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MULTIGRADED HILBERT SCHEMES

MARK HAIMAN AND BERND STURMFELS

Abstract

We introduce the multigraded Hilbert scheme, which parametrizes all
homogeneous ideals with fixed Hilbert function in a polynomial ring that
is graded by any abelian group. Our construction is widely applicable, it
provides explicit equations, and it allows us to prove a range of new re-
sults, including Bayer’s conjecture on equations defining Grothendieck’s
classical Hilbert scheme and the construction of a Chow morphism for
toric Hilbert schemes.

1. Introduction

The multigraded Hilbert scheme parametrizes all ideals in a polynomial
ring which are homogeneous and have a fixed Hilbert function with respect to
a grading by an abelian group. Special cases include Hilbert schemes of points
in affine space [19], toric Hilbert schemes [26], Hilbert schemes of abelian group
orbits [24], and Grothendieck’s classical Hilbert scheme [9]. We show that the
multigraded Hilbert scheme always exists as a quasiprojective scheme over
the ground ring k. This result is obtained by means of a general construction
which works in more contexts than just multigraded polynomial rings. It also
applies to Quot schemes and to Hilbert schemes arising in noncommutative
geometry; see e.g., [1], [4]. Our results resolve several open questions about
Hilbert schemes and their equations.

Our broader purpose is to realize the multigraded Hilbert scheme effec-
tively, in terms of explicit coordinates and defining equations. These coordi-
nates may either be global, in the projective case, or local, on affine charts
covering the Hilbert scheme. A byproduct of our aim for explicit equations is,
perhaps surprisingly, a high level of abstract generality. In particular, we avoid
using Noetherian hypotheses, so our results are valid over any commutative
ground ring k whatsoever.
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726 MARK HAIMAN AND BERND STURMFELS

Let S = k[x1, . . . , xn] be the polynomial ring over a commutative ring k.
Monomials xu in S are identified with vectors u in Nn. A grading of S by an
abelian group A is a semigroup homomorphism deg : Nn → A. This induces
a decomposition

S =
⊕
a∈A

Sa, satisfying Sa · Sb ⊆ Sa+b,

where Sa is the k-span of all monomials xu whose degree is equal to a. Note
that Sa need not be finitely-generated over k. We always assume, without loss
of generality, that the group A is generated by the elements ai = deg(xi) for
i = 1, 2, . . . , n. Let A+ = deg(Nn) denote the subsemigroup of A generated
by a1, . . . , an.

A homogeneous ideal I in S is admissible if (S/I)a = Sa/Ia is a locally free
k-module of finite rank (constant on Spec k) for all a ∈ A. Its Hilbert function
is

(1) hI : A→ N, hI(a) = rkk(S/I)a.

Note that the support of hI is necessarily contained in A+. Fix any numerical
function h : A → N supported on A+. We shall construct a scheme over k
which parametrizes, in the technical sense below, all admissible ideals I in S

with hI = h.
Recall (e.g. from [9]) that every scheme Z over k is characterized by its

functor of points, which maps the category of k-algebras to the category of
sets as follows:

(2) Z : k-Alg→ Set, Z(R) = Hom(SpecR,Z).

Given our graded polynomial ring S = k[x1, . . . , xn] and Hilbert function h,
the Hilbert functor Hh

S : k-Alg → Set is defined as follows: Hh
S(R) is the set

of homogeneous ideals I ⊆ R ⊗k S such that (R⊗ Sa)/Ia is a locally free
R-module of rank h(a) for each a ∈ A. We shall construct the scheme which
represents this functor.

Theorem 1.1. There exists a quasiprojective scheme Z over k such that
Z = Hh

S .
The scheme Z is called the multigraded Hilbert scheme and is also denoted

Hh
S . It is projective if the grading is positive, which means that x0 = 1 is

the only monomial of degree 0. Note that if the grading is positive, then
A+ ∩ −(A+) = {0}.

Corollary 1.2. If the grading of the polynomial ring S = k[x1, . . . , xn] is
positive, then the multigraded Hilbert scheme Hh

S is projective over the ground
ring k.
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This corollary also follows from recent work of Artin and Zhang [1]. The
approach of Artin and Zhang is non-constructive, and does not apply when
the Sa are not finite over k and the Hilbert scheme is only quasiprojective.
In our approach, the Noetherian and finite-generation hypotheses in [1] are
replaced by more combinatorial conditions. This gives us sufficient generality
to construct quasiprojective Hilbert schemes, and the proof becomes algorith-
mic, transparent and uniform, requiring no restrictions on the ground ring k,
which need not even be Noetherian.

This paper is organized as follows. In Section 2 we present a general con-
struction realizing Hilbert schemes as quasiprojective varieties. The main
results in Section 2 are Theorems 2.2 and 2.3. In Section 3, we apply these gen-
eral theorems to prove Theorem 1.1 and Corollary 1.2. The needed finiteness
hypotheses are verified using Maclagan’s finiteness theorem [20] for monomial
ideals in S. Our main results in Section 3 are Theorems 3.6 and 3.16. These
two theorems identify finite subsets D of the group A such that the degree
restriction morphism Hh

S → Hh
SD

is a closed embedding (respectively an iso-
morphism), and they lead to explicit determinantal equations and quadratic
equations for the Hilbert scheme Hh

S .
Section 4 concerns the classical Grothendieck Hilbert scheme which para-

metrizes ideals with a given Hilbert polynomial (as opposed to a given Hilbert
function) in the usual N-grading. The results of Gotzmann [15] can be
interpreted as identifying the Grothendieck Hilbert scheme with our Hh

S ,
for a suitably chosen Hilbert function h, depending on the Hilbert poly-
nomial. Our construction naturally yields two descriptions of the Hilbert
scheme by coordinates and equations. The first reproduces Gotzmann’s equa-
tions in terms of Plücker coordinates in two consecutive degrees. The sec-
ond reproduces equations in terms of Plücker coordinates in just one degree.
We prove a conjecture from Bayer’s 1982 thesis [3] stating that Bayer’s set-
theoretic equations of degree n actually define the Hilbert scheme as a
scheme.

In Section 5 we examine the case where h is the incidence function of
the semigroup A+, in which case Hh

S is called the toric Hilbert scheme. In
the special cases when the grading is positive or when the group A is finite,
this scheme was constructed by Peeva and Stillman [26] and Nakamura [24]
respectively. We unify and extend results by these authors, and we resolve
Problem 6.4 in [29] by constructing the natural morphism from the toric
Hilbert scheme to the toric Chow variety.

Recent work by Santos [28] provides an example where both the toric
Chow variety and the toric Hilbert scheme are disconnected. This shows
that the multigraded Hilbert scheme Hh

S can be disconnected, in contrast to
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Hartshorne’s classical connectedness result [16] for the Grothendieck Hilbert
scheme.

In Section 6 we demonstrate that the results of Section 2 are applicable to
a wide range of parameter spaces other than the multigraded Hilbert scheme;
specifically, we construct Quot schemes and Hilbert schemes parametrizing
ideals in the Weyl algebra, the exterior algebra and other noncommutative
rings.

Before diving into the abstract setting of Section 2, we wish to first present a
few concrete examples and basic facts concerning multigraded Hilbert schemes.

Example 1.3. Let n = 2 and k = C, the complex numbers, and fix
S = C[x, y]. We conjecture that Hh

S is smooth and irreducible for any group
A and any h : A→ N.

(a) If A = 0, then Hh
S is the Hilbert scheme of n = h(0) points in the

affine plane A2. This scheme is smooth and irreducible of dimension
2n; see [12].

(b) If A = Z, deg(x), deg(y) are positive integers, and h has finite support,
then Hh

S is an irreducible component in the fixed-point set of a C∗-
action on the Hilbert scheme of points; see e.g. [11]. This was proved
by Evain [10].

(c) If A = Z, deg(x) = deg(y) = 1 and h(a) = 1 for a ≥ 0, then Hh
S = P1.

(d) More generally, if A=Z, deg(x)=deg(y)=1 and h(a)=min(m, a+1),
for some integer m ≥ 1, then Hh

S is the Hilbert scheme of m points
on P1.

(e) If A = Z, deg(x) = − deg(y) = 1 and h(a) = 1 for all a, thenHh
S = A1.

(f) If A = Z2, deg(x) = (1, 0) and deg(y) = (0, 1), then Hh
S is either

empty or a point. In the latter case it consists of a single monomial
ideal.

(g) If A = Z/2Z, deg(x) = deg(y) = 1 and h(0) = h(1) = 1, then Hh
S is

isomorphic to the cotangent bundle of the projective line P1. �

Example 1.4. Let n = 3. This example is the smallest reducible Hilbert
scheme known to us. We fix the Z2-grading of the polynomial ring S =
C[x, y, z] given by

deg(x) = (1, 0) , deg(y) = (1, 1) , deg(z) = (0, 1).

Consider the closed subscheme in the Hilbert scheme of nine points in A3

consisting of homogeneous ideals I ⊂ S such that S/I has the bivariate Hilbert
series

s2t2 + s2t + st2 + s2 + 2st + s + t + 1.
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This multigraded Hilbert scheme is the reduced union of two projective lines
P1 which intersect in a common torus fixed point. The universal family equals

〈x3, xy2, x2y, y3, a0x
2z − a1xy, b0xyz − b1y2, y2z, z2〉 with a1b1 = 0.

Here (a0 : a1) and (b0 : b1) are coordinates on two projective lines. This
Hilbert scheme has three torus fixed points, namely, the three monomial ideals
in the family. �

In these examples we saw that if the Hilbert function h has finite sup-
port, say m =

∑
a∈A h(a), then Hh

S is a closed subscheme of the Hilbert
scheme of m points in An. More generally, there is a canonical embedding of
one multigraded Hilbert scheme into another when the grading and Hilbert
function of the first refine those of the second. Let φ : A0 → A1 be a homomor-
phism of abelian groups. A grading deg0 : Nn → A0 refines deg1 : Nn → A1 if
deg1 = φ◦deg0. In this situation, a function h0 : A0 → N refines h1 : A1 → N
if h1(u) =

∑
φ(v)=u h0(v) for all u ∈ A1. Any admissible ideal I ⊆ R⊗ S

with Hilbert function h0 for the grading deg0 is also admissible with Hilbert
function h1 for deg1. Hence the Hilbert functor Hh0

S is a subfunctor of Hh1
S .

The following assertion will be proved in Section 3.

Proposition 1.5. If (deg0, h0) refines (deg1, h1), then the natural embed-
ding of Hilbert functors described above is induced by an embedding of the
multigraded Hilbert scheme Hh0

S as a closed subscheme of Hh1
S .

A nice feature of the multigraded Hilbert scheme, in common with other
Hilbert schemes, is that its tangent space at any point has a simple description.
We assume that k is a field and I ∈ Hh

S(k). The S-module HomS(I, S/I) is
graded by the group A, and each component (HomS(I, S/I))a is a finite-
dimensional k-vector space.

Proposition 1.6. For k a field, the Zariski tangent space to the multi-
graded Hilbert scheme Hh

S at a point I ∈ Hh
S(k) is canonically isomorphic to

(HomS(I, S/I))0.

Proof. Let R = k[ε]/〈ε2〉. The tangent space at I is the set of points in
Hh
S(R) whose image under the map Hh

S(R) → Hh
S(k) is I. Such a point is

an A-homogeneous ideal J ⊂ R[x] = k[x, ε]/〈ε2〉 such that J/〈ε〉 equals the
ideal I in S = k[x] and R[x]/J is a free R-module. Consider the map from
k[x] to εR[x] ∼= k[x] given by multiplication by ε. This multiplication map
followed by projection onto εR[x]/(J∩εR[x]) ∼= k[x]/I represents a degree zero
homomorphism I → S/I, and, conversely, every degree zero homomorphism
I → S/I arises in this manner from some J . �
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2. A general framework for Hilbert schemes

Fix a commutative ring k and an arbitrary index set A called “degrees.”
Let

(3) T =
⊕
a∈A

Ta

be a graded k-module, equipped with a collection of operators F =
⋃
a,b∈A Fa,b,

where Fa,b ⊆ Homk(Ta, Tb). Given a commutative k-algebra R, we denote by
R⊗ T the gradedR-module

⊕
aR⊗ Ta, with operators F̂a,b=(1R ⊗−)(Fa,b).

A homogeneous submodule L =
⊕

a La ⊆ R⊗ T is an F -submodule if it
satisfies F̂a,b(La) ⊆ Lb for all a, b ∈ A. We may assume that F is closed
under composition: Fbc ◦ Fab ⊆ Fac for all a, b, c ∈ A and Faa contains the
identity map on Ta for all a ∈ A. In other words, (T, F ) is a small category
of k-modules, with the components Ta of T as objects and the elements of F
as arrows.

Fix a function h : A → N. Let Hh
T (R) be the set of F -submodules L ⊆

R ⊗ T such that (R ⊗ Ta)/La is a locally free R-module of rank h(a) for
each a ∈ A. If φ : R → S is a homomorphism of commutative rings (with
unit), then local freeness implies that L′ = S ⊗R L is an F -submodule of
S ⊗ T , and (S ⊗ Ta)/L′a is locally free of rank h(a) for each a ∈ A. Defining
Hh
T (φ) : Hh

T (R)→ Hh
T (S) to be the map sending L to L′ makes Hh

T a functor
k-Alg→ Set, called the Hilbert functor.

If (T, F ) is a graded k-module with operators, as above, and D ⊆ A is
a subset of the degrees, we denote by (TD, FD) the restriction of (T, F ) to
degrees in D. In the language of categories, (TD, FD) is the full subcategory of
(T, F ) with objects Ta for a ∈ D. There is an obvious natural transformation
of Hilbert functors Hh

T → Hh
TD

given by restriction of degrees, that is, L ∈
Hh
T (R) goes to LD =

⊕
a∈D La.

Remark 2.1. Given an FD-submodule L ⊆ R⊗ TD, let L′ ⊆ R⊗ T be the
F -submodule it generates. The assumption that F is closed under composition
implies that L′a =

∑
b∈D Fba(Lb). In particular, the restriction L′D of L′ is

equal to L.
We show that, under suitable hypotheses, the Hilbert functor Hh

T is rep-
resented by a quasiprojective scheme over k, called the Hilbert scheme. Here
and elsewhere we will abuse notation by denoting this scheme and the functor
it represents by the same symbol, so we also write Hh

T for the Hilbert scheme.
Theorem 2.2. Let (T, F ) be a graded k-module with operators, as above.

Suppose that M ⊆ N ⊆ T are homogeneous k-submodules satisfying four
conditions:

(i) N is a finitely generated k-module;
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(ii) N generates T as an F -module;
(iii) for every field K ∈ k-Alg and every L ∈ Hh

T (K), M spans (K ⊗ T )/L;
and

(iv) there is a subset G ⊆ F , generating F as a category, such that GM
⊆ N .

Then Hh
T is represented by a quasiprojective scheme over k. It is a closed

subscheme of the relative Grassmann scheme GhN\M , which is defined below.

In hypothesis (iii), N also spans (K ⊗ T )/L, so dimK(K ⊗ T )/L =∑
a∈A h(a) is finite. Therefore, Theorem 2.2 only applies when h has finite

support. Our strategy in the general case is to construct the Hilbert scheme
for a finite subset D of the degrees A and then to use the next theorem to
refine it to all degrees.

Theorem 2.3. Let (T, F ) be a graded k-module with operators and D ⊆ A
such that Hh

TD
is represented by a scheme over k. Assume that for each degree

a ∈ A:

(v) there is a finite subset E ⊆
⋃
b∈D Fba such that Ta/

∑
b∈D Eba(Tb) is

a finitely generated k-module; and
(vi) for every field K ∈ k-Alg and every LD ∈ Hh

TD
(K), if L′ denotes

the F -submodule of K ⊗ T generated by LD, then dim(K ⊗ Ta)/L′a ≤
h(a).

Then the natural transformation Hh
T → Hh

TD
makes Hh

T a subfunctor of Hh
TD

,
represented by a closed subscheme of the Hilbert scheme Hh

TD
.

We realize that conditions (i)–(vi) above appear obscure at first sight. Their
usefulness will become clear as we apply these theorems in Section 3.

Sometimes the Hilbert scheme is not only quasiprojective over k, but pro-
jective.

Corollary 2.4. In Theorem 2.2, in place of hypotheses (i)–(iv), assume
only that the degree set A is finite, and Ta is a finitely-generated k-module for
all a ∈ A. Then Hh

T is projective over k.

Proof. We can take M = N = T and G = F . Then hypotheses (i)–
(iv) are trivially satisfied, and the relative Grassmann scheme GhN\M in the
conclusion is just the Grassmann scheme GhN . It is projective by Proposition
2.10, below. �

Remark 2.5. In Theorem 2.3, suppose in addition to hypotheses (v) and
(vi) that D is finite and Ta is finitely generated for all a ∈ D. Then we can
again conclude that Hh

T is projective, since it is a closed subscheme of the
projective scheme Hh

TD
.
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In what follows we review some facts about functors, Grassmann schemes,
and the like, then turn to the proofs of Theorems 2.2 and 2.3. In Section 3
we use these theorems to construct the multigraded Hilbert scheme.

We always work in the category Sch/k of schemes over a fixed ground ring
k. We denote the functor of points of a scheme Z by Z as in (2).

Proposition 2.6 ([9, Proposition VI-2]). The scheme Z is characterized
by its functor Z, in the sense that every natural transformation of functors
Y → Z is induced by a unique morphism Y → Z of schemes over k.

Our approach to the construction of Hilbert schemes will be to represent the
functors in question by subschemes of Grassmann schemes. The theoretical
tool we need for this is a representability theorem for a functor defined relative
to a given scheme functor. The statement below involves the concepts of
open subfunctor (see [9, §VI.1.1]) and Zariski sheaf, introduced as “sheaf in
the Zariski topology” at the beginning of [9, §VI.2.1]. Being a Zariski sheaf
is a necessary condition for a functor k-Alg → Set to be represented by a
scheme. See [9, Theorem VI-14] for one possible converse. Here is the relative
representability theorem we will use.

Proposition 2.7. Let η : Q → Z be a natural transformation of functors
k-Alg→ Set, where Z is a scheme functor and Q is a Zariski sheaf. Suppose
that Z has a covering by open sets Uα such that each subfunctor η−1(Uα) ⊆ Q
is a scheme functor. Then Q is a scheme functor, and η corresponds to a
morphism of schemes.

Proof. Let Yα be the scheme whose functor is η−1(Uα). The induced natu-
ral transformation η−1(Uα)→ Uα provides us with a morphism πα : Yα → Uα.
For each α and β, the open subscheme π−1

α (Uα ∩ Uβ) ⊆ Yα has functor
η−1(Uα∩Uβ). In particular, we have a canonical identification of π−1

α (Uα∩Uβ)
with π−1

β (Uα ∩ Uβ), and these identifications are compatible on every triple
intersection Uα∩Uβ∩Uγ . By the gluing lemma for schemes, there is a scheme
Y with a morphism π : Y → Z such that for each α we have Yα = π−1(Uα)
and πα = π|Yα .

Let R be a k-algebra and let φ be an element of Y (R), that is, a morphism
φ : SpecR→ Y . Since the Yα form an open covering of Y , there are elements
fi generating the unit ideal in R such that φ maps Ufi ⊆ SpecR into some
Yαi . Let φi : Ufi → Yαi be the restriction of φ; it is an element of Yαi(Rfi) ⊆
Q(Rfi). For each i, j, the elements φi, φj restrict to the same morphism
φij : Ufifj → Yαi ∩Yαj , and therefore have the same image in Q(Rfifj ). Since
Q is a Zariski sheaf by hypothesis, the elements φi are all induced by a unique
element φ̂ ∈ Q(R).

We have thus constructed a transformation ξ : Y → Q sending φ ∈ Y (R)
to φ̂ ∈ Q(R), and it is clearly natural in R. We claim that ξ is a natural
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isomorphism. First note that φ̂ determines each φi by definition, and these
determine φ since the Ufi cover SpecR. Hence ξR is injective. Now consider
any k-algebraR and λ ∈ Q(R). Then η(λ) ∈ Z(R) is a morphism SpecR→ Z,
and we can cover SpecR by open sets Ufi such that η(λ) maps each Ufi into
some Uαi . This means that the image of λ in Q(Rfi) belongs to η−1(Uαi),
that is, to Yαi . Since Y is a Zariski sheaf and the Ufi cover SpecR, this
implies that λ belongs to ξR(Y (R)). Hence ξ is surjective. �

Corollary 2.8. Under the hypotheses of Proposition 2.7, if the natural
transformations η−1(Uα) → Uα given by restricting η are induced by closed
embeddings of schemes, then so is η.

Proof. This just says that the condition for a morphism η : Y → Z to be
a closed embedding is local on Z. Indeed, the result is valid with “closed
embedding” replaced by any property of a morphism that is local on the
base. �

Another useful characterization of natural transformations η : Q→ Z rep-
resented by closed subschemes of Z is as subfunctors defined by a closed
condition. A condition on R-algebras is closed if there exists an ideal I ⊆ R

such that the condition holds for an R-algebra S if and only if the image of I
in S is zero.

Let Z be a scheme over k and η : Q ↪→ Z a subfunctor. We wish to
decide whether η is represented by a closed embedding. Consider a k-algebra
R and an element λ ∈ Z(R), or equivalently a morphism λ : SpecR → Z.
Given this data, we define a condition VR,λ on R-algebras S, as follows. Let
φ : R → S be the ring homomorphism making S an R-algebra. Then S

satisfies the condition VR,λ if the element Z(φ)λ ∈ Z(S) belongs to the subset
ηS(Q(S)) ⊆ Z(S) defined by the subfunctor. We can now express the content
of Proposition 2.7 and Corollary 2.8 as follows.

Proposition 2.9. Let η : Q ↪→ Z be a subfunctor, where Z is a scheme
functor and Q is a Zariski sheaf. Then Q is represented by a closed subscheme
of Z if and only if VR,λ is a closed condition for all R ∈ k-Alg and λ ∈ Z(R).

Proof. First suppose that Y ⊆ Z is a closed subscheme, and Q = Y is
the corresponding subfunctor of Z. Given λ : SpecR → Z, let I ⊆ R be the
ideal defining the scheme-theoretic preimage λ−1(Y ) ⊆ SpecR. The condition
VR,λ on an R-algebra S is that φ : R→ S factor through R/I, so it is a closed
condition.

For the converse, using Proposition 2.7 and Corollary 2.8, it suffices to
verify that Q′ = Q ∩ U is represented by a closed subscheme of U , for each
U = SpecR in an affine open covering of Z. The inclusion λ : U ↪→ Z is
an element λ ∈ Z(R). The subset Q′(S) ⊆ U(S) is the set of morphisms
ν : SpecS → U such that λ ◦ ν belongs to ηS(Q(S)). If φ : R → S is the
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ring homomorphism underlying such a morphism ν, then λ ◦ ν = Z(φ)λ, so ν
belongs to Q′(S) if and only if the R-algebra S satisfies the condition VR,λ.
By hypothesis, the closed condition VR,λ is defined by an ideal I ⊆ R. Hence
Q′(S) is naturally identified with the set of ring homomorphisms φ : R → S

that factor through R/I. In other words, Q′ is represented by the closed
subscheme V (I) ⊆ U = SpecR. �

Recall that anR-moduleW is locally free of rank r if there exist f1, . . . , fk ∈
R generating the unit ideal, such that Wfi

∼= Rrfi for each i. Let N be
any finitely generated k-module. The Grassmann scheme GrN represents the
Grassmann functor, defined as follows: for R ∈ k-Alg, the set GrN (R) con-
sists of all submodules L ⊆ R⊗N such that (R⊗N)/L is locally free of
rank r.

We review the description of the Grassmann scheme GrN in terms of co-
ordinates, starting with the free module N = km, whose basis we denote by
X . For this N we write Grm in place of GrN . Consider a subset B ⊆ X

with r elements. Let Grm\B ⊆ Grm be the subfunctor describing submod-
ules L ∈ Rm such that Rm/L is free with basis B. This subfunctor is
represented by the affine space Ar(m−r) = Spec k[γxb : x ∈ X\B, b ∈ B].
Evaluated at L ∈ Grm\B(R), the coordinate γxb ∈ R is given by the coef-
ficient of the basis vector b in the unique expansion of x modulo L. We
also set γxb = δx,b for x ∈ B. Passing to Plücker coordinates, one proves
(see [9, Exercise VI-18]) that the Grassmann functor Grm is represented by
a projective scheme over k, called the Grassmann scheme, and the subfunc-
tors Grm\B are represented by open affine subsets which cover the Grassmann
scheme Grm.

Next consider an arbitrary finitely-generated k-module N = km/J . For
any k-algebra R, the module R⊗N is isomorphic to Rm/RJ . The Grass-
mann functor GrN is naturally isomorphic to the subfunctor of Grm describing
submodules L ⊆ Rm such that RJ ⊆ L. If Rm/L has basis B ⊆ X , then
the condition RJ ⊆ L can be expressed as follows: for each u ∈ J , write
u =

∑
x∈X a

u
x · x, with aux ∈ k. Then

(4)
∑
x∈X

aux · γxb = 0 for all u ∈ J and b ∈ B.

It follows that, for each B, the intersection of subfunctors Grm\B ∩GrN ⊆ Grm
is represented by the closed subscheme of Spec k[γxb ] defined by the k-linear
equations in (4). The condition RJ ⊆ L is local on R, so the subfunctor
GrN ⊆ Grm is a Zariski sheaf. Therefore, Proposition 2.7 and Corollary 2.8
give the following result.
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Proposition 2.10. Let N be a finitely generated k-module. The Grass-
mann functor GrN is represented by a closed subscheme of the classical Grass-
mann scheme Grm, called the Grassmann scheme of N . In particular, it is
projective over k.

Now suppose that we are given a submodule M ⊆ N (not necessarily
finitely generated, as we are not assuming k is Noetherian). For any set B of
r elements in M , we can choose a presentation of N in which the generators X
containB. The intersection of GrN with the standard open affine Grm\B defines
an open affine subscheme GrN\B ⊆ GrN . The affine scheme GrN\B parametrizes
quotients (R ⊗N)/L that are free with basis B. The union of the subschemes
GrN\B over all r-element subsets B ⊆M is an open subscheme GrN\M of GrN .
The corresponding subscheme functor describes quotients (R ⊗N)/L that are
locally free with basis contained in M . In other words, L ∈ GrN (R) belongs
to GrN\M (R) if and only if there are elements f1, . . . , fk generating the unit
ideal in R, such that each (R⊗N/L)fi has a basis Bi ⊆ M . Equivalently, L
belongs to GrN\M (R) if and only if M generates (R ⊗N)/L, since the latter
is a local condition on R. The subfunctor GrN\M of the Grassmann functor
GrN is called the relative Grassmann functor.

Proposition 2.11. Let N be a finitely generated k-module and M a sub-
module. The functor GrN\M is represented by an open subscheme of GrN , called
the relative Grassmann scheme of M ⊆ N . In particular, it is quasiprojective
over k.

Note that if M = N , then the relative Grassmann scheme GrN\M coincides
with GrN and is therefore projective. If M is any submodule of N , then the
open subscheme GrN\M ⊆ GrN can be described in local affine coordinates as
follows. Fix a set of r elements B ⊆ N and consider the standard affine in GrN
describing submodules L such that (R ⊗N)/L has basis B. We form a matrix
Γ with r rows, and columns indexed by elements x ∈M , whose entries in each
column are the coordinate functions γxb for b ∈ B. Then GrN\M is described
locally as the complement of the closed locus defined by the vanishing of the
r × r minors of Γ.

The definitions and results on Grassmann schemes extend readily to ho-
mogeneous submodules of a finitely generated graded module N =

⊕
a∈ANa,

where A is a finite set of “degrees.” Fix a function h : A→ N. We define the
graded Grassmann functor GhN by the rule that GhN (R) is the set of homoge-
neous submodules L ⊆ R⊗N such that (R ⊗Na)/La is locally free of rank
h(a) for all a ∈ A. To give such a submodule L, it is equivalent to give each La
separately. Thus GhN is naturally isomorphic to the product

∏
a∈AG

h(a)
Na

, and
in particular it is projective over k. Similarly, the relative graded Grassmann
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functor GhN\M , where M ⊆ N is a homogeneous submodule, is represented by
a quasiprojective scheme over k.

Remark 2.12. In the graded situation, GhN is a subfunctor of the ungraded
Grassmann functor GrN , where r =

∑
a h(a). Similarly, GhN\M is a subfunctor

ofGrN\M . The corresponding morphisms of schemes, GhN → GrN andGhN\M →
GrN\M , are closed embeddings. To see this, observe that GhN is defined locally
by the vanishing of the coordinates γxb on GrN with x ∈ Na, b ∈ Nc, for
a 6= c. �

We will now prove the two theorems stated at the beginning of this section.
Proof of Theorem 2.2. We shall apply Proposition 2.7 to represent Hh

T in
GhN\M .

Step 1. Hh
T is a Zariski sheaf. Let f1, . . . , fk generate the unit ideal in R.

To give a homogeneous submodule L ⊆ R⊗ T , it is equivalent to give a com-
patible system of homogeneous submodules Li ⊆ Rfi ⊗ T . The homogeneous
component La is locally free of rank h(a) if and only if the same holds for
each (Li)a.

Step 2. For all R ∈ k-Alg and L ∈ Hh
T (R), M generates (R⊗ T )/L as

an R-module. Localizing at each P ∈ SpecR, it suffices to prove this when
(R,P ) is a local ring. Then for all a ∈ A, the R-module (R⊗ Ta)/La is free of
finite rank h(a). By Nakayama’s Lemma, RMa = (R ⊗ Ta)/La if and only if
KMa = (K ⊗ Ta)/La, where K = R/P is the residue field. The latter holds
by hypothesis (iii).

Step 3. We have a canonical natural transformation η : Hh
T → GhN\M . It

follows from Step 2 that the canonical homomorphism R⊗N → (R ⊗ T )/L
is surjective. If L′ denotes its kernel, it further follows that M generates
(R⊗N)/L′. Hence we have L′ ∈ GhN\M (R), and the rule ηR(L) = L′ clearly
defines a natural transformation. Note that GhN\M makes sense as a scheme
functor by hypothesis (i).

Step 4. The functors η−1GhN\B are represented by affine schemes. Let
B ⊆M be any homogeneous subset with |Ba| = h(a) for all a ∈ A, so GhN\B
is a standard affine chart in GhN\M . In functorial terms, GhN\B(R) describes
quotients (R ⊗N)/L′ that are free with basis B. Hence η−1GhN\B(R) consists
of those L ∈ Hh

T (R) such that (R ⊗ T )/L is free with basis B. Given such
an L, we define coordinates γxb ∈ R for all a ∈ A and all x ∈ Ta, b ∈ Ba
by requiring that x −

∑
b∈Ba γ

x
b · b is in L. For x ∈ N , the coordinates γxb of

L coincide with the Grassmann functor coordinates of ηR(L), so there is no
ambiguity of notation. In particular, they satisfy

(5) γxb = δx,b for x ∈ B.
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They also clearly satisfy a syzygy condition similar to (4), for every linear
relation

∑
x cx · x = 0, cx ∈ k, holding among elements x ∈ Ta. Namely,

(6)
∑
x

cx · γxb = 0 for all a ∈ A, b ∈ Ba.

Finally, since L is an F -submodule, the coordinates γxb satisfy

(7) γfxb =
∑
b′∈Ba

γxb′γ
fb′

b for all a, c ∈ A and all x ∈ Ta, f ∈ Fac, b ∈ Bc.

Conversely, suppose we are given elements γxb ∈ R satisfying equations (5)–
(7). We fix attention on an individual degree a for the moment. The elements
γxb for x ∈ Ta, b ∈ Ba can be viewed as the entries of a (typically infinite)
matrix defining a homomorphism of free R-modules

(8) φa : RTa → RBa .

Equation (6) ensures that φa factors through the canonical map RTa →
R⊗ Ta, inducing φ′a : R ⊗ Ta → RBa . Equation (5) ensures that φ′a is the
identity on Ba. Let La be the kernel of φ′a. We conclude that (R ⊗ Ta)/La is
free with basis Ba. Considering all degrees again, equation (7) ensures that
the homogeneous R-submodule L ⊆ R⊗ T thus defined is an F -submodule.
We have given correspondences in both directions between elements L ∈
η−1GhN\B(R) and systems of elements γxb ∈ R satisfying (5)–(7). These two
correspondences are mutually inverse and natural in R. By [9, §I.4], this shows
that η−1GhN\B is represented by an affine scheme over k.

Step 5. It now follows from Proposition 2.7 that Hh
T is represented by a

scheme over GhN\M , the morphism Hh
T → GhN\M being given by the natural

transformation η from Step 3. Up to this point, we have only used hypotheses
(i) and (iii).

Step 6. The morphism corresponding to η : Hh
T → GhN\M is a closed embed-

ding. It is enough to prove this locally for the restriction of η to the preimage
of GhN\B. This restriction corresponds to the morphism of affine schemes given
by identifying the coordinates γxb on GhN\B with those of the same name on
η−1GhN\B. To show that it is a closed embedding, we must show that the
corresponding ring homomorphism is surjective. In other words, we claim
that the elements γxb with x ∈ N generate the algebra k[{γxb }]/I, where I is
the ideal generated by (5)–(7). Consider the subalgebra generated by the γxb
with x ∈ N . Let g ∈ G. If γxb belongs to the subalgebra for all b ∈ B, then
so does γgxb , by equation (7) and hypothesis (iv). Since G generates F , and
N generates T as an F -module by hypothesis (ii), we conclude that γxb lies in
the subalgebra for all x. Theorem 2.2 is now proved. �
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A description of the Hilbert scheme in terms of affine charts is implicit in
the proof above. There is a chart for each homogeneous subset B of M with
h(a) elements in each degree a, and the coordinates on that chart are the γxb
for homogeneous elements x generating N . Local equations are derived from
(5)–(7).

Proof of Theorem 2.3. We will show that Proposition 2.9 applies to Hh
T →

Hh
TD

.
Step 1. For LD ∈ Hh

TD
(R), let L′ ⊆ R⊗ T be the F -submodule generated

by LD. Then the R-module (R⊗ Ta)/L′a is finitely generated in each degree
a ∈ A. Take E as in (v) and let Y be a finite generating set of the k-module
Ta/

∑
b∈D Eba(Tb). Since E is finite, the sum can be taken over b in a finite

set of degrees D′ ⊆ D.
For b ∈ D′, the R-module (R⊗ Tb)/L′b is locally free of rank h(b), and hence

generated by a finite set Mb. For all x ∈ R⊗ Tb there exist coefficients γxv ∈ R
(not necessarily unique, asMb need not be a basis) such that x ≡

∑
v∈Mb

γxv · v
(mod L′b). For all g ∈ Eba we have gx ≡

∑
v∈Mb

γxv · gv (mod L′a). This
shows that the finite set Z =

⋃
b∈D′,g∈Eba g(Mb) generates the image of R ⊗∑

b∈D Eba(Tb) in (R⊗ Ta)/L′a, and therefore Y ∪ Z generates (R⊗ Ta)/L′a.
Step 2. Hh

T is a subfunctor of Hh
TD

. Equivalently, for all k-algebras R,
the map Hh

T (R) → Hh
TD

(R), L 7→ LD is injective. We will prove that
if L′ ⊆ R⊗ T is the F -submodule generated by LD, then L′ = L. Lo-
calizing at a point P ∈ SpecR, we can assume that (R,P ) is local, and
hence the locally free modules (R⊗ Ta)/La are free. Fix a degree a ∈
A, and let Ba be a free module basis of (R ⊗ Ta)/La. Then Ba is also a
vector space basis of (K ⊗ Ta)/(K ⊗ La), where K = R/P is the residue
field. In particular, dim(K ⊗ Ta)/(K ⊗ La) = |Ba| = h(a). By (vi) we have
dim(K ⊗ Ta)/(K · L′a) ≤ h(a), and hence K · L′a = K ⊗ La, since L′ ⊆ L.
By Step 1, the R-module (R⊗ Ta)/L′a is finitely generated, so Nakayama’s
Lemma implies that Ba generates (R⊗ Ta)/L′a. Since Ba is independent
modulo La ⊇ L′a, it follows that L′a = La.

Step 3. The condition that (S ⊗ Ta)/L′a be locally free of rank h(a) is
closed. More precisely, fix a k-algebra R and LD ∈ Hh

TD
(R). Given an

R-algebra φ : R → S, let L′ ⊆ S ⊗ T be the F -submodule generated by
Hh
TD

(φ)LD = S ⊗R LD. Then the condition that (S ⊗ Ta)/L′a be locally free
of rank h(a) is a closed condition on S. To see this, let L0 be the F -submodule
of R⊗ T generated by LD, that is, the L′ for the case S = R. By Step 1,
(R⊗ Ta)/L0

a is finitely generated, say by a set X . By (vi) and Nakayama’s
Lemma, (RP ⊗ Ta)/(L0

a)P is generated by at most h(a) elements of X , for
every P ∈ SpecR. For every subset B ⊆ X with |B| = h(a) elements, the
set of points P ∈ SpecR where B generates (RP ⊗ Ta)/(L0

a)P is an open set
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UB, and these open sets cover SpecR. The property that a condition on R-
algebras is closed is local with respect to the base R. Therefore, replacing
R by some localization Rf , we can assume that a single set B with h(a)
elements generates (R ⊗ Ta)/L0

a. Then B also generates (S ⊗ Ta)/L′a for every
R-algebra S.

A presentation of the S-module (S ⊗ Ta)/L′a = S ⊗R ((R⊗ Ta)/L0
a) is

given by the generating set B, modulo those relations on b ∈ B that hold in
(R⊗ Ta)/L0

a:

(9)
∑
b∈B

cb · b ≡ 0 (mod L0
a), cb ∈ R.

Thus (S ⊗ Ta)/L′a is locally free of rank h(a) if and only if it is free with
basis B, if and only if all coefficients cb of all syzygies in (9) vanish in S, i.e.,
φ(cb) = 0. This condition is closed, with defining ideal I ⊆ R generated by
all the coefficients cb.

Step 4. The subfunctor Hh
T → Hh

TD
is represented by a closed subscheme.

By Step 2, Hh
T is a subfunctor, and by Step 1 in the proof of Theorem 2.2,

it is a Zariski sheaf. In Step 2 we saw that LD ∈ Hh
TD

(S) is in the image of
Hh
T (S) if and only if the F -submodule L′ it generates belongs to Hh

T (S). By
Step 3, this is a closed condition, since it is the conjunction of the conditions
that (S ⊗ Ta)/L′a be locally free of rank h(a), for all a ∈ A. Theorem 2.3 now
follows from Proposition 2.9. �

The algorithmic problem arising from Theorem 2.3 is to give equations on
Hh
TD

which define the closed subscheme Hh
T . We assume that we already have

a description of an affine open subset U ⊆ Hh
TD

as SpecR for some k-algebraR
(see the paragraph following the proof of Theorem 2.2 above). The embedding
of U = SpecR into Hh

TD
corresponds to a universal element L ∈ Hh

TD
(R). The

ideal I ⊆ R defining the closed subscheme Hh
T ∩ U is generated by separate

contributions from each degree a, determined as follows. Construct the finite
set X = Y ∩ Z ⊆ Ta in Step 1, and compute the syzygies of X modulo L0

a,
where L0 ⊆ R⊗ T is the F -submodule generated by L. These syzygies are
represented by the (perhaps infinitely many) rows of a matrix Γ over R, with
columns indexed by the finite set X . The content of hypothesis (vi) is that the
minors of size |X | − h(a) in Γ generate the unit ideal in R. The contribution
to I from degree a is the Fitting ideal I|X|−h(a)+1(Γ) generated by the minors
of size |X | − h(a) + 1. In fact, the vanishing of these minors, together with
the fact that I|X|−h(a)(Γ) is the unit ideal, is precisely the condition that the
submodule L′a ⊆ R⊗ Ta generated by the rows of Γ should have (R⊗ Ta)/L′a
locally free of rank h(a).
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If k is Noetherian, so Hh
TD

is a Noetherian scheme, then Hh
T must be cut out

as a closed subscheme by the equations coming from a finite subset E ⊆ A

of the degrees. As we shall see, this is also true when T is a multigraded
polynomial ring, even if the base ring k is not Noetherian. Finding such a set
E amounts to finding an isomorphism Hh

T
∼= Hh

TE
. Satisfactory choices of D

and E for multigraded Hilbert schemes will be discussed in the next section.
Here is a simple example, taken from [3, §VI.1], to illustrate our results so

far.
Example 2.13. Let A = {3, 4}, T3 ' k4 with basis {x3, x2y, xy2, y3},

T4 ' k5 with basis {x4, x3y, x2y2, xy3, y4}, and F = F3,4 = {x, y}, i.e., the
operators are multiplication by variables. Fix h(3) = h(4) = 1, and D = {3}.
Then Hh

TD
is the projective space P3 parametrizing rank 1 quotients of T3,

where (c123 : c124 : c134 : c234) ∈ P3(R) corresponds to the R-module LD = L3

generated by the 2× 2-minors of

(10)
(
c234 −c134 c124 −c123

x3 x2y xy2 y3

)
.

The Hilbert scheme Hh
T is the projective line P1 embedded as the twisted

cubic curve in Hh
TD
' P3 defined by the quadratic equations

(11) c134c124 − c123c234 = c2124 − c123c134 = c2134 − c124c234 = 0.

3. Constructing the multigraded Hilbert scheme

We now take up our primary application of Theorems 2.2 and 2.3, the
construction of multigraded Hilbert schemes. Let S = k[x] = k[x1, . . . , xn] be
a polynomial ring over k, with a multigrading S =

⊕
a Sa induced by a degree

function deg : Nn → A, with deg(xu) = deg(u), as in the introduction. Here
A is an abelian group, or the subsemigroup A+ generated by deg(xi) = ai for
1 = 1, . . . , n. As our k-module with operators (T, F ) we take T = S, with
F the set of all multiplications by monomials. More precisely, Fab consists
of multiplications by monomials of degree b − a, for all a, b ∈ A. Then an
F -submodule L ⊆ R ⊗ S is an ideal of R⊗ S = R[x] which is homogeneous
with respect to the A-grading.

Fix a Hilbert function h : A → N, and let Hh
S be the Hilbert functor. For

any k-algebra R, the set Hh
S(R) consists of admissible homogeneous ideals

L ⊆ R⊗ S with Hilbert function h. Theorem 1.1 states that the functor
Hh
S is represented by a quasiprojective scheme. For the proof we need two

combinatorial results.
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Lemma 3.1 (Maclagan [20]). Let C be a set of monomial ideals in k[x]
which is an antichain, that is, no ideal in C contains another. Then C is
finite.

Let I ⊆ k[x] be a monomial ideal and deg : Nn → A a multigrading. The
monomials not in I are called the standard monomials for I. The value hI(a)
of the Hilbert function hI at a ∈ A is the number of standard monomials in
degree a.

Proposition 3.2. Given a multigrading deg: Nn → A and a Hilbert func-
tion h : A → N, there is a finite set of degrees D ⊆ A with the following two
properties:

(g) Every monomial ideal with Hilbert function h is generated by mono-
mials of degree belonging to D, and

(h) every monomial ideal I generated in degrees D satisfies: if hI(a) =
h(a) for all a ∈ D, then hI(a) = h(a) for all a ∈ A.

Our labels for these properties are mnemonics for generators and Hilbert
function.

Proof. Let C be the set of all monomial ideals with Hilbert function h.
By Lemma 3.1, C is finite. Let D0 be the set of all degrees of generators of
ideals in C. Now let C0 be the set of monomial ideals that are generated in
degrees in D0 and whose Hilbert function agrees with h on D0. By Lemma 3.1
again, C0 is finite. If C0 = C, then D0 is the required D. Otherwise, for each
ideal I ∈ C0\C, we can find a degree a with hI(a) 6= h(a). Adjoining finitely
many such degrees to D0, we obtain a set D1 such that every monomial ideal
generated in degrees D0 and having Hilbert function h in degrees D1 belongs
to C. Now we define C1 in terms of D1 as we defined C0 in terms of D0,
namely, C1 is the set of monomial ideals generated in degrees D1 and with
Hilbert function h on D1. By construction, we have C1 ∩ C0 = C. Iterating
this process, we get a sequence C0, C1, C2, . . . of sets of monomial ideals with
Ci ∩ Ci+1 = C for all i, and finite sets of degrees D0 ⊆ D1 ⊆ D2 ⊆ · · · .
Here Di are the degrees such that every monomial ideal generated in degrees
Di−1 and with Hilbert function h in degrees Di belongs to C, and Ci are the
monomial ideals generated in degrees Di and with Hilbert function h on Di.
We claim that this sequence terminates with Ck = C for some k.

Given an ideal Ij ∈ Cj , its ancestor in Ci for i < j is the ideal Ii generated
by the elements of degrees Di in Ij . We say that Ij is a descendant of its
ancestors. If Ij is a descendant of Ii, then Ii ⊆ Ij , and Ii ∈ C implies Ii = Ij .
Suppose, contrary to our claim, that Ck 6= C for all k. Since C0 is finite,
there is an I0 ∈ C0\C with descendants in Ck\C for infinitely many k, and
hence for all k > 0. Among its descendants in C1 must be one, call it I1,
with descendants in Ck\C for all k > 1. Iterating, we construct a sequence



742 MARK HAIMAN AND BERND STURMFELS

I0, I1, . . . with Ik ∈ Ck and Ik+1 a descendant of Ik. By the ascending chain
condition, Ik = Ik+1 for some k. But this implies Ik ∈ C, a contradiction.
We conclude that Ck = C for some k, and D = Dk is the required set of
degrees. �

Lemma 3.3. Given a multigrading deg : Nn → A, let D ⊆ A be a subset
of the degrees and J = 〈xu : deg(u) ∈ D〉 the ideal generated by all monomials
with degree in D. If a ∈ A is a degree such that hJ(a) is finite, then there is a
finite set of monomials E ⊆

⋃
b∈D Fba such that Sa/

∑
b∈D Eba(Sb) is finitely

generated.

Proof. Choose an expression for each minimal monomial in Ja as xvxu for
some xu ∈ Sb, b ∈ D, and let E be the set of monomials xv that occur. For all
xr ∈ Ja, we have xr = xqxvxu for some minimal xvxu ∈ Ja, and deg(q) = 0.
Hence xr = xv(xqxu) ∈ Eba(Sb). This shows that the set of all standard
monomials of degree a for J spans Sa/

∑
b∈D Eba(Sb). This set is finite, by

hypothesis. �
We are now ready to construct the multigraded Hilbert scheme. In our

proof, the condition (h) in Proposition 3.2 will be replaced by the following
weaker condition.

(h′) every monomial ideal I generated in degrees D satisfies: if hI(a) =
h(a) for all a ∈ D, then hI(a) ≤ h(a) for all a ∈ A.

Proposition 3.2 holds verbatim for “(g) and (h′)” instead of “(g) and (h)”. We
fix a term order on Nn, so that each ideal L ⊆ K[x], with K ∈ k-Alg a field,
has an initial monomial ideal in(L). The Hilbert function of in(L) equals that
of L.

Proof of Theorem 1.1. By definition, F is the system of operators on S =
k[x] given by multiplication by monomials. We first verify the hypotheses of
Theorem 2.2 for (SD, FD), where D ⊆ A is any finite subset of the degrees.
Let C be the set of monomial ideals generated by elements of degrees in D,
and with Hilbert function agreeing with h on D. By Lemma 3.1, the set C is
finite. Let M ′ be the union over all I ∈ C of the set of standard monomials
for I in degrees D. Then M ′ is a finite set of monomials which spans the free
k-module SD/ID for all I ∈ C.

The monomials of degree zero in S form a finitely generated semigroup. Let
G′0 be a finite generating set for this semigroup, so that S0 is the k-algebra
generated by G′0. Every component Sa is a finitely generated S0-module.
For each a ∈ A, let F ′a be a finite set of monomials generating Sa as an S0-
module. Then every monomial of degree a is the product of a monomial in
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F ′a and zero or more monomials in G′0. For b, c ∈ D, let Gbc ⊆ Fbc consist
of multiplications by monomials in F ′c−b, if b 6= c, or in G′0, if b = c. Then
G =

⋃
b,cGbc is finite and generates FD as a category.

Our construction is based on the following finite set of monomials:

(12) N ′ = GM ′ ∪
⋃
a∈D

F ′a.

Setting M = kM ′, N = kN ′, it is obvious that M , N and G satisfy hypotheses
(i), (ii) and (iv) of Theorem 2.2. For (iii), fix a field K ∈ k-Alg and an element
LD ∈ Hh

SD
(K). Let L ⊆ K ⊗ S be the ideal generated by LD and I the

monomial ideal generated by in(L)D. Equivalently, I is the ideal generated
by the leading monomials of elements of LD. Therefore, I belongs to C

and its standard monomials span (K ⊗ SD)/LD. We conclude that M ′ spans
(K ⊗ SD)/LD, which proves (iii). We have now shown thatHh

SD
is represented

by a quasiprojective scheme for every finite set of degrees D.
It remains to verify hypotheses (v) and (vi) of Theorem 2.3 for a suitable

choice of D. Let D be any finite subset of A that satisfies the conditions (g)
and (h′). We assume that there exists a monomial ideal I generated in degrees
D and satisfying hI(a) = h(a) for all a ∈ D. Otherwise, the Hilbert functor
and Hilbert scheme are empty, so the result holds vacuously. By condition
(h′), hI(a) is finite for all a ∈ A. The ideal J in Lemma 3.3 contains I, so
hJ(a) is also finite. For hypothesis (v), we can therefore take E as given by
Lemma 3.3.

For (vi), we fix K and LD ∈ Hh
SD

(K) as we did for (iii), and again let
L be the ideal generated by LD and I the ideal generated by in(L)D. Our
assumption on D implies that the Hilbert function of I satisfies hI(a) ≤ h(a)
for all a ∈ A. Since I ⊆ in(L) it follows that hL(a) = hin(L)(a) ≤ hI(a) ≤ h(a)
for all a ∈ A. This establishes hypothesis (vi). We have proved that the
Hilbert functor Hh

S is represented by a closed subscheme of Hh
SD

. �
Our ultimate goal is to compute the scheme Hh

S effectively. One key issue
is to identify suitable finite sets of degrees. A subset D of the abelian group
A is called supportive for h if D is finite and the conditions (g) and (h′) are
satisfied. The last two paragraphs in the proof of Theorem 1.1 establish the
following result.

Corollary 3.4. Take S and h : A → N as in Theorem 1.1. If the set of
degrees D ⊆ A is supportive, then the canonical morphism Hh

S → Hh
SD

is a
closed embedding.

Remark 3.5. Corollary 1.2 follows immediately from this result and Re-
mark 2.5. Using Remark 2.12, Proposition 1.5 also follows.
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Consider one further condition on Hilbert functions and subsets of degrees:

(s) For every monomial ideal I with hI = h, the syzygy module of I is
generated by syzygies xuxv

′
= xvxu

′
= lcm(xu, xv) among generators

xu, xv of I such that deg lcm(xu, xv) ∈ D (i.e., all minimal S-pairs
have their degree in D).

A subset D ofA is called very supportive for a given Hilbert function h : A→ N
if D is finite and the conditions (g), (h) and (s) are satisfied. It follows from
Proposition 3.2 that a very supportive set of degrees always exists.

Theorem 3.6. Take S and h : A → N as in Theorem 1.1. If the set of
degrees D ⊆ A is very supportive, then the canonical morphism Hh

S → Hh
SD

is an isomorphism.
Example 3.7. Let S = k[x, y, z] with the Z-grading deg(x) = deg(y) = 1

and deg(z) = −1 and fix the Hilbert function h(a) = 2 for all a ∈ Z. This
example is typical in that both the support of h and the set of monomials
in any fixed degree are infinite. There are eight monomial ideals with this
Hilbert function:

〈x2z2, y〉, 〈x2, yz〉, 〈x2z, xy, yz〉, 〈x2z, y2, yz〉,
〈y2z2, x〉, 〈y2, xz〉, 〈y2z, xy, xz〉, 〈y2z, x2, xz〉.

The set D = {0, 1, 2} is very supportive, so the Hilbert scheme Hh
S is isomor-

phic to Hh
SD

. It can be checked that this scheme is smooth of dimension 4
over Spec k. �

For the proof of Theorem 3.6 we need a variant of Gröbner bases for ideals
in the polynomial ring over a local ring R. Let (R,P ) be a local ring satisfying

(13)
⋂
m

Pm = 0.

This holds for example ifR is complete or Noetherian. Let R[x]=R[x1, . . . , xn]
and fix a term order on Nn. This induces a lexicographic order < on the set
(−N) × Nn, in which (−d, e) < (−d′, e′) if −d < −d′ or if d = d′ and e < e′

in the given term order. The lexicographic order is not well-ordered, but has
the property that if

(−d1, e1) > (−d2, e2) > · · ·
is an infinite strictly decreasing chain, then the sequence d1, d2, . . . is un-
bounded.

Definition 3.8. The order ord(a) of a nonzero element a ∈ R is the unique
integer m such that a ∈ Pm\Pm+1, which exists by (13). The initial term
in(p) of a nonzero polynomial p ∈ R[x] is the term axe of p for which the pair
(− ord(a), e) ∈ (−N)× Nn is lexicographically greatest.
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The definition of initial term is compatible with the following filtration of
R[x] by R-submodules: given (−d, e) ∈ (−N) × Nn, we define R[x]≤(−d,e)
to be the set of polynomials p such that for every term bxh of p, we have
(− ord(b), h) ≤ (−d, e). We also define R[x]<(−d,e) in the obvious analogous
way. Then in(p) = axe, with ord(a) = d, iff p ∈ R[x]≤(−d,e)\R[x]<(−d,e).

Consider a set of nonzero polynomials F ⊆ R[x] satisfying the restriction:

(14) for all f ∈ F , the initial term of f has coefficient 1.

Let I = 〈F 〉 be the ideal in R[x] generated by F .
Definition 3.9. A set F satisfying (14) is a Gröbner basis of the ideal

I = 〈F 〉 if for all nonzero p ∈ I, the initial term in(p) belongs to the monomial
ideal generated by the set of initial terms in(F ) = {in(f) : f ∈ F}.

In general, we do not have in(pq) = in(p) in(q), but this does hold when
in(p) = axe, in(q) = bxh with ord(ab) = ord(a) + ord(b). Thus condition (14)
implies in(pf) = in(p) in(f), and, in particular,

(15) in(axef) = axe in(f) for f ∈ F .
Without this condition, even a one-element set F could fail to be a Gröbner
basis.

If F is a Gröbner basis, the standard monomials for the monomial ideal
〈in(F )〉 are R-linearly independent modulo I, since every nonzero element of
I has an initial term belonging to 〈in(F )〉. There is a reformulation of the
Gröbner basis property in terms of a suitably defined notion of F -reducibility.

Definition 3.10. A polynomial p ∈ R[x] is F -reducible if p = 0 or if
in(p) = axe, d = ord(a) and for all m ≥ 0 there exists an expression

(16) p ≡
∑

bix
hifi (mod PmR[x])

with fi ∈ F and bixhifi ∈ R[x]≤(−d,e).
An F -reducible polynomial belongs to

⋂
m(PmR[x]+I) but not necessarily

to I.
Proposition 3.11. A set F satisfying (14) is a Gröbner basis of I = 〈F 〉

if and only if every element p ∈ I is F -reducible.
Proof. Suppose every p ∈ I is F -reducible. Given p ∈ I \ {0}, we are to

show in(p) ∈ 〈in(F )〉. Let in(p) = axe, d = ord(a). If xe 6∈ 〈in(F )〉, then no
summand in (16) has e as the exponent of its initial term, and hence every
summand belongs to R[x]<(−d,e). For m > d, this implies p ∈ R[x]<(−d,e), a
contradiction.

For the converse, fix an arbitrary m, and suppose p ∈ I has no expression
of the form (16) for this m. In particular, p 6∈ PmR[x], so in(p) = axe, with
ord(a) < m. Since d = ord(a) is bounded above for all such p, we may assume
we have chosen p so that (−d, e) is minimal. By hypothesis there is some
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f ∈ F such that in(f) divides xe, say xe = xh in(f). Then q = p− axhf has
an expression of the form (16) for this m, by the minimality assumption. But
then so does p. �

Remark 3.12. Suppose R[x] is given a multigrading deg : Nn → A, and
F consists of homogeneous polynomials. Then Proposition 3.11 holds in each
degree separately: if every nonzero p ∈ Ia has in(p) ∈ 〈in(F )〉, then every
p ∈ Ia is F -reducible.

To each f, g ∈ F , there is an associated binomial syzygy xu in(f) =
xv in(g) = lcm(in f, in g). We define the corresponding S-polynomial as usual
to be

S(f, g) = xuf − xvg.
Now we have a version of the Buchberger criterion for F to be a Gröbner
basis.

Proposition 3.13. Let B be a set of pairs (f, g) ∈ F ×F whose associated
binomial syzygies generate the syzygy module of the initial terms in(f), f ∈ F .
If S(f, g) is F -reducible for all (f, g) ∈ B, then F is a Gröbner basis.

Proof. Fix m ≥ 0. We will show that every p ∈ I + PmR[x] has an expres-
sion of the form (16) satisfying the conditions in Definition 3.10 for this m. We
can assume p 6∈ PmR[x], so in(p) = axe with d = ord(a) < m. Certainly p has
some expression of the form (16), perhaps not satisfying bixhifi ∈ R[x]≤(−d,e).
Set xei = in(fi) and let (−d′, e′) be the maximum of (− ord(bi), hi + ei)
over all terms in our expression for p. Since p 6∈ R[x]<(−d,e), we must have
(−d′, e′) ≥ (−d, e). In particular, d′ is bounded, so we can assume our chosen
expression for p minimizes (−d′, e′). We are to show that (−d′, e′) = (−d, e).

Suppose to the contrary that (−d′, e′) > (−d, e). Then we have p ∈
R[x]<(−d′,e′), and every summand in (16) for which (− ord(bi), hi + ei) 6=
(−d′, e′) is also in R[x]<(−d′,e′). Let J be the set of indices j for which
(− ord(bi), hi + ei) = (−d′, e′). The partial sum over these indices in (16)
must be in R[x]<(−d′,e′), so ord(

∑
J bi) > d′. The Buchberger criterion im-

plies that for all indices j, k ∈ J , xhjfj−xhkfk is a sum of monomial multiples
xuS(f, g) of F -reducible S-polynomials, all satisfying xu lcm(in f, in g) = xe

′
,

and hence xuS(f, g) ∈ R[x]≤(0,e′). Their xe
′

terms cancel, so in fact they
belong to R[x]<(0,e′). Being F -reducible, each xuS(f, g) has an expression
of the form (16) with every term belonging to R[x]<(0,e′), and hence so does
xhjfj − xhkfk. Renaming indices so that 1 ∈ J , we have∑

J

bix
hifi = (

∑
Jbi)x

h1f1 +
∑
J

bi(xhifi − xh1f1).

The first term on the right belongs to R[x]<(−d′,e′), since h1 + e1 = e′ and
ord(

∑
J bi) > d′. In the second term we can replace bi(xhifi − xh1f1) with
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an expression of the form (16) with all terms in R[x]<(−d′,e′). Adding the
remaining terms of our original expression for p, we get a new expression with
every term in R[x]<(−d′,e′). This contradicts the assumption that (−d′, e′)
was minimal. �

In order to apply the above results, we unfortunately need the hypothe-
sis (13), which may fail in a non-Noetherian ring. We can still manage to
avoid Noetherian hypotheses in Theorem 3.6 by the device of reduction to the
ground ring Z. For this we need one last lemma, and then we will be ready
to prove our theorem.

Lemma 3.14. Take S and h : A → N as in Theorem 1.1. Then Hh
SD
∼=

(Spec k) ×Z Hh
Z[x]D

, for any subset D of the degrees. In particular, Hh
S
∼=

(Spec k)×Z Hh
Z[x].

Proof. For simplicity, we only consider the case D = A, SD = S. The
proof in the general case is virtually identical. Let R̂ denote R viewed as a
Z-algebra. Then

(17) Hh
S(R) = Hh

Z[x](R̂),

since we have the same set of ideals in R[x] = R⊗k S = R̂⊗Z Z[x] on
each side. For any X ∈ Sch/Z and R ∈ k-Alg, the k-morphisms SpecR →
(Spec k) ×Z X are in natural bijection with the Z-morphisms SpecR → X .
In other words, we have a natural isomorphism (Spec k)×X(R) ∼= X(R̂).
Together with (17), this shows that the k-schemes Hh

S and (Spec k)×Z Hh
Z[x]

have isomorphic scheme functors. �
Proof of Theorem 3.6. By Lemma 3.14, it is enough to prove the theorem

in the case k = Z. Since D is supportive, the natural map Hh
S → Hh

SD
is a

closed embedding. It suffices to verify that it is an isomorphism locally on
Hh
SD

. Specifically, let U = SpecR ⊆ Hh
SD

be an affine open subset. The
closed embedding U ∩Hh

S ↪→ U is given by a ring homomorphism R → R/I,
and we are to show that I = 0. Localizing at P ∈ SpecR, it suffices to show
that IP = 0. The composite morphism

SpecRP → SpecR→ Hh
SD

is an element of Hh
SD

(RP ). We will show that it belongs to the image of the
map Hh

S(RP ) ↪→ Hh
SD

(RP ). This implies that the morphism SpecRP →
SpecR factors through SpecR/I, that is, the localization homomorphism
R → RP factors through R/I and therefore through (R/I)P . This yields
a left inverse (R/I)P → RP to the projection RP → (R/I)P , so IP = 0.
Note that since we are assuming k = Z, and we have already shown that
Hh
SD

is quasiprojective over k, the local ring RP is Noetherian, and hence
satisfies (13).
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We will show that the inclusion Hh
S(R) ↪→ Hh

SD
(R) is surjective whenever R

is a local ring satisfying (13). Let LD ⊆ R[x]D be an element of Hh
SD

(R) and
let L′ ⊆ R[x] be the ideal generated by LD. By Remark 2.1, we have L′D =
LD. In the proof of Theorem 1.1 we saw that the conditions of Theorem 2.3
hold. We conclude as in the proof of Theorem 2.3 that R[x]a/L′a is a finitely-
generated R-module for all a ∈ A. Let K = R/P denote the residue field
of R. Then KL′ is the ideal in K[x] generated by K⊗LD. Fix a term
order on Nn and let J be the monomial ideal generated by the initial terms
{in(p) : p ∈ K⊗LD}. For a ∈ D, dimK[x]a/(K⊗La) = h(a). Hence J has
Hilbert function agreeing with h on D, and by conditions (g) and (h) in the
definition of “very supportive,” J has Hilbert function h.

The standard monomials for J span K[x]/KL′. By Nakayama’s Lemma,
applied to each R[x]a/L′a separately, it follows that these standard monomi-
als generate R[x]/L′ as an R-module. What remains to be shown is that
they generate R[x]/L′ freely. Then L′ is the required preimage of LD in
Hh
S(R). For each generator xu of the monomial ideal J , there is an element

of KL′ with initial term xu. Let f ∈ L′ be a representative of this element
modulo PR[x]. The coefficient of xu in f is a unit in R, so we can assume
it is 1. Then in(f) = xu. Let F be the set of polynomials f obtained in
this way.

For a ∈ D, R[x]a/L′a is free with basis the standard monomials of degree a.
Given any monomial xu ∈ R[x]a, its unique expansion modulo L′a by standard
monomials belongs to R[x]≤(0,u). To see this, observe that the expansion in
K[x] of xu modulo KL′ contains only terms xv with v ≤ u. It follows that
the expansion of bxu belongs to R[x]≤(− ord(b),u). Consider a nonzero element
p ∈ L′a, with in(p) = bxe. Replacing all remaining terms of p with their
standard expansions, we get a polynomial q ≡ p (mod L′). At worst, this
can change the coefficient of xe by an element of P ord(b)+1, so in(q) = b′xe

for some b′. All remaining terms of q are standard, and q ∈ L′ \ {0}, so we
must have xe ∈ J = 〈in(F )〉. By Remark 3.12, we deduce that every p ∈ L′a
is F -reducible. In particular, S(f, g) is F -reducible whenever the generators
in(f) and in(g) of J participate in one of the syzygies referred to in condition
(s) for the very supportive set D. This shows that F is a Gröbner basis for
I = 〈F 〉.

Now, I ⊆ L′, and both R[x]D/ID and R[x]D/L′D are free with basis the
standard monomials in degrees D, so ID = L′D. Both I and L′ are gener-
ated in degrees D, so I = L′. Hence the standard monomials are R-linearly
independent modulo L′. �

When the grading is positive and the Hilbert scheme is projective, the
preceding results lead to an explicit description of the multigraded Hilbert
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scheme Hh
S by equations in Plücker coordinates, although the number of vari-

ables and equations involved may be extremely large. We write a ≤ b for
degrees a, b ∈ A if b − a ∈ A+. Since our grading is positive, this is a partial
ordering on the degrees. For any finite set of degrees D ⊆ A, the Hilbert
functor Hh

SD
is defined as a subfunctor of the Grassmann functor GhSD by the

conditions on L ∈ Hh
SD

(R):

(18) for all a < b ∈ D and all xu with deg(u) = b− a: xuLa ⊆ Lb.

For a positive grading, there are finitely many monomials in each degree. Each
member of the above finite system of inclusions translates into well-known
quadratic equations in terms of Plücker coordinates onGh(a)

Sa
×Gh(b)

Sb
. Together

these equations describe the Hilbert scheme Hh
SD

as a closed subscheme of
GhSD . We call (18) the natural quadratic equations.

Corollary 3.15. If the grading is positive and D ⊆ A is very supportive
for h : A→ N, then the Hilbert scheme Hh

S is defined by the natural quadratic
equations (18).

Let D ⊆ E be two finite sets of degrees, where D is supportive and E is very
supportive. Then our problem is to write down equations for the image of the
closed embedding of Hh

S ' Hh
SE

into Hh
SD

given by Corollary 3.4. Each degree
e ∈ E\D contributes to these equations, which we have already described in
the discussion following the proof of Theorem 2.3 as the Fitting ideal for a
certain matrix Γ. In the positively graded case, this matrix is finite and we
can describe it explicitly. The columns of Γ correspond to the monomials of
degree e. For each degree d ∈ D, d < e, and each set B consisting of h(d) + 1
monomials of degree d, there is an element

∑
b∈B γB\{b} · b of Ld, where γB\{b}

denotes the Plücker coordinate on Gh(d)
Sd

indexed by the set of h(d) monomials
B \ {b}. Equation (10) in Example 2.13 illustrates this. Multiply each such
generator of Ld by a monomial xu of degree e − d to get a homogeneous
polynomial of degree e in x with coefficients that are Plücker coordinates.
The vector of coefficients gives a row of Γ, which is the matrix of all rows
obtained in this way. Setting r = rkSe =

(
n+e−1

e

)
, the minors

(19) Ir−h(e)+1(Γ)

are the natural determinantal equations contributed by the degree e.
Theorem 3.16. If D ⊆ A is supportive for h : A → N, then the Hilbert

scheme Hh
S is defined by the natural quadratic equations (18) and the natural

determinantal equations (19), where e runs over E \D, for a very supportive
superset E of D.
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4. The Grothendieck Hilbert scheme

In this section we relate our construction to Grothendieck’s classical Hilbert
scheme. Expressing the latter as a special case of the multigraded Hilbert
scheme, our natural quadratic equations will become Gotzmann’s equations
[15], while the natural determinantal equations become those of Iarrobino and
Kleiman [18]. Dave Bayer in his thesis [3, §VI.1] proposed a more compact
system of determinantal equations, each having degree n in Plücker coordi-
nates, and he conjectured that they also define Grothendieck’s Hilbert scheme.
Here we prove Bayer’s conjecture.

The Grothendieck Hilbert scheme Hilbgn−1 represents the functor of flat
families X ⊆ Pn−1(R), R ∈ k-Alg, with a specified Hilbert polynomial g. The
homogeneous coordinate ring of Pn−1(R) is R[x] = R[x1, . . . , xn], and the
ideal of X is a saturated homogeneous ideal L ⊆ R[x] such that in sufficiently
large degrees, R[x]/L is locally free with Hilbert function g. Let d0 = d0(g, n)
denote the Gotzmann number [18, Definition C.12]. Gotzmann [15] proved:
(1) every saturated ideal with Hilbert polynomial g has Hilbert function g in
degrees d ≥ d0, and (2) every ideal with Hilbert function g in degrees d ≥ d0

coincides in these degrees with its saturation.
Lemma 4.1. Grothendieck’s Hilbert scheme Hilbgn−1 is isomorphic to the

multigraded Hilbert scheme Hh
S , where S = k[x] with the standard Z-grading,

with Hilbert function h defined by h(d) = g(d) for d ≥ d0, h(d) =
(
n+d−1

d

)
for

d < d0.

Proof. The ideals described by the functor Hh
S are the truncations to de-

grees d ≥ d0 of the ideals described by the Grothendieck functor Hilbgn−1.
A natural bijection between the two is given by truncation in one direc-
tion and saturation in the other. Hence both schemes represent the same
functor. �

The Gotzmann number d0 equals the maximum of the Castelnuovo-Mum-
ford regularity of any saturated monomial ideal I with Hilbert polynomial g
[18, Proposition C.24]. The set of such ideals is finite by Lemma 3.1. For a
monomial ideal, the regularity of I is a purely combinatorial invariant, equal
to the maximum over all i and all minimal i-th syzygies of d − i, where d is
the degree of the syzygy. The regularity will not exceed d0 if I is replaced
by its truncation to degrees ≥ d0. It follows that for every monomial ideal I
generated in degree d0 and with Hilbert polynomial g, the Hilbert function
of I coincides with g in degrees ≥ d0, and I has a linear free resolution. In
particular, the minimal S-pairs of I have degree d0 + 1. These considerations
show that Gotzmann’s Regularity Theorem and Persistence Theorem can be
rephrased in the language of the previous section as follows:
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Proposition 4.2. Let g be a Hilbert polynomial, defining d0 and h as
above. Then D = {d0} is supportive and E = {d0, d0 + 1} is very supportive
for Hh

S = Hilbgn−1.
We can now write equations for the Grothendieck Hilbert scheme in two

possible ways. The set E = {d0, d0 + 1} gives an embedding into a product
of Grassmannians

(20) Hh
S = Hh

SE ↪→ G
h(d0)
Sd0

×Gh(d0+1)
Sd0+1

.

This is the embedding described by Gotzmann in [15, Bemerkung (3.2)]; see
also [18, Theorem C.29]. It is defined scheme-theoretically by the natural
quadratic equations given in (18). We illustrate these equations with a simple
example.

Example 4.3. Take S = k[x, y, z] with Hilbert function h(0) = 1 and
h(d) = 2 for d ≥ 1. Our Hilbert scheme Hh

S coincides with the Grothendieck
Hilbert scheme of two points in the projective plane P2. The Gotzmann num-
ber is d0 = 2. The pair E = {2, 3} is very supportive and gives the embedding
(20) into the product of Grassmannians G2

6 × G2
10. The Plücker coordinates

for the Grassmannian G2
6 (resp. G2

10) are ordered pairs of quadratic (resp. cu-
bic) monomials in x, y, z. These define the Plücker embeddings G2

6 ↪→ P14

and G2
10 ↪→ P44. The Hilbert scheme Hh

S is the closed subscheme of G2
6×G2

10

defined by 600 bilinear equations as in (18). There are 180 two-term relations
such as

[xy2, xyz] · [yz, xy] + [xy2, y2z] · [xy, xz] = 0,

and 420 three-term relations such as

[x2z, xy2] · [xz, yz] + [x2z, xyz] · [yz, xy] + [x2z, y2z] · [xy, xz] = 0.

The validity of these equations is easily checked for subschemes of P2 consisting
of two distinct reduced points (x1 : y1 : z1) and (x2 : y2 : z2). Just replace each
bracket by the corresponding 2×2 determinant, as in [x2z, xy2] 7→ x2

1z1x2y
2
2−

x2
2z2x1y

2
1 . �

In the remainder of this section we will not study the Gotzmann embed-
ding (20) but the other (more efficient) embedding given by Proposition 4.2.
Namely, the supportive singleton D = {d0} defines the embedding into a
single Grassmannian

(21) Hh
S ↪→ Hh

SD = G
h(d0)
Sd0

.

This embedding is described in Bayer’s thesis [3, §VI.1] and in [18, Prop. C.28].
It follows from Theorem 3.16 that the Hilbert scheme is defined as a closed sub-
scheme of the Grassmannian by the natural determinantal equations (19). Iar-
robino and Kleiman proved this in the present case in [18, Proposition C.30],
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so we refer to the equations (19) for the Grothendieck Hilbert scheme as the
Iarrobino–Kleiman equations. Note that the Iarrobino–Kleiman equations for
the embedding (21) are homogeneous polynomials of degree

(
n+d0
d0+1

)
−h(d0+1)

+ 1 in the Plücker coordinates.
We now present a third system of homogeneous equations for the Grothen-

dieck Hilbert scheme, which Bayer proved define it set-theoretically. Like the
Iarrobino–Kleiman equations, Bayer’s equations are homogeneous equations
in the Plücker coordinates on the single Grassmannian G

h(d0)
Sd0

. However,
Bayer’s equations are more compact: their degree always equals n, the num-
ber of variables, independently of g, h and d0 [3, p. 144]. Bayer conjectured
that his equations define the correct scheme structure [3, p. 134]. We will
prove this conjecture.

Theorem 4.4. Grothendieck’s Hilbert scheme parametrizing subschemes
of Pn−1 with any fixed Hilbert polynomial is defined in the Grassmannian
embedding (21) by Bayer’s equations, which are homogeneous of degree n in
the Plücker coordinates.

Although the Bayer equations define the same subscheme of the Grass-
mannian as the Iarrobino–Kleiman equations, they do not generate the same
homogeneous ideal. This phenomenon is hardly surprising, since any projec-
tive scheme can be defined by many different homogeneous ideals. Even the
Bayer equations are often not the simplest ones: the common saturation of
both ideals frequently contains equations of degree less than n. This happens
for Example 4.3, which will be reexamined below, and it happens for [18,
Example C.31], where the Iarrobino–Kleiman equations have degree 25 while
the Bayer equations have degree 3.

The best way to introduce Bayer’s equations and relate them to the Iarro-
bino–Kleiman equations is with the help of Stiefel coordinates on the
Grassmannian. For the remainder of this section we use the following ab-
breviations:

d = d0; h = h(d); h′ = h(d+ 1); r =
(
n+ d− 1

d

)
; r′ =

(
n+ d

d+ 1

)
.

As before, Ghr denotes the Grassmann scheme parametrizing quotients of rank
h of Sd. We digress briefly to review the relationship between local coordi-
nates, Stiefel coordinates, and Plücker coordinates.

Recall from Section 2 that the Grassmannian Ghr is covered by affine charts
Ghr\B, whose functor Ghr\B(R) describes free quotients Rr/L with basis B,
where B is an h-element subset of some fixed basis X of kr. Here we iden-
tify kr with Sd, and X is the set of all monomials of degree d. At a point
L ∈ Ghr\B(R), the local (affine) coordinates γxb take unique values in R such
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that
x ≡

∑
b∈B

γxb · b (mod L) for all x ∈ X \B.

Consider the (r − h) × r matrix Γ with columns indexed by the elements of
X , constructed as follows. Index the rows of Γ by the elements of X\B. In
the column indexed by b ∈ B, put the coordinates −γxb of L, for x ∈ X\B.
In the complementary square submatrix with columns indexed by X \B, put
an (r− h)× (r− h) identity matrix. Then the rows of Γ span the submodule
L ⊆ Rr.

More invariantly, if we insist that Rr/L be free, not just locally free, but
do not choose the basis B in advance, we can always realize L as the row
space of some (r − h)× r matrix Ω, at least one of whose maximal minors is
invertible in R. The entries of Ω are the Stiefel coordinates of L. They are
well defined up to change of basis in L, that is, up to multiplication of Ω on
the left by matrices in GLr−h(R). A little more generally, we can regard any
(r − h) × r matrix Ω whose maximal minors generate the unit ideal in R as
the matrix of Stiefel coordinates for its row-space L ⊆ Rr, as Rr/L will then
be locally free of rank h.

When Rr/L is locally free of rank h, its top exterior power ∧h(Rr/L)
is a rank-1 locally free quotient of ∧h(Rr), corresponding to an element of
P(rh)−1(R). The Plücker embedding Ghr ↪→ P(rh)−1 is given in scheme functor
terms by the natural transformation sending L to the kernel of ∧h(Rr) →
∧h(Rr/L). The homogeneous coordinates on P(rh)−1 are Plücker coordinates.
They are indexed by exterior products of the elements of X and denoted

(22) [x1, . . . , xh].

In terms of Stiefel coordinates, we can identify [x1, . . . , xh] with the maximal
minor of Ω whose columns are indexed by x1, . . . , xh, up to a sign depending
on the order of the monomials in the bracket.

Some caution is due when using Stiefel and Plücker coordinates in the
scheme functor setting: for an arbitrary L ∈ Ghr\B(R), the matrix Ω of Stiefel
coordinates need not exist, as L may not be generated by r − h elements.
This difficulty arises even for homogeneous coordinates on projective space
(the special case h = r− 1). Nevertheless, for the purpose of determining the
ideal of a closed subscheme H ⊆ Ghr , it suffices to consider the restriction of
the scheme functors involved to local rings R. Stiefel and Plücker coordinates
then make sense for any R-valued point L. Throughout the rest of this section,
R will always denote a local ring.

The basic observation leading to the Bayer equations is that when a sub-
scheme of Ghr is defined by nice enough equations in Stiefel coordinates, they
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can sometimes be converted to equations of much lower degree in Plücker
coordinates. For instance, the submodule L2 ⊆ R[x, y, z]2 in Example 4.3 is
spanned by four quadrics,

a1x
2 + a2xy + a3xz + a4y

2 + a5yz + a6z
2,

b1x
2 + b2xy + b3xz + b4y

2 + b5yz + b6z
2,

c1x
2 + c2xy + c3xz + c4y

2 + c5yz + c6z
2,

d1x
2 + d2xy + d3xz + d4y

2 + d5yz + d6z
2.

The matrix Ω is the 4 × 6 matrix of coefficients, which are the Stiefel coor-
dinates. The fifteen 4× 4 minors of Ω are identified with the fifteen Plücker
coordinates on G2

6. Some care is required with the signs; for instance,
(23)

[yz, z2] = det


a1 a2 a3 a4

b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

 , [y2, z2] = − det


a1 a2 a3 a5

b1 b2 b3 b5
c1 c2 c3 c5
d1 d2 d3 d5

 .

Returning to the general discussion, observe that the image x ·Ld of Ld ⊆
R[x]d is spanned by x1Ld, x2Ld, . . . , xnLd inside R[x]d+1 = Rr

′
. We may

represent x ·Ld by a matrix Ω̂ with n(r−h) rows and r′ columns. The matrix
Ω̂ contains n copies of the matrix Ω and is otherwise zero. The columns of
Ω̂ are labeled by the monomials in R[x]d+1 in lexicographic order. In our
running example, we have

(24) Ω̂ =



a1 a2 a3 a4 a5 a6 0 0 0 0
b1 b2 b3 b4 b5 b6 0 0 0 0
c1 c2 c3 c4 c5 c6 0 0 0 0
d1 d2 d3 d4 d5 d6 0 0 0 0
0 a1 0 a2 a3 0 a4 a5 a6 0
0 b1 0 b2 b3 0 b4 b5 b6 0
0 c1 0 c2 c3 0 c4 c5 c6 0
0 d1 0 d2 d3 0 d4 d5 d6 0
0 0 a1 0 a2 a3 0 a4 a5 a6

0 0 b1 0 b2 b3 0 b4 b5 b6
0 0 c1 0 c2 c3 0 c4 c5 c6
0 0 d1 0 d2 d3 0 d4 d5 d6


with columns labeled x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3.
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The choice of d as the Gotzmann number ensures that Ω̂ has an invertible
minor of order r′−h′ whenever Ω has an invertible maximal minor. The natu-
ral determinantal equations (19) defining Hh

S as a closed subscheme of Ghr are
the minors of order r′−h′+1 of the matrix Ω̂. They are the Iarrobino–Kleiman
equations expressed in Stiefel coordinates, and are exactly the equations which
ensure that R[x]d+1/x · Ld is locally free of rank h′. In our example, we are
looking at 2, 200 =

(
12
9

)
×
(

10
9

)
polynomials of degree 9. We wish to replace

these by a smaller number of cubic polynomials in the 4 × 4 minors of the
matrix Ω.

In general, our problem is this:
Let J be the Fitting ideal generated by the minors of order r′−h′+1 of the

matrix Ω̂. This is an ideal in the polynomial ring k[Ω] generated by entries of
Ω, that is, by the Stiefel coordinates, viewed as indeterminates. We seek an
ideal J ′ generated by polynomials of degree n in the Plücker coordinates, or
maximal minors of Ω, such that J and J ′ define systems of equations which
have the same solutions Ω over any local ring R.

We now give Bayer’s construction and show that it solves the above prob-
lem. Let Ω⊗ S1 be the matrix representing the submodule S1 ⊗k Ld of the
tensor product S1 ⊗k R[x]d. Thus Ω⊗ S1 is a matrix with n(r− h) rows and
nr columns. The row labels of Ω⊗ S1 coincide with the row labels of Ω̂. We
form their concatenation

(
Ω̂ | Ω⊗ S1

)
.

Bayer’s equations are certain maximal minors of this matrix. Each column
of Ω̂ is a sum of columns of Ω ⊗ S1, and these sums involve distinct leading
columns. Therefore, we may—for the sake of efficiency—pick a submatrix
(Ω⊗ S1)red of (Ω⊗ S1) of format n(r− h)× (nr − r′) such that the maximal
minors of

(25)
(
Ω̂ | (Ω⊗ S1)red

)
have the same Z-linear span as those of

(
Ω̂ | Ω ⊗ S1

)
. Note that the matrix

(25) has n(r − h) rows and nr columns. Each maximal minor of (25) is a
homogeneous polynomial of degree n(r−h) in k[Ω], and, by Laplace expansion,
it can be written as a homogeneous polynomial of degree n in the Plücker
coordinates (22). The Bayer equations are those maximal minors of (25)
obtained by taking any set of r′ − h′ + 1 columns of Ω̂ and any set of n(h−r)
− r′ + h′ − 1 columns of (Ω⊗ S1)red.
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In our running example, we take the reduced tensor product matrix as
follows:

(26) (Ω⊗ S1)red =



a2 a3 a4 a5 0 a6 0 0
b2 b3 b4 b5 0 b6 0 0
c2 c3 c4 c5 0 c6 0 0
d2 d3 d4 d5 0 d6 0 0
0 0 0 0 a3 0 a5 a6

0 0 0 0 b3 0 b5 b6
0 0 0 0 c3 0 c5 c6
0 0 0 0 d3 0 d5 d6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



.

The matrix (25) has format 12 × 18, and each of its maximal minors is a
homogeneous polynomial of degree 3 in the 15 Plücker coordinates [x2, xy],
[x2, xz], . . ., [yz, z2]. There are 560 =

(
10
9

)
×
(

8
3

)
Bayer equations obtained by

taking any 9 columns from (24) and any 3 columns from (26).

Proof of Theorem 4.4. Clearly, every Bayer equation belongs to the Fitting
ideal Ir′−h′+1(Ω̂). We must show that (for R local) the vanishing of the Bayer
minors implies that Ir′−h′+1(Ω̂) = 0. This would be obvious if the matrix
(Ω⊗ S1)red contained an identity matrix as a maximal square submatrix. But
the Bayer ideal is unchanged if we use Ω⊗ S1 in place of (Ω⊗ S1)red, and it
is GLn(r−h)(R)-invariant. Hence it suffices that Ω⊗ S1 have some maximal
minor invertible in R. This follows from the fact that Ω has such a minor. �

While the Bayer equations do define the correct scheme structure on the
Hilbert scheme, they are far from minimal with this property. For instance, in
our example, there are 560 Bayer cubics which, together with the 15 quadratic
Plücker relations for G2

6, define the Hilbert scheme Hh
S as a closed subscheme

of dimension 4 and degree 21 in P14. However, Hh
S is irreducible and its prime

ideal is the ideal of algebraic relations on the 2× 2 minors of the matrix

(
x2

1 x1y1 x1z1 y2
1 y1z1 z2

1

x2
2 x2y2 x2z2 y2

2 y2z2 z2
2

)
.

This prime ideal is minimally generated by 45 quadrics.
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5. Toric Hilbert schemes and their Chow morphisms

In this section we examine Hilbert schemes which arise in toric geometry.
Our goals are to describe equations for the toric Hilbert scheme, and to define
the toric Chow morphism. In the process we answer some questions left open
in earlier investigations by Peeva, Stillman, and the second author. We fix an
A-grading of the polynomial ring S = k[x] and consider the constant Hilbert
function

(27) h(a) = 1 for all a ∈ A+.

The multigraded Hilbert scheme H1
S defined by this Hilbert function is called

the toric Hilbert scheme. Its functor H1
S(R) parametrizes ideals I ⊆ R[x] such

that (R[x]/I)a is a rank-one locally free R-module for all a ∈ A+.
Assuming that the elements ai = deg(xi) generate A, we have a presenta-

tion

(28) 0→M → Zn → A→ 0,

which induces a surjective homomorphism of group algebras over k,

(29) k[x,x−1] = k[Zn]→ k[A],

and a corresponding closed embedding of G = Spec k[A] as an algebraic sub-
group of the torus Tn = Spec k[x,x−1]. The torus Tn acts naturally on An
as the group of invertible diagonal matrices, and so its subgroup G also acts
on An. An ideal I ⊆ R⊗ S is homogeneous for our grading if and only if the
closed subscheme defined by I in AnR = An ×k SpecR is invariant under the
action of GR = G×k SpecR.

Remark 5.1. If A is a finite abelian group, then the toric Hilbert scheme
H1
S coincides with Hilbert scheme HilbG(An) of regular G-orbits studied by

Nakamura [24]. If the group A is free abelian and the grading is positive, then
H1
S coincides with the toric Hilbert scheme studied by Peeva and Stillman

[25, 26]. �
There is a distinguished point on the toric Hilbert scheme H1

S , namely, the
ideal

IM = 〈xu − xv : u, v ∈ Nn, deg(u) = deg(v) 〉.
Note that deg(u) = deg(v) means that u − v lies in the sublattice M in
(28). Restricting the ring map in (29) to S = k[Nn], its kernel is IM . Hence,
identifying An = SpecS with the space of n × n diagonal matrices, and Tn
with its open subset of invertible matrices, IM is the ideal of the closure in
An of the subgroup G ⊆ Tn.

A nonzero binomial xu − xv ∈ IM is called Graver if there is no other
binomial xu

′ − xv′ in IM such that xu
′

divides xu and xv
′

divides xv. The
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degree a = deg(u) = deg(v) of a Graver binomial is a Graver degree. The
set of Graver binomials is finite. The finite set of all Graver degrees can be
computed using Algorithm 7.2 in [30].

Proposition 5.2. The set of Graver degrees is supportive, and the natu-
ral determinantal equations (19) for this set coincide with the determinantal
equations for the toric Hilbert scheme given by Peeva and Stillman in [26,
Definition 3.3].

Proof. The Graver degrees are supportive by [25, Proposition 5.1]; the proof
given there for positive gradings works for nonpositive gradings as well. The
Fitting equations in [26, Definition 3.3] are precisely our Fitting equations
(19), in the special case when the Hilbert function h is the constant 1. �

In the positively graded case, a doubly-exponential bound was given in
[29, Proposition 5.1] for a set of degrees which is very supportive for the
toric Hilbert scheme. Peeva [25, Corollary 5.3] improved the bound to single-
exponential and gave an explicit description of a very supportive set E in [25,
Theorem 5.2].

Proposition 5.3. Let deg : Nn → A be a positive grading and E ⊆ A+ a
finite, very supportive set of degrees for the toric Hilbert scheme. Then the
natural quadratic equations (18) are precisely the quadratic binomials given in
[29, Equation (5.3)].

Proof. We only need to make explicit the equations expressing condition
(18):

for all a < b ∈ E and all xu with deg(u) = b− a: xuLa ⊆ Lb.

Let R be a local ring. For the constant Hilbert function h = 1, the ambient
graded Grassmann scheme is a product of projective spaces, one for each
degree:

G1
SE =

∏
a∈E

P(Sa).

For each monomial xu in Sa there is a coordinate zau on the projective space
P(Sa), such that zau for deg(u) = a are the Plücker coordinates on P(Sa)(R).
The submodule La of R⊗ Sa represented by a point (zau) in P(Sa)(R) is
generated by

zau · xv − zav · xu for all deg(u) = deg(v) = a.

For R local, condition (18) is thus equivalent to the system of binomial equa-
tions
(30)
zau · zbv+w = zav · zbu+w for a, b ∈ E, deg(u) = deg(v) = a, deg(w) = b− a,
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which are precisely the equations in [29, (5.3)]. A closed subscheme cut out
by equations in any scheme is determined by the evaluation of its subfunctor
on local rings R. Hence H1

SE
, the closed subscheme of

∏
a∈E P(Sa) whose

subfunctor is characterized by condition (18), is cut out by equations (30). �
In view of our general theory, Propositions 5.2 and 5.3 show that Peeva and

Stillman’s determinantal equations in [26] define the same scheme structure
as the binomial quadrics in [29, Equation (5.3)]. This question had been left
open in [26].

It is instructive to examine Theorem 3.16 in the case of the toric Hilbert
scheme H1

S . Suppose the grading of S is positive, let D ⊆ A+ be the set of
Graver degrees and E the very supportive set in [25, Theorem 5.2]. Then
the toric Hilbert scheme H1

S is defined by the quadratic binomials (30) on D
together with the Fitting equations (19), where e runs over E. From this it
follows that the infinite sum in [26, Definition 3.3] over all degrees e ∈ A+

can be replaced by the finite sum over e ∈ E. The resulting finite set of
determinantal equations still defines H1

S .
We now turn to the construction of the toric Chow morphism. It was

conjectured in [29, Problem 6.4] that there exists a natural morphism from
the toric Hilbert scheme to a certain inverse limit of toric GIT quotients,
and this is what we shall now construct. In [29] it was assumed that the
action of G on An is the linearization of an action on projective space, or,
equivalently, that (1, 1, . . . , 1) ∈ M⊥, but this hypothesis is not needed. Our
notation concerning toric varieties follows [7] and [13]. For compatibility with
the standard toric variety setting, one should take k = C; although, in fact,
the construction below makes sense for any k.

In (29) we identified Spec k[x,x−1] with the torus Tn of diagonal matrices
acting on An. Each Laurent monomial xu is thus a regular function on Tn,
and this identifies the lattice Zn in (28) with the lattice of linear characters
of Tn. The sublattice M consists of those characters which are trivial on the
subgroup G ⊆ Tn, so the grading group A consists of linear characters of the
group G. In particular, S0 is the ring of G-invariants in S, so SpecS0 is the
affine quotient An/G.

The GIT quotient An/aG in the sense of Mumford [22], for a G-linearization
of the trivial line bundle on An using a G-character a ∈ A, is given as

An/aG = Proj
∞⊕
r=0

Srka,

where ka is a multiple of a for which the ring on the right-hand side is gen-
erated in degrees r = 0, 1. These GIT quotients, including the affine quotient
An/G = An/0G, are toric varieties, whose description in terms of fans we
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pause to review. Let N = Hom(M,Z) be the lattice dual to M , so (28) yields
an exact sequence

(31) 0← Ext1(A,Z)← N ← Zn ← Hom(A,Z)← 0.

The map N ← Zn supplies a tuple Π = (v1, . . . , vn) of distinguished vectors
in N . The lattice Zn in (31) is dual to the one in (28). The latter can be
identified with the set ZΠ of functions Π→ Z. Then the degree map ZΠ → A

induces a map

(32) φ : RΠ −→ A⊗Z R.

To each degree a ∈ A is associated a regular subdivision Σa, as in [5]. Namely,
Σa is the fan of cones in N spanned by subsets of the form σ = f−1(0) ⊆ Π,
for functions f ∈ (R≥0)Π ∩ φ−1(a). The fans Σ = Σa arising this way are
called compatible fans.

With this notation, we have XΣa = An/aG, and we can identify S with the
Cox homogeneous coordinate ring [7] of XΣa . More precisely, for each σ ∈ Σa
as above, let xσ be the product of the variables xi with vi ∈ Π \ σ. Then the
semistable locus Ua = Anss(a) is the union of the principal open affines Uxσ ,
and the ring of G-invariants S[x−1

σ ]0 is the semigroup algebra of σ∨ ∩M , so
Ua/G = XΣa . It is natural at this point to make the following definition.

Definition 5.4. A degree a ∈ A+ is integral if the inclusion of convex
polyhedra

(33) conv
(
Nn ∩ deg−1(a)

)
⊆ (R≥0)n ∩ φ−1(a)

is an equality, where φ is the map in (32).
For every degree a ∈ A+, the monomials xσ for σ ∈ Σa are just the

square-free parts of all monomials xu whose degree is a positive multiple of a.
Integrality of a means that every xσ already occurs as the square-free part of
a monomial of degree a. Equivalently, a is integral if the semistable locus Ua
is equal to the complement of the closed subset V (Ja), where Ja is the ideal
in S generated by Sa. We remark that every degree a ∈ A+ has some positive
multiple ka which is integral, and that the fan Σa is the normal fan to the
polyhedron on the right-hand side in (33).

The set of all compatible fans, ordered by refinement, can be identified
with the poset of chambers in the Gale dual of Π, by [5, Theorem 2.4]. If
Σ′ is a refinement of Σ, then the construction in [13, §1.4] gives a projective
morphism of toric varieties

(34) XΣ′ → XΣ.

The varieties XΣ for all compatible fans Σ form an inverse system. Their
inverse limit in the category of k-schemes is called the toric Chow quotient
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and denoted by

(35) An/C G = lim←−{XΣ : Σ a compatible fan in N}.

Example 5.5. The fan Σ0 giving the affine quotient An/G is just the cone
R≥0Π. If the grading is positive, then Π positively spans N and all compatible
fans are complete. In this case, the affine quotient An/G = XΣ0 is a point,
and the toric GIT quotients are projective. At the opposite extreme, if A is
finite, then Π is a basis of N⊗R, the only toric GIT quotient is the affine one,
and our Chow morphism below coincides with Nakamura’s Chow morphism
HilbG(An)→ An/G. �

The following theorem provides the solution to Problem 6.4 in [29].
Theorem 5.6. There is a canonical morphism

(36) H1
Sint(A)

→ An/C G

from the toric Hilbert scheme restricted to the set of integral degrees to the
toric Chow quotient An/C G, which induces an isomorphism of the underly-
ing reduced schemes. In particular, composing (36) with the degree restric-
tion morphism, we obtain a canonical Chow morphism from the toric Hilbert
scheme to the toric Chow quotient

(37) H1
S → An/C G.

For the proof of Theorem 5.6 we need to recall some facts about the Proj of
a graded ring. Let T be an N-graded k-algebra, generated over T0 by finitely
many elements of T1, so T = T0[y]/I for generators y0, . . ., ym of T1 and a
homogeneous ideal I ⊆ T0[y]. Then ProjT is the closed subscheme V (I) of
Pm × SpecT0. Its functor ProjT is defined as follows: ProjT (R) is the set
of homogeneous ideals L ⊆ R ⊗ T such that Ld is a locally free R-module of
rank 1 for all d. In symbols, ProjT = H1

T . Setting T (d) =
⊕

r Trd, the degree
restriction morphism ProjT = H1

T → H1
T (d) = ProjT (d) is an isomorphism.

More generally, suppose that T1 does not necessarily generate T , but that the
following weaker conditions hold:

(i) T is finite over the T0-subalgebra T ′ generated by T1; or equivalently,
(ii) there exists d0 such that Td+1 = T1Td for all d ≥ d0.

In this case it remains true that the degree restriction morphism H1
T →

ProjT (d) is an isomorphism for d ≥ d0. There is a canonical morphism
ProjT (d) → ProjT ′, which is finite, but need not be an isomorphism.

One sees easily that a ∈ A+ is integral if and only if the ring

(38) S(a) =
def

∞⊕
r=0

Sra
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satisfies conditions (i) and (ii) above. In particular, for a ∈ int(A) we have

H1
S(a) = An/aG = XΣa ,

so restriction of degrees yields a canonical morphism H1
S → XΣa .

Lemma 5.7. The morphism H1
S → XΣ above depends only on the com-

patible fan Σ and not on the choice of degree a with Σa = Σ. Moreover, these
morphisms commute with the morphisms XΣ′ → XΣ given by refinement of
fans as in (34).

Proof. We will describe the morphisms H1
S → XΣ geometrically. Because

H1
S represents the Hilbert functor, it comes with a universal family F ⊆

H1
S ×k An (where An = SpecS), and the group G = Spec k[A] acts on F so

that the projections
H1
S ← F → An

are equivariant. To the character a of G corresponds a GIT quotient F/aG =
Fss/G. The a-semistable locus Fss is the preimage of Anss, and we have induced
morphisms

(39) H1
S ← F/aG = Fss/G→ Anss/G = XΣ.

Now, F/aG, considered as a scheme overH1
S , is just Proj

⊕∞
r=0(S/L)ra, where

S is the sheaf of A-graded algebras OH1
S
⊗k S, and L is the universal ideal

sheaf. But (S/L)ra is locally free of rank 1 over OH1
S

for all r, which implies
F/aG ∼= H1

S . Hence in (39) there is a composite morphism H1
S → XΣ,

which is easily seen to coincide with the degree restriction morphism. The
morphism in (39) depends on a only through Anss, which in turn depends
only on Σa. Furthermore, if Σ′ refines Σ, with corresponding semi-stable loci
Anss′ and Anss, then Anss′ ⊆ Anss and the morphism XΣ′ → XΣ is just the
morphism Anss′/G→ Anss/G induced by the inclusion. This makes the lemma
obvious. �

Proof of Theorem 5.6. We already saw that restriction of degrees yields
morphisms

H1
S → H1

Sint(A)
→ An/C G.

For every R, the natural map

(40) H1
Sint(A)

(R)→ (An/C G)(R)

is injective, since to give the restriction of L ∈ H1
S(R) to integral degrees is

the same as to give its image in H1
S(a)(R) = XΣa(R) for each integral a. In

general, a morphism of schemes X → Y induces an isomorphism of reduced
schemes Xred → Yred if and only if the natural map X(R) → Y (R) is an
isomorphism for all reduced rings R. Hence it remains to show that the map
(40) is surjective when R is reduced.
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Suppose for each a ∈ int(A) we are given La ⊆ R⊗ Sa with (R ⊗ Sa)/La
locally free of rank 1. We may assume the La are consistent in the following
sense: first,

⊕
r Lra is an ideal in R ⊗ S(a) for each a, so it represents a

point of XΣa(R), and second, these points are compatible with the morphisms
XΣa → XΣb whenever Σa refines Σb. Then we are to show:

(41) for all a, b ∈ int(A) and all xu with deg(u) = b− a: xuLa ⊆ Lb,

so L represents a point of H1
Sint(A)

(R).
Let DΣ = {a ∈ int(A) : Σa = Σ}. There is a subdivision of A ⊗Z R

into rational convex polyhedral cones CΣ such that DΣ is the preimage of the
relative interior of CΣ via the canonical map ψ : int(A)→ A⊗ZR. The fan Σ′

refines Σ if and only if CΣ is a face of CΣ′ . For a given Σ, the ring Sψ−1(CΣ) can
be identified with the multi-homogeneous coordinate ring of XΣ with respect
to the various line bundles O(a) pulled back via refinement homomorphisms
XΣ → XΣa . Our consistency hypotheses amount to saying that (41) holds
whenever ψ(a) and ψ(b) both lie in a common cone CΣ.

Consider now the general case of (41). For any d > 0, the points
ψ(da + k deg(u)), for 0 ≤ k ≤ d, lie along the line segment l from ψ(da)
to ψ(db). For a suitably chosen large d, every cone CΣ that meets l will con-
tain at least one point ψ(da+ki deg(u)) with da+ki deg(u) an integral degree.
Then (41) holds for each consecutive pair of integral degrees da + ki deg(u),
da+ ki+1 deg(u) in this arithmetic progression. Hence it holds for da, db and
the monomial xdu, so f ∈ La implies xdufd ∈ Ldb. But R⊗ S(b)/(

⊕
r Lrb) is

an N-graded R-algebra, locally (on SpecR) isomorphic to a polynomial ring
in one variable over R. Hence it is a reduced ring, that is,

⊕
r Lrb is a radical

ideal in R⊗ S(b), and therefore xuf ∈ Lb. �
Because the natural map in (40) is always injective, our proof of Theorem

5.6 gives a bit more. Namely, if the toric Chow quotient An/C G happens to
be reduced, then its isomorphism with (H1

S)red ⊆ H1
S provides a right inverse

to the map in (40), showing that the latter map is bijective. Hence we have
the following improvement.

Corollary 5.8. If the toric Chow quotient An/C G is reduced, then the
morphism H1

Sint(A)
→ An/C G in Theorem 5.6 is an isomorphism.

The toric Chow morphism is generally neither injective nor surjective; see
e.g. [30, Theorem 10.13]. However, there is an important special case, namely,
the supernormal case, when it is bijective, and in fact induces an isomorphism
of the underlying reduced schemes. A degree a ∈ A is called prime if there is
no variable xi which divides every monomial of degree a. If every degree is
integral, int(A) = A, then the sublattice M of Zn is said to be unimodular. If
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every prime degree is integral, the A-grading is said to be supernormal. This
terminology is consistent with [17].

Corollary 5.9. If the A-grading of S is supernormal, then the toric Chow
morphism (37) induces an isomorphism of reduced schemes

(H1
S)red → (An/C G)red.

If in addition, An/C G is reduced, then the toric Chow morphism is an iso-
morphism.

Proof. We need only show that if D is the set of prime degrees, then the
degree restriction morphism H1

S → H1
SD

is an isomorphism. Fix a degree
a ∈ A\D and let xu be the greatest common divisor of all monomials of
degree a. Then a′ = a − deg(u) is a prime degree, and multiplication by xu

defines an R-module isomorphism between R ⊗ Sa′ and R ⊗ Sa, for every
k-algebra R. For any element I ∈ H1

S(R), we have Ia = xu · Ia′ and hence
the restriction map H1

S(R) → H1
SD

(R) is injective. But it is also surjective
because every element J in H1

SD
(R) lifts to an element of H1

S(R) by setting
Ja = xu · Ja′ for degrees a ∈ A\D. �

Example 5.10. Give S = C[x1, x2, x3, x4] the Z2-grading deg(x1) =
deg(x2) = (1, 0), deg(x3) = (0, 1), deg(x4) = (2, 1). The configuration Π ⊆ N
can be represented by the four vectors {(−1, 1), (1, 1), (0, 1), (0,−1)} in Z2.
There is a unique finest compatible fan Σ, and A2/C G = XΣ is a smooth
projective toric surface. The prime degrees are (α, β) ∈ N2 with α ≥ 2β. The
integral degrees are those for which α ≥ 2β or α is even. Hence this example is
supernormal, but not unimodular. By Corollary 5.9, its toric Hilbert scheme
is isomorphic to XΣ. �

We remark that Corollary 5.9 can be used to give an alternative and more
conceptual proof of Theorem 1.2 in [17], which states that in the supernormal
case, the Tn-fixed points on the toric Hilbert scheme (“virtual initial ideals”)
are in natural bijection with the Tn-fixed points on the toric Chow quotient
(“virtual chambers”).

We next discuss the distinguished component of the toric Hilbert scheme
H1
S . Here we will fix k = C and describe the distinguished component in

set-theoretic terms. The distinguished point IM ∈ H1
S(C) is the ideal of the

closure of G. More generally, the ideal I of the closure in An of any G-coset
G ·τ ⊆ Tn is a point of H1

S(C). In fact, Tn acts on H1
S and the Tn-orbit of IM

consists of all such ideals I. Moreover, I is the only point of H1
S(C) for which

V (I) contains G · τ . Now Tn/G is the open torus orbit in each of the toric
varieties XΣ, and so is naturally embedded as an open set U in the inverse
limit An/C G = lim←−Σ

XΣ. The observations above show that the toric Chow
morphism restricts to a bijection from the preimage of U in H1

S to U . Hence
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the preimage of U is an irreducible open subset of H1
S , and its closure is an

irreducible component of H1
S , which we call the coherent component.

The closure of U in An/C G is the toric variety X∆ defined by the common
refinement ∆ of all compatible fans Σa. Thus we have a canonical morphism
from the coherent component of H1

S to X∆. For a supernormal grading, it is
an isomorphism.

Example 5.11. There is a nice connection between toric Hilbert schemes
and recent work by Brion [6]. Consider the (Grothendieck) Hilbert scheme
associated with the diagonal embedding X → X ×X of a projective variety
X . Brion shows that, if X is a homogeneous space, then the diagonal is a
smooth point on a unique component of the Hilbert scheme, the associated
Chow morphism is an isomorphism, and all degenerations of the diagonal in
X ×X are reduced and Cohen-Macaulay. Our theory implies corresponding
results when X is a unimodular toric variety [2, §6]. Indeed, by Proposition
6.1 in [2], the Hilbert scheme of X in X × X is the toric Hilbert scheme
for S = C[x1, . . . , xn, y1, . . . , yn] graded via a unimodular Lawrence lattice
M ⊆ Z2n. The Lawrence ideal IM is the distinguished point X ; the unique
component it lies on is the distinguished component defined above, and its
toric degenerations are reduced and Cohen-Macaulay by [2, Thm. 1.2 (b)]. �

Variants of our results on H1
S apply to the m-th toric Hilbert scheme Hm

S

defined by the Hilbert function

h(a) = min(m, rkk(Sa)).

The m-th toric Hilbert scheme is a common generalization of two objects
of recent interest in combinatorial algebraic geometry, namely, the Hilbert
scheme of m points in affine n-space (the case A = {0}) and the toric Hilbert
scheme (the case m = 1). Again, Hm

S has a distinguished coherent component,
and it admits a natural morphism to a certain Chow variety.

We briefly outline how to extend our constructions to the case m > 1.
The appropriate Chow quotient is the inverse limit of symmetric powers
lim←−Σ

SymmXΣ. There is a Chow morphism, which factors as

(42) Hm
S →

∏
Σ

Hilbm(XΣ)→ lim←−
Σ

SymmXΣ.

Here Hilbm(XΣ) is the Hilbert scheme of m points in XΣ. For sufficiently
general a such that Σ = Σa, we have Hilbm(XΣ) = Hm

S(a) , and the Chow
morphism is degree restriction composed with the usual Chow morphisms
Hilbm(XΣ) → SymmXΣ. The analog of Theorem 5.6 no longer holds, how-
ever.

The coherent component is the unique component of Hm
S which maps bi-

rationally on the open subset Symm(Tn/G) of the Chow quotient. A typical
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point in the coherent component is the ideal of the union of m closures in An
of G-cosets in Tn. One difference from the m = 1 case is that for m > 1, not
every ideal of a union of G-coset closures belongs to Hm

S . If the m cosets are
specially chosen, it can happen that the monomials of some degree a define
fewer than h(a) linearly independent functions on them, a possibility that
does not occur when m = 1.

6. Constructing other Hilbert schemes

The theory of graded k-modules with operators developed in Section 2
allows us to construct many interesting Hilbert schemes in addition to the
multigraded Hilbert schemes of Theorem 1.1. This final section lists some
noteworthy examples.

6.1. Partial multigraded Hilbert schemes. Take S an A-graded poly-
nomial ring, as before, T = SD for any subset D ⊂ A, and any function
h : D 7→ N. The operators are multiplications by monomials. Using Remark
2.1, we see that the “monomial ideals” in the system (T, F ) are just the re-
strictions to SD of monomial ideals in S. This given, it is easy to see that the
analog of Proposition 3.2 holds, and the proof of Theorem 1.1 goes through to
show that Hh

T = Hh
SD

is represented by a quasiprojective scheme, projective
if the grading is positive. (We actually used this result already in Section 5
when we implicitly assumed that the integral degrees Hilbert functor H1

Sint(A)

is represented by a scheme.) Whenever D ⊂ E ⊂ A, we have a degree re-
striction morphism Hh

SD
→ Hh

SE
. Such Hilbert schemes occur naturally in

parametrizing subschemes of a toric variety X . Here S is the homogeneous
coordinate ring [7] of X , the grading groupA is the Picard group ofX and D is
a suitable translate of the semigroup of ample divisors in A. This application
is currently being studied by Maclagan and Smith [21].

6.2. Quot schemes. Take T = Sr/M to be a finitely generated A-graded
module over the A-graded polynomial ring S. The scheme representing Hh

T is
a Quot scheme, used in algebraic geometry to parametrize vector bundles or
sheaves on a given scheme. The arguments in Section 3 extend easily to show
that the multigraded Quot scheme is always a quasiprojective scheme over k.
The special case A = 0, M = 0 is already interesting: here Hh

T parametrizes
artinian S-modules with r generators having length m = h(0). For n = 2,
this scheme is closely related to the space M(m, r) of Nakajima, which plays
the lead character in his work on Hilbert schemes of points on surfaces; see
[23, Chapter 2].

6.3. Universal enveloping algebras. Let g =
⊕

a ga be an A-graded
Lie algebra over k, free and finitely generated as a k-module. Take T =U(g) to
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be its universal enveloping algebra, or, more generally, if c ∈ g is a central ele-
ment of degree 0, take T to be the reduced enveloping algebra Uc(g) = U(g)/I,
where I is the two-sided ideal 〈c − 1〉. Then T is an A-graded associative
algebra. Taking our system of operators F to be generated by the left mul-
tiplications by elements of g, or the right multiplications, or both, we obtain
Hilbert functors Hh

T parametrizing homogeneous left, right or two-sided ideals
with Hilbert function h. Similarly, there are Quot functors Hh

T , when T is a
finitely generated module over U(g) or Uc(g).

All these functors are represented by quasiprojective schemes over k. To
see this, recall the arithmetic filtration of U = U(g) or Uc(g) given by αiU =∑
j≤i g

j . The associated graded algebra grα U = S is an A-graded commu-
tative polynomial ring in variables x1, . . . , xn forming a homogeneous k-basis
of g (or of g/kc). If I ⊆ U is a left, right or two-sided ideal, then grα I is
an ideal in S. When the ground ring is a field, we may define the initial
ideal in(I) = in(grα I). Fixing a Poincaré-Birkhoff-Witt basis in U , the basis
elements corresponding to standard monomials for in(I) form a basis of U/I.
Given these observations, it is easy to adapt the proof of Theorem 1.1 in Sec-
tion 3 to show that in this more general setting, Hh

T is still a closed subscheme
of the quasiprojective scheme Hh

TD
, where D is a finite supportive set for S

and h. It can also be shown, using Gröbner basis theory for U , that Hh
T is

isomorphic to Hh
TD

if D is very supportive for S and h.
An interesting example is the Weyl algebra W = k〈x1, . . . , xn, ∂1, . . . , ∂n〉,

which is the reduced enveloping algebra of a Heisenberg algebra g. Any A-
grading of k[x] extends to a grading of W with deg(∂i) = − deg(xi). Then we
have a Hilbert scheme Hh

W parametrizing homogeneous left ideals with Hilbert
function h in the Weyl algebra. It would be interesting to relate these Hilbert
schemes to the work of Berest and Wilson [4] in the case n = 1. We note
that, unlike in the case of the polynomial ring S = k[x], the finest possible
grading, A = Zn, deg(xi) = − deg(∂i) = ei, gives rise to highly non-trivial
Hilbert schemes Hh

W . Namely, Hh
W parametrizes all Frobenius ideals with

Hilbert function h. Frobenius ideals appear in Gröbner-based algorithms for
solving systems of linear partial differential equations [27, §2.3].

6.4. Quivers, posets and path algebras. Here is a nice example where
the set A of “degrees” is not a group. Fix a finite poset Q. We identify Q

with its Hasse diagram and we interpret it as an acyclic quiver. Let T = kQ

denote its path algebra. This is the free k-module spanned by all directed
paths in Q modulo the obvious concatenation relations. We take A to be
the set of all intervals [u, v] in the poset Q. Then the “graded component”
T[u,v] is the k-vector space with basis consisting of all chains from u to v in
the poset Q. Fixing a Hilbert function h : A → N, we get the scheme Hh

T
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which parametrizes all homogeneous quotients of the path algebra kQ modulo
a certain number of linearly independent relations for each interval [u, v]. The
case when h attains only the values 0 and 1 deserves special attention. In this
case the scheme Hh

T is binomial, and it parametrizes the Schurian algebras
in the sense of [14]. When h = 1 is the constant one function, then we get
a non-commutative analogue to the toric Hilbert scheme. The distinguished
point on this Hilbert scheme H1

T is the incidence algebra of the poset Q, and
it would be interesting to study its deformations from this point of view.
Question: What is the smallest poset Q for which the scheme H1

T has more
than one component?

6.5. Exterior Hilbert schemes. The use of the exterior algebra as a tool
for (computational) algebraic geometry has received considerable attention in
recent years; see e.g. [8]. Let T denote the exterior algebra in n variables
x1, . . . , xn over our base ring k, again with a grading by an abelian group A.
As in the preceding example, T is of finite rank over k, so the Hilbert scheme
Hh
T is a closed subscheme of a product of Grassmann schemes (as are the

associated Quot schemes). The torus fixed points on such Hilbert schemes are
precisely the simplicial complexes on {x1, . . . , xn}, and it would be interesting
to study the combinatorial notion of “shifting of simplicial complexes” in the
framework of exterior Hilbert schemes.
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