
UC Irvine
ICS Technical Reports

Title
Superboundary exchange : a technique for reducing communication in distributed
implementations of iterative computations

Permalink
https://escholarship.org/uc/item/8gz2r6x1

Authors
Kuang, Hairong
Bic, Lubomir
Dillencourt, Michael B.

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gz2r6x1
https://escholarship.org
http://www.cdlib.org/

SuperBoundary Exchange: A Technique for

Reducing Communication in Distributed

Implementations of Iterative Computations

Hairong Kuang, Lubomir Bic, Michael B. Dillencourt

Information and Computer Science

University of California, Irvine, CA 92697-3425

Email: {hkuang, bic, dillenco }@ics. uci. edu

TR 00-24

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

SuperBoundary Exchange: A Technique for

Reducing Communication in Distributed

Implementations of Iterative Computations

Hairong Kuang, Lubomir Bic, Michael B. Dillencourt

Information and Computer Science

University of California, Irvine, CA 92697-3425

Email: {hkuang, bic, dillenco }©ics. uci. edu

Abstract

We introduce a technique for lowering the communication cost in a cer­

tain type of distributed application, in which processors perform computa­

tion in each time step and must obtain boundary data from their neighbors

before they can perform the next time step. A typical example of such an ap­

plication is solving differential equations using the finite difference method.

Our method, which we call SuperBoundary Exchange, consists of sending

a larger boundary less often. This results in less frequent data exchange,

trading off against larger messages and some redundant computation. We

present experimental data showing that our method consistently results in

significant speedup in communication-intensive applications, under varying

assumption about the balance of computation load among the processors.

1 Introduction

As workstations become more powerful and less expensive, solving problems through

distributed computation on a network of workstations, rather than on more spe­

cialized parallel processors, is becoming a much more popular and cost-effective

approach. One obstacle to this approach is that communication across a network

of workstation is more time-consuming than, for example, communication between

processing units in a shared-memory parallel machine. For this reason, techniques

1

for lowering communication costs play an important role in the development of

distributed algorithms.
In this paper we introduce a technique for lowering the communication cost in

a certain type of distributed application, typified by solving differential equations

using the finite difference method [Van94]. In the finite difference method, we have

a discrete d-dimensional grid of element locations, and we want to compute a value

ux,t at each grid location x and for each time step t. The value of ux,t is a function

of the values of ur,t-l, where r ranges over x and all neighbors of x in the element

grid.

In a distributed implementation of the finite difference method, the element

grid is partitioned, and each processor is assigned one of the partitions. In each

time step t, each processor computes the values of ux,t for all grid elements x

assigned to it. If a grid element x is on the boundary of the partition (i.e., it is

assigned to a processor P1 , but it has a neighboring grid element assigned to a

different processor P2), then the computation of ux,t cannot be performed until

P1 has obtained from P2 the values of u.,t-l for all these neighboring elements.

Thus at each time step there is data exchange (communication) with neighboring

processors as well as computation. The data that must be obtained by a particular

processor from neighboring processor to allow it to perform its computation is

sometimes called the ghost boundary of the processor [Van94].

The techni.que introduced here, which we call SuperBoundary Exchange, re­

duces communication by sending a larger ghost boundary less often. In essence,

the increased overhead of sending larger messages and performing some redundant

computation is traded off against the reduced overhead of less frequent messages,

and the net result is an overall increase in performance. The advantages of both

these tradeoffs are well-known in other contexts. For example, the advantage of

combining multiple small data transfers into a single larger one underlies block

transfers between memory hierarchies, and combining small packets into larger

ones is a well known technique for efficient message passing in networks [N ag84].

The technique of replicating data to reduce message traffic is a classical technique

in distributed data bases.

The organization of this paper is as follows. We describe the SuperBoundary

Exchange technique in Section 2, and contrast it with another technique, send­

ahead, which was previously introduced. in [LF95]. In Section 3, we describe the

results of several experiments demonstrating that performance advantages of Su­

perBoundary Exchange. Some conclusions and final remarks are presented in Sec-

2

tion 4.

2 The SuperBoundary Exchange Technique

We introduce the SuperBoundary Exchange Technique with the following simple

example, illustrated in Figure 1. Suppose that we are solving a 1-dimensional finite

difference equation

Ux,t+l = J(Ux-1,t, Ux,t, Ux+1,t),

on a network of processors. Suppose that the values of u associated with x in the

range 1, ... , 100 are computed on processor P1 , and that the values of u associated

with x in the range 101, ... , 200 are computed on processor P2 • In order to compute

the value of u10o,t+i, P1 must know the value of u 101,ti hence this data (the "ghost

boundary") must be sent to P1 by P2 once it is known (and, symmetrically, Pi
must send u100,t to g before P2 can compute u 101,t+i). If each processor only

stores the data for the x values directly associated with it, such an exchange of

boundary data must occur at each time step in the computation. This is illustrated

in Figure l(a), which shows the computation from the end of time step 3 to the

end of time step 6. The first row shows the computation at the end of time step 3.

The next three double rows illustrate time steps 4, 5, and 6; each of these time

steps is illustrated after the ghost boundary has been exchanged at the beginning

of the time step (the dotted box indicates the ghost boundary), and then after the

computation for the time step has been completed.

SuperBoundary Exchange is a technique for reducing the frequency of this

boundary exchange. Suppose, at the beginning of time step t + 1, P1 sends the

values u98 ,t, u99 ,t and U100,t to P2 • Then at time t + 1, P2 has all data necessary

to compute the values Ug9,t+l, U100,t+i, and u101,t+i· At time t + 2, P2 has all data

necessary to compute the values u100,t+2, and U101,t+2· It can then use this data to

compute the value u101 ,t+3· Hence no further .boundary data must be exchanged

until time t+3, and in general, data must only be exchanged every three iterations.

This is illustrated for t = 3 in Figure 1 (b).

More gener~lly, the ghost boundary is defined as all the elements that are needed

by neighboring processors to compute all their values at the next time step. In

a regular boundary exchange, first each pair of neighboring processors exchanges

ghost boundaries, and then each of the processors computes the new values for all

of its elements. This process is repeated for every time step.

A SuperBoundary of width k is defined inductively: a ghost boundary has
uonuuuoJUI JJPBJ. puu)[.rnmgpu1..1. '08£ ;JSD 9£ ·pgA1gsg'M Slq~ra UV

·~u1 'u~µgmy JO g~~A1gs p~.md pgHun oooz-t661@lq~µA'.do;::>
3

. . . Ug8,3 Ugg
1
3 U100,3 U101,3 U1Q0,3 U101,3 U102,3 U103,3 ...

. . . Ugs,4 Ugg
1
4 U100,4 U101,4 U102,4 U103,4 ...

U1Q0,4 u101,4 U102,4 U103,4 ...

U1Ql,5 U102,5 U103,5 ...

. . . Ugs,5 U99,5 UlQ0,5 U101,5 U100,5 UlOl,5 U102,5 U103,5 ...

... Ugs,6 Ugg,6 U100,6 i~i 1u ~102,6 U103,6 ...

(a)

... Ugs,3 Ugg,3 U100,3 U101,3 U102,3 U103,3 Ugs,3 Ugg
1
3 U10D,3

... Ugs,4 Ugg,4 U1Q0,4 UlOl,4 U102,4 Ugg,4 Ul00,4 U1Ql,4 U102,4 U103,4 _..,..._......., __ ..,.... __

... Ugs,5 Ugg,5 U100,5 U101,5 U100,5 U101,5 U102,5 U103,5

... Ugs,6 Ugg,6 U100,6 1,6 U102,6 U103,6

(b)

Figure 1: A simple example illustrating SuperBoundary Exchange. Both figures

represent the interval from the end of time step 3 to the end of time step 6. (a)

In the absence of SupeBoundary Exchange, the ghost boundary is exchanged at

the start of each time step. (b) SuperBoundary Exchange: 2 additional boundary

data items are exchanged at the start of time step 4, but no boundary information

is exchanged at time 5 or at time 6.

4

situation after the data exchange at time t (te), after the computation at time t
(tc), and after the computation at time t + 1 ((t + l)c)· At te, processor 0 has two

"layers" of boundary data to work with. At tc, the data for time t, including the

data on the regular boundary has been computed. At (t + 1)c, the computation for

time t + 1 is complete, but there is no longer valid boundary data, so data must

be exchanged again.

00000
00000

(t-1) c 00000
00000
00000

112222233
112222233
880000044
880000044

t e 880000044
880000044
880000044
776666655
776666655

1222223
8000004
8000004

t c 8000004
8000004
8000004
7666665

~
~

00000
00000

(t+l)c 00000
00000
00000

Figure 3: Schematic representation of 2-dimensional SuperBoundary Exchange,

with a boundary width of 2.

Notice that in the 2-dimensional case just described, if the subgrid assigned to

each processor is an n x n grid, and the boundary width is k, then the number of

grid element values that must be exchanged between neighbors once every k time

steps is O(k · n). Hence the amount of additional memory required goes up linearly

with the boundary width, but only with the square root of the amount of memory

required to store the subgrid associated with the processor. Hence, SuperBoundary

Exchange requires only a small amount of additional memory. The generalization

of SuperBoundary Exchange to d dimensions is conceptually straightforward, and

we omit the details here.

The SuperBoundary Exchange technique improves performance in two ways:

by reducing communication overhead and by smoothing out random bursts. Com­

munication overhead is reduced because the frequency of communication (i.e., the

number of messages) is reduced. Depending on the message size, the number of

packets may be reduced as well, since several small messages are being combined

into one larger one.

The effect of smoothing out random bursts is illustrated in Figure 4(a) and (b).

Suppose that Processor 1 takes less time than its neighbor, Processor 2, to perform

6

(a) Regular Boundary Exchange

t+l
1:---
2:~~--~---~

(b) SuperBoundary Exchange

t t+l
1: -----------t
2:---------------

(c) SuperBoundary Exchange Combined with Send-ahead

tb (t+l)b tc (t+l)c t+2

;~ ~-'-~~~~~~-·

Figure 4: Smoothing out of random bursts using SuperBoundary Exchange and

send-ahead.

the computation at time step t, but Processor 2 takes less time than Processor 1

to perform the computation at time step t + 1. Under regular boundary exchange,

the two processors must synchronize at every time step, and hence the time re­

quired for each time step is the time required by the slower processor. This is

shown in Figure 4(a), where the horizontal lines represent the elapsed times for

each time step and the vertical lines represent the synchronization points. Under

SuperBoundary exchange with boundary width 2, the two time steps t and t + 1

can be executed consecutively without synchronization as shown in Figure 4(b).

As a result, the bursts are smoothed out and step t + 2 can be started at an earlier

time.

In [HCYA94] and [LF95], a different approach to reducing communication over­

head, called "boundary precomputation" in [LF95], was proposed. We now briefly

discuss this method and its limitations, and then show how it can be combined

with SuperBoundary Exchange.

The boundary precomputation method proposed in [LF95] actually consists of

applying two separate observations. The first observation is that' it is not necessary

to compute all values at time t before sending the ghost boundary; instead, a pro­

cessor can compute its boundary values at time t, then send them to its neighbors

while it is computing its interior values at time t. We refer to this part of the

boundary precomputation as "send-ahead." The second observation is that if a

process finishes its computation for time .t while it is waiting for the time-t ghost

boundary to arrive from its neighbors; it can continue processing by computing

the values at time t + 1 at cells of distance 1 from its internal boundary, values

7

at time t + 2 at cells of distance 2 from its internal boundary, etc. We refer to

this as "internal precomputation." It is pointed out on [LF95, Page 197] that in­

ternal precomputation does not help overall performance. One reason for this is

that if communication is the dominant factor, each processor will reach a point of

saturation, where it has done as much internal precomputation as it possible can;

after this, it will only be able to advance the time at each grid element by one

in each cycle, just as in the absence of internal precomputation. Because of this,

we discuss send-ahead, but not internal precomputation, in the remainder of this

paper.
SuperBoundary Exchange and send-ahead can be combined as follows. Suppose

that the starting time is t and the boundary width is k. Immediately after a data

exchange, each processor computes the value of the data along the superboundary

that it needs to send at time t + k and sends it to the appropriate neighbors; it

then computes the rest of its data (the inner portion). Figure 5 schematically

illustrates the combination of these two techniques, for a 1-dimensional problem

with a boundary width of 3. The line labeled te shows the status at time t after

(t-l)c: 1 1 1 1 1 1 1 2 2 2 2 2 2 2
te 1 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2
tb 1 1 1 1 1 2 2 1 1 2 2 2 2 2
(t+l)b: 1 1 1 1 2 1 2 2 2 2
(t+2)b: 1 1 1 2 2 2
tc 1 1 2 2
(t+l)c: 1 1 1 2 2 2
(t+2)c: 1 1 1 1 2 2 2 2
(t+3)e: 1 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2

Figure 5: Schematic representation of the combination of Super Boundary Exchange

and send-ahead, for a 1-dimensional problem with a boundary width of 3. with a

boundary width of 2.

data has been received: Processor 1 has received three boundary items from its

neighbor, Processor 2. In the next three lines, it computes the values at time t + 3

of the boundary values that it needs to send to processor 2, and sends them to

processor 2 when this computation is complete (after the line labeled (t + 2)b· It

then computes its inner values for time t+3; this computation overlaps with waiting

for the boundary values to arrive from Processor 2. If the boundary width is not too

big, then the bulk of the computation (i.e .. , the computation of the inner values) is

done while the processor is waiting for the boundary values from the neighboring

processors, so the computation overlaps with the communication latency of the

8

boundary messages from neighboring processors. This can represent a considerable

advantage, because it means that the combination of SuperBoundary Exchange

and send-ahead can smooth out the random fluctuations in load as illustrated in

Figure 4(c).

3 Experimental results

We present experimental results in this section. All the experiments were per­

formed using nine Sparcstation 5's connected by a lOOMbit/second switch. The

nine workstations were arranged as a 3 x 3 toroidal grid. This arrangement elimi­

nated boundary effects, so the configuration and experimental results can be viewed

as a portion of a much larger collection of workstations. All implementations used

the MESSENGERS system [BFD96, FBD99], and speedup was computed relative

to a MESSENGERS implementation using the same 3 x 3 toroidal grid as a logical

network but running on a single workstation. To decrease the variability of the

presented data, all the experiments describe here were run three times, and in each

case the number presented here is the average over the three runs.

A distributed computation may be dominated either by the communication

cost or by the computation cost. Because SuperBoundary Exchange is intended

to reduce the effect of communication overhead, it is primarily useful in situa­

tions where the communication costs dominate. For this reason, the parameters

for our experiments were chosen to make the communication-to-computation ratio

relatively high. We experimented with three different workload~balance scenarios:

(1) even workload balance, in which the computation time required by each pro­

cessor at each step is about the same; (2) systematic workload imbalance, in which

there are certain processors that require more time in each time step to perform

their computation; and (3) fluctuating workload imbalance, in which case there is

imbalance in the computation time, but the specific processors requiring more time

vary from time step to time step.

The application we used is a 2-dimensional finite difference problem, with an

n x n element grid with n varying as discussed below. The 2D n x n elements were

evenly distributed on 9 workstations, logically connected as a 3 x 3 grid, with each

workstation performing the computation for a subgrid (n/3) x (n/3) elements. In

each workstation, the communication overhead is approximately 4a(n/3), where a

is a constant, while the computation cost is approximately b(n/3)2
, where bis a con­

stant. The communication to computation ratio is c/n, where c = 12a/b. There-

9

fore, when the problem size becomes smaller, the communication-to-computation

ratio becomes bigger.

Our first experiment assesses the effect of the boundary width on the perfor­

mance of a computationally balanced distributed application. Figure 6 shows the

result of this experiment. The horizontal axis represents the boundary width, and

boundary width (Balanced Load}

8 ~~~~~~~~~~~~~~~~~~~~~~

7.5 +---d&-.......,,,,=.....-:::::----===--~------------;
7 .+-...L-l--~---~~~..::::J!l<---..._,~:::::....,~~~~-~~---1

2- 6.5 .+--+-~-~~-~-~--~-~-~-~::.....:;::--~---l
.;
Q) 6 ...µllL..-_,.i.iL------~-~i,=------------1
Q)
a. en 5.5 -1-~~-~~----~~~---_..;:=......,,,.------~

5 ...!---"'~~------~~~--~~~~~--~_____,

4.5 -1---~-~--~---~~~-----------i
4 -1--~-.-~~--.-~~-.-----.--~--r~--.,-------i

0 5 10 15 20 25 30 35

Boundary width

-w- 999x999

--+- 666x666

540x540

Figure 6: The effect of the boundary width on the performance of a computation­

ally balanced application.

the vertical axis represents the speedup. A boundary width of 1 means that we

are using regular boundary exchange; larger values mean that· we are using Su­

per Boundary Exchange. We experimented with three problem sizes: 540 x 540,

666 x 666, and 999 x 999. In all three cases, SuperBoundary Exchange increases

the speedup significantly for low values of the boundary width, and as the bound­

ary width is increased, the speedup reaches a maximum and then falls off. This is

because for low values of the boundary width, the decrease in communication over­

head far outweighs the additional cost due to redundant computation of boundary

values. For high values of the boundary width, most of the communication savings

has been realized, the program becomes computation-intensive, and the increased

computation starts to cause a performance decrease. But this latter effect is grad­

ual: even when the boundary width reaches 32, SuperBoundary Exchange still

beats the regular boundary exchange for the two smaller problem sizes.

10

The remaining experiments compare the SuperBoundary Exchange technique,

the send-ahead technique, and the combination of the two for the three workload­

balance scenarios discussed at the beginning of this section. Figure 7 shows the

results for the balanced-workload case, for a problem of size 666 x 666. The gray line

Ba.la.need Computation case, problem size (666*666)

9 --~~~~~~~~~~-~~~~~~~~-~~--,

8.5 -J-..----------------------;
8 -J-..~~--~-~~~-~--~~~~-~~--i

§" 7.5

-g 7 .+---~-----~~~~~~:;__~~------I
Cl)

~ 6.5 -f-----~·~=----------------l
6 _,_ _ __...11<=---~~-~~-~~~-~~--~--1

5.5 _,_ ____________________ ___,

5 +--~----..-~-~~-.....--~---.--~----1

2 3 4

Boundary width

-+-No send-ahead

Send-ahead

Figure 7: The effect of SuperBoundary Exchange, with and without send-ahead,

on a balanced computation.

shows the performance when the send-ahead technique is used. From the figure,

we can see that SuperBoundary Exchange improves the performance. Send-ahead

helps slightly in the case ofregular boundary exchange (i.e., for boundary width 1),

but it does not help otherwise. Also, SuperBoundary Exchange speeds up the

computation using regular boundary exchange much more than send-ahead does.

There are several reasons explaining why send-ahead contributes so little in this

case. First, the transmission time is negligible in our experiment network because

workstations are connected by lOOM/bit switch. Second, because the workload is

evenly distributed, there is no idle waiting time to be eliminated by the send-ahead

technique. In addition, send-ahead changes the computation order, and this may

affect the hit rate on the memory cache.

Figure 8 shows the results for the case of systematic workload imbalance. In

this experiment, we chose one processor ~nd artificially increased its workload in

each time step by 30%. As with the balanced case, SuperBoundary Exchange

improves the performance, but the send-ahead technique doesn't help much. The

11

Systematic imbalance case, problem size 666*666
(one worker is 30% slower)

8 ...-~~~~~~~~~~~~~~~~~~!

7.5 -+---------------------j
7 -+-~~-~~~--~~~~~--~------j

~ 6.5 ~~~~~~~~~--~~-~~~~~~~ ~No Send-ahead
1 6 -I----~----------:::-=~==.....:==-__.;~~~-------~-;

Cl) Send-ahead
~ 5.5 -I---.--=-......-::==-----------------; ._ ______ ___.

5 -+--;
4.5 4---------------------;

4 .+----------.----------.----------.....----------;
2 3 4

Boundary width

Figure 8: The effect of SuperBoundary Exchange, with and without send-ahead,

on a systematically imbalanced computation.

explanation is the same as that of the balanced case: because the workload is

systematically unbalanced, the idle waiting time can not be sq~leezed out.
l

Our final experiments address the case of fluctuating load imbalance. We ran

the balanced experiment, but artificially increased the workload on each processor

in each time step by a random amount. The random additional load was Gaus­

sian, with a mean of 30% of the base load and a standard deviation of 10% of

the base load. Figures 10 and 9 show the results for problem sizes of 999 x 999

and 666 X 666, respectively. If we compare the individual effects of send-ahead

with the and SuperBoundary Exchange, we see that on the smaller problem Super­

Boundary Exchange is better. On the larger problem, send-ahead is better than

increasing the boundary width to 2, but for larger boundary widths SuperBoundary

Exchange is better. The best results are obtained by combining the two methods:

on the smaller problem, send-ahead together with SuperBoundary Exchange with

a boundary width of 4 yields a 34% improvement in speedup. Send-ahead helps in

this case because it helps smooth out the bursts due to the random fluctuations in

computation time.

12

9

8.5

8

§- 7.5

'i 7
(I,)

~ 6.5

6

5.5

5

30% Gaussian random noise, problem size is 999*999

______..

--------------------- ___.
...---------~

~

-+-No send-ahead

---- Send-ahead

I I I

2 3 4

Boundary width

Figure 9: The effect of SuperBoundary Exchange, with and without send-ahead,

on a computation of a 999 x 999 problem with fluctuating imbalance.

9
8.6
8.2
7.8

§- 7.4
'i 7

(I,)

~ 6.6
6.2
5.8
5.4

5

30% Gaussian random noise, problem si:ze is 666*666

~-:
~--~

~~-~ -+-No send-ahead
.,,.--~ ..,,..,._.,..,.,.. --- Send-ahead .. ----:z:

I I I

2 3 4

Boundary width

Figure 10: The effect of SuperBoundary Exchange, with and without send-ahead,

on a computation of a 666 x 666 problem with fluctuating imbalance.

13

4 Conclusions and Final Remarks

In this paper we have introduced the SuperBoundary Exchange technique as a

means of reducing communication overhead in distributed applications. The un­

derlying tradeoff is fewer messages against potentially longer messages and some

additional, redundant, computation. We have presented some experimental data

comparing SuperBoundary Exchange with the send-ahead technique. The results

of our experiments are summarized in Table 1. If the running time of the applica-

Imbalance Computation

Balanced
Computation

Systematic Fluctuating
Imbalance Imbalance

Computation Better Hardware Load· Balancing Load Balancing
Dominant

Communication SBX SBX SBX+
Dominant Send-ahead

Table 1: Summary of the results of our experiments. Super Boundary Exchange

provided significant speedup improvement for all communcation-intensive scenar­

ios. Send-ahead provided additional improvement in the case of fluctuating load­

imbalance, but provided no incremental benefit in the other two cases.

tion is dominated by the computation time, then performance can be addressed by

improving the hardware or by addressing load imbalance among processors. The

technique introduced in this paper, Su per Boundary Exchange, reduces commu­

nication overhead, and hence is of use when the communication cost dominates.

Our experiments indicate that this technique is useful whether or not there is load

imbalance among the processors, and that it provides a significantly larger per­

formance improvement than the send-ahead technique. In the case of fluctuating

load imbalance, further improvement can be obtained by combining SuperBound­

ary Exchange with send-ahead. In the other two cases (balance, or systematic

imbalance), send-ahead provides almost no incremental performance improvement

beyond that provided by SuperBounday Exchange.

Although the Super Boundary Exchange technique is of most use when the com­

munication cost dominates, it can ultimately be applied even in a computation­

dominated application. If computation dominates, appropriate ways to address

14

performance concerns would include fine-tuning the computation at each grid el­

ement, adding more processors, and upgrading the hardware. As these enhance­

ments are made, a point of diminishing returns will be reached, because the compu­

tation cost will decrease to the point where it is dominated by the communication

cost. When this point is reached, and the application becomes communication-

intensive, SuperBoundary Exchange can then be used to further enhance the per­

formance of the application.
I

While the only application mentioned is finite difference eq~ations, the Super-

Boundary Exchange technique can be applied to a wider class of problems. The

technique can be applied to any application in which there is an underlying space,

a well-defined notion of neighbor, and an iterative computation where the com­

putation at a particular location in one time step depends on the state of that

location and its neighbors in the preceding time step. For example SuperBound­

ary Exchange could be applied in individual-based spatial simulations in which the

behavior of entities is based solely on their interactions with nearby entities (e.g.,

models of the flocking of birds or the schooling of fish [HW92, Rey87]). Here, the

boundary data to be exchanged is the state of entities in nearby nodes, and Su­

perBoundary Exchange would require redundant computation of these behaviors

after an exchange of data.

References

[BFD96] L. F. Bic, M. Fukuda, and M. B. Dillencourt. Distributed computing

using autonomous objects. IEEE Computer, 29(8), Aug. 1996.

[FBD99] M. Fukuda, L. F. Bic, and M. B. Dillencourt. Messages versus MESSEN­

GERS in distributed programming. Journal of Parallel and Distributed

Computing, 57:188-211, 1999.

[HCYA94] C.-C. Hui, G. K.-K. Chan, M. M.-S. Yuen, and I. Ahmad. Solving

partial differential equations on a network of workstations. In Proceed­

ings of the Third IEEE Interational Symposium on High Performance

Distributed Computing, pages 194-201, August 1994.

[HW92] A. Huth and C. Wissel. The simulation of the movement of fish schools.

Journal of Theoretical Biology, 156:365-385, 1992.'

15

[LF95]

[Nag84]

[Rey87]

[Van94]

J. Z. Lou and R. D. Ferraro. A parallel incompress­

ible flow solver package with a parallel mutigrid ellip­

tic kernel. In Super Computing '95, December 1995.

http://olympic.jpl.nasa.gov/Reports/flow_solver/pap.html.

J. Nagle. Congestion control in TCP /IP internetworks. Computer Com­

mun. Review, 14:11-17, October 1984.

C.W. Reynolds. Flocks, herds, and schools: A distributed behavioral

model. Computer Graphics, 21(4):25-34, July 1987.

E. F. Van de Velde. Concurrent Scientific Computing. Springer-Verlag,

1994.

16

