicit the role of surveillance and reduced transmission
associated with individuals in the response compartments of our SCLAIV+response model.

Figure 1: An epidemic and response flow diagram of a nuanced SEIR process that we refer to as a
SCLAIV+response process. Within the infectious pool Q are two parameters that account for reduced
transmission of asymptomatic compared with symptomatic individuals, as well as reduced transmission of
individuals in response classes Ar and Ir compared with the original A and I classes. Within the incidence
pool J, is a surveillance parameter that allows us to account for the fact that not all cases are observed. See
text for more details on these parameters. The age-structure and healthcare worker elaborations are not
developed in this paper, but are considerations for model refinement. The metapopulation extension can be
used to incorporate spatial structure as discussed elsewhere [15]. Various scenario analyses can be under-
taken, illustrations of which are considered in this paper using data from the current Covid-19 outbreaks in
South Africa and in England, UK.

2 Model Structure

2.1 Contact Explicit Dynamic Model Formulation

In presenting the details of our SCLAIV+response model in this section, we emphasize that as with
all basic SEIR models, populations are assumed to be well-mixed (i.e. any individual is equally likely
to come in contact with any other individual in the population—so no relevent spatial structure)
and are homogeneous from a behavioral and epidemiological characteristics point of view. In
addition, we assume that natural birth and death processes, which—other than a disease induced
process—cause population changes at time scales much slower than the epidemiological process
under consideration and, hence, can be ignored.

Throughout this paper, we use the roman fonts S, C, L, A, I, V and D to name the disease classes
defined below, while italic fonts S, C, L, A, I, V and D refer to the actual variables representing
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the number of individuals in these corresponding classes. We also introduce response classes SR,
CR, LR, AR, IR, and VR, with variables Sr, Cr, Lr, Ar, Ir, and Vr to respectively represent the
number of individuals in each of these classes.

Disease classes

Our SCLAIV+response+D model consists of the following 13 variables (SCAIV is 6, response is 6,
D is 1) with flow connections among classes depicted in Fig. 1.

1. S: number of susceptible individuals with pre-epidemic behavior
2. C: number of susceptible individuals who recently had contact with an infected individual
3. L: infected individuals in the latent/incubation stage (E class in SEIR models)
4. A: infectious individuals who are asymptomatic (they can next become either symptomatic

or immune)
5. I: infectious individual who are symptomatic
6. V : recovered individuals with immunity (naturally vaccinated R class in SEIR model with

no mortality)
7. Sr: number of susceptible individuals with behavioral modifications in response to ongoing

epidemic
8. Cr: number of individuals in the C class who are quarantined
9. Lr: exposed individuals who are quarantined

10. Ar: infectious asymptomatic individuals who are quarantined
11. Ir: infectious symptomatic individuals who are treated/hospitalized/isolated
12. Vr: vaccinated individuals
13. D: individuals who have died from the disease (this is an absorbing state of the model and

so, for clarity is listed last)

Embedded SCLAIV+response+D formulation

Our 13-variable SCLAIV+response+D model, apart from two flows, can be expressed in terms
of a general “donor controlled” system where all per-capita flows out of compartments are either
constant or time varying. The exceptions are the two contact processes in which individuals are
transferred from S to C and from Sr to Cr. These two flows, as we will see below, depend both on the
value of the recipient compartment and the size of the active population as a whole (all individuals
minus those that have died). Letting γij represent the flow from compartment j to compartment i
and using the numbering system of the variables listed above for our SCLAIV+response+D mode,
we have 13 × 13 = 169 potential flows, but only 28 of the off-diagonal entries are non-zero, as
indicated in the flow matrix Γ in Eq. 1 below (cf. Appendix A.1). Note that the last column of
this matrix contains all zeros because D (x13, in the notation of Appendix A.1), is an absorbing
compartment (no outflows, only inflows) and the remaining 12 diagonal elements are the negative
sum of the rest of the columns in which they appear because the system is conservative (see
Appendix A.1 for details).
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Γ =



−
∑

i=2,7,12

γi1 γ1 2 0 0 0 γ1 6 γ1 7 0 0 0 0 γ1 12 0

γ2 1 −
∑

i=1,3,8,12

γi2 0 0 0 0 0 0 0 0 0 0 0

0 γ3 2 −
∑
i=4,9

γi3 0 0 0 0 0 0 0 0 0 0

0 0 γ4 3 −
∑

i=5,6,10

γi4 0 0 0 0 0 0 0 0 0

0 0 0 γ5 4 −
∑

i=6,11,13

γi5 0 0 0 0 0 0 0 0

0 0 0 γ6 4 γ6 5 −γ1 6 0 0 0 γ6 10 γ6 11 0 0

γ7 1 0 0 0 0 0 −
∑

i=1,8,12

γi7 γ7 8 0 0 0 0 0

0 γ8 2 0 0 0 0 γ8 7 −
∑

i=7,9,12

γi8 0 0 0 0 0

0 0 γ9 3 0 0 0 0 γ9 8 −γi10 9 0 0 0 0

0 0 0 γ10 4 0 0 0 0 γ10 9 −
∑

i=6,11

γi10 0 0 0

0 0 0 0 γ11 5 0 0 0 0 γ11 10 −
∑

i=6,13

γi11 0 0

γ12 1 γ12 2 0 0 0 0 γ12 7 γ12 8 0 0 0 −γ1 12 0

0 0 0 0 γ13 5 0 0 0 0 0 γ13 11 0 0



(1)

Our basic SCLAIV process is limited to the flows among the first 6 compartments (the top
6×6 submatrix of Γ defined in Eq. 1), which are assumed constant except for γ2 1, the contact
process flow from S to C (i.e., x1 to x2 in the notation of Appendix A.1). This flow is assumed to
depend on either direct contact with infectious individuals in disease class A and I (i.e., x4 and x5

in the notation of Appendix A.1)—or, more generally, with an infectious pool Q to which infectious
individuals contribute, because some contacts are with viral-laden fomites rather than infectious
individuals per se [16] (i.e. accounting for both direct and indirect modes of transmission, as dis-
cussed eslewhere [17, 18]). In a so-called frequency-dependent, rather than mass-action-dependent
contact process, the intensity of the pool depends on the proportion of infectious individuals in
the population, rather than the total number infectious individuals [19]. Similarly, in the broader
the SCLAIV+response+D system, the flow γ8 7 from SR (x7) to CR (x8) is assumed to have this
same frequency dependence, but is scaled down by a factor that accounts for reduced contact and,
hence, transmission rates in social distancing individuals. The specifics of our formulation of the
infectious pool Q, in terms of the number of individuals in classes A, I, Ar, Ir and a total active
(living) population variable N are provided by Eq. 12 below.

Contact rates and population size

In SEIR models, the processes of pathogen transmission and infection (i.e., successful pathogen
invasion of a host once exposed to the pathogen) are concatenated and represented by a single
expression βφ

(
S(t), I(t), N(t)

)
, where β is a force of transmission parameter and φ some appropriate

functional form [20]. Specifically φ = SI
N when assumed to be frequency dependent [19]. In our

SCLAIV model, the parameter β is now separated out into the product of i) a force of contact
rate parameter κ and ii) a proportion of individuals that succumb to (as opposed to thwarting) the
infection once exposed to the pathogen (expression developed in Section 3).
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In SEIR models, N(t) = S(t) + I(t) + E(t) + R(t) provided R(t) does not include individuals
that have died from the disease. In our SCLAIV+response model, the comparable expression is

N(t) = S(t) + C(t) + L(t) +A(t) + I(t) + V (t) + Sr(t) + Cr(t) + Lr(t) +Ar(t) + Ir(t) + Vr(t) (2)

Before the infection begins, however, the size of the population at risk is often not known. Further,
short of considering a closed population on an island, almost all populations “leak”: movement in
and out occurs to some extent. Thus, when considering the size of the population at risk to Covid-
19 in, say, London, New York, or Rio de Janeiro, a precise value to the size of the population at
risk cannot be assigned. The solution to this problem is to normalize the analysis by standardizing
the population size to a nominal value, say, Nnom = 105 [5, 21] or Nnom = 107 (as we do here for
larger outbreaks), and then citing results per hundred thousand individuals (or per 10 million).

As long as the relative number of infected individuals in the population remains low the number
of new cases remains largely independent of the size of the population at risk. Thus, epidemics start
out generating new cases at similar rates in small towns and large cities, as long as the characteristic
contact rates and epidemiological parameters in these different settings are similar. It is only once
the epidemic gets going that towns run out of susceptibles much more rapidly than large cities
and the epidemics in these contrasting situations begin to look quite different. In small towns the
epidemic gets extinguished much earlier because it runs out of susceptibles, while in large cities
it can continue to grown exponentially for a longer period of time. For this reason it is better to
set Nnom = 107 when modeling Covid-19 outbreaks in large cities or medium to large countries,
provided this value is smaller than the true size of the population at risk, and the proportion of
individuals in class V (a measure of the relative size of the epidemic) is less than, say, 10%.

2.2 Flows Rates

Basic SCLAIV process

An SEIR epidemiological process model, where R actually consists of both V (immune) and D
(dead), is characterized by four parameters: the flows from S to E, E to I, I to V and a disease
induced mortality flow from I to D. A fifth parameter is needed when the SEIR process is extended
to the more general SEIRS formulation [8] (i.e., immunity is lost over time as individuals flow back
from V to S). In a SCLAIV process, the splitting of E (exposed) into C (contact) and L (latent),
and the addition of an A (asymptomatic) class now raises the number of parameters to the following
eight:

1. the contact rate parameter κ > 0 scales the per-capita flow rate of susceptibles from class
S to C in proportion to the per-capita intensity of the infectivity pool, where the reduced
contribution to the pool by asymptomatic individuals, A, compared with symptomatic indi-
viduals, I, is scaled by an infectivity reduction parameter ε ∈ [0, 1). Specifically, the per-capita
flow from S to C in the case of the SCLAIV model alone, for which the extant population is
N(t) = S(t) + C(t) + L(t) +A(t) + I(t) + V (t), is

SCLAIV alone: γ2 1 =
κ
(
I(t) + εA(t)

)
N(t)

(3)

(Note: in an SEIR model E(t) = C(t) + L(t), A(t) = 0 and V (t) ≡ R(t))
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2. the succumb period parameter πsuc ≥ 0 (i.e., pertaining to individuals who, after contact with
the pathogen, succumb to infection), whose inverse is the per-capita flow rate

γ3 2 = 1/πsuc (4)

scales the flow from C to L

3. the thwart period parameter πthw ≥ 0 whose inverse is the per-capita flow rate

γ1 2 = 1/πtwa (5)

scales the flow from C back to S (i.e., those individuals who, after contact with the pathogen,
thwart its invasion)

4. the latent period parameter πlat ≥ 0, whose inverse is the per-capita flow rate

γ4 3 = 1/πlat (6)

scales the flow from L to A

5. the asymptomatic period parameter πasy > 0, whose inverse is the per-capita flow rate

γ5 4 = 1/πasy (7)

scales the flow from A to I.

6. the infectious/recovery period parameter πrec > 0, whose inverse is the per-capita flow rate

γ6 5 = 1/πrec (8)

scales the flow from I to V. To keep things simple, we assume that the per-capita flow from
A to V is scaled also by this same parameter i.e.,

γ6 4 = 1/πrec (9)

which implies that asymptomatic individuals can either play the role of presymptomatic
individuals moving on to become symptomatic at a rate scaled by 1/πasy or can recover from
being asymptomatic at a rate scaled by 1/πrec

7. the immune period parameter πimm ≥ 0, whose inverse is the per-capita flow rate

γ1 6 = 1/πimm (10)

scales the flow from V back to S as immunity wanes over time

8. the disease induced mortality rate parameter α ≥ 0 is the per-capita flow rate from I to the
proportion of D that represents in our SCLAIV+D process those dying from the disease: that
is

γ13 5 = α (11)
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SCLAIV response process

The SCLAIV+response process can be divided along the following lines: 1.) a flow chain of
individuals from SR to IR through CR, LR and AR and then onto V and D that parallels the
SCLAIV+D process (Fig. 1); 2.) flows from basic disease classes to corresponding response classes
(e.g., S to SR, C to CR etc.—see Fig. 1) through the implementation of drivers described in the
next subsection used to develop policies for control and elimination of the outbreak. All but one
of the first set of flows are governed by the same per-capita flow rates as in the basic SCLAIV
process, the exception being the flow of individuals from SR to CR due to the reduced contact that
individuals in SR have with the infectious pool Q, compared with the contact rates of S with Q.

The notion of a “virtual infectious pool” variable Q (tantamount to a measure of the amount
of pathogen available for infecting susceptibles) allows us to represent the risk of making contact
with the pathogen both directly (individual to individual) and indirectly (individual contacting a
fomite) under the following two assumptions. First, four classes of individuals—A, AR, I, and IR—
contribute to this infectious pool. Second, asymptomatic individuals (A, AR) shed only a proportion
ε ∈ [0, 1) of pathogens that symptomatic individuals (I, IR) shed. Under these assumptions, a
measure of the size/intensity of the infectious pool is

Q(t) = ε
(
A(t) +Ar(t)

)
+ I(t) + Ir(t) (12)

The per-capita rates at which susceptible individuals encounter this pool at time t is now
assumed to be proportional to the of size of the pool Q(t) normalized by number of individuals N(t)
(Eq. 2) available for contact. We also let δcon ∈ [0, 1) represent the extent to which social distancing
behavior reduces contact with infectious pool Q. In this case, equation 3 can be generalized to
obtain the flow rates

SCLAIV+response: γ2 1(t) =
κQ(t)

N(t)
and γ8 7(t) =

δconκQ(t)

N(t)
(13)

For the sake of completeness, the assumption that remaining response compartments are the
same as in the basic SCLAIV process implies that

γ9 8 = 1/πsuc, γ7 8 = 1/πtwa, γ10 9 = 1/πlat, γ11 10 = 1/πasy, γ6 10 = 1/πrec, & γ6 11 = 1/πrec (14)

and, for simplicity, we also assume that
γ13 11 = α (15)

In reality, the mortality rates in compartments I and IR are bound to differ, but the change in
mortality rate over time is, perhaps, better dealt with as a driver that leads to a reduction in
mortality rates once the medical establishment has improved its protocols and therapeutics for
treating individuals infected with the disease. Note, under the assumption that the surveillance
and treatment/isolation drivers are activate from the start of the epidemic, during the course of
an outbreak most individuals land up in compartment IR rather than I itself. On the other hand,
individuals will not be shunted to compartments CR, LR and AR unless contact tracing along with
quarantining is implemented.
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2.3 Response Drivers

The response drivers, which are responsible for transfer individuals from the SCLAIV set of classes
to the SCLAIV-response classes (Fig. 1) can either be specified to have some constant value or may
be represented in terms of switching curves when time varying. Specifically, when represented in
terms of switching curves, we assume that the drivers are 0 until they are initiated at some point in
time, either at the start of the outbreak or sometime into the outbreak, and that they may either
represent a gearing up process, as in surveillance, social distancing and quarantining, or a gearing
down process, as the relaxation of social distancing and reductions in disease-induced mortality
rates.

The classic curve for modeling a graduated switch from a value of 0 to 1 on the infinite line
(−∞,∞) is the sigmoidal or logistic curve with two parameters: the first specifies the switch point
(i.e., the point of inflection on the curve) and the second specifies the slope of the curve at the
switching point. This function involves the exponential that, when replaced with a power function,
switches on [0,∞). This new related function can be rescaled using two additional parameters and
translated by a constant for the addition of one more parameter to have it turn on at some time
t0 and switch between initial and final values at some switching time t1/2 (Fig. 2). Specifically, in
the context of a particular driver named “x” we define a function that switches between two values
δx 0 and δx∞ on the interval the half-infinite interval [tx 0 ≥ 0,∞] by the equation

δx(t) =


0 for t ∈ [0, tx 0)

δx 0 + δx∞ Tx (t− tx 0)

1 + Tx(t− tx 0)
for t ≥ tx 0, where Tx(t) =

(
t

tx 1/2

)σx (16)

We note that for this driver, the time scaling function Tx(t) implies that the switch is half-way
complete at time t = tx 1/2 and that the abruptness of this switch (i.e. steepness at tx 1/2) is
controlled by the value σx [22]: as σx → ∞ the switch approaches a step function that switches
from δx 0 to δx∞ at t = tx 1/2. Typically σx ∈ [2, 20] is sufficient to go from a gradual switch to an
almost instantaneous switch (Fig. 2). Also, if δx 0 < δx∞ then curve switches up (on) otherwise it
switches down (off). Also, if we want to ensure that dδx

dt = 0|t=tx 0 , then we need to select σx > 1.

Figure 2: Switching curves (Eq. 16) used to represent the time-course of drivers included in our SCLAIV
response process are 0 until onset time t0 at an initial value (δ0; dropping the “x” designator in Eq. 16). They
then switch to a final value (δ∞) by passing through the “half-way” point at time t1/2 with an “abruptness”
or steepness specified by the parameter σ > 1 (strict inequality ensures that the derivative of δ(t) is zero
from the left at t0) and the switch becomes increasingly sharp to become a step-function as σ → ∞. If the
initial value is larger than final value the switch is “off” rather than “on.”

In the formulation of our model, we allow the following parameters/flow-rates to either be
constant (usually when fitting initial conditions and contact and transmission rate parameters in
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the model to the initial outbreak phase) or to be represented as drivers that can be switched up or
down as a means to managing an outbreak. When represented as switching functions, each of the
drivers below follows Eq. 16 with x replaced by a three letter acronym as indicated.

Surveillance response driver, δsur(t), determines the proportion of new cases identified in each
time period through an equation presented below in the context of our discrete time analogue
of the continuous time model that has the flow topology of equation 1.

Social distancing driver, δsod(t) ∈ [0, 1), determines the per-capita flow rate from the suscepti-
ble class S to SR: i.e., γ7 1 = δsep(t)

Social relaxation driver, δsor(t), is used to set the flow rate γ1 7 from susceptible class SR back
to S using the relationship γ1 7 = δrel(t)

Quarantine response driver, δqua(t), determines the per-capita flow rates γ8 2, γ9 3, and γ10 4

from classes C, L and A to CR, LR and AR respectively: i.e., γ8 2 = γ9 3 = γ10 4 = δqua(t)

Patient isolation/treatment driver, δiso(t) determines the per-capita flow rate of symptomatic
individuals in class I to patient care/treatment class IR: i.e., γ11 5 = δiso(t)

Vaccination rate driver, δvac(t) determines the per-capita flow rate at which individuals are
vaccinated, should on exist, during the course of the epidemic: i.e., γ8 2 = δvac(t)

Contact rate reduction driver, δcon(t) ∈ [0, 1], is needed to compute γ2 1 using Eq. 13

Lastly, one can also express the disease-induced mortality rate α as a switching function, but we
have not done so because we have not treated reductions to disease-induced mortality as a driver
in this formulation. Rather, we view this reduction as driven by a much longer term therapeutics
development process that, as yet, cannot be implemented on the time scale of the various drivers
considered above.

3 Discrete Time Implementation

3.1 Competing Rates Formulation

Continuous time formulations of SEIR processes have notational advantages over discrete time
formulations in terms of presentation and the development of theory, such the derivation of stability
results, including in metapopulation situations [23], and the identification of backward bifurcation
phenomena [24]. Discrete-time formulations, however, are more directly related to incidence and
mortality data (reported daily in the case of Covid-19), simpler to numerically simulate, and more
easily extended to stochastic settings [15, 25]. Of course, individual-based models provide the
greatest flexibility of all when it comes to dealing with stochasticity—particularly in the context of
following transmission chains [26] or dealing with all manner of heterogeneities [27] and proliferation
of diversity in the pathogen itself [28].

When outbreaks are relatively large—on the order of tens of thousands or more individuals—and
the focus is on developing policy for managing an outbreak rather than exploring questions relating
to host and pathogen heterogeneity, then a discrete time systems formulation provides the most
efficient way to undertake scenario analyses. The most consistent way to discretize a continuous
systems model represented by the flow matrix Eq. 1 is to use a competing rates approach to obtain
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the analogous equations [15]. Specifically, the equations so obtained are

xi(t+ 1) =

13∑
j=1

pij(t)xj(t) (17)

pji(t) =
γji(t)

(
1− e−

∑13
k=1, k 6=j γki(t)

)
∑13

k=1, k 6=i γki(t)
, j = 1, ..., 13 and pii(t) = 1−

13∑
j 6=i, j=1

pji(t), i = 1, ..., 13

(18)
where the matrix P (t) with elements pij(t), i, j = 1, ...n, have the structure depicted in Fig. 3.

As mentioned earlier, the force of transmission parameter β in the SEIR formulation is defined
to be the per-capita contact rate κ multiplied by the proportion/probability p3 2 of individuals
succumbing to infection having made contact with the pathogen. Using Eqs. 4, 5 and 18 to express
this proportion in terms of the periods πthw and πsuc, β can now be expressed as

β ≈
κ(1/πthw)

(
1− e−(1/πthw+1/πsuc+δqua(t))

)
1/πthw + 1/πsuc + δqua(t)

=
κ
(
1− e−(1/πthw+1/πsuc+δqua(t))

)
1 + (πthw/πsuc) + πthwδqua(t)

(19)

Note we use ≈ rather than strict equality because β and κ are rates in continuous time formulations
while the proportion succumbing to infection is computed using a competing rates approximation
that applies over one unit of time (i.e., we are mixing a continuous time process with a discrete
time event). Thus the estimate β will depend on the units of time used in the formulation (e.g.,
days for relatively fast spreading diseases versus weeks or months for slower spreading diseases).

In addition, we note that these proportions in Eq. 18 are constants whenever the values γij used
to compute them are constant. If any γij(t) are time varying, either because they are computed
from drivers or part of the transmission process (Eq. 13), then as the values change they are
approximated by constants over each time interval [t, t+ 1), but change from the start of one time
interval to the next as the solution numerical unfolds (i.e., is iterated from t = 0 to final time t = T
using the transition matrix P depicted in Fig. 3 [15]).

The conservative property of the matrix Γ, given by Eq. 1 (i.e., all column sums are zero)
implies that all columns of the transition matrix P (t) (Fig. 3) sum to 1. We can either interpret
the elements of the matrix P as proportions (deterministic formulation) or as probabilities. The
latter applies in the case of stochastic simulations (i.e., the matrix P becomes a “stochastic matrix”)
and each simulation is then one instatiation of a Markov chain process. Thus we can either use the
matrix P to generate deterministic or stochastic simulations, as described in [15].

3.2 Model Fitting

Our basic SCLAIV formulation, under simplifying assumptions that we introduced along the way,
requires values to be estimated for the following nine parameters introduced in Subsection 2.2: κ
(force of contact), ε (reduced infectiousness of asymptomatics), πsuc (succumb period), πthw (thwart
period), πlat (latent period), πasy (asymptomatic period), πrec (recovery from infection period), πimm

(immune period), and α (disease induced mortality rate). In addition, the 6 initial conditions S0,
C0, L0, A0, I0, and V0 need to be set, assuming D0 = 0.

In fitting a basic SCLAIV process to a set of initial outbreak data, it may be reasonable to
assume that all of the response drivers, apart from a background surveillance and isolation of the
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Figure 3: A depiction of the flow topology implied by the sparse structure of the stochastic matrix P , which
can be used to carry out deterministic/stochastic simulations of the SCLAIV+response+D process when
the elements pij in the matrix P are treated as proportions/probabilities of individuals transferring from
disease class j into disease class i at time t. Color-coded blocks of elements pertain to transfers under the
basic SCLAIV process (yellow) the parallel SCLAIV response process (pink), the SCLAIV response-driver
processes (green) and the mortality process (red)

sickest patients, are switched off. Surveillance needs to be operating at some initial level δsur 0

(which either implies that tsur 0 = 0—see Eq. 16 or we can treat surveillance as a constant rather
than a switching function) if any cases are to be observed. If we assume in our model that, initially,
a proportion δsur 0 ∈ [(0, 1] of new infectious cases are observed, then the number of new infectious
cases O(t) observed during time period t, expressed in terms of the proportion p5 4 of individuals
transferring from A to I, is given by

Initial observation process: O(t) = δsur 0 p5 4I(t) (20)

Once the full SCLAIV+response process is underway the observation process now includes the
proportion p11 10 of individuals transferring from AR to IR as well. In this case the observation
process, which now may depend on a surveillance driver δsur(t) that is ramping up over time, is
given under the assumption that the same surveillance level applies to class Ir (of course a different
assumption can be made)

Ongoing observation process: O(t) = δsur(t)
(
p5 4I(t) + p11 10Ir(t)

)
(21)

A number of the SCLAIV parameters can be independently estimated directly from etiological
studies of the progression of disease in individuals under observation, treatment or hospitalization.
These include the parameters πlat, πasy and, πrec (Table 5.1). The reduced infectivity ε of asymp-
tomatic cases, though somewhat more difficult to obtain directly from case studies, may also be
estimated independently from measurements at the rates at which asymptomatic individuals shed
pathogens relative to symptomatic individuals.
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The mortality rate parameter α can be estimated directly from mortality data. It appears
to vary greatly from country to country in the case of Covid-19, ranging from > 10% for some
Western European countries through 5-6% in the US to < 1% for some African and Middle Eastern
countries (Worldometer Covid-19 Country Data Table). Of course, the reliability of these numbers
depends on many factors, including surveillance levels, healthcare infrastructure, and willingness
of the country to be transparent about its ongoing epidemic.

With respect to the two parameters πthw and πsucc, their ratio rather than their absolute values
largely determines the proportion of individuals that return to S versus move onto L (cf. Eq. 18).
Thus, as a first cut, we set πthw = 1, to reduce by 1 the number of parameters that need to be
estimated in the model. Further, as borne out in our fits to real data below, the parameters κ and
πsucc are highly correlated. So, also as a first cut, it may be useful to also set πsucc = 1, in which
case Eq. 19 implies that we are essentially estimating β as a fixed proportion of our κ estimate
when the quarantine driver δqua(t) is zero. This is an insight that we only verified by fitting both
κ and πsucc to the data in the South African and English case studies discussed here. In future
studies we will begin by setting πsucc = 1 as well and then evaluate the effects of releasing this
constraint on the results we obtain.

3.3 Initial Conditions

It is uncertain how many infectious individuals are present in the population when the first case of
a disease is identified in a particular population. Identification will be based on the presentation of
symptoms, but will also depend on the the initial surveillance level δsur 0, which cannot be estimated
without considerable testing that only comes at a later stage in monitoring an outbreak. Thus the
initial value I0 will need to be estimated. Its value will depend on the initial value that we assign
to surveillance. In the absence of historic data that provides some estimate for δsur 0, we might
want to compare fits obtained for nominal assignments δsur 0 = 0.1 and δsur 0 = 0.5, noting that
the smaller the value we select for δsur 0, the concomitantly larger the estimates of I0 will be, when
using Eq. 20 to fit the model to observed incidence.

If we want to reduce the number of parameters that need to be estimated, we can roughly base
initial estimates of A0 and L0 on I0 as follows. If the average individual remains in I0 for a period
πrec and, if during this average time πrec that it takes an individual to move through the I class
the number of individuals in I has grown by an amount G to the level GI0 then we need to ensure
that on average G/πrec individuals move into the I class each unit of time during the period πrec.
If each individual remains in A for an average period πasy, then we require

A0 =

(
πasy

πrec

)
GI0 (22)

to ensure sufficient individuals move from A to meet the level of growth G. A similar argument of
how many individuals are initially needed in disease class L to produce A0 leads to the equation

L0 =

(
πlat

πrec

)
GA0 =

(
πlatπasy

π2
rec

)
G2I0 (23)

These estimates can always be checked to be reasonable, once the fit has been made and the initial
outbreak simulated. This approximation, however, may be more useful for Bayesian Monte Carlo
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Markov chain (MCMC) [29, 30] than maximum likelihood (ML) estimation since since the former
is much more computationally demanding than the latter.

The initial value C0 is more complicated because, beyond flows from C to A, it depends on
flows back and forth between compartments S and C, as well as flows from C to CR when the
quarantine driver is switched on. Thus, as with I0, we decided to include C0 as a member of the
set of parameters whose values we would estimate by fitting model simulations to the initial set of
incidence data.

When estimating parameters of an outbreak in an epidemiological näıve population, as is the
case with an emerging disease such as Covid-19 (but generally not for measles or influence), it is
reasonable to set V0 = 0. Even if this is not the case, whenever V0 is likely to be much smaller than
Nnom then setting V0 = 0 will hardly affect the estimation process.

4 Parameter Estimation and Simulation Procedures

4.1 Estimation approaches

From the discussion in the previous, and prior to the onset of any drivers other than background
surveillance and isolation/treatment rates, the set of parameters that we likely need to directly
estimated from fitting our SCLAIV model to an initial Covid-19 incidence outbreak times series of
say 30 or 40 points is

Parameters estimated by fitting model output to incidence data: {κ, πsuc, C0, I0} (24)

Once various drivers are turned on (e.g. social distancing, quarantining), or go into switching mode
(e.g. surveillance), then additional parameters will need to be fitted as discussed in the context of
our analysis of the England outbreak, as discussed below.

We used a maximum likelihood (ML) approach, as described in [15], to obtain our first best
estimate of the parameters {κ∗, π∗suc, C

∗
0 , I
∗
0}. We then used these ML estimates (∗ values) to set the

means of a priori distributions used to implement a Monte Carlo Markov chain Bayesian estimation
procedure [29,30], as described in more detail in the Supplementary information file.

Beyond our initial fit, we assumed that one or more of the drivers came into operation, either
implicitly (e.g., social distancing) or explicitly (increase in surveillance and quarantine rates) at
points in time after the start of the outbreak. The parameters defining these emerging implicit
drivers could be estimated by fitting model output to incidence data streams beyond those used
to fit the basic SCLAIV process, while the parameters associated with the implemented explicit
drivers will come from information on the application of these drivers to the population.

When estimating these drivers from incidence data beyond the initial data used to estimate the
basic SCLAIV parameters, as a first tack driver x for example could be regarded being constant
once switched on. In this case, in Eq. 16 we set δx∞ = δx 0, nominally set σx = 1 and tx 1/2 = 1000
say, and then estimate the two parameters tx 0 and δx 0. If this does not provide a good enough fit,
we can more general fit all five parameters

{
tx 0, δx 0, δx∞, tx 1/2, σx

}
that define the form depicted

in Eq. 16, or all but one of the parameters if we set σx = 2 for a gradual switch, σx = 5 for an
intermediate switch, or σx = 20 for an abrupt switc (Fig. 2).
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4.2 Forecasting and Scenario Analyses

One can usefully identify three time periods of interest associated with parameter estimation,
forecasting and policy scenario analyses for the population of interest: [0, test], [test, tdata], and
[tdata, tforecast], where test ≤ tdata is the interval over with the parameter estimation procedure is
conducted, tdata is the length of the data time series and tforecast ≥ tdata is the end of the forecast
interval.

Credibility interval projection and counter factual scenario analyses can be undertaken by gen-
erating an ensemble of stochastic runs on the interval [test, tdata] and either using randomly selected
subsets of the parameter vectors

(
κ, πsuc, C0, I0

)
that were accepted by an MCMC procedure (credi-

bility interval projections) or using such subsets with the addition of selecting counterfactual driver
parameter values to address “what if” questions such as, “what if social distancing had been im-
plemented on a specified date?”

Forecasting studies can be undertaken by generating ensembles of stochastic runs on the interval
[tdata, tforecast], using randomly selected subsets of parameter pairs

(
κ, πsuc

)
that were accepted by

an MCMC procedure. We note that in these forecasts the ML or MCMC estimated parameters
(C0, I0) are no longer relevant since the initial conditions for these stochastic simulations are the
estimated state of system—e.g. from an ML optimization—at time tdata. In addition, policy
scenario forecasts can also be made by setting driver parameters to values reflecting the policy
scenarios under consideration such as “What if surveillance or quarantine rates are increased?” or
“What will be the effects of rolling out vaccination strategies at different specified rates?”

We undertook our ML optimizations and forecasting simulations using a Numerus Model Builder
Data Analysis and Simulation (Covid-19 NMB-DASA) web app built for the purpose of carrying
out disease outbreak studies using the SCLAIV+response model framework. A description of this
web app and a discussion of it use can be found in our SOI.

5 Covid-19 Case Study

The South African and English Covid-19 studies presented here are of limited scope. Studies that
dig deeper than illustrated here require teams of individuals that include data professionals who
are familiar with any idiosyncrasies in the data. Comprehensive forensic analyses of outbreak
data require deeper insights into the data than can be obtained when downloading incidence and
mortality time series from the web. Thus the brief studies presented below are meant to be purely
illustrative rather than comprehensive.

5.1 Parameters for Generic Covid-19

In Table 5.1 the parameter values are listed for modeling the initial phase of non-specific Covid-19
outbreaks. Values specific to particular regions come from fitting an epidemic model to the initial
incidence and mortality outbreak data. Response driver parameter values will, of course, be region
specific and depend on policies implemented to help control local outbreaks.

5.2 Covid-19 in South Africa

The first case of Covid-19 was recorded in South Africa on March 5 and a week later only 1 of the 17
recorded cases appeared to involve a local transmission event (VOA News, March 12, 2020): most
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Table 1: Parameters for fitting and simulating a basic Covid-19 SCLAIV outbreak on [0, test])

Parameter Symbol Value Source/Comment

Transmission
Contact rate κ§ estimated incidence data∗

Nominal pop size N0 = Nnom 105 − 107 varies¶

Asymptomatic reduction ε 0.1 unknown: see [31]

Surveillance δsur 0.5 unknown∗∗

Isolation/treatment δiso 0.35 varies∗†

Contact rate reduction δcon 0.1 varies∗‡

Progression
Thwart period πthw 1 normalized

Succumb period πsuc
§ estimated incidence data∗

Latent Period πlat 4† days [5, 31,32]

Asymptomatic period πasy 5† days [5, 31,32]

Symptomatic/recovery period πrec 7‡ days [31]

Immune period πimm 1000 days unknown‖

Disease-induced mort. α estimated mortality data

Initial Values
Init. Susceptible S0 S0 = Nnom − C0 − L0 −A0 − I0 − V0

Initial Contact C0 estimated incidence data∗

Initial Latent L0

(
πasy
πrec

)
GI0 requires G+

Initial Asymptomatic A0

(
πlatπasy
π2
rec

)
G2I0 requires G+

Initial Symptomatic I0 estimated incidence data∗

Initial Immune V0 = 0 SARS-Cov-2 immunologically näıve pop.

§See Eq. 19 for relationship to SEIR model parameter β
∗Best values estimated using likelihood optimization, ranges estimated using Bayesian MCMC methods [29,30,33]
¶Depends on relative outbreak size (e.g., < 10% of total pop.) for reliable forecasts
∗†Varies. This default value implies individuals will be isolated within three days of entering the symptomatic class
∗‡Varies. This rate assumes that sheltering-in-place reduces contact rates by 90%
∗∗Values fitted to the initial conditions will inversely scale with this value
†Sources are highly variable, so we selected integer-valued ball park estimates
‡Value early into epidemic since it depends on hospitalization/isolation protocols
‖If sufficiently large, its the influence on the initial stage of the outbreak is negligible
+Requires G which, unlike R0, is a rate of increase over the recovery rather than the “serial” interval [7, 34]

new cases during the first three weeks of March 2019 were associated with individuals returning
from trips to Europe and the local outbreak only started to pick up the last week of March. This
local importation effect is event in the new cases plotted in Fig 4A (see region around the last
week of March). Thus we decided to only start fitting the new case data from March 28 onwards.
We also fitted our model to a 7-day lagged moving average (Fig 4A), rather than the raw data
itself. The reason for this is the strong seven-day oscillation evident in new case reported around

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 18, 2020. .https://doi.org/10.1101/2020.07.16.20155812doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20155812


Preprint: Getz et al., Covid-19 Epidemic and Response Model, July 17, 2020 17

Figure 4: A. The incidence (blue) data time series and a 7-day lagged moving average (brown) plotted for
new cases of Covid-19 in South Africa from March 5 to June 28 (raw data to July 4), 2020. B. Maximum-
likelihood (ML) plots for fitting the 4 basic SCLAIV model parameters listed in Eq. 24 to the data from
March 28 to April 27 (30 points) and extrapolated out to June 28 (Run 1: blue) and to the data from March
28 to June 28 (Run2: light red) with other parameters as listed in Tables 5.1 and 5.2. Runs 3 (brown) and
4 (green) fix the 4 basic SCLAIV parameters to the values estimated in Run 1, but Run 3 allows for an
ML estimation of the five social distancing parameters (Table 5.2) and Run 4 for ML estimation of three
of five social distancing and three of five social relaxation parameters (see Table 5.2 for details). C. Mean
plus/minus 2 standard deviation projections of incidence starting at the estimated June 28 state and ending
on August 29, using parameters κ, πsuc, I0 and C0 selected from a posterior distribution obtained from a
Monte Carlo Markov chain (MCMC) fit to the 7-day lagged moving average incidence data. Data source:
Statista South African Covid-19 Study.

the world [35], as well as the fact that newly identified cases are likely associated with individuals
actually transferring to the I class some days prior to this identification event.

We first used maximum likelihood optimization [15] to fit our model to the first 30 points in
our 7-day lagged moving average incidence data (Run 1, Fig 4B) and then compared this to fitting
all 92 points of these data (Run 2, Fig 4B). Two additional runs at fitting these 92 incidence data
points yielded fits that in one case (Run 3, Fig 4B) was almost as good as the first (Run 2) and
another marginally better (Run 4, Fig 4B; error differences between fits varied by 1 or fewer parts
per ten million—see Table 5.2).

Although maximum likelihood (ML) fits to the March 28-June 28 incidence data (92 points)
look incredibly good (Run 2, Fig 4B), an ML fit to the first 30 points (March 28-April 27; Run 1,
Fig 4B) showed significant divergence from the data around May 10 (Fig 4A; blue curve). This 30
point fit, however, can be brought back in line with the data from May 10 to mid-June (Fig 4A; blue
curve), by switching on social distancing after day 30 at an essentially constant rate δsod = 0.005
(with contact rate reduction is δcon = 0.1; Run 3, Fig 4B). During the last week of June, however,
this new curve under-fits the data, possibly because the social distancing driver begins to be relaxed
as individuals start to return to more normal behavior. We note that the projected impact of social
distancing at the rate δsod = 0.005 over the period April 27 to June 28 (differences between Runs
1 and 4 in Fig 4B) is an estimated around 82 thousand surveilled cases averted (or an estimated
162 thousand actual cases when surveillance is at 50%, i.e., δsur = 0.5).

A Bayesian MCMC estimation procedure [30] was used to obtain a maximum-likelihood pos-
terior distribution of the quadruple (κ, πsuc, I0, C0) associated with fitting the model to the first
92 data points. A projection of the incidence beyond this point (i.e., June 28) until August 29
was made, as described in Section 4.2. These values were then used in 100 stochastic runs of the
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Table 2: Specific values set and maximum-likelihood values obtained in fitting the South African
Covid-19 incidence data (7-day lagged moving average) for March 28-June 30 (Fig. 4B). See Ta-
ble 5.1 for general Covid-19 epidemic parameter values.

Fit number 1 2 3 4

SOUTH AFRICA
(See Fig. 4B)

First 30
Symbol point fit Fits to all 92 points

MLE 4-parameter fit (Eq. 24)

Contact rate κ 1.03 0.895 1.03‡ 1.03‡

Succumb period πsuc 9.95 1.11 9.95‡ 9.95‡

Init. Contact C0 126 8245 126‡ 126‡

Init. Infectious I0 400 522 400‡ 9.95‡

|Log-likelihood| value 29364· · · NA · · · 6319 · · · 9677 · · · 6616

Transmission calc. Eq. 19 β 0.62 0.40 0.62 0.62

Preset Parameters (Table 5.1)

Surveillance δsur All 0.5‡

Isolation/treatment δiso All 0.35‡

Disease-induced mortality α All 0.005‡

Effective pop size Nnom All 107‡

Growth rate factor G All 2.5‡

MLE fitted drivers (Eq. 16)

Social distancing tsod 0 −† − 27.6 12.4

δsod 0 0‡ 0‡ 0§ 0‡

tsod 1/2 − − 102.4 33.24

δsod∞ − − 4.97 0.015

σsod − − 4.48 5‡

Social relaxation tsoc 0 − − − 72.5

δsoc 0 0‡ 0‡ 0‡ 0.025

tsoc 1/2 − − − 300‡

δsoc∞ − − − 0.1§

σsoc − − − 5‡

State on June 28
Fully susceptible S 86.6% 91.7% 21.7% 67.3%

Fully-active infected L+A+ I 4.7% 2.7% 1.6% 2.3%

Confined susceptible Sr 0% 0% 70.6% 24.4%

Confined infected Lr +Ar + Ir 0.9% 0.8% 0.8% 0.5%

Recovered with Immunity V 6.1% 4.2% 4.9% 4.5%

+Rounded to 3 or 4 significant digits (parameter sensitivity implies fit will be slightly different to Fig. 4B when

number of significant digits is reduced)
†The symbol − implies not relevant; ‡Preset constants not fitted; §Optimization constraint in play

model to produce the credibility bounds provided by the mean ± 2 standard deviations graphed
in Fig. 4C. We note that the slight dip in the mean projections at the start of the forecast are due
to the fact that the range of parameter pairs (κ, πsuc) obtained from our MCMC analyse varied
across an order of magnitude, though the correlation between the values of these two parameters
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was exceptionally high (.0.99; see Supplementary online file).
These MCMC projections suggest that incidence rates in South Africa will increase to between

15 and 30 thousand surveilled cases per day (half the number of actual cases given δsur = 0.5 in
the model) by the end of August if stronger social distancing measures are not effected during
July and August, 2020. This estimate, however, could well be conservative because the observed
flatting of the incidence curve around mid August (Fig 4C) is due to reductions in the proportion
of susceptibles (an artifact of setting Nnom to 10 million when the population of South Africa is
close to 60 million) rather than the action of epidemic drivers. This effect would be much weaker if
the nominal population size used in our simulations was several times larger. We stress, however,
that this narrative does not account for effects that would arise from the spatial structure of the
South African population. Accounting for spatial structure would, of course, require a much deeper
analysis of the outbreak than can be investigated using any kind of homogeneous SEIR or SCLAIV
model.

5.3 Covid-19 in England

The first two confirmed cases of Covid-19 in England identified on January 29 in the city of York
(Metro News, April 19, 2020). During the month of March another 56 cases in England were
recorded (UK Government Sources). Our analysis starts at this point in fitting our model to new
case in England on March 1 to June 30, as computed in terms of a 7-day lagged moving average
(i.e., incidence on the March 1 was on actual incidence averaged across the week of February 24
to March 1) to deal with the fact that incidence occurs on or before the day it is reported and a
strong 7-day cycle has been observed in data collected around the world [35].

Figure 5: Five different fits (parameters reported in Table 5.3) to a 7-day lagged moving average of Covid-19
new case (incidence) in England (black dots) plotted for March 1 to June 30 (using raw data to July 6),
2020. Data source: UK Government Sources. Run 1 (broken orange—only initial growth phase shown) and
2 (silver) are fits of the four epidemic parameters listed in Eq. 24 alone to the first 30 points and all 122
points (including initial values) respectively. Runs 2 (silver), 3 (dark yellow), and 4 (blue) progressively
include switching on social distancing, social relaxation and ramping up surveillance. Run 5 (broken green)
is the same as Run 4 except now surveillance is ramped down rather than up.
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Table 3: Specific values set and maximum-likelihood values obtained in fitting the England Covid-19
incidence data on March 1 to June 30 (see Table 5.1 for other parameter values)

Fit number 1 2 3 4 5

ENGLAND, UK
(See Fig. 5)

First 30 First 60
Symbol point fit point fit Fit to all points

MLE 4-parameter fit+ (Eq. 24)
Contact rate κ 1.71 1.71 2.85 2.19 2.41

Succumb period πsuc 0.194 0.194 0.947 1.502 0.062

Init. Contact C0 1§ 1§ 5525 7620 4721

Init. Infectious I0 959 958 103 1238 873

|Log-likelihood| value 35703· · · NA NA · · · 9559 · · · 1999 · · · 6008

Transmission Eq. 19 β 0.28 0.28 1.21 1.07 0.14

Preset Parameters (Table 5.1)
Isolation/treatment δiso All fits 0.35

Disease-induced mortality α All fits 0.01

Effective pop size Nnom All fits 107

Growth rate factor G All fits 2.5

MLE fitted drivers (Eq. 16)

Surveillance tsur 0 −† − − 0‡ 0‡

δsur 0 0.5‡ 0.5‡ 0.5‡ 0.263 0.604

tsur 1/2 − − − 4.6 11.5

δsur∞ − − − 0.671 0.056

σsur − − − 5‡ 5‡

Social distancing tsod 0 − 5.2 16.5 21.6 17.0

δsod 0 0‡ 0.051 0.074 0.177 0.096

tsod 1/2 − 99.9 30.5 41.8 36.7

δsod∞ − 0.021 0.790 0.795 0.553

σsod − 5‡ 5‡ 5‡ 5‡

Social relaxation tsoc 0 − − 33.5 15.5 11.5

δsoc 0 0‡ 0‡ 0.040 0.060 0.017

tsoc 1/2 − − 150.8 129.6 59.5

δsoc∞ − − 0.202 0.455 0.342

σsoc − − 5‡ 5‡ 5‡

State on June 30

Fully susceptible S 4.2% 0.1% 6.8% 19.2% 4.4%

Fully-active infected L+A+ I 0.1% 0.0% 0.3% 0.2% 0.6%

Confined susceptible Sr 0% 87.6% 79.3% 72.7% 6.5%

Confined infected Lr +Ar + Ir 0.2% 0.3% 0.6% 0.2% 0.6%

Recovered with Immunity V 95.5% 11.9% 12.9% 7.6% 87.7%

+Rounded to 3 or 4 sign. digits (parameter sensitivity implies fit slightly different to Fig. 5)
†The symbol “−” implies not relevant; ‡Preset constants not fitted; §Optimization hit constraint

By including the ramping up of social distancing behavior in Fit 2 (Fig. 5, silver curve) to the
first 60 data points (i.e., through March and April), we see that we capture the peak incidence that
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occurs around the middle of April, but the subsequent fall to near zero around the middle of June
is too optimistic, presumably because of the relaxation of social distancing that occurs throughout
May. By adding social relaxation to our estimation process in Fit 3 (Fig. 5, dark yellow curve) of
all the data (March 1 to June 30), a much better fit is obtained for the months of May and June,
but not for the initial months of March and April. Thus, in addition to estimating social distancing
and social relaxation in Fit 4 (Fig. 5, blue curve) we also estimated changes in surveillance over
time. We now obtained a much better fit (last four significant digits in the absolute log-likelihood
value dropped from 9559 in Fig 3 to 1999 in Fit 4: see Table 5.3).

Fit 4 implies that social distancing begins during day 21 at a rate of 0.18 per day with a switching
point on day 41 and a final rate of 0.80 per day. It also implies that social relaxation begins on day
15 at a rate of 0.06 per day, with a switching point on day 129 and a final rate of 0.46 per day. The
fact that social relaxation has an earlier onset than social distancing might seem odd, but it is not
problematic. It arises because we did not constrain the onset of social distance to occur before the
onset of social relaxation, but has no effect on projects because there are no individuals in class SR
until the onset of social distancing. Thus its effect is the same as if the onset of social relaxation
was also on day 21 and the initial social relaxation rate were 0.12=0.18-0.06—calculations correct
to 2dp). Fit 4 also implies an increase in surveillance from 26% on March 1 with a switching point
5 days later and a maximum surveillance level of 67%.

For purposes of comparison, in Fit 5 (Fig. 5, broken green curve) we estimated the same set of
parameters as in Fit 4, except now we constrained the final surveillance value to be less than the
initial surveillance value, as might conceivable (though unlikely) occur if a healthcare surveillance
system broke down during the course of a severe outbreak. In this case a reasonable fit was still
obtained, with Fit 5 being a better fit than Fit 3 (9559 vs 6008 for the last four significant digits in
the absolute log-likelihood value: see Table 5.3). The epidemics represented by these two incidence
curves, however, are vastly different. In Run 4, the estimated percent of individuals that are
immune (V ) on June 30 is 7.6% while in Run 5 it is 87.7%. Run 4 is much more credible than Run
5 because we have no evidence that the English surveillance process has broken down over time.
Our comparison of Runs 4 and 5 highlights that without additional data, such as the proportion of
individuals in the population that are sero-positive, any estimation process is not securely anchored
in reality and model estimation results maybe very misleading.

In the five fits described above, we did not fit the disease induced mortality rate parameter α
to mortality data, although a constant for this value can be directly estimated by looking at the
number of deaths to the total number of cases that have been observed so far. Constant values of α,
however, are unlikely because the healthcare sector becomes better at identifying and treating cases
over time. A disturbing set of statistics, however, is the range of mortality rates across different
countries that, as previously mentioned, range from < 1% to > 10%. This leads one to believe that
either incidence or mortality have either been deliberately or inadvertently under reported in many
countries, or the Covid-19 really does express itself differently in countries are environmentally vary
different (e.g., climate, density, or socioeconomic factors).

6 Discussion and Conclusion

In generalizing the SEIR framework for modeling disease outbreaks to a SCLAIV+D setting, we
have allowed for the “exposed class” (E) to reflect the reality that not all exposed individuals be-
come infected, a situation that is applicable to all disease transmission processes. In our particular
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exposition of fitting the model to Covid-19 outbreaks in England and South Africa, we did not con-
sider adding a quarantine process. Effective real-time contact tracing and consequent quarantining
requires the implementation of digital methods that are faster, more efficient, and more scalable
than are currently available [36], though limited efforts in Iceland and Singapore appear to have
met with some success [37,38]. Getting an independent fix through contact tracing on the contact
rate parameter κ is important, however, since in our MCMC study of the South African data, κ and
the succumbing period πsuc are highly correlated (SOI). Thus, fixing one of these two parameters
ahead of time makes the estimation process more stable and efficient. Of course, in the absence
of intensive transmission studies, such as [16], there is an element of subjectivity to measuring κ.
For sexually transmitted disease, the definition of a contact is quite clear. But for disease spread
through aerosols and fomites, contacts require thresholds for distance, duration, and environmen-
tal context for putative contact events to be scored as a pathogen transmission event [39] that the
individual can either thwart or succumb to through physical barriers or an innate immune response.

The SCLAIV setting also includes both asymptomatic and symptomatic pathogen transmitting
individuals, where the asymptomatic class A includes both presymptomatic (progressing from A
to I) and perfectly asymptomatic (progressing from A to V) individuals. The assumption we made
that the rates at which individuals in both A and I recover (i.e., the rates of progression from A to V
and I to V) are the same was purely for convenience (i.e., to reduce parameters from proliferating
in the model). Clearly this assumption can be removed and a recovery rate of asymptomatic
individuals that do not progress to symptomatic can be reliably estimated directly from data once
better individual testing and monitoring protocols become available. We may have to wait for
the next Covid-like outbreak to occur for such protocols to be in place, as well real-time contact
tracing and quarantining protocols and technology, in response to lessons learned from the current
Covid-19 pandemic.

Our SCLAIV model can be embedded in a more general population demographic (age and
sex, as well as healthcare worker and other high risk categories) and spatial structure setting, as
depicted in Fig. 1. Again, the kind of data needed to support the additional parameters that
would justify the complexities involved in such an embedding are not now available, although some
age and sex-related Covid-19 transmission and mortality data have been published [40, 41]. Most
models that include spatial structure, for example, when carrying out analyses using real data have
very simply underlying epidemiological descriptions [42]. If spatial structure is not included when
considerable levels of spatial heterogeneity exist, then incidence curves tend to broaden [13] and
multiple peaks, such as that observed in the England data (Fig. 5) may occur. Such curves when
fitted to homogeneous SEIR or SCLAIV model underestimate the epidemics reproductive potential
(as measure by R0) [13], and a metapopulation model setting [15, 26] is needed to obtain accurate
results.

A clearer understanding of how epidemics respond to the implementation of drivers in rolling out
policies to “flatten the (incidence/hospitalization) curve” is essential to managing outbreaks so that
healthcare facilities do not become overwhelmed. Thus, considerable interest exists in identifying,
or in inferring from the data [30], the times when driving processes (increased surveillance, social
distancing and subsequent relaxation, contact tracing with quarantining, rolling out vaccination
programs when available) have either emerged through behavioral changes or should be applied as
policy measures. Procedures for statistically identifying driver onset points have been developed
in the context of an SIR model [30]. Our SCLAIV+response formulation presented here represents
the first time a model that explicitly includes driver dynamics has been forensically applied to
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identifying driver onset and evaluating driver effects in any disease outbreak data.
Ultimately, however, as our fitting of the England Covid-19 data illustrate, all fitting procedures

should be treated with extreme caution unless the fits can be anchored using additional data. The
most informative of these are likely to be serology data that provide an accurate assessment of the
size of the V class at one or more points in time. Of course, not all serology tests are accurate [43],
so we should do all we can to, at least, evaluate the sensitivity of any tests that are implemented
so that accuracy estimates of the size of the immune class are possible. In short, we should not
underestimate the value of being able to measure immunity levels at points in time when models are
being used to devise the most appropriate policies for managing outbreaks. For this reason, it is not
worth pursuing a more in depth analysis of the South Africa, English, or any other country for that
matter than undertaken here, without access to additional data that can only come from working
with healthcare authorities responsible for collecting and curating outbreak and other related data
for any region for which models are being used to formulate policy.

Finally, Covid-19 is but one member of the class of diseases for which our SCLAIV+response
formulation is appropriate. For reasons relating to our inability to collect appropriate data, it has
not made sense in the past to explicitly divide the exposed class in SEIR models into separate
contact and latent-infection classes. With the advent of appropriate technologies in the future
to implement real time contact tracing and subsequent quarantining [36], our SCLAIV+response
elaboration of the SEIR model should provide a step forward in improving the adequacy of dynamics
models [44] in formulating policy and forecasting disease outbreaks.
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A Appendices

A.1 Continuous-time, Donor-controlled Systems

Continuous-time, donor-controlled systems of equations can be compactly expressed in terms of
a vectors of system’s variables x = (x1, ..., xn)′ (′ denotes vector transpose), and a matrix F of
elements fij , i, j = 1, ..., n by the equation

dx

dt
= Fx (25)

where the elements fij , i, j = 1, ..., n, expressed in terms of the donor controlled per-capita flow
rates γij , (i.e. flows out of compartment i into compartment j),

fii = −

 n∑
j=1

γji

xi, i = 1, ..., n

fij = γijxj , i, j = 1, ..., n. (26)

Under the assumption that no intrinsic growth or decay process occur within any of the disease
classes (i.e., no births, non-disease induced mortality, or migration processes are included), it follows
that γii = 0, i = 1, ...n. In this case, the equation for the ith variable in systems Eq. 26 is

dxi
dt

=
n∑

j 6=i, j=1

γijxj −

 n∑
j=1

γji

xi, i = 1, ..., n (27)

If all the rates in the system flow matrix Γ, with ijth element

(Γ)ij = γij , i, j = 1, ..., n, where γii = −
n∑
j=1

γji, i = 1, ...n

are constant or time dependent then the system is linear. Nonlinearities enter when one or more
of the rates are dependent on the values of the various systems variable. Whether completely
linear or not, we note that this system is subject to conservation principle invoked by the relation-
ship

∑n
i=1 xi(t) =

∑13
i=1 xi(0) for all t because under the “no intrinsic growth or decay process”

assumption it follows that

13∑
i=1

dxi
dt

= 0 =⇒
13∑
i=1

xi(t) =

13∑
i=1

xi(0) for all t ≥ 0 (28)
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