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Abstract
Scientists are increasingly using volunteer efforts of citizen scientists to classify im-
ages captured by motion-activated trail cameras. The rising popularity of citizen sci-
ence reflects its potential to engage the public in conservation science and accelerate 
processing of the large volume of images generated by trail cameras. While image 
classification accuracy by citizen scientists can vary across species, the influence of 
other factors on accuracy is poorly understood. Inaccuracy diminishes the value of 
citizen science derived data and prompts the need for specific best-practice pro-
tocols to decrease error. We compare the accuracy between three programs that 
use crowdsourced citizen scientists to process images online: Snapshot Serengeti, 
Wildwatch Kenya, and AmazonCam Tambopata. We hypothesized that habitat type 
and camera settings would influence accuracy. To evaluate these factors, each pho-
tograph was circulated to multiple volunteers. All volunteer classifications were ag-
gregated to a single best answer for each photograph using a plurality algorithm. 
Subsequently, a subset of these images underwent expert review and were compared 
to the citizen scientist results. Classification errors were categorized by the nature 
of the error (e.g., false species or false empty), and reason for the false classifica-
tion (e.g., misidentification). Our results show that Snapshot Serengeti had the high-
est accuracy (97.9%), followed by AmazonCam Tambopata (93.5%), then Wildwatch 
Kenya (83.4%). Error type was influenced by habitat, with false empty images more 
prevalent in open-grassy habitat (27%) compared to woodlands (10%). For medium to 
large animal surveys across all habitat types, our results suggest that to significantly 
improve accuracy in crowdsourced projects, researchers should use a trail camera set 

[Correction Statement: Correction added 
on 18 October 2020 after first online 
publication: The name of the donor Alan 
Peacock has been updated in this version] 

www.ecolevol.org
mailto:
https://orcid.org/0000-0001-7417-8168
https://orcid.org/0000-0001-8604-1812
https://orcid.org/0000-0001-5828-6476
https://orcid.org/0000-0001-5236-3477
https://orcid.org/0000-0002-0208-5488
http://creativecommons.org/licenses/by/4.0/
mailto:nicoleegna@gmail.com


     |  11955EGNA Et Al.

1  | INTRODUC TION

Citizen science, the practice of volunteer participation in scientific 
research, has long played a role in the collection and analysis of 
data, and has provided public access to scientific information and 
education. Evidence of early examples date back to the late nine-
teenth century where North American lighthouse keepers began 
collecting bird strike data and volunteer-based bird surveys began 
in Europe (Dickinson, Bonney, & Fitzpatrick, 2015). Beginning in 
1900, the National Audubon Society's annual Christmas Bird Count 
is still active over a century later, and recently documented that 
net bird populations in the United States have declined by three 
billion individuals over the past 50 years (Dickinson et al., 2015; 
Rosenberg et al., 2019). It is clear that science has benefitted from 
the use of volunteers as a cost-saving, and in some cases, more rapid 
and broad scale means of data collection and processing (Tulloch, 
Possingham, Joseph, Szabo, & Martin, 2013). Additionally, engaging 
citizen scientists increases scientific literacy among the public and 
spreads awareness about research (Jordan, Gray, Howe, Brooks, & 
Ehrenfeld, 2011; Mitchell et al., 2017).

With recent technological advancements, the availability and di-
versity of projects suitable for public participation have increased dra-
matically (Dickinson, Zuckerberg, & Bonter, 2010; Silvertown, 2009; 
Tulloch et al., 2013). Online citizen science research projects have 
been developed for a range of species and programs around the 
world, for example, observing fireflies (Firefly Watch), mapping 
herpetological observations (HerpMapper), and identifying road-
side wildlife (Wildlife Road Watch) (Swanson, Kosmala, Lintott, & 
Packer, 2016). Despite some skepticism about using data produced 
by nonexperts (Dickinson et al., 2010; Foster-Smith & Evans, 2003), 
numerous studies have shown that citizen science can produce ac-
curate results for ecological science (Kosmala, Wiggins, Swanson, & 
Simmons, 2016; Sauermann & Franzoni, 2015).

A common and increasing use for citizen science in ecological 
studies is for the placement and collection of motion-activated cam-
eras, as well as the extraction and analysis of the resulting wildlife 
images. Motion-activated cameras (hereafter “camera traps”) have 
revolutionized wildlife science, providing a robust and noninva-
sive mode for ecological data collection on a wide range of species 
(O'Connell, Nichols, & Karanth, 2010). Camera traps are being used 
to gather data on species’ population sizes and distributions, hab-
itat use, and behavior, thereby facilitating better understanding 
and protection of natural ecosystems (Agha et al., 2018; McShea, 

Forrester, Costello, He, & Kays, 2016; Moo, Froese, & Gray, 2018; 
O'Connor et al., 2019). Camera traps are also extremely useful for 
capturing rare or elusive species (Pilfold et al., 2019; Tobler, Carrillo-
Percastegui, Pitman, Mares, & Powell, 2008) and discovering new 
species all together (Rovero & Zimmermann, 2016). A disadvan-
tage of camera traps is the significant time and resource commit-
ment needed to support the review and classification of images, 
resulting in cases where data are left unanalyzed (Jones et al., 2018; 
Norouzzadeh et al., 2018). Tabak et al. (2018) estimated that a per-
son can process approximately 200 camera trap images per hour, a 
rate that slows with fatigue. In the case of Wildwatch Kenya, a grid 
of camera traps placed throughout two conservancies in Northern 
Kenya collected over 2 million images in the three years of deploy-
ment (J. Stacy-Dawes, personal comment, January 2020). At the rate 
of 200 images/hour, assuming a typical 40-hr work week, it would 
take a single researcher 4.8 years (1,250 days) to complete sorting 
and classifying this dataset of images.

A variety of approaches have been used to process large camera 
trap datasets including expert processing, trained volunteers, un-
trained volunteers, and automated processing using computer vision 
and machine learning (Table 1), each with benefits and drawbacks 
(Ellwood, Crimmins, & Miller-Rushing, 2017; Jordan et al., 2011; 
Kosmala et al., 2016; Mitchell et al., 2017; Norouzzadeh et al., 2018; 
Silvertown, 2009; Swanson et al., 2016; Tabak et al., 2018; Torney 
et al., 2019; Tulloch et al., 2013; Willi et al., 2019). Crowdsourcing, 
the process of outsourcing a task to a large number of people, gen-
erally through an online platform, has become a new approach to 
citizen science. Numerous publications suggest that multiple nonex-
pert volunteers can be as accurate as a single expert for tasks such as 
reviewing camera trap images, aerial survey images, and astronomic 
imagery (Spielman, 2014; Swanson et al., 2016; Torney et al., 2019). 
This “wisdom of crowds” allows outsourcing of analytical tasks to 
nonexpert volunteers by aggregating responses to produce accu-
rate, usable, and meaningful data products (Kosmala et al., 2016; 
Swanson et al., 2016; Tulloch et al., 2013).

While there are published examples documenting accurate 
analysis of outputs from citizen science camera trap projects 
(Swanson et al., 2016), there is a deficiency of evidence-based 
and standardized best-practice camera-trapping protocols that 
would maximize nonexpert image classification accuracy and 
species detectability. Given the prominence and scale of cam-
era trap usage, volume of image generation, and utility of using 
citizen science approaches, there is a clear and pressing need to 

up protocol with a burst of three consecutive photographs, a short field of view, and 
determine camera sensitivity settings based on in situ testing. Accuracy level com-
parisons such as this study can improve reliability of future citizen science projects, 
and subsequently encourage the increased use of such data.

K E Y W O R D S

amazon, crowdsource, image processing, kenya, serengeti, trail camera, volunteer
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standardize camera trap protocols in order to maximize citizen 
scientist accuracy. Meeting this need would increase the use and 
acceptance of citizen scientists as a reliable approach to moni-
toring biodiversity trends (Steenweg et al., 2016), among other 
applications.

This paper aims to provide insight on protocols to increase data 
quality and reliability from citizen scientist classification of camera 
trap images. Here, we analyze how habitat type and camera trap 
settings, including sensor sensitivity and images per burst, influ-
ence nonexpert accuracy. We compare the accuracy of three citizen 
science camera trap projects: Snapshot Serengeti (SS), Wildwatch 
Kenya (WWK), and Amazoncam Tambopata (ACT) in order to des-
ignate best-practice methods in camera trap protocols to improve 
citizen scientist accuracy.

2  | MATERIAL S AND METHODS

2.1 | The Zooniverse Interface

Zooniverse (www.zooni verse.org) is an online citizen science in-
terface that promotes volunteer involvement as a crowdsourcing 
method for data processing (Cox et al., 2015). Zooniverse users can 
range in age and expertise (Raddick et al., 2010). The prompts and 
tutorials set up by each project are meant to successfully guide even 
the most inexperienced users through the classification process. In 
the case of the three Zooniverse projects discussed here, volunteers 
classify species, number of individuals, whether there are young pre-
sent and (for SS and WWK only) the behavior exhibited for each pho-
tograph that appears on the screen. There are guides (Figure 1a–c) 

F I G U R E  1   a–c show Zooniverse 
interfaces of Snapshot Serengeti, 
Wildwatch Kenya, and AmazonCam 
Tambopata, respectively. Users classify 
images by clicking on the appropriate 
species from the list and selecting the 
appropriate physical attribute filters

http://www.zooniverse.org
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to help users identify the species. Volunteers can also classify im-
ages that do not contain any animals (i.e., an “empty” image). Each 
Zooniverse project can customize their retirement rules. For exam-
ple, after each image is circulated to multiple volunteers, the image 
will retire after meeting the criteria determined by the project, for 
example, the first five of classifications are “nothing here,” there are 
>five nonconsecutive classifications of “nothing here,” there are five 
matching classifications of a certain species, or there are 10 total 
classifications without any consensus on a species.

2.2 | Snapshot Serengeti

Snapshot Serengeti hosts images collected from a camera trap study 
conducted in the Serengeti National Park, Northern Tanzania (~1.5 
million hectares) in order to evaluate spatial and temporal interspe-
cies dynamics (Swanson et al., 2015). This area consists of mostly sa-
vanna grasslands and woodlands habitat. A total of 225 Scoutguard 
(SG565) camera traps were set out across a 1,125 km2 grid, offer-
ing systematic coverage of the entire study area. 1.2 million image 
sets were collected between June 2010 and May 2013 (Swanson 
et al., 2015). The cameras were set to capture either one or three 
(majority three) images per burst and were set to “low” sensitivity 
to minimize misfires due to vegetation (Swanson et al., 2015). On 
www.snaps hotse renge ti.org, each camera trap photograph was 
viewed and classified by 11–57 volunteers (mean = 26) before it was 
retired (Swanson et al., 2016). This large range resulted from the SS 
volunteers classifying images faster than they were being collected 
(Swanson et al., 2016). SS accrued over 28,000 volunteers, who 
completed the classification of all 1.2 million images collected as of 
May 2013; however, this project is ongoing.

2.3 | Wildwatch Kenya

Wildwatch Kenya houses images from a camera trap survey focused 
on reticulated giraffe (Giraffa reticulata – Fennessy et al., 2016) being 
conducted in two locations in Northern Kenya: Loisaba Conservancy 
(~23,000 ha) and Namunyak Community Conservancy (~405,000 ha). 
Loisaba Conservancy is characterized by a mix of savanna grasslands 
(Open Grasslands) and mixed acacia woodlands (Acacia reficiens-
Acacia mellifera Open/Sparse Woodlands) habitat (Unks, R. personal 
comment, 2016) whereas Namunyak Community Conservancy is 
composed of much more diverse vegetation classes ranging from 
various shrublands (Grewia spp, Boscia coriacea, A. reficiens), de-
ciduous bushland, and dense evergreen forest (Chafota, 1998). At 
Loisaba Conservancy, 80 cameras were set out across a 207 km2 
grid, offering systematic coverage of the entire study area. Within 
Namunyak Conservancy, 50 cameras were set out across a 207 km2 
grid, covering only 5% of the entire area, due to the challenging ter-
rain and limited mobility of the research team. All cameras deployed 
were Bushnell Trophy Cam HD cameras. Since February 2016, ap-
proximately 2 million images have been collected thus far. Cameras 

were set to collect one image per burst and were set to “auto” sen-
sitivity, meaning the camera adjusted the trigger signal based its 
current operating temperature (Bushnell, 2014). On www.wildw 
atchk enya.org, each photograph was circulated to 10–20 volunteers 
(mean = 10), depending on agreement between volunteers, before it 
was retired. Since 2017, WWK has accrued over 16,700 volunteers 
and classified over 1.2 million images as of January 2020.

2.4 | AmazonCam Tambopata

AmazonCam Tambopata classifies images from a camera trap survey 
being conducted within two protected areas in Peru: the Tambopata 
National Reserve (~275,000 ha) and the Bahuaja Sonene National 
Park (~1.1 million ha). The study's focus is to increase knowledge 
on Amazonian rainforest habitat and wildlife, with specific focus on 
quantifying jaguar populations in the area. 85 cameras have been 
set out across a 300 km2 grid, offering systematic coverage of 1.5% 
of the total area. Like WWK, all cameras deployed were Bushnell 
Trophy Cam HD cameras. Approximately 500,000 image sets were 
collected between July 2016 and December 2018. The cameras 
were set to capture three images per burst with “normal” sensitivity, 
an intermediate sensitivity level (Bushnell, 2014). On ACT, each cam-
era trap photograph was circulated to 10–30 volunteers (mean = 13) 
before it was retired, depending on agreement among volunteers. 
ACT has accrued over 11,000 volunteers, who completed the clas-
sification of 10,000 images as of November 2019.

2.5 | Data aggregation

A simple plurality algorithm was implemented on SS, WWK, and 
ACT, converting the multiple volunteer answers into one aggre-
gated answer. This aggregated answer reports the species that had 
a majority of the votes for each photograph. For example, if a pho-
tograph had 15 total classifications from the 15 volunteers, where 
three classification were dik dik (Madoqua kirkii), five classifications 
were gazelle (Gazella thomsonii or G. granti), and seven were impala 
(Aepyceros melampus), the plurality algorithm would report the pho-
tograph to contain an impala (Swanson et al., 2016). This aggregated 
answer is hereafter referred to as the nonexpert answer (NEA).

2.6 | Part I: Accuracy assessment

Photographs from each of the three projects were classified by ex-
perts into expert-verified datasets, “Expert Answers” (EA). For each 
project, the NEA was compared to EA. The proportion of images 
where the NEA and the EA agreed is reported as the overall ac-
curacy. For WWK and ACT, when NEA and the EA disagreed, the 
photograph was labeled as “false species” if the NEA falsely identi-
fied the species present, or “false empty” if the NEA falsely reported 
that there was no species in the image. The rates of overall accuracy 

http://www.snapshotserengeti.org
http://www.wildwatchkenya.org
http://www.wildwatchkenya.org
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across the three projects were compared using pairwise comparison 
of proportions. The rates of false empties and false species between 
WWK and ACT were also compared using a two proportion Z-test. 
Images where the NEA reported more than one species present 
were excluded from the analysis.

For SS, a panel of five experts reviewed a randomly sampled set 
of 3,829 images to determine overall accuracy (Swanson et al., 2016). 
Each image was classified by one expert and was subsequently re-
viewed by a second expert if the image was flagged as difficult. The 
experts either had extensive formal training, passed qualification 
examinations, or had years of experience identifying African wild-
life—see Swanson et al. (2016). For this set, false species and false 
empty levels were not analyzed because the study aimed to quantify 
overall accuracy and species level accuracy based on false positives 
and false negatives. It also should be noted that SS accuracy levels 
reported in this manuscript are all based on results obtained directly 
from Swanson et al. (2016).

For WWK, a panel of three experts reviewed a set of 127,669 
images. We removed 84 images that the expert determined to be un-
identifiable and limited analysis to the 24,039 images that contained 
only one type of species. Each photograph was classified by at least 
one expert with training and/or significant experience identifying 
African wildlife.

In the case of ACT, a panel of three experts reviewed a random 
subset of 4,040 images that contained only one type of species. 
Images of arboreal species were removed since the other datasets 
did not include arboreal species, leaving 2,598 images of terrestrial 
species for analysis. The experts either had significant experience 
identifying wildlife in the Peruvian Amazon or underwent extensive 
training.

2.7 | Part II: Wildwatch Kenya extended 
classification set analysis

In order to look further into WWK’s lower rate of overall accu-
racy as compared to SS and ACT, and abundance of false emp-
ties compared to ACT, a separate analysis with a subset of 21,530 
WWK images was conducted. This subset represented the images 
that had at least one citizen scientist classification of either a re-
ticulated giraffe, a zebra (Equus quagga or E. grevvi), an elephant 
(Loxodonta africana), a gazelle, an impala, or a dik dik, and also 
had only one type of species present. These wildlife species were 
chosen because they had the highest frequency of appearance in 
WWK’s images, thus eliminating the possibility of inaccuracy due 
to rareness of the species as reported in Swanson et al. (2016). 
This methodology allowed scrutiny of images that potentially con-
tain wildlife but were listed as empty by the aggregated NEA be-
cause not enough volunteers recognized that there was an animal 
in the photograph. For example, in an image containing a giraffe 
traveling in the far background, there was one citizen science clas-
sification of “giraffe,” but nine classifications of “empty.” In this 
case, the NEA would classify this photograph as empty because 

most citizen scientists did not notice the giraffe in the background. 
Utilizing this methodology, we hoped to recover as many wildlife 
photographs as possible that would have otherwise been weeded 
out by the plurality algorithm in order to quantify these inci-
dences. This subset of photographs will hereafter be referred to as 
the Extended Classification Set.

An expert reviewed the images from the Extended Classification 
Set and determined the images that actually contained either a gi-
raffe, a zebra, an elephant, a gazelle, an impala, or a dik dik. The 
aggregated NEA of those images were then compared to the EA 
to determine if the NEA agreed or disagreed with the EA. Similar 
to the above analysis, the proportion of photographs that agreed 
were represented as the overall accuracy rate for each of the six 
listed species, and photographs that disagreed were broken up 
by false empty and false species. The rate of overall accuracy 
was compared between each of the six species in the Extended 
Classification set using pairwise comparison of proportions. The 
same comparison and statistical analysis were performed for the 
rate of false species images and for the rate of false empty images 
between the six species.

2.8 | Part III: Reason for false image classification

For images where the NEA and EA disagreed within ACT and the 
WWK Extended Classification Set, an expert conducted an addi-
tional review to determine the most likely reason for disagreement: 
distance (species was far in the background), night time (image was 
too dark to determine species), partial view (only a portion of the 
species was captured in the frame), close up (species was too close 
to the camera), hidden (vegetation or other obstacle impeding view 
of the species), or misidentification (species was confused with an-
other species).

3  | RESULTS

3.1 | Part I: Overall accuracy assessment

When comparing the overall accuracy between WWK, SS, and ACT 
(images where the NEA and EA agreed/ total number of images), 
the NEA for WWK was the least accurate (83.4%; n = 20,050), 
followed by ACT (93.5%; n = 2,430), then SS (97.9%; n = 3,749) 
(Swanson et al., 2016). The proportions of false species images for 
WWK and ACT are 2% (n = 403) and 4% (n = 116), respectively. 
The proportions of false empties were WWK 15% (n = 3,586) 
and ACT 2% (n = 52). There was significant difference in overall 
accuracy between WWK, SS, and ACT (pairwise comparison of 
proportions; p < .0002; Ford, 2016; R Core Team, 2018). There 
was also significant difference in false empties and false species 
rates between WWK and ACT (two proportion Z-test; p < .0002; 
p < .0002). WWK’s false empty images also constituted nearly 
90% of its total error.



11960  |     EGNA Et Al.

3.2 | Part II: Wildwatch Kenya Extended 
Classification Set analysis

The expert reviewed the Extended Classification Set and deter-
mined that 12,197 of the 21,530 images actually contained images 
of either a giraffe, a zebra, an elephant, a gazelle, an impala, or a 
dik dik. The overall accuracy of these 12,197 images was 75.7%, 
representing a 7.7% accuracy decrease from Part I WWK analysis. 
However, the rates of false species error are very low for each spe-
cies (≤6%; Figure 2). This suggests that when the citizen scientists 
recognized that there was an animal in the image, they frequently 
classified the species correctly. Using pairwise comparison of pro-
portions, we determined that the proportion of false empty images 
was significantly higher than the proportion of false species images 
(p < .0002) for every species analyzed, meaning there were many 
images where the NEA reported a blank image, but the expert re-
ported a species. For the photographs that the expert determined to 
have gazelle, the citizen scientists labeled over half (55%) as empty. 
To examine this discrepancy further, WWK’s two different sampling 
sites were analyzed separately (Figure 3). Loisaba had a significantly 
higher proportion of false empties (27%) compared with Namunyak 
(9.6%) (p < .0002).

3.3 | Part III: Reason for false image classification

The false species and false empty images were reviewed by the ex-
pert post hoc to determine the most likely reason that the photo-
graph was incorrectly classified. In Loisaba, nearly half of the false 
species (45%) and false empty (42%) images were because the animal 
was far off in the distance (Figure 4). For Namunyak, a majority of 
the false empty (61%), and the most frequent reason for false species 
(38%), were due to a partial view of the animal, mostly from the indi-
vidual entering or exiting the frame (Figure 4). In comparison, none 
of the error within ACT was due to distance, as the depth and width 
of view were limited by the dense vegetation.

4  | DISCUSSION

Of the three studies, WWK had the lowest accuracy levels, with the 
error mainly due to the high number of false empty images (15%). 
This suggests that WWK volunteers were simply not seeing animals 
in the frame, and falsely classifying the photograph to be empty. 
Comparatively, ACT had a much lower rate of false empties (2%). If 
WWK were able to increase species detectability, and thus reduce 
the number of false empty images to this same rate of 2%, WWK’s 
overall accuracy would increase to 96.3%. Comparing the differ-
ences between these projects (Table 2), we suggest that WWK error, 
and the resulting discrepancy in accuracy, can be attributed to three 
factors: the number of images taken per trigger, the camera sensitiv-
ity, and the habitat types.

Overall accuracy was increased when cameras were set to take 
three images per trigger rather than one single image. Small species 
(e.g., small rodents) or species that appear small in an image due to 
the distance from the camera are most easily detected by observers 
based on pixels changing in consecutive images of the same scene. 
In SS and ACT, the three consecutive photographs per trigger in-
stance were presented in Zooniverse as a slideshow, showing the 
volunteers small changes in the frames from one photograph to the 
next while for WWK a single image was presented. Because the im-
ages on Zooniverse are presented to the volunteers in random order, 
change-detection from one image to the next was not possible. In 
contrast, the experts reviewing the WWK photographs viewed im-
ages in order of progression and could detect the animals due to 
changes in pixels from one image to the next.

We further predict that sequences of three photographs will re-
duce misidentifications due to “partial view” and “hidden” because 
the animal will likely come into full view within the three-photograph 
sequence, rather than a single frame only showing a small portion 
of the body (Rovero, Zimmermann, Berzi, & Meek, 2013). Because 
“distance,” “hidden,” and “partial view” were the most frequently 
cited reason for false empty error within WWK, using three photo-
graphs would have significantly increased WWK’s overall accuracy. 
Although more than three images per trigger may further increase 
accuracy, more images also add time for both citizen scientists and 
experts when classifying images. Thus, we suggest that the use of 

F I G U R E  2   Comparison of the overall 
NEA false empty and false species images 
within WWK Extended Classification Set
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three consecutive photographs per trigger instance increases accu-
racy of citizen science classifications of wildlife images.

Further, because there was not an “I don't know” option within 
WWK, it is possible that some false empties from “partial view” re-
sulted from volunteers opting for an “empty” classification rather 
than taking a guess of what the species is (Swanson et al., 2016). 
Including an “I don't know” option could decrease the number of 
false empties because experts would be able to go through the 
images marked as unsure and determine the correct classification, 
rather than having these images marked as “empty” by the plurality 
algorithm. However, it should be noted that having an “I don't know” 
option may also discourage citizen scientists from taking their best 
guess (Swanson et al., 2015). It also should be noted that according 
to findings from Swanson et al. (2015), image classification accu-
racy increases with increasing citizen science classification up to 10 
classifications, then levels off. Thus, because the images in all three 
projects had at least 10 classifications, the differing number of clas-
sifications on each photograph between the three projects should 
not have impacted the rate accuracy.

The WWK images from Loisaba Conservancy had a higher rate 
of false empties compared with Namunyak Conservancy. The cam-
era trap methodology was the same at both sites, apart from the 
habitat type (Table 3). Thus, we can attribute this increased rate of 
inaccuracy to the open, grassy habitat in Loisaba (Figures 3 and 4). 
In open habitat, images triggered by heat or vegetation capture an-
imals in the background of the frame at distances that would not 
otherwise trigger the camera (Koivuniemi, Auttila, Niemi, Levänen, 
& Kunnasranta, 2016; Rovero et al., 2013; Wearn & Glover-
Kapfer, 2019). WWK volunteers often missed the classification of 
such animals in the distance because there was only one photograph 
per image set, rather than three, causing an increased rate of false 

empty classification due to “distance.” This rate of misfires and the 
subsequent rate of false empty images were not seen within ACT 
rainforest habitat, where dense vegetation blocks wind currents and 
keeps the foliage still. ACT cameras only misfired 17.8% of the time, 
while WWK camera misfired 81% of the time, and SS cameras mis-
firing at a lesser rate of 74% (Swanson et al., 2015). We recognize 
that how a species appears in the field of view cannot be controlled 
in a natural setting. However, given these findings, we recom-
mend that 3 consecutive images be used in order to detect small 
changes in the background of images, thus reducing the likelihood 
of misclassification.

Camera trap sensitivity settings also affect accuracy rates. When 
camera sensitivity is set to “high,” camera misfiring due to moving 
vegetation or heat is increased. In “low” sensitivity, smaller or rapidly 
moving animals may not trigger the camera. Standard camera-trap-
ping protocols recommend a “high” sensitivity setting for warm 
climates (Meek, Fleming, & Ballard, 2012; Rovero & Zimmermann, 
2016). However, based on the WWK results, the high sensitivity set-
ting caused the camera to misfire frequently. Of the 127,669 WWK 
images reviewed by the expert, only 19% (n = 24,039) contained 
species, and 81% (n = 103,630) of the photographs were assumed to 
be misfires. As such, we recommend that the cameras be tested on a 
number of different sensitivity settings before selecting a final set-
ting for the study site, with consideration of environmental context, 
the species of interest, and the method of image classification. In 
this study, we were not able to quantify if a lower sensitivity setting 
would have missed species images for the three projects (Table 3).

A recent focus of camera trap literature has been on automatic 
classification through machine learning. Deep convolutional neu-
ral networks are trained to automatically and accurately identify, 
count, and describe species in camera trap images (Norouzzadeh 

F I G U R E  3   Comparison of the proportions of overall accuracy (a), false empty images (b) and false species images (c) between WWK 
Loisaba and WWK Namunyak sites for each of the six species analyzed to differentiate the effect of different habitat types. Namunyak's 
values for zebra removed due to the low sample size
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et al., 2018). However, a drawback of automatic classification is the 
need for a large set of preclassified images for baseline training data 
(Willi et al., 2019). Crowdsourced citizen science can quickly pro-
duce the training data for deep learning models, making its use still 
relevant. In addition, combining automation and crowdsourcing may 
improve automatic classification accuracy, and significantly decrease 
time commitment of volunteers (Willi et al., 2019). Automated classi-
fication integration could be a next development for crowdsourcing 
platforms like Zooniverse, where pretrained models are added into 
data-processing pipelines and the resulting predictions are combined 
with citizen scientist classification predictions. For example, WWK 

has already begun this cross-method analysis by utilizing automated 
classification models from Willi et al. (2019) to preprocess out empty 
images with confidence >0.80, thus only uploading images for citi-
zen science classification with high confidence of containing an an-
imal, or a low confidence that it is empty. This significantly reduces 
the time commitment and fatigue for volunteers and increases vol-
unteer engagement by removing empty images.

Overall, WWK consensus answers had high species classification 
accuracy. However, there was a discrepancy in the overall accuracy 
between WWK and both SS and ACT because WWK’s aggregated 
NEA often reported the photograph as empty, when in fact it 

F I G U R E  4   “False empty” proportion of WWK Extended Classification Set images for WWK Loisaba and WWK Namunyak sites. These 
“false empty” categories include: close up (species was too close to the camera), distance (species was far in the background of the image), 
hidden (vegetation or other obstacle impeding view of the species), misidentification (species was confused with another species), night 
(image was too dark to determine species), or partial view (only a portion of the species was captured in the frame)

TA B L E  2   Camera trap sensitivity setting, number of images that were captured per trigger event, camera trap sensitivity setting, and 
habitat types of the three citizen science projects

Project Number of images per trigger Camera sensitivity Habitat type

Snapshot Serengeti 1–3 (majority 3) Low Savanna Grasslands and 
Savanna Woodlands

Wildwatch Kenya 1 Auto Loisaba: Savanna Grasslands
Namunyak: Savanna Woodlands

AmazonCam Tambopata 3 Medium Rainforest
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contained a species. Thus, WWK’s aggregated NEA currently under-
estimates the number of species images captured. The evidence pre-
sented here shows that WWK’s error is due to single photograph per 
trigger instance versus the three photographs per trigger instance, 
camera misfires caused by Loisaba's open, grassy habitat, which cap-
tured animals too far in the distance for citizen scientists to see, and 
to WWK’s cameras set on auto sensitivity, which often defaulted to 
“high” due to Northern Kenya's warm climate. Our analyses provide 
a foundation from which to develop standardized, evidence-based 
best practices for camera trap-based studies that engage citizen 
scientists. Implementation of our findings should result in increases 
in species detectability and image classification accuracy, which are 
both critical for meeting research goals. Optimizing citizen science 
accuracy and validating the resulting data will increase the usabil-
ity of nonexpert data for applied science. Once validated, tapping 
into volunteer participation can exponentially increase the speed 
at which scientific data are collected and processed at little to no 
cost, and have the potential to revolutionize the way we think about 
science.
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