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Abstract

Short-range ordering (SRO) in multi-principal element alloys influences material properties
such as strength and corrosion. While some degree of SRO is expected at equilibrium,
predicting the kinetics of its formation is challenging. We present a simplified isothermal
concentration-wave (CW) model to estimate an effective relaxation time of SRO forma-
tion. Estimates from the CW model agree to within a factor of five with relaxation times
obtained from kinetic Monte Carlo (kMC) simulations when above the highest ordering in-
stability temperature. The advantage of the CW model is that it only requires mobility
and thermodynamic parameters, which are readily obtained from alloy mobility databases
and Metropolis Monte Carlo simulations, respectively. The simple parameterization of the
CW model and its analytical nature make it an attractive tool for the design of processing
conditions to promote or suppress SRO in multicomponent alloys.

Short-range ordering (SRO) represents non-random correlations between atoms of dif-
ferent species in solid solution alloys. It influences properties such as strength [1–3] and
corrosion [4, 5] of multicomponent and multiprincipal element alloys. Predicting the equilib-
rium level of SRO is a prerequisite to predicting its effect on material properties. Monte Carlo
simulations enabled through accurate descriptions of interatomic interactions are computa-
tionally assessable for this purpose [6]. However, the kinetics of SRO formation are less easily
predicted. While kinetic Monte Carlo (kMC) simulations provide an accurate computational
framework, they are reliant on an extensive number of vacancy hopping energy barriers to
enable the parameterization of their local-environment dependencies. In this paper, we use
an analytical concentration wave (CW) model to predict SRO kinetics in a multicomponent
solid solution alloy. This approach has been shown to successfully predict SRO kinetics in bi-
nary alloys [7]. The CW model circumvents the need to explicitly describe vacancy hopping
by combining thermodynamic information from atomistic simulations and mobility infor-
mation, which in principle can be obtained from experimentally-assessed kinetic databases
[8].
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Here we will briefly review the necessary aspects of the CW model of multicomponent
SRO kinetics as outlined in Ref. [9] for cubic systems. The CW model assumes that the
inital state of the system is not too far away from equilibrium. We consider a n-component
substitutional system where one of the species is a vacancy and the other (n−1) correspond
to the different atomic components. We consider the time (t) dependence of the Fourier

transform of the (n − 1) × (n − 1) matrix of pair correlation functions Q(k⃗, t), with wave-

vector (k⃗). The matrix elements Qij(k⃗, t) = ∆ci(k⃗, t)∆c∗j(k⃗, t) are defined in terms of the
amplitudes of the concentration waves:

∆ci(k⃗, t) =
1

N

N∑
p=1

[ci(r⃗p, t)− c̄i]e
−2πk⃗·r⃗p (1)

where ci(r⃗p,t) takes a value of one (zero) if species i is present (absent) at the lattice site
position r⃗p, and c̄i denotes the average site fraction of species i.

In the CW model, the time evolution of the eigenvalues of Q(k⃗, t) is given by:

Qi(k⃗, t) = [Qi(k⃗, 0)−Qi(k⃗,∞)]exp[−t/τi(k⃗)] +Qi(k⃗,∞) (2)

where Qi(k⃗, 0) and Qi(k⃗,∞) are initial and equilibrium values, respectively, and τi(k⃗) is a

characteristic relaxation time. The value of τi(k⃗) is related to an eigenvalue of the product of

a (n− 1)× (n− 1) mobility matrix (M) and a thermodynamic-factor matrix (Ψ(k⃗)), which
is the Hessian matrix of the free energy of the solid-solution with respect to amplitudes of
different concentration waves at k⃗. The product matrix, (MΨ(k⃗)), is a k⃗-vector dependent
diffusion matrix, which becomes the continuum diffusion matrix in the long-wavelength limit.

Within this model, the value of the real-space pair-correlations, which are related to the
Warren-Cowley (WC) parameters [10], at any time are obtained through transforming the

n − 1 values of Qi(k⃗, t) into a pair-correlation matrix in the original concentration space,

which must be done for every k⃗-point, and carrying out an inverse Fourier transformation.
To simplify the approach, we will adopt some assumptions which are shown below to lead
to accurate predictions.

The first simplifying assumption is that the SRO kinetics are controlled by a dominant
k⃗-point, k⃗D. This can be characterized as the k⃗-point that has the smallest determinant of
Ψ(k⃗) [11]. A small value of the determinant, which is equal to the product of the eigenvalues

of Ψ(k⃗), means that there is a low thermodynamic cost associated with the formation of a

characteristic concentration wave at k⃗. This causes the solid solution to be more susceptible
to the formation of pair-correlations associated with k⃗. The second simplifying assumption
is that at k⃗D, SRO kinetics are limited by the slowest characteristic relaxation time, τs(k⃗D).

The goal of this study is to present a procedure for calculating τs(k⃗D) and compare this
characteristic SRO relaxation time to kMC simulation results. We treat kMC simulations
results as a ground truth due to lack of readily available experimental results for SRO kinetics.

For a given composition and temperature, the values of M, Ψ(k⃗D), and the lattice con-

stant, a, allow for the calculation of τs(k⃗D) through:

τ−1
s (k⃗D) = 2β(k⃗D)λs(k⃗D) (3)
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where β(k⃗D) represents a lattice sum over vectors representing the Z nearest-neighbor posi-
tions (r⃗nn) of an atom 1:

β(k⃗D) =
1

a2

Z∑
nn=1

[1− cos(2πk⃗D · r⃗nn)] (4)

and λs(k⃗D) is the smallest eigenvalue of the matrix product of M and Ψ(k⃗D).
We adopt the common practice of treatingM as a diagonal matrix [12], where its elements

are related to tracer diffusion coefficients (D∗
i ) [13]. Thus, we can parameterize M while

treating vacancies as a conserved species through:

Mii =
D∗

i c̄i
kBT

(5)

where kB is the Boltzmann constant, and T is the temperature. This results in a (n −
1)×(n− 1) mobility matrix where the vacancies are the nth species. For real alloy systems,
the tracer diffusion coefficients can be obtained from mobility databases such as those used
in the DICTRA2 software package [14].

Ψ(k⃗D) is obtained through the following equation [9]:

Q(k⃗D,∞) =
kBT

N
Ψ−1(k⃗D) (6)

where N is the total number of atoms in the system and Ψ−1(k⃗D) is the inverse of Ψ(k⃗D).

The elements of Q(k⃗D,∞) are given as the equilibrium ensemble average values:

Qij(k⃗D,∞) = ⟨∆ci(k⃗D,∞)∆c∗j(k⃗D,∞)⟩. (7)

Eqs. 1, 6, and 7 allow for the calculation of Ψ(k⃗D) through equilibrium pair-correlations

obtained from Monte Carlo simulations in the canonical ensemble. Once M and Ψ(k⃗D) are

determined, τs(k⃗D) is obtained through Eq. 3.
To test the validity of the CW model, we will compare it to results from kMC simulations

of an equiatomic body-centered cubic NbMoTa alloy [15]. A neural-network kMC model was
trained on approximately 7× 105 vacancy hopping energy barriers for various compositions
of the Nb-Mo-Ta system as evaluated from a machine-learned interatomic potential [16].
Further details are found in Ref. [17]. Supercells of 1024 atoms with 341 Nb atoms, 341 Mo
atoms, 341 Ta atoms, and 1 vacancy were used for most kMC simulations. Tracer diffusion
coefficients in the equilibrium SRO state (D∗

eq) were obtained from measuring the mean-
squared displacement of different species as a function of time. Tracer diffusion coefficients

1We note that in Eq. 8 in [7] the factor of 2π is absorbed into the definition of the wave-vector and is

not written in front of k⃗. The factor of 1/a2 is omitted in [7] as the lattice constant was set to 1 in the kMC
simulations.

2Certain commercial equipment, instruments, or materials are identified in this paper in order to specify
the experimental procedure or concept adequately. Such identification is not intended to imply recommen-
dation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available for the purpose.
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in the random state (D∗
rand) were calculated using a supercell size of 128,000 atoms with 1

vacancy and scaled to a vacancy concentration of 1/1024. These allow for comparisons of
the mobility matrix as given by Eq. 5 as a function of these different states, as this system
is known to have its tracer diffusion coefficients reduced in the presence of SRO [18].

As NbMoTa shows a clear B2 ordering of Mo and Ta atoms at lower temperatures [17],

k⃗D represents the 1
a
⟨100⟩ wave-vector in this system [19]. Instead of canonical Monte Carlo

simulations, we use previous long-time kMC simulations [17] of this system consisting of
2× 107 kMC hops to sample equilibrium states. We use a total of 800 snapshots from every
2× 104 kMC hops after the initial 4× 106 (long enough for all states at temperatures above
850 K to reach equilibrium [17]) to obtain an average of the pair-correlations using Eq. 7.
We note that if Metropolis Monte Carlo data using the same model was available, it would
provide the same information. These pair-correlations are used to determine Ψ(k⃗D) as well
as the instability temperature, below which the solid solution phase can reduce its free energy
by spontaneously undergoing a long-range order transformation.

Figure 1 shows an analysis of the stability of the disordered solid solution. In Figure
1(a), data points obtained from long-time kMC simulations represent the determinant of the

Ψ(k⃗D) matrix as a function of temperature. The solid solution is unstable with respect to

a CW with a wave-vector of k⃗D when this determinant reaches zero, which means that one
of the eigenvalues of Ψ(k⃗D) has also reached zero and that the amplitude of a characteristic
concentration wave can grow without any thermodynamic penalty. Using a Guassian pro-
cess regression (GPR) model (implemented in the scikit-learn package [20]) fit to the kMC
data, we estimate the instability temperature to be 1128 K. Due to the uncertainty of the
GPR model at lower temperatures, we also calculate the temperature-dependent variance of
∆ci(k⃗D) for Nb, Mo, and Ta in Figure 1(b). A spike is observed around 1000 K. Therefore,
we estimate the instability temperature for the disordered state of our system to be between
1000 K and 1128 K.

Figure 1: (a) Determinant of the thermodynamic matrix (units are in eV3) at the 1
a ⟨100⟩ wave-vector as

a function of temperature. The points represent data directly obtained from long-time kMC simulations,
while the dashed blue line represents a fit to a Gaussian process regression (GPR) model. The shaded region
represents the estimated uncertainty of the model. The red square is the intersection of the GPR model
with the value of zero at a temperature of 1128 K. (b) Variance of the CW amplitudes for different species
obtained from long-time kMC simulations as a function of temperature. Lines are for guiding the eye.
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With M and Ψ(k⃗D) determined, we obtain the CW model estimate of τs(k⃗D) from Eq. 3.
We compare this value to relaxation times obtained from shorter kMC simulations of SRO
evolution starting from a random state. Five independent kMC simulations with different ini-
tial random configurations were carried out at temperatures of 1200 K and 2600 K for 2×105

kMC hops each. These temperatures were chosen to assess the level of prediction of the CW
model at temperatures both near and far from the estimated instability temperature range.
We note that the isothermal SRO relaxation kinetics in this study are not representative of
the kinetics of the true NbMoTa system due to the artificially high vacancy concentration of
1/1024. A more realistic relaxation time could be orders of magnitude slower. This does not
limit the applicability of the CW model to real systems, as mobilities obtained from kinetic
databases are representative of diffusion with an equilibrium concentration of vacancies. Of
course, these databases do not describe mobilities when a non-equilibrium concentration of
point defects are present, such as during rapid quenching or when under irradiation.

Figures 2(a) and (c) show the kinetics of the WC parameters from kMC simulations for
the first and second nearest neighbor shells at 1200 K. The WC parameter between species
i and j for the mth shell is evaluated as [21]:

αij
m = 1− Pm(i|j)

c̄i
(8)

where Pm(i|j) is the probability of finding atom species i around the mth shell of a j atom.
We only show three of the possible different pairs in the NbMoTa system as that is the
number of linearly independent pair-correlations in a three component system (ignoring
the vacancy) [10]. The time-dependence of the WC parameters can be reliably fit to an
exponential kinetics model:

1− αij
m(t)

αij,eq
m

= exp[−t/τ ijm ] (9)

where αij,eq
m is the WC parameter at equilibrium (extracted from the long-time kMC simu-

lations), and τ ijm is a relaxation time that is obtained from fitting to the kMC results.
In Figures 2(b) and (d) we plot the behavior of the exponential model with relaxation

times obtained from fitting to kMC results, as well as with relaxation times obtained from
the CW model using Eq. 3. While the relaxation times obtained from kMC results have a
slight dependence on the type of pairs, they are well within the same order of magnitude
of each other. Regardless of whether D∗

eq or D∗
rand coefficients are used to parameterize M,

the kinetics from the CW model are within the same order of magnitude as the exponential
model fit to kMC results. However, the CW model using D∗

rand results in a better prediction.
As our simulations start with a system closer to random and evolves toward the SRO state,
the vacancy kinetics are at least initially better described by the random state. However, at
worst the CW predictions using D∗

eq overestimates the relaxation time only by a factor of
five. This is encouraging as tracer diffusivities obtained from mobility databases will describe
diffusion in an equilibrium state. The first three columns of Table 1 lists the ratios between
the CW relaxation times and those extracted from kMC at a temperature of 1200 K.

Figures 3(a) and (c) show the kinetics of the WC SRO parameters from kMC simulations
for the first and second nearest neighbor shells at 2600 K. Similar to the 1200 K case, we
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Figure 2: (a) Bin-averaged time dependent WC parameters for the first nearest neighbor shells between
MoTa, MoMo, and TaTa pairs obtained from five independent kMC simulations at 1200 K. The shaded
regions represent +/- one standard deviation of each bin. The black dotted lines represent exponential fits
to the binned data. (b) Comparisons of exponential kinetics as fit to kMC data for different pairs within a
first nearest neighbor shell as well as to CW predictions using tracer diffusivities obtained from an equilibrium
SRO state (D∗

eq) or a random state (D∗
rand). (c) and (d) are the same as (a) and (b), respectively, except as

evaluated for the second nearest neighbor shell.

find that the kMC results are well fit to Eq. 9. Figures 3(b) and (d) show that the effective
relaxation time obtained from the kMC results are less dependent on the types of pairs at a
temperature of 2600 K than at a temperature of 1200 K. We find that the difference between
the CW prediction when using D∗

rand or D∗
eq is minimal. At higher temperatures, SRO

is weaker, so its effect on vacancy diffusion behavior diminishes. Additionally, for the first
nearest neighbor shell the CW predictions seem to slightly underestimate the relaxation time,
while for the second nearest neighbor shell the CW predictions seem to slightly overestimate
the relaxation time. Regardless, the CW model provides a description of SRO kinetics that
agrees well with the time scale obtained from kMC simulations at the temperature of 2600
K, with the worst disagreement being approximately a factor of two. The last three columns
of Table 1 lists the ratios between the CW relaxation times and those extracted from kMC
at a temperature of 2600 K. Ultimately, the slowest characteristic relaxation time predicted
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1200 K 2600 K
MoTa MoMo TaTa MoTa MoMo TaTa

τs(k⃗D)/τ
ij
1 (D∗

eq) 3.7 3.0 5.0 0.7 0.7 0.8

τs(k⃗D)/τ
ij
2 (D∗

eq) 3.0 2.7 3.9 1.6 1.8 1.4

τs(k⃗D)/τ
ij
1 (D∗

rand) 1.6 1.3 2.2 0.7 0.7 0.7

τs(k⃗D)/τ
ij
2 (D∗

rand) 1.3 1.2 1.7 1.5 1.7 1.3

Table 1: Ratio between relaxation times obtained from Eq. 3 to relaxation times obtained from kMC using
Eq. 9 as a function of pairs, nearest neighbor shells, and choices of tracer diffusivities at temperatures of
1200 K and 2600 K.

from the CW model agrees with the SRO relaxation times obtained from kMC simulations
to within an order of magnitude at and above temperatures of approximately 1.1 to 1.2 times
the instability temperature.

For the sake of comparison, we also look at the slowest relaxation time at two other
k⃗-vectors: 1

2a
⟨110⟩ and 1

2a
⟨111⟩. These represent two other special points for the BCC lattice

[19]. The relaxation times using D∗
eq at the temperatures of both 1200 K and 2600 K are

listed in Table 2, along with the determinant of the Ψ(k⃗) matrix and the value of β(k⃗) for

each k⃗-vector. At 1200 K, the slowest relaxation time is associated with k⃗D along with the
smallest determinant of Ψ(k⃗). This is in agreement with our first assumption. At 2600 K,

k⃗D still has the smallest determinant of Ψ(k⃗), but no longer has the slowest relaxation time.
At this temperature, all three relaxation times are relatively close to each other. This is
likely due to the fact that the temperature-independent lattice sum, β(k⃗), is twice as large

at k⃗D than the other two k⃗-vectors. While this shows that our first assumption is not strictly
true at higher temperatures, the relaxation time obtained at k⃗D is still a useful estimate as
shown earlier.

1200 K 2600 K

k⃗ τs(k⃗) det(Ψ(k⃗)) τs(k⃗) det(Ψ(k⃗)) β(k⃗)

1
a
⟨100⟩ (k⃗D) 5.7×10−3 s 4 eV3 3.9×10−8 s 171 eV3 16

1
2a
⟨110⟩ 0.9×10−3 s 51 eV3 3.6×10−8 s 397 eV3 8

1
2a
⟨111⟩ 1.5×10−3 s 35 eV3 4.5×10−8 s 333 eV3 8

Table 2: The slowest relaxation time at different k⃗-vectors, along with the determinant of Ψ(k⃗) at the

temperatures of 1200 K and 2600 K. The last column shows the values of β(k⃗).
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Figure 3: (a) Bin-averaged time dependent WC parameters for the first nearest neighbor shells between
MoTa, MoMo, and TaTa pairs obtained from five independent kMC simulations at 2600 K. The shaded
regions represent +/- one standard deviation of each bin. The black dotted lines represent exponential fits
to the binned data. (b) Comparisons of exponential kinetics as fit to kMC data for different pairs within a
first nearest neighbor shell as well as to CW predictions using tracer diffusivities obtained from an equilibrium
SRO state (D∗

eq) or a random state (D∗
rand). (c) and (d) are the same as (a) and (b), respectively, except as

evaluated for the second nearest neighbor shell.

One inconvenience associated with the above approach is that the calculation of the
thermodynamic matrix through Eq. 6 requires Monte Carlo simulations that include at
least one vacancy, which requires the parameterization of vacancy-atom interactions [22].

For systems without a vacancy, the number of rows and columns in the Ψ(k⃗D) matrix

decrease by one each, and the matrix product of M with Ψ(k⃗D) cannot be performed when
assuming a conserved network of lattice sites. It is possible to reduce the size of the M
matrix by assuming that a sufficient density of sources and sinks exist to instantaneously
maintain a local equilibrium of vacancy concentration [13]. However such an assumption
does not seem warrented as, firstly, we have no sources or sinks in the kMC simulations
we are comparing to, and, secondly, in real material systems the characteristic length scale
for SRO (well away from the instability temperature) is on the order of the lattice spacing
while the characteristic length scale of microstructural sources and sinks is typically much

8



larger [23]. To avoid dealing with vacancies in Monte Carlo, we follow Ref. [11] and adopt

a parameterization of the matrix elements of Ψ(k⃗D) through:

Ψii(k⃗D) = −2fin(k⃗D) + kBT
( 1

c̄n
+

1

c̄i

)
(10)

Ψij(k⃗D) = fij(k⃗D)− fin(k⃗D)− fnj(k⃗D) +
kBT

c̄n
(11)

where the concentration dependent terms represent the thermodynamically ideal contribu-
tions to Ψ(k⃗D), and the fij(k⃗D) terms represent the thermodynamically non-ideal contribu-
tions associated with species i and j. In treating the vacancy, the nth species, as ideal, all
the non-ideal contributions with the subscript of n are set to zero, and c̄n is set to some
arbitrarily dilute concentration, with the other concentrations adjusted to maintain a sum
of one. Using Eqs. 10 and 11 requires the non-ideal contributions of non-vacancy species.
This is obtained by fitting Eqs. 10 and 11 to the (n∗ − 1)×(n∗ − 1) Ψ∗(k⃗D) matrix (where
n∗ = n− 1) determined from Eq. 6 using canonical Monte Carlo simulations without a va-
cancy. Assuming that a dilute concentration of vacancies will not affect the non-ideal terms
obtained from this matrix, they can be used to construct a (n − 1)×(n − 1) Ψ(k⃗D) matrix
with Eqs. 10 and 11 while treating the vacancy as the nth species with ideal interactions.

To evaluate how well this approach works, we once again calculate the pair-correlations
from Eq. 7 from the 800 snapshots obtained from long-time kMC, but this time we replace
the vacancy in each snapshot with a Ta atom. We note that the following results are nearly
identical when replacing the vacancy with either a Nb or Mo atom instead, which is to be
expected given the low vacancy concentration of 1/1024 in the simulated system. We obtain

a (n∗ − 1)×(n∗ − 1) Ψ∗(k⃗D) matrix using Eq. 6, and fit the non-ideal contributions in Eqs.
10 and 11 to this matrix. Those equations are then used to approximate the (n− 1)×(n−
1) Ψ(k⃗D) matrix with an ideal vacancy with an arbitrarily chosen value of the vacancy
concentration, cV (which is also c̄n). This is used to approximate all the characteristic

relaxation times at k⃗D from the CW model, not just the slowest one, through equations
analogous to Eq. 3 for the faster relaxation times. We emphasize that cV is not a true
vacancy concentration, just a value chosen to approximate the dilute ideal contribution
to Ψ(k⃗D). The choice of cV does not affect M, which is dependent on the true vacancy
concentration.

Relaxation times using the approximate Ψ(k⃗D) matrix are presented in Figure 4 for

temperatures of 1200 K and 2600 K. We compare to results obtained using the true Ψ(k⃗D)
matrix obtained from long-time kMC simulations including a vacancy. Encouragingly, we
see that with the choice of cV equal to 1/1024, the CW model predictions are nearly on top

of each other when using the approximate or true Ψ(k⃗D) matrix. We find that the slower
relaxation times do not depend on the value of cV as long as it is below a value of about
0.01, which is a much larger vacancy concentration than would be expected in a real alloy.
The fastest relaxation time is strongly dependent on the value of cV . However it is orders of
magnitude faster than the other relaxation times, and as evidenced by the timescale of SRO
formation from our kMC results, is not relevant to the kinetics of SRO formation. Therefore,
our approach to approximate the Ψ(k⃗D) matrix with a dilute vacancy concentration does not

9



affect the prediction of τs(k⃗D), and it circumvents the need to parameterize vacancy-atom
interactions.

Figure 4: Fast, middle, and slow characteristic relaxation times obtained from the CW model for the k⃗D-
wave-vector using the true thermodynamic matrix including the vacancy contribution (points) as well as
the approximate thermodynamic matrix obtained through treating the vacancy as an ideal species with an
arbitrarily dilute concentration (lines) for (a) 1200 K and (b) 2600 K.

In conclusion, we have shown that the slowest characteristic relaxation time of the dom-
inant ordering wave-vector, τs(k⃗D), predicted by the CW model provides a reliable order
of magnitude estimate of isothermal SRO relaxation kinetics in a ternary multicomponent
alloy when compared to kMC results. The CW model only needs a mobility matrix and
a thermodynamic matrix, which for a real alloy can be obtained from mobility databases
and from canonical Monte Carlo simulations using an accurate description of interatomic
interactions. We anticipate that this model can aid in designing processing conditions to
promote or suppress SRO in multicomponent solid solution alloys.
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