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      Anatomical breast density is an independent risk factor for breast cancer, where 

women with larger amounts of dense fibroglandular tissue (FGT) are more likely to 

develop breast cancer. Clinical models that consider personal information about a 

woman (age, family history, and genetics) to predict her risk for breast cancer can 

help her customize their own screening options or consider preventative measures. 

Although magnetic resonance imaging (MRI) can be used to quantitatively measure 

the FGT volume, its high-cost makes it impractical to implement. Optical methods 

provide an appealing alternative, where the systems are low-cost and easily 

compactable, which makes clinical implementation easier. Optical tomography can 

spatially resolve and measure the concentration of relevant chromophores within the 

breast: water, lipid, oxy and deoxyhemoglobin. We have investigated the use of 

structured-light diffuse optical tomography (SL-DOT) in imaging the breast volume. 

In SL-DOT, spatially modulated light is illuminated and collected from the breast 

through the use of two digital micro-mirror devices (DMDs). Through both 
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simulations and phantom studies, we found that SL-DOT is suitable for predicting the 

percentage of FGT when taking into consideration both the volume segmented from 

the chromophore maps and the recovered chromophore concentrations. A second 

independent risk factor in which we are interested is the functional breast density.  

After intravenous injection of a MRI contrast agent, the intensity of the FGT is 

enhanced to varying degrees among patients, referred to as background parenchymal 

enhancement (BPE). It has been shown that BPE is also correlated with breast cancer 

incidence, most likely due to the higher perfusion of nutrients in blood to the FGT. 

Because BPE is an indication of blood flow, we believe the hemoglobin content 

measured from SL-DOT will be correlated to the BPE seen in MRI; therefore, our 

technique can potentially measure two independent risk factors for breast cancer. 

Once clinically translated, SL-DOT can be used to measure both the anatomical and 

functional breast density inexpensively and quickly, allowing women to make 

informed decisions about their breast cancer screening. 
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Chapter One: Introduction 

1.1 Background and motivation 

 Breast cancer is the second leading cause of cancer-related deaths in women 

in the United States, with an estimated 247,000 new cases in 2016 according to the 

American Cancer Society [1]. Diagnosis of breast cancer in its earlier stages improves 

survival outcomes, emphasizing the importance of routine and appropriate breast 

cancer screening protocols for women. In 2009, the U.S. Preventive Services Task 

Force revised the mammography screening guidelines, recommending exams after 

the age of 50 every two years [2,3]. For women ages 40-49, it becomes a gray area 

where the decision to start screening for breast cancer becomes lies with the patient. 

The American Cancer Society has criticized this guideline change, with many 

professionals arguing that despite the lower incidence of cancer in this age group, 

delayed diagnosis and treatment will lead to a worse prognosis and outcome [4]. A 

recent development in the medical community is “risk-based screening,” where 

models can calculate a woman’s lifetime risk and recommend the appropriate 

screening method and frequency for her. This is extremely important as resources 

can be spent on high-risk women for the diagnosis of cancer at an early, curable stage 

or for preventive strategies. For example, the American Cancer Society recommends 

for women with a lifetime risk greater than 20-25% to undergo annual breast 

magnetic resonance (MR) screenings because the cost per quality-adjusted life year 

saved outweighs the cost of MR screening [5]. Meanwhile, false-positive findings, 

unnecessary procedures and anxiety for low-risk women can be avoided. Known risk 
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factors that have been already incorporated into the models included age, family 

history, hormonal/reproductive factors, and BRCA genetic mutation.     

1.1a. Anatomical Breast Density 

Breast density is another risk factor that has been heavily investigated in the 

past few decades. It refers to the amount of stromal and epithelial tissue, collectively 

known as fibroglandular tissue (FGT), within the breast volume. Several studies have 

found increased breast cancer risk associated with highest breast densities when 

compared to the lowest densities [6–8]. Unlike the other risk factors, breast density 

can be reduced through hormonal intervention and can be used as a preventative 

measure in particularly high-risk women [9]. Currently, qualitative assessment of 

breast density seen on mammograms is incorporated into only one risk model, the 

Breast Cancer Surveillance Consortium (BCSC) [10]. Expanding upon this, the Breast 

Cancer Prevention Collaborative Group has suggested that quantitative breast 

density should be incorporated into risk models to improve their accuracy. In 

mammography, the FGT attenuates the x-rays more than the surrounding adipose 

tissue, forming the image contrast. Mammographic density (MD) refers to the amount 

of bright FGT seen on the mammogram and it has been discovered that higher MD not 

only obscures tumors and lower specificity [11], but also correlates to a higher risk 

of breast cancer. 

1.1b. Functional Breast Density 

Another independent risk factor for developing breast cancer can be seen in 

contrast-enhanced magnetic resonance imaging (MRI). A contrast agent, such as 
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gadolinium, is intravenously injected into the patient, where it travels to the heart 

and is pumped throughout the body. During this time, images over a short amount of 

time are acquired. Due to the enhanced permeability and retention (EPR) effect, the 

gadolinium tends to localize and accumulate in tumors with leaky blood vessels [12].  

The high intensity within the tumor is compared to the pre-injection images, and this 

difference is referred to as the contrast enhancement. While this technique has been 

used to determine the blood perfusion of a tumor and its malignancy [13], it has been 

observed that FGT also becomes enhanced to a lesser degree [14,15]. This is referred 

to as the background parenchymal enhancement (BPE). The BPE among different 

patients vary from a slight or mild enhancement to a large or marked 

enhancement [14]. Several studies have found that a marked increase in the BPE of 

the dense tissue observed after injection of the MRI contrast agent was associated 

with a higher risk of cancer [14,15]; because it involves blood perfusion, it can be 

considered as the functional breast density. This suggests that blood supply (i.e. 

hemoglobin content) may be a marker that can also be used for risk assessment.  

Although MRI is a rich source of information for risk assessment in terms of 

anatomical and functional breast density, as previously mentioned, its high-cost 

makes its wide-spread use impractical. 

1.2 Current methods of measuring breast density 

1.2a. Qualitative assessment of mammographic density 

 The relationship between breast density and breast cancer was first reported 

in 1967 by John Wolfe [16]. A decade later, Wolfe described a higher incidence of 



4 

 

breast cancer in high-risk patients that were stratified into four risk groups based on 

the amount of fibroglandular tissue seen on their mammograms [17]. Since then, 

categorizing mammograms into four categories (I-IV) became a standard known as 

the Breast Imaging Reporting and Data System (BI-RADS) for breast density (Figure 

1). Trained radiologists assess and score each mammogram into quartiles; however, 

inter-operative variability in the scoring was found to be an issue [7]. This motivates 

the development of methods and algorithms to quantify breast density.  

BI-RADS 

category 
I II III IV 

Visual 

description 

Almost entirely 

fatty 

Scattered 

fibroglandular 

densities 

Heterogeneously 

dense 
Extremely dense 

Examples 

    

Figure 1. The four different types of breast density BI-RADS categories as seen on 
mammograms. The images highlight the amount of bright, fibroglandular tissue found in 

high density cases. Reprinted from Mayo Clinic Proceedings, Vol 89 Issue 4, Wang, Amy, et 
al., Breast Density and Breast Cancer Risk: A Practical Review, Page No 548-557. Copyright 

(2014), with permission from Elsevier. [8] 
 
 

 1.2b. Quantitative measurements from mammograms 

The current methods to quantify breast density aim to measure the breast and 

fibroglandular tissue volumes. In addition, the percentage of FGT within the breast, 

known as the percent breast density (%BD), can be also calculated and reported. As 
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mammography is a popular imaging modality for breast cancer screening, several 

software programs have been developed to interpolate the volumes based on the 2D 

mammogram. VolparaDensityTM and QuantraTM are commercially available FDA-

approved software packages for measuring volumetric density [18]. However, when 

compared to MRI, a 3D imaging modality, VolparaTM and QuantraTM underestimated 

the %BDs measured by MRI, due to inaccuracies in calculating the breast volume [19]. 

Additionally, breast density calculations based on mammograms requires women to 

have already undergone screening mammography; younger women interested in 

their lifetime risk will most likely have not done this yet.  

1.2c. Three-dimensional images and segmentation  

The use of MRI or computed tomography (CT) can provide accurate 

volumetric measurements due to the 3D nature of these imaging modalities. In 

previous work, segmentation algorithms on MR images defines the FGT and breast 

volume, which can be used to calculate the %BD (anatomical breast density) [20,21]. 

Although MRI is considered the gold standard for accurately measuring %BD, its high 

cost prevents its implementation as a simple, widespread risk assessment tool. 

Furthermore, the use of ionizing radiation in CT may not make it ideal for simple, 

routine risk assessment.    

1.2d. Measurement of background parenchymal enhancement (BPE) 

Like the quartile BI-RADS system for breast density, BPE can be assessed into 

four categories: minimal, mild, moderate and marked (Figure 2) [14]. As seen with 

the BI-RADS categorization, the qualitative assessment of BPE can also be subject to 



6 

 

discrepancies among raters. As an alternative, image analysis techniques can be 

applied to quantify the enhancement of the FGT. One method based on the 

segmentation of the FGT from the breast volume. MRI images are taken before and 

after the injection of the contrast agent into the patient. The percentage increase of 

the enhanced signal within the segmented tissue over the non-enhanced signals prior 

to injection can be calculated, referred to as the BPE [22]. This analysis can be further 

expanded by calculating the percentage of voxels within the FGT that is above the 

mean of the previously calculated BPE over the total number of voxels in the FGT, 

known as %BPE [23]. More studies on the link between breast cancer risk and BPE 

can elucidate which parameters are a better predictor for developing breast cancer. 

BPE 

description 
Minimal Mild Moderate Marked 

Examples 

 

 

    

Figure 2. The four categories of background parenchymal enhancement (BPE) seen in 
contrast-enhanced MRI. The marked case shows the most intensity enhancement of the 
fibroglandular tissue within the breast. Reprinted from Radiology, Vol 260 Issue 1, King, 
Valencia, et al., Background Parenchymal Enhancement at Breast MR Imaging and Breast 

Cancer Risk, Page No 50-60. Copyright (2011), with permission from RNSA. [14] 

1.3 Optical methods to image and quantify breast density 

Given the advantages and disadvantages of mammography and MRI to 

measure breast density, there is an opportunity for optical imaging to provide an 

inexpensive and safe alternative without non-ionizing radiation. Optical methods use 

a near-infrared (NIR) laser source to illuminate tissue, where photons in the NIR 
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spectral window, 600-1000nm wavelength range, can propagate through biological 

tissue on the order of several centimeters [24,25]. A photodetector can be placed on 

the opposite side of the tissue to collect transmitted photons, known as transmission 

mode [26,27]. Conversely, the detector can be placed on the same side of the tissue as 

the source to collected reflected photons, known as reflection mode [28–30]. These 

traveling photons may undergo absorption by a molecule or scattering, a change in 

the direction of the traveling photon. These events contribute to the light attenuation 

and phase delay of an intensity modulated signal, where absorption mainly affects 

intensity measurements and scattering mainly affects phase measurements. It is 

important to note that in order to extract scattering information, sinusoidal intensity 

modulation of the source (frequency-domain) or analysis of the temporal profile of 

arriving photons at the detector from a short-pulse of light (time-domain) techniques 

are necessary to obtain phase or photon time-of-flight measurements. In the simplest 

method of optical imaging, steady-state laser sources (continuous-wave) are used 

and only the light intensity attenuation is measured. With this method, scattering and 

absorption is difficult to separate; however studies have shown it is possible to 

minimize the cross-talk between absorption and scattering [31].    

Absorption and scattering are important because of the underlying biological 

significance of these properties. Absorption is directly related to the molecular 

constituents of the tissue, where light-absorbing molecules called chromophores 

provide contrast between the adipose and FGT. Scattering is related to the size and 

density of these molecules, where FGT has been found to be highly scattering 

compared to adipose tissue [32–34]. By measuring these properties, several research 
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groups have been able to distinguish between adipose and FGT, as well as assess a 

patient’s risk for breast cancer [34–40].  

1.3a. Current research in imaging and quantifying breast density using optical methods 

A research group from Politecnico di Milano in Italy uses a seven-wavelength 

time-domain optical mammography system to collect data in transmission mode 

along multiple points of the breast to investigate bulk concentrations of water, lipid, 

hemoglobin and collagen, as well as reduced scattering maps [41]. From the 

information they collect with their system, they have built a logistic regression model 

to determine a woman’s BI-RADS IV breast density category based on her collagen 

content and scattering parameters [34]. Their recent work has found that the four 

different BI-RADS categories can be determined based on a collagen index they 

formulated as CI = b[Collagen], where [Collagen] refers to the concentration of 

collagen and b is the fitted scattering slope as a function of wavelength [42].  

A group from the University of Toronto has developed their Transillumination 

Breast Spectroscopy system to categorize breasts into a BI-RADS rating. They use a 

broadband source coupled into a fiber to deliver continuous-wave (CW) light at a 

point along the breast and collect light with another fiber coupled into a 

spectrophotometer. They acquire spectral data from 550 to 1300nm and perform 

principle component analysis (PCA) with a training set to determine which spectra is 

accountable for the most variation in the data [43]. Based on these spectra and their 

weighting, also known as scores, they determine which breast cases are low, medium 

and high densities [43]. The group went further and used the spectra to estimate the 
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quantitative percent density and compared their predictions to the mammographic 

densities calculated by Cumulus, with good correlation [44]. 

The research group at Dartmouth College has used their diffuse optical 

spectroscopic tomography system with frequency-domain (FD) and CW 

measurements to quantify the chromophore concentrations within both the 

fibroglandular tissue and adipose tissue. Their recent system uses a set of point 

sources and detectors integrated into a breast MRI coil to collect optical data and MR 

images. They perform diffuse optical tomographic (DOT) image reconstruction 

constrained with anatomical information provided by MRI in order to improve the 

spatial resolution of DOT. They found differences in water, hemoglobin and scattering 

parameters between these two tissue types [38]. 

Lastly, the work at the Beckman Laser Institute (BLI) uses diffuse optical 

imaging to image and quantify the chromophore concentrations within healthy breast 

tissue to understand tissue composition. Their work using their frequency-domain 

photon migration (FDPM) technique with a hand-held probe measured water, 

hemoglobin and lipid content from hormone replacement therapy patients, pre- and 

postmenopausal women  [45,46]. Their hand-held probe performs in reflection mode, 

allowing them to obtain superficial spectral data from the breast. The use of FD 

measurements at several wavelengths allows the determination of absorption and 

scattering, and subsequently chromophore quantification. Their results consistently 

showed that postmenopausal breasts had lower water and hemoglobin content, as 

well as higher adipose content, due to the loss of fibroglandular tissue after 

menopause [45,46]. The inclusion of a broadband light for CW measurements to the 
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FDPM instrument led to the development of their Diffuse Optical Spectroscopic 

Imaging (DOSI) system that can provide both absorption and scattering spectra (from 

650-1000nm) at each measurement point [24]. With this information, they found 

differences between water and hemoglobin levels among the different BI-RADS 

groups [40].  They found that the use of an index, called the tissue optical index (TOI) 

as defined by [water][deoxyhemoglobin]/[lipid], enhances the contrast seen 

between breast density groups and normal tissue [40]. Most importantly, the changes 

in breast density seen in MRI from the administration of neoadjuvant chemotherapy 

was been correlated with DOSI measurements at various time points; after treatment 

they saw a decrease in water, hemoglobin and TOI, while the lipid content increased, 

demonstrating that optical measurements can characterize breast density [40].  

1.4 Structured-light based diffuse optical tomography 

As seen with recent work in optical imaging, there are various ways of 

manipulating light to collect information, such as controlling the wavelength of 

excitation light to get spectroscopic information, or with FD and TD techniques to be 

able to obtain the scattering parameters. Another way to modulate light is spatially: 

specifically, patterns of light can be shined onto a medium using a digital micro-

mirror device (DMD). A DMD is an array of micro-mirrors where each mirror acts as 

a pixel and can be turned on, where light is projected onto an object, or turned off, 

where light is projected away from the object. This technique is referred to as 

structured-light, where the main advantage is wide-field illumination [47].  
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One notable technique that modulates light is structured-light with single pixel 

detection. Extensively researched at Renesselar Polytechnic Institute (RPI), the 

technique spatially modulates both the illumination and detection of light [47]. A first 

DMD is used to project light in arbitrary patterns onto the tissue while a second DMD 

is used to spatially modulate the collected transmitted light and integrates the signal 

into a point detector, such as a photomultiplier tube (PMT) [47]. With multiple 

patterns used for both illumination and detection, every measurement is a unique 

combination of a given source-detector pattern pair. This technique can be used to 

tomographically reconstruct the optical properties within the volume of interest. 

Recent developments have been applied for fluorescence tomography [48] and time-

resolved DOT [49].   

1.4a. Measuring breast density with structured-light  

Our group has adapted the structured-light technique from RPI and is applying 

it to measure breast density. Using structured-light DOT (SL-DOT), structured-light 

(SL) patterns can be illuminated onto a lightly compressed breast using the projection 

DMD, while the transmitted light is collected by a lens and projected towards a 

collection DMD (Figure 3a). This collection DMD sends the selected light pattern 

towards another lens, which focuses the light pattern into a PMT, thus integrating all 

of the collected photons from this particular light pattern. Therefore, each intensity 

measurement is a unique combination of the patterns used for each of the source and 

detection DMDs. Figure 1b-c shows two examples of SL pattern sets, where the white 

area of the patterns represents the region on the object where light is illuminated or 

detected, while the black areas represent where light is neither illuminated nor 
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detected. With the first pattern set (Figure 3b), 12 distinct patterns are used on both 

source and detector sites, resulting in a total number of 144 measurements. With the 

second pattern set (Figure 3c), 10 distinct patterns can be used in combination, 

totaling to 100 distinct measurements. 

 

Figure 3. (a) Diagram of SLP-DOT for breast imaging. A laser is collimated onto an array of 
DMDs, which control and shine arbitrary patterns of light. Light travels through the breast, 

and is collected by another DMD, which integrates the signal according to a pattern and 
sends the light into a photomultiplier tube (PMT). Sample patterns are shown in (b) and (c), 
where white represents where light is illuminated or collected and black is un-projected or 

rejected signal. 

 

Near-infrared light can easily propagate through a slightly compressed breast, 

allowing us to interrogate the entire breast volume with both wide-field illumination 

and detection. Another advantage of this technique is the rapid data acquisition made 

possible by the use of the second DMD and the PMT. The PMT is used to quickly 

integrate the collected light into a large signal measurement. This is advantageous, 

especially in situations with low signal levels, where traditional detectors such as 

Focusing Lens

PMT

Laser 
Source

BreastCompression Plates

Collimation Lens

Image Lens

Image Lens

(a)

(b) (c)
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charged-couple device (CCD) cameras would require longer integration times to 

obtain a sufficiently large signal. The system’s fast data acquisition makes it ideal as 

a risk assessment tool. This is an important aspect for its clinical implementation 

because multiple wavelengths of light are required for chromophore quantification. 

An additional detail to consider is that the spectral response range of a typical PMT 

goes up to 850nm. The absorption of light by oxy- and deoxyhemoglobin dominate in 

the 600-825nm range, making the detector only sensitive to these two chromophores. 

Water and lipid, which both dominate in the 850-1000nm range, would be very 

difficult to quantify with measurements from a standard PMT. The addition of a NIR-

PMT, whose spectral response is 850-1000nm, would expand the wavelength 

window of our system and allow us to quantify all four chromophore concentrations. 

Typical CCD cameras are insensitive to longer wavelengths and cameras for NIR 

imaging are costly. By integrating the signal with the second DMD into a PMT allows 

us to quantify all of the relevant chromophores at a lower expense. 

1.5 Innovations and contributions 

 This work has achieved several innovative contributions: 

1. The application of optical tomography alone to image a volume, perform 

segmentation and quantify the %BD has not been done by the previously mentioned 

groups. Several groups measure and image the bulk chromophore concentrations 

from points along the breast [34,40,50]. Another group uses spectral information 

from data collected with transmission measurements to estimate the %BD without 

imaging the entire volume [44]. Another group combines DOT with MRI to 
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tomographically reconstruct the FGT distributions within the breast [38,39,51], but 

relies on MRI for structural a priori information. Considering all of the work that has 

been previously done, we have applied SL-DOT to tomographically reconstruct the 

3D chromophore concentrations within the breast and based on this, we perform 

segmentation to recover the FGT volume and %BD. 

2. Because our system provides 3D images of each of the chromophores within the 

breast, we can effectively use water and lipid for anatomical BD and use oxy- and 

deoxy-hemoglobin for functional BD, where anatomical and functional BD are 

independent risk factors for breast cancer. To our knowledge, none of the groups 

have pursued the measurement of a functional BD that correlates with the MRI-

related BPE. 

3. There have been no other groups that have applied SL-DOT to image and measure 

breast density. While there has been work done previously at RPI  [47–49], their focus 

is on improving and enhancing the technique to measure fluorescence and 

incorporate TD measurements. We have also further pursued the recovery of 3D 

chromophore concentrations from the SL-DOT measurements.  
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Chapter Two: Theoretical basis of diffuse optical 

tomography  

2.1 Photon interactions with biological tissue 

 In diffuse optics, the body is illuminated with an external light source.  Light 

photons travel through tissue and exit the body, where they are collected by a 

photodetector [25,26,52–57]. In order to be able to extract information about the 

internal optical properties of the tissue from these external optical measurements, 

we need to understand how photons interact with and propagate through biological 

tissue [54]. During their propagation through the tissue, photons can be either 

absorbed or scattered by molecules in the tissue [25]. This results in a lower amount 

of measured light than the amount initially injected into the tissue [58]. The amount 

of absorption and scattering photons undergo is dependent on the molecular 

composition of the tissue, forming optical contrast between different tissue types. 

Therefore, from the attenuation of light seen at the boundary, we can infer the 

internal breast tissue composition [34,41,50,59–63]. In addition, collecting 

measurements at multiple boundary positions allows the tomographic recovery of 

the internal distribution of these different tissue types within the breast [52]. Based 

on this, we can visualize the fibroglandular tissue within the breast, which is the 

parameter of interest in this study. 
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Figure 4. Illustration of photon interaction with biological tissue, where scattering changes 
the directions of the photons (indicated by arrows) and absorption extinguishes photons 

(indicated by star). Photons escaping the tissue on the same side of the source are reflected 
light and photons escaping on the opposite side of the source are transmitted light.  

 

 As previously mentioned, when traveling through tissue, photons can be 

absorbed by the medium. During this event, the photon is extinguished and can no 

longer propagate through the tissue; therefore, it cannot be detected at the boundary 

(Figure 4). The absorption coefficient, μa [mm-1], represents the probability of a 

traveling photon to be absorbed. The inverse of μa (
1

a


 [mm]) refers to the average 

distance a photon will travel before being absorbed [64]. The decay of light by 

absorption when traveling through a tissue of thickness x is described by the modified 

Beer-Lambert law [65]:  

  
0

exp( . )
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I
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where I and I0 are the measured and the initial intensities of light, respectively. The 

absorption coefficient of a given chromophore within a medium is dependent on its 

concentration C [M] and the wavelength of the light source used, λ: 

 
( ) ln10 ( )

a
C     

 (2) 

where ɛ(λ) [M-1 mm-1] is the wavelength-dependent extinction coefficient for a 

specific chromophore. When multiple chromophores are present within a given 

tissue, its total absorption coefficient is simply the sum of all the individual absorption 

coefficients of these chromophores:  

 ( ) ( ) ln10 ( )
N N

a ai i i
i i

C          (3) 

where N is the number of chromophores. In the so called therapeutic window (650-

1350nm), the most important absorbing chromophores found within the breast 

tissue are water, lipid, deoxy- and oxyhemoglobin [33,38,45,65], all of which have 

their own unique absorption spectrums (Figure 5)  [66–68]. By taking measurements 

and estimating the μa at multiple wavelengths, equation (3) can be used to recover 

multiple chromophore concentrations. The fibroglandular and adipose tissue have 

different composition of these chromophores, which results in optical contrast 

between the two tissue types. 
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Figure 5. The absorption spectrum in the near-infrared spectral window are shown for 
water [66], lipid [67], oxy- and deoxyhemoglobin [68]. 

 

 In addition to absorption, a photon can also undergo scattering while traveling 

through biological tissue. In a scattering event, a photon is not extinguished, but 

changes direction from its original line of path (Figure 4). Multiple scattering events 

result in high diffusion of light throughout the tissue. This will also cause a lower 

signal of light detected at a photodetector positioned directly across from source even 

if absorption is negligible. The scattering coefficient, μs [mm-1], is similar to the 

absorption coefficient in which it represents the probability of a photon being 

scattered [64]. Biological tissue is highly scattering, where photons will travel very 

short distances before they are scattered. Not only is biological tissue characterized 

with a high scattering coefficient, but it is also highly forward scattering. This 

parameter is captured by the anisotropy factor, g, which is the average of the cosine 

of the scattering angle when a photon is scattered [69]. If g is close to 1, photon will 
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be scattered in the forward direction. Conversely, values close to 0.5 show no 

preference for direction. Because is it complex and impractical to estimate μs and g 

separately, they are combined into the reduced scattering coefficient, μs ’ [mm-1], term:  

 (1 )
s s

g    .  (4) 

Scattering within tissue is not isotropic, meaning that the photons will not scatter in 

all directions equally. Instead, scattering within tissue is anisotropic and photons are 

more likely to be scattering forward, with values of g typically between 0.8 and 1 for 

tissue [70]. The inverse of the reduced scattering coefficient, called the transport-

mean-free pathlength, describes the distance a photon will travel before becoming 

fully isotropic, where the original direction of the photon when it entered the tissue 

has been lost [64]. The extent to which a tissue will scatter light depends on the size 

and spatial distribution of molecules present in the medium:  

 ( ) b

s
a        (5) 

with a and b as tissue-specific parameters [70]. 

2.2 Photon propagation model 

2.2a. Modeling Near-infrared Light Propagation in Biological Tissue  

The radiative transfer equation (RTE) is a derivation of Maxwell’s equations 

that is an appropriate model for light propagation through tissue [64,71,72]:  

4

ˆ1 ( , , ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ( ) ( , , )
t s

L r t
L r t L r t L r t p d Q r t

t 
 



 
          

 
 

  (6) 
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where ν is the speed of light in tissue, ˆ( , , )L r t [W mm-2 sr-1] is the light radiance at 

position r with ̂  directionality at time t, μt [mm-1] is transport coefficient μa + μs, 

ˆ ˆ( )p    is the phase function that describes the probability of a photon scattering 

to direction ̂  given its original direction ˆ  , and ˆ( , , )Q r t [W mm-3] is the light 

source.  Solving the RTE is very complex due to the number of independent variables, 

specifically the directionality of the photons. The light radiance can be converted to 

photon density, ( , )r t  [W mm-2], by integrating the intensity of photons over all 

solid angles [64]:  

 
4

ˆ ˆ( , ) ( , , )r t L r t d


       (7) 

where ( , )r t  is the photon density at position r and time t. When the scattering of a 

medium is predominant over the absorption. The photons become isotropic and the 

RTE can be simplified to the angle-independent photon diffusion equation under the 

assumption μs’ >> μa  [24,64]:        

 
1 ( , )

( ) ( , ) ( , ) ( , )
a

r t
D r r t r t Q r t

t





      

 (8) 

where ( )D r  [mm-1] is the optical diffusion coefficient 
1

3( ( ) ( ))
a s

r r  
 . Because 

our system uses laser sources in continuous-wave (CW) mode, the photon diffusion 

equation can be further reduced to a time-independent form [27,52,53,73]: 

 ( ) ( ) ( ) ( )
a

D r r r Q r      . (9) 
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The Robin boundary condition was chosen be to be the most appropriate 

method to model the photons behavior on the surface of biological tissue. The photon 

flux is obtained from the photon density as follow [74]:  

    ( ) 2 ( ) ( ). 0r AD r r n  (10) 

where n  is the normal vector perpendicular to the surface and A is the boundary 

mismatch parameter that account for reflection at the boundary, based on Fresnel’s 

reflections [71,74,75]. Therefore, the photon flux at the surface is calculated as: 

 ( )
2

D r
n A


 

  


  (11) 

where   is the photon flux [W mm-2]. 

2.2b. Solving the photon diffusion equation  

 There are many different methods to solve the diffusion equation. An 

analytical solution can be formulated for specific conditions and quickly 

solved [54,76–87]; however, it is complex to solve, is limited to simplistic geometries 

and can only be used for mediums with homogeneous absorption and scattering 

distributions. Numerical methods offer a better solution for modeling photon 

propagation through complex geometries with heterogeneous optical properties. 

Monte Carlo is one numerical method that is widely implemented, where photon 

propagation is modeled based on the stochastic processes of absorption and 

scattering [88,89]. A number of photons are modeled through the medium, where a 

greater number of samples achieves more accurate results. While an advantage of 

Monte Carlo is that it can keep track of the path history of a traveling photon 



22 

 

throughout the medium, the need for large sample size makes it computationally 

long [90]. Alternatively, finite element method (FEM) can be used to solve the 

diffusion equation. Like Monte Carlo, it is geometrically flexible and can be used when 

the medium has heterogeneous optical properties. In FEM, the volume is discretized 

into small tetrahedrals connected by vertices known as mesh nodes [74,91]. The 

diffusion equation is solved over a short distance between these mesh nodes. FEM 

can be computed quickly and yields results as accurate as Monte Carlo [72]. For our 

photon propagation model, we chose FEM for its speed and its simple 

implementation. 

In FEM, the diffusion equation, which is a partial differential equation (PDE), 

is solved by approximately solving its weak form, which is obtained by multiplying by 

an arbitrary weighting function  and integrating over a volume of interest [92]. The 

weak form is formulated as [72,74,78]: 

 
1

( ) ( ) ( ) ( ) ( ) ( )
2a d

D r r r d r d d Q r d
A

   
  

             . (12) 

The solution to the PDE is assumed to be a linear combination of basis functions for 

each node j within a FEM mesh with N being the number of nodes, where: 

 
1

N

j j
j

 


  .  (13)  

Additionally, the diffusion coefficient can be written as
1

N

k k
k

D D 


 , the absorption 

he coefficient can be represented as
1

N

a a k k
k

  


 and the arbitrary test function can 
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be rewritten as
1

N

x
x

 


 . The FEM representation of the photon diffusion equation 

becomes [72]:  

 


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i i
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A D d

B d

C d

S Qd

. (14) 

Matrix algebra is used to solve for the expansion coefficients of the basis functions, 

which solves the FEM representation of the diffusion equation and thus providing the 

photon density at each node within the mesh. The boundary condition is applied 

where the photon flux is calculated at the surface nodes as discussed in equation (11). 

The calculation of the solution using FEM will be referred to as the solution of the 

forward problem. 

2.3 Image reconstruction in diffuse optical tomography 

There are many different techniques and algorithms to reconstruct the 3D 

internal optical properties from measurements performed at the boundaries of a 

volume [52]. For our study, we use a non-linear image reconstruction algorithm to 
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iteratively find the optical properties until convergence. Generally, the image 

reconstruction algorithm consists of generating predictions using a numeral model 

with a given set of optical properties, then comparing them with the experimental 

measurements. Our estimated optical properties are updated iteratively until the 

difference between the predictions and the measurements are minimized. This is 

referred to as the solution of the inverse problem [52].  

2.3a. Inverse problem 

The optimization scheme we employ minimizes the quadratic error between 

the experimental measurements and the prediction obtained using the current 

estimate of optical properties [27,52]: 

 
2

, ,,
min ( , )

a
s d s d aD

y F D


    (15) 

where Ω is the objective function being minimized based on D and µa, ys,d is a vector 

containing the measurements from using source s and detector d, and the operator 

F(D,µa) is the solution of the forward problem based on the current estimates for  D 

and µa.  

The main step in solving the inverse problem is the creation of a matrix which 

relates the variations of the internal absorption coefficient at any position within the 

medium to their induced perturbations in the measurements created using all the 

source-detector pairs. This matrix is commonly called the sensitivity matrix or the 

Jacobian matrix. This matrix can be obtained using the perturbation theory, which is 

based on the approximation stating that variations of μa will induce changes in 

measurements ys,d(μa), which can be expressed by a Taylor series [52]: 
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a a

y y
y y  .  (16) 

The coefficients μa0 and μa1 respectively represent the initial and the perturbed state 

of the internal absorption coefficient μa.  

Considering only the first order terms in equation (16), we obtain the 

following definition: 

  
     , 0 , 1 , 0

, 0

1 0

s d a s d a s d a

s d a

a a a

y y y
J

  


  

 
 

 
.  (17) 

This matrix contains the amplitudes of variations in the measurements ys,d(μa) caused 

by a variation in the internal absorption μa when source s and detector d are used. 

The full Jacobian describing all the variations for the whole set of source-detector 

pairs can be obtained by assembling all the individual Jacobians Js,d. This full Jacobian 

is of size MxN, where M is the number of measurements and N the number of mesh 

nodes.  

From equation (17), we can write: 

   , 1 , 0 , 0 1 0( ) ( )s d a s d a s d a a ay y J       . (18) 

Equation (18) shows that the updates of the absorption coefficient can be obtained 

by simply inversing the Jacobian Js,d. However, the number of unknowns N is much 

greater than the number of measurements M, making the Jacobian a non-square 

matrix. Also, the Jacobian matrix is singular and its inversion is not a straightforward 

process. This limitation makes the inverse problem of DOT undetermined and 

strongly ill-posed. Hence, the pseudo inversion iterative algorithm of Levenberg-

Marquardt is used to solve this problem [93,94]: 
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      


   
1

( , )T T
a aJ J I J y F D  (19) 

where Δµa [Nx1] is the update to the absorption coefficient. Δµa is iteratively 

calculated and added to the current estimate of the absorption coefficient. I is defined 

as the identity matrix. The Hessian matrix, JTJ [NxN] is known to be ill-conditioned. 

Several techniques exist to reverse this type of matrix [53]. The common one consists 

in adding a term to its diagonal for stabilization. max( ( ))Tdiag J J    is the 

regularization factor used to improve the stability of the inversion of the Hessian 

matrix (JTJ) by making it diagonally dominant [95–100]. For every iteration, the 

residual error is calculated and is used to check for convergence. During this 

minimization, the iteration with the lowest residual is chosen as the correct set of μa 

values. The maximum number of iterations was set to 25 but if the residual has not 

changed more than 5% for 5 iterations, then the solution is accepted and the 

algorithm terminates.  

2.3b. Construction of the Jacobian sensitivity matrix 

As previously mentioned, the update to estimate our new optical properties is 

calculated using the Jacobian matrix J. Implementing the Jacobian matrix defined in 

equation (17) requires the resolution of the forward problem N(NS+1) times, with NS 

being the number of sources. The first NS times are solved to obtain the 

measurements ys,d(x) using the homogeneous set of optical properties x=[μa, μs']. 

Afterwards, the forward problem is solved after the sequential perturbation of x at 

every node of the mesh. Clearly, this method is very time consuming. Therefore, an 

alternative to computing the sensitivity matrix has been established, called the 
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adjoint method, which is based on reciprocity [52,91,101]. This method states that the 

influence of source s on detector d is the same as the influence of d on s when d is used 

as the source and s as the detector. Using this formulation, the Jacobian is simply 

obtained by solving the forward problem NS+ND times, where ND is the number of 

used detectors. This adjoint method significantly reduces the Jacobian assembly time 

and the overall computation time [102]. 

For our initial studies, we focus on measuring the absorption coefficient only, 

and thus x = µa and µs’ is considered constant and known. The Jacobian is thus 

constructed as: 

 

1 1

1

1

a aN

M M

a aN

d d

d d

J
d d

d d

 

 

 



 

  (20) 

where each row represents one measurement and each column represents each node 

in the mesh.  

2.4b. Recovering chromophore concentrations 

Based on the optical absorption maps recovered at multiple wavelengths, the 

water, lipid, oxy- and deoxy-hemoglobin concentrations are calculated using 

Equation (2). A system of linear equations can be constructed for each mesh node 

using L recovered absorption (μa) values and N known extinction coefficient (ɛ) of the 

chromophores [31,65]: 
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 [
C1

⋮
CN

] = [log (
ε(𝜆1)1 … ε(𝜆1)N

⋮ ⋱ ⋮
ε(𝜆𝐿)1 … ε(𝜆𝐿)N

)]

−1

[
𝜇𝑎(𝜆1)

⋮
𝜇𝑎(𝜆𝐿)

] (21) 

This system of linear equations is solved with a non-negative linear least squares 

minimization, giving us the chromophore concentration for each node. Therefore, 3D 

maps for each chromophore, water, lipid, oxy- and deoxy-hemoglobin, are obtained. 

2.4 Structured-light based DOT 

The previously described image reconstruction algorithm describes DOT in 

general, where there is typically one source node that represents the position of each 

point laser source and one detection node that represents the position of each 

photodetector. The major difference between traditional DOT and structured-light 

DOT (SL-DOT) is the use of structured-light patterns over an area of the boundary in 

SL-DOT. Several modifications to the reconstruction algorithm need to be performed 

in order to reconstruct images from data taken with SL-DOT. 

2.4a. Conversion of point sources to patterned sources 

 Point sources are normally modeled by the placement of a node at a position 

on the FEM mesh that mimics its location on the experimental setup. As imposed by 

the diffusion approximations, the node is placed inside the medium, at a depth of 

 1 /
s

, to model an isotropic light source. In SL-DOT, the source nodes are selected 

at a depth of  1 /
s

 to represent each source SL pattern. Given a binary pattern where 

light is either illuminated (1) or not illuminated (0), nodes that overlap with the 

illuminated areas of the pattern are chosen as the source nodes for that SL pattern.  
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 Considering the irregular nature of the mesh, the number of nodes per SL 

pattern may not be uniform despite the SL patterns having the same amount of 

illuminated area. This results in some SL patterns having higher light intensity than 

others that have the same area. To correct for this, we modify the value of the light 

source when modeling the photon propagation with FEM. In traditional DOT, the 

single source node is set to 1 and the calculated photon fluxes are a fraction of that 

source light. In SL-DOT, every source node in the pattern is also assigned as 1, but 

multiplied by a correction factor. The correction factor is determined by the number 

of nodes and surface area of each SL pattern, normalized to the pattern with the 

maximum area in the set: 

 



1 s

s

N

A

s

M

Q
Q

 (22)   

where Qs is the value assigned to the nodes in source s, Ns is the number of nodes in 

source s, As is the area of the pattern s, and QM is the value M

M

N

A
 of the source pattern 

with the largest area in the set. This ensures that the amount of light for each source 

pattern is dependent on the area of the pattern and not the number of nodes it 

contains. 

2.4b. Integration of the flux on detection side  

Like the source in traditional DOT, the detector is also represented by a single 

node. The flux is simply the value at the detector node calculated by solving the 

forward problem. SL-DOT uses a DMD to integrate the signal over a given SL pattern 

on the detection side, we need to consider the fluxes at all nodes in the detection 
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pattern and calculate their sum. We interpolate the flux values at the boundary nodes 

on to a finer Cartesian coordinate system with a rectangular grid (200 x 200) to match 

our SL patterns. The integrated flux is calculated as:  

 
dP

d i i
i

M A   (23) 

where Pd is the number of pixels in the that align with the detection SL pattern d, Ai is 

the area of the pixel and i  is the interpolated flux at the center of ith pixel. This is 

done for each forward problem solved with a specific source SL pattern, resulting in 

[SxD] number of measurements. 
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Chapter Three: Measuring breast density using structured-

light – simulation studies  

 Simulations were performed in order to test the feasibility of structured-light 

DOT in recovering the anatomical breast density. There is a large variety of FGT 

distributions within the breast, from having a centralized mass of FGT to having small 

pieces of FGT dispersed through the breast volume. Prior to phantom studies, we 

simulated optical measurements with breast-like numerical phantoms to understand 

the capabilities of SL-DOT and image various breast types with different FGT 

distributions. 

3.1 Simplistic geometry phantoms  

 Our first simulation study looked at the ability of SL-DOT to recover 

absorption maps using different sized spherical inclusions centered inside a 3D 

rectangular geometry. The inclusion sizes ranged from 10 to 55mm in diameter, with 

5mm intervals. SL-DOT measurements were created with our forward model and 

then used as inputs in our image reconstruction algorithm. Three-dimensional 

absorption maps were created for each case and were compared to the true geometry. 

Results were presented in terms of the percent volume of the sphere with respect to 

the total rectangular volume.  

3.1a. Methods: Mesh creation 

 A rectangular phantom 100 x 90 x 60mm3 was created in COMSOL and then 

meshed. The mesh consisted of 9300 nodes and 46455 tetrahedral elements. The 
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inclusions were placed at the center by selecting the nodes that were within the 

spherical volume as defined by the Cartesian coordinate representation of a sphere. 

The inclusion had an absorption of 0.0374mm-1 and the background had an 

absorption of 0.0168mm-1. These absorption values were calculated for a 1000nm 

light-source based on the assumption that FGT contains 80% water and 30% lipid, 

while adipose tissue contains 20% water and 70% lipid [39]. The scattering 

coefficient of both the inclusion and background was set to 0.6mm-1 [65,70]. 

3.1b. Generation of synthetic measurements  

The pattern set consisted of vertical and horizontal stripes, as well as 

checkerboard patterns (Figure 6a). For each pattern, nodes that overlapped with the 

illuminated area of the pattern were chosen as the source or detector nodes (Figure 

6b-d). The full pattern size projected onto the phantom was 70 x 80mm2 centered 

onto the phantom surface, resulting in a 10mm margin on all sides. The source nodes 

were placed on the Y-Z plane at x = 1.67mm, which corresponds to  1 /
s

below the 

surface. Then, the forward problem was solved sequentially by alternating the 12 

source and the 12 detectors patterns, creating a set of 144 measurements. Each of 

these 144 measurements represent a unique combination of the source and detector 

patterns. These measurements will be later used as synthetic data for our image 

reconstruction. 
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Figure 6. (a) The pattern set used for the simulations of spherical inclusions. Patterns consist 
of vertical and horizontal stripes as well as checkerboards. The white area represents where 

light is illuminated or detected and the black area represents where light is neither 
illuminated nor detected. (b-d) Nodes of the FEM mesh with a 30mm diameter spherical 
inclusion (red). The black dots are the boundary nodes. The yellow circles outlined in red 

are the source (x=1.67mm) and detector (x=60mm) nodes. Shown are the source and 
detector pattern combinations (b) 2 & 4, (c) 6 & 5, and (d) 7 & 10. 

3.1c. Image reconstruction and analysis 

 During this study, it was found that our initial method to preliminary method 

to integrate the flux on the detection side was not realistically accurate. Prior to the 

method mentioned in the previous chapter, the flux was originally integrated by the 

direct summation of the values calculated at each element’s center of gravity:  

  
dE

d j j
j

M A   (24) 

where Md is the integrated intensity measurement for detector d, Ed is the number of 

elements whose vertices are the detection nodes, Aj is the area of the element j, and 

i
  is the flux at center of element j, calculated by interpolating the central value 

within its three connected nodes. This improved the accuracy of the model, but 

because the elements are triangular and the SL patterns we use are rectangular, there 

may be cases where the triangular elements may not fall completely inside the 

(b) (d)(c)

(a)

1 2 3 4 5 6 7 8 9 10 11 12
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detection area, leading to an overestimation of the signal. Conversely, there may be 

triangular elements where the two of its nodes are inside the SL pattern, but one node 

fall outside, in which case the element will not be counted towards the integration 

and result in an underestimation of the flux. This led to our current method of 

calculating the measurements by interpolating the flux to a finer Cartesian coordinate 

system. Using the simplistic stripe pattern (Figure 7a), the forward model was solved 

on a phantom with homogenous optical properties. Both two methods were then used 

to integrate the flux on the detection side and compared (Figure 7b). Based on the 

appearance of the actual measurements, it becomes evident that using the Cartesian 

grid-based method is more accurate. Given that some of the SL-patterns within the 

set are mirror-images of each other, we expect that their integrated intensities would 

be of similar values, especially when performed on a homogenous phantom. The grid-

based method produced measurements that are more symmetrical. The element-

based method, however, lacks this symmetry. For example, measurement #1 and 

#100 result from source-detection pattern combinations 1 & 1 and 10 & 10, 

respectively. These SL-patterns are stripes that are along the edge and in both cases, 

the source pattern is directly across from the detection pattern. Given that there are 

no inclusions within the phantom, these two measurements should be the same. In 

the case of the element-based integration, these two measurements are not the same 

value; on the other hand, the grid-based method produced measurements where #1 

and #100 are very similar (Figure 7b). For this reason, after we solve the forward 

problem, we interpolate the flux values to a finer Cartesian grid and integrate the 

intensities to form our measurements. 
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Figure 7. Simulated measurements were performed on a phantom with homogeneous optical 
properties with the pattern set presented (a). Comparison of the different methods to 

integrate the signal intensities on the detector side show that grid-based method performs 
the best, where the signals look smoother and symmetrical (b).  

 

 Our simulated measurements were then used in our reconstruction algorithm 

to find the 3D absorption maps of the numerical phantoms with different inclusion 

sizes. Image spatial resolution in DOT is generally low, especially when compared to 

MRI where internal structural boundaries are perfectly delineated. In our optical 

image reconstructions, we often get a diffuse-like image of an object and it may not 

be clear where to separate the inclusion from the background. For this reason, we 

rely on threshold-based segmentation of our absorption maps. Volumetric 
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information was extracted from the maps by segmentation at the half-maximum of 

the recovered absorption range. This segmented volume represents the 

reconstructed spherical inclusion, with higher absorption than the background.  

 

3.2c. Results 

 The purpose of this simulation study is to look at the reconstructed absorption 

maps of simplistic spherical inclusions and to find a correlation between these maps 

and the true volumes of the spheres. From the reconstructed absorption maps, each 

sphere size case was segmented based on their own recovered absorption values. 

With the exception of the 10mm diameter case, the optical segmentations show a 

linear trend of increasing volume (Figure 8). The larger the case, the more accurate 

the optical segmentation is, where the difference between the reconstructed percent 

volume (%Vol) and the real value is smallest for the 50mm diameter case (Figure 8). 

The smallest sphere case was greatly overestimated (Figure 9a).  

 

Figure 8. The real percent density of the spherical inclusions (blue) and the reconstructed 
percent volumes (red). With the exception of the 10mm diameter sphere case, the general 
trend of the segmented optical volumes increase as the sphere sizes increase, with more 

accurate results with larger objects.     
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In Figure 8, the optical segmented volumes are represented in the blue wireframe 

(bottom). The 2D representation of this segmentation can be seen as a green contour 

on the center slice of the absorption map (Figure 9a). As the size of the true inclusion 

increases, shown in red, the segmented volume, shown in the blue wireframe, 

becomes visually similar to the spherical inclusion. 

 

Figure 9. The central slice from the reconstructed 3D absorption maps for three different 
sphere sizes: (a) 10mm, (b) 30mm, and (c) 50mm diameter. The green contour outlined on 

each slice represents the segmentation at half-max of the recovered absorption values. n 
(d-f)The volumes segmented from the absorption maps are shown in the blue wireframe. 
The red object represents the true spherical inclusion used for simulating measurements.   

 

  

The recovered absorption values for each case were also analyzed from a 

quantitative point of view. The mean absorption of the node values within the 

segmented volume was calculated:  
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where n is the number of nodes within the segmented volume, and ai
  is the 

absorption value at node i. It was observed that the mean absorption for each case 

was related to the volume of the spherical inclusion (Figure 10). 

 

Figure 10. The mean recovered absorption value also has a relationship with the true sphere 
size, where smaller objects have lower recovered absorption and larger objects have higher 

recovered absorption 
 

3.2 Numerical breast phantoms 

 While our first study aimed to investigate recovering an inclusion with a 

simple geometry, our second simulation study focused on the performance of SL-DOT 

in imaging realistic FGT geometries. This study compares the percent breast density 

(%BD) obtained from the reconstructed absorption maps with the original MRI %BD. 

Seven MR breast cases were segmented to build the breast volume and the internal 

FGT geometries. Afterwards, synthetic measurements were created, from which the 
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absorption maps were reconstructed. Finally, the volumes segmented at the half-

maximum were used to obtain the %BD using our method and then compared to the 

MRI %BD. 

3.2a. Methods: Building the numerical breast phantoms 

Seven T1-weighted MR unilateral breast cases, where the adipose appears 

bright and the FGT appears dark, were imaged from healthy volunteers (Figure 11a). 

The cases were segmented using a previously developed in-lab k-means clustering 

algorithm to define the breast wall and to separate the FGT from the adipose tissue 

(Figure 11b) [20]. Each case consisted of slices, depicting the 3D images of the breast 

and the FGT. The MRI images were cropped to include only the breast of interest, 

where the bottom horizontal boundary was chosen to exclude the chest wall but 

include the breast as much as possible. The breast images were then used to create a 

computer-aided design (CAD) file (.stl) in MATLAB (Mathworks; Natick, 

Massachusetts). The CAD file was then exported to COMSOL Multiphysics (COMSOL; 

Stockholm, Sweden) to build the 3D geometry from the surface defined by the CAD 

file. After obtaining the 3D geometry, the COMSOL mesh generator was used to 

discretize the numerical geometry into small tetrahedrals. The source and detector 

planes were finely meshed compared to the other boundaries, creating a high density 

of nodes that can be chosen to represent the structured-light patterns. The FEM mesh 

information for each breast was exported back to MATLAB, where the FEM basis 

functions were created for each case. The FGT segmentations from MRI were then 

used to designate nodes within the mesh as FGT, by matching the 3D coordinates of 

the segmentations to the node coordinates in the mesh (Figure 11c). The remaining 
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nodes were designated as adipose tissue. The initial absorption properties that were 

assigned were 0.005mm-1 and 0.02mm-1 for the adipose and fibroglandular tissue, 

respectively. For simplicity, the scattering coefficient for both adipose tissue and FGT 

was 0.6mm-1. 

 

Figure 11. (a) Breast MR image is segmented to have the chest wall removed and is 
separated into a unilateral breast image. (b) The segmented breast MR slices separate the 

fibroglandular tissue from the breast volume. (c) Using the coordinates from the 
fibroglandular tissue geometries, the fibroglandular tissue was defined at specific nodes 

(red) with the FEM mesh. The green wiring represents the boundary elements. 
 

 

3.2b. Methods: Simulation of SL-DOT measurements 

 For each breast case, the same pattern set used in the previous study was also 

used to designate the source and detector nodes (Figure 6a). On both the source and 

detector planes for each FEM mesh, a rectangular field-of-interest (FOI) for 

illumination and detection was chosen manually for each breast case. This FOI 

represents the boundaries of the SL patterns. Because the breast surface is not flat, 

the plane of the SL pattern lies along the curved surface of the breast. The FOI is 

maximized as much as possible on this curved surface without allowing its corners to 

wrap around the sides of the breast (Figure 12). This was done to replicate the real-

life scenario where we avoid allowing the light source to directly enter the detector 

(c)
(b)

(a)

(a)(a)
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without having passed through the breast. The synthetic measurements were then 

created as previously mentioned. 

 

Figure 12. Example of how the source (yellow circles) and detector (blue circles) nodes are 
placed onto the breast. The boundary of the breast is shown in green and the FGT is shown 

in red. Shown are source and detector pattern combinations (a) 7 & 10 and (b) 12 & 11.  

 

3.2c. Methods: Image reconstruction and analysis 

 Using the previously created synthetic measurements, the inverse solver was 

used to find the internal absorption distribution of the breast. For each case, the 

image reconstruction algorithm produced a 3D absorption map at each iteration of 

the minimization. The best solution was chosen from the iteration with the smallest 

residual error. 

 Similar to the previous study, a volume was segmented at the half-maximum 

of the recovered values of the 3D absorption maps. This volume was used to represent 

(a) (b)
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the recovered FGT volume within the breast. From this volume, we calculated the 

optical %BD, which is the ratio of the FGT and the breast volumes, denoted as %Vabs. 

3.2d. Results 

 Volumetric information that was extracted from the reconstructed absorption 

maps was compared to the volumetric information obtained from MRI. The 3D 

segmentations of the absorption maps (blue wireframe) for three cases are presented 

in Figure 13a-c. Although correlated (r = 0.93), it has been generally observed that 

lower density cases tend to be overestimated and higher density cases tend to be 

underestimated (Figure 13d). 
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Figure 13. (a-c) The 3D segmentations of the reconstructed absorption maps for three 
different cases. The segmented optical volume is shown in the blue wireframe with the MRI-

generated FGT geometries shown in red. (d) The correlation between the optical percent 
density and the MRI-based percent density for six cases are shown. The low density cases 
are above the line of unity (dashed line), showing that they are overestimated, while the 

higher density cases are underestimated. 
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(Figure 14). The MRI %BD is 33.31% while the optical %Vabs was 24.12% (Figure 

14b). This can be solved by changing the FOI from a rectangular shape to a complex 

shape that covered the entire breast. The use of DMDs to spatially modulate the SL 

light patterns can also be used to spatially modulate the FOI, thus achieving shapes 

that match the breast profile. 

 

Figure 14. (a) Highly dense breast case where SL pattern FOI does not cover the entire 
breast volume. (b) The segmented optical volume (24.12%, blue wireframe) is 

underestimated compared to the true FGT density (33.31%, red).   

 

Additionally, the FGT geometries seen in MRI are very complex, where 

radiologists can visualize and describe breasts as “fatty,” “scattered,” and 

“heterogeneously dense.” This is related to the BI-RADS categorization, and also 

refers to not only the size of the dense tissue but also to its distribution. For the 

purpose of our study, we have used different FGT morphologies which can be 

classified as “intermingled” type (to avoid confusion with the optical property of 

scattering) and “centralized” type (to avoid confusion with the term optical 

(a) (b)
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heterogeneity). Intermingled geometries describe FGT that is dispersed into many 

smaller pieces throughout the breast and centralized geometries describe FGT that is 

mostly a large mass without many gaps. The next study aims to further look at SL-

DOT reconstruction of these complex tissue morphologies.  

3.3 Chromophore reconstruction and analysis 

To test the feasibility of SL-DOT in quantifying breast density, we conducted a 

simulation study using numerical phantoms made from healthy breast MR 

images [103]. From these images, we built the FGT geometries and integrated them 

into a rectangular geometry to model a slightly compressed breast. The forward 

problem was solved to create synthetic measurements, which were then used in our 

image reconstruction algorithm. We recovered the 3D absorption properties and 

subsequently the 3D chromophore maps. We analyzed the water and lipid maps in 

order to obtain an optical-based %BD.  

3.3a. Methods: Breast numerical phantom generation 

In order to model a slightly compressed breast, a rectangular geometry, 

60x100x90m3, was used. This geometry was meshed using COMSOL into 46455 

tetrahedral elements connected at 9300 nodes. Light was projected onto Y-Z plane 

(x=0mm), propagated through x-axis of the phantom and detected on the opposite 

(x=60mm) plane.  

To mimic realistic FGT distributions, 45 (31 central and 14 intermingled tissue 

morphologies) segmented T1-weighted unilateral breast MR images of healthy 

patients were used (Figure 15). The coordinates of the FGT’s binary segmented masks 
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were used to designate which of 9300 nodes are considered FGT, with the remaining 

nodes designated as adipose tissue (Figure 15g-i). For the FGT cases that exceeded 

the volume of the rectangular geometry, the FGT volume was rescaled equally in all 

dimensions (maintaining the original aspect ratio) until the FGT was fully within the 

rectangular geometry.  

 

Figure 15. (a-c) Central breast MR slices are shown for three cases of increasing density. (d-
f) All of the MRI slices for each case are segmented to separate the FGT from the breast 

volume. (g-i) These FGT volumes are then used to build numerical breast phantoms within a 
rectangular FEM mesh. [103] 

 

3.3b. Methods: Simulations 

As introduced in the previous chapters, the main chromophores of interest 

present in the breast within the therapeutic window are: water, lipid, oxy- and deoxy-
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hemoglobin. Different absorption coefficients values were attributed to the two tissue 

types of the phantom. This is based on the fact that contrary to adipose tissue, FGT 

has a higher water content and lower lipid content (Table 1) [41,46,104]. For our 

preliminary tests, we focused on measuring the differences between water and lipid 

levels to calculate the anatomical percent densities. For this reason, the total 

hemoglobin levels of the FGT and adipose tissues to 30µM and 15µM, respectively 

(Table 2). This is within the range of hemoglobin concentrations found throughout 

literature [33,45,46]. The tissue oxygen saturation (%StO2) of the FGT and adipose 

tissue were assumed to be 75% and 80%, respectively, where it has been found that 

FGT typically has a lower %StO2 than adipose tissue [39,46,105]. Synthetic 

measurements were simulated using our FEM SL-DOT solver at five different 

wavelengths: 760, 780, 830, 925 and 950 nm (Table 2). 

Table 1. Concentrations of water, lipid, oxy- and deoxyhemoglobin chromophores chosen for 
both adipose and fibroglandular tissues. 

Tissue Water Lipid Oxyhemoglobin Deoxyhemoglobin 

Adipose 30% 70% 6.25μM 2μM 

Fibroglandular 70% 30% 18.75μM 8μM 

 
Table 2. Absorption coefficients for both adipose and fibroglandular tissue at five 

wavelengths. Absorption values were calculated from proposed chromophore 
concentrations from Table 2 using equation (3). 

Tissue 760nm 780nm 830nm 925nm 950nm 

Adipose 0.0035 mm-1 0.0028 mm-1 0.0035 mm-1 0.0157 mm-1 0.0169 mm-1 

Fibroglandular 0.007 mm-1 0.0063 mm-1 0.0075 mm-1 0.202 mm-1 0.0345 mm-1 

 

3.3c. Chromophore map analysis 

The simulated measurements were used as inputs in our image reconstruction 

algorithm. The inverse problem was solved for each wavelength to provide the 
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estimated absorption coefficient at each node. Using Equation (21), we are able to 

calculate the 3D concentrations of the chromophores of interest at each node using a 

non-negative linear least squares minimization. Given the fact that the 3D maps of 

water and lipid are more correlated to the FGT, we explored various ways of 

quantifying the anatomical percent density. We did not choose to analyze the 

hemoglobin concentration maps because they are more indicative of blood perfusion 

of the FGT, which is similar to BPE-MRI. Become BPE is another independent risk 

factor and shown to be uncorrelated with the anatomical %BD [106], hemoglobin will 

be used in future analysis. There are two main approaches that other research groups 

have considered when relating the optical measurements to breast density: obtaining 

visual maps and delineating the FGT from the breast volume or using spectroscopic 

information to estimate the percent breast density. Since our technique is 

tomographic and provides 3D chromophore maps throughout the volume, 

segmentation based on the spatial distribution of the concentrations was first 

attempted. We segmented both the water and lipid maps at their respective half-

maximum thresholds, for each case. We denoted this as %Vwater and %Vlipid for water 

and lipid, respectively. Based on this, we explored two different approaches to 

correlate these chromophore maps to the anatomical breast density: 

Approach 1: Because the %Vwater and %Vlipid segmented for each case were 

highly correlated with each other, we chose one of the parameters (%Vwater) 

and compared it to the MRI %BD. This is similar to the absorption-based 

analysis that was performed in the previous simulation study. 
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Approach 2: We used the %Vwater and %Vlipid in combination with the actual 

recovered chromophore values, specifically the mean concentrations within 

the segmented %V, which we denoted as 𝐶̅water or 𝐶̅lipid: 

 

N Vol

i
i

C

C
N






  (26) 

where N is the number of nodes within the %V and Ci is the concentration of 

node i. Then we formed a regression model incorporating all four parameters 

that will be further discussed.  

3.3e. Results 

 Approach 1: Comparison between %Vwater and MRI %BD 

 The volumetric information from the water and lipid maps were extracted by 

segmenting the chromophore maps at the half-maximum and were compared to the 

MRI %BD. Both the %Vwater and %Vlipid are correlated with the real %BD, with r = 0.89 

(dashed-line) and r = 0.85 (solid-line) for the water and lipid volumes, respectively 

(Figure 16). The %Vwater values were used for error analysis, where the absolute 

difference between the %Vwater and MRI %BD was compared to the MRI %BD (Figure 

17). Cases along the horizontal line (y =0) have no difference between the %Vwater and 

%BD MRI, and therefore have no error (Figure 17). The plot reveals low density cases 

are typically above the 0 error line, meaning they are overestimated (Figure 17). 

Conversely, high density cases are below the line, meaning they are underestimated 

(Figure 17). The same tendencies to overestimate smaller objects and underestimate 

larger objects have been seen in the previous two simulation studies. Furthermore, 
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the cases were categorized as either of centralized or intermingled FGT 

morphologies, which revealed that the two most overestimated cases are of 

intermingled type (Figure 17). It is interesting to note that the distribution of tissue 

morphologies among the MRI %BD also shows that higher density cases are typically 

centralized types, while low density cases can be either intermingled or centralized. 

This is because at higher densities, the FGT will more likely have fewer gaps and 

appear like a large centralized mass.  

 

Figure 16. The relationship between both %Volumes and MRI %BD are shown. Water 
volumes (blue squares, r=0.89, dashed-line) and lipid volumes (green circles, r=0.85, solid-

line) both show correlation with the MRI %BD. 
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Figure 17. The absolute error between %Volwater and MRI %BD is shown. The horizontal line 
marks 0, or no, error. Cases above this line are overestimated while cases above this line are 
underestimated. Discrimination between centralized (blue squares) and intermingled (red 
triangles) FGT morphologies show that the most overestimated cases are the intermingled  

FGT cases. [103] 
 

Figure 18 presents three MRI breast cases: (a) a high density centralized case, (b) 

a low density centralized case, and (c) a low density intermingled case. The center 

slice of the water and lipid chromophore maps are presented in the second and third 

rows, respectively. On each chromophore map, the MRI-generated FGT geometries 

are outlined with a solid green line and the white dashed-line represents the 2D 

contour of the chromophore map segmentation (Figure 18). This figure illustrates 

that the high density case is underestimated, while the two low density cases are 

overestimated (Figure 18d-f, g-i). The two low density cases have similar MRI %BDs, 

but it was noted that %Vwater was 3.4% for the centralized case and 6.08% for the 

intermingled case (Table 3). However, it can be visually seen on Figure 18 and from 

the values presented in Table 3, that the intermingled case had a lower 𝐶̅water and 

higher 𝐶̅lipid than the centralized case. The second approach we used to estimate the 
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%BD from the reconstructed chromophore maps uses these differences in the 𝐶̅ to 

correct for the over- and underestimations.  

 

Figure 18. (a-c) Three breast MRI cases of different densities and tissue morphologies are 
presented. (d-f) The reconstructed water maps are shown, where the green outline shows 

the MRI-generated FGT while the white dashed-line shows the contour of the %Vwater 
segmentation. (g-h) The lipid maps are also presented, where the black solid line is the FGT 

and the blue dashed-line is the %Vlipid segmentation contour. [103] 
 
 

Table 3. The parameters of the three cases presented in Figure 18.  

Breast density & 
morphology 

High, centralized Low, centralized Low, intermingled 

MRI %BD 16.02% 1.53% 1.53% 

%Vwater 14.40% 3.40% 6.08% 

𝐶̅water (mol. fraction) 0.541 0.394 0.373 

%Vlipid 12.94% 4.40% 7.36% 

𝐶̅lipid (mol. fraction) 0.450 0.618 0.634 

 

(a) High density, central: MRI slice (b) Low density, central: MRI slice (c) Low density, intermingled: MRI slice

(i) Low density, intermingled: Lipid Map

(f) Low density, intermingled: Water Map(d) High density, central: Water map

(g) High density, central: Lipid map

(e) Low density, central: Water Map

(h) Low density, central: Lipid Map



53 

 

Approach 2: Comparison between a regression model and MRI %BD 

It was observed that the recovered absorption coefficients were dependent on 

the distribution of the FGT, i.e. higher percent densities had a higher recovered 

absorption value than lower ones. This was also seen in the first simulation study, 

where smaller sized spheres had a lower recovered absorption (Figure 10). This 

dependency on FGT distribution also manifested itself in the recovered chromophore 

concentration maps. It is important to note that the recovered absorption value for 

all the cases tend to be between the μa for pure adipose tissue and the μa for pure FGT. 

In the case where a breast has less FGT, a lower absorption will be recovered within 

the %V. During the minimization to find the chromophore concentrations, the 

algorithm will estimate that the smaller FGT volume has higher lipid and lower water 

concentrations, traits of adipose tissue. Conversely, a case with more FGT will have 

higher recovered absorption values and be seen as more similar to pure FGT. 

Therefore, this case will have lower lipid and higher water concentrations. The 

relationship between the MRI %BD and the water and lipid 𝐶̅  for all 45 cases is 

presented in Figure 19. Using these trends, we formulated a regression model that 

can correct for the overestimation and underestimation of the %BDs.  
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Figure 19. The mean water (blue) and lipid (green) concentrations within the segmented 
volume for each MRI case is shown. The plot shows that there is a dependency of the 

recovered chromophore concentrations on the MRI breast density, where high density cases 
have higher and lower recovered water and lipid, respectively. Lower density cases have 

higher recovered lipid and lower water concentrations. [103] 
 
 

 We built a regression model to estimate the %BD that uses the %V and corrects 

it with the 𝐶̅  for each case. Because the FGT size is positively correlated with the 

𝐶̅water, we multiplied the %Vwater directly by the mean water concentration:  

 Estimated % %
water water

BD C V    (27) 

where β is a coefficient found using a training set of 15 cases. This regression model 

corrects cases with a lower water concentration that would most likely be lower 

density cases. The coefficient β was found to be 1.87 and the model is shown in Figure 

20 (r = 0.96). 
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Figure 20. The estimated breast densities from the regression model that uses the %Vwater 
and 𝐶̅water values show high correlation with the MRI %BD.  

 

The FGT size was also seen to be inversely correlated with the lipid values and 

this was also incorporated into an expanded regression model in order to improve 

the prediction:  

 Estimated       
1 2

% % %
water water lipid lipid

BD C V C V . (28) 

The subtraction of the lipid term corrects for low density cases which have a 

higher lipid concentration. Using a training set of 15 cases, β1 was found to be 2.62 

and β2 was found to be 0.84. This regression model’s performance yielded a 

correlation coefficient of 0.97, which is slightly better than the previous model 

(Figure 21). Error analysis of this modified regression model shows that the absolute 
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difference between our estimation and the MRI %BD is well distributed around the 

horizontal no-error line, where there is no more tendency for low density cases to be 

overestimated and high density cases to be underestimated (Figure 22). Additionally, 

the largest error between our prediction and the MRI %BD was 3.8% (Figure 22). This 

is an improvement from the first method where we compared the %Vwater and the MRI 

%BD, whose largest error was 9.8% (Figure 17). 

 

Figure 21. The modified regression model that uses parameters from both water and lipid 
maps to estimate the %BD shows good agreement with the MRI %BD (r=0.97). [103] 
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Figure 22. The absolute error between the estimated %BD and the MRI %BD is shown. The 
horizontal line marks 0, or no, error. The error for all the cases has been reduced compared 

the first approach and are all well distributed along this line for all the MRI %BDs. [103] 
 

  

These simulation studies aim to look at the abilities of SL-DOT in imaging breast 

density. We found that although the exact volume may not be measured accurately 

for all sizes of the FGT, information encoded in the recovered absorption or 

chromophore concentration values can be used to correct any inaccurate estimations. 

Based on these preliminary simulation studies, we understood SL-DOT’s capabilities 

and planned phantom studies to test them experimentally. 
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Chapter 4: Benchtop instrumentation  

 Our SL-DOT instrumentation is a horizontal benchtop system that has 

undergone modifications throughout its development. The main difference in 

configuration between this technique and traditional DOT is the incorporation of 

digital micro-mirror devices (DMDs) to spatially modulate the light. Our first iteration 

was a single-DMD system that projects SL patterns and used a charged-couple device 

(CCD) camera to collect wide-field images. With this system, the integration of the 

intensity measurements was performed post-imaging. Our second and current 

iteration is a dual DMD system where one DMD is used for SL illumination and the 

other DMD is used to spatially modulate the collection of light. This collected SL is 

then diverted towards a lens that focuses the light into a PMT to be measured. This 

chapter discusses the both imaging setups and the LabVIEW software to automate the 

second system. 

4.1 Initial setup: Source DMD & CCD camera 

 Our first setup consisted of a laser source fiber coupled with a DMD projector 

and a CCD camera (Figure 23). The DMD projects SL patterns onto a phantom placed 

in between the light source and the CCD camera. The camera collected images of the 

opposite side of the phantom for each SL pattern projected. These images showed the 

spatial distributions of photons that are exiting the phantom. In order to convert 

these images into SL-DOT measurements, the intensity on the raw images were 

integrated with the FOI according to the SL patterns. This was done for each source 
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image, where each SL-DOT measurement is a different combination of the source and 

detection patterns.  

 

Figure 23. First preliminary setup of the SL-DOT system. A DMD projector coupled with a 
fiber laser source (a) projects light onto an agar phantom (b) and a CCD camera (c) collected 

images of the other side. 
 

 The schematic of the system is presented in Figure 24. The DMD SL patterns 

were manually changed using software on the computer. The CCD camera was then 

controlled using image acquisition software ColdBlue (Perkin Elmer; Waltham, MA).  

 

Figure 24. Schematic of the preliminary benchtop system. A computer controls which 
patterns the DMD projects and the settings of the camera. Images are collected when 

prompted through the computer. 
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4.1a. Laser Source Fiber 

 Two laser diodes, 660nm and 785nm, were used with this system. The 

wavelength of light used was manually switched by coupling the source fiber directly 

with the desired laser diode. The other end of the laser fiber is then connected to the 

DMD projector. The lasers operated in constant-power mode for constant laser 

intensity output to provide continuous-wave measurements. Because 660nm is in the 

visible region of light, it was used to mark the FOI of the DMD projector. The source 

fiber was then disconnected from the 660nm laser and then coupled to the 785nm 

laser for measurements. 

4.1b. CEL-5500 DMD 

 The source fiber connected to a DMD (DLP-5500, Texas Instruments) that was 

bought as a repackaged projector with a modular lens system (Compact Embedded 

Light (CEL)-5500; DLInnovations; Austin, TX) with removable components (Figure 

25). The DMD has 1024 by 786 micro-mirrors which spatially modules the projected 

light and projects images onto the phantom at the same aspect ratio (1024 x 786).  

 

Figure 25. CEL-5500 DMD projector used to spatially modulate the light source into 
structured-light patterns. 
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4.1c. CCD camera 

 A ColdBlue camera (Perkin Elmer; Waltham, MA) with a Kodak KAF3200ME 

CCD sensor (cooled to -30°C) was used to capture images of the opposite side of the 

phantom (Figure 26). Pixels within the images were averaged with 4-by-4 binning, 

resulting in a final image size of 570 by 382 pixels. A Sigma MACRO 50mm F2.8 lens 

was attached to the camera with a Nikon F-to-C adapter. A filter wheel is located in 

between the lens and the CCD sensor and is used in other fluorescence studies; 

however, in this project, the wheel position with no filter was used to collect light 

across all wavelengths.  

 

Figure 26. PerkinElmer ColdBlueTM CCD camera. Filter wheel was not used. 

 

4.2 Final Setup: Source DMD & Detection DMD 

 The current and final version of the instrumentation consists of two separate 

DMDs: one for SL illumination and one for SL detection. The CEL-5500 that had acted 

as the source in our previous setup is now coupled with a PMT and serves as the 
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detector (Figure 27c). A new DMD (DLP-3000; Texas Instruments; Dallas, Texas) is 

used as a source (Figure 27a).  

 

Figure 27. The final benchtop SL-DOT setup. (a) A source DMD coupled with a light source 
projects SL patterns onto (b) an agar phantom and (c) a second DMD with a PMT collects 

measurements from the other side. 
 

 The instrumentation is now automated through the use of LabVIEW software 

(Texas Instruments) and a data acquisition (DAQ) card (USB-6009; Texas 

Instruments). With the analog output of the DAQ card, a voltage (0-3.6V) can be used 

to apply a high voltage across the PMT (R7400U-01; Hamamatsu; Hamamatsu, Japan) 

to control its sensitivity to light (Figure 28). Using the digital outputs of the DAQ card, 

a 5V voltage can be applied across the input terminal of both DMD systems separately 

(Figure 28). This rising voltage trigger can induce the change of the SL pattern to the 

next pattern of the stored sequence. The input of the DAQ is then used to collect the 

current measurement from the PMT through a transimpedance amplifier (PDA-700; 

a b

c
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Terahertz Technologies, Inc.; Oriskanh, NY) and is converted into a voltage 

measurement (Figure 28). 

 

Figure 28. Schematic of the final benchtop system. The source DMD sends light towards a 
phantom and a detection DMD integrates the signal into a PMT. The current output of the 

PMT is measured by a transimpedance amplifier that is then measured by a data acquisition 
card (DAQ) and the computer. The computer controls the DMDs’ patterns and controls the 

sensitivity of the PMT through the DAQ.  

 

4.2a. Laser Source Fiber 

 With the current system, the number of wavelengths of light that are used 

increased. In addition to the two previously mentioned laser diodes, two more 

wavelengths were added: 808nm and 830nm. These lasers also operate in 

continuous-wave mode. When taking multi-wavelength measurements, the source 

fiber is connected to a fiber switch which controlled the wavelength of light being 

projected. The four laser diodes are connected as inputs to the fiber switch. The 

switch is used instead of directly coupling the source fiber to the laser diode because 
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the manually detachment and reconnection of the fibers to different laser diodes 

during an experiment may introduce variability among measurements on different 

phantoms.  

4.2b. Source DMD 

 The DLP-3000 from Texas Instruments is a DMD-based light projector that has 

three LEDs (red, green, and blue) for color images. For our study, we use our own 

fiber-based laser source, so the LEDs were removed from their positions and covered 

with black tape to prevent illumination onto the DMD. They were not detached 

completely because the projector circuitry has a feature to shut down the projector if 

the LEDs overheat. Completely removing the LEDs may result in the projector not 

functionally if the system does not detect a connection. The laser fiber source is 

connected to the projector through an adapter made in-lab and is attached where one 

of the LED sources was originally positioned (Figure 29a-2, b-1). A dichroic filter that 

was located along the light path was removed. This allows the light from our fiber to 

freely move towards a lens that diffuses the light onto a mirror, reflecting the light 

onto the DMD (Figure 29b-2). The DMD then determines which pixels are illuminated 

and the SL-pattern is projected through the imaging lens (Figure 29b-3). A close-up 

of the DMD is shown in Figure 29c; although the DMD array looks rectangular, the 

array is actually 608 by 684 micro-mirrors. Additionally, the projected aspect ratio of 

the full-screen is 16:9, so care was taken when uploading images to this particular 

DMD. Patterns were adjusted so that the aspect ratio of our SL-patterns were 

correctly projected.  
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Figure 29. (a-1)The new DMD projector that is coupled with (a-2) a laser fiber source. 
Looking at (b) the opened projector, (b-1) a light source sends light towards a mirror and 

lens, which then illuminates (b-2) the DMD. The DMD then controls which pixels are 
projected, and sends the projected SL-pattern towards (b-3) the imaging lens. (c) A close-up 

of the DMD behind the lens is also shown. 
 

4.3c. Detector DMD and PMT 

 The CEL-5500 that was previously used as a source is now used as a detector. 

Because the components of the projector are modular, we tested different 

configurations to optimize the collection of light. To be used as a detector, we found 

that only one piece, the diffuser, needs to be removed. The diffuser’s purpose is to 

diffuse the laser light so that the DMD is illuminated homogenously. If using the 

projector to collect light, the diffuser would distort the image before being focused 

into the PMT. The path of the collected image through a top-down view of the opened 

CEL-5500 is presented in Figure 30. (1) The imaging lens collects the light, which is 

sent towards (3) a DMD with the use of (2) a prism. Based on the incident angle, light 

entering at a 90° angle will be reflected towards the DMD. The DMD then spatially 
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modulates which parts of the image is collected and reflects that light back towards 

the prism. Rejected light is reflected away. Because the DMD reflects this light at a 12° 

angle, this light is then refracted towards (4) a mirror, reflecting this light towards 

(5) a focusing lens. The focal length of this lens is 25mm; (6) the PMT with a circular 

active area of 12mm diameter is aptly placed at the focal length to collect all of the 

focused light. The output of the PMT is connected to a transimpedance amplifier 

which amplifies the signal even further. Then the output of the transimpedance 

amplifier is then read by the DAQ.  

 

Figure 30. A view of the opened DMD system used for light collection is presented. Light 
from the agar phantom is collected with (1) the large imaging lens on the bottom left, the 

image of which is sent towards (2) a prism. Based on the angle of incidence, the prism 
reflects light towards (3) the DMD, where pixels are used to create the structured-light. The 

DMD reflects light back towards and passes through the prism, and is send towards (4) a 
mirror, which reflects the light towards (5) a focusing lens and to (6) the PMT.  

 

 We assumed that the light-path would be the same for illumination as it is for 

detection. We verified this by imaging a photograph (Figure 31a, lower-left) that was 

placed in front of the projector (Figure 31a). Initially, the 660nm (red) laser source 

was used in projector-mode to locate the field-of-view (FOV) if the DMD SL-pattern 
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was a square (Figure 31a). The laser fiber was removed and a photo was taken of the 

plane where the PMT would be placed (Figure 31b). Magnification of this plane shows 

that we can see the photograph of interest (Figure 31c). We also verified if the DMD 

can also spatially modulate the collection of images according to the SL-patterns. An 

example of this is shown with the checkerboard pattern (Figure 31d). The red laser 

light is used again to highlight the FOV (Figure 31e) and a magnification of the image 

plane shows that we only see the portions of the image that correspond to the “on” 

micro-mirrors of the DMD (Figure 31f). Please note that although the image is 

reversed at the imaging plane, the DMD is selecting the pixels that are highlighted 

with the red laser, which will be subsequently integrated into a single intensity 

measurement. Prior to each experiment, we verify the sequence and orientation of all 

the SL-patterns to ensure that they match the image reconstruction forward model. 
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Figure 31. The DMD system used to collect light and images. (a) The red laser light overlay 
over the image is used to determine where the field of view of the DMD is. Image used for 
example is shown in lower-right corner of (a). (b) A camera takes an image of the plane 
where the PMT is positioned (red-dashed line, a). (c) A magnified image shows that the 

entire FOV can be seen. Please note that the image is reversed due to the lens system, but 
this is insignificant because all of the signal will be integrated into the PMT. (d-f) Another SL-
pattern is demonstrated where only the DMD only reflects part of the image according to the 

pattern. 
 
 

The PMT is placed where the laser fiber is normally positioned. As mentioned 

previously, the DAQ card is used to apply a voltage to a high voltage generator (C4900; 

Hamamatsu) that controls the sensitivity of the PMT. The maximum voltage that can 

be applied is 3.6V, which corresponds to 900V across the PMT to accelerate the 

electrons towards the end terminal to generate a measurement. This sensitivity 

voltage is always optimized for each pattern set and laser source to maximize the 

(a) (b)

(c)
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signals collected by the PMT. The optimization is also performed for each experiment 

in case of day-to-day changes in the PMT sensitivity. For each pattern set, the source 

and detector SL pattern combination that produces the highest signal is used to find 

the PMT voltage that produces a 1μA measurement. This is the maximum 

measurement that is safely recommended for the PMT. The rest of the measurements 

within a pattern set are taken with the same voltage applied to the PMT.  

4.3 Control software for the system 

 Separate software is used to control both the CEL-5500 and DLP-3000 DMD 

systems. If performed manually, the software can be used to directly change the SL 

pattern. Both DMD systems features a voltage trigger where when a rising change in 

voltage across their terminals results in a change of the pattern. This was used to our 

advantage and a LabVIEW program was created to automate the changing of SL 

patterns and measuring PMT signals. 

4.3a. CELconductor Control Software 

 The CEL-5500 can be controlled from the computer using the CELconductor 

Control Software (DLInnovations). Images of the SL patterns (where white and black 

represent illuminated and non-illuminated pixels, respectively) can be uploaded and 

set as a pattern sequence (Figure 32). Patterns can be changed manually through the 

software, but there is an option to allow for an external 3.3V minimum voltage trigger 

applied to the CEL-5500 that can change the patterns as well. The DAQ card was used 

to supply 5V to the terminal located on the DMD driver board.  
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Figure 32. CELconductor Control Software from DLInnovations to control the CEL-5500 
DMD system. Software can be used to manually select patterns or store pattern sequences 

that can be externally triggered.  

4.3b. DLP LightCrafter Control Software 

 The DLP-3000 DMD system is controlled using the DLP LightCrafter Control 

Software (Texas Instruments). It controls most features of the DMD, including the 

LED current to adjust the LED power. Although we do not use the LEDs in our studies, 

we set the current to the minimum (141mA) to reduce the heat produced, prevent 

overheating and prevent the safety mechanism from shutting down the DMD system. 

Like the previously mentioned CELconductor software, binary images can be 

uploaded and manually changed through the user-interface (Figure 33). Images that 

are uploaded as a pattern sequence can be changed by applying an external 3.3V 

external trigger to the DMD system. This is done with a 5V output from the DAQ card. 



71 

 

 

Figure 33. DLP LightCrafter Control Software from Texas Instruments is used to control the 
DLP-3000 DMD system. The software allows for patterns to be manually selected or can 

store pattern sequences that can be controlled externally through voltage triggering.  
 

4.4c. LabVIEW control software 

 A graphical user interface (GUI) was created using LABView (Texas 

Instruments) to automate cycling through SL patterns and taking PMT measurements 

(Figure 34). Through the GUI, the user can specify what voltage to supply the PMT to 

control its sensitivity, the number of source and detector patterns that will be used, 

the number of samples to average, and the sampling rate of the DAQ card. The 

individual DMD control software are still required to select the SL pattern sequence 

and need to be initialized prior to using the LabVIEW GUI.  
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Figure 34. Graphical user interface created in LabVIEW to control the SL-DOT system. 
Parameters that are inputted include the voltage to apply to the PMT, the number of source 
and detector patterns, the number of samples to be averaged, and the sampling rate of the 

DAQ card.  

 

 An overview of the program is shown in Figure 35. When executed, a prompt 

will warn the user that the PMT will turn on to prevent light overexposure to the PMT. 

Then, the program applies the desired voltage to the PMT to begin taking 

measurements. The program then applies a 5V voltage to the source DMD, triggering 

the first source pattern to be projected. A 5V voltage is then applied to the detector 

DMD to trigger the first detection pattern. The DAQ card will average N number of 

PMT measurements at X sampling rate, with both N and X specified by the user. The 

program averages multiple PMT measurements to minimize the error due to 

fluctuations and obtain a steady signal. This average is then written to an Excel file. 

The program will loop through all the detections patterns while keeping the source 

pattern constant. The source pattern is then triggered to change, and the program 

loops through all the detection patterns again while taking measurements. This 
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nested loop ensures that all source and detection patterns combinations are 

measured.  The final Excel file will contain an array that is Nd  Ns long, where Nd is the 

number of detection patterns and Ns is the number of source patterns. Measurements 

are in {S1-D1, S1-D2, … S1-DNd, …… SNs-D1, SNs-D2… SNs-DNd} format, which match 

the format of the forward model of our image reconstruction algorithm.  

 

Figure 35. An overview of the LabVIEW code behind the GUI. 
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Chapter five: Characterizing and optimizing the 

structured-light DOT system 

 After completing the final hardware design, we tested and characterized the 

system. The first was to determine whether our system was stable and that 

measurements are consistent and reproducible. The second is to ensure that our 

intensity measurements have high signal-to-noise ratio by evaluating the signals 

throughout the system. Thirdly, we investigated the effect of averaging on the 

measurements. And lastly, we wanted to look at optimizing the SL pattern set based 

on experimental obtained data.  

5.1 System stability and measurement reproducibility 

5.1a. Stability of measurements over time 

 Prior to the start of these tests and our experiments, we turned the laser on 

for at least one hour in order for the temperature, and subsequently the power, of the 

LED to stabilize. A 60mW 785nm laser was used. Eleven PMT measurements were 

taken every minute without changing the patterns of the DMDs to check the stability 

over a short period of time (Figure 36a). The SL pattern that was used was a full-

square illumination that was 5mm by 5mm and centered on the phantom. The PMT 

voltage was set to 2.25V to optimize the signals collected. The sampling rate of the 

DAQ card is 10kHz and 1,000 samples were averaged to for the final measurement. 

Measurements were taken using a homogeneous epoxy phantom made with India ink 

as an absorbing agent and TiO2 as the scattering agent. The dimensions of the 
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phantom are 42x110x70mm3. This solid phantom is very stable and optical 

properties will not change within the short time period of the measurements. For our 

purposes, a stable system is defined as having a standard deviation less than 1%. The 

mean of these eleven measurements is 0.9083μA; the standard deviation is 0.0077μA 

which is 0.85% of the mean.  

A second test took six measurements were taken every five minutes without 

changing patterns (Figure 36b). This timing is comparable to the length of our multi-

phantom experiments where each phantom is imaged for 1-2 minutes for each 

wavelength of light. The settings of these measurements were the same as the first 

test where 1,000 samples were averaged and collected at a 10kHz sampling rate. 

Measurements were also performed on the same solid epoxy phantom. The mean of 

these measurements is 0.9199μA with a standard deviation of 0.0035μA (0.38% of 

mean).  

 

Figure 36. (a) Single intensity measurements taken every minute and (b) every five minutes 
to test the system’s stability over time. The mean of the measurements taken every minute is 

0.9083μA with a standard deviation of 0.0077μA. The mean of the measurements taken 
every five minutes is 0.9199μA with a standard deviation of 0.0035μA. In both cases, the 

standard deviation is less than 1% of the mean, which is acceptable for our imaging studies.   
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5.1b. Reproducibility of measurements over time  

Our final test took measurements using an entire pattern set. With 12 patterns 

for both the source and detection, 144 intensity measurements were taken every 30 

minutes for four hours. With a sampling rate of 10kHz and 1,000 sample number, this 

measurement set was acquired in less than 30 seconds. To test the reproducibility of 

these results, we used pair-wise intra-correlation coefficient (ICC) analysis in 

comparing the absolute values of the measurements over time. All pair-wise 

comparisons yielded a p << 0.01. A visualization of the correlation between two time 

points show high fidelity between the two sets of measurements (r = 0.98, Figure 37).  

 

Figure 37. Scatter plot of the 144 measurement set at t = 0min and t = 240min to visualize 
the correlation between the two. ICC analysis yielded a r = 0.9799 with a p << 0.01 for this 

particular pair-wise comparison. 

5.2 Signal levels and signal-to-noise ratio 

 A common goal when developing all types of imaging systems is achieving high 

signal-to-noise ratio (SNR). In order to extract the correct information from a 
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measurement, the signal must be much higher than the noise. Our SL-DOT system was 

evaluated for performance and compared to simulations of a traditional DOT point 

source and detector. Additionally, various number of samples collected by the DAQ 

card and averaged were tested to note its effect on the SNR. 

5.2a. Signal evaluation throughout system 

 Using a power meter, the power of the laser was measured to be 61mW 

(Figure 38a). It was found that there are points within the system that contribute to 

the loss of photons, thus lowering our recovered signal. With the laser inserted into 

the source DMD, the power meter was used again to measure the power of a projected 

45mm x 45mm square: 7.8mW. Thus, the efficiency of the source DMD is 0.128 

(Figure 38b). Using the simulation of a 53mm thick phantom with optical properties 

of 0.0066mm-1 and 0.645mm-1 for absorption and scattering, respectively, the 

fraction of the incident light that is detected is 5x10-4 (Figure 38c). Like the source 

DMD, a power meter was used to compare the input laser power to the output for the 

detector DMD. The detected power was 16mW compared to the initial 61mW laser 

source, making the efficiency of the second DMD 0.262 (Figure 38d). We assume that 

the loss seen from using the second DMD as a source is similar to using the second 

DMD as a detector because the lens system is unchanged except the diffuser is 

removed. With this particular phantom, we calculate that the amount of light that 

reaches the PMT is a 1.68x10-5 fraction of the original laser source’s power. 
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Figure 38. Illustration of points of power loss throughout system. Beginning from the initial 
laser fiber power (a), 0.128 of the fiber power is transmitted through the source DMD (b). 

Based on a simulation with a 53mm thick phantom (c), the detected flux is 5x10-4 of the 
incident light. This light then goes through another drop in power while being collected by 

the detector DMD (d), where only 0.262 of the collected light reaches the PMT (e).  
 

 A similar analysis was performed with a traditional point source and point 

detector configuration that is commonly used DOT. Based on a simulation where a 

laser source was centered on one side of the phantom and a PMT was centered 

directly across the source on the other side, only a 9.25x10-5 fraction of the initial 

source power is detected (Figure 39).  

 

Figure 39. The loss of power in a traditional contact DOT transmission-mode point source 
(a) and point detector (c) is illustrated. The main loss of photons is from the phantom (b).  
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 To discuss the overall system’s efficiency in detecting the light, we need to 

understand the PMT’s spectral response and signal amplification. At 785nm, the 

spectral response of the R7400U-01 model is 2mA/W, meaning it produces 2mA for 

every 1W that is detected. Additionally, the PMT’s sensitivity can be controlled by 

applying a voltage from 0 to 3.6V to the high voltage generator. This applies an even 

larger voltage across the PMT, amplifying the signal exponentially. For example, 

applying the full 3.6V to the high voltage generator results in 900V across the PMT, 

corresponding in a 106 fold gain. Despite the large loss of light across the SL-DOT 

system, the use of a PMT can recover extremely low levels of light.  

 For example, the amount of light that can be detected by the traditional DOT 

system in Figure 39 can be calculated to show the typical light levels that can be 

expected. Given that the safety limit of a continuous-wave 700-1400nm laser light 

intensity illuminated onto skin is approximately 3mW/mm2, we set the laser power 

to 2mW over a 1mm2 area on the phantom. The detected flux at the position of the 

PMT would be 1.85x10-4mW. The PMT will then convert this power into 3.70x10-7mA 

and with maximum gain, the measured current would be 0.370mA, or 370μA. This is 

well above the inherent noise of the PMT at 900V, which is typically 1-1.6nA. 

Additionally, this is well above the maximum limit of the PMT of 1μA and the gain 

would be lowered in this scenario.  

 The next example will calculate the typical light levels for our SL-DOT system. 

The laser power will be set to 2mW again, but because we are using SL patterns, this 

power is distributed over an area of 2,025mm2, making the intensity at the surface of 

the phantom 9.9x10-4mW/mm2 This is well below the safety limit of laser light onto 
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the skin. After going through the SL-DOT system, the amount of light that reaches the 

PMT detector is 5.03x10-5mW. After signal amplification, the measured PMT current 

is 67μA. This may be lower than the traditional DOT measurement, but it is important 

to note that is still above the maximum limit (1μA) and that the laser intensity is also 

much lower than the safety standard. If a 60mW source was used, the measured PMT 

signal would be 2000μA, even higher than the measurement in the traditional DOT 

system.  

The SL pattern for both the source and detection is 45x45mm2 square in the 

previous case, but a smaller SL pattern was also analyzed. A 9x45mm2 vertical stripe 

was used for both the source and detection. If the source and detection was placed as 

far from each other as possible, the longer pathlength of the traveling photons would 

result in a very low signal of detected light (Figure 40). The amount of light that 

transmits through the phantom is a 4.59x10-5 fraction of the incident light (Figure 

40). With a 2mW laser source, the amount of light that reaches the PMT is 1.25x10-

7mW. With 106 fold amplification, the measured PMT current is 0.25μA, which is still 

a strong signal in comparison to the 1.6nA noise. A key advantage to the SL-DOT 

system is the distribution of the laser light over large area when forming the SL 

patterns. Because the 2mW laser source distributed among a large area, the intensity 

of the incident light is well below the safety limit of 3mW/mm2. As we saw, an 

increase in the laser power greatly improves the signal while still remaining below 

the safety limit.  
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Figure 40. Illustration of points of power loss throughout system using smaller SL patterns. 
Beginning from the initial laser fiber power (a), 0.026 of the fiber power is transmitted 

through the source DMD (b). Based on a simulation with a 53mm thick phantom (c), the 
detected flux is 4.59x10-5 of the incident light. This light then goes through another drop in 

power while being collected by the detector DMD (d), where only 0.052 of the collected light 
reaches the PMT (e).  

 

5.2a. Number of samples to average 

 Readings from the PMT are collected by the DAQ and averaged in order to 

obtain a more accurate measurement. To minimize data acquisition time, the 

sampling rate of DAQ was set to the maximum limit of 10kHz. The number of PMT 

measurements should also be minimized to reduce acquisition time, but should also 

be enough to achieve an accurate measurement. Using the solid epoxy phantom, the 

number of measurements to be averaged were tested: 10, 100, 1000, 10000 and 

100000 samples. With 10 samples, one pattern combination is measured in 1ms; with 

100000 samples, one pattern combination is measured in 10sec. Measurements were 

taken with 560V applied across the PMT, resulting in a PMT noise of 0.16nA. The 

measurements are approximately 0.9μA consistently, well above the noise level 

(Figure 41a). The SNR for all sample numbers is relatively similar and very high, close 

to a SNR of 7000 (Figure 41b). For the majority of experiments performed, the 
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number of readings that was averaged is 1000 samples, corresponding to 100ms 

spent for a single source-detector measurement.  

 

Figure 41. (a) The signal (blue) and noise (red) levels and (b) the SNR of measurements 
collected with a different number of averaged samples. Measurements were taken on a solid 
epoxy phantom with 560V applied to the phantom, with corresponds to a PMT dark current 

of 0.16nA.  
 

5.3 Structured-light pattern optimization 

 In SL-DOT, arbitrary patterns of light can be illuminated and detected from the 

object of interest. The choice of which SL-patterns to use may seem daunting where 

there can be an infinite number of patterns. Another consideration is the number of 

patterns to use, though more patterns requires more time to acquire data. In our 

study, we experiment with two SL-pattern sets: large stripes with checkerboards (12, 

patterns, Figure 42a) and smaller horizontal and vertical stripes (10 patterns, Figure 

42c). The experiment consisted of taking measurements on a 53x77x77mm3 agar 

phantom with a cubic inclusion centered within the volume. The volume of the 

inclusion is 10% of the phantom’s total volume. After image reconstruction, the 

recovered absorption maps were segmented at half-max of the recovered range 
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(Figure 42b,d). The segmented volumes were 10.32% for pattern set # 1 and 10.35% 

for pattern set # 2.  

 

Figure 42. Reconstructions (b, d) from using (a) pattern set # 1 and (c) pattern set # 2 as SL-
patterns to collect measurements from a phantom with an inclusion that is 10% of the 

phantom’s volume. The red wireframe represents the reconstructed volume segmented at 
half-max and the blue isosurface represents the inclusion. 

 

Although both are very similar to the true inclusion volume, the reconstructed 

shape using the first pattern set is unusual (Figure 42b). When looking at a 

reconstruction slice close to the detection side of the phantom, the area of high 

absorption is similar to the last checkerboard pattern in set # 1 (Figure 43). This 

“artifact” may be due to this particular SL-pattern’s relatively larger surface area. The 

sensitivity matrix (the Jacobian) that is formed for this pattern set may be highly 

influenced by the checkerboard pattern because the convolution with this pattern 

and the others is much higher. The SL patterns in set # 2 are all the same area of 

illumination, but with different positions. Because of this, the Jacobian is more 

(a) (c)

(b) (d)

Pattern Set # 1 Pattern Set # 2



84 

 

balanced and the reconstructed volume resembles the cubic inclusion. Therefore, 

pattern set # 2 is chosen for our experimental studies.     

 

Figure 43. Absorption map slice that was reconstructed from measurements using pattern 
set # 1. Slice is positioned at 5mm before the detection surface. The areas of high absorption 

match the appearance of the last pattern in pattern set # 1.  
 

 This simple comparison between the two pattern sets showed that 

consideration is needed when choosing SL patterns. Because the patterns can be 

arbitrary, it would be very tedious to test many different sets. Additionally, patterns 

do not need to be binary; DMDs are capable of grayscale imaging where 8-bit SL-

patterns with gradients can be formed. This technique is already being implemented 

in Spatial Frequency Domain Imaging, where sinusoidal gradients of light are 

projected onto an object [107,108]. In our case, the simpler pattern set performed 

better in terms of reconstructed a volume most similar in shape to the actual 

inclusion. Overly complex pattern sets may not perform well experimentally, but 

further studies are needed.  

μa map slice

[mm-1]
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It is also important to note that the size of these SL patterns affect the shape of 

the Jacobian, which describes the influence of measurements on the photon density 

of the internal nodes. The shape, or region of high sensitivity, of the Jacobian is 

determined by the source and detection patterns used. When larger SL patterns are 

used, a larger portion of the volume is influenced and the region of sensitivity also 

becomes larger. This can be thought of as the region in which the photons have most 

likely traveled through and have influenced. In tomography, this larger Jacobian 

shape will decrease the resolution of the imaging system because it becomes more 

difficult to determine the exact path of the detected photons. For example, in 

computed tomography, x-rays travel in a relatively straight path through the body 

with very little scattering. The influence of that x-ray is small and narrow compared 

to the whole volume; therefore, the shape of the sensitivity matrix is small and the 

image resolution of the recovered attenuation coefficients is higher. SL-DOT’s larger 

Jacobian shape result in a low-resolution imaging system. One solution for SL-DOT to 

obtain higher resolution is to reduce the size of the SL patterns; however, this results 

in less signal being detected. The optimal pattern set should have appropriately large 

SL patterns for high signal collect but not excessively large to avoid vastly lowering 

the resolution of the system. The clinical goal of SL-DOT is to image fibroglandular 

tissue, which is generally large pieces of tissue within the breast. SL-DOT may be 

sufficient in accomplishing this goal. 
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Chapter six: Phantom studies  

 Our main goal is to develop a SL-DOT system that can be used to measure the 

amount of fibroglandular tissue and the hemoglobin concentration within the breast. 

Through a series of phantom studies, we test our system’s capabilities in measuring 

inclusions of varying sizes. Additionally, we varied the size of the inclusion while 

using the two NIR dyes in order to recover dye concentration, which may be 

influenced by the inclusion size. In this study, the goal was to confirm the size-

dependency of the recovered concentrations. Lastly, we performed phantom studies 

where the inclusions had varying amounts of NIR dye concentration from the 

background, forming different levels of absorption contrast. This is the mimic the 

varying levels of hemoglobin within the breast among different patients. Prior to the 

discussion of these phantom studies, we will describe the creation of the phantoms. 

6.1 Agar phantoms creation 

 In order to test the performance of an optical imaging system, phantoms with 

known optical properties are used. Phantoms can be made from different materials, 

each with their own advantages and disadvantages. Agar is used because it is 

relatively quick and easy to make, has a refractive index similar to biological tissue, 

and can be layered in order to create enclosed inclusions. The process by which agar 

phantoms are made involves the heating of the agar solution and adding absorption 

and scattering agents to manipulate the optical properties. The timing of this process 

is key to formulating consistent and reliable phantoms. Once made, the phantoms can 
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be imaged for several days but must remain refrigerated to minimize shrinkage and 

mold growth. 

6.1a. Creation of agar mixture   

 The formulation of the phantoms is 2% agar by weight. Agar powder (RM-301; 

HiMedia; Mumbai, India) is dissolved in deionized water by heating the mixture to 

95°C on a hot plate stirrer. Once fully dissolved, the agar is moved to a regular stirring 

plate where it is cooled. When the mixture reaches 50°C, India ink is added to act as 

the absorbing agent in our phantoms. The relationship between the amount of India 

ink added and the absorption is linear and has been characterized with a 

spectrophotometer (USB2000; Ocean Optics; Dunedin, Florida). Two 

characterization studies were performed six months apart and showed that India 

ink’s absorption properties are extremely stable. Furthermore, the absorption of 

India ink is relatively constant across the NIR spectrum. In addition, 10% Intralipid® 

(Fresenius Kabi; Uppsala, Sweden) is added to the mixture to act as a scattering agent. 

The solution continues to be stirred for several minutes before being poured into a 

mold and placed in a refrigerator for rapid cooling.  

 In the case of creating heterogeneous phantoms with inclusions of different 

optical properties, the phantoms are created through layers. The inclusion mixture is 

created first and placed in the refrigerator until completely solid. The solid mixture is 

then cut and shaped into the desired inclusion size. The background mixture of 

different optical properties is then made in bulk. The bottom layer of the mold is filled 

and allowed to solidify in the refrigerator (approximately 20-25 minutes) (Figure 

44b). The remaining background mixture continues to be stirred to prevent 
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solidification. Once the bottom layer is solid, the inclusion is centered on top of the 

first layer and the remaining background mixture is poured on top, encasing the 

inclusion within the phantom volume (Figure 44c-d). The fully finished phantom is 

then placed inside of the refrigerator to be cooled for at least 2 hours to ensure that 

the phantom is fully solid. For the majority of our experiments, phantoms are imaged 

the following day. 

 

Figure 44. (a) An agar phantom with enclosed inclusions is made through layering the agar 
mixture into a mold. (b) A bottom layer in gray is allowed to solidify and (c) the inclusion 

(red) is centered on top. (d) Agar is then poured on top (gray) of the inclusion to encase it in 
the center. 

 

6.1b. NIR absorbing dyes 

 As previously mentioned, the absorption of India ink across the NIR region is 

constant, making it unsuitable for collecting multi-wavelength measurements and 

recovering chromophore concentrations. Two NIR absorbing dyes, NIR782E and 

NIR869A (QCR Solutions; Port St. Lucie, Florida), are used (Figure 45). Each dye has 

a unique absorption spectrums in the NIR region, where NIR782E peaks at 782nm 

and NIR869A peaks at 869nm. The wavelength at which their spectrums cross 

(isobestic point) is 801nm, which is similar to the isobestic point of oxy- and 

deoxyhemoglobin: 808nm. Both of these dyes are added to the agar mixture to act as 

the absorbing agent. By taking multi-wavelength measurements of the phantoms, we 

can recover the amount of dye that was added to the agar mixture.  

(a) (b) (c) (d)
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Figure 45. Absorption spectrum of two dyes, NIR782E and NIR869A, in the near infrared 
region. Their isobestic point (where the absorption is the same for both dyes) is 801nm.  

 

 These NIR dyes are stored as a powder for stability. To prepare the dye for the 

agar mixture, water is added. The absorption of the aqueous dye solution is then 

characterized using a spectrophotometer and appropriately diluted to obtain the 

desired optical properties within the phantom. It is important to note that the 

absorption of these dyes deteriorate over time. Since measurements immediately 

after the phantom has solidified is not always possible, we monitored the decreas in 

absorption over time of the original stock solution that was used and assumed that 

the absorption loss within the phantom was similar. We measured the decay in both 

dyes’ absorption over a span of six days (Figure 46). After six days, the absorption of 

NIR782E has dropped about 50% while NIR869A’s absorption drops to 50% after 

four days. For this reason, measurements should be performed as soon as possible 

after the creation of the phantom with these dyes. 
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Figure 46. Decay of the NIR782E (blue) and NIR869A (red) dyes over 6 days. Day 0 is the 
day the aqueous dye solution was created. Absorption measurements are taken at each dye’s 
peak absorption (782nm and 869nm, respectively) and normalized to Day 0’s measurement.  

 

6.2 Size-dependency of recovering inclusion volume and 

absorption coefficients 

 Because we are interested in recovering volumetric breast density 

information, we performed a study where we imaged different inclusions sizes within 

a phantom. Agar phantoms with enclosed inclusions (1, 5, 10% by volume) were 

made and measurements were performed at one wavelength: 808nm. We are 

interested in reconstructing the absorption maps of these phantoms and segmenting 

the absorption maps to measure a volume. Because we saw a size-dependency of the 

recovered chromophore concentrations in the simulation studies, we expect that 

there will be a similar relationship between the inclusion size and the recovered 

absorption. 
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6.2a. Phantoms 

 Four agar phantoms with a dimension size of 53x77x77mm3 were created. One 

phantom had homogeneous optical properties to act as a calibration for our image 

reconstruction algorithm. The remaining three phantoms had inclusion sizes that 

represented 1, 5, and 10% of the phantom’s total volume (Figure 47).  The exact 

dimensions of the inclusions are presented in Table 4. The inclusions are of the same 

thickness and each is centered within their own phantom. 

 

Figure 47. Illustration of different inclusion sizes (1, 5, 10% by volume) within the 
53x77x77mm3 agar phantom.  

 
 

Table 4. Dimensions of the inclusions used in the phantoms.  

Inclusion volume 1% 5% 10% 

Inclusion dimension 30x10x10mm3 30x23x23mm3 30x33x33mm3 

 
 

 India ink was added the agar mixture to act as an absorbing agent. The 

absorption and scattering coefficients of the background is 0.0066mm-1 and 

0.625mm-1, respectively, at 808nm. The absorption of the inclusion is twice that of 

the background: 0.0132mm-1. The scattering coefficient of the inclusion is the same 

as the background. The homogeneous phantom has optical properties that match the 

background. The optical properties of the background and inclusion are summarized 

in Table 5.  

1%

5% 10% z

y

x
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Table 5. Optical properties of agar used for different inclusion sizes experiment. Values are 
given for 808nm.  

 Absorption (mm-1) Scattering (mm-1) 

Background 0.0066 0.625 

Inclusion 0.0132 0.625 

6.2b. Experimental setup, image reconstruction and analysis 

 The agar phantom was placed between the source DMD and detector DMD. A 

40mW 808nm laser was coupled with the source DMD. 850V was applied across the 

PMT coupled to the detector DMD. The SL patterns used was five horizontal stripes 

and five vertical stripes (Figure 48). The FOI was centered on the Y-Z plane of the agar 

phantom, with an area of 45x45mm2. The phantoms were imaged in this sequence: 

homogeneous, 1%, 5% and 10%. 100 SL-DOT measurements were collected from 

each phantom. To measure the background light/dark noise from the room, the lasers 

were turned off and SL-DOT data was collected again. The true signal from the 

phantoms is the difference between the measurements and the dark noise. 

 

Figure 48. SL pattern set used for the illumination and detection of light from the phantom, 
forming 100 unique measurements.  

 
 

 Once all measurements are collected, the data was processed in MATLAB prior 

to image reconstruction. The voltage measurements need to be calibrated in order to 

be used with the reconstruction algorithm. The forward model produces flux 

measurements that are a fraction of the source light intensity. To convert our 

measurements from the “experimental space” to the “simulation space,” the data from 

the homogeneous phantom is needed. A simulation of the SL-DOT measurements is 
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performed on a mesh with the same optical properties as the homogeneous phantom. 

The conversion of the experimental data is as follows: 

exp exp

sim sim
Heterogeneous Homogeneous

Heterogeneous Homogeneous
   →  

 
exp

exp

sim

sim

Heterogeneous Homogeneous
Heterogeneous

Homogeneous


   (28) 

where exp and sim denote experimental space and simulation space, respectively. 

This was done for each of the heterogeneous phantoms with inclusions. The 

Heterogeneoussim measurements are used then for the image reconstruction. The 

algorithm runs until the residual has not changed more than 5% for five iterations or 

for a max number of 20 iterations.  

 Once the absorption maps have been reconstructed, volumes were segmented 

at half-max of the recovered range, denoted as %Vabs. The mean absorption of these 

segmented volumes was then calculated, denoted as a
 .  

6.2a. Results 

 The aim of this study is to the performance of SL-DOT in recovering small 

inclusions of different sizes. The inclusion sizes that were tested were 1% (10x10mm2 

cross-section), 5% (23x23mm2), and 10% (33x33mm2). The measurements for each 

phantom are shown in Figure 49. Because the homogeneous phantom does not have 

a highly absorbing inclusion, the measured flux for this case is the highest. With the 

increasing size of the inclusions, the amount of detected light decreases, resulting in 

the largest inclusion size (10% volume inclusion) having the least measured flux.   
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Figure 49. SL-DOT measurements from the homogeneous (blue), 1% (yellow), 5% (green), 
and 10% (red) phantoms using pattern set shown in Figure 48.  

 
 

 For each phantom, 3D absorption maps are recovered. Slices at four depths (x 

= 10, 20, 30, 40mm) are presented in Figure 50a. FEM elements in the mesh are 

segmented based on its absorption coefficient value at the center of its gravity. If the 

element’s absorption value is above the half-maximum of the recovered absorption 

range, then that element considered to be part of the recovered volume (Figure 50b). 

 
Figure 50. (a) Slices of the reconstructed absorption map for the 10% volume inclusion 

phantom are presented at x = 10, 20, 30, 40mm in depth. (b) A volume (red) is segmented at 
half-maximum of the recovered absorption range to represent the recovered inclusion. 

 

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

P
M

T
 M

ea
su

re
m

e
n

t 
(μ

V
)

Measurement

Homogeneous 1% 5% 10%

x = 10mm x = 20mm

x = 30mm x = 40mm

(a)

(b)

z

y

x

z

y



95 

 

The image reconstructions for each phantom are presented in Figure 51. The 

smallest inclusion (1%) was difficult to recover, where the %Vabs (red) is not similar 

to the true shape of the inclusion (blue) (Figure 51b).  The reconstructions for 5% 

and 10% are much closer in shape to the true inclusion. It is also important to note 

that the recovered a
 is dependent on the size of the inclusion, where smaller objects 

have lower absorption (Figure 51a). This was also seen in our simulation studies 

were the absorption, and subsequently the chromophore concentrations, were 

dependent on the size of the fibroglandular tissue within the breast.   

 

Figure 51. (a) The center slice of the image reconstruction for each phantom is presented in 
the top row. As the inclusion size increases, the higher the absorption is recovered. (b) The 

bottom row represents the 3D representation of the reconstructed volume. The red 
wireframe represents the contour of the volume segmented at half-max, Vabs, and the solid 

blue object represents the inclusion. 
 

 When comparing the %Vabs to the true volume of the inclusion, the smaller 

inclusions are greatly overestimated, where the %Vabs of the 1% inclusion is five times 
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greater (Table 6). This degree of overestimation is lower as the inclusion size 

increases, where the 10% inclusion is estimated as 10.4%. Although simulations of 

this phantom study showed that SL-DOT can recover the 3D map of the inclusion for 

1% inclusion, we saw with our system that is very difficult to do experimentally. The 

reconstructed volume for the 1% phantom is not similar in shape to the actual 

inclusion. This may be the limit of our SL-DOT, where we may not be able to recover 

inclusions smaller than 2x2x3cm. As previously mentioned, the SL patterns are large 

in comparison to a single point source and detector. Therefore, the region of the 

phantom where the optical properties are more sensitive becomes larger for each 

source-detection combination. Additionally, we have a limited view of the phantom, 

where we collect measurements through one plane. For these reasons, SL-DOT is 

considered to be a low-resolution imaging system; however, it is important to note 

that this volume is well below the size of fibroglandular tissue found in the breast. For 

the application of imaging the larger fibroglandular tissue within the breast, our 

system may be sufficient in recovering the volumetric information. Furthermore, the 

recovered a
 also has a relationship with the inclusion size (Table 6), where we see a 

positive trend between absorption and inclusion size. This perhaps is the key to 

correcting the overestimation of smaller objects, which was done in our breast 

simulation studies. 

Table 6. The recovered inclusion volume and mean absorption for each phantom.  

Phantom 1% 5% 10% 

Recovered %Vabs 4.92% 8.3% 10.4% 


a

  0.0078mm-1 0.0085mm-1 0.0091mm-1 
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6.3 Size-dependency of multiple chromophores 

 The purpose of this phantom study is to observe the size-dependency of the 

recovered chromophores. This study is a slight modification of the previous study 

were the inclusion size is varied (5 and 10%); however, the 1% volumetric inclusion 

was excluded because we have determined that it is below the limit that can be 

reconstructed from experimental data. Additionally, specific NIR absorption dyes are 

used instead of the India ink. India ink has a constant absorption coefficient across 

the NIR region. For this reason, NIR782E and NIR869A, both of which have a large 

dynamic range of absorption in the NIR, were chosen. This would allow us to take 

multi-wavelength measurements and quantify each dye concentration. The 

inclusions across all phantoms have the same NIR782E (referred to as D1) and 

NIR869A (referred to as D2) concentrations.  

6.3a. Phantoms 

 Three agar phantoms similar to study #1 were created, where one phantom 

was homogenous and used for calibration. The remaining two phantoms had 

centered inclusion sizes that represented 5% and 10% of the phantom’s volume.  The 

dimensions of the 5% and 10% volumetric inclusions are presented in study #1, Table 

4. The dye concentrations within the background and inclusion are presented in Table 

7. The concentration of D1 is higher in the background than the inclusion. Conversely, 

the concentration of D2 is higher in the inclusion than the background. This is to 

mimic the fibroglandular and adipose tissue, where the FGT has higher water and 

lower lipid than the adipose tissue. The dye concentrations resulted in the absorption 
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properties shown in Table 8 at the four wavelengths through the previously 

described modified Beer-Lambert law (Equation 2). Intralipid was added for the 

scattering properties, which was the same for both the inclusion and the background. 

Due to its wavelength-dependency, the scattering coefficient for each wavelength is 

different, where the shortest wavelength has the highest µs’ and vice versa.   

Table 7. D1 and D2 concentrations used in both the background and inclusion. 

 Background Inclusion 

D1 (μg/mL) 0.2 0.05 

D2 (μg/mL) 0.05 0.2 

 
Table 8. The optical properties of the background and inclusion at 660, 785, 808 and 830nm. 

 Bkg. μa (mm-1) Inc. μa (mm-1) Scattering μs’ (mm-1) 

660nm 0.0037 0.0025 0.778 

785nm 0.0177 0.0107 0.645 

808nm 0.0057 0.0081 0.624 

830nm 0.0028 0.0086 0.606 

 

6.3b. Experimental setup, image reconstruction and analysis 

The experimental setup is similar to the first study, with the exception that 

multiple wavelengths of light were used instead. Four laser diodes 660nm (12mW), 

785nm (30mW), 808nm (40mw), and 830nm (30mW), were connected to a fiber 

optic switch and outputted to the source DMD. When the 660nm laser was in use, 

725V was applied across the PMT; for the remaining three wavelengths, the 

maximum 900V was applied across the PMT. The same five horizontal stripes and five 

vertical stripes SL-patterns were used (Figure 48). The FOI was centered on the agar 

phantom, with an area of 45x45mm2. The phantoms were imaged in this sequence: 

homogeneous, 5% and 10%. 100 SL-DOT measurements for each wavelength were 
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collected from each phantom. The dark noise was also recorded and used to correct 

the signals. 

 The data was calibrated with the homogeneous phantom measurements prior 

to image reconstruction. This is done for each phantom at each wavelength. The 

absorption maps are recovered for each phantom and each wavelength. The 

algorithm runs until the residual has not changed more than 5% for five iterations or 

for a max number of 20 iterations. Once the 3D absorption (μa) maps are recovered, 

the dye concentrations are estimated through a non-negative linear least squares 

minimization at each node in the mesh. This is based on the system of linear equations 

relating the μa at each wavelength to the dyes’ concentrations through their unique 

extinction coefficients (Equation 18).  

 Once the dye concentration maps have been recovered, volumes were 

segmented at half-max of the recovered range to represent the reconstructed 

inclusion of the phantom. The mean dye concentrations are then calculated both 

within and outside of the reconstructed inclusions. These dye concentrations are 

denoted as either the background or inclusion, N
C where N is D1 or D2. The contrast 

of each dye map is calculated as inclusion

background

D

D
.  

6.3c. Results 

 From our SL-DOT measurements on the phantoms, the image reconstruction 

recovered the 3D absorption maps, which were used to estimate the concentrations 

of D1 and D2. As the inclusion volume increases from 5% to 10%, the contrast 

between the background and inclusion on both dye maps becomes more apparent 
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(Figure 52). The 10% inclusion has a lower recovered CD1 and a higher recovered CD2 

(Figure 52). Despite the fact that the dye contrast between the background and 

inclusion should be the same, the 5% inclusion has lower contrast for both dyes 

compared to the 10% case (Table 9).  

 

Figure 52. The center slice of the reconstructed dye (D1 and D2) concentrations are shown 
for phantoms with 5% and 10% inclusion sizes. The larger the inclusion, the more contrast 

between the inclusion and background is seen.  
 

Table 9. The recovered contrast between the inclusion and the background for both D1 and 
D2.  

 5% Inclusion Volume 10% Inclusion Volume 

Recovered D1 contrast 1.36X 2.25X 

Recovered D2 contrast 1.30X 2.12X 

 

 The previous study simplistically looked at the relationship of the absorption 

and inclusion size with data taken at one wavelength. By taking multi-wavelength 

measurements, multiple chromophores’ concentrations can be recovered, providing 

a richer amount of data. With the introduction of more data, more considerations and 
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analysis are needed to accurately estimate the inclusion. As the inclusion size 

increases, the recovered chromophore concentration becomes more accurate. This 

resulted in the 10% inclusion phantom having a higher contrast between the 

inclusion and the background. The true contrast between these compartments is 4X, 

which was never fully recovered with the largest inclusion. In a standalone diffuse 

optical system, the recovery of the true contrast is not expected; we only anticipate a 

portion of this contrast to be reconstructed. This does, however, corroborate the 

results seen in the breast simulation study, where low density cases tend to have 

chromophore concentrations similar to that of the adipose tissue (i.e. lower contrast 

with the adipose tissue). With this phantom study, we confirm what we have seen 

from simulations and also gained insight about the capabilities of our SL-DOT system. 

6.4 Recovering contrast between the inclusion and background  

 We have found a relationship between the segmented volumes and the 

measured a
  in the first study. In the second study, we saw the effect of inclusion size 

on the reconstructed dye concentrations and the dye contrast between the inclusion 

and the background. Our next step is to test our system’s ability in distinguishing 

different contrasts of dye concentration between the inclusion and the background. 

Both NIR782E and NIR869A were used again. Our aim in this study is to recover the 

amounts of the dyes used by creating phantoms with variable dye concentrations.  

6.4a. Phantoms 

Four agar phantoms with a dimension size of 53x77x77mm3 were created, 

where one served as the homogeneous phantom that shared the same optical 
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properties as the background for calibration. The three heterogeneous phantoms (P1, 

P2, & P3) all had an inclusion size of 30x33x33mm3, representing 10% of the 

phantom’s volume (Figure 53).   

 

Figure 53. The geometry of the heterogeneous phantoms for this study. The background 
surrounds an inclusion that is 10% of the phantom’s volume. The inclusions P1, P2, and P3 

denote the specific dye concentrations used. 
 

The NIR782E dye, referred to as D1 again, is more concentrated in the 

background, while NIR869A (D2) is more concentrated in the inclusion. The exact 

formulation for each agar mixture is presented in Table 10. The background refers 

the portion enclosing each inclusions, P1, P2 and P3, in three separate heterogeneous 

phantoms.  The normalized values are also presented in Table 11 to show the contrast 

between the inclusions and the background.  

Table 10. The concentrations of NIR782E (D1) and NIR869A (D2) added to each agar 
mixture to form the phantoms.  

 Background P1 inclusion P2 inclusion P3 inclusion 

D1 (μg/mL) 0.2 0.1 0.05 0.025 

D2 (μg/mL) 0.05 0.1 0.2 0.3 

 
 

Table 11. The dye concentrations inside the inclusions normalized to the background. This 
highlights the concentration contrast between the background and each inclusion. 

 Background P1 inclusion P2 inclusion P3 inclusion 

D1 1 0.5X 0.25X 0.125X 

D2 1 2X 4X 6X 

 
 

P1 P2 P3

Background Background Background

z

y

x
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  Based on the dye concentrations within each agar mixture, the total 

absorption is calculated based on equation (2), where each dye concentration is 

multiplied by its respective wavelength-dependent extinction coefficient. Scattering 

is the same throughout the entire phantom and is controlled by the amount of 

Intralipid that is added to the agar mixture. The total absorption for the background 

and each inclusion are shown in Table 12 at each wavelength of the system (660, 785, 

808, 830nm). The wavelength-dependent scattering coefficients are also presented.   

Table 12. Optical properties of the background and inclusions calculated at each wavelength.  

 
Bkg. μa  

(mm-1) 

P1 Inc. μa 

(mm-1) 

P2 Inc. μa 

(mm-1) 

P3 Inc. μa 

(mm-1) 

Scattering 

μs’ (mm-1) 

660nm 0.0037 0.0025 0.0025 0.003 0.778 

785nm 0.0177 0.0114 0.0107 0.0121 0.645 

808nm 0.0057 0.0055 0.0081 0.0112 0.624 

830nm 0.0028 0.0045 0.0086 0.0127 0.606 

 

6.4b. Experimental setup, image reconstruction and analysis 

 Four laser diodes, 660nm (12mW), 785nm (30mW), 808nm (40mw), and 

830nm (30mW), were connected to a fiber switch which controls the wavelength of 

light that is sent to the source DMD. The FOI was centered on the agar phantom, with 

an area of 45x45mm2. When the 660nm laser source was used, 725V was applied 

across the PMT; for the remaining three wavelengths, the maximum 900V was 

applied across the PMT. The same five horizontal stripes and five vertical stripes SL-

pattern set was used (Figure 48). The phantoms were imaged in following sequence: 

homogeneous, P1, P2 and P3. 100 SL-DOT measurements for each wavelength were 

collected from each phantom. The dark noise was also recorded and used to correct 

the signals. 
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 Prior to image reconstruction, the data was calibrated with the homogeneous 

phantom measurements as previously explained. This is done for each phantom at 

each wavelength. The image reconstruction is then performed and the absorption 

maps are recovered for each phantom and each wavelength. The algorithm runs until 

the residual has not changed more than 5% for five iterations or for a max number of 

20 iterations. Once the 3D absorption (μa) maps are recovered, the dye 

concentrations are estimated through a non-negative linear least squares 

minimization at each node in the mesh. This is based on the system of linear equations 

relating the μa at each wavelength to the dyes’ concentrations through their unique 

extinction coefficients (Equation 18).  

 Once the dye concentration maps have been recovered, volumes were 

segmented at half-max of the recovered range. These segmented volumes represent 

the reconstructed inclusion of the phantom. The mean dye concentrations both 

within and outside of the reconstructed inclusions were calculated. These dye 

concentrations are denoted as either the background or inclusion N
D , where N is 

either D1 or D2. The contrast for each dye is then calculated as the ratio of the dye 

concentration within the inclusion to the dye concentration in the background.  

6.4c. Results 

 From the multi-wavelength SL-DOT measurements, we reconstructed the 

absorption maps and subsequently the 3D dye concentration maps. The center slices 

of these maps show are presented in Figure 54. The inclusion is much clearly seen in 

both P2 and P3 than in P1 (Figure 54). This is most likely due to P1’s low contrast of 
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the dyes between the background and inclusion. The recovered CD1 is lowest for the 

P3 phantom, where the D1 contrast is the strongest (Figure 54, top). The recovered 

CD2 is highest for P3, which similarly has the strongest D2 contrast (Figure 54, 

bottom).  The dye contrast for each phantom is presented in Table 13. 

 

Figure 54. Center slices of the recovered dye (D1 & D2) concentrations for each phantom 
(P1, P2, & P3). 

Table 13. The recovered dye contrast between the inclusion and background for each 
phantom (P1, P2, & P3). 

  P1 P2 P3 

Recovered D1 

contrast 
0.88X 0.85X 0.78X 

Recovered D2 

contrast 
2.08X 3.38X 3.80X 

  

In order to truly evaluate the SL-DOT’s ability in recovering the dyes 

concentrations, we performed noiseless simulations with the same parameters as our 

experimental setup. The experimental results were compared to the simulation 
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results, which we consider to be the best results possible from the SL-DOT image 

reconstruction. The dye contrast for phantom is calculated and the simulated and 

experimental contrasts are compared (Figure 55). For D1, both simulation (red) and 

experimental (green) has increasing contrast, seen as a further deviation from the 

value 1, as the inclusion size increases (Figure 55a). This is also the case for D2, where 

the experimental and simulation contrast are similar to each other and are both 

increasing as the inclusion size increases (Figure 55b). 

 

Figure 55. The dye contrast between the inclusion and background is shown for (a) D1 and 
(b) D2. The contrast for each phantom is calculated as the mean dye concentration of the 

inclusion divided by the concentration in the background. The contrast from simulated data 
is shown in red and the contrast from the experimental data is shown in green.  

 

 From this study, it is interesting to note that noiseless simulated SL-DOT 

measurements have a limitation in recovering the dye concentrations. We expect that 

experimental data cannot surpass the simulated results as the experimental 

measurements are susceptible to noise. Our best aim would be to match these 

simulation results. Considering the application in measuring breast density, this 

study was designed to test SL-DOT’s ability to measure oxy and deoxy-hemoglobin 
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rather than the water and lipid concentrations. We assume that the molecular 

structure of the fibroglandular tissue would not vary greatly among patients and that 

it is the volume of these structures that are variable. Hemoglobin concentrations, 

however, may not be the same among different patients as the microvasculature of 

the breast would vary. This is the basis of different levels of BPE seen among patients, 

which is related to the blood perfusion of the fibroglandular tissue. Because BPE is an 

enhancement index, perhaps the concentration contrast ratio between the optically 

imaged FGT and adipose tissue is correlated and can be used as a measurement 

equivalent to BPE.  

 There is also interest in recovering the contrast between the background and 

inclusion because of the availability and advancement of NIR contrast agents. The use 

of a contrast agent greatly improves the signal that can be collected from the breast. 

Indocyanine green (ICG) is a FDA-approved fluorescent agent that is excited at 785nm 

and emits light at 830nm. ICG binds to plasma proteins in the blood, typically to 

albumin, increases its size and restricting its circulation to within the 

vasculature [109]. For this reason, ICG can highlight regions with increased 

vasculature and blood flow. The gadolinium-DTPA agent used in contrast-enhanced 

MRI, on the other hand, is very small in size and can permeate into the 

extravasculature [109]. Despite this, we believe ICG can indicate regions of the 

fibroglandular tissue that have higher perfusion, and therefore can be used to also 

quantify functional breast density. Because the circulation time of ICG is on the order 

of minutes [109], SL-DOT is suitable for imaging the flow of ICG through the breast. 

This can be accomplished by modifying the SL-DOT system for fluorescence imaging, 
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where the simple addition of an optical bandpass filter collects light at 830nm, the 

emission wavelength of ICG. Additionally, because we are interested in one 

wavelength, 100 measurements can be obtained within one minute, well within the 

timeframe of ICG circulation in the blood. 
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Chapter seven:  Conclusions and future work 

7.1 Conclusions 

The work presented in this thesis represents the preliminary steps in 

developing an optical technique to measure breast density. Structured-light diffuse 

optical tomography (SL-DOT) is a wide-field imaging technique that uses structured-

light patterns for illumination and detection. The advantages of this technique are its 

speed and relatively low cost. The application of imaging breast density has not been 

explored with SL-DOT and this work aims to build the foundation for developing a 

system that can be used in the clinics. 

Simulations performed on breast phantoms showed that although volumetric 

information can be obtained from our optically recovered chromophore maps, 

smaller fibroglandular tissue geometries tended to be overestimated. Analysis 

revealed that the size of the FGT affected the recovered water and lipid 

concentrations, where lower densities had lower water and higher lipid content. This 

information was used to form a regression model that could estimate the percent 

breast density well (r = 0.97). 

The results of our simulations were considered when building our 

instrumentation and planning our phantom experiments. We wanted to confirm that 

is a relationship between the true size of the inclusion and the recovered absorption 

despite not reconstructing the correct inclusion volume. In our studies, it has been 

shown that SL-DOT has difficulty in imaging smaller objects (10x10mm2 cross-

section): the tomographic maps show a volume that does not match the true 
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inclusion, but the image reconstruction still recovers an object. Perhaps for the 

application of measuring breast density, the actual visual image may not matter as 

long as the FGT volume is quantified correctly.  

Additionally, the SL-DOT technique has been tested in recovering varying 

chromophore concentrations within varying inclusion sizes. We also found a size-

dependency of the recovered chromophore concentrations and the contrast between 

the inclusion and background. This is similar to what was seen in our simulation 

studies. Recovering different levels of contrast was also tested. Although the exact 

concentrations and contrast are not recovered, some contrast between the 

background and the inclusion is preserved among the different phantoms.  

Understanding the capabilities and limitations of our system are the first steps 

in developing this technique to be used to measuring breast density. There are two 

clinically relevant parameters in which we are interested: the volume of 

fibroglandular tissue within the breast and the amount of hemoglobin within the FGT 

that may be correlated to background parenchymal enhancement (BPE) seen in MRI. 

Though most of the work in this thesis has been focused on the anatomical breast 

density, further studies are need to expand our technique to measuring the functional 

breast density. 

7.2 Future Work 

 There still much work that needs to be done in order to develop the SL-DOT 

system for clinical use. Because the water and lipid have peak absorption beyond 

850nm, our current system is not capable of measuring these chromophores. The 
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incorporation of a NIR-PMT that is sensitive in the 850-1000nm range, in addition to 

the current VIS-PMT, would expand the wavelengths of light that can be measured. 

Once the NIR-PMT is acquired, water and lard phantoms can be used to test the 

improved the benchtop system. Further studies can expand the number of 

chromophores to four to mimic the molecular components of the breast: water, lipid 

oxy- and deoxyhemoglobin.  

 As mentioned previously, SL patterns can be arbitrary, making optimization of 

the pattern set tedious and difficult. Although this study looks at binary patterns 

corresponding to “on” and “off” pixels, the DMDs are capable of projecting 8-bit 

images. This greatly expands the number of possible SL patterns and would require 

extensive studies to truly optimize the pattern set to measure breast density.  

 Human studies are needed to truly test the capabilities of the SL-DOT system. 

The conversion of our benchtop hardware into a human breast imaging system would 

require some considerations. In our system, two transparent plates would be used to 

lightly compress the breast to hold it in place. The compression of the breast have 

been shown to affect the optical properties [110], so studies are needed to see the 

effects on our measurements. If a relationship is found, perhaps a correction factor 

can be used. Additionally, in our experiments the agar phantoms are rectangular, but 

each breast has a unique shape and curvature. The source DMD and additional CCD 

cameras can then be used to outline the shape of the breast so the SL pattern can be 

shaped to cover as much as the breast as possible. In addition, the CCD cameras 

surrounding the breast can collect the breast boundary shape to be used in our image 

reconstructions and to measure the breast volume.  
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Our breast imaging work have been based on simulations and assumed 

chromophore concentrations, so a new training set with human data is needed to 

form a more accurate regression model. The basis of the simulation and the phantom 

studies have shown us what to expect, where although low density cases may be 

overestimated, the recovered water and lipid concentrations can be used to correct 

for this error. What was difficult to simulate was the BPE that is seen in MRI, because 

no study has truly correlated hemoglobin values to the BPE parameters. It would be 

very interesting to be able to find the relationship between the higher intensity 

enhancement from the blood perfusion seen on MRI to the optically measured 

hemoglobin values. Because the recovered hemoglobin values may also depend on 

the fibroglandular size, perhaps the ratio between the hemoglobin seen within the 

segmented optical volume and outside this volume may be correlated to the BPE. 

Lastly, fluorescence imaging can be implemented with the SL-DOT technique 

through the simple addition of an optical bandpass filter [48]. NIR fluoresce imaging 

can enhance the information collected from DOT by localizing and quantifying 

molecular probes tagged with fluorescent agents [111]. As previously mentioned, the 

fluorophore ICG can be used as a contrast agent to identify areas within the FGT with 

high vascularization. Additionally, with advancements in tumor-targeted probes, 

applications can also include cancer detection and characterization [112]. For 

example, fluorophores conjugated with ligands targeting the folate receptor can be 

used in breast cancer imaging [113]. Through this specific-targeting, fluorescence can 

distinguish between the tumor and background tissue.  
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