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Abstract 

We introduce a technique for lowering the communication cost in a cer­

tain type of distributed application, in which processors perform computa­

tion in each time step and must obtain boundary data from their neighbors 

before they can perform the next time step. A typical example of such an ap­

plication is solving differential equations using the finite difference method. 

Our method, which we call SuperBoundary Exchange, consists of sending 

a larger boundary less often. This results in less frequent data exchange, 

trading off against larger messages and some redundant computation. We 

present experimental data showing that our method consistently results in 

significant speedup in communication-intensive applications, under varying 

assumption about the balance of computation load among the processors. 

1 Introduction 

As workstations become more powerful and less expensive, solving problems through 

distributed computation on a network of workstations, rather than on more spe­

cialized parallel processors, is becoming a much more popular and cost-effective 

approach. One obstacle to this approach is that communication across a network 

of workstation is more time-consuming than, for example, communication between 

processing units in a shared-memory parallel machine. For this reason, techniques 

1 



for lowering communication costs play an important role in the development of 

distributed algorithms. 
In this paper we introduce a technique for lowering the communication cost in 

a certain type of distributed application, typified by solving differential equations 

using the finite difference method [Van94]. In the finite difference method, we have 

a discrete d-dimensional grid of element locations, and we want to compute a value 

ux,t at each grid location x and for each time step t. The value of ux,t is a function 

of the values of ur,t-l, where r ranges over x and all neighbors of x in the element 

grid. 

In a distributed implementation of the finite difference method, the element 

grid is partitioned, and each processor is assigned one of the partitions. In each 

time step t, each processor computes the values of ux,t for all grid elements x 

assigned to it. If a grid element x is on the boundary of the partition (i.e., it is 

assigned to a processor P1 , but it has a neighboring grid element assigned to a 

different processor P2), then the computation of ux,t cannot be performed until 

P1 has obtained from P2 the values of u.,t-l for all these neighboring elements. 

Thus at each time step there is data exchange (communication) with neighboring 

processors as well as computation. The data that must be obtained by a particular 

processor from neighboring processor to allow it to perform its computation is 

sometimes called the ghost boundary of the processor [Van94]. 

The techni.que introduced here, which we call SuperBoundary Exchange, re­

duces communication by sending a larger ghost boundary less often. In essence, 

the increased overhead of sending larger messages and performing some redundant 

computation is traded off against the reduced overhead of less frequent messages, 

and the net result is an overall increase in performance. The advantages of both 

these tradeoffs are well-known in other contexts. For example, the advantage of 

combining multiple small data transfers into a single larger one underlies block 

transfers between memory hierarchies, and combining small packets into larger 

ones is a well known technique for efficient message passing in networks [N ag84]. 

The technique of replicating data to reduce message traffic is a classical technique 

in distributed data bases. 

The organization of this paper is as follows. We describe the SuperBoundary 

Exchange technique in Section 2, and contrast it with another technique, send­

ahead, which was previously introduced. in [LF95]. In Section 3, we describe the 

results of several experiments demonstrating that performance advantages of Su­

perBoundary Exchange. Some conclusions and final remarks are presented in Sec-
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tion 4. 

2 The SuperBoundary Exchange Technique 

We introduce the SuperBoundary Exchange Technique with the following simple 

example, illustrated in Figure 1. Suppose that we are solving a 1-dimensional finite 

difference equation 

Ux,t+l = J( Ux-1,t, Ux,t, Ux+1,t), 

on a network of processors. Suppose that the values of u associated with x in the 

range 1, ... , 100 are computed on processor P1 , and that the values of u associated 

with x in the range 101, ... , 200 are computed on processor P2 • In order to compute 

the value of u10o,t+i, P1 must know the value of u 101,ti hence this data (the "ghost 

boundary") must be sent to P1 by P2 once it is known (and, symmetrically, Pi 
must send u100,t to g before P2 can compute u 101,t+i). If each processor only 

stores the data for the x values directly associated with it, such an exchange of 

boundary data must occur at each time step in the computation. This is illustrated 

in Figure l(a), which shows the computation from the end of time step 3 to the 

end of time step 6. The first row shows the computation at the end of time step 3. 

The next three double rows illustrate time steps 4, 5, and 6; each of these time 

steps is illustrated after the ghost boundary has been exchanged at the beginning 

of the time step (the dotted box indicates the ghost boundary), and then after the 

computation for the time step has been completed. 

SuperBoundary Exchange is a technique for reducing the frequency of this 

boundary exchange. Suppose, at the beginning of time step t + 1, P1 sends the 

values u98 ,t, u99 ,t and U100,t to P2 • Then at time t + 1, P2 has all data necessary 

to compute the values Ug9,t+l, U100,t+i, and u101,t+i· At time t + 2, P2 has all data 

necessary to compute the values u100,t+2, and U101,t+2· It can then use this data to 

compute the value u101 ,t+3· Hence no further .boundary data must be exchanged 

until time t+3, and in general, data must only be exchanged every three iterations. 

This is illustrated for t = 3 in Figure 1 (b). 

More gener~lly, the ghost boundary is defined as all the elements that are needed 

by neighboring processors to compute all their values at the next time step. In 

a regular boundary exchange, first each pair of neighboring processors exchanges 

ghost boundaries, and then each of the processors computes the new values for all 

of its elements. This process is repeated for every time step. 

A SuperBoundary of width k is defined inductively: a ghost boundary has 
uonuuuoJUI JJPBJ. puu )[.rnmgpu1..1. '08£ ;JSD 9£ ·pgA1gsg'M Slq~ra UV 

·~u1 'u~µgmy JO g~~A1gs p~.md pgHun oooz-t661@lq~µA'.do;::> 
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. . . Ug8,3 Ugg
1
3 U100,3 U101,3 U1Q0,3 U101,3 U102,3 U103,3 ... 

. . . Ugs,4 Ugg
1
4 U100,4 U101,4 U102,4 U103,4 ... 

U1Q0,4 u101,4 U102,4 U103,4 ... 

U1Ql,5 U102,5 U103,5 ... 

. . . Ugs,5 U99,5 UlQ0,5 U101,5 U100,5 UlOl,5 U102,5 U103,5 ... 

... Ugs,6 Ugg,6 U100,6 i~i 1u ~102,6 U103,6 ... 

(a) 

... Ugs,3 Ugg,3 U100,3 U101,3 U102,3 U103,3 Ugs,3 Ugg
1
3 U10D,3 

... Ugs,4 Ugg,4 U1Q0,4 UlOl,4 U102,4 Ugg,4 Ul00,4 U1Ql,4 U102,4 U103,4 . .................... _..,..._......., __ ..,.... __ 

... Ugs,5 Ugg,5 U100,5 U101,5 U100,5 U101,5 U102,5 U103,5 

... Ugs,6 Ugg,6 U100,6 1,6 U102,6 U103,6 

(b) 

Figure 1: A simple example illustrating SuperBoundary Exchange. Both figures 

represent the interval from the end of time step 3 to the end of time step 6. (a) 

In the absence of SupeBoundary Exchange, the ghost boundary is exchanged at 

the start of each time step. (b) SuperBoundary Exchange: 2 additional boundary 

data items are exchanged at the start of time step 4, but no boundary information 

is exchanged at time 5 or at time 6. 
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situation after the data exchange at time t (te), after the computation at time t 
(tc), and after the computation at time t + 1 ((t + l)c)· At te, processor 0 has two 

"layers" of boundary data to work with. At tc, the data for time t, including the 

data on the regular boundary has been computed. At ( t + 1 )c, the computation for 

time t + 1 is complete, but there is no longer valid boundary data, so data must 

be exchanged again. 

00000 
00000 

(t-1) c 00000 
00000 
00000 

112222233 
112222233 
880000044 
880000044 

t e 880000044 
880000044 
880000044 
776666655 
776666655 

1222223 
8000004 
8000004 

t c 8000004 
8000004 
8000004 
7666665 

~ 
~ 

00000 
00000 

(t+l)c 00000 
00000 
00000 

Figure 3: Schematic representation of 2-dimensional SuperBoundary Exchange, 

with a boundary width of 2. 

Notice that in the 2-dimensional case just described, if the subgrid assigned to 

each processor is an n x n grid, and the boundary width is k, then the number of 

grid element values that must be exchanged between neighbors once every k time 

steps is O(k · n ). Hence the amount of additional memory required goes up linearly 

with the boundary width, but only with the square root of the amount of memory 

required to store the subgrid associated with the processor. Hence, SuperBoundary 

Exchange requires only a small amount of additional memory. The generalization 

of SuperBoundary Exchange to d dimensions is conceptually straightforward, and 

we omit the details here. 

The SuperBoundary Exchange technique improves performance in two ways: 

by reducing communication overhead and by smoothing out random bursts. Com­

munication overhead is reduced because the frequency of communication (i.e., the 

number of messages) is reduced. Depending on the message size, the number of 

packets may be reduced as well, since several small messages are being combined 

into one larger one. 

The effect of smoothing out random bursts is illustrated in Figure 4( a) and (b ). 

Suppose that Processor 1 takes less time than its neighbor, Processor 2, to perform 
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(a) Regular Boundary Exchange 

t+l 
1:---
2:~~--~---~ 

(b) SuperBoundary Exchange 

t t+l 
1: -----------t 
2:---------------

( c) SuperBoundary Exchange Combined with Send-ahead 

tb (t+l)b tc (t+l)c t+2 

;~ ~-'-~~~~~~-· 

Figure 4: Smoothing out of random bursts using SuperBoundary Exchange and 

send-ahead. 

the computation at time step t, but Processor 2 takes less time than Processor 1 

to perform the computation at time step t + 1. Under regular boundary exchange, 

the two processors must synchronize at every time step, and hence the time re­

quired for each time step is the time required by the slower processor. This is 

shown in Figure 4( a), where the horizontal lines represent the elapsed times for 

each time step and the vertical lines represent the synchronization points. Under 

SuperBoundary exchange with boundary width 2, the two time steps t and t + 1 

can be executed consecutively without synchronization as shown in Figure 4(b ). 

As a result, the bursts are smoothed out and step t + 2 can be started at an earlier 

time. 

In [HCYA94] and [LF95], a different approach to reducing communication over­

head, called "boundary precomputation" in [LF95], was proposed. We now briefly 

discuss this method and its limitations, and then show how it can be combined 

with SuperBoundary Exchange. 

The boundary precomputation method proposed in [LF95] actually consists of 

applying two separate observations. The first observation is that' it is not necessary 

to compute all values at time t before sending the ghost boundary; instead, a pro­

cessor can compute its boundary values at time t, then send them to its neighbors 

while it is computing its interior values at time t. We refer to this part of the 

boundary precomputation as "send-ahead." The second observation is that if a 

process finishes its computation for time .t while it is waiting for the time-t ghost 

boundary to arrive from its neighbors; it can continue processing by computing 

the values at time t + 1 at cells of distance 1 from its internal boundary, values 
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at time t + 2 at cells of distance 2 from its internal boundary, etc. We refer to 

this as "internal precomputation." It is pointed out on [LF95, Page 197] that in­

ternal precomputation does not help overall performance. One reason for this is 

that if communication is the dominant factor, each processor will reach a point of 

saturation, where it has done as much internal precomputation as it possible can; 

after this, it will only be able to advance the time at each grid element by one 

in each cycle, just as in the absence of internal precomputation. Because of this, 

we discuss send-ahead, but not internal precomputation, in the remainder of this 

paper. 
SuperBoundary Exchange and send-ahead can be combined as follows. Suppose 

that the starting time is t and the boundary width is k. Immediately after a data 

exchange, each processor computes the value of the data along the superboundary 

that it needs to send at time t + k and sends it to the appropriate neighbors; it 

then computes the rest of its data (the inner portion). Figure 5 schematically 

illustrates the combination of these two techniques, for a 1-dimensional problem 

with a boundary width of 3. The line labeled te shows the status at time t after 

(t-l)c: 1 1 1 1 1 1 1 2 2 2 2 2 2 2 
te 1 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2 
tb 1 1 1 1 1 2 2 1 1 2 2 2 2 2 
(t+l)b: 1 1 1 1 2 1 2 2 2 2 
(t+2)b: 1 1 1 2 2 2 
tc 1 1 2 2 
(t+l)c: 1 1 1 2 2 2 
(t+2)c: 1 1 1 1 2 2 2 2 
(t+3)e: 1 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2 

Figure 5: Schematic representation of the combination of Super Boundary Exchange 

and send-ahead, for a 1-dimensional problem with a boundary width of 3. with a 

boundary width of 2. 

data has been received: Processor 1 has received three boundary items from its 

neighbor, Processor 2. In the next three lines, it computes the values at time t + 3 

of the boundary values that it needs to send to processor 2, and sends them to 

processor 2 when this computation is complete (after the line labeled (t + 2)b· It 

then computes its inner values for time t+3; this computation overlaps with waiting 

for the boundary values to arrive from Processor 2. If the boundary width is not too 

big, then the bulk of the computation (i.e .. , the computation of the inner values) is 

done while the processor is waiting for the boundary values from the neighboring 

processors, so the computation overlaps with the communication latency of the 
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boundary messages from neighboring processors. This can represent a considerable 

advantage, because it means that the combination of SuperBoundary Exchange 

and send-ahead can smooth out the random fluctuations in load as illustrated in 

Figure 4(c). 

3 Experimental results 

We present experimental results in this section. All the experiments were per­

formed using nine Sparcstation 5's connected by a lOOMbit/second switch. The 

nine workstations were arranged as a 3 x 3 toroidal grid. This arrangement elimi­

nated boundary effects, so the configuration and experimental results can be viewed 

as a portion of a much larger collection of workstations. All implementations used 

the MESSENGERS system [BFD96, FBD99], and speedup was computed relative 

to a MESSENGERS implementation using the same 3 x 3 toroidal grid as a logical 

network but running on a single workstation. To decrease the variability of the 

presented data, all the experiments describe here were run three times, and in each 

case the number presented here is the average over the three runs. 

A distributed computation may be dominated either by the communication 

cost or by the computation cost. Because SuperBoundary Exchange is intended 

to reduce the effect of communication overhead, it is primarily useful in situa­

tions where the communication costs dominate. For this reason, the parameters 

for our experiments were chosen to make the communication-to-computation ratio 

relatively high. We experimented with three different workload~balance scenarios: 

(1) even workload balance, in which the computation time required by each pro­

cessor at each step is about the same; (2) systematic workload imbalance, in which 

there are certain processors that require more time in each time step to perform 

their computation; and (3) fluctuating workload imbalance, in which case there is 

imbalance in the computation time, but the specific processors requiring more time 

vary from time step to time step. 

The application we used is a 2-dimensional finite difference problem, with an 

n x n element grid with n varying as discussed below. The 2D n x n elements were 

evenly distributed on 9 workstations, logically connected as a 3 x 3 grid, with each 

workstation performing the computation for a subgrid (n/3) x (n/3) elements. In 

each workstation, the communication overhead is approximately 4a(n/3), where a 

is a constant, while the computation cost is approximately b(n/3)2
, where bis a con­

stant. The communication to computation ratio is c/n, where c = 12a/b. There-
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fore, when the problem size becomes smaller, the communication-to-computation 

ratio becomes bigger. 

Our first experiment assesses the effect of the boundary width on the perfor­

mance of a computationally balanced distributed application. Figure 6 shows the 

result of this experiment. The horizontal axis represents the boundary width, and 

boundary width (Balanced Load} 

8 ~~~~~~~~~~~~~~~~~~~~~~ ............... 

7.5 +---d&-.......,,,,=.....-:::::----===--~------------; 
7 .+-...L-l--~---~~~..::::J!l<---..._,~:::::....,~~~~-~~---1 

2- 6.5 .+--+-~-~~-~-~--~-~-~-~::.....:;::--~---l 
.; 
Q) 6 ...µllL..-_,.i.iL------~-~i,=------------1 
Q) 
a. en 5.5 -1-~~-~~----~~~---_..;:=......,,,.------~ 

5 ...!---"'~~------~~~--~~~~~--~_____, 

4.5 -1---~-~--~---~~~-----------i 
4 -1--~-.-~~--.-~~-.-----.--~--r~--.,-------i 

0 5 10 15 20 25 30 35 

Boundary width 

-w- 999x999 

--+- 666x666 

540x540 

Figure 6: The effect of the boundary width on the performance of a computation­

ally balanced application. 

the vertical axis represents the speedup. A boundary width of 1 means that we 

are using regular boundary exchange; larger values mean that· we are using Su­

per Boundary Exchange. We experimented with three problem sizes: 540 x 540, 

666 x 666, and 999 x 999. In all three cases, SuperBoundary Exchange increases 

the speedup significantly for low values of the boundary width, and as the bound­

ary width is increased, the speedup reaches a maximum and then falls off. This is 

because for low values of the boundary width, the decrease in communication over­

head far outweighs the additional cost due to redundant computation of boundary 

values. For high values of the boundary width, most of the communication savings 

has been realized, the program becomes computation-intensive, and the increased 

computation starts to cause a performance decrease. But this latter effect is grad­

ual: even when the boundary width reaches 32, SuperBoundary Exchange still 

beats the regular boundary exchange for the two smaller problem sizes. 
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The remaining experiments compare the SuperBoundary Exchange technique, 

the send-ahead technique, and the combination of the two for the three workload­

balance scenarios discussed at the beginning of this section. Figure 7 shows the 

results for the balanced-workload case, for a problem of size 666 x 666. The gray line 

Ba.la.need Computation case, problem size (666*666) 

9 --~~~~~~~~~~-~~~~~~~~-~~--, 

8.5 -J-..----------------------; 
8 -J-..~~--~-~~~-~--~~~~-~~--i 

§" 7.5 

-g 7 .+---~-----~~~~~~:;__~~------I 
Cl) 

~ 6.5 -f-----~·~=----------------l 
6 _,_ _ __...11<=---~~-~~-~~~-~~--~--1 

5.5 _,_ ____________________ ___, 

5 +--~----..-~-~~-.....--~---.--~----1 

2 3 4 

Boundary width 

-+-No send-ahead 

Send-ahead 

Figure 7: The effect of SuperBoundary Exchange, with and without send-ahead, 

on a balanced computation. 

shows the performance when the send-ahead technique is used. From the figure, 

we can see that SuperBoundary Exchange improves the performance. Send-ahead 

helps slightly in the case ofregular boundary exchange (i.e., for boundary width 1), 

but it does not help otherwise. Also, SuperBoundary Exchange speeds up the 

computation using regular boundary exchange much more than send-ahead does. 

There are several reasons explaining why send-ahead contributes so little in this 

case. First, the transmission time is negligible in our experiment network because 

workstations are connected by lOOM/bit switch. Second, because the workload is 

evenly distributed, there is no idle waiting time to be eliminated by the send-ahead 

technique. In addition, send-ahead changes the computation order, and this may 

affect the hit rate on the memory cache. 

Figure 8 shows the results for the case of systematic workload imbalance. In 

this experiment, we chose one processor ~nd artificially increased its workload in 

each time step by 30%. As with the balanced case, SuperBoundary Exchange 

improves the performance, but the send-ahead technique doesn't help much. The 
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Systematic imbalance case, problem size 666*666 
(one worker is 30% slower) 

8 ...-~~~~~~~~~~~~~~~~~~! 

7.5 -+---------------------j 
7 -+-~~-~~~--~~~~~--~------j 

~ 6.5 ~~~~~~~~~--~~-~~~~~~~ ~No Send-ahead 
1 6 -I----~----------:::-=~==.....:==-__.;~~~-------~-; 

Cl) Send-ahead 
~ 5.5 -I---.--=-......-::==-----------------; ._ ______ ___. 

5 -+------------------------------------------; 
4.5 4---------------------; 

4 .+----------.----------.----------.....----------; 
2 3 4 

Boundary width 

Figure 8: The effect of SuperBoundary Exchange, with and without send-ahead, 

on a systematically imbalanced computation. 

explanation is the same as that of the balanced case: because the workload is 

systematically unbalanced, the idle waiting time can not be sq~leezed out. 
l 

Our final experiments address the case of fluctuating load imbalance. We ran 

the balanced experiment, but artificially increased the workload on each processor 

in each time step by a random amount. The random additional load was Gaus­

sian, with a mean of 30% of the base load and a standard deviation of 10% of 

the base load. Figures 10 and 9 show the results for problem sizes of 999 x 999 

and 666 X 666, respectively. If we compare the individual effects of send-ahead 

with the and SuperBoundary Exchange, we see that on the smaller problem Super­

Boundary Exchange is better. On the larger problem, send-ahead is better than 

increasing the boundary width to 2, but for larger boundary widths SuperBoundary 

Exchange is better. The best results are obtained by combining the two methods: 

on the smaller problem, send-ahead together with SuperBoundary Exchange with 

a boundary width of 4 yields a 34% improvement in speedup. Send-ahead helps in 

this case because it helps smooth out the bursts due to the random fluctuations in 

computation time. 
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9 

8.5 

8 

§- 7.5 

'i 7 
(I,) 

~ 6.5 

6 

5.5 

5 

30% Gaussian random noise, problem size is 999*999 

______.. 

--------------------- ___. 
...---------~ 

~ 

-+-No send-ahead 

---- Send-ahead 

I I I 

2 3 4 

Boundary width 

Figure 9: The effect of SuperBoundary Exchange, with and without send-ahead, 

on a computation of a 999 x 999 problem with fluctuating imbalance. 

9 
8.6 
8.2 
7.8 

§- 7.4 
'i 7 

(I,) 

~ 6.6 
6.2 
5.8 
5.4 

5 

30% Gaussian random noise, problem si:ze is 666*666 

~-: 
~--~ 

~~-~ -+-No send-ahead 
.,,.--~ ..,,..,._.,..,.,.. --- Send-ahead .. ----:z: .... 

I I I 

2 3 4 

Boundary width 

Figure 10: The effect of SuperBoundary Exchange, with and without send-ahead, 

on a computation of a 666 x 666 problem with fluctuating imbalance. 
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4 Conclusions and Final Remarks 

In this paper we have introduced the SuperBoundary Exchange technique as a 

means of reducing communication overhead in distributed applications. The un­

derlying tradeoff is fewer messages against potentially longer messages and some 

additional, redundant, computation. We have presented some experimental data 

comparing SuperBoundary Exchange with the send-ahead technique. The results 

of our experiments are summarized in Table 1. If the running time of the applica-

Imbalance Computation 

Balanced 
Computation 

Systematic Fluctuating 
Imbalance Imbalance 

Computation Better Hardware Load· Balancing Load Balancing 
Dominant 

Communication SBX SBX SBX+ 
Dominant Send-ahead 

Table 1: Summary of the results of our experiments. Super Boundary Exchange 

provided significant speedup improvement for all communcation-intensive scenar­

ios. Send-ahead provided additional improvement in the case of fluctuating load­

imbalance, but provided no incremental benefit in the other two cases. 

tion is dominated by the computation time, then performance can be addressed by 

improving the hardware or by addressing load imbalance among processors. The 

technique introduced in this paper, Su per Boundary Exchange, reduces commu­

nication overhead, and hence is of use when the communication cost dominates. 

Our experiments indicate that this technique is useful whether or not there is load 

imbalance among the processors, and that it provides a significantly larger per­

formance improvement than the send-ahead technique. In the case of fluctuating 

load imbalance, further improvement can be obtained by combining SuperBound­

ary Exchange with send-ahead. In the other two cases (balance, or systematic 

imbalance), send-ahead provides almost no incremental performance improvement 

beyond that provided by SuperBounday Exchange. 

Although the Super Boundary Exchange technique is of most use when the com­

munication cost dominates, it can ultimately be applied even in a computation­

dominated application. If computation dominates, appropriate ways to address 
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performance concerns would include fine-tuning the computation at each grid el­

ement, adding more processors, and upgrading the hardware. As these enhance­

ments are made, a point of diminishing returns will be reached, because the compu­

tation cost will decrease to the point where it is dominated by the communication 

cost. When this point is reached, and the application becomes communication-

intensive, SuperBoundary Exchange can then be used to further enhance the per­

formance of the application. 
I 

While the only application mentioned is finite difference eq~ations, the Super-

Boundary Exchange technique can be applied to a wider class of problems. The 

technique can be applied to any application in which there is an underlying space, 

a well-defined notion of neighbor, and an iterative computation where the com­

putation at a particular location in one time step depends on the state of that 

location and its neighbors in the preceding time step. For example SuperBound­

ary Exchange could be applied in individual-based spatial simulations in which the 

behavior of entities is based solely on their interactions with nearby entities (e.g., 

models of the flocking of birds or the schooling of fish [HW92, Rey87]). Here, the 

boundary data to be exchanged is the state of entities in nearby nodes, and Su­

perBoundary Exchange would require redundant computation of these behaviors 

after an exchange of data. 
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