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It turns out that an eerie type of chaos can lurk just behind a facade of
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PREFACE

The need to identify and measure causal influences is ubiquitous across academic dis-

ciplines. This ubiquity results in the field of causality being one of great breadth in both the

questions being asked by epidemiologists, philosophers, economists, climate scientists, physicists

etc., and the types of solutions that these researchers propose with help from statisticians, machine

learners, and information theorists. As a result, the field of causality has many corners. These

corners can differ not only on the best way to measure and estimate causal influences, but on the

best way to define causality. To make matters more complicated, these corners can disagree on

whether or not causality exists. Even if one assumes causality’s existence as a starting point, it is

easy to end up in the middle of a debate over the right way to characterize its existence.

My introduction to causality was through the lens of Granger causality. In 1969, the

economist Clive Granger proposed the following definition: “We say that Yt is causing Xt if we

are better able to predict Xt using all available information than if the information apart from Yt

had been used.” Not only is this definition rather intuitive, it helped win Granger the Nobel Prize

in Economics in 2003. Granger causality remains a highly popular area of research and is now

applied frequently in neuroscience and climate science. The search term “Granger Causality”

yields 6,850 results on Google Scholar between January 1, 2019 and August 1, 2019. As such, a

researcher can reside comfortably within the confines of Granger causality, as I did for some time.

Enter Judea Pearl, author of “Causality” [92], pioneer of the so-called Causal Revolution,

and Turing Award winner. Pearl’s viewpoint cannot be summarized as concisely as Granger’s, but

a primary focus of Pearl’s work is to provide the mathematical tools for working with interventions

in causality. The value of interventions is best understood through an example. We know that a

barometer reading will correlate with the air pressure. This correlation tells us that knowing the

air pressure will convey some information about the value displayed by the barometer. Given

that correlation is symmetric, it also tells us that knowing the barometer reading provides us with

information about the true air pressure. When performing interventions, however, this symmetry

xii



is broken. To see this, imagine forcing a specific air pressure to occur – regardless of circumstance

(for example, the altitude at which this experiment is being conducted); this forcing of air pressure

will affect the barometer reading. On the other hand, if we directly manipulated the barometer,

forcing it to display a particular air pressure, this would have no effect on the true air pressure.

One of Pearl’s major contributions is the do-calculus, which is part of a larger mathematical

formalism defining the nature of interventions using graphical models.

The idea of interventions reflects intuition, and while it is central to Pearl’s perspective, it

is absent from Granger’s. It thus comes as no surprise when Pearl presents his take on Granger

causality (in no uncertain terms) in the first chapter of his recent book “The Book of Why: The

New Science of Cause and Effect” [94]:

[I]n their effort to mathematize the concept of causation – itself a laudable idea –
philosophers were too quick to commit to the only uncertainty-handling language
they knew, the language of probability. They have for the most part gotten over this
blunder, but unfortunately similar ideas are being pursued in econometrics even now,
under names like “Granger causality” and “vector autocorrelation.”

In other words, Pearl believes that the study of cause and effect requires specialized mathematical

tools, such as the do-calculus. His book contains a very compelling argument in support of this

belief, and those interested in causality are encouraged to read it.

As a causality researcher, it can be challenging to reconcile the difference in these

perspectives. On one hand, Pearl’s work clearly elucidates the limitations of Granger’s perspective;

on the other hand, Granger’s concise definition gives rise to a very straightforward, user-friendly

framework that yields interpretable results. As such, it is my belief that there is value to the vast

body of work built upon Granger’s ideas and that it is unfair to dismiss Granger causality entirely

on the grounds of its inability to address all questions of a causal nature. At the same time, it

is irresponsible to present Granger causality in a vacuum without making clear the aspects of

causality that it fails to identify.

The brief summary above does not come close to completely characterizing Pearl’s

perspective, the shortcomings of Granger causality, or the breadth of ideas within the causality
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community. Nevertheless, I feel that it is important to acknowledge these points in order to

ensure that the contributions that follow are not taken out of context. This dissertation, titled

“Information Theoretic Measures and Estimators of Specific Causal Influences,” is not an attempt

to provide universally applicable measures and estimators of causal influences, nor is it an attempt

to say that information theory provides the “right” tools for studying causality. Rather, the goal

of this dissertation is to present a series of contributions along my path from Granger to Pearl.

In doing so, I will build upon preexisting notions of causality within the information theory

community in order to (i) maximize their utility should they be deemed appropriate for a given

problem and (ii) attempt to provide some context for how these notions coincide with the broader

causality landscape.
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ABSTRACT OF THE DISSERTATION

Information Theoretic Measures and Estimators of Specific Causal Influences

by

Gabriel Schamberg

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2019

Professor Todd P. Coleman, Chair
Professor Young-Han Kim, Co-Chair

The need to measure causal influences between random variables or processes in complex

networks arises throughout academic disciplines. In four parts, we here develop techniques for

measuring and estimating causal influences using tools from information theory, with the explicit

goal of providing context for how information theoretic perspectives on causal influence fit within

the vast and interdisciplinary body of work studying causality. Throughout the dissertation, we

demonstrate the utility of the proposed methods with applications to physiologic, economic, and

climatological datasets.

Beginning with a focus on time series, we present a modularized approach to finding the

xviii



maximum a posteriori estimate of a latent time series that obeys a dynamic stochastic model and

is observed through noisy measurements. We specifically consider modern signal processing

problems with non-Markov signal dynamics (e.g., group sparsity) and/or non-Gaussian measure-

ment models (e.g., point process observation models used in neuroscience). Importantly, this

framework can be leveraged in the estimation of the latent parameters specifying the probability

distribution of a time series, which is a fundamental step in the estimation of causal influences

between time series.

Second, we study the conditions under which directed information, a popular information

theoretic notion of causal influence between time series, can be estimated without bias. While

the assumptions made by estimators of directed information are often presented explicitly, a

characterization of when we can expect these assumptions to hold is lacking. Using the concept

of d-separation from Bayesian networks, we present sufficient and almost everywhere necessary

conditions for which proposed estimators can be implemented without bias. We further introduce

a notion of partial directed information, which can be used to bound the bias under a milder set of

assumptions.

Third, we present a sample path dependent measure of causal influence between time

series. The proposed measure is a random sequence, a realization of which enables identification

of specific patterns that give rise to high levels of causal influence. We demonstrate how sequential

prediction theory may be leveraged to estimate the proposed causal measure and introduce a

notion of regret for assessing the performance of such estimators which we subsequently bound.

Finally, we extend our focus to general causal graphs and show that information theoretic

measures of causal influence are fundamentally different from mainstream (e.g. statistical)

notions in that they (1) compare distributions over the effect rather than values of the effect and

(2) are defined with respect to random variables representing a cause rather than specific values

of a cause. We leverage perspectives from the statistical causality literature to present a novel

information theoretic framework for measuring direct, indirect, and total causal effects in natural

xix



complex networks. In addition to endowing information theoretic approaches with an enhanced

“resolution,” the proposed framework uniquely elucidates the relationship between the information

theoretic and statistical perspectives on causality.
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Chapter 1

Introduction

We consider the problem of understanding the causal influences between elements of

a network of interacting processes or variables. We view this problem as having three distinct

aspects. First, measurement involves defining a quantitative measure of causal influence that

satisfies desirable properties and behaves well in examples where the joint distributions of the

interacting elements are fully known. Given that there is no single measure that will work in

every problem setting, we present multiple measures that employ a variety of perspectives and

offer different benefits in terms of ease of estimation and interpretability. Second, estimation

addresses the practical difficulties associated with learning the value of a causal measure when the

true distributions are unknown. This aspect involves developing estimation algorithms, proving

performance guarantees, and evaluating the efficacy of estimators through simulations. Third, the

application of the estimation techniques to data is used to demonstrate the value of the newly

defined measures in addressing real world questions.

Consider Reichenbach’s common cause principle [102], which states that if X and Y

are correlated, then either (i) X causes Y , (ii) Y causes X , or (iii) X and Y share a common

cause. The field of structure identification (to use the language of Peters et al. [97]) seeks to

identify which of these three explanations correctly characterizes the correlation between X
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and Y . It is important to note that the aspects of causality considered in this dissertation do

not include structure identification. We avoid the need to identify the underlying structure in

one of two ways, depending on the problem setting. In the context of measuring influences

between time series (Chapters 3 and 4), we make the assumption that a cause will precede its

effect. Thus, when discussing the causal effects between two processes X and Y , we are utilizing

the passage of time to determine the direction of an arrow and a time-lagged correlation1 to

determine the presence/absence of an arrow. This assumption does not alone resolve issues

around distinguishing a causal effect from a shared common cause – this requires much stricter

assumptions, which are discussed in detail. In the context of measuring influences between

random variables, we assume that a graphical representation of the causal structure is provided

in the form of a directed acyclic graph. While this may at first seem like a strong assumption, it

may be reasonable to obtain these graphs through domain expertise or common sense in certain

settings. For example, in the climatological example considered in Chapter 5, climate scientists

provide the knowledge that that the phase of the El Niño-Southern Oscillation may influence

temperatures, but not the other way around. Similarly, common sense tells us that one may expect

the time of year to influence temperatures, but not the other way around.

As we explore different problem settings, we employ different notions of causal influence.

Broadly speaking, this dissertation can be seen as beginning with a perspective akin to Clive

Granger (see [45, 111]) and transitioning to a perspective akin to Judea Pearl (see [92, 94, 91]).

Along this path, we consistently utilize and build upon the relevant tools from information theory,

such as directed information [79, 80, 82], transfer entropy [110], causal strength [54], information

flow [10], and local information measures [74]. With the introduction of these different aspects

of the literature, it is important to be aware of the limitations of the proposed measures and

estimators, to understand the assumptions that are made, and to take seriously the implications of

the assumptions not holding. In particular, we note that there are some very compelling caveats

1We here use “correlation” to mean a symmetric measure of dependence such as the mutual information, for
example.
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to Granger’s perspective on causal influence that are discussed briefly in the Preface and in detail

in the following chapters.

The substance of this dissertation begins with Chapter 2. While this chapter does not

focus directly on the topic of causality, it introduces a method that can be leveraged in the

estimation of causal influences between time series. Specifically, we present a compartmentalized

approach to finding the maximum a-posteriori (MAP) estimate of a latent time series that obeys a

dynamic stochastic model and is observed through noisy measurements. We focus primarily on

modern signal processing problems with non-Markov signal dynamics (e.g. group sparsity) and/or

non-Gaussian measurement models (e.g. point process observation models used in neuroscience).

Through the use of auxiliary variables in the MAP estimation problem, we show that a consensus

formulation of the alternating direction method of multipliers (ADMM) [16] enables iteratively

computing separate estimates based on the likelihood and prior and subsequently “averaging”

them in an appropriate sense using a Kalman smoother. We further show that this estimation

procedure converges to the true MAP estimate under mild log-concavity assumptions. As such,

this approach can be applied to a broad class of problem settings and only requires modular

adjustments when interchanging various aspects of the statistical model. Within the context of

causality, we note that all measures of causal influence discussed in this dissertation require

knowledge of the underlying joint distribution of the data. Thus, when the distribution is unknown,

it must be estimated. In scenarios where the parameters specifying such a joint distribution are

known to vary with time, we can treat those parameters as a latent time series and use the proposed

framework to obtain an estimate. This chapter is presented as a reprint of [109], where, in addition

to developing the methodology, we present two example applications involving (i) group-sparsity

priors, within the context of electrophysiologic specrotemporal estimation, and (ii) non-Gaussian

measurement models, within the context of dynamic analyses of learning with neural spiking and

behavioral observations.

In Chapter 3, we shift focus to the estimation of directed information (DI), which can
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be viewed as a generalization of Granger’s definition of causality. The primary focus of this

chapter is the characterization of scenarios for which the assumptions that are typically required

by estimators of DI can be expected to hold. This area of study was motivated by the observation

that, in general, subsets of finite order autoregressive processes are themselves autoregressive

processes of infinite order. This observation has been discussed at length in the Granger causality

community, as it has serious implications for the estimation of Granger causality. Given the

relationship between Granger causality and DI, it comes as no surprise that estimators of DI

make an analogous set of assumptions with regard to the Markovicity of collections of processes

and subsets of processes. This chapter marks the beginning of a transition toward Pearl’s school

of thought in that we approach the problem from the perspective of Bayesian networks. While

we utilize Bayesian networks strictly as a framework for identifying conditional independence

relationships via the d-separation criterion (i.e. without utilizing any causal language), Bayesian

networks are a foundational element of Pearl’s graphical modeling approach to causality. Using

this Bayesian network perspective, we demonstrate sufficient conditions for which collections

of processes will satisfy the desired Markovicity assumption. We further demonstrate that these

conditions are in fact necessary with the exception of a zero measure set of parameters defining

the processes. Given this strictness of the identified condition, we propose alternative measures

to the DI that can be estimated under a milder set of assumptions and can be used to bound the

true DI from above and below, with both the upper and lower bounds approach the true DI as the

model order grows to infinity. Using these augmented notions of DI, we run simulations in order

to assess the extent to which estimating DI in the absence of the necessary assumptions results in

biases. This chapter is composed largely of contributions initially presented in [107].

While Chapter 3 introduces augmented notions of DI in order to relax the assumptions

necessary for estimating the DI, Chapter 4 introduces a measure aimed at increasing interpretabil-

ity. Specifically, we begin by making the observation that Granger causality, directed information,

transfer entropy, etc. are all process level measures in that they provide a single value for a
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given joint distribution defining the processes in question. We propose that, even in a setting

where two processes are jointly stationary, it is reasonable to expect that certain values of a

process can give rise to larger causal influences than others. As such, we define a measure that

is itself a random sequence whose expected sum is the DI. Through a series of examples, we

illustrate how our sample path dependent measure of causal influence between time series can

uncover specific patterns that give rise to large causal influence. We further leverage results

from sequential prediction theory in order to develop estimators of the proposed measure and to

prove finite sample bounds on the performance of these estimators. Through application to stock

market data, we demonstrate that there is reason to believe that the behaviors exhibited in the

examples are not limited to thought experiments. This chapter represents a step toward Pearl’s

perspective in the sense that it defines a measure of influence for every possible value of a cause,

irrespective of the probability with which those values occurs. This property is reminiscent of

the notion of intervention, which is based around forcing a cause to take a particular value as

a means of bypassing the distribution the cause would normally obey. Nevertheless, Chapter 4

lacks a full treatment of the nature of interventions in the sample path dependent measure, and

thus remains more closely aligned with Granger’s perspective. The ideas in this chapter were

originally presented in [107] and later refined in [106].

This dissertation concludes with Chapter 5, where we extend the perspective described

in Chapter 4 to general directed acyclic graphs in the development of an information theoretic

framework for measuring total, direct, and indirect causal effects. Whereas the previous chapter

sought to define a version of DI that was dependent on a sample path, Chapter 5 uses a value

dependent notion of mutual information as a starting point. Value dependent versions of mutual

information have appeared in a variety of settings throughout the literature, including experimental

design [71, 26] and neural stimulus response [29]. We specifically utilize the so-called specific

mutual information I(x;Y ) as a foundation for measuring the influence of a specific x on a

random variable Y . Given that this is, to our knowledge, the first application of specific mutual
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information in the context of causality, we refer to the resulting measures as measures of specific

causal influence. When moving beyond simple two-node DAGs, we define our measures of

specific causal influence with respect to an intervention on the variable representing a cause.

After defining multiple notions of specific causal influence, we present a collection of theoretical

results relating the proposed measures to existing information theoretic measures such as causal

strength and information flow, as well as a set of conditions under which the proposed measures

can be estimated from observational data. We further provide three examples that illustrate

notions of causal influence that are uniquely described by our specific causal measures. Finally,

the chapter concludes with an in-depth case study that applies the proposed framework to a

large climatological dataset. Chapter 5 marks the end of the transition from Granger to Pearl.

Nevertheless, information theoretic measures of causal influence possess some very fundamental

differences from their mainstream statistical counterparts. As such, a central goal of this final

chapter is to elucidate the nature of these differences with the hopes of communicating the

strengths and weaknesses of information theory in the context of causality.
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Chapter 2

A Modularized Framework for

Non-Markov Time Series Estimation

2.1 Introduction

We consider the problem of estimating a latent time series based on an underlying dynamic

model and noisy measurements. Such a problem appears in a variety settings, including (but

certainly not limited to) tracking [7], medical imaging [95], and video denoising [31]. Given the

broad applicability of this problem formulation, the underlying models that are used inevitably

become increasingly complex.

Certain scenarios are well studied, such as the case of a linear system with Gaussian noise,

where it is well known that the maximum a-posteriori (MAP) point estimate can be obtained

using a Kalman smoother (KS) [58]. When introducing non-linearities, alternatives include the

extended Kalman filter (EKF), which relies on linear approximations, as well as the unscented

Kalman filter (UKF) [123] and Particle Filter (PF) [27], which use sample based techniques.

While the EKF and UKF are well suited for a broad class of problems, they are not well suited

for models with non-Gaussian noise. This is problematic for the increasingly popular problem
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of incorporating sparsity inducing models to latent signal estimation. These problems include

exploiting sparsity in the underlying signal [121, 5, 129, 21] in addition to exploiting sparsity in

the signal dynamics [11, 20, 6]. While some of these methods utilize `1-regularization to enforce

sparsity at a local level and enable causal prediction, there is often knowledge of global structures,

such as those favored by the group lasso [47], that dictate a need for batch-wise estimation. In

such cases, the desired estimation problem deviates from the classical state estimation problem in

that the underlying signal is no longer Markov. In such a scenario, there is no clear extension

to the EKF, UKF, or PF that may be utilized to address the non-Markovicity of the underlying

signal.

The broad scope of the problem in question dictates a need for a systematic approach to

latent time series estimation for a variety of measurement models and system models. Furthermore,

a solution framework that can compartmentalize these two models facilitates interchangeability

and allows new regularization techniques to be easily incorporated to an estimation procedure.

We develop a framework using the alternating direction method of multipliers (ADMM)

[16] that, under mild (i.e. log-concavity) assumptions, yields the MAP estimate for problems

with non-Markov latent variables and/or nonlinear observations. While ADMM has been utilized

to decompose specific dynamic systems into simpler subproblems [105, 6], our approach applies

to arbitrary log-concave dynamic models. In particular, we utilize auxiliary variables to enable

a solution involving iterative updates to three modules, one that pertains to the measurement

model, another that pertains to the prior distribution on the latent signal, and a third that is a

Kalman smoother. As such, our framework enables various sparsity models to be easily applied

to the signal and/or dynamics with adjustments only required to the corresponding module. We

demonstrate implementation of the framework in two distinct applications, namely latent state

estimation and spectrotemporal estimation. We show that in the case of state estimation, our

method outperforms a fixed interval smoother and particle filter for two state-space models coupled

with non-Gaussian observations. In the case of spectrotemporal estimation, we demonstrate the
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efficacy of our method when using non-Markov priors. The proposed method yields an intuitive

approach to latent process estimation with iterative use of a Kalman smoother in tandem with

standard convex optimization techniques. We provide a mathematical justification for the intuition

by proving that our approach guarantees convergence to the MAP solution under the same

relatively mild conditions that apply to general ADMM approaches. Finally, we provide software

to enable the reader to reproduce the results of this chapter and to easily apply the framework to

novel models. Our contributions may be summarized as follows:

• We present an efficient iterative solution framework for latent time series estimation with a

guarantee of convergence to the MAP estimate under mild log-concavity assumptions.

• In the presence of non-Linear, non-Gaussian measurement models, our method does not

require a Gaussian approximation, unlike KS variants, and is more efficient than Sequential

Monte Carlo (SMC) methods.

• Our framework accommodates non-Markov signals despite there being no clear method

for adapting EKF, UKF, and SMC methods for such a scenario, particularly when the

prior applies to highly non-linear functions of the latent process, such as a singular value

decomposition.

• Through the use of auxiliary variables, the ADMM solution to our reformulated MAP

estimation problem is modular, with the observation and system models in disjoint modules

that are unified by a Kalman smoother.

The chapter is structured as follows: Section 2.2 provides the general formulation of the

problem we are solving in addition to a brief review of relevant work solving specific instances

of the problem. Section 2.3 details a novel systematic approach for solving the MAP estimation

problem in its general form. Section 2.4 demonstrates the capabilities of the framework through

implementation on two existing problems. Section 2.5 concludes the chapter with a discussion of

the results and future work.
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2.2 Preliminaries

2.2.1 Notation

While it is intended that the notation is presented unambiguously, we here present some

notational conventions. Bold letters are used to represent vectors and matrices, whereas non-bold

letters represent scalars. Subscripts are used for indexing scalar elements of a vector, or columns

of a matrix. A double subscript is used to specify scalar elements of a matrix. For example, xn

gives the nth element of a vector x, xn gives the nth column of a matrix x, and xn,m gives the

mth row of the nth column of a matrix x. Capital/lowercase letter pairs represent either random

variable/realization pairs or total count/index pairs. For example, we may have that xn gives a

specific value of the random vector Xn, which is the nth column of a random matrix X with N

columns in total. We let f and p denote probability density functions (pdfs) and probability mass

functions (pmfs), respectively. Various joint and conditional pdfs and pmfs are made clear by

their subscripts. For example, the pdf of X given Y = y is fX |Y (·|y). We let R denote the space of

real numbers, R+ denote the non-negative reals, RA×B denote the space of A by B real valued

matrices, and RAB denote the space of real valued vectors of length A times B.

2.2.2 Problem Setup

Let X and Y be measurable spaces and N be the length of time series pertaining to the

latent process X ∈ X N and observed process Y ∈ Y N . Unless otherwise specified, we assume

X = RK and Y = RP where K is the dimension of the latent process at any time, and P is the

dimension of the observation process at any time. As such, X ∈ RK×N is the latent time series we

wish to estimate and Y ∈ RP×N is the collection of noisy observations. Furthermore, assume that
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these observations are conditionally independent given the underlying time series:

fY|X(y | x) =
N

∏
n=1

fYn|Xn(yn | xn) (2.1)

where fY|X is the likelihood of the entire collection of observations given the entire latent time

series and fYn|Xn is the likelihood of a single observation given the corresponding element of the

latent time series.

Next, define the latent signal’s dynamics (or system behavior) in terms of W ∈ RK×N for

which:

Wn =


X1 n=1

Xn−DXn−1 n = 2,. . . ,N
,

where D ∈ RK×K is a transition matrix and Wn ∈ RK and Xn ∈ RK represent the nth columns

of W and X, respectively. For compactness we write this as W = A(X), where A represents a

linear operator that is fully defined by D. We assume that W is distributed according to a known

prior pdf fW(w). Note that this framework includes, for the special case of Wn = Xn−Xn−1

and Wn ∼N (µn,Σn) are independent Gaussian random vectors for n = 2, . . . ,N, the well-studied

scenario in which the underlying time series X is a Gauss-Markov process.

Here, we consider the problem of finding the maximum a posteriori estimate:

x̂ = argmin
x
− log fY|X(y | x)− log fX(x) (2.2)

where − log fY|X(y | x) is the negative log-likelihood and − log fX(x) is the negative log-prior.

We note that because W is a linear function of X, we have fX(x) ∝ fW(A(x)). This relationship

indicates that knowing a prior on either X or W induces a prior on the other. Thus, we can
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equivalently rewrite our problem as:

x̂ = argmin
x
− log fY|X(y | x)− log fW(A(x)) (2.3)

= argmin
x

L(y | x)+βφ(A(x)) (2.4)

with β ∈ R+ and where we define the measurement model L : RN×K → R and system model

φ : RN×K → R as:

L(y | x) :=− log fY|X(y | x) (2.5)

φ(w) :=− log fW(w)

β
. (2.6)

The inclusion of β in (2.4) is to facilitate the cases when the system model is only known up to a

proportionality constant or when φ is a regularizer used to exploit a desired dynamic characteristic

of the latent signal (as opposed to representing the true distribution of W). In either of these cases

β is interpreted as a tuning parameter used to control the extent to which the system model is

weighted (as in λ throughout [47]).

Throughout this chapter, we will interchangeably use the names log-likelihood and

measurement model in reference to L, and log-prior, system model, and dynamic model in

reference to φ. Due to the assumption that observations are conditionally independent given the

state variables, the measurement model can be decomposed into a sum over N measurements,

each depending on the state variable at a single time instance:

x̂ = argmin
x

(
N

∑
n=1

Ln(yn | xn)

)
+βφ(A(x)) (2.7)

where Ln(yn | xn) :=− log fYn|Xn(yn | xn). It should be noted that the problem presented in (2.7)

is made difficult by the second term. In particular, imposing a prior on the differences of the

underlying time series prevents separability across the N time points. Furthermore, by allowing
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for non-Markov models, it is possible to have models that do not allow the second term to be

separated into terms each containing only xn and xn−1 for each n = 1 . . .N. In the following

section, we present a framework for efficiently solving problems in the form of (2.7) for a broad

class of measurement models L and system models φ.

2.2.3 Related Work

Works related to our proposed method include both the investigation of new algorithms for

estimating latent time series and the creation/application of new time series models. Notably, the

Kalman smoother [58] and its variants [123, 27] provide structured approaches to estimating latent

signals in a subset of problems with dynamical system models and noisy measurements. While the

Kalman smoother is MAP optimal for the very specific case of a linear system with Gaussian noise,

its non-linear variants do not guarantee optimality and do not offer solutions for a comprehensive

class of measurement and system models. In particular, there has been growing interest in models

exploiting the sparsity of states and/or dynamics of signals [121, 5, 129, 11, 20, 6], which in

many cases do not lend themselves to solutions via the existing Kalman smoother variants.

Table 2.1: Examples of common models. For the multiple modalities case, we define y =
(y(1), . . . ,y(J)) to be a J-tuple of simultaneous and conditionally independent observations, each
with its own dimensionality and associated measurement model L( j).

Measurement Models - L(y | x)

Linear Gaussian (LG) ∑
N
n=1||yn−Axn +b||22 , LG(x)

Sparse LG LG(x)+ ||x||1

Group sparse LG LG(x)+∑
K
k=1

(
∑

N
n=1 x2

k,n

) 1
2

Multiple Modalities ∑
J
j=1 L( j)(y( j) | x)

System Models - φ(w)

LG ∑
N
n=1||Cwn−d||22

Sparse ||w||1

Group sparse ∑
K
k=1

(
∑

N
n=1 w2

k,n

) 1
2
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For such sparsity-inducing models, existing causal estimators are often heuristic extensions

of the Kalman filter, such as `1-regularized Kalman filter updates [20] and tracking a belief of

the support set [121]. Causal estimation is made particularly challenging for the models that

are non-Markov in nature. As such, the aforementioned causal estimators lack performance

guarantees. Existing batchwise solutions utilize a Kalman smoother to solve the updates for a

particular iterative algorithm, such as IRLS for group sparse dynamics [11] and ADMM for group

sparse states [6]. In the latter example, their non-consensus formulation of ADMM is reliant upon

the choice of a Gaussian system model.

In addition to the Kalman smoother variants, sample based methods such as Markov chain

Monte Carlo (MCMC) and SMC are viable options for latent time series estimation. While these

methods can accommodate non-linear and non-Gaussian models [41] and can simultaneously

estimate the state and model parameters [19, 4], they are often computationally prohibitive.

Furthermore, these methods do not have a straightforward extension to non-Markov and non-

linear priors such as the `1/`2 and nuclear norm priors (see Remark 2).

Here we propose a generalized framework for obtaining the MAP estimate in many of the

aforementioned problems in a batchwise manner. Tables 2.1 and 2.2 show the models used in

some of these problems and serve to illustrate the primary contribution of our framework, namely

that for a given problem, the solution is modular in that the choice of measurement model can

be made independently of the system model without requiring a complete rederivation of the

solution.

2.3 Modular MAP Estimation Framework

The alternating direction method of multipliers (ADMM) allows large global problems to

be decomposed into smaller subproblems whose solutions can be coordinated to achieve the global

solution. ADMM offers an iterative solution of the dual problem that has the decomposability of
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Table 2.2: Examples of measurement model/system model pairings in previous works.
Measurement

Model
System
Model

Kalman Smoother [58] LG LG
State Space Model
of Learning [24]

Non-linear/
multiple modalities Gaussian

Spectrotemporal Pursuit [11] LG Group sparse

Lasso-Kalman Smoother [6] Group sparse LG
Sparse States and

Sparse Innovations [20] Sparse Sparse

dual descent in addition to the convergence guarantees of the method of multipliers, which hold

under fairly mild conditions. While the details of dual optimization and ADMM are omitted here,

they can be found in [15] and [16], respectively.

We begin by reformulating (2.7) to create separability in the objective function by in-

cluding w as an optimization variable and introducing a constraint to preserve the relationship

between x and w:

(x̂, ŵ) = argmin
x,w

N

∑
n=1

Ln(yn | xn)+βφ(w)

s.t. w = A(x).

(2.8)

The optimization problem given by (2.8) can be solved using ADMM, and would yield a solution

that enables the measurement model and penalty function to be addressed in independent subprob-

lems. However, when using the above formulation, the update equations yielded by the ADMM

algorithm would require one of the aforementioned approximate or sample-based methods for

non-Gaussian measurement models (see Remark 1).

We use a variant of ADMM known as consensus ADMM and construct a modular solution

framework shown in Fig. 2.1 that only requires making local adjustments to the solution when

modifying the measurement model (L), penalty function (φ), or transition model (A). This is

accomplished by introducing an auxiliary variable z ∈ RK×N to achieve separability (of x and w)
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in the constraints as well as the objective function:

(x̂, ŵ, ẑ) = argmin
x,w,z

N

∑
n=1

Ln(yn | xn)+βφ(w)

s.t. x = z

w = A(z).

(2.9)

The optimization problem given by (2.9) is termed the consensus formulation, and z the consensus

variable. By introducing this variable, our iterative updates with respect to the measurement

model and penalty function are not only independent of each other, but are also independent of

the transition model determined by A .

The first step in solving (2.9) using ADMM requires generating the augmented La-

grangian:

Lρ(x,w,z,λ,α) =
N

∑
n=1

Ln(yn | xn)+βφ(w)

+ 〈λ,x− z〉+ 〈α,w−A(z)〉+ ρ

2
||x− z||2F +

ρ

2
||w−A(z)||2F

(2.10)

where λ ∈ RK×N and α ∈ RK×N are Lagrange multipliers, 〈·,·〉 is the Frobenius inner product,

||·||F is the matrix Frobenius norm, and ρ ∈ R+ is the penalty parameter for the augmented

Lagrangian. Note that in the case where ρ = 0, the augmented Lagrangian is equivalent to the

standard (unaugmented) Lagrangian.

Given the augmented Lagrangian, the ADMM solution is obtained by iteratively alter-

nating between minimization with respect to the primal variables (x, w and z) and performing

gradient ascent on the Lagrange multipliers. These iterations represent a trade off between finding

a solution that minimizes the cost function in (2.9) while ensuring that the Lagrange multipliers

are such that the dual function of (2.9) is increasing in i and thus ensuring the constraints are

satisfied. Letting x(i) represent the estimate of x after i iterations (similarly for w(i), z(i), λ
(i), and
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Figure 2.1: Block diagram of the modular MAP estimation framework illustrates how the
selection of L, φ, and A affects independent parts of the estimation procedure.

α(i)), each iteration of ADMM is composed of the following updates [16, Sec. 3.1]:

x(i+1) = argmin
x

Lρ(x,w(i),z(i),λ(i),α(i))

w(i+1) = argmin
w

Lρ(x(i+1),w,z(i),λ(i),α(i))

z(i+1) = argmin
z

Lρ(x(i+1),w(i+1),z,λ(i),α(i))

λ
(i+1) = λ

(i)+ρ(x(i+1)− z(i+1))

α
(i+1) = α

(i)+ρ(w(i+1)−A(z(i+1))).

(2.11)

By fixing all but one variable in each update, the objective functions can be simplified by

dropping the terms in (2.10) that do not contain the optimization variable for the corresponding

update. As a result, when updating with respect to the measurement model L and the system

model φ, we only need to consider the model corresponding to that update and an `2-norm

proximal operator [89] that ensures the update is moving in the appropriate direction to achieve a

global consensus. This inclusion of the proximal operators in the augmented Lagrangian enables

the use of ADMM with non-smooth objective functions [89, Sec 4.4]. Then, updating of the

consensus variable involves “centering” it such that it gives equal representation to our current

estimates based on the measurements and our estimates based on the system dynamics. In this

sense, our ADMM framework yields a mathematical justification for a very intuitive approach,
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namely, iteratively finding the best estimate based on measurements, finding the best estimate

based on dynamics, and “averaging” the two in the appropriate sense. This viewpoint will be

made clearer in the following sections where we detail the specific update equations.

2.3.1 Measurement Model Update

When updating with respect to the measurement model, only terms containing x in the

augmented Lagrangian must be considered. To simplify notation, we will consider the scaled

form of the update equations [16, Sec. 3.1.1], which can be obtained by combining the appropriate

linear and quadratic terms in (2.10) by completing the square:

x(i+1) = argmin
x

N

∑
n=1

Ln(yn | xn)+
ρ

2
||x− x̃(i)||2F (2.12)

where x̃(i) := z(i)− λ
(i)/ρ is fixed within the scope of this update. Details for deriving the scaled

form of the update can be found in Appendix A.1. Given that the squared Frobenius norm can

be decomposed to the sum of squared `2 norms, we note that the measurement model update is

separable over n, meaning that we can solve for x(i+1)
n for each n = 1, . . . ,N independently:

x(i+1)
n = argmin

xn

Ln(yn | xn)+
ρ

2
||xn− x̃(i)n ||22 (2.13)

where x̃(i)n := z(i)n − λ
(i)
n /ρ.

Remark 1. Note that the ability to separate each of the N updates is a result of the inclusion of

the consensus variable. Excluding this variable would require that the dynamics be considered in

the update of the measurement model:

x(i+1) = argmin
x

N

∑
n=1

Ln(yn | xn)+
ρ

2
||xn−Dxn−1− x̃′(i)n ||22

where x̃′(i)n := w(i)
n − γ(i)/ρ, x0 := 0, and γ represents the single Lagrange multiplier that would be
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required in solving (2.8) using ADMM. Requiring that the dynamics of the underlying time series

be included in the measurement model update prohibits solving for x(i)n independently across N.

Thus, using ADMM in this fashion does not offer any simplifications over traditional approaches

for non-Gaussian measurement models. As such, incorporation of the consensus variable not

only enables faster processing by allowing each update to be parallelized across N, but it allows

the framework to be applied in a straightforward, non-approximate manner to a broad class of

measurement models.

It should be noted that while we assume conditional independence of the observations

given the latent time series, one can revert to the update in (2.12) for the case when the observations

are correlated. In this case the ability to parallelize across n is lost, but the ability to ignore system

dynamics is preserved (i.e. the optimization problem in (2.12) still does not depend on φ).

2.3.2 System Model Update

In the system model update, only terms in (2.10) that contain w must be included. Again,

we consider the scaled form:

w(i+1) = argmin
w

βφ(w)+
ρ

2
||w− w̃(i)||2F (2.14)

where w̃(i) := A(z(i))−α(i)/ρ. In this form we can clearly interpret the system model update as

finding a new collection of latent variable transitions w(i+1) that is both representative of our

system model φ and proximal to the appropriately scaled current consensus on the transitions

w̃(i).

The key observation is that this framework imposes no restrictions as to whether or not our

underlying signal is Markov. In the case where the signal is indeed Markov, then w(i+1)
n would be

updated independently over n, but in general we do not assume this is the case. This provides

the ability to impose batch-level structures on the dynamics of the signal. Furthermore, we note
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that the nature of the proximal operator enables closed form solutions when φ is chosen to be

a number of common sparsity inducing priors. In particular, because the proximal operator is

not multiplying w by a non-orthonormal matrix, the `1, group sparse, and nuclear norm priors all

offer soft-thresholding solutions [118]. Furthermore, we note that for a fixed K, the complexity

of the soft-thresholding solutions for the `1 and group sparse priors scale linearly with N per

iteration. The nuclear norm prior, however, requires a singular value decomposition (SVD), and

thus scales quadratically with N per iteration [42]. Similarly, for a fixed N, the same scaling

factors apply to K. It should be noted however, that if increasing N and K, the complexity of the

SVD will scale quadratically with max{K,N} and cubically with min{K,N}.

2.3.3 Consensus Update

Updating the consensus variable depends on neither the measurement model nor the

system model. We can think of this step as averaging our current estimates of our signal based on

measurements x(i+1) and based on dynamics w(i+1):

z(i+1) = argmin
z
||z− z̃(i)x ||2F + ||A(z)− z̃(i)w ||2F (2.15)

where z̃(i)x := x(i+1)+ λ
(i)/ρ and z̃(i)w = w(i+1)+ α(i)/ρ. Note that given the nature of the linear

operator A , (2.15) can always be solved efficiently using a Kalman smoother.

This step clarifies the notion of “averaging” the current estimates x(i+1) and w(i+1). By

framing our problem from a consensus ADMM perspective, we can carve out various elements of

the model and delegate them to independent updates. Then, given the nature of the relationship

between the signal x and the dynamics w, establishing consensus between the two estimates is a

Kalman smoothing problem regardless of the measurement and system models. This is a result

of the use of `2-norms in the augmented Lagrangian, which can be thought of as representing

Gaussian noise with identity covariance. In other words, at each iteration i, the consensus update
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is a Kalman smoothing problem where each of our measurements are given by z̃(i)x and each of

our predictions are given by z̃(i)w . In this sense, the consensus update gives equal weight to the

current iterates of our measurement and system estimates. This follows from the fact that the

log-likelihood and log-prior have their own uncertainty terms that dictate how far the updates

x(i+1) and w(i+1) can deviate from the consensus in their respective updates, namely measurement

noise and the tuning parameter β. We note that because both terms in (2.15) can be thought of as

representing Gaussian noise with identity covariance and the transition model A is invariant over

iterations i, all matrix inversions required by the Kalman smoother can be precomputed. As a

result, each iteration requires on the order of N matrix multiplications.

2.3.4 Convergence

Next we consider the practical and theoretical convergence of the proposed framework.

To begin, we present the optimality conditions and the means with which we can in practice

implement convergence checks. The derivations are omitted, as they closely follow Section 3.3 of

[16]. The optimality conditions for the proposed framework are given by:

0 = x̂− ẑ

0 = ŵ−A(ẑ)

 Primal Feasibility

0 ∈ ∂

∂x̂L(y | x̂)+ λ̂

0 ∈ ∂

∂ŵβφ(ŵ)+ α̂

0 = λ̂+A(α̂)


Dual Feasibility

(2.16)

where ∂/∂· is the subgradient operator (or gradient when defined, in which case ∈ becomes an

equality). The primal feasibility conditions ensure that our ẑ preserves the desired relationship

between x̂ and ŵ, and the dual feasibility conditions serve the purpose of ensuring that the optimal

Lagrange multipliers are such that x̂ and ŵ jointly minimize L and φ.
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Using these optimality conditions, we can derive the primal and dual residuals:

r(i)1 = x(i)− z(i)

r(i)2 = w(i)−A(z(i))

 Primal Residuals

s(i)1 = ρA(w(i)−w(i−1))

s(i)2 = ρ(z(i)− z(i−1))

 Dual Residuals

(2.17)

where primal feasibility is achieved when r(i)j = 0 and dual feasibility is achieved when s(i)j = 0

for all j ∈ {1,2}. In practice, we declare the algorithm converged when ||r(i)j ||F ≤ ε
pri
j and

||s(i)j ||F ≤ εdual
j for all j ∈ {1,2}, with the thresholds given by:

ε
pri
1 = ε

rel max{||x(i)||F , ||z(i)||F}+ ε
abs
√

KN

ε
pri
2 = ε

rel max{||w(i)||F , ||A(z(i))||F}+ ε
abs
√

KN

ε
dual
1 = ε

rel||λ(i)||F + ε
abs
√

KN

ε
dual
2 = ε

rel||α(i)||F + ε
abs
√

KN

(2.18)

where εrel (relative tolerance) and εabs (absolute tolerance) are small positive parameters.

In general, ADMM does not guarantee convergence for more than two optimization

variables [22]. As such, it is not immediately clear that our ADMM framework would guarantee

convergence given that it optimizes over x, w, and z. As it turns out, for the particular version of

consensus ADMM that we are proposing, we can guarantee convergence under the same mild

conditions required in standard ADMM.

Theorem 1. Given an observation y, when L(y | ·) and φ(·) are closed, proper, and convex

functions, the ADMM algorithm given by (2.10) and (2.11) converges to the solution of (2.9), i.e.

(x(i),w(i),z(i))→ (x̂, ŵ, ẑ) as i→ ∞.

The proof of Theorem 1 is based on a consensus ADMM formulation presented in section 5 of

[32] and is given in detail in Appendix A.2.
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2.4 Applications

2.4.1 State-Space Model of Learning

We begin by demonstrating how the ADMM framework can be applied to a problem with

a highly non-linear multimodal measurement model. In the state-space model of learning [113],

the system model is a traditional state-space Gauss-Markov process, where the state represents an

unobservable cognitive state that represents a subject’s ability to perform a task over time. The

corresponding measurement model provides a statistical relationship between the underlying state

and the observed task performance for a given trial.

We define X∈R1×N to be the cognitive state (with K = 1), where N represents the number

of trials conducted. The system model is given by:

Xn = κXn−1 + γ+Vn (2.19)

where κ ∈ [0,1] is a forgetting factor, γ ∈ R+ is a positive bias that represents a tendency for the

cognitive state to increase with time, and Vn ∼N (0,σ2
V ) is noise in the system model.

Using the state-space model of learning pertaining with multiple behavioral and neurophys-

iological measures, we assume that each of the N trials has an associated binary success/failure

outcome, a reaction time, and neural spiking behavior. As such, each observation is given by a

triplet Yn = (Bn,Rn,Sn) ∈ {0,1}×R×{0,1}J , where Bn is a binary random variable indicating

whether or not the trial was completed successfully, Rn is the log of the subject’s reaction time

to complete the task, and Sn is a length J point process that indicates whether or not there was

neural spiking activity in each discrete ∆t time window.

Each of the three observation modalities is associated with an appropriate statistical model.

23



First, the binary success/failure outcomes obey a Bernoulli probability model:

P(Bn = bn | Xn = xn) = pbn
n (1− pn)

1−bn (2.20)

where pn is given by a logistic function that maps the cognitive state between 0 and 1:

pn =
exp(ν+ηxn)

1+ exp(ν+ηxn)
(2.21)

where ν,η ∈ R are model parameters.

Next, the reaction time obeys a log-normal probability model, with:

Rn ∼N (ψ+ωXn,σ
2
R) (2.22)

where ψ ∈ R is the estimated initial log reaction time, ω ∈ R− is negative to ensure that the

reaction time tends to decrease with an increasing cognitive state and σ2
R represents the level of

stochasticity in the relationship between the cognitive state and reaction time.

Lastly, the neural spiking activity is modeled as a point process (as in equation 2.6 of

[23]), with the negative log-probability of a given set of spikes given by:

− logP(Sn = sn | Xn = xn) =
J

∑
j=1
− log(Λn, j)sn, j +Λn, j∆t (2.23)

where sn, j ∈ {0,1} is the jth bit of sn and logΛ is the conditional intensity function, given by a

generalized linear model [120]:

logΛn, j = ξ+axn +
M

∑
m=1

cmsn, j−m (2.24)

where ξ ∈ R gives a base intensity level, a ∈ R determines the effect of the cognitive state on the

spiking intensity, and c = (c1, . . . ,cM) ∈ RM accounts for the refractory period in neural spiking,
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Figure 2.2: Sample realization (blue) for Gaussian state-space model (left) and sparse-variation
state-space model (right), along with the estimates using ADMM (red), FIS (green), and SMC
(purple). While the Gaussian states are well estimated by all three methods, the ADMM approach
utilizing the `1 prior yields the only estimate that captures the piecewise constant nature of the
sparse-variation states.

i.e. the fact that it is unlikely to see spiking activity in neighboring bins. The point process

model given by (2.23) represents a discrete approximation of the negative log-likelihood for an

inhomogeneous Poisson process where the rate in trial n and time j is Λn, j.

Next we adapt the state-space model of learning to the ADMM framework. We begin by

considering the negative log-likelihood of the observations given the underlying cognitive state.

We note that not only are the observations temporally conditionally independent given a sequence

of cognitive states, but each of the three observations within a trial is conditionally independent

given the cognitive state corresponding with that trial:

L(y | x) =
N

∑
n=1

Ln(yn | xn) =
N

∑
n=1

LBn(bn | xn)+LRn(rn | xn)+LSn(sn | xn) (2.25)

where the negative log-likelihoods LBn :=− log pBn|Xn , LRn :=− log fRn|Xn , and LSn :=− log pSn|Xn

are defined to be the negative log of the appropriate pdf/pmf corresponding with the respective

observations. It is important to note that L is indeed convex. Considering this is not immediately

obvious, it is shown in Appendix A.4.

Next we consider the system model. By defining Wn = Xn−κXn−1 = γ+Vn with W0 = X0,

we get that Wn ∼N (γ,σ2
V ), i.e. each Wn is distributed iid Gaussian. Thus, our negative log-prior
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is given by:

φ(w) =− log
N

∏
n=1

N (wn;γ,σ2
V )

∝

N

∑
n=1

(wn− γ)2

2σ2
V

(2.26)

where N (x;µ,σ2) gives the value of a normal distribution with mean µ and variance σ2 evaluated

at x. Additionally, under this definition of W we get that the transition matrix D is in fact just a

scalar, namely κ ∈ R.

Plugging L, φ, and A into equations (2.12), (2.14), and (2.15), we obtain the update

equations for solving the state-space model of learning problem. Beginning with the measurement

model update, as a result of its separability across trials, each update decomposes into N univariate

convex minimization problems. As such, these N problems can be solved in parallel using a

convex solver such as CVX [25]. For the system model update, we note that because (2.14) is

separable over n = 1, . . . ,N, the update is reduced to n quadratic minimizations that can be solved

in closed form. Given that the density for W is assumed to be fully known, we set the tuning

parameter β = 1. The details of these updates can be found in Appendix A.3.

We demonstrate the state-space model of learning solution on simulated data with N = 25,

using parameters from section V-A of [24]. The proposed method is compared with the fixed-

interval smoother (FIS) detailed in [24] and a sequential Monte Carlo (SMC) method. In particular,

we develop a particle smoother using the forward-filtering backward-sampling technique with

systematic resampling at each step [30]. For the ADMM method, we set ρ = 30 and limit the

procedure to 25 iterations, i.e. x̂ := x(25). For the SMC method, we use 100 particles. In Table

2.3 we look at the average root-mean-square error (RMSE) and average runtime for each method

over 50 trials, where for a given realization x and a given estimate x̂, RMSE(x̂) = ||x̂−x||2/
√

N.

We note that the proposed method is both most efficient and most accurate in the RMSE sense.

While the SMC method would presumably benefit from a larger number of particles, we see that

even with limited samples, it is very computationally intensive. While the difference in RMSE
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is negligible across all 3 methods, it is worth noting that each method obtains a fundamentally

different estimate. To be specific, the proposed method gives the MAP estimate in the limit of

large iterations, while the other methods yield conditional expectations of the states given the

entire observation sequence. In the case of the FIS, the estimate is the conditional expectation

under a Gaussian approximation of the posterior. The SMC method, on the other hand, yields the

true conditional expectation in the limit of large particle count.

It should be noted that in the case of a Gaussian state space, the problem formulations

given by (2.8) and (2.9) are nearly equivalent. In particular, it is possible to omit the consensus

variable and modify the constraint such that W = X. In such a scenario, the measurement model

update would remain the same and the system model update would be solvable with a Kalman

smoother. Thus, we further demonstrate the utility of our method by considering a second

state-space model with sparse variations where such an approach is not possible. We simulate a

state-space model with sparse variations by defining Xn = Xn−1+Vn with Vn obeying a commonly

used sparsity inducing mixture model [128]:

Vn =


0 w.p. p

σUn w.p. 1− p
(2.27)

where p ∈ [0,1] is a probability, σ ∈ R+ is a positive constant, and we define Un ∼ χ2
2 as i.i.d.

Chi-Squared random variables with two degrees of freedom. This model represents a scenario

supported by neurophysiological findings [69, 12] wherein infrequent, discontinuous changes in

neural activity arise.

We again conduct 50 trials, setting N = 50, p = 0.9, and σ = 0.1, and estimate the state

using ADMM, FIS, and SMC approaches. For the ADMM approach, we note that the true system

model is no longer log-concave, so we instead use a sparsity inducing `1 regularizer, i.e. we

define φ(w) = β ||w||1. As such, we set β = 15, noting that is no longer determined by the model

27



and must be treated as a tuning parameter. The resulting system model update is given by:

w(i+1) = argmin
w

ρ

2

∣∣∣∣∣∣w̃(i)−w
∣∣∣∣∣∣2

2
+β ||w||1 .

This problem is known as the LASSO problem and may be efficiently solved by applying a soft

threshold operation to w(i) at each iteration [117].

Given the model mismatch, we observe that the proposed method takes longer to converge

on a desirable estimate, and thus increase the maximum number of iterations to 75. For the

FIS, given that there is no systematic approach to obtain an estimate with sparse variations,

we again utilize a Gaussian approximation, with the noise at each step being modeled by a

Gaussian distribution with zero-mean and variance Var(Un) = 4σ2. The SMC method is given

the benefit of using the true underlying system model when generating samples on the forward

pass. However, when performing the backward pass on sample xi
n with respect to a fixed x̂n+1,

we get that when xi
n > x̂n+1, the likelihood fXn+1,Y|Xn(x̂n+1,y | xi

n) = 0, causing the smoother to

continually lower x̂n for n = N,N−1, . . . ,1 until the smoother fails (i.e. xi
k > x̂k+1 for all i for

some k ∈ {1, . . . ,N}). As such, we only utilize the forward pass particle filter. Referring to Table

2.3 for results, we note that the proposed method again outperforms the other methods in the

RMSE sense. From a computational perspective, the 3X increase in iterations causes the ADMM

approach to take slightly longer than the FIS, though both remain significantly more efficient than

the SMC method.

Table 2.3: Performance metrics for the proposed method (ADMM), fixed-interval smoother (FIS),
and sequential Monte Carlo (SMC) averaged over 50 trials with the Gaussian state-space model
given by (2.19) and the state-space model with sparse variations given by (2.27).

Gaussian State Sparse Variations

RMSE Run Time (s) RMSE Run Time (s)

ADMM 0.165 1.8 0.141 7.0

FIS 0.168 2.6 0.181 5.2

SMC 0.188 53.5 0.186 105.7
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2.4.2 Spectrotemporal Pursuit

Next we demonstrate application of the ADMM framework to the method of spectrotem-

poral pursuit, originally presented in [11]. Spectrotemporal pursuit formulates the problem of

estimating time varying frequency coefficients as a compressive sensing problem. We define

Y ∈ RP×N to be a matrix version of an observed time series of length PN, where each column

of Y gives a length P window of the time series. Next, we define X ∈ RK×N to be a matrix

of frequency coefficients, with each column Xn ∈ RK representing the frequency coefficients

corresponding with the time window Yn ∈ RP. By defining X to be real valued, it is implied

that the frequency coefficients are in rectangular form, and thus a frequency resolution of K/2 is

achieved. Using this representation, we define the quadratic measurement model:

L(y | x) =
N

∑
n=1
||yn−Fnxn||22 (2.28)

where Fn ∈ RP×K is an inverse Fourier matrix, i.e. (Fn)p,k := cos(2π((n− 1)P+ p)k−1
K and

(Fn)p,k+K
2

:= sin(2π((n− 1)P + p)k−1+K/2
K for p = 1, . . . ,P and k = 1, . . . ,K/2. In this sense

we can view the spectrotemporal estimation problem as a traditional linear measurement with

Gaussian noise problem. As such, it is well defined when P≥ K, which is consistent with the

well known fact that the number of frequency coefficients associated with a time series can not

exceed the number of samples.

The method of spectrotemporal pursuit removes this constraint by introducing a sparsity

inducing prior on the frequency coefficients, paralleling the approaches in compressive sensing

used to estimate the coefficients underlying a system with an underdetermined set of observations.

In particular, spectrotemporal pursuit imposes a group-sparsity prior on the first differences of

the frequency coefficients. Letting Wn = Xn−Xn−1 (i.e. D is the identity matrix), we define the
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system model:

φ(w) =
K

∑
k=1

(
N

∑
n=1

w2
k,n

) 1
2

. (2.29)

We can view this function as the `1-norm of a vector whose entries are the `2-norms of the rows

of the argument. As such, φ(w) is small when only a small number of the rows of w are non-zero.

Furthermore, the rows that are non-zero should have a small `2-norm. Application of this function

to the differences of the frequency coefficients over time ensures that throughout a given time

series, most frequency coefficients do not vary, and those that do vary are varying smoothly.

This time-frequency characterization is known to occur in certain biological time-series. Thus,

spectrotemporal pursuit utilizes this knowledge to obtain significantly denoised spectrotemporal

estimates while avoiding the time/frequency resolution trade-off without necessitating a sliding

window approach. This is again reminiscent of compressive sensing, which makes strong claims

regarding the recoverability of a set of coefficients with underdetermined measurements so long

as the coefficients are sufficiently sparse.

The spectrotemporal pursuit solution initially proposed in [11] is an iteratively reweighted

least squares (IRLS) algorithm. While the IRLS algorithm is also exact and offers convergence

guarantees, it requires inversion of N×N and K×K matrices N times per iteration of the algorithm.

Furthermore, design of the state-covariance matrix obfuscates the problem and requires careful

thought when modifying the system model.

The proposed ADMM framework yields a straightforward solution to the spectrotemporal

pursuit problem. First, plugging L into equation (2.12) yields:

x(i+1)
n = argmin

xn

||yn−Fnxn||22 +
ρ

2
||xn− x̃(i)n ||22

= argmin
xn

||xn +Cnb(i)
n ||2Cn

=−Cnb(i)
n

(2.30)
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Figure 2.3: Spectrotemporal decompositions for simulated time series given by (2.32) (A/B)
and single channel EEG recording (C/D). A: Traditional spectrogram with NFFT = 2 fs, no
overlap, and Hanning window. B: Spectrotemporal pursuit estimate with K = 2 fs, P = K/8. C:
Traditional spectrogram with NFFT = 1024, 75% overlap and Hanning window. D: Low-Rank
Spectrotemporal Decomposition with K = 1024 and P = K/4.

where Cn := (FT
n Fn +

ρ

2 I)−1 and b(i)
n := −1

2(F
T
n yn +ρx̃(i)n ). We note that when P < K, FT

n Fn is

rank deficient and it is our choice of ρ that ensures the update is well formed. Also, it is important

to note that each Cn for n = 1, . . . ,N can be computed once at initialization, as they do not change

throughout iterations.

Next, placing the group-sparsity prior in equation (2.14) shows that the system model

update is given by a standard group-lasso problem:

w(i+1) = argmin
w
||w̃(i)−w||22 +

2β

ρ

K

∑
k=1

(
N

∑
n=1

w2
k,n

) 1
2

. (2.31)

Furthermore, this special case with an orthonormal regressor matrix (i.e. the identity) yields a

closed form solution, namely a row-wise shrinkage operator applied to w̃(i) [118]. The shrinkage

amount is proportional to the tuning parameter β, with larger β yielding a smaller number of

non-zero rows in w.
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We demonstrate the ADMM solution for spectrotemporal pursuit on a simulated example

recreated from the original paper [11]. Let ỹ ∈ RM be the vectorized version of y with M = NP

and yn = [ỹ(n−1)P+1, ỹ(n−1)P+2, . . . , ỹnP]
T for n = 1, . . . ,N. Then, we consider the signal:

ỹm = 10cos8(2π f0m)sin(2π f1m)+10exp
(

4
m−M

M

)
cos(2π f2m)+ vm (2.32)

where f0 = 0.04 Hz, f1 = 10 Hz, f0 = 11 Hz, and vm ∼N (0,1) iid for m = 1, . . . ,M. Letting the

sampling frequency be fs = 125 Hz and M = 7500 gives a simulated time-series 600 seconds

in duration. We note that y contains a sparse number of active frequency components, and the

frequency components that are active are modulated over time in a smooth fashion. Additionally,

the active frequency components f1 and f2 are chosen to be in neighboring frequencies, creating

an increased difficulty when trying to distinguish their respective contributions.

The top row of Fig. 2.3 shows time-frequency estimates of the simulated time-series using

traditional methods and spectrotemporal pursuit. First, we observe that the standard spectrogram

(Fig. 2.3A) suffers from significant spectral leakage and is unable to clearly distinguish between

the 10 Hz and 11 Hz frequency components. For the spectrotemporal pursuit estimate (Fig. 2.3B)

we select P < K, meaning that the number of samples in each time window is less than the

number of frequency bins. As such, we are effectively increasing the temporal resolution while

still maintaining the spectral resolution without the use of overlapping windows. Because this

would in general be an underdetermined problem, the group-sparsity prior is needed to ensure

the problem has a unique solution. In addition to increased temporal resolution, we witness that

spectrotemporal pursuit enables the contributions from f1 and f2 to be clearly distinguishable.

Further benefits of this approach to spectrotemporal decompositions are given in detail in [11].

Here, we are proposing an algorithm that offers improvements in efficiency, modularity, and

interpretability. In particular, we witness a roughly 10× speedup per iteration on the same size

data when using the ADMM framework rather than IRLS.
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To further illustrate the modularity of the proposed framework, we next demonstrate that

we can utilize an entirely different system model with a minor adjustment to a single update.

Specifically, we consider a low-rank spectrotemporal decomposition (LRSD) which substitutes

the nuclear norm for the group sparsity prior [108]. As such, the LRSD estimate is obtained by

substituting the system model update given by (2.31) with:

w(i+1) = argmin
w
||w̃(i)−w||2F +β||w||∗ (2.33)

where ||·||∗ is the nuclear norm, given by the sum of the singular values of the argument. Conve-

niently, this update is known as the matrix lasso and yields a straightforward solution via singular

value soft thresholding [75]. By making a simple adjustment to the means by which w(i) is

updated, we are able to obtain an entirely different spectrotemporal decomposition.

This point is illustrated by the bottom row of Fig. 2.3 where we demonstrate the LRSD

on human single-channel EEG data using adhesive flexible sensors [59]. The data in question

contains a 30-second recording in which the subject’s eyes are closed at the 10 second mark,

at which point we would expect to see increased energy in the alpha band (10-12 Hz). The

change point nature of the recording suggests that the group sparsity prior on the dynamics, which

enforces smoothness across time, is ill-suited for this recording, and the traditional spectrogram

(Fig. 2.3C) suffers significantly from noise. By not explicitly enforcing smoothness in time, the

low-rank enforcing nuclear norm prior (Fig. 2.3D) accommodates the change point and is able to

significantly suppress activity outside of the alpha band. Similarly to the spectrotemporal pursuit

example, we are able to set P < K and achieve equivalent temporal resolution to the spectrogram

without utilizing overlapping windows or sacrificing spectral resolution.

Remark 2. Comparisons with other methods are intentionally omitted in this section given that

there is no systematic application to these non-Markov problem formulation. While the original

problem proposed in equation (2.7) does not lend itself to an obvious solution for the discussed
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non-Markov models, the consensus ADMM formulation given by (2.11) may be solved in a

straightforward manner. In particular, we note that the EKF and UKF have no clear extensions

for non-Markov scenarios and the and the use of sampling based methods for such models would

require drawing samples of group-sparse or low-rank matrices.

2.5 Discussion

We have presented a unified framework for solving a broad class of dynamic modeling

problems. The proposed method can be applied to systems with non-linear measurements and/or

non-Markov dynamics. As demonstrated on two applications, our framework can be applied in

a straightforward manner to acquire efficient solutions to problems that may otherwise require

complex or approximate solutions. Furthermore, we have shown that this algorithm will converge

on the true MAP estimate of the latent signal in the limit of large iterations. With this provably

accurate algorithm comes a mathematical justification for an intuitive approach to dynamic

time-series estimation, namely iteratively computing estimates based on the measurement model

and system model and then averaging them in the appropriate sense.

There are a number of extensions to this framework still to be explored. The most

glaring shortcomings are the inability to conduct the estimation procedure causally and the

necessity to know model parameters a priori. Regarding the former, we note the use of homotopy

schemes for causal estimation that gradually incorporate new observations into the solution [9, 8].

Additionally, there has been recent research investigating algorithms for performing ADMM in

an online fashion [124, 72] that could potentially be leveraged by our framework. To address

the latter, expectation-maximization (EM) techniques can be built into the ADMM iterations in

order to estimate model parameters jointly with the desired latent time-series. In that regard, the

E-step, which requires sampling from the posterior distribution, is typically the bottleneck. To

address that, Langevin based methods and stochastic gradient descent methods can be used to
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efficiently sample from the posterior distribution [78]. Identifying sufficient conditions on mixing

times for generating approximately i.i.d. posterior samples for the M-step could be the subject of

future in-depth work. We note that while there exist sample based methods for estimating model

parameters [19, Sec. IV], these methods can be computationally prohibitive as witnessed in Table

2.3.

Lastly, we note that there is considerable interest in state-space estimation where the

observations or system are subject to noise from heavy-tailed distributions such as the Student’s

t or Cauchy distributions [1, 52], which are not log-concave. Recent literature has shown that

ADMM can be shown to converge under even milder conditions than those assumed by Theorem

1 [125, 77]. Given that both the Student’s t and Cauchy distributions are log-quasi-concave,

continuous, and possess a single local maximum, we could reasonably expect convergence of our

framework to the MAP estimate in such a scenario. This topic provides interesting opportunities

for future experimental and theoretical work.
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Chapter 3

Identifying and Addressing Bias in

Directed Information Estimators

3.1 Introduction

The directed information (DI) is a popular measure of asymmetric relationships between

two stochastic processes. Since its origination in 1966 [79, 80] and its reemergence in 1990 [82],

the DI has been increasingly pervasive throughout science and engineering disciplines. When

using the DI to study the inter-process relationships exhibited by real data, i.e. when the true

underlying joint statistics are unknown, it is necessary to utilize DI estimation techniques. DI

estimators have been studied extensively in the literature using a variety of approaches, including

sequential estimation via context tree weighting (CTW) [55], maximum likelihood estimation of

generalized linear models for DI between point processes [99], k-NN estimation [86], and plug-in

estimation [63]. With the exception of [63], when estimating the DI from Y to X , all of these

estimators work under the assumptions that (i) X and Y are jointly stationary ergodic Markov

processes and (ii) X is itself a jointly stationary ergodic Markov process of the same order. For the

plug-in estimator studied in [63], it is noted that when assumption (ii) does not hold, the quantity
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being estimated is in fact not the DI, but rather an upper bound for the DI. Despite the common

adoption of assumptions (i) and (ii), the conditions under which they hold and the implications

when they do not are not well studied. Our present work seeks to fill this gap in order to ensure

that the estimation of DI across scientific disciplines can be conducted in a manner such that the

results are reliable.

Relevant discussions regarding the issues surrounding assumption (ii) have been held in

the literature on Granger causality (GC) [45]. GC can be viewed as a special case of DI where

the processes in question obey a vector autoregressive (VAR) model with Gaussian noise. It

is noted in the GC literature that subsets of finite-order VAR processes are in general infinite

order autoregressive processes [115]. Thus, estimating a “restricted” model (i.e. one where the

candidate influencer is hidden) from data requires estimating a truncated model and induces a

bias-variance tradeoff. For the linear Gaussian case, this issue can be avoided by computing the

restricted model directly from the full model using the Yule-Walker equations [13]. Unfortunately,

there is no clear extension of this approach for arbitrary Markov processes, and other techniques

are required.

We employ a Bayesian network perspective to identify when the independence statements

required by DI estimators hold. In particular, by representing a collection of interacting processes

as a Bayesian network, we can use the d-separation criterion to identify conditional independencies

in relevant subsets of the network.

The contributions of this chapter are summarized as follows:

• For networks of interacting processes, we provide sufficient conditions for which the

conditional independencies needed to obtain unbiased estimates of the directed information

hold.

• We show that these conditions are also necessary with the exception of a set of parameters

with Lebesgue measure zero.
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• We present a bound for the estimation bias that can be estimated reliably under mild

conditions.

• To understand the magnitude of the biases in question, we compute the proposed bound for

simulated processes in a variety of problem settings.

3.2 Preliminaries

3.2.1 Notation and Basic Definitions

Let X , Y , and Z denote discrete finite-alphabet random processes, unless otherwise

specified, where, at any time i, Xi ∈ X , Yi ∈ Y , and Zi ∈ Z. Without loss of generality, Z may

represent a collection of processes (Z(1), . . . ,Z(m)) ∈ Z1×·· ·×Zm , Z. We denote processes at

a given time point with a subscript and denote the space of values they may take with caligraphic

letters, i.e. Xi ∈ X . A temporal range of a process is denoted by a subscript and superscript, i.e.

Xn
i = (Xi,Xi+1, . . . ,Xn), and we define Xn , Xn

1 . Realizations of processes are given by lowercase

letters. When a process is Markov of order d we will refer to it as d-Markov. Probability mass

functions (pmfs) are equivalently referred to as “distributions” and are denoted by p. These

distributions are characterized by a subscript, which is often omitted when context allows. For

example pXi(xi)≡ p(xi) gives the distribution of a single time point of X , pXn,Y n(xn,yn)≡ p(xn,yn)

gives the joint distribution of X and Y , and pXi|X i−1(xi | xi−1)≡ p(xi | xi−1) gives the conditional

distribution of X at a single time conditioned on the past of X . We define the causally conditional

distribution with lag k as:

p(xn || yn−k),
n

∏
i=1

p(xi | xi−1,yi−k). (3.1)

Note that the standard interpretation of the causal1 conditioning (as in [65]) is recovered by letting

1The term “causal” is overloaded, as it is used here in the control theoretic sense strictly to mean “non-anticipative.”
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k = 0.

We will briefly review some information theoretic quantities that are used frequently

throughout this chapter. The entropy is given by:

H(Xn) = ∑
xn

p(xn) log
1

p(xn)

where it is implied that the sum is over all xn ∈ X n and the logarithm is base two (as are all

logarithms throughout). The conditional entropy is given by:

H(Xn | Y n) = ∑
xn,yn

p(xn,yn) log
1

p(xn | yn)

The causally conditional entropy is given by substituting the causally conditional distribution for

the conditional distribution:

H(Xn || Y n−k) = ∑
xn,yn

p(xn,yn) log
1

p(xn || yn−k)

For any of the above defined variants of entropy, the corresponding entropy rates are

given by:

H̄(X) = lim
n→∞

1
n

H(Xn) (3.2)

H̄(X | Y ) = lim
n→∞

1
n

H(Xn | Y n) (3.3)

H̄(k)(X || Y ) = lim
n→∞

1
n

H(Xn || Y n−k) (3.4)

It should be noted that the entropy rates may not exist for all processes.

The conditional mutual information is given by:

I(Xn;Y n | Zn) = H(Xn | Zn)−H(Xn | Y n,Zn)
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with the (unconditional) mutual information I(Xn;Y n) being obtained by removing Zn everywhere

it appears in the above equation. Finally, the relative entropy or KL-divergence between two

distributions pXi and p′Xi
is given by:

D(pXi || p′Xi
) = ∑

xi

p(xi) log
p(xi)

p′(xi)
.

3.2.2 Directed Information

The directed information from a sequence Y n to Xn was defined by Massey [82] as:

I(Y n→ Xn) =
n

∑
i=1

I(Y i;Xi | X i−1) (3.5)

= H(Xn)−H(Xn || Y n) (3.6)

When ignoring the instantaneous relationship between Xi and Yi, the reverse DI [55] may be used:

I(Y n−1→ Xn) =
n

∑
i=1

I(Y i−1;Xi | X i−1) (3.7)

= H(Xn)−H(Xn || Y n−1) (3.8)

Note that under the assumption that Xi and Yi are conditionally independent given their pasts, we

have I(Y n→ Xn) = I(Y n−1→ Xn). Given that the DI is given by a sum over time, one may be

interested in a process level measure of DI. This can be accomplished through use of the directed

information rate [65], given by:

Ī(Y → X) = lim
n→∞

1
n

I(Y n−1→ Xn) (3.9)

= H̄(X)− H̄(1)(X || Y ) (3.10)

When measuring the amount of unique directed information from Y to X that is not contained in
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a third process, Z, one may use the causally conditional DI from Y to X given Z, defined as:

I(Y n→ Xn || Zn) =
n

∑
i=1

I(Xi;Y i | X i−1,Zi) (3.11)

=
n

∑
i=1

H(Xi | X i−1,Zi)−H(Xi | X i−1,Y i,Zi) (3.12)

and the associated causally conditional DI rate (when it exists) as:

Ī(Y → X || Z) = lim
n→∞

1
n

I(Y n→ Xn || Zn). (3.13)

If we assume that (i) (X ,Y,Z) are jointly d-Markov, i.e. that p(Xi | X i−1,Y i,Zi) = p(Xi |

X i−1
i−d ,Y

i
i−d,Z

i
i−d), the second entropy term in (3.12) can be simplified to H(Xi |X i−1

i−d ,Y
i
i−d,Z

i
i−d). If

the further assumption is made that (ii) Xi⊥ (X i−d−1,Zi−d−1) | (X i−1
i−d ,Z

i
i−d) (henceforth “X is con-

ditionally d-Markov given Z”), then the first entropy term can be simplified as H(Xi | X i−1
i−d ,Z

i
i−d).

Once this assumption is made, it is clear that the DI can be estimated from data by splitting a

stream (Xn,Y n,Zn) into a collection of samples {(X i
i−d,Y

i
i−d,Z

i
i−d)}

n
i=1 and estimating the ap-

propriate distributions using a variety of methods [86, 63, 99, 55]. The goal of this work is to

understand when we can expect both of these assumptions to hold and what the consequences are

of assuming they both hold when in fact only the the first holds. It should be noted that while we

consider only a network of processes and the causally conditional DI as above, all of the results

demonstrated in the following sections still apply when Z = /0 and the standard DI for a pair of

processes is used.

3.2.3 Bayesian Networks

To understand the conditions under which the desired independence relationships hold,

we can leverage tools from Bayesian networks, which can be used to represent conditional

independencies in collections of random variables using a directed acyclic graph (DAG) G =
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(V,E), where V = {V1, . . . ,Vm} is a set of random variables (equivalently nodes or vertices) and

E ⊂V×V is a set of directed edges that it do not contain any cycles [114]. The parent set of a node

Vi in a DAG is defined as the set of nodes with arrows going into Vi, Pi , {Vj : (Vj→Vi) ∈ E}.

The defining characteristic of a Bayesian network representation of a joint distribution over the

nodes V ∼ p is the ability to factorize the distribution as:

p(V ) =
m

∏
i=1

p(Vi | Pi). (3.14)

If this factorization holds for a given p and G , we say G is a Bayesian network for p. A key

concept when working with Bayesian networks is the d-separation criterion, which is used to

identify subsets of nodes whose conditional independence is implied by the graphical structure. In

particular, when given three disjoint subsets of nodes A,B,C ⊂V in a graph G , a straightforward

algorithm (shown in Algorithm 1) can be used to determine if C d-separates A and B. When C

d-separates A and B, then for any joint distribution p(V ) such that G is a Bayesian network for

p, A and B will be conditionally independent given C. While the converse is not true in general

(i.e. independence does not imply d-separation), it has been shown that for specific classes of

Bayesian networks, the set of parameters for which the converse does not hold has Lebesgue

measure zero [114, 84]. When a graph G and joint distribution p are such that d-separation holds

if and only if conditional independence holds for all subsets of nodes, then the distribution p is

called “faithful” to G [114].
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Algorithm 1 d-Separation [68]
Input: DAG G = (V,E) and disjoint sets A,B,C ⊂V

1: Create a subgraph containing only nodes in A, B, or C or with a directed path to A, B, or C

2: Connect with an undirected edge any two variables that share a common child

3: For each c ∈C, remove c and any edge connected to c

4: Make every edge an undirected edge

5: Conclude that A and B are d-separated by C if and only if there is no path connecting A and B

3.3 Characterizing Conditionally Markov Processes

3.3.1 Network Representation of Markov Processes

A Bayesian network is a very natural representation for collections of Markov processes.

In particular, using the chain rule to factorize the joint distribution over n time steps of the

processes (X ,Y,Z) yields:

p(Xn,Y n,Zn) =
n

∏
i=1

p(Xi,Yi,Zi | X i−1
i−d ,Y

i−1
i−d ,Z

i−1
i−d). (3.15)

We next make the additional assumption (A1) that Xi, Yi, and Zi are pairwise conditionally

independent given the past {X i−1
i−d ,Y

i−1
i−d ,Z

i−1
i−d}. This assumption facilitates construction of a

Bayesian network, as we can rely on the arrow of time to determine the direction of arrows in the

network. In the absence of (A1), we cannot construct a unique Bayesian network representation of

Markov processes without making alternative assumptions (the details of which will be discussed

in future work). This is similar reasoning to that of [101], where (A1) is used for establishing

the equivalence between DI graphs and minimal generative model graphs. Under (A1), we can
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further simplify (3.15) as:

p(Xn,Y n,Zn) =
n

∏
i=1

∏
S∈{Xi,Yi,Zi}

p(S | X i−1
i−d ,Y

i−1
i−d ,Z

i−1
i−d). (3.16)

Comparing (3.14) and (3.16), it is clear that we can represent a collection of processes as a

Bayesian network by letting each node be a single time point of a process (i.e. Xi, Yi, or Zi)

with parents PXi,PYi,PZi ⊆ {X i−1
i−d ,Y

i−1
i−d ,Z

i−1
i−d}. Given that there may be multiple valid Bayesian

networks for a particular distribution, we note that Xi, Yi, and Zi may not be conditionally

dependent on the entire set {X i−1
i−d ,Y

i−1
i−d ,Z

i−1
i−d}. Thus, when constructing a Bayesian network for

(X ,Y,Z) we include an edge Si−k→ S′i for S,S′ ∈ {X ,Y,Z} and k = 1, . . . ,d only if:

I(Si−k;S′i | {X i−1
i−d ,Y

i−1
i−d ,Z

i−1
i−d}\Si−k)> 0. (3.17)

3.3.2 Necessary and Sufficient Conditions for d-Separation

Using the Bayesian network construction given by (3.17), we can leverage the d-separation

criterion to gain a better understanding of the types of conditions which give rise to the conditional

independence relationships needed for DI estimation. To start, we identify necessary and sufficient

conditions for which Xi will be d-separated from (X i−l−1,Zi−l−1) by (X i−1
i−l ,Z

i−1
i−l ):

Theorem 2. Let (X ,Y,Z) be a collection of jointly stationary d-Markov processes satisfying (A1).

If I(Y n→ Xn || Zn) = 0 then X is conditionally d-Markov given Z. If I(Y n→ Xn || Zn)> 0, X is

conditionally Markov given Z of order 2d or less if:

I(Yj;Yk | X i,Zi) = 0 ∀ j ≤ k ≤ i (3.18)

If I(Y n → Xn || Zn) > 0 but (3.18) is not satisfied, there will not exist any positive integer l

such that (X i−1
i−l ,Z

i−1
i−l ) d-separates Xi from (X i−l−1,Zi−l−1) in the Bayesian network generated
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according to (3.17).

A proof of the theorem can be found in Appendix B.1.

The implication of this theorem is that the desired d-separation criteria only occurs when

no two time points of Y directly influence each other and Xi is only causally influenced by a single

Y j for some j ≤ i. In particular we note that this excludes jointly stationary d-Markov processes

aside from the special case where p(Yi | X i−1
i−d ,Y

i−1
i−d ) = p(Yi | X i−1

i−d ) and p(Xi | X i−1
i−d ,Y

i−1
i−d ) = p(Xi |

X i−1
i−d ,Yi−τ) for some 0≤ τ≤ d. This theorem has particularly strong implications for processes

with bidirectional influences, as summarized by the following corollary:

Corollary 1. Let X and Y be a pair of jointly d-Markov processes with bidirectional influences

given (without loss of generality) by I(Y n−1→ Xn)> 0 and I(Xn→ Y n)> 0. Then X and Y will

be marginally Markov if there exist integers τ1 > 0 and τ2 ≥ 0 such that for all i:

I(Xi;X i−1,Y i−1 \Yi−τ1 | Yi−τ1) = 0 (3.19)

I(Yi;Y i−1,X i−1 \Xi−τ2 | Xi−τ2) = 0 (3.20)

where Y i−1 \Yi−τ1 , {Y1, . . . ,Yi}\{Yi−τ1} and X i−1 \Xi−τ2 is defined similarly. Furthermore, for

any distribution not satisfying (3.19) and (3.20), there will not exist any positive integer l such

that X i−1
i−l d-separates Xi from X i−l−1 or Y i−1

i−l d-separates Yi from Y i−l−1.

The above corollary follows directly from the application of Theorem 2 to both X and Y . It

may be interpreted as stating that the only scenario in which joint Markovicity implies marginal

Markovicity in pairs of processes with bidirectional influence is when each process at any given

time is independent of everything that has happened up to that point when conditioned on a single

sample from the other process. We note that even the most basic sensible feedback communication

system does not fit this model. While it is reasonable to assume that each channel output Yi is

dependent solely upon the channel input Xi, no sensible communication scheme would then have
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the next transmission Xi+1 depend solely upon the feedback Yi (i.e. be independent of all previous

transmissions X i).

Theorem 2 uses d-separation to provide us with a characterization of networks of processes

that are guaranteed to have the conditional independence relations required by DI estimators. With

regard to the processes for which we cannot demonstrate d-separation (i.e. those not satisfying

(3.18)), the only distributions that will have the desired conditional independence relations are

those that are unfaithful to their graphs. While there is ample discussion in the literature noting

that these distributions are typically not seen in practice (see [114] and citations therein), a formal

characterization within the present context is desired.

3.3.3 Completeness of d-Separation

For a DAG G = (V,E), define ΓG ⊂ RM to represent the set of all discrete distributions

p(V ) such that the G is a Bayesian network for p. Further define Γu
G ⊂ ΓG to be the subset of

those distributions that are unfaithful to G . Then, it was shown in [84] the Γu
G has Lebesgue

measure zero with respect to RM, where M is the number of parameters needed to specify the joint

distribution p. Unfortunately, this result cannot be directly applied to our problem. To see why, let

ΘG ⊂ RN represent the set of parameters defining discrete jointly stationary d-Markov processes

satisfying (A1) for which G gives the Bayesian network constructed according (3.17). Defining

θ
Si
X ,Y,Z , p(Si | X i−1

i−d ,Y
i−1
i−d ,Z

i−1
i−d) for S ∈ {X ,Y,Z} and θ, {θa

b : a ∈ X ∪Y ∪Z,b ∈ X d×Y d×

Zd}, we can see that there are N , (|X |+ |Y |+ |Z|−3)|X |d|Y |d|Z|d many parameters uniquely

defining such a process. Next define Θu
G ⊂ ΘG to be the subset of parameters such that the

induced distribution p is unfaithful to G . Then, it is clear that, due to the stationarity constraint,

N << M, and the Lebesgue measure of Γu
G with respect to RM does not tell us what the Lebesgue

measure of Θu
G is with respect to RN . Returning to the question at hand, we seek to know when

we can expect X to be conditionally d-Markov given Z despite the conditional independence not

being implied by d-separation. Using a similar technique to [84], the following theorem states

46



that, when d = 1, the set of such parameters has Lebesgue measure zero:

Theorem 3. The set of parameters defining a collection (X ,Y,Z) of jointly stationary irreducible

aperiodic Markov processes such that there exists a positive integer l where X is conditionally

l-Markov given Z but (X i−1
i−l ,Z

i−1
i−l ) does not d-separate Xi from (X i−l−1,Zi−l−1) in the Bayesian

network constructed by (3.17) has Lebesgue measure zero with respect to RN .

A proof of the theorem is given in Appendix B.2.

3.4 Quantifying Estimation Bias

We have shown that DI estimator are reliant upon a condition that is unlikely to be satisfied.

Thus, we now define two augmented notions of DI that do not require X to be conditionally

Markov in order to be accurately estimated.

Definition 1. The kth-order causally conditioned truncated directed information (TDI) from Y to

X given Z is defined as:

I(k)T (Y n→ Xn || Zn),
n

∑
i=1

I(Xi;Y i
i−k | X

i−1
i−k ,Z

i
i−k) (3.21)

The TDI in its unconditional form is discussed in [63] in the context of plug-in estimators of DI.

Should both Markovicity and conditional Markovicity hold for a collection of processes, then the

TDI and the DI are equivalent. However, having shown that conditional Markovicity is unlikely

to hold, we here name the TDI to emphasize that it is a fundamentally different measure from the

traditional DI.

Definition 2. The kth-order causally conditioned partial directed information (PDI) from Y to X

given Z is defined as:

I(k)P (Y n→ Xn || Zn),
n

∑
i=1

I(Xi;Y i
i−k | X

i−1,Y i−k−1,Zi) (3.22)
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The PDI can be thought of as measuring the unique influence of the k most recent samples of Y

on X . It is important to note that, under the assumption that (X ,Y,Z) are jointly d-Markov, we

have that:

I(Xi;Y i
i−k | X

i−1,Y i−k−1,Zi) = H(Xi | X i−1
i−k−d,Y

i−k−1
i−k−d ,Z

i
i−k−d)−H(Xi | X i−1

i−d ,Y
i
i−d,Z

i
i−d)

Thus, estimators of DI can be extended to estimate the PDI without the additional requirement of

conditional Markovicity. This idea is formalized in the next chapter and the details of such an

estimator utilizing the context tree weighting predictors are provided. Defining the TDI and PDI

rates Ī(k)T and Ī(k)P to be the normalized limits analagous with the DI rate given by (3.13), we are

able to bound the DI rate from above and below as follows:

Theorem 4. Let (X ,Y,Z) be jointly stationary d-Markov. For k1 ≥ 1 and k2 ≥ d, the causally

conditional PDI and TDI rates bound the DI rate as:

Ī(k1)
P (Y → X || Z)≤ Ī(Y → X || Z)≤ Ī(k2)

T (Y → X || Z) (3.23)

with both bounds becoming equalities as k1,k2→ ∞.

A proof of the theorem can be found in Appendix B.3.

3.5 Simulations

In the above sections we have demonstrated that while one cannot reasonably expect to

data to satisfy the necessary assumptions for obtaining unbiased estimates of DI, the TDI and

PDI can be used to provide upper and lower bounds for the true DI. A natural next question is,

how significant is the difference between PDI and TDI? To address this question, we simulate

a pair of jointly stationary Markov discrete processes in four settings, each characterized by a
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particular simplification of the generative distribution p(Xi,Yi | X i−1,Y i−1):

p(Xi | Yi−1)p(Yi | Yi−1) (S1)

p(Xi | Xi−1,Yi−1)p(Yi | Yi−1) (S2)

p(Xi | Xi−1,Yi−1)p(Yi | Xi−1,Yi−1) (S3)

p(Xi | X i−1
i−2 ,Y

i−1
i−2 )p(Yi | X i−1

i−2 ,Y
i−1
i−2 ) (S4)

For each of these graphical structures, we conducted 100 experiments with |X |= |Y |= 4 for (S1)-

(S3) and |X |= |Y |= 3 for (S4). In each experiment, the parameters were sample as independent

exponential random variables and then appropriately normalized, yielding parameters drawn

uniformly from the probability simplex [28]. Using the sampled parameters, sequences (xn,yn)

were generated with n = 300000 large enough to ensure that accurate estimates of the TDI and

PDI could be obtained. Ī(k)T (Y → X) and Ī(k)P (Y → X) were estimated using CTW estimators

in the style of Î3 in [55] for k = d, d + 1, and d + 2. Figure 3.1 shows boxplots representing

ˆ̄I(k)T (Y → X)− ˆ̄I(Y → X) and ˆ̄I(k)P (Y → X)− ˆ̄I(Y → X) for varying values of k along with the

mean (across trials) DI rate, which was determined by the value converged upon by the TDI and

PDI2. We can see that while the bound on the bias quickly converges to zero as k increases, there

are many examples in every setting when k = d for which the bound on the bias is rather large

relative to the mean DI rate. Furthermore, we can see that as the structures get more complex, the

bound on the bias tends to be larger. This suggests that while (S4) is not covered by Theorem 3,

alternative proof techniques may exist for demonstrating that the results hold for d > 1. Thus,

when working with real data, it may be prudent to use the TDI and PDI to upper and lower bound

the DI rate rather than simply relying on the TDI as a proxy for DI.

2Code can be found in the following repository: https://github.com/gabeschamberg/directed_info_
bias.
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Figure 3.1: Difference between TDI and DI (blue) and PDI and DI (orange) for different values
of k (x-axis) under different process structures (panels).
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Chapter 4

Measuring Sample Path Causal Influences

with Relative Entropy

4.1 Introduction

Building upon the the ideas of Wiener [126], Granger [45] proposed the following

perspective on causal influence: We say that a time series Y is “causing” X if we can better predict

X given the past of all information than given the past of all information in the universe excluding

Y . While Granger’s original treatment only considered linear Gaussian regression models, his

proposed definition applies in general and is here collectively termed Granger causality (GC). The

inclusion of “all information in the universe” in GC serves to avoid the effects of confounding, i.e.

to avoid incorrectly inferring that Y influences X when in reality both X and Y are influenced by

a third process, Z. It is important to note that GC lacks mention of interventions, a concept that is

central to well-accepted notions of causal influence popularized by Pearl [92, 94]. In [34], Eichler

and Didelez develop a framework that formalizes interventions in the context of GC, enabling the

distinction between scenarios where changing the value of Y (by means of an intervention) results

in a change in the value of X , and those where Y merely aids in the prediction of X . Absent this
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formal analysis, GC is better viewed as a measure of predictive utility. Nevertheless, it continues

to be a popular tool (for example [111]), and is the focus of this paper. Thus, we use the terms

“cause,” “causal effect,” etc. within the context of Granger’s perspective unless otherwise stated.

More modern information theoretic interpretations of Granger’s perspective on causality

include directed information (DI) [79, 80, 82] and transfer entropy (TE) [110], which is equivalent

to GC for Gaussian autoregressive processes [14]. Justification for use of the DI for characterizing

directional dependencies between processes was given in [100], where it was shown that, under

mild assumptions, the DI graph is equivalent to the so-called minimal generative model graph. It

was further shown in [35] that the DI graph can be viewed as a generalization of linear dynamical

graphs. As a result, the directional dependencies encoded by DI are well equipped to identify the

presence or absence of a causal link under Granger’s perspective in the general non-linear and

non-Gaussian settings.

Interestingly, both GC and DI are determined entirely by the underlying probabilistic

model (i.e. joint distribution) of the random processes in question. It is clear that once the model

is determined, these methods provide no ability to distinguish between varying levels of causal

influence that may be associated with specific realizations of those processes. As a result, GC

and DI are only well suited to answer causal questions that are concerned with average influences

between processes. Examples of this style of question include “Does dieting affect body weight?”

and “Does the Dow Jones stock index influence Hang Seng stock index?”. Symbolically, we

represent this question as Q1:“Does Y i−1 cause Xi?”, where the superscript represents and the

collection of samples up to time i−1 and capital letters are used to represent random variables

and processes.

A natural next question to ask is how the aforementioned measures may be adapted to

be sample path dependent. In particular, one might pose the question Q2:“Did yi−1 cause xi?”,

where the lowercase letters now represent specific realizations of the processes X and Y . Examples

of these questions would be “Did eating salad cause me to lose weight?” and “Did the dip in
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the price of the Dow Jones cause the spike in the price of the Hang Seng?”. One information

theoretic approach to answering Q2 is the substitution of self-information for entropy wherever

entropy appears in the definition of DI [74]. The issue is that the resulting “local” extension

of DI may take on negative values, and it is unclear how these values should be interpreted

with regard to the presence/absence of a causal link. As a result, causal measures that use the

self information have not seen widespread adoption. While this may appear to be a result of a

particular methodology, it is in fact a fundamental challenge with Q2 arising from the handling

of counterfactuals. This challenge relates to what Holland [50] referred to as the “fundamental

problem of causal influence,” namely that we cannot observe the value that Xi would take under

two realizations of Y i−1, i.e. the true realization yi−1 and some counterfactual realization ỹi−1. A

popular approach to dealing with counterfactuals is structural equation models (SEMs). Using an

SEM, one can estimate the “noise” that gave rise to an outcome xi and infer the x̃i that would have

occurred had yi−1 been ỹi−1. The interested reader is referred to [92] and [97] for more details on

SEMs.

While it is clear that Q1 lacks the resolution to identify specific points on a sample path

for which a large causal influence is elicited, Q2 introduces the added challenge of counterfactuals

and thus there is no clear approach within the GC framework. This observation motivates our

proposed question of study, Q3:“Does yi−1 cause Xi?”. In other words, we seek to identify the

causal effect that particular values of Y have on the distribution of the subsequent sample of X .

Examples of this include “Which diets are most informative about weight loss outcomes?” and

“When does the Dow Jones have the greatest effect on the Hang Seng?”. To answer this question,

we build on the work of [60] and [107] in the development of a sample path dependent measure

of causal influence.

Such a measure will necessarily capture dynamic changes in causal influence between

processes. The means by which causal influences vary with time is two-fold. First, it is clear that

when the joint distribution of the collection of processes is non-stationary, there will be variations
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in time with respect to their causal interactions. Second, we note that stationary processes may

exhibit time-varying causal phenomena when certain realizations of a process have a greater level

of influence than others (see Section 4.3.1). The latter cannot be captured by GC and DI, which

are determined entirely by the joint distribution and thus will only change when the distribution

changes. Furthermore, since estimating GC and DI requires taking a time-average, capturing

dynamic changes resulting from non-stationarities necessitates approximating an expectation

using a sliding window. The sample path dependent measure, on the other hand, captures both

types of temporal dynamics: estimates of the sample path measure can be obtained for any

processes for which we can have reliable sequential prediction algorithms.

In developing techniques for estimating the proposed measure, we have identified a

challenge in estimating information theoretic measures of causal influence that has been commonly

overlooked in the literature. While it is well understood that a collection of jointly Markov

processes does not necessarily exhibit Markovicity for subsets of processes, the implications of

this on information theoretic causal measures are not well studied. An analogous statement with

regard to finite order autoregressive processes and the biasing effect this has on estimates of GC

was studied in [115], but this work has yet to be adopted in the information theory community. It

comes as no surprise that the issues with GC estimators identified in [115] may be extended to

DI estimators. Thus, a characterization of when estimators of DI are unbiased and a means of

addressing the bias when it arises are lacking. As such, we address both of these unmet needs in

Section 4.4.1 in an effort to establish an understanding of when one can expect to obtain unbiased

estimates of information theoretic causal measures.

The contributions of this chapter may be summarized as follows:

• A methodology for assessing causal influences between time series in a sample-path

specific and time-varying manner, by answering the question “Does yi−1 cause Xi?”. This is

particularly relevant when there are infrequent events which exhibit large causal influences,

which would be “averaged out” using any causal measure (e.g. GC and DI) which takes an
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average over all sample paths.

• A framework using sequential prediction for estimating the dynamic causal measure with

associated upper bounds on the worst case “causality regret”.

• Demonstration of the causal measure’s value through application to simulated and real data.

The remainder of this chapter is organized as follows: following a brief overview of

notation, Section 4.2 provides a technical summary of related work. In Section 4.3 we define

the measure, present key properties, and provide justification for the measure through several

examples. Section 4.4 provides a framework for estimating the measure. Section 4.5 demonstrates

the measure on simulated and real data. Finally, Section 4.6 contains a discussion of the results

and opportunities for future work.

4.2 Related Work

In discussions of causal inference, it is important to differentiate between the deterministic

and stochastic settings as well as the interventional and observational settings. With regard to the

former, we limit consideration strictly to the stochastic setting. In other words, This restriction is

necessary when utilizing Granger’s perspective, as comparing qualities of prediction in stochastic

settings is our main interest. With regard to the latter, we focus on the observational setting,

wherein the potential causes (i.e. yi−1 in Q3) may not be controlled or perturbed, in comparison

to the causal intervention calculus pioneered by Pearl [92].

We now provide a brief summary of three key concepts in the measurement of causal

influence across time series, namely Granger causality (GC) [45], directed information (DI)

[80, 82], and causal strength (CS) [54].

55



4.2.1 Granger Causality

While Granger’s perspective on causality underlies most modern studies in causality

between time series, his original treatment was limited to linear Gaussian AR models [45]. For

clarity, we will here present the case with scalar time series. Formally, define the three real-valued

random processes (Xi,Yi,Zi : i≥ 1). As in Granger’s original treatment, we let Zn represent all

the information in the universe in order to avoid the effects of confounding. Next, define two

models of Xi:

Xi =
d

∑
j=1

a jXi− j +b jYi− j + c jZi− j +Ui (4.1)

Xi =
d

∑
j=1

d jXi− j + e jZi− j +Vi (4.2)

where a j,b j,c j,d j,e j ∈ R are the model parameters and Ui ∼N (0,σ2
U) and Vi ∼N (0,σ2

V ). We

see that the class of models given by (4.2) is a subset of the models given by (4.1) where the next

Xi does not depend on past Y i−1. Thus, a non-negative measure of the extent of causal influence

of Y on X may be defined by:

GY→X , ln
σ2

V

σ2
U

(4.3)

The limitations of Granger causality extend considerably beyond the restriction to linear models

(see [115] for a comprehensive summary). Of particular interest is the fact that if a VAR process

is of finite order, subsets of the process will in general be infinite order. While it is possible to

redefine the model in (4.2) to be infinite order, this creates obvious challenges in attempting to

estimate Granger causality. Considering this issue is not addressed by the subsequent existing

methods, we will revisit this issue in Section 4.4.1.
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4.2.2 Directed Information

Recall the causally conditional DI and causally conditional DI rate from the previous

chapter:

I(Y n→ Xn || Zn) =
n

∑
i=1

I(Y i;Xi | X i−1,Zi) (4.4)

Ī(Y → X || Z) = lim
n→∞

1
n

I(Y n→ Xn || Zn) (4.5)

Unless otherwise stated, we make the assumption that there are no instantaneous causations, i.e.

that Xi and Yi are conditionally independent given the past X i−1 and Y i−1. This assumption is

consistent with Granger’s original presentation, as we can see in (4.1) and (4.2) that neither Yi

nor Zi are included in either model prediction Xi. In such a setting, we have that the causally

conditional DI (rate) can be written as:

I(Y n−1→ Xn || Zn−1) =
n

∑
i=1

I(Y i;Xi | X i−1,Zi−1) (4.6)

Ī(Y → X || Z) = lim
n→∞

1
n

I(Y n−1→ Xn || Zn−1) (4.7)

It follows intuitively that DI serves as a generalization of GC in that the causally conditional DI

provides a measure of how much unique information is shared between the past of Y and the

present of X , where we use the word unique to indicate that this information is not also contained

in the past of X or Z. This connection is further elucidated when rewriting the conditional mutual

information term in (4.6) as:

I(Y i;Xi | X i−1,Zi−1) = E
[

log
p(Xi | X i−1,Y i−1,Zi−1)

p(Xi | X i−1,Zi−1)

]

In words, the conditional mutual information can be rewritten as the difference in the expected

log loss of two predictors of Xi, one that has access to the past of Y , and one that does not. This
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framing of DI provides intuition for the connection between DI and GC. An extensive exposition

of the precise nature of this relationship can be found in [3].

4.2.3 Causal Strength

In [54], Janzing et al. propose an axiomatic measure of causal strength (CS) based on a

set of postulates that they propose should be satisfied by a causal measure. Furthermore, they

present numerous examples to illustrate where Granger causality and directed information do not

give results consistent with intuition. While this measure was proposed to measure influences in

general causal graphs, it has a clear interpretation in the context of measuring causal influences

between two time series. In particular, for measuring the CS from Y to X , begin by considering

the generalization of the two models utilized by GC in (4.1) and (4.2) to arbitrary probability

distributions p(Xi |X i−1,Y i−1,Zi−1) and p(Xi |X i−1,Zi−1). Next, note that the second distribution

has the following factorization when summing over all possible pasts of Y :

p(Xi | X i−1,Zi−1) = ∑
yi−1

p(Xi | X i−1,yi−1,Zi−1)p(yi−1 | X i−1,Zi−1)

Here we can

The first term in the sum may be viewed as measuring the direct effects of the pasts of X , Y ,

and Z, on the distribution of Xi. The second term, however, is in some sense measuring the

indirect effects of the pasts of X and Z on Xi in that they affect the distribution of Xi through

their effect on the distribution of Y i−1. Thus, the key idea behind CS is the introduction of the

“post-cutting” distribution, where the conditional distribution found in the second term is replaced

with a marginal distribution (see Section 4.1 of [54] for a formal definition). As a result, the (time

series) CS from Y to X with side information Z is given by:

CY→X , E
[
D(pXi|X i−1,Y i−1,Zi−1 || p̃Xi|X i−1,Zi−1)

]
(4.8)
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where the expectation is taken with respect to pX i−1,Y i−1,Zi−1 and the post-cutting distribution is

defined as:

p̃Xi|X i−1,Zi−1(Xi), ∑
yi−1

p(Xi | X i−1,yi−1,Zi−1)p(yi−1) (4.9)

The post-cutting distribution is designed to ensure that the extent to which Y has a causal effect on

X depends only upon Y and other direct causes of X (see P2 in [54]). In the context of measuring

causal influences between time series, this can be seen as correcting for scenarios in which X

may be very well predicted by its own past while not being caused by its own past. This scenario

arises in models like the one depicted in the center of Figure 4.1. In such a scenario, it is possible

to have I(Y n−1→ Xn) = 0 despite the fact that Yi−1 is, in some sense, the sole cause of Xi. The

details of this example are made clear in Section 4.3.1.

By presenting an axiomatic framework for measuring causal influences, Janzing et al.

provide a robust justification CS. With that said, we note that like GC and DI, CS is determined

solely by the underlying probabilistic model. As such, it may be the preferred technique for

addressing Q1, but it does not represent how different realizations may give rise to different levels

of causal influence.

4.2.4 Self-Information Measures

All of the aforementioned techniques involve taking an expectation over the histories of

the time series in question, and are thus well suited to address Q1. In order to address Q2, a

notion of locality may be introduced through use of self-information. For a given realization x of

a random variable X ∼ pX , the self-information is given by h(x),− log pX(x) and represents the

amount of surprise associated with that realization. By replacing entropy with self-information,

and its conditional form h(x | y) , − log pX |Y (x | y), a local version of DI and its conditional

extension may be obtained (see Table 1 in [73] for other so-called “local measures”). As an

example, we note that for a given pair of realizations xi and yi−1, a “directed information density”
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(using the language of [46]) may be given by:

i(yn−1→ xn) =
n

∑
i=1

log
p(xi | xi−1,yi−1)

p(xi | xi−1)
(4.10)

While this indeed creates a sample path measure of causality whose expectation is DI, it is clear

it may take on negative values. Such a scenario occurs when the knowledge that Y i−1 = yi−1

makes the observation of Xi = xi less likely to have occurred. While self-information measures

are a good candidate for beginning to address Q2 given their dependence upon realizations, the

potential for negative values creates difficulty in trying to obtain an easily interpretable answer in

all cases.

4.2.5 Time-Varying Causal Measures

A popular extension of GC style causal measures is application to time-varying scenarios

[112, 88]. In order to adapt existing methods to these types of scenarios, it is necessary to evaluate

them over stretches of time for which there is stationarity. As such, estimation in this scenario

necessitates some sort of sliding window technique in order to approximate an expectation, giving

rise to a trade-off between sensitivity to dynamic changes and accuracy. Despite being concerned

with time-varying causal influences, these approaches are still ultimately attempts to answer Q1

in that the quantity being estimated is determined solely by the underlying joint distribution.

The temporal variability that is measured by these approaches is a result only of potential non-

stationarities. This is fundamentally different from the question we are asking, which is concerned

with the dynamic causal influences that are associated with a particular realization of a process

that may or may not be stationary.
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4.3 A Sample Path Measure of Causal Influence

We begin by considering the scenario where, having observed (xi−1,yi−1,zi−1), we wish

to determine the causal influence that yi−1 has on the next observation of Xi. Define the restricted

(denoted (r)) and complete (denoted (c)) histories as:

H (r)
i , {x1, . . . ,xi−1}∪{z1, . . . ,zi−1}

H (c)
i ,H (r)

i ∪{y1, . . . ,yi−1}

The current time samples of side information from the histories (i.e. yi and zi) are intentionally

omitted, as we assume that there is no instantaneous coupling. We next define the restricted and

complete conditional distributions as:

p(r)Xi
(xi), pXi(xi |H

(r)
i )

p(c)Xi
(xi), pXi(xi |H

(c)
i ).

Using these distributions, the sample path causal measure from Y to X in the presence of side

information Z at time i is defined by:

CY→X(H
(c)

i ), D(p(c)Xi
|| p(r)Xi

) (4.11)

For ease of notation, we may refer to the causal measure at time i simply as CY→X(i).

The proposed causal measure has an interesting relationship to the directed information.

To illustrate this, consider the conditional mutual information term that appears in the sum in
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(3.7), along with two equivalent representations:

I(Y i−1;Xi | X i−1) = H(Xi | X i−1)−H(Xi | X i−1,Y i−1) (4.12)

= EX i,Y i−1

[
log

p(Xi | X i−1,Y i−1)

p(Xi | X i−1)

]
(4.13)

These equivalent definitions of directed information yield two interpretations. While (4.12) con-

siders the reduction in uncertainty obtained by conditioning on Y i−1, (4.13) considers the change

in the distribution resulting from the added conditioning as measured by a log-likelihood ratio.

When we wish to condition on a realization (X i−1,Y i−1) = (xi−1,yi−1), these representations are

no longer equivalent:

H(Xi | xi−1)−H(Xi | xi−1,yi−1) (4.14)

6=

EXi

[
log

p(Xi | xi−1,yi−1)

p(Xi | xi−1)

∣∣∣∣xi−1,yi−1
]

(4.15)

The representation given by (4.15) is chosen to be the sample path causal measure and is indeed

equivalent to the proposed measure in (4.11). This choice is made clear by noting two properties

of (4.14). First, we note that (4.14) may be negative. Second, for particular realizations of xi−1

and yi−1, we may have that conditioning on yi−1 drastically shifts the distribution of Xi while only

mildly affecting the conditional entropy, yielding a value of nearly zero for a scenario when there

is a clear causal influence. We note that the difference between definitions of DI that is induced

by conditioning on a realization is acknowledged in [55], where four unique estimators of DI are

proposed based on these various equivalent definitions of DI. While these estimators converge to

the same result in the estimation of DI, the different perspectives yield different results for the

question we are addressing and thus their implications must be considered.

As a result of the added conditioning, the proposed measure is a random variable that
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takes on a value for each possible history and may be related to the directed information as

follows:

Proposition 1. In the absence of instantaneous influences, the sum of the expectation over sample

paths of the proposed causal measure is the directed information:

n

∑
i=1

E[CY→X(H
(c)

i )] = I(Y n−1→ Xn || Zn−1) (4.16)

See Appendix C.4 for a proof of the proposition.

A second key property of the proposed measure is non-negativity (for any history), which

follows directly from the properties of the KL-divergence. Furthermore, the measure will take a

value of zero if and only if the complete and restricted distributions are equivalent for a given

history. As such, the proposed causal measure may take on a large value when the additional

condition on yi−1 introduces a large amount of uncertainty into the distribution of Xi. In such

a scenario, we would expect yi−1 to have a significant causal influence on Xi even though it is

not causing Xi to take on a specific value. It is this type of scenario that makes Q2 so difficult to

answer in a consistent manner, despite having a clear interpretation in terms of Q3.

Remark 3. Despite the fact that Granger’s perspective on causal influence includes no remarks

on the role of interventions, it may be of interest to consider a version of the proposed measure

where the value of the influencer is forced by means of an intervention. For example, one might

wish to consider:

C(i)
Y→X(H

(c)
i ), D(p(i)Xi

|| p(r)Xi
) (4.17)

where the first argument of the divergence is defined as the interventional distribution:

p(i)Xi
(xi), p(xi |H

(r)
i ,do(Y i−1 = yi−1)) (4.18)

We have here used the do-operator of Pearl [92] to represent the action of forcing Y i−1 to take
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Figure 4.1: Graphical representation of the IID influences (left), perturbed cross copying (center),
and horse betting (right) examples.

the values yi−1 irrespective of the probability with which those values occur. Given that it is often

infeasible to perform such interventions in real world scenarios, a large body of causality research

is focused on determining when these interventional distributions can be learned from observed

data. While providing a general characterization of the scenarios for which C(i)
Y→X = CY→X

is outside the scope of the present discussion, this equivalence does in fact hold for the three

examples in the following section (with a mild technical assumption). This follows intuitively

from the depictions in Figure 4.1 and is shown formally in Appendix C.1. By contrast, we would

not expect this equivalence to hold for the stock market example considered in Section 4.5.2, as

discussed in Remark 4. The use of the do-operator in this type of causal measure will be revisited

in the following chapter where we extend the present discussion to be applied to general graphs.

4.3.1 Justification for Measurement of Sample Path Influences

We now present a series of examples that illustrate the value of a sample path causal

measure. Graphical representations of the three examples can be seen in Figure 4.1.
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IID Influences

Let Yi ∼ Bern(ε) iid for i = 1,2, . . . and:

Xi ∼


Bern(p1), Yi−1 = 1

Bern(p2), Yi−1 = 0
(4.19)

for ε, p1, p2 ∈ [0,1]. Intuitively, the extent to which Yi−1 influences Xi will vary for different

values yi−1 provided that p1 6= p2. In order to compute the causal measure CY→X(i), we first need

to find the restricted distribution of Xi given only its own past:

p(r)Xi
(1) = P(Xi = 1|X i−1 = xi−1)

= P(Xi = 1)

= ∑
yi−1∈{0,1}

P(Xi = 1 | Yi−1 = yi−1)P(Yi−1 = yi−1)

= p1ε+ p2(1− ε).

Noting that p(c)Xi
(1) = p1 when yi−1 = 1 and p(c)Xi

(1) = p2 when yi−1 = 0, the causal measure is

given by:

CY→X(i) =


D(p1 || p1ε+ p2(1− ε)), yi−1 = 1

D(p2 || p1ε+ p2(1− ε)), yi−1 = 0

Thus, we see that as ε→ 0,

CY→X(i)→


D(p1 || p2), yi−1 = 1

0, yi−1 = 0
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By contrast, the DI rate is given by taking the expectation of CY→X(i) over possible values Yi−1.

Defining CY→X(i),CY→X(yi−1), we get:

Ī(Y → X) =CY→X(1)ε+CY→X(0)(1− ε)
ε→0−−→ 0

As a result, it is clear that the sample paths that occur with lower probability will give rise to

a greater causal measure than those that occur with higher probability; however, as a result of

their lesser probability, these infrequent, highly influential events will have little influence in the

computation of the DI rate.

We further note that while it is tempting to invoke “conditioning reduces entropy” to

conclude that CY→X(i)> 0 represents a reduction in uncertainty that is obtained by including the

past yi−1 in the prediction of Xi, this is not the case. To make this clear, assign values p1 ≈ 0.5

and p2 ≈ 1 in (4.19) and again let ε approach zero. In such a scenario, we find that:

p(r)Xi
(1)≈ 1 p(c)Xi

(1)≈


1, yi−1 = 1 (w.p. 1− ε)

0.5, yi−1 = 0 (w.p. ε)

As such, it is clear that by additionally conditioning on yi−1 = 0, there is a considerable increase

in uncertainty. Thus, while it is certainly true that H(Xi | X i−1)≤ H(Xi | X i−1,Y i−1), there are

scenarios in which a particular realization of Y i−1 may cause uncertainty in Xi. Revisiting Q2, it

is not clear how to answer the extent to which the event {Yi−1 = 0} causes any particular outcome

{Xi = xi}, because all possible outcomes are equally likely. On the other hand, if we consider Q3,

it is quite clear that the event {Yi−1 = 1} has significant influence on Xi and that this is reflected

by the proposed measure.
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Perturbed Cross Copying

We next consider a scenario where two processes repeatedly swap values. This example

was originally posed in [10] and modified to include noise in [54]. Formally, the processes may

be defined as:

Xi =


Yi−1, w.p. 1− ε

Yi−1⊕1, w.p. ε

Yi =


Xi−1, w.p. 1− ε

Xi−1⊕1, w.p. ε

(4.20)

where Xi,Yi ∈ {0,1} for all i and ⊕ is the XOR operator. We again consider the limiting case

where ε is taken to approach zero. As is shown in [54], the DI rate approaches zero as ε→ 0.

This results from the fact that for very small ε, Yi−1 on average contains virtually no information

about Xi that is not contained in Xi−2.

Janzing et al. [54] note that because Xi and Xi−2 are independent given Yi−1, Yi−1 should,

in some sense, be fully responsible for the information that is known about Xi. As a result, for this

example their proposed causal strength measures the average reduction in uncertainty obtained by

conditioning on Yi−1 versus conditioning on nothing at all, i.e. CY→X = D(ε || 0.5)→ 1 as ε→ 0

(under the assumption the X and Y are initiated by fair coin tosses).

Next, we consider our proposed sample path measure. First, we note that the complete

distribution of Xi depends only upon yi−1 and the restricted distribution depends only upon xi−2.

Explicitly, we get the following distributions:

p(c)Xi
(xi) =


1− ε, xi = yi−1

ε, xi 6= yi−1

p(r)Xi
(xi) =


ε2 +(1− ε)2, xi = xi−2

2ε(1− ε), xi 6= xi−2
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As a result, we see that for a given complete history H (c)
i = {xi−2,yi−1} we get:

CY→X(H
(c)

i ) =


D(ε || 2ε(1− ε)), xi−2 = yi−1

D(ε || ε2 +(1− ε)2), xi−2 6= yi−1

Thus, we see that as ε→ 0, CY→X → 0 if xi−2 = yi−1 and CY→X → ∞ otherwise.

A comparison of the three measures makes clear that each provides a slightly different

perspective. DI rate is loyal to the Granger’s perspective in that it captures how, as ε→ 0, Yi−1

contains less and less information about Xi that is not already known. As a result Ī(Y → X) is

strictly decreasing for decreasing ε. Causal strength, on the other hand, is loyal to the causal

Markov condition in the sense that it restricts consideration to only the immediate parents of the

node in question (see P2 in Section 2 of [54]). As such, decreasing ε yields a smaller level of

uncertainty in Xi conditioned on Yi−1, and therefore the causal strength is strictly increasing for

decreasing ε. The proposed measure lies somewhere in between the two in that it simultaneously

captures the decrease and increase in effect of Y on X as ε shrinks. Deciding which perspective is

“correct” is a philosophical question that must be answered on a problem-by-problem basis. In

any case, the proposed measure provides an interesting perspective that, to our knowledge, has

not been considered in the literature.

Horse Betting

Consider the problem of horse race gambling with side information as presented in Section

III-A of [96] (with minor adjustments to notation). At each time i the gambler bets all of their

wealth based on the past winners X i−1 ∈ [M]i−1 and side information Y i−1. As a result, the

gambler’s wealth at time i, denoted w(X i,Y i−1), is a function of the winning horses and side

information up to that time. Lastly, the amount of money that is won for betting on the winning

horse is given by the odds o(Xi | X i−1), and the portion of wealth bet on each horse is given by
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b(Xi | X i−1,Y i−1) ≥ 0 with ∑x b(x | X i−1,Y i−1) = 1 . Thus, the evolution of the wealth can be

described recursively as:

w(X i,Y i−1) = b(Xi | X i−1,Y i−1)o(Xi | X i−1)w(X i−1,Y i−2)

Finally, the expected growth rate of the wealth is defined as 1
nE[logw(Xn,Y n−1)].

It is shown in [96] that the betting strategy that maximizes the expected growth rate

is given by distributing bets according to the conditional distribution of Xi given all available

information:

b∗(Xi | X i−1,Y i−1) = p(Xi | X i−1,Y i−1).

Similarly, we can define a restricted betting strategy b(Xi | X i−1) where the side infor-

mation is not available (and optimal strategy b∗(Xi | X i−1) = p(Xi | X i−1)). The wealth that is

obtained under that strategy is then given by:

w(X i) = b(Xi | X i−1)o(Xi | X i−1)w(X i−1)

Letting w∗(X i,Y i−1) and w∗(X i) represent the wealth resulting from using the optimal strategies,

it is further shown in [96] that the increase in growth rate resulting from including side information

in the betting strategy is given by:

1
n
E
[
logw∗(Xn,Y n−1)− logw∗(Xn)

]
=

1
n

I(Y n−1→ Xn) (4.21)

It should be noted that the result in (4.21) holds for any choice of odds o(Xi | X i−1). Thus,

we proceed by making the mild assumption that the odds chosen by the racetrack are such that,

for any past sequence of winners xi−1, the gambler optimally betting without side information is
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expected to lose money on round i:

E[logb∗(Xi | X i−1)o(Xi | X i−1) | xi−1] = logδ < 0 (4.22)

for some 0 < δ < 1. We define the above equation as the conditional expected growth rate for

race i (without side information). As a consequence, this implies a negative expected growth rate

for the gambler’s wealth without side information:

E[logw∗(Xn)] = E[logb∗(Xn | Xn−1)o(Xn | Xn−1)]+E[logw∗(Xn−1)]

=
n

∑
i=1

E[logb∗(Xi | X i−1)o(Xi | X i−1)]+ logw0

= n logδ < 0

where the initial wealth w0 is assumed, without loss of generality, to be 1.

It follows that a gambler with access to side information ought to gamble only if their

expected growth rate is greater than zero. Applying this condition to (4.21), a gambler with side

info can expect to win money if:

1
n

I(Y n−1→ Xn)>− logδ (4.23)

Thus, when equipped with the DI, a gambler will decide either to visit the racetrack

and bet on every race or to stay at home. It turns out, however, that the gambler may be doing

themselves a disservice by staying home any time that (4.23) does not hold. To see this, suppose

that before race i the gambler has witnessed winners xi−1 and side information yi−1, and wishes

to gamble if they expect to make money on the current race. Such a scenario occurs when the

conditional expected growth rate for round i is positive:

E[logb∗(Xi | X i−1,Y i−1)o(Xi | X i−1) | xi−1,yi−1]> 0 (4.24)

70



Combining (4.24) with the rate for round i in (4.22), the condition for which the gambler should

place a bet becomes:

E[logb∗(Xi | X i−1,Y i−1)− logb∗(Xi | X i−1) | xi−1,yi−1]

= ∑
xi

p(xi | xi−1,yi−1) log
b∗(xi | xi−1,yi−1)

b∗(xi | xi−1)

= ∑
xi

p(xi | xi−1,yi−1) log
p(xi | xi−1,yi−1)

p(xi | xi−1)

=CY→X(xi−1,yi−1)

>− logδ

Thus we can see that while the DI represents the time averaged expected increase in wealth

growth rate resulting from side information, the proposed measure gives the per round expected

increase. It is important to note that with problems in communication theory, low probability

events may indeed be of little concern, and thus the DI may be the correct technique with which

to analyze the relationship between Y and X . In the case of betting and the applications discussed

in Section 4.5.2, we note that there may be great interest in how the two time series interact for

specific realizations, even if those realizations are rare.

4.4 Estimating the Causal Measure

An estimate of the causal measure can be obtained by simply estimating the complete

and restricted distributions and then computing the KL divergence between the two at each time.

Such an estimator allows us to leverage results from the field of sequential prediction [85]. The

sequential prediction problem formulation we consider is as follows: for each round i∈ {1, . . . ,n},

having observed some history Hi, a learner selects a probability assignment p̂i ∈ P , where P is

the space of probability distributions over X . Once p̂i is chosen, xi is revealed and a loss l(p̂i,xi)
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is incurred by the learner, where the loss function l : X → R is chosen to be the self-information

loss given by l(p,x) =− log p(x).

The performance of sequential predictors may be assessed using a notion of regret with

respect to a reference class of probability distributions P̃ ⊂ P . For a given round i and reference

distribution p̃i ∈ P̃ , the learner’s regret is:

r(p̂i, p̃i,xi) = l(p̂i,xi)− l(p̃i,xi) (4.25)

In many cases the performance of sequential predictors will be measured by the worst case regret,

given by:

Rn(P̃n) = sup
xn∈X n

n

∑
i=1

l(p̂i,xi)− inf
p̃∈P̃n

n

∑
i=1

l(p̃i,xi) (4.26)

, sup
xn∈X n

n

∑
i=1

r(p̂i, f ∗i ,xi) (4.27)

where p∗i ∈ P̃ is defined as the distribution from the reference class with the smallest cumulative

loss up to time n, i.e. the p̃i for which Rn is largest. We also define p∗ ∈ P̃n ⊂ P n to be the

cumulative loss minimizing joint distribution, noting that the reference class of joint distributions

P̃n is not necessarily equal to P̃ n (i.e. P̃ × P̃ × . . . ), as often times there may be a constraint on

the selection of the best reference distribution that is imposed in order to establish bounds. In

the absence of any restrictions, the reference distributions may be selected at each time such that

p∗i (xi) = 1, resulting in zero cumulative loss for any sequence xn. Thus, sequential prediction

problems impose restrictions on the reference distributions with which to compare predictor

performance [85]. For example, one may assume stationarity by enforcing p∗1 = p∗2 = · · ·= p∗n or

assume that p∗i = p∗i+1 for all but some small number of indices. For various learning algorithms

(i.e. strategies for selecting p̂i given Hi) and reference classes P̃n, these bounds on the worst case
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regret are defined as a function of the sequence length n:

Rn(P̃n)≤M(n) (4.28)

It follows naturally that an estimator for our causal measure can be constructed by building

two sequential predictors. The restricted predictor p̂(r)Xi
computed at each round using H (r)

i , and

the complete predictor p̂(c)Xi
computed at each round using H (c)

i . It then follows that each of these

predictors will have an associated worst case regret, given by R(r)
n (P̃ (r)

n ) and R(c)
n (P̃ (c)

n ), where

P̃ (r)
n and P̃ (c)

n represent the restricted and complete reference classes. Using these sequential

predictors, we define our estimated causal influence from Y to X at time i as:

ĈY→X(i) = D(p̂(c)Xi
|| p̂(r)Xi

) (4.29)

It should be noted that when averaged over time, this estimator becomes a universal estimator of

the directed information rate for certain predictors and classes of signals [55].

To assess the performance of an estimate of the causal measure, we define a notion of

causality regret:

CR(n),
n

∑
i=1

∣∣ĈY→X(i)−C∗Y→X(i)
∣∣ (4.30)

where we define:

C∗Y→X(i) = D(p(c)∗Xi
|| p(r)∗Xi

) (4.31)

with p(c)∗Xi
∈ P̃ (c) and p(r)∗Xi

∈ P̃ (r) defined as the loss minimizing distributions from the complete

and restricted reference classes. We note that with this notion of causal regret, the estimated

causal measure is being compared against the best estimate of the causal measure from within

a reference class. As such, we limit our consideration to the scenario in which the reference

classes are sufficiently representative of the true sequences to produce a desirable C∗Y→X (i.e.

C∗Y→X(i)≈CY→X(i) for all i).
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We now present the necessary assumptions for proving a finite sample bound on the

estimates of causality regret.

Assumption 1. For sequential predictors p̂(c)Xi
and p̂(r)Xi

and observations (xn,yn,zn) ∈ X n×Y n×

Zn, we assume that p̂(c)Xi
and p̂(r)Xi

are absolutely continuous with respect to each other, i.e.:

sup
x∈X

∣∣∣∣∣log
p̂(c)Xi

(x)

p̂(r)Xi
(x)

∣∣∣∣∣< ∞ i = 1, . . . ,n (4.32)

Clearly, the above assumption will be satisfied for any sequential prediction algorithm that does

not assign zero probability to any outcomes.

Assumption 2. For loss minimizing distributions p(c)∗Xi
∈ P̃ (c) and p(r)∗Xi

∈ P̃ (r), restricted sequen-

tial predictor p̂(r)Xi
, and observations (xn,yn,zn) ∈ X n×Y n×Zn:

n

∑
i=1

∣∣∣∣Ep(c)∗Xi

[
r(p̂(r)Xi

, p(r)∗Xi
,Xi)

]∣∣∣∣≤M(r)(n) (4.33)

While it is understood that the expected regret is in general bounded by worst case regret,

Assumption 2 requires that the reference classes are sufficiently rich that the expected regret is

not too large in absolute value. This is necessary in bounding the causality regret because unlike

the regret defined by (4.26), CR(n) increases when the estimated distributions outperform the

regret minimizing distributions.

We now present our main theoretical result, a finite sample bound on the causality regret

under Assumptions 1 and 2:

Theorem 5. Let the worst case regret for the predictors p̂(r)Xi
and p̂(c)Xi

be bounded by R(r)
n (P̃ (r)

n )≤

M(r)(n) and R(c)
n (P̃ (c)

n ) ≤M(c)(n), respectively. Then, for any observations (xn,yn,zn) ∈ X n×

Y n×Zn satisfying Assumptions 1 and 2, we have:

CR(n)≤M(c)(n)+M(r)(n)+
||~cn||2√

2

√
M(c)(n). (4.34)
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where~cn = [c1, . . . ,cn] is a vector with elements:

ci = ∑
x∈X

∣∣∣∣∣log
p̂(c)Xi

(x)

p̂(r)Xi
(x)

∣∣∣∣∣ (4.35)

A proof of the theorem may be found in Appendix C.5. We note that because each ci depends

solely on the estimated complete and restricted distributions, a finite sample bound may be

computed at each point in time. If we make the additional assumption that the absolute log ratio

of our complete and restricted predictors is bounded:

sup
x∈X

∣∣∣∣∣log
p̂(c)Xi

(x)

p̂(r)Xi
(x)

∣∣∣∣∣≤ L i = 1,2, . . . (4.36)

then we can simplify the bound by observing that:

||~cn||2 ≤ L |X |
√

n. (4.37)

When such a scenario holds, we can make use of the following Corollary to Theorem 5 regarding

the asymptotic behavior of the causality regret:

Corollary 2. Let the worst case regret for the predictors p̂(r)Xi
and p̂(c)Xi

be sublinear in n and the

absolute log ratio of the complete and restricted sequential predictors be bounded as in (4.36).

Then, under Assumptions 1 and 2, for any collection of observations (xn,yn,zn) ∈ X n×Y n×Zn,

the causality regret will be sublinear in n:

lim
n→∞

1
n

CR(n) = 0 (4.38)

Lastly, we note that in the special case where the true complete and restricted distributions

are in the reference classes (i.e. p(r)Xi
∈ P̃ (r) and p(c)Xi

∈ P̃ (c)), then under an appropriately modified
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Assumption 2 with p(c)Xi
and p(r)Xi

substituted for p(c)∗Xi
and p(r)∗Xi

, we have that:

n

∑
i=1

∣∣ĈY→X(i)−CY→X(i)
∣∣≤CR(n). (4.39)

While in practice it is not expected that we would know whether or not the true underlying

distribution is in a particular class of reference distributions, this observation will be used in

performing simulations in Section 4.5.1.

4.4.1 Addressing Infinite Order Restricted Models

It is clear that the proposed causality regret only serves as a meaningful metric of esti-

mation accuracy insofar as the reference class optimal causal measure C∗Y→X serves as a useful

proxy for the true causal measure CY→X . This consideration is not unique to the proposed causal

measure. In an extensive analysis of problems encountered when using Granger causality, [115]

describes a bias-variance tradeoff that results from the fact that subsets of VAR models will in

general be of infinite order even if the complete VAR model is finite order. In the context of our

estimation framework, this tradeoff lies in the selection of reference classes P̃ (r)
n and P̃ (c)

n , which

need to be rich enough to yield sufficiently good C∗Y→X but not so rich that there do not exist

sequential prediction methods for which low cumulative regret may be achieved.

This issue is addressed by building upon the notion of partial directed information (PDI)

introduced in the previous chapter. Specifically, we note that by giving a restricted predictor

access to a “stale” history, then the desired Markov properties hold:

Theorem 6. Let (X ,Y )∼ p be a jointly stationary irreducible aperiodic finite-alphabet d-Markov

process. For a fixed k, define X̃i, (Xi,Yi−k+1). Then X̃ is a jointly stationary irreducible aperiodic

(d + k)-Markov process and the following equality holds:

p(Xi | X i−1,Y i−k) = p(Xi | X i−1
i−k−d,Y

i−k
i−k−d). (4.40)
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The above theorem states that so long as the distribution of Xi is conditioned upon its own past

and any d consecutive samples of Y , then it is independent of all X and Y that precede those

samples of Y . The proof of the theorem may be found in Appendix C.5.

Define the partial history with lag (or staleness) k to be:

H (k)
i ,H (r)

i ∪{y1, . . . ,yi−k}. (4.41)

Similarly, define the partial conditional distribution:

p(k)Xi
(xi), p(xi |H

(k)
i ). (4.42)

We note that the partial conditional distribution is a generalization of the complete and restricted

distributions in that p(1)Xi
= p(c)Xi

and p(i)Xi
= p(r)Xi

. Finally, we can define a partial causal measure

with lag k to be:

C(k)
Y→X(H

(c)
i ), D(p(c)Xi

|| p(k)Xi
) (4.43)

This sample path dependent measure can be related to the PDI introduced in the previous section

by noting that:

I(k)P (Y n→ Xn) =
n

∑
i=1

E
[
C(k)

Y→X(H
(c)

i )
]

(4.44)

Much like the DI (rate), the PDI (rate) can be represented as a difference of entropies (rates):

I(k)P (Y n→ Xn) = H(Xn || Y n−k−1)−H(Xn || Y n−1) (4.45)

Ī(k)P (Y → X) = H̄(k−1)(X || Y )− H̄(1)(X || Y ) (4.46)

where we have replaced the first entropy terms on the right hand side of (3.8) and (3.10) with a

lagged causally conditioned entropy.

These partial measures have straightforward interpretations in relationship to their com-
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plete counterparts. In particular, we note that these measures can be viewed as measuring the

causal effect of the recent past of Y on X . Therefore, effectively estimating the PDI for scenarios

in which we do not have a universal estimator of the DI may be of great interest. The estimators

of [55] can be extended to be universal estimators of the PDI rate:

Theorem 7. Let (X ,Y )∼ p be a jointly stationary irreducible aperiodic finite-alphabet Markov

process of order d or less. Let p̂(c)Xi
be a depth-d CTW estimate of p(c)Xi

with access to H (c)
i and

p̂(k)Xi
be a depth-(d + k) CTW estimate of p(k)Xi

with access to H (k)
i . Then:

lim
n→∞

1
n

n

∑
i=1

D(p̂(c)Xi
|| p̂(k)Xi

) = Ī(k)P (Y → X) pXn,Y n−a.s. (4.47)

The proof of the theorem may be found in Appendix C.5. We note that this theorem is analogous

with Theorem 3 from [55], where here we have removed any assumptions about how X behaves

marginally. It should also be noted that here we are only considering one of four estimators

proposed by [55]. Presumably, similar results could be obtained for the other estimators, though

this is not the primary concern of this work.

4.5 Results

4.5.1 Stationary Markov Processes

We begin by demonstrating estimation of the causal measure for simulated stationary first

order Markov processes using a context tree weighting (CTW) sequential prediction algorithm

[127]. For the purpose of estimating either the complete conditional distribution p(c)Xi
, or partial

conditional distribution p(k)Xi
, we utilize a CTW with side information as in [18]. In order to

evaluate the causality regret of a given estimator of the causal measure, we need worst case regret

bounds on the sequential predictors utilized in the estimator.

Lemma 1 ([119, 55]). Let p̂ be a depth-d CTW probability assignment of a stationary finite-
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alphabet Markov process X ∼ p of order less than or equal to d. Then the worst case regret is

bounded as:

sup
xn

log
p(xn)

p̂(xn)
≤ (|X |−1)L

2
log

n
L
+L

(
|X |
|X |−1

+ log |X |
)
− 1
|X |−1

(4.48)

where L is the number of leaves in the CTW (equivalently, the number of states of X).

Next we note that this bound may be extended to the case where X is given access to causal side

information Y :

Proposition 2. Let p̂ be a depth-d CTW probability assignment of X causally conditioned on Y ,

where (X ,Y )∼ p is a pair of jointly stationary finite-alphabet process of order less than or equal

to d. Then the worst case regret is bounded as:

sup
xn,yn

log
p(xn || yn)

p̂(xn || yn)
≤ (|X |−1)L

2
log

n
L
+L(|X |−1)+S (4.49)

where L is the number of leaves in the CTW, S is the total number of nodes in the CTW.

A proof of the proposition is provided in Appendix C.4. Using the above lemma and proposition

we can compute the values of the causality regret bounds by using (4.48) and (4.49) for M(r)(n)

and M(c)(n), respectively, in (4.34). In the following sections we compare the causal regret bound

with the true estimation accuracy for three scenarios.

Independent Processes

Let X and Y be independent ternary processes, with each process being stationary first

order Markov. As such, the processes are completely characterized by the probabilities p(xi | xi−1)

and p(yi | yi−1) for xi, xi−1, yi, yi−1 ∈ {0,1,2}. Given the independence of X and Y , we have that

for all i = 1,2, . . . , CY→X(i) =CX→Y (i) = 0.
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Figure 4.2 shows the estimate of the causal measure over time for n = 10000 samples.

We can see that the estimated causal measure in both directions quickly becomes very small at all

times. The true causal measure is not shown because it is always zero. In the bottom panel of the

figure we see the normalized causal regret with respect to the true causal measure as in (4.39),

which in this case is given by the running average of the estimated causal measure. Additionally,

we show the causal regret bounds, which are computed using |X |= 3, L = 3 in (4.48), and L = 9

and S = 10 in (4.49).

Figure 4.2: Top - Estimates of causal measure in each direction for independent processes.
Bottom - Normalized cumulative absolute error of estimates (solid) and normalized causality
regret bounds (dashed).

Unidirectional IID Influence

For the second scenario we consider a pair of processes wherein each Yi is independent

and identically distributed and Xi is dependent only upon Xi−1 and Yi−1. As such, it is clear that,

in addition to X and Y being jointly first-order Markov, X is marginally first-order Markov. While
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the marginal Markovicity is immediately clear in this case, we point out that these processes do

indeed satisfy the conditions described in Chapter 3 for any parameterization of the probabilities

in question.

Figure 4.3 shows the true causal measure CY→X alongside the estimates ĈY→X and ĈX→Y .

For clarity, only the last 100 time points are shown. We can see that in this time window

the estimated ĈY→X tracks the true causal measure CY→X very well, and the estimated ĈX→Y

has converged to 0 as desired. In the bottom panel we see that, because the causal measure

ĈX→Y (i)< ĈY→X(i), ci in equation (4.35) is much smaller in the X → Y direction and thus the

causal regret bound is considerably tighter. This is consistent with the result obtained in [63] that

plug-in estimators of the DI rate will converge at a faster rate if the DI rate is zero.

Figure 4.3: Top - Estimates of causal measure in each direction for unidirectional influences.
Bottom - Normalized cumulative absolute error of estimate (solid) and normalized causality regret
bounds (dashed).
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Bidirectional Influences

Lastly, we consider the scenario where X and Y mutually influence each other. Specifically,

let each Xi and Yi be independently influenced by Xi−1 and Yi−1 such that the processes are fully

characterized by the probabilities p(xi | xi−1,yi−1) and p(yi | xi−1,yi−1).

Figure 4.4 shows the true and estimated causal measures in both directions. The bottom

panel shows the cumulative absolute error alongside the causal regret bounds. We note that here

we have extended the time horizon to n = 50000 to illustrate that the estimators exhibit bias

resulting from the fact that X is not marginally Markov. As a result, it is important to note that

the true restricted distribution p(r)Xi
will not be in the reference class of restricted distributions P̃ (r)

and we can expect the causality regret bound to be lower than the cumulative absolute error as

n→ ∞. Due to the non-Markovicity of X , computing the true restricted distribution at each time

becomes increasingly challenging. To address this, we derive a recursive updating algorithm for

efficiently computing the true causal measure CY→X(i) such settings. Details can be found in

Appendix C.2.

To address the estimation bias seen in Figure 4.4, we consider the partial causal measure

C(k)
Y→X(i) defined by (4.43). Figure 4.5 shows an estimate of the partial causal measure on the

same sequence considered in Figure 4.4 with a staleness of k = 1. The bottom panel of Figure 4.5

depicts the cumulative absolute error and the causal regret bounds. While the worst case regret

for the complete predictor M(c)(n) remains the same as in the previous examples, the regret of

the partial predictor is computed using equation (4.49) with L = 27 (3 values for xi−1 times 9

possible values for (xi−2,yi−2)) and N = 31 (27 leaf nodes, 3 depth-1 nodes, and 1 root node).

We can see in Figure 4.5 that due to the increased number of nodes in the CTW estimate

of the partial distribution, the normalized absolute error decreases more slowly at the beginning.

Regardless, the estimate of the partial causal measure does not exhibit the same behavior of

converging on a biased estimate. We see the error continues to decrease throughout the entire

sequence. Moreover, a visual comparison of the true and estimated measures makes clear that the
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Figure 4.4: Top - Estimates of causal measure in each direction for bidirectional influences.
Bottom - Normalized cumulative absolute error of estimate (solid) and normalized causality regret
bounds (dashed).

estimate is unbiased.

Given that the same sequences were used in generating Figures 4.4 and 4.5, we can

compare the values of the complete causal measure with the partial causal measure. It is clear

that while there is considerable agreement on the positions of the spikes in causal influence, the

strengths vary. While it is true that the partial causal measure will be smaller than the complete

causal measure in expectation (i.e. partial DI is less than DI), there are times where the stale

history yi−k is misleading about the recent history yi−1
i−k+1, and thus we sometimes see that the

partial causal measure is larger than the complete causal measure on a given sample path. Lastly,

we note that because the true partial distribution is in the class of reference partial distributions,

the causality regret bounds will bound the cumulative absolute error.
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Figure 4.5: Top - Estimates of the partial causal measure with k = 1 in each direction for
bidirectional influences. Bottom - Normalized cumulative absolute error of estimates (solid) and
normalized causality regret bounds (dashed).

Figure 4.6: The Dow Jones (DJ) Industrial Average and Hang Seng (HS) indices.

4.5.2 Stock Market Indices

We now demonstrate the use of the sample path causal measure on historical stock market

data from the Dow Jones (DJ) Industrial Average index on the New York Stock Exchange (NYSE)

and the Hang Seng (HS) index on the Shanghai Stock Exchange (SSE), as in [55]. In [55] it was
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Figure 4.7: Causal measure between stock indices for different previous day states from 2008
to 2011. Below each of the 9 possible previous day states we include the percentage of days in
which that state occurs. The dashed lines represent the DI estimate.

shown that the DJ index had a greater influence on the HS index than vice versa by measuring the

DI between the sequences of daily changes in adjusted closing price. Here we consider the same

dataset, shown in Figure 4.6.

The data was downloaded from Yahoo Finance. Given that the NYSE and SSE are closed

on different holidays, missing values were interpolated on days where one was open and the other

was not (weekends and shared holidays were not interpolated). We next consider the inter-day

percentage change in adjusted closing price and quantize it to a ternary sequence with a value of

0 indicating a drop by more than 0.8%, 2 indicating a rise by more than 0.8%, and 1 representing

no significant change. In computing the influence of HS on DJ, the HS data is shifted forward by

one day. This is due to the fact that on each day, the NYSE closes before the SSE opens, as noted

in [55]. Thus, the HS is affected by the same day DJ, while the DJ is affected by the previous day

HS.

Figure 4.7 shows the estimate of the causal measure for different previous day states in

each direction using depth-1 CTW predictors in addition to the estimated DI (dashed line). Values
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from the final 3 years of the data are shown in the box plot, with the fairly tight error bars showing

that the CTW estimators have mostly converged (we would not expect complete convergence due

to the non-stationarity of stock market data).

There are numerous noteworthy points in Figure 4.7. First we note that, as a result of

averaging, the DI is never equal to the causal measure in the DJ to HS direction. In particular

we note that when DJ does not change, it has virtually no effect on the distribution of HS.

Furthermore, most of the time DJ does not change. On the other hand, on the rare occasion

that DJ went down and HS went up on the previous day (5.1% of days), the causal measure is

almost 4X the DI. Similarly, on the 4.2% of days where DJ goes up and HS goes down, the causal

measure from HS to DJ is roughly 10X the DI. When considering this type of data, the added

value of Q3 over Q1 becomes very clear. If one has access to what has already happened (i.e. the

previous day state), then why take an expectation over the past?

Remark 4. It is crucially important to make clear the notion of causality that is considered in this

context. There is no doubt that there are confounding factors (i.e. factors that affect both DJ and

HS) that would decrease the measured influence if included in the model. That having been said,

it is clear that there is information contained in the DJ that provides us with an improved ability

to predict the next day’s HS, a finding which may certainly be of use for applications outside

of classical “causal inference”. In order to make claims of causal influence, careful attention

needs to be paid to potential causes that are not considered in the model, thus requiring domain

expertise. As such, in scenarios where one cannot confidently rule out the potential presence

of confounding factors, the proposed measure may be more accurately viewed as a measure of

increased predictability (as in [61]).
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4.6 Discussion

The concepts presented in this chapter can be distilled to two primary contributions. First,

we have introduced a need for measuring causal influences between random processes that depend

on the sample paths of those processes. We have shown that in both simple thought experiments

and real stock market data, there exist sample path dependent causal influences that may occur

infrequently, and are thus not captured by average measures such as GC and DI. Second, we

have proposed a measure for identifying these influences. We have shown that this measure gives

results consistent with intuitions in a number of examples. Furthermore, we proved finite sample

bounds on the performance of an estimator of our proposed measure.

There are numerous directions for continued research in this area. Further leveraging

the tools from causal graphical models can enable a better understanding of the circumstances

in which we can estimate measures of causal influence reliably. Furthermore, the tools from

this field are necessary to distinguish between true causal influences and measures of improved

predictability. Additionally, extending the three questions proposed in the introduction to the case

of general causal graphs is of great interest. In particular, how can we measure how different

realizations of groups of random variables variables affect another group of random variables in a

given directed graph? We believe the philosophy presented in this chapter may be used to address

this question.

It is important to note the present work is built upon the restrictive assumption that all

processes are observed. There has been considerable recent interest in estimating causal influences

and graph structures when only a subset of processes may be observed [40, 36, 83]. As such,

there is an opportunity to study how these results may be applied to inferring dynamic causal

influences that are dependent upon realizations of a subset of processes.

Another line of future work is further investigation of the significance of partial directed

information developed in Section 4.4.1 and its application in quantifying information leakage for
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coupled systems with delayed information [44], providing fundamental performance limitations

of closed-loop systems [81] subject to delay constraints, or in characterizing rate-performance

tradeoffs [116] for network control problems with non-classical information structures [43, 67]

pertaining to information and delay constraints.

A final area for future work is the demonstration of how the causal measure can provide

added value in decision making. A promising avenue lies in the use of the causal measure for

aiding in time-varying model selection. Take, for example, the stock market example in Section

4.5.2. It is shown in [37] that using DI for model selection can yield improvements in the systemic

risk. A natural extension of this would be to use the sample path causal measure to create a

collection of models that are dependent upon the current “state” of the stock market. This would

enable minimizing the number of estimated parameters while ensuring that opportunities for

leveraging directed influences are not overlooked.
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Chapter 5

An Information Theoretic Perspective on

Direct and Indirect Effects

5.1 Introduction

Consider a directed acyclic graph (DAG), where nodes represent random variables and

edges represent a direct causal influence between two variables. We here discuss the problem of

quantifying these causal influences. Considerable attention has been paid to this problem in a

variety of communities; for the sake of exposition, we here coarsely categorize methods as either

statistical (i.e. those summarized by [93]) or information theoretic (IT) [54, 10, 38, 98]. When

viewed from an applications perspective, these two approaches are quite different. Statistical

approaches are common in epidemiology and medicine, whereas IT methods appear in the study

of complex natural systems, for example climatological [49] or neuroscientific [60]. While

this disparity makes sense given the fundamentally different perspectives employed by the

two approaches, the difference in perspectives is not well presented in the development of IT

methodologies.

To illustrate the philosophical differences between these two approaches, consider a
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simple example with a two node graph X → Y , where X ∈ {0,1} represents whether or not an

individual has won the lottery and Y ∈ R represents that individual’s average monthly spending

(assume for clarity that there are no confounding factors). A statistical measure such as the

average causal effect (ACE) [51, 92] would seek to answer the question “What is the effect of

winning the lottery on spending?” by comparing the average spending of lottery winners (X = 1)

against the average spending of lottery non-winners (X = 0): E[Y | X = 1]−E[Y | X = 0]. We

would of course expect this to be quite large. It is important to note that the ACE is defined

irrespective of the marginal distribution of X , meaning that the probability with which x occurs

has no bearing on the effect of x on Y . An IT approach addresses a subtly different question:

“What is the effect of the lottery on spending?” In other words, an IT measure considers the effect

of the random variable representing whether or not one wins the lottery on spending. Specifically,

the effect of X on Y would be given by the mutual information (MI), I(X ;Y ) (see [54, Sec. 2,

P1]). Using a simple IT inequality, we get I(X ;Y )≤ H(X)≈ 0. In words, because so few people

win the lottery, an IT measure indicates that the lottery has a negligible effect on spending. In

other words, the statistical measures consider the effect of a specific cause, whereas IT measures

consider the effect at a systemic level.

A second difference is that, whereas statistical approaches measure causal effects on the

value of an outcome, IT approaches measure the causal effect on the distribution of an outcome.

Each of these comes with benefits and drawbacks. With statistical approaches, the units are

preserved (in the previous example, the units of the ACE are dollars). While IT measures yield

the less interpretable unit of bits, they are able capture more complex causal effects, for instance

the effect that a variable has on the variance of another. Acknowledging this difference helps to

understand the disparity between the applications of statistical and IT measures. When evaluating

the causal link between smoking and cancer, the number of bits of information shared by the

smoking and cancer variables is not of great use. However, when studying the nature of complex

natural networks, it may be desirable to use a measure that can capture higher order causal effects.
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Figure 5.1: DAG G representing a mediation model

In the present work we seek to resolve the first difference by endowing IT measures

with the ability to measure specific causal effects. Furthermore, we show that existing IT

measures of causal influences are ill-equipped for distinguishing direct and indirect effects.

Following a parallel storyline to that of Pearl [91], we will provide measures of the total, (natural

and controlled) direct, and natural indirect effects. We will show that these measures do not

fundamentally change the underlying IT perspective on causality, but enable obtaining “higher

resolution” measures of causal influence. In doing so, we will provide increased clarity to the

aforementioned differences between IT and statistical causal measures.

5.2 Preliminaries

5.2.1 Notation and Problem Setup

Throughout this chapter we will be developing techniques for measuring the causal

influence of X ∈ X upon Y ∈ Y in the presence of a mediating variable Z ∈ Z using the DAG G

depicted in Figure 5.1. Without loss of generality, Z may represent a collection (Z1,Z2, . . . ,Zk) ∈

Z1×Z2× ·· · ×Zk = Z of all mediating variables. We define the parent sets as PAX = UX ,

PAZ = {X}∪UZ , and PAY = {X ,Z}∪UY , where dashed double headed arrows are used to indicate
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unknown dependencies between UX ∈ UX , UY ∈ UY , and UZ ∈ UZ (including the possibility

of US ∩UT 6= /0 for S,T ∈ {X ,Y,Z}). We may use the shorthand U = UX ∪UY ∪UZ ∈U. For

simplicity, we will assume that all variables are discrete with arbitrary finite supports, though

extending the proposed methods to continuous or mixed random variables is straightforward.

In general, we let p be the probability mass function (pmf) for all variables in the graph (i.e.

X ,Y,Z,U ∼ p), capital letters represent random variables, and lowercase letters represent their

realizations. For example, p(x | paX) gives the marginal probability of the event X = x given that

its parents took on values paX . We further assume that p satisfies the causal Markov condition

with respect to G [92] , with p(x,y,z,u) = p(u)p(x | uX)p(z | x,uZ)p(y | x,z,uY ). We use a hat

to indicate the do-operator, which represents taking the action of forcing a variable to assume

a particular value by means of intervention. For example, p(y | ẑ) = p(y | do(Z = z)) gives the

probability of y given that Z is forced to take the value z, irrespective of the probability with which

that value occurs. When working with distributions utilizing the do-operator, a set of rules known

as the do-calculus can be used to identify if and how the interventional distributions correspond

to observational distributions that do not utilize the interventions. While the reader is referred to

[92, Sec. 3.4] for the complete do-calculus, we provide a description of the rule which enables

swapping interventions for observations in Appendix D.1.

We conclude this section with definitions of information theoretic quantities that will play

a central role. The entropy of a random variable Y and conditional entropy of Y given X are given

by H(Y ) = −∑y p(y) log p(y) and H(Y | X) = −∑x,y p(x,y) log p(y | x). It is worth noting that

the conditional entropy yields the expected uncertainty of Y given X , and is not to be confused

with H(Y | X = x) =−∑y p(y) log p(y | x), which gives the uncertainty of Y when conditioning

on a particular value of X . For two distributions p and q over Y , the KL-divergence from p to q

represents the excess number of bits needed to represent Y if the distribution is assumed to be q

when it is in fact p, and is given by D(p(Y ) || q(Y )) = ∑y p(y) log p(y)/q(y). The KL-divergence is

zero if and only if p(y) = q(y) for all y, and is deemed infinite if there exists a y such that p(y)> 0
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and q(y) = 0. We use Bern(α) to represent the distribution of a Bernoulli random variable

with parameter 0 < α < 1. For the KL divergence between two Bernoulli random variables

with parameters α and β, we will use the shorthand D(α || β). Finally, the mutual information

(MI) between X and Y is given by I(X ;Y ) = H(Y )−H(Y | X) = E[D(p(Y | X) || p(Y ))], where

the expectation is taken with respect to X . These equivalent definitions of MI give rise to two

interpretations: (i) the average reduction in uncertainty in Y obtained by conditioning on X and

(ii) the average increased ability to predict Y resulting from conditioning on X . It is worth noting

that (barring some technical details), these definitions can be applied to continuous valued random

variables by substituting integrals for sums and probability density functions for pmfs.

5.2.2 Direct and Indirect Effects

Building upon the work of Robins and Greenland [103], Pearl [91] formalized definitions

of direct and indirect effects in the context of graphical models. Such a distinction is useful

in disentangling the mechanisms via which causal influences occur1. A canonical example is

presented by [48], wherein a birth control pill is suspected of directly increasing the likelihood

of thrombosis in women, while simultaneously reducing thrombosis through its prevention of

pregnancy (which is positively linked to thrombosis). In each of Pearl’s definitions, the magnitude

of the causal effect is specified for a specific value x and is measured with respect to a reference

(or baseline) value x∗. The simplest of these measures is the total effect (TE) of X = x on Y

given by E[Y | x̂]−E[Y | x̂∗]. The TE yields the answer to a very concise causal question, namely

“How much would we expect the value of Y to change if we were to change X from x∗ to x?” As

indicated by the name, the TE does not distinguish effects that x has on Y directly from those that

occur via a mediating variable Z. As such, Pearl proceeds to define the controlled direct effect

(CDE) of x on Y with mediator z as E[Y | x̂∗, ẑ]−E[Y | x̂, ẑ]. Once again, this measure addresses a

1The present discussion only scratches the surface of the extensive field of mediation analysis. For a more in
depth summary the reader is referred to [93, Sec. 5.1] and citations therein.
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clear causal question: “How much would we expect the value of Y to change if we were to change

X from x∗ to x, but kept Z at a fixed value z?” While this is an intuitive notion of direct effect, it

is important to note that it requires the intervention do(Z = z). Given that it may be of interest to

know the direct effect that occurs when the mediating variable is not controlled for, Pearl defines

the natural direct effect (NDE) as E[Y | x̂,Zx∗]−E[Y | x̂∗], where Zx∗ is the value Z would have

taken had X been x∗. This notion of simultaneously assigning a value to X and allowing Z to take

the value it would under a different X is central to the measurement of indirect effects. As such,

Pearl defines the natural indirect effect (NIE) as E[Y | x̂∗]−E[Y | x̂∗,Zx]. In words, the natural

indirect effect represents the expected change in Y resulting from changing Z from the value it

would take under x to the value it takes under x∗ while leaving X fixed at x∗. Next we will show

how this systematic decomposition of causal effects is absent from the IT literature.

5.2.3 Information Theoretic Notions of Causal Influence

While there is a considerable body of work on the development of IT techniques for

measuring causal influence, we here focus on information flow [10] and causal strength [54].

Information Flow

Drawing on the relationship between mutual information and statistical dependence, Ay

and Polani [10] define an IT notion of causal independence, which unlike mutual information,

is directed. Their definitions rely heavily on the post-interventional distribution, which dictates

a truncated factorization of a joint distribution in the presence of interventions. We start by

considering the information flow (IF) from X to Y , which is defined as:

I(X → Y ),∑
x

p(x)∑
y

p(y | x̂) log
p(y | x̂)

∑x′ p(x′)p(y | x̂′)
(5.1)
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We can see that if all the hats are removed from the above equation, then the standard mutual

information is recovered. By using these post-interventional distributions, however, all “upstream”

dependencies of X are ignored, and thus any relationship between X and Y resulting from

confounding variables is removed. Ay and Polani also define a conditional version of IF. Using

the mediation model in Figure 5.1, let V be some subset of remaining variables in the graph, i.e.

V ⊆U ∪{Z}. The IF from X to Y imposing V is then given by:

I(X → Y | V̂ ),∑
v

p(v)∑
x

p(x | v̂)∑
y

p(y | x̂, v̂) log
p(y | x̂, v̂)

∑x′ p(x′ | v̂)p(y | x̂′, v̂)
(5.2)

Noting that V always appears as an intervention, the conditional IF can be interpreted as repre-

senting the IF from X to Y when the value of V is controlled. The IF can be extended to measure

the flow to and from sets of nodes, though at present we only consider the flow from X to Y . IF

is not to be confused with the directed information of Massey [82], which does not employ any

interventional methods and is only used in the context of time series.

Within the IF framework, we can treat I(X → Y ) as a measure of the total effect of X on

Y and I(X → Y | Ẑ) as a measure of controlled direct effect. While these measures are intuitively

analogous to the measures in [91], it is difficult to formalize the nature of this analogy because we

cannot formulate IF measures as the answer to a concise causal question similar to those of the

previous section. Furthermore, because the conditional version of IF represents controlling a set

of variables, IF offers no way to measure the natural direct and indirect effects proposed by Pearl.

Causal Strength

The causal strength (CS) measure proposed by Janzing et al. [54] takes a slightly different

approach in that it measures the strength of specific edges in a DAG. We call this an “edge-centric”

perspective, in contrast with the “node-centric” perspective used by IF. To motivate the definition

of CS, the authors propose a collection of five postulates that they argue ought to be satisfied by
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measures of CS. Janzing et al. acknowledge that their postulates need not apply to all reasonable

measures of causal influence; as such, any present criticisms of CS can be attributed to differences

in the problem formulation. The postulates are briefly summarized here, and the reader is referred

to [54] for more thorough definitions: (P0) If the CS of an arrow is zero, then that arrow should be

able to be removed from the DAG without breaking the causal Markov condition. (P1) If the entire

DAG is given by X → Y , then the CS is I(X ;Y ). (P2) The strength of an arrow X → Y should be

defined locally, i.e. it should depend only upon the distributions p(y | paY ) and p(paY ). (P3) The

CS of an arrow X → Y should be at least the conditional mutual information I(X ;Y | PAY \{X}).

(P4) If the CS of a set of edges is zero, then the CS of all subsets of those edges should be zero.

Janzing et al. [54] proceed to propose a measure of CS that satisfies these postulates.

Central to their CS measure is the post-cutting distribution. Formally, let V = {V1, . . . ,Vn} be the

nodes in a graph, PAS
j be the subset of parents of Vj for which Vi→Vj ∈ S, and PAS̄

j = PA j \PAS
j .

Then the post-cutting distribution is given by:

pS(v1, . . . ,vn) = ∏
j

∑
paS

j

p(v j | paS̄
j , paS

j)

 ∏
v∈paS

j

p(v)

 (5.3)

We can see that the post-cutting distribution factorizes much like the joint distribution p– however,

for nodes at the receiving end of an edge in S, they are fed the marginal distribution of the node

at the other end, rather than the actual value of that node. Using the post-cutting distribution,

the CS of a set of edges S is then given by CS = D(p || pS), and thus provides a measure of how

much excess information is needed to accommodate the severed edges. Once again, the reader is

referred to [54] for further intuition.

Consider CS in the context of the mediation model in Figure 5.1, i.e. D(p(X ,Y,Z,U) ||

pS(X ,Y,Z,U)) for some set of edges S⊆ {X → Y,X → Z,Z→ Y}. Within the constraints of the

CS framework, one might seek to measure the total, direct, and indirect effects as the strength

of the edge sets ST E = {X → Y,X → Z,Z→ Y}, SDE = {X → Y}, and SIE = {X → Z,Z→ Y},
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respectively. To see why this is insufficient, consider an extreme case of the birth control pill

example above, where the indirect and direct effects of X on Y are perfectly complementary such

that for all x1,x2 ∈ X and y ∈ Y , p(y | x̂1) = p(y | x̂2). Any reasonable measure of total effect

will conclude that no value of x has an effect on Y – however, note that from postulate (P4), the

total effect (as we have defined it in the CS framework) must be non-zero if either the direct or

indirect effect is non-zero. A similar example can be constructed for the insufficiency of CS as a

measure of indirect effects by having the effect of X on Z be canceled out by the effect of Z on Y .

Finally, we note that CS is similar to IF in that it does not yield a clear causal question for which it

gives the answer. This is perhaps justified by the decision to define a set of formal postulates that

are used to link the properties of CS with our intuitions – however, given that causal influences

are likely to be measured in order to obtain a better understanding of the system under study,

we find it to be of great practical use to pair causal measures with an easily interpretable causal

question for which the measure provides an answer. We will now show that this can be achieved

by considering the causal effect of specific values of x.

5.3 Novel Information Theoretic Causal Measures

The observation that the MI I(X ;Y ) does not capture how different values of x may contain

different amounts of information about Y has been made in a variety of contexts throughout

the literature, including experimental design [71, 26], neural stimulus response [29], measuring

surprise [53], and most recently, distinguishing between information transfer and information

copying [62]. Central to each of these works is the development of a notion of MI for a specific

value of x, i.e. I(x;Y ). There is, however, no inherent I(x;Y ) implied by the definition of I(X ;Y )

– to see this, we use the notation of [29] and provide two candidate definitions of I(x;Y ) based on
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the two definitions of I(X ;Y ) provided in Section 5.2.1:

I1(x;Y ) = D(p(Y | X = x) || p(Y )) (5.4)

I2(x;Y ) = H(Y | X = x)−H(Y ) (5.5)

It is well understood that, in general, I1(x;Y ) 6= I2(x;Y ). This is clear to see by simply noting

that, for any joint distribution X ,Y ∼ p, I1(x;Y ) ≥ 0 for all x, whereas it is possible to have

I2(x;Y )< 0. In words, the knowledge of a specific value of x will only provide us with a more

accurate distribution of Y (I1 ≥ 0), though it is possible for this distribution to have a greater

entropy than the marginal distribution (I2 < 0). We here use I1 as a foundation for establishing

value specific measures of causal influence, and, using the terminology of [62], refer to it as the

specific mutual information (SMI). Building upon this language in the present context, we refer

to these measures as measuring specific causal effects. To our knowledge, the use of SMI in the

context of quantifying causal influence is novel – as such, we begin with an informal discussion

around the use of SMI for the quantification of causal influence in two-node DAGs, followed by a

formal definition of various specific causal effects in a mediation model.

5.3.1 Specific Mutual Information in Two-Node DAGs

Consider a DAG X → Y with joint distribution over nodes X ,Y ∼ p, and for the sake of

exposition, assume there are no confounding variables. In this simple scenario, when considering

the effect of X on Y , we can freely exchange interventions for observations (assuming we only

consider x s.t. p(x) > 0), and thus the average causal effect of x with respect to baseline x∗ is

given by E[Y | x̂]−E[Y | x̂∗] = E[Y | x]−E[Y | x∗]. Once again, this addresses the question of how

much the value of Y is expected to change as a result of switching from x∗ to x. With regard to

the CS and IF methods discussed above, both would quantify the effect of X on Y as the I(X ;Y ).

Now consider using the SMI I1(x;Y ) as a measure of the specific causal influence of x
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upon Y , and note the following observations:

(I) We have the equivalence I(X ;Y ) = E[I1(X ;Y )], where the expectation is taken with

respect to X . As such, we can think of the specific causal effect as a random variable, whose

expectation is the mutual information. In doing so, we are able to capture that different values of

x may have different magnitudes of causal effect on Y , with each of those effects occurring with

some probability according to p(x). Moreover, this makes clear that the perspective adopted here

is consistent with that of other IT measures.

(II) I1(x;Y ) is non-negative for all x ∈ X . Whereas a negative ACE has the clear inter-

pretation of x causing a decrease in the expected value of Y , we are measuring influences that

x has on the distribution of Y . Given that there is no obvious notion of a (potentially negative)

difference between distributions, we utilize a definition that results in any causal effect yielding a

positive magnitude. This comes at the cost of foregoing the ability to differentiate negative and

positive causal influences in the sense of the ACE. This further serves as a partial justification for

using I1, rather than I2, as a foundation.

(III) The SMI does not require specifying a reference value x∗. Instead, we can view SMI

as measuring the causal effect of x as compared with the X that would have occurred naturally.

This suggests an intuition for why IT measures commonly appear in the measurement of causal

influences in complex natural networks – values of x that are seen as changing the course of

nature will be assigned a large causal influence. Given that we can (in this setting) exchange

observation for intervention, we can view the SMI as comparing the effect of an intervention

x̂ with a random (i.e. non-atomic) intervention X̂ with X ∼ p (see [92, 97] for discussions on

random interventions).

(IV) The SMI addresses a very clear causal question: “How much different would we

expect the distribution of Y to be if, instead of forcing X to take the value x, we let X take

on a value naturally?” Stated more compactly: “How much would we expect performing the

intervention do(X = x) to change the course of nature for Y ?”
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(V) We can interpret the SMI as comparing a ground truth distribution conditioned on

the actually occurring value x (p(Y | x)) with a counterfactual distribution wherein nature was

allowed to run its course (p(Y )). This works well with the interpretation of the KL-divergence

as a measure of excess bits resulting from encoding Y using the distribution that is not the true

distribution from which Y is sampled. The use of the KL-divergence is further justified in this

context by the fact that the logarithmic loss is unique in its ability to capture the benefit of

conditioning on X in the prediction of Y [56].

(VI) Finally, we note that I1(x;Y ) = 0 if and only if p(y | x) = p(y) for all y. By contrast,

it is possible to have I2(x;Y ) = 0 and p(y | x) 6= p(y). To illustrate why this is not desirable,

consider the following example:

Example 5.3.1. Consider a two-node DAG X → Y with X ∼ Bern(1/7), Y | X = 0∼ Bern(1/10),

and Y | X = 1 ∼ Bern(8/10). It is clear that the distribution of Y is highly dependent upon the

value of X. Next note that Y ∼ Bern(p1), where:

p1 =
1
7
· 8

10
+

6
7
· 1

10
=

2
10

(5.6)

Thus, we can see that H(Y ) = H(Y | X = 1) and thus I2(X = 1;Y ) = 0. On the other hand, we

have I1(X = 1;Y ) = D(8/10 || 2/10) = 1.2 bits. This exemplifies how simply measuring differences

in entropy is insufficient for capturing causal influences.

We will conclude this section by returning briefly to the lottery example discussed in

the introduction, recalling that X ∈ {0,1} represents whether or not an individual has won the

lottery and Y ∈ R represents that individual’s average spending. Given that virtually nobody wins

the lottery, we have p(X = 0)≈ 1 and thus p(y) = ∑x p(y | x)p(x)≈ p(y | X = 0). As such, the

specific causal effect of losing the lottery is I1(X = 0;Y )≈ 0. By contrast, p(y | X = 1) 6= p(y),

and thus the specific causal effect of winning the lottery will be I1(X = 1;Y )� 0. Framed in

terms of the causal question discussed above in (IV), we would expect forcing someone to win
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the lottery to change the course of nature much more than forcing someone to not win the lottery.

5.3.2 Specific Causal Effects in the Mediation Model

Following the process of [91], we here formalize a series of definitions of total/direct/indi-

rect causal influences from an information theoretic perspective. When leaving the comfort of the

unconfounded two-node DAG, it is important to incorporate the notion of intervention directly

into the definition of the causal measures:

Definition 3. The specific total effect of x on Y is defined as:

ST E(x→ Y ), D(p(Y | x̂) ||∑x′ p(x
′)p(Y | x̂′)) (5.7)

With the exception of the interventional notation, the STE is equivalent to the SMI. Note that for

a DAG given by X →Y , we will have ST E(x→Y ) = I1(x;Y ) but ST E(y→ X) = 0 6= I1(y;X) =

D(p(X | y) || p(X)), where ST E(y→ X) represents the specific total effect of y on X .

Next we define the specific controlled direct effect (SCDE) of x on Y . Given that comput-

ing the controlled direct effect must be done by means of intervention on Z, we define the SCDE

with respect to a specific value z, as it is unclear what distribution over Z should be used if the

definition were to take an expectation over all possible values of z (see Theorem 9).

Definition 4. The specific controlled direct effect of x on Y with mediator z is defined as:

SCDE(x→ Y ;z), D(p(Y | x̂, ẑ) ||∑x′ p(x
′)p(Y | x̂′, ẑ)) (5.8)

The SCDE measures how much we would expect performing the intervention do(X = x) to change

the course of nature given that Z is held fixed at z. As mentioned in Section 5.2.2, computing

the controlled direct effect involves intervening upon the mediating variable Z, and thus does not

convey the direct effect that occurs naturally from fixing a value of X .
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Next, the specific natural direct effect measures the direct effect of x on Y that occurs

naturally when the mediator is not controlled for:

Definition 5. The specific natural direct effect of x on Y is defined as:

SNDE(x→ Y ), D(p(Y | x̂) ||∑x′,z′ p(x
′)p(z′ | x̂)p(Y | x̂′,z′)) (5.9)

It is helpful to dissect the two distributions of Y considered by the SNDE. Both distributions are

given by a weighted combination of the distribution of Y conditioned upon intervened values

of X and Z. In both cases, the intervened values Z are weighted by the probability with which

they would occur under the intervention x̂. For the intervened values of X , however, the first

distribution uses the “ground truth” value x, whereas the second uses the “naturally occurring”

x′, weighted according to p(x′). Using the same logic, we can define a specific natural indirect

effect:

Definition 6. The specific natural indirect effect of x on Y is defined as:

SNIE(x→ Y ), D(p(Y | x̂) ||∑x′,z′ p(x
′)p(z′ | x̂′)p(Y | x̂,z′)) (5.10)

Conducting a similar dissection, we see that both arguments of the KL-divergence are given by a

weighted average of the conditional distribution Y under the interventions x̂ and ẑ′. The difference

is that each value of z′ is weighted by its probability with respect to the “ground truth” value x

in the first distribution, while each value of z′ is weighted by its probability with respect to the

“naturally occurring” x′ in the second distribution.

Unfortunately, the proposed definitions of SNDE and SNIE yield no obvious inequalities

with respect to the STE (for example, SNDE(x→ Y )+SNIE(x→ Y ) 6≤ T E(x→ Y ) in general).

While this is initially unintuitive, it can be justified by the decision to have all causal influences

be assigned a non-negative magnitude. As such, we would expect that contradictory indirect and
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direct effects could individually have a large magnitude while still resulting in a total effect of

zero.

5.3.3 Equivalence Relations

We briefly introduce two theorems relating the proposed specific measures to IF and CS.

Theorem 8. The expected STE is equivalent to the information flow, i.e. E[ST E(X → Y )] =

I(X → Y ), where the expectation is taken with respect to the marginal distribution over X.

A proof is found in Appendix D.3.1. The above theorem shows that the expected STE recovers

the standard (unconditional) IF from X to Y and follows directly from the definitions in (5.1) and

(5.7). Notably, the expected STE is not equivalent to the CS associated with any subset of the

arrows in the graph. Next, we show that both IF and CS provide a notion of expected SCDE:

Theorem 9. The conditional IF is given by the expected value of the SCDE taken with respect to

the marginal distributions of X and Z:

I(X → Y | Ẑ) = ∑
x,z

p(x)p(z)SCDE(x→ Y ;z) = Ep(X)p(Z)[SCDE(X → Y ;Z)]

Furthermore, if the DAG consists of only X, Y , and Z (i.e. U = /0), then the CS of X → Y is given

by the expected value of the SCDE taken with respect to the joint distribution of X and Z:

CX→Y = ∑
x,z

p(x,z)SCDE(x→ Y ;z) = Ep(X ,Z)[SCDE(X → Y ;Z)]

A proof is found in Appendix D.3.2. This theorem clarifies the point made earlier with regard to

the value of a measure of natural direct effect. In particular, when taking an average with respect

to possible control values for the mediator Z, it is not clear what distribution over Z should be

used.
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5.3.4 Conditional Specific Influences

Even though the above causal measures are defined for specific values of X , they provide a

notion of average causal influence in that they are implicitly averaging over all possible covariates

U . Given that different values of u may significantly affect the nature of the relationship between

x and Y , we define conditional versions of the above definitions for a specific value U = u. We

here consider the general case where we can only observe a subset of the covariates Ũ ⊆U :

Definition 7. The conditional STE of x on Y in setting ũ is defined as:

ST E(x→ Y | ũ), D(p(Y | x̂, ũ) ||∑x′ p(x
′ | ũ)p(Y | x̂′, ũ)) (5.11)

For the special case where we can observe all relevant covariates, i.e. Ũ =U, the conditional

STE can be simplified as:

ST E(x→ Y | u), D(p(Y | x̂,uY ,uZ) ||∑x′ p(x
′ | uX)p(Y | x̂′,uY ,uZ)) (5.12)

This definition violates the locality postulate (P2) of Janzing et al. [54] in that the causal effect

of x on Y may be dependent upon how X is affected by its own parents. Allowing this is,

however, consistent with the perspective that IT measures quantify the deviance from the course

of nature in that the value u dictates the current natural state. Nevertheless, the terms p(x′ | ũ)

and p(x′ | uX) can be replaced with p(x′) if one wishes to remain faithful to the locality postulate.

The conditional versions of SCDE, SNDE, and SNIE follow very similar logic to that of the STE,

and can be found in Appendix D.2.

5.3.5 Identifiability

When U is partially observable or unobservable, the nature of the dependence relationships

between UX , UY , and UZ will dictate the ability to estimate the proposed causal measures from
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observational data – more specifically, the ability to determine the interventional distributions

given only estimated conditional distributions. This is crucially important given that performing

interventions in many complex natural systems is infeasible. The following theorem states when

the conditional specific measures can be estimated in the partially observable setting where only

Ũ ⊂U can be observed:

Theorem 10. Consider a dataset containing observations of X, Y , Z, and a partial setting

Ũ ⊆U. Then, the conditional STE, SNDE, and SNIE, can be estimated from observational data if

there exist Ũ1,Ũ2 ⊆ Ũ such that the following two conditions hold: (1) (X ⊥⊥ Y | Ũ1)GX and (2)

(X ⊥⊥ Z | Ũ2)GX , where GX represents the DAG with all outgoing arrows from X removed, and

(A⊥⊥ B |C)G represents the d-separation of A and B by C in DAG G .

The above theorem provides a graphical criteria for which the interventional distributions utilized

by the setting specific causal effects may be swapped for conditional distributions. The proof

uses a direct application of Pearl’s do-calculus [92, Theorem 3.4.1], and is provided in Appendix

D.3.3. By letting Ũ = /0, identifiability conditions for the specific causal effects of Section 5.3.2

are obtained. Similarly, the theorem provides the corollary that the setting specific causal effects

may be estimated from observational data when U is fully observable. It is important to note that

the above theorem assumes that each conditional distribution can be sufficiently well estimated.

Indeed, the “increased resolution” of the proposed measures comes at a cost in that reliable

estimation of the proposed measures poses challenges for values of x that occur infrequently.

Consider, for example, estimating the distribution in the second argument of the KL-divergence

defining the SNDE in (5.9), namely p(y | x̂′,z′). Given that there is a sum over x′ and z′, it is

necessary to know this distribution for every pair (x′,z′). Thus, when p(x′,z′) is very small, a

significant amount of date will be required to estimate p(y | x′,z′) (and therefore the SNDE)

reliably.
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5.4 Examples

We now present three examples of notions of causal influence that are unique to specific

causal influences.

5.4.1 Chain Reaction

For the first example we will consider a simple chain X → Z→ Y . This can be thought of

as a simplified version of the example proposed by Ay and Polani [10] and modified to include

noise by Janzing et al. [54, Example 7]. We will consider the simplest case, where a binary

message is being passed from X to Z to Y , with the message being flipped by Z and Y with

probability ε. We will interpret each variable as representing the message it passes on, i.e. X = 1

means “X passes the message 1 to Z.” Formally, let X ,Y,Z ∈ {0,1} with X ∼ Bern(0.5):

Z =


X w.p. 1− ε

X⊕1 w.p. ε

Y =


Z w.p. 1− ε

Z⊕1 w.p. ε

(5.13)

where ⊕ is the XOR operation.

Focusing first on the effect of x on Y , we note that because the only path from X to Y is

the one through Z, the direct effect is zero and the total and indirect effects are equal. Noting that

Y ∼ Bern(0.5), Y | do(X = 0)∼ Bern(2ε(1− ε)), and Y | do(X = 1)∼ Bern(1−2ε(1− ε)), the

total effect is the same for both x ∈ {0,1} and is given by:

ST E(x→ Y ) = D(2ε(1− ε) || 0.5)−−→
ε→0

1 (5.14)

Thus, as the probability of flipping the message approaches zero, Y will be deterministically

linked to X , and X resolves the entire one bit of uncertainty associated with Y . Now consider the

conditional STE of z on Y for a particular x. We can compute this by comparing the distributions
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p(y | x, ẑ) = p(y | z) and p(y | x). Given the symmetry of the problem, this will take one of two

values depending on whether or not x and z are equal:

ST E(z→ Y | x) =


D(ε || 2ε(1− ε)) x = z

D(ε || ε2 +(1− ε)2) x 6= z
−−→
ε→0


0 x = z

∞ x 6= z

To understand this result, fix ε to be an arbitrarily small number, and we can say with very high

confidence that Z will pass on its received message accurately. Thus, when x = z, it is, in a

sense, unreasonable to endow Z with responsibility for causing the value taken by Y when it is

propagating the message in a nearly deterministic manner (note that for any fixed ε > 0 the STE

will not be exactly zero). In such a case, it is not so much Z that is causing Y , but rather X that

initiated a chain reaction. On the other hand, in the unlikely occurrence that x 6= z, we have that Z

does have a causal effect on Y . This scenario can be thought of as Z acting of its own volition in

selecting a message to pass to Y .

We acknowledge that the notion of an unbounded causal influence is initially unsettling.

When looking closer, however, this property is intuitive. First, we note that for any fixed ε > 0,

the STE will be finite. It is only for ε = 0 that the STE could be infinite, but in that case, the

setting that results in infinite influence happens with probability zero. Thus, in general, an infinite

influence could only be achieved through intervention. Furthermore, such an intervention would

have to assign a value to a cause that occurs with probability zero, and that cause would in turn

have to enable an otherwise impossible effect to have non-zero probability.

As mentioned in Section 5.3.4, this setting specific violates the locality postulate (P2) of

Janzing et al. [54] in that the effect of z depends on the value of its own parent, x. We do not

claim that the perspective taken here is “correct,” but merely point out that there can be intuitive

justifications for considering the value of the parent of a cause in evaluating the causal effect.
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5.4.2 Caused Uncertainty

Consider a 3-node DAG characterized by the connections X → Y ← Z and the following

(conditional) distributions:

X ∼ Bern(0.5) Z ∼ Bern(0.1) Y | X ,Z ∼


Bern(0.5) Z = 1

Bern(0.1) (X ,Z) = (0,0)

Bern(0.9) (X ,Z) = (1,0)

Given that X and Z are both parentless, we can treat interventions on X and Z as observations, and

the CS, conditional IF, and conditional mutual information (CMI) are equivalent. In particular,

we have that CX→Y = I(X → Y | Ẑ) = I(X ;Y | Z) ≈ 0.48 and CZ→Y = I(Z→ Y | X̂) = I(Z;Y |

X)≈ 0.06. Before considering the specific causal measures, note that characterization of CMI as

a difference of conditional entropies as I(Z;Y | X) = H(Y | X)−H(Y | X ,Z) provides us with the

interpretation of CMI as the reduction in uncertainty of Y resulting from the added conditioning

of Z. Of course, as a result of conditioning reduces entropy, this will always be non-negative.

Next we consider ST E(x→ Y | z) and ST E(z→ Y | x) for (x,z) ∈ {0,1}2. Given the

symmetry of the problem with respect to X , we only need to consider two of the four possible

contexts, namely (x0,z0), (0,0) and (x0,z1), (0,1). In order to compute the STE for each X

and Z to Y for both contexts, we need the following distributions:

p(Y | x0,z0) = Bern(0.1) p(Y | x0,z1) = Bern(0.5)

p(Y | z0) = Bern(0.5) p(Y | z1) = Bern(0.5)

p(Y | x0) = Bern(0.14)

For a given context, the STE is given by ST E(x→Y | z) = D(p(Y | x,z) || p(Y | z)) and ST E(z→
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Y | x) = D(p(Y | x,z) || p(Y | x)):

ST E(x→ Y | z)≈


0.53 z = 0

0.00 z = 1
ST E(z→ Y | x)≈


0.01 z = 0

0.52 z = 1

The results presented above are intuitive: when z = 0, then the value taken by Y is largely

determined by X , and the knowledge that z = 0 tells us very little about the distribution of Y . On

the other hand, when z = 1, X has no bearing on the value taken by Y . Thus, in this scenario, it is

the value taken by Z that has caused the shift in the distribution of Y , even though Z provides no

information with regard to the particular value taken by Y . In this sense, we can think of Z as

causing uncertainty in Y . This scenario makes particularly clear why it makes sense to condition

on the cause but take an expectation with respect to the effect – no outcome y could be attributed

to being a result of z = 1, despite the clear influence that such an event has on the distribution of

Y .

5.4.3 Shared Responsibility

Consider a scenario where a collection of n iid variables Xi ∼ Bern(ε) collectively influ-

ence a single outcome Y , i.e. Xi→ Y for i = 1, . . . ,n. For a given context {xi}n
i=1, let k be the

number of xi that are one, i.e. k = ∑i xi. Then let Y be distributed as:

Y | X1, . . . ,Xn ∼ Bern
(

1
2K

)

where K = ∑i Xi is a random variable. One interpretation of this example is that each Xi is a

potential inhibitor of Y . As more inhibitors become activated (i.e. as k grows), the effect of

adding another inhibitor diminishes. Since the value taken by K depends on a context, however,

this diminishing influence will not be captured by a measure that is not context-dependent.
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As with the previous example, the CS, conditional IF, and CMI are equivalent for this

problem setting. While there is no simple computation for these measures as a function of ε and

n, there are a couple of key points. First, the influence of each of the variables Xi on Y is the

same, i.e. I(Xi;Y | X1, . . . ,Xi−1,Xi+1, . . . ,Xn) = I(X1;Y | X2, . . . ,Xn) for all i = 1, . . . ,n. Second,

as n→ ∞, the probability of Y = 1 goes to zero, and as ε→ 0, the probability of Y = 1 goes to

one. In either of the limits, the entropy of Y goes to zero and thus so does the causal influence of

each Xi as measured by either CMI, conditional IF, or CS.

Now consider a realization {xi}n
i=1 and the corresponding ST E(x1→Y | x2, . . . ,xn). While

the influence of each xi on Y will not be the same for a given realization, the symmetry of the

problem is such that the computation will be performed in the same manner for each xi. Letting

k1 , ∑
n
i=2 xi be the number of ones excluding x1, we define the following distributions:

p(Y | {xi}n
i=1) = p(Y | k) = Bern

(
1
2k

)
p(Y | {xi}n

i=2) = p(Y | k1) = Bern
(

ε

2k1+1 +
1− ε

2k1

)

Then, for a given context, the STE is a function of x1 and k1:

ST E(x1→ Y | k1) = D(p(Y | k) || p(Y | k1)) =


D( 1

2k1
|| ε

2k1+1 +
1−ε

2k1
) x1 = 0

D( 1
2k1+1 || ε

2k1+1 +
1−ε

2k1
) x1 = 1

In interpreting these results, first assume that ε is small, meaning that for each of the inhibitors, it

is unlikely that it will be activated. As a result of this assumption, we have ST E(X1 = 0→ Y |

k1)< ST E(X1 = 1→ Y | k1), i.e. an inhibitor has a greater influence when it is activated. More

interestingly, we note that ST E(x1→ Y | k1) is strictly decreasing in k1. This is consistent with

the intuition provided above, namely that if a large number of inhibitors are active, then they

share responsibility and the influence of any single one is negligible. On the other hand, if only
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one is activated (i.e. (x1,k1) = (1,0)), then in the limit of ε→ 0, its influence will be infinite.

5.5 Case Study – Effect of El Niño-Southern Oscillation on

Pacific Northwest Temperature Anomalies

We now present an application of the proposed framework to measuring the specific causal

influences of the El Niño-Southern Oscillation (ENSO) on the temperature anomaly signal in the

pacific northwest (PNW, latitude: 47◦N, longitude: 240◦E). ENSO is characterized by the sea

surface temperature in the Niño 3.4 region located in the equatorial Pacific (latitude: 5◦S-5◦N,

longitude: 170◦W-120◦W). The ENSO signal is typically understood by being in one of three

phases (or states) – a neutral phase (we will refer to this as E = 0) gives rise to a precipitation

region centered near longitude 160◦E, the El Niño phase (E = 1) gives rise to an eastward shifted

precipitation region (∼170◦W), and the La Niña phase (E =−1) gives rise to a westward shifted

precipitation region (∼150◦E) [2]. Niño and Niña phases can occur with varying intensities during

the winter months with a typical return period of two to seven years [70]. When a Niño or Niña

phase occurs, the shifted precipitation signal produces large scale atmospheric pressure waves

that influence North American land temperatures [122]. We here use the proposed framework to

quantify the causal effect of this teleconnection2, focusing specifically on the temperature in the

PNW.

This application is a particularly good fit for the proposed analysis for a number of reasons.

First, by utilizing a collection of simulation model runs, we can obtain an immense amount of

data. Second, domain expertise can be leveraged to construct causal DAGs prior to performing

analysis. For example, it is well known that the ENSO signal influences temperature as opposed

to the temperature influencing ENSO. Third, there are well-accepted methods for detrending

2Teleconnection is a commonly used term in climate science, defined by Wikipedia as “climate anomalies being
related to each other at large distances (typically thousands of kilometers).”
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Figure 5.2: ENSO 3.4 index from 1851-1871 along with threshold for determining ENSO phase.

signals, and these methods can be used to control for possible confounding effects. Fourth, it is to

be expected that different phases of the ENSO signal will, in some sense, give rise to larger causal

effects than other phases. The proposed framework can be used to quantify these differences in a

formal sense.

5.5.1 Data and Preprocessing

The analyzed dataset is composed of nine simulated model runs from the National Center

for Atmospheric Research’s Community Earth System Model, version 2 (CESM2) [39]. This

is the gold standard US climate model. Each of the model runs provides an array of daily

temperature values spanning the years 1850 to 2015 from which we can compute the ENSO 3.4

index and directly obtain the PNW two-meter temperature. Each of the model runs provides an

independent realization of possible evolutions of temperatures that obey the underlying dynamic

and thermodynamic equations as encoded by the model. It is important to clarify that the model

is not intended for prediction, but rather gives possible atmospheric states for a given set of initial

conditions and constraints determined by the selected time period (i.e. CO2 forcing, solar/lunar

cycles, etc.). Both the ENSO index and PNW two-meter temperature signals have the mean and

the leading six harmonics of the annual cycle removed, leaving only the anomalous components of

the signal. This is standard practice in the analysis of climate data (e.g. [64]). We will henceforth
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strictly consider the anomaly signals.

The ENSO index is shown in Figure 5.2, along with a plus/minus one degree threshold

for determining the quantized ENSO phase. It is clear that the ENSO signal does not reliably

alternate between E = 1 and E =−1 with a constant period. Furthermore, we can see that the

ENSO signal is strongest in or near to January (marked by vertical grid lines). As such, we

limit our focus to the months of January, February, and March, as it is not interesting to measure

the effect of the ENSO signal in the months where it is not present. We further simplify the

problem by quantizing the ENSO index on an annual timescale, i.e. we assign a single value to

E ∈ {−1,0,1} for January-March of a given year based on the ENSO index value on January

1st of that year. Given that we are estimating the effect of ENSO on temperature, we similarly

Figure 5.3: Histogram representations of the transitions of temperature averages. Each cell
represents the counts of how many times the transition from the past average Ti−1 to the current
average Ti occurs either in the complete dataset (top left) or for specific values of the ENSO
signal. The count given in the titles represent the sum of all the cells.

consider the temperature signal only during the months of January, February, and March. Rather

than attempting to assess the effect of ENSO on daily temperature anomalies, we choose to focus

113



on two-week averages. As we will discuss in the next section, this choice also facilitates the

causal modeling. As a final processing step, we quantize the temperature anomaly averages to

T ∈ {−1,0,1}. While this quantization does come with an inevitable loss of resolution, it yields

the easily understood interpretation of the temperature signal as representing either a cold front, a

heat wave, or neutral. We compute the quantization threshold on the entire dataset (i.e. before

averaging and before selecting for months) such that one third of days are in each category. The

averages are then compared to these thresholds, given by -1.3 and +1.94 degrees. Figure 5.3

gives an impression of how the temperature averages evolve over time with respect to various

ENSO phases. Each cell represents the number of counts where a given temperature average

Ti−1 ∈ {−1,0,1} was followed by a temperature average Ti ∈ {−1,0,1}3. As we can see from

the count in the the top left panel of Figure 5.3, the resultant dataset after selecting for the winter

months and taking two-week averages consists of 9840 samples.

5.5.2 Causal Modeling

In order to implement the proposed framework, we first need to formulate a causal DAG

representation of the dataset discussed above. As a starting point, consider the DAG on the left

side of Figure 5.4, where we let E represent an annual ENSO phase, T1, . . . ,T6 represent the

quantized two-week temperature anomaly averages for January through March (i.e. T1 averages

January 1st through 14th, T2 averages January 15th through 28th, etc.), and U represents the other

factors, such as seasonality and CO2 forcing. This DAG encodes a number of assumptions. First,

it encodes the intuition that seasonality may affect ENSO and the temperature, but not the other

way around. Similarly, ENSO will affect the temperature, but not the other way around. The more

interesting implicit assumption is that there is a persistence signal in the temperature represented

3One might observe that the sum of a row is not necessarily equal to the sum of the corresponding column. This
is because the past temperature averages are shifted by two weeks, i.e. they include the last two weeks of December
and not the last two weeks of March for each year. Given the number of years and number of model runs, this can
result in fairly significant differences.
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by the arrow Ti−1→ Ti. Importantly, we have assumed that this persistence signal is Markov

(when conditioned on E and U), i.e. there is no arrow Ti−k → Ti for k > 1. This assumption

significantly simplifies estimation of the direct and indirect effects of E on Ti, as those require

estimating the distribution of Ti for every possible combination of its parents. This serves as a

motivation for the decision to consider two-week averages – if we were to simply consider daily

temperatures, it is unreasonable to expect that Ti would be independent of Ti−2 when conditioned

on E, U , and Ti−1. We next incorporate two assumptions in order to simplify the causal model.

Figure 5.4: Left: Complete DAG representation of climate variables. Right: Simplified DAG
after detrending and incorporating the assumption of stationarity.

First, we assume that all the effects of U are removed by the detrending and removal of annual

cycle performed in the preprocessing steps. It is to be expected that this assumption will hold

for the well known shared causes (such as the aforementioned seasonality and CO2 forcing), but

the possibility of other factors that have effects not captured by the leading six harmonics of the

annual cycle is important to note. The second assumption we make is that the distribution of the

temperature anomaly averages does not change over time, i.e. that p(ti | ti−1,e) and p(ti | e) are

not dependent on i. After making these assumptions, we obtain the simplified DAG on the right

of Figure 5.4, where we introduce the new variable S to represent the past temperature anomaly

average and T to represent the subsequent temperature average, and note that this perfectly

matches the mediation model in Figure 5.1 with U = /0. We can think of T as representing Ti and
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S as representing either Ti−1 or the collection T1, . . . ,Ti−1. To see why these two interpretations

of S are equivalent, consider the SNDE, given by:

SNDE(e→ T ) = D(p(T | ê) ||∑e′,s′ p(e
′)p(s′ | ê′)p(T | ê,s′)) (5.15)

Now let T = Ti and S = T1, . . . ,Ti−1 , T i−1
1 , and note that:

p(s | ê) = p(t i−1
1 | ê) = p(ti−1 | ê)p(t i−2

1 | ê, ti−1)

p(T | ê,s) = p(T | ê, t i−1
1 ) = p(T | ê, ti−1)

Plugging these into the second argument in (5.15), we get:

∑
e′,s′

p(e′)p(s′ | ê′)p(T | ê,s′) = ∑
e′,t i−1

1
′
p(e′)p(t ′i−1 | ê′)p(t i−2

1
′ | ê′, t ′i−1)p(T | ê, t ′i−1)

= ∑
e′,t ′i−1

p(e′)p(t ′i−1 | ê′)p(T | ê, t ′i−1)

∑
t i−2
1
′
p(t i−2

1
′ | ê′, t ′i−1)


= ∑

e′,t ′i−1

p(e′)p(t ′i−1 | ê′)p(T | ê, t ′i−1)

Given that S appears nowhere in the first argument, we can see that whether S = Ti−1 or S = T i−1
1 ,

the result is the same. The same procedure can be applied to show equivalence for the SNIE. As

such, we let S = Ti−1 and directly use the definitions provided Section 5.3.2 to measure the causal

influence of ENSO on temperature. As a result of the assumption that p(ti | e) does not depend

on i, we have that p(t | e) = p(s | e) for t = s. It should be noted that for T = T1 (i.e. the average

for the first two weeks of January), we define S = T0 to be the average taken over the last two

weeks of December. Using this causal model, we define the corresponding dataset from which

we estimate the causal influences as D = (en,sn, tn)9840
n=1 .
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5.5.3 Estimation

Given that there is a large amount of data and a relatively small alphabet size, we utilize

plug-in estimators of the proposed measures, where every distribution in question is estimated

using a maximum likelihood estimator. Given that E has no parents in the DAG given on the right

side of Figure 5.4, we can freely exchange interventions ê for observations e in the estimation of

the effect of e on T . As such, the estimates of the specific effect of ENSO on temperature are

given by:

ŜT ED(e→ T ) = D(p̂D(T | e) || p̂D(T )) (5.16)

ŜNDED(e→ T ) = D(p̂D(T | e) ||∑e′,s′ p̂D(e′)p̂D(s′ | e)p̂D(T | e′,s′)) (5.17)

ŜNIED(e→ T ) = D(p̂D(T | e) ||∑e′,s′ p̂D(e′)p̂D(s′ | e′)p̂D(T | e,s′)) (5.18)

where p̂D gives the maximum likelihood estimate of p on the sample D. Specifically, for an

arbitrary collection of n samples C = (xi,yi,zi)
n
i=1 of variables X ,Y,Z, the estimate is given by:

p̂C (y),
|{i : yi = y}|

n
(5.19)

p̂C (y | x),
|{i : xi = x,yi = y}|
|{i : xi = x}|

(5.20)

p̂C (y | x,z),
|{i : xi = x,yi = y,zi = z}|
|{i : xi = x,zi = z}|

(5.21)

where the |{·}| gives the number of elements in the set {·}.

Next note that the conditional specific total effect of the past temperature average S on the

subsequent temperature T conditioned on an ENSO state E is given by:

ST E(s→ T | e) = D(p(T | ŝ,e) ||∑s′ p(s
′ | e)p(T | ŝ′,e)) (5.22)

Letting X = S, Y = T , Z = /0, and U = E, it follows from Theorem 10 that we can estimate the
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total effect from observational data. Therefore, we use the following plug-in estimator:

ŜT ED(s→ T | e) = D(p̂D(T | e,s) || p̂D(T | e)) (5.23)

By applying these estimators to the complete dataset D, we are able obtain point estimates of

the desired measures, which are given by a red × in the figures in the next section. For ease of

notation, we omit D from the estimates from here on with the understanding that all estimates

are performed on D. It is important to note that even though not all estimates will utilize all

9840 samples, Figure 5.3 makes clear there is a considerable amount of samples available for

estimating every distribution in question. In particular, we see that:

min
e,s
|{i : ei = e,si = s}|= |{i : ei = 1,si =−1}|

= ∑
t
|{i : ti = t,ei = 1,si =−1}|

= 83+245+268 = 596

In other words, the distribution estimated on the smallest number of samples is p(t | E = 1,S =

−1), and this estimate is performed on 596 samples.

In addition to these point estimates, it is desirable to have a means of measuring the

significance of the estimated measures. This is particularly important given that the obtained

estimates are necessarily non-negative and the units of bits are not as easily interpretable as other

units, i.e. temperature. In other words, it is unclear if a causal influence of 0.01 bits (for example)

ought to be interpreted as a true influence prior to performing a statistical test. We here pair two

approaches – (i) performing a nonparametric bootstrap hypothesis test [76] and (ii) constructing a

nonparametric bootstrap confidence interval [33].

The goal of the hypothesis test is to estimate the distribution of the estimated measure

under a null hypothesis (H0) and assess the likelihood that our estimate came from such a
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distribution. In this case, H0 corresponds to the absence of a causal link, which would result in

the true causal measure being equal to zero. The primary challenge to performing this test is

the generation of samples from a distribution representative of H0. We accomplish this using a

scheme similar to that presented in [54, Example 2] wherein we group the data by one of the

three variables (E, S, or T ) and shuffle the other two in order to break one of the causal links. For

example, when performing the test for the direct effect of E on T , we split the data into three

sets: {i−1 : si = −1}, {i0 : si = 0}, and {i1 : si = 1}. Within each of these sets, we shuffle (i.e.

permute) all the samples of E (or T ). Because the shuffling occurs within groupings of S, any

possible link from E to S and S to T is preserved (and thus so is the indirect effect), but the link

between E and T is destroyed. Each of these permutations is then treated as a sample under H0

from which we estimate the SNDE. We perform this shuffling and estimation procedure 100 times

and treat the 6th largest estimate as the cutoff threshold for statistical significance. This threshold

is given by the upper whisker on the boxplots labeled H0 in the figures in the next section. When

performing this test for the indirect effect, we choose to break the link from S to T rather than

from E to S in order to preserve the assumption that p(s | e) = p(t | e) for s = t.

Rather than comparing the above threshold to our estimate on the complete dataset (i.e.

compare the upper whisker with the red ×), we here consider a necessarily stricter test wherein

we compare the threshold with the lower end of an estimated confidence interval. In particular,

we obtain a straightforward nonparametric bootstrap confidence interval by repeatedly drawing

a collection of samples from the empirical distribution of our data and estimating the measure

on the new collection of samples. Specifically, let D∗b = (e jib
,s jib

, t jib
)9840

i=1 be the bth bootstrap

sample, where ji
b are drawn independently from the uniform distribution over {1,2, . . . ,9840}

and b = 1, . . . ,100. We estimate the causal measure in question on each of the 100 bootstrap

samples and, similarly to the hypothesis test, treat the 6th smallest and 6th largest estimates as the

lower and upper bounds to our confidence interval. These bounds are given by the whiskers on

the boxplots superimposed on the red × in the figures in the following section.

119



Figure 5.5: Specific total effect of ENSO on temperature anomaly.

5.5.4 Results

We estimate the STE, SNDE, and SNIE of ENSO on temperature and the conditional STE

of the past temperature average on the next average. In every case, the measure is estimated on the

complete dataset (red ×) and compared with the corresponding weighted average, or non-specific,

measure (red dashed lines). For the specific measure, we obtain an estimate for each value of the

cause, i.e. e ∈ {−1,0,1} or s ∈ {−1,0,1}, depending on whether the effect of ENSO or the effect

of the past temperature is being estimated. The average measure is then calculated by taking

an expectation of the specific measures with respect to p(e) or p(s | e). As an example, the red

dashed line in Figure 5.5 represents the estimate of Ep(E)[ST E(E→ T )], and the three red dashed

lines in Figure 5.8 represent the estimates of Ep(S|e)[ST E(S→ T | e)] for e ∈ {−1,0,1}. Each

figure also displays two boxplots for each specific measure – the first shows the distribution of the

measure estimated on the bootstrap samples and the second shows the distribution of the measure

estimated under the null hypothesis that the causal link in question does not exist (denoted “H0”).

We begin by considering the total effect of ENSO on temperature shown in Figure 5.5.

Given that E is a root node in the DAG representation given on the right of Figure 5.4, we note

that STE and SMI are equivalent, i.e. ST E(e→ T ) = I1(e;T ), and the red dashed line gives an

estimate of the mutual information, i.e. Î(E;T ) = Ep̂(E)[ŜT E(E→ T )]. This illustrates the value
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of considering a specific causal measure – as we can see, the estimated effect of E = 1 is roughly

three times the effect as estimated by the mutual information. Recall the interpretation of the SMI

provided by point (IV) in Section 5.3.1, namely that it provides a measure of how much we would

expect performing do(E = e) to change the course of nature for T . Under this interpretation, we

see that forcing an El Niño year would alter the temperature distribution from what we would

expect to occur naturally moreso than forcing a La Niña or neutral year.

While interesting, the perspective of the specific measures as measures of deviation

from nature still avoids directly addressing the question of how to interpret a causal influence

measured in bits. As mentioned in point (V) of Section 5.3.1, we can use the coding theoretic

interpretation of the KL-divergence to begin to answer this. In particular, we know that because

T ∈ {−1,0,1}, then the conditional entropy is bounded as H(T | e)≤ log2 3≈ 1.58 bits. Since

ST E(e→ T ) = D(p(T | e) || p(T )), we can interpret the STE as representing the excess number

of bits needed to encode the temperature when we incorrectly assume that E will be drawn

according to p(E) (i.e. according to nature), rather than being forced to equal e. As such, it may

be of interest to identify the percentage of bits used to encode the naturally occurring T that

would have been unnecessary had E been forced to be e. For example, for E = 1 we have that:

100×

(
ŜT E(E = 1→ T )

ŜT E(E = 1→ T )+ Ĥ(T | E = 1)

)
≈ 100×

(
0.07

0.07+1.53

)
≈ 4.3% (5.24)

where the estimate of entropy is given by Ĥ(T | E = 1),−∑t p̂(t | E = 1) log p̂(t | E = 1) with

p̂ as defined in (5.20). In words, if one merely assumes that E will be occur naturally, then the

intervention do(E = 1) results in roughly 4.3% of the bits used to encode T being unnecessary

had it been known that E would be 1.

We next consider the natural direct and indirect effects shown in Figures 5.6 and 5.7, first

noting that both are less than the STE for all values e. This is consistent with the intuition that the

direct and indirect effects of ENSO on temperature would not cancel each other out. Intuition is
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Figure 5.6: Specific natural direct effect of ENSO on temperature anomaly.

also validated by the fact that the SNIE is less than the SNDE for all values. While this need not

be the case in general, we make the assumption that S and T are identically distributed given E,

and thus we would expect the indirect link E→ S→ T to be weaker than the direct link E→ T .

As a final point, we note that for both the SNDE and SNIE, only the effect of E = 1 passes the

proposed statistical significance test. This serves as further justification for the measurement of

specific causal influences – when simply measuring average influences with mutual information,

causal strength, or information flow, statistical significance testing results in an “all or nothing”

result, whereas the present framework enables identifying influences that are significant for only

some values of a cause.

We conclude this section with the conditional STE of past on current temperature in

a specific ENSO phase, as portrayed by Figure 5.8. We can clearly see that there is a strong

persistence in the temperature anomaly signal, i.e. that the past temperature average has a strong

effect on the subsequent average, with the largest effect (ST E(S = −1→ T | E = 1)) being

roughly five times that of the effect of E = 1. Using the same percentage approach described
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Figure 5.7: Specific natural indirect effect of ENSO on temperature anomaly.

above, we see that:

100×

(
ŜT E(S =−1→ T | E = 1)

ŜT E(S =−1→ T | E = 1)+ Ĥ(T | E = 1,S =−1)

)
≈ 100×

(
0.36

0.36+1.44

)
= 20%

(5.25)

The fact that the largest effect of S on T occurs when performing the intervention do(S =−1)

during an El Niño year can likely be explained by the tendency for El Niño years to give rise

to high temperatures. Thus, we would expect that forcing a cold front during an El Niño would

alter the course of nature moreso than, say, forcing a heat wave. Furthermore, the second largest

effect is seen when S = 1 and E = −1, i.e. when a heat wave is forced during a La Niña year.

This result is reminiscent of the example provide in Section 5.4.1, where there is a large causal

influence resulting from a broken chain reaction. In this case, since we would expect an El Niño

(resp. La Niña) year to assign a higher probability to a heat wave (resp. cold front) that would

then persist through the effect of S on T , intervening on S to force a cold front (resp. heat wave)

will result in a large deviation from the natural behavior and thus a large causal effect.
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Figure 5.8: Specific total effect of previous temperature anomaly on current temperature anomaly.

5.5.5 Challenges and Caveats

The proposed causal model warrants a number comments. Most notably, any causal

interpretation of the results is predicated on the assumption that there are no confounding factors

not accounted for in the preprocessing steps. This assumption is less of an issue when measuring

the effect of ENSO, where we only need to assume that there is no common cause for E and S

or E and T (or rather that there is no backdoor path, to be precise) beyond the seasonality, CO2

forcing, and any other phenomena captured by the leading six harmonics. When measuring the

effect of past temperatures, however, this assumption is a bit more far reaching. For example, we

have neglected to consider the temperatures in neighboring regions. Moreover, the explicit nature

of the causal effect of S on T is more elusive than that of E on T . While it is reasonable to expect

the temperature to have some causal effect in a literal sense (i.e. via the heat equation), it is likely

that the estimation procedure is also capturing the effects of temperature related variables. For

example, if we additionally included PNW atmospheric pressure waves in the model, we would

expect these waves to be a common cause for S and T resulting in a significantly weaker (if not

absent) link S→ T . As such, the above estimate of P(s→ T | e) ought to be viewed as either a

measure of predictive utility of the literal temperature, or the causal effect of a “meta variable”

representative of the temperature and related quantities that are intervened upon as a whole. In
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any case, the present study can serve as a starting point for the development of more intricate

causal models representing the relationship between ENSO and temperature.

A second set of challenges arises from the need to estimate the measures for every

value of the cause. While these challenges are indeed a fundamental issue with the proposed

framework, they provide an opportunity for the development of novel estimation and statistical

testing techniques. On one hand, the proposed specific causal measures are necessarily more

challenging to estimate than their average counterparts. On the other hand, they necessarily

provide more resolution and allow for estimating separate confidence intervals for each element

in the analysis. If we are trying to estimate ST E(x→ Y ) but only have a small number of points

in our dataset where xi = x, then we would have very little confidence in our estimate. However,

that need not discourage us from having high confidence in an estimate of ST E(x′ → Y ) for

some x′ for which we have many samples. That having been said, the proposed estimators and

significance test used in the present study lack a formal analysis and leave considerable room for

improvement.

As a final discussion point, we return to the comparison of information theoretic and

statistical notions of causal influence. Despite having carefully formulated the proposed measures

as measures of the extent to which an intervention results in a deviation from the course of

nature, the results presented in this section beg the question: How useful are bits? As an absolute

measure, bits are certainly not very useful considering that a measure in bits will be largely

influenced by the number of quantization regions we select. While this can be partially addressed

by normalizing as in (5.24) and (5.25), there is no question that the coding theoretic interpretation

provided alongside those equations is less intuitive than a measure of, say, the number of degrees

warmer we would expect it to be an El Niño year than a La Niña year. Moreover, this intuition

gap would be even larger for someone outside of the information theory community, including

the majority of the climate scientists for whom these results are intended. This is not to say

that the proposed measures are so opaque that they are unusable – in fact, we would argue that
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they provide more interpretable notions of causal influence than other information theoretic

measures that have experienced some popularity in the literature. Instead, this discussion is

merely to maximize the level of intuition that we can associate with the proposed measures while

simultaneously acknowledging the limitations of information theoretic measures in terms of

interpretability.

5.6 Conclusion

We have sought inspiration from the statistical causality community in order to refine

information theoretic measures of causal influence. Specifically, we have developed a series of

causal measures that are defined for specific values of the cause in question with the goal of

differentiating between total, direct, and indirect effects, and provided conditions under which

they can be estimated from observational data. The proposed measures are, at their core, aligned

with previous information theoretic measures in that they compare distributions of Y rather than

comparing values of Y . As such, they are well-equipped for capturing non-linear, higher order

causal effects, although at the cost of foregoing an explanation of the exact nature of the causal

effects. Perhaps most importantly, we have elucidated the key insight that information theoretic

measures of causal influence can be interpreted as methods for quantifying the magnitude with

which an intervention is expected to alter the course of nature. This interpretation stands in

stark contrast to that of statistical measures. As such, we hope that a key takeaway will be that

information theoretic and statistical notions of causal can provide complementary methods in that

they yield the answers to fundamentally different causal questions.
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Appendix A

Appendix to Chapter 2

A.1 Derivation of Scaled Form

We will demonstrate the derivation of the scaled form of the measurement model update

only, noting that the derivation for the other updates follows almost identical steps. Consider the

original measurement model update:

x(i+1) = argmin
x

(
N

∑
n=1

Ln(yn | xn)

)
+ 〈λ(i),x− z(i)〉+ ρ

2

∣∣∣∣∣∣x− z(i)
∣∣∣∣∣∣2

F
. (A.1)

For ease of notation, the superscript (i) is omitted for the remainder of this appendix. Using the

definition of the inner product and Frobenius norm, we can break up the second and third terms

across into sums and simplify as follows:

x(i+1) = argmin
x

N

∑
n=1

Ln(yn | xn)+λ
T
n (xn− zn)+

ρ

2
(xn− zn)

T (xn− zn)

= argmin
x

N

∑
n=1

Ln(yn | xn)+
ρ

2
xT

n xn +(λn−ρzn)
T xn

= argmin
x

N

∑
n=1

2
ρ

Ln(yn | xn)+xT
n xn−2

(
zn−

λn

ρ

)T

xn.

(A.2)
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Defining x̃n = zn− λn
ρ

as in Section 2.3.1, we note that x̃n does not depend on x, enabling us to

complete the square and simplify as follows:

xn = argmin
x

N

∑
n=1

2
ρ

Ln(yn | xn)+xT
n xn−2x̃T

n xn

= argmin
x

N

∑
n=1

2
ρ

Ln(yn | xn)+xT
n xn−2x̃T

n xn + x̃T
n x̃n

= argmin
x

N

∑
n=1

2
ρ

Ln(yn | xn)+(x̃n−xn)
T (x̃n−xn)

= argmin
x

(
N

∑
n=1

Ln(yn | xn)

)
+

ρ

2
||x− x̃||2F ,

(A.3)

as was to be shown.

A.2 Proof of Theorem 1

Consider the problem in its original form:

(x̂, ŵ) = argmin
x,w

L(y | x)+βφ(w)

s.t. w = A(x).
(A.4)

The goal is to show that there is an equivalent two-block ADMM problem whose updates match

those given by (2.11). To do so we define the variable Q := [XT ,WT ]T ∈ R2K×N (X,W ∈ RK×N)

and the function g(Q) := L(y | X)+βφ(W). Next, we define Z := [ZT
X,Z

T
W]T ∈ R2K×N and the

function:

h(Z) =


0 A(ZX) = ZW

∞ A(ZX) 6= ZW

. (A.5)
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Using these newly defined terms, we can write (A.4) equivalently as:

(q̂, ẑ) = argmin
q,z

g(q)+h(z)

s.t. q− z = 0.

(A.6)

Note that if q = [xT ,wT ]T is such that w 6= A(x) (the constraints in (A.4) are not satisfied) and z

is such that q− z = 0 (the constraints (A.6) are satisfied), then h(z) = ∞ and (q,z) are not the

minimizers of (A.6). To solve this problem with ADMM, we first find augmented Lagrangian:

Lρ(q,z,γ) = g(q)+h(z)+ 〈γ,q− z〉+ ρ

2
||q− z||2F (A.7)

with Lagrange multiplier γ = [λT ,αT ]T ∈R2K×N (λ,α∈RK×N). As a result, we get the following

update equations:

q(i+1) = argmin
q

Lρ(q,z(i),γ(i))

z(i+1) = argmin
z

Lρ(q(i+1),z,γ(i))

γ
(i+1) = γ

(i)+ρ(q(i+1)− z(i+1)).

(A.8)

Next we show that the update equations given by (A.8) are equivalent to those given by (2.11).

First, consider the q update:

q(i+1) = argmin
q

Lρ(q,z(i),γ(i))

= argmin
q

g(q)+ 〈γ(i),q− z(i)〉+ ρ

2
||q− z(i)||2F

= argmin
[xT ,wT ]T

L(y | x)+βφ(w)+

λ
(i)

α(i)


T 
x

w

−
z(i)x

z(i)w


+

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x

w

−
z(i)x

z(i)w


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

F

=

x(i+1)

w(i+1)



(A.9)
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where x(i+1) and w(i+1) are given by:

x(i+1) = argmin
x

L(y | x)+ 〈λ(i),x− z(i)x 〉+ ||x− z(i)x ||2F (A.10)

w(i+1) = argmin
w

βφ(w)+ 〈α(i),w− z(i)w 〉+ ||w− z(i)w ||2F (A.11)

and can be found independently of each other.

Next, consider the z update:

z(i+1) = argmin
z

Lρ(q(i+1),z,γ(i))

= argmin
z

h(z)+ 〈γ(i),q(i+1)− z〉+ ρ

2
||q(i+1)− z||2F

= argmin
[zT

x ,zT
w]

T
h(z)+ 〈λ(i),x(i+1)− zx〉+

ρ

2
||x(i+1)− zx||2F+

〈α(i),w(i+1)− zw〉+
ρ

2
||w(i+1)− zw||2F

= argmin
zx

〈λ(i),x(i+1)− zx〉+
ρ

2
||x(i+1)− zx||2F+

〈α(i),w(i+1)−A(zx)〉+
ρ

2
||w(i+1)−A(zx)||2F

=

 z(i+1)
x

A(z(i+1)
x )


where z(i+1)

x is given as the solution to (2.15), i.e. the consensus update for our target problem,

and the second to last equality follows from the fact that h(z) is infinite if zw 6= A(zx), so we can

treat the problem as a single variable optimization problem.

Next we can substitute these results into the equations for the q update to obtain:

w(i+1) = argmin
w

βφ(w)+ 〈α(i),w−A(z(i)x )〉+ ||w−A(z(i)x )||2F (A.12)

which is the (unscaled) update equation (2.14) for w in the original formulation, where z(i)x in
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this formulation corresponds with z(i) in the original formulation. The x portion of the q remains

unchanged from (A.10), which is equivalent to the unscaled update equation (2.12) for x in the

original formulation.

Next, we can decompose the matrix multiplication in the same way as above to show that:

γ
(i+1) =

λ
(i+1)

α(i+1)

 (A.13)

where λ
(i+1) and α(i+1) are given by the original updates in (2.11).

Thus, we have shown that directly solving (A.6) using ADMM yields the proposed

updates detailed in the body of the paper. As such, we will show that the ADMM solution

to (A.6) is convergent. By assumption, L and φ are closed, proper, and convex, and hence, so

is their sum g. To show that h is convex, we note that this is an indicator function on the set

H := {(zX,zW) : A(zX) = zW} ⊂ R2, thus h is convex if and only if H is convex [104, Ch. 2].

Suppose z1 = [z1
x

T
,z1

w
T
]T and z2 = [z2

x
T
,z2

w
T
]T are such that A(z1

x) = z1
w and A(z2

x) = z2
w, i.e.

z1,z2 ∈ H. Then, if we take a convex combination zα := αz1 +(1−α)z2 for α ∈ [0,1], we get:

zα
w = αz1

w +(1−α)z2
w

= αA(z1
x)+(1−α)A(z2

x)

= A(αz1
x +(1−α)z2

x)

= A(zα
x ).

(A.14)

Thus, we see that z1,z2 ∈ H =⇒ zα ∈ H, i.e. H, and therefore h, are convex. It then follows

from Section 3.2.1 of [16] that the ADMM solution for (A.6) is convergent, as was to be shown.

�
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A.3 State-Space Model of Learning Updates

We begin by deriving expressions for the negative log-likelihoods for each of the observa-

tions:

LBn(bn | xn) =− log pBn|Xn(bn | xn)

=− log pbn
n (1− pn)

1−bn

=−bn log
eν+ηxn

1+ eν+ηxn
− (1−bn) log

1
1+ eν+ηxn

∝ log
(
1+ eν+ηxn

)
−bnηxn

LRn(rn | xn) =− log fRn|Xn(rn | xn)

=− log
1√

2πσ2
R

exp

(
−(rn−ψ−ωxn)

2

2σ2
R

)

∝
(rn−ψ−ωxn)

2

2σ2
R

LSn(sn | xn) =− log pSn|Xn(sn | xn)

=− logexp

(
J

∑
j=1

[
log(Λn, j)sn, j−Λn, j∆t

])

=−
J

∑
j=1

(
ξ+axn +

M

∑
m=1

cmsn, j−m

)
nn, j +

J

∑
j=1

exp

(
ξ+axn +

M

∑
m=1

cmsn, j−m

)
∆t

∝−axn

J

∑
j=1

nn, j +
J

∑
j=1

exp

(
ξ+axn +

M

∑
m=1

cmsn, j−m

)
∆t

=∆t exp(ξ+axn)
J

∑
j=1

exp

(
M

∑
m=1

cmsn, j−m

)
−axn

J

∑
j=1

sn, j
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These expressions can be plugged into equation (2.25) to obtain the measurement model update

equation, which can in turn be solved using Newton’s method.

Next, the system model update can be solved in closed form:

w(i+1) = argmin
w

φ(w)+
ρ

2

∣∣∣∣∣∣w− w̃(i)
∣∣∣∣∣∣2

2

= argmin
w

N

∑
n=1

(
(wn− γ)2

2σ2
V

+
ρ

2
(wn− w̃(i)

n )2
)

where w̃(i)
n := z(i)n −κz(i)n−1−α

(i)
n /ρ. Thus, we can solve for each wn separately:

w(i+1)
n = argmin

wn

(wn− γ)2

2σ2
V

+
ρ

2
(wn− w̃(i)

n )2

= argmin
wn

(
1

2σ2
V
+

ρ

2

)
w2

n−
(

γ

σ2
V
+ρw̃(i)

n

)
wn

= argmin
wn

wn−
γ

σ2
V
+ρw̃(i)

n

1
σ2

V
+ρ

2

=

γ

σ2
V
+ρw̃(i)

n

1
σ2

V
+ρ

.

Finally, given its relatively low dimensionality, we can efficiently solve the consensus update

in closed form by posing it as a least squares problem. First, we note that A(z) = Gz when we
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define:

G =



1 0 0 . . . 0 0

−κ 1 0 . . . 0 0

0 −κ 1 . . . 0 0
...

...
... . . . ...

...

0 0 0 . . . 1 0

0 0 0 . . . −κ 1


(A.15)

with G ∈ RN×N . Thus, we have:

z(i+1) = argmin
z
||z− z̃(i)x ||2F + ||Gz− z̃(i)w ||2F . (A.16)

Taking the gradient of the RHS and setting to zero yields:

z(i+1) = (I+GT G)−1(z̃(i)x +GT z̃(i)w ). (A.17)

Given that G is known a-priori, we can find (I+GT G)−1 once and each consensus update

becomes a matrix multiplication problem.

A.4 Convexity State-Space Model of Learning Negative Log-

Likelihood

Given that L is the sum of the negative log-likelihoods for each of the observation

modalities as in (2.25), it is sufficient to show that they are each convex in xn, which is made

easier by use of the simplifications derived in Appendix A.3. Noting that addition of a constant

does not affect convexity, we can assess the final simplification provided in each case. As such,

we see that LBn(bn | xn) is the sum of a term that is linear in xn and a special case of the log
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sum exponential (LSE) function with an added auxiliary variable constrained to equal zero

(giving e0 = 1). Given the convexity of LSE, its sum with a linear term is also convex, and thus

LBn(bn | xn) is convex. Next, LRn(rn | xn) is quadratic in xn and thus convex. Finally, LSn(sn | xn)

is the sum of a term that is linear in xn and a term that is exponential in xn, both of which

are convex. As a result, LBn(bn | xn), LRn(rn | xn), and LSn(sn | xn) are all convex in xn for any

(bn,rn,sn) ∈ {0,1}×R×{0,1}J , and thus so is their sum L.
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Appendix B

Appendix to Chapter 3

B.1 Proof of Theorem 2

The first statement of the theorem follows trivially from the removal of Y i−1
i−d from p(Xi |

X i−1
i−d ,Y

i−1
i−d ,Z

i−1
i−d). Moving on, we will show that if I(Yj;Yk | X i,Zi) = 0 for all j < k ≤ i, X is

conditionally Markov of order at most 2d given Z. Note that:

p(Xi | X i−1,Zi−1)

= ∑
yi−1

i−d

p(Xi | X i−1,yi−1
i−d,Z

i−1)
i−1

∏
j=i−d

p(y j | X i−1,Zi−1) (B.1)

= ∑
yi−1

i−d

p(Xi | X i−1
i−d ,y

i−1
i−d,Z

i−1
i−d)

i−1

∏
j=i−d

p(y j | X i−1
j−d,Z

i−1
j−d) (B.2)

= ∑
yi−1

i−d

p(Xi | X i−1
i−2d,y

i−1
i−d,Z

i−1
i−2d)

i−1

∏
j=i−d

p(y j | X i−1
i−2d,Z

i−1
i−2d) (B.3)

= p(Xi | X i−1
i−2d,Z

i−1
i−2d)

where (B.1) follows from the chain rule and that yi−1
i−d are conditionally independent given

(X i−1,Zi−1), (B.2) follows from the joint Markovicity of X and Y and the conditional indepen-
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dence of yi−1
i−d , and (B.3) follows from the conditional independence of the past and the future

given the present for Markov processes.

Next we will show that if there is some j < k≤ i such that I(Yj;Yk | X i,Zi)> 0, then there

is no positive integer l such that (X i−1
i−l ,Z

i−1
i−l ) d-separates (X i−l−1,Zi−l−1) from Xi. To do this, we

first note that (X i,Zi) does not d-separate Yj and Yk, because if it did, they would be conditionally

independent. As such, when performing the d-separation algorithm given by Algorithm 1, Yj

and Yk will be connected by an undirected edge after completing step 4. Furthermore, if we let

τ1 = k− j, then by the joint stationarity of (X ,Y,Z), every Yi will be connected to Yi−τ1 at the

end of step 4. Furthermore, we know that I(Y n → Xn | Zn) > 0 implies that for some q ≤ m,

there is a directed edge from Yq to Xm. Letting τ2 = m−q, we know from the joint stationarity

of (X ,Y,Z) that for every Xi, there is an incoming directed edge from Yi−τ2 . As such, at the end

of step 4, every Xi will be part of an undirected path connecting Yi−τ2 , Yi−τ2−τ1 , Yi−τ2−2τ1 , . . . .

Thus, for any l ≥ 1 this path can be followed r steps such that rτ1 > d. Then we know that

Yi−τ2−rτ1 is connected via an undirected edge to Xi−τ2−rτ1+τ2 = Xi−rτ1 . Recalling that in step 3 of

the d-separation algorithm, (X i−1
i−l ,Z

i−1
i−l ) have been removed from the graph, we note that since

i− rτ1 < i− l, Xi−rτ1 is in the graph. Thus, there is an undirected path connecting Xrτ1 ∈ X i−l−1

and Xi, which implies that (X i−1
i−l ,Z

i−1
i−l ) does not d-separate (X i−l−1,Zi−l−1) and Xi for any l.

B.2 Proof of Theorem 3

We will show that the statement holds for a fixed l, noting that a countably infinite union

of measure zero sets has measure zero. First note that, if X is conditionally l-Markov given Z,

then for any xi−1
i−l−1,x

′
i−l−1 ∈ X and zi−1

i−l−1,z
′
i−l−1 ∈ Z the following equality must hold:

p(xi | xi−1
i−l−1,z

i−1
i−l−1) = p(xi | x̃i−1

i−l−1, z̃
i−1
i−l−1) (B.4)
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where we define x̃i−1
i−l−d , {x

i−1
i−l ,x

′
i−l−1} and z̃i−1

i−l−1 , {z
i−1
i−l ,z

′
i−l−1}. We will demonstrate that

the equation given by (B.4) amounts to solving a polynomial function of the parameters θ. It is

shown in [87] that the set of solutions to a non-trivial polynomial (i.e. one that is not solved by all

of RN) will have Lebesgue measure zero with respect to RN . Focusing on the left side of (B.4),

we see that:

p(xi | xi−1
i−l−1,z

i−1
i−l−1)

= ∑
yi−1

i−l−1

θ
xi
x,y,z p(yi−1

i−l−1 | x
i−1
i−l−1,z

i−1
i−l−1)

= ∑
yi−1

i−l−1

θ
xi
x,y,z

p(xi−1
i−l−1,y

i−1
i−l−1,z

i−1
i−l−1)

p(xi−1
i−l−1,z

i−1
i−l−1)

=
∑yi−1

i−l−1
θxi

x,y,zπ(xi−l−1,yi−l−1,zi−l−1)∏
l
j=1 θ

(x,y,z)i− j
x,y,z

∑ỹi−1
i−l−1

π(xi−l−1, ỹi−l−1,zi−l−1)∏
l
j=1 θ

(x,ỹ,z)i− j
x,ỹ,z

(B.5)

where π : |X |× |Y |× |Z| → [0,1] is the invariant distribution and θ
(x,y,z)i
x,y,z , θxi

x,y,zθ
yi
x,y,zθ

zi
x,y,z. Next,

define a matrix A ∈ R|X ||Y ||Z|×|X ||Y ||Z| containing the transition probabilities, i.e. A j,k = θ
Rk
R j

where R is some enumeration over the |X ||Y ||Z| possible values taken by (X ,Y,Z). Then we

can represent π in vector form π ∈ [0,1]|X ||Y ||Z| as the unique solution to π = πA. Let π̃ be an

arbitrary vector satisfying (AT − I)π̃ = 0, and note that for any π̃ there is a constant C such that

Cπ̃ = π. Such a vector π̃ can be found by performing Gauss-Jordan elimination on (AT − I), and

as a result, each element π̃ j can be written as fractions of polynomial functions of θ. Replacing

π with Cπ̃ in its functional form π̃ : |X |× |Y |× |Z| → R in (B.5) we see that C cancels in the

numerator and denominator and thus each side of (B.4) can be written entirely as fractions

of polynomial functions of θ. Next, repeat the process on the right hand side of (B.4) with

x̃i−1
i−l−d and z̃i−1

i−l−d . Then, for any term that appears as a fraction, we can multiply both sides

of (B.4) by the denominator and repeat until (B.4) is a polynomial function of θ. Finally, we

note that the polynomial given by (B.4) is trivial only if every process is a solution. Though
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omitted here for brevity, one can easily show that the polynomial is non-trivial by constructing a

counterexample.

B.3 Proof of Theorem 4

Note that for any k1 ≥ 1 and k2 ≥ d:

H(Xi | X i−1,Y i−k1,Zi)−H(Xi | X i−1,Y i,Zi) (B.6)

≤H(Xi | X i−1,Zi)−H(Xi | X i−1,Y i,Zi) (B.7)

≤H(Xi | X i−1
i−k2

,Zi
i−k2

)−H(Xi | X i−1,Y i,Zi) (B.8)

=H(Xi | X i−1
i−k2

,Zi
i−k2

)−H(Xi | X i−1
i−d ,Y

i
i−d,Z

i
i−d) (B.9)

≤H(Xi | X i−1
i−k2

,Zi
i−k2

)−H(Xi | X i−1
i−k2

,Y i
i−k2

,Zi
i−k2

) (B.10)

where (B.7), (B.8), and (B.10) follow from conditioning reduces entropy and (B.9) follows from

joint d-Markovicity of (X ,Y,Z). Taking the sum over i = 1, . . . ,n and the normalized limit as

n→ ∞ gives the desired result, noting that (B.6), (B.7), and (B.10) become the PDI, DI, and TDI

rates, respectively.
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Appendix C

Appendix to Chapter 4

C.1 Equivalence of the Interventional and Non-Interventional

Measures in Section 4.3.1

First, we introduce the causal model defined by Pearl [92, Definition 2.2.2], which consists

of a causal structure (i.e. a DAG) and a set of functions defining a probability distribution over

each node in the DAG. For the three examples in section 4.3.1, we have that the causal structure

is given by Figure 4.1. For the first two examples, the functions are given by equations (4.19)

and (4.20), respectively. For the third example of horse betting, we assume that for each i,

Xi = fi(X i−1,Yi−1,Ui) and Yi =Vi, where fi is some collection of functions, U is a collection of

iid random variables (independent of X and Y ), and V is a collection of iid random variables

(independent of X , Y , and U). The key element of this assumption is that the winner of the ith

race, Xi, is functionally dependent on the side information Yi−1, meaning that changing the side

information could change the winner. Without this technicality, the example would not constitute

a causal model in the sense of [92, Definition 2.2.2]. Once these causal models are established,

showing the equivalence between the interventional and non-interventional measures discussed in

Remark 3 can easily be shown using the second rule of the so-called do-calculus [90, Theorem 3].
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Specifically, showing that p(xi | xi−1,do(yi−1)) = p(xi | xi−1,yi−1) amounts to showing that Xi

and Yi−1 are d-separated by X i−1 in an augmented DAG where the outgoing arrows from Yi−1

have been removed. This holds trivially in all three DAGs in Figure 4.1 because removing the

outgoing arrows from Yi−1 results in there being no path connecting Yi−1 to Xi in the augmented

DAG.

C.2 Computing True Causal Measure with Hidden Markov

Models

In order to compute the true causal measure, it is necessary to compute the true restricted

distribution. As discussed in Section 4.4.1, the restricted distribution is, in general, non-Markov.

As such, it is desirable to have an efficient method for computing the true restricted distribution

p(yi | yi−1). Here we derive update equations for recursively computing p(yi | yi−1). The

proposed updating scheme is a generalization of the well known recursive method for evaluating

the likelihood of a process under a standard hidden Markov model where the likelihood is given

by p(yi | xi) and the one-step prediction distribution is given by p(xi | xi−1) [57, Ch. 9].

First, assume X and Y are jointly first order Markov as in Section 4.5.1 and decompose

the restricted distribution as the product of “likelihood” and “prior” terms:

p(yi+1 | yi) = ∑
xi

p(yi+1,xi | yi)

= ∑
xi

p(yi+1 | xi,yi)︸ ︷︷ ︸
Likelihood

p(xi | yi)︸ ︷︷ ︸
Prior

where we note that only the prior term has a long-term dependence on the past. The prior may be
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further decomposed into the sum of products of “one-step prediction” and “posterior” terms:

p(xi | yi) = ∑
xi−1

p(xi,xi−1 | yi)

= ∑
xi−1

p(xi | xi−1,yi−1)︸ ︷︷ ︸
One-Step Prediction

p(xi−1 | yi)︸ ︷︷ ︸
Posterior

where now only the posterior has a long-term dependence on the past. Lastly, we can use Bayes’

Rule to show that the posterior depends only on the previous likelihood evaluated at the newly

observed yi and the previous prior:

p(xi−1 | yi) =
p(yi | xi−1,yi−1)p(xi−1 | yi−1)

∑x̃i−1(yi | x̃i−1,yi−1)p(x̃i−1 | yt−1)

=
p(yi | xi−1,yi−1)p(xi−1 | yi−1)

∑x̃i−1(yi | x̃i−1,yi−1)p(x̃i−1 | yi−1)

Thus, the restricted distribution can be computed in a recursive manner. To initialize the algorithm,

define y0 = x0 = /0, p( /0 | ·) = 1, and starting distributions p(· | /0) = p(·).

C.3 Useful Lemmas

We first show that the cumulative KL divergence from the best reference distribution to

the predicted distribution is less than the predictor’s worst-case regret.

Lemma 2. For a sequential predictor p̂i with worst case regret M(n), a collection observations

(xn,yn,zn), and any distribution from the reference class p ∈ P̃n:

n

∑
i=1

D(pi || p̂i)≤M(n) (C.1)
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Proof.

n

∑
i=1

D(pi || p̂i) =
n

∑
i=1

∑
x∈X

pi(x) log
pi(x)
p̂i(x)

≤
n

∑
i=1

[
sup
x∈X

log
pi(x)
p̂i(x)

]
∑

x∈X
pi(x)

=
n

∑
i=1

sup
x∈X

r(p̂i, pi,x)

≤ sup
xn∈X n

n

∑
i=1

r(p̂i, pi,xi)

≤ sup
xn∈X n

sup
p∈P̃n

n

∑
i=1

r(p̂i, pi,xi)

≤M(n)

Next, we bound the cumulative difference in expectation of a bounded function between

the best reference distribution and sequential predictor.

Lemma 3. For a sequential predictor p̂i with worst case regret M(n) ≥ 1, a collection obser-

vations (xn,yn,zn), cumulative loss minimizing distribution p∗i , and a collection of functions

gi : X → R for i = 1, . . . ,n:

n

∑
i=1

∣∣∣Ep∗i [gi(X)]−Ep̂i[gi(X)]
∣∣∣≤ ||~cn||2√

2

√
M(n) (C.2)

where~cn = [c1, . . . ,cn] is a vector with elements:

ci = ∑
x∈X
|gi(x)| (C.3)
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Proof.

n

∑
i=1

∣∣∣Ep∗i [gi(X)]−Ep̂i[gi(X)]
∣∣∣= n

∑
i=1

∣∣∣∣∣∑x∈X
[p∗i (x)− p̂i(x)]gi(x)

∣∣∣∣∣
≤

n

∑
i=1

∑
x∈X
|p∗i (x)− p̂i(x)| |gi(x)| (C.4)

≤
n

∑
i=1

[
∑

x∈X
|p∗i (x)− p̂i(x)|

][
∑

x∈X
|gi(x)|

]
(C.5)

≤
n

∑
i=1

√
1
2

D(p∗i || p̂i) ∑
x∈X
|gi(x)| (C.6)

=
1√
2

n

∑
i=1

ci

√
D(p∗i || p̂i)

where (C.4) uses the triangle inequality, (C.5) follows from both terms of the sum being positive,

and (C.6) uses Pinsker’s inequality. Focusing on the sum, we define a vector ~vn = [v1, . . . ,vn]

such that vi =
√

D(p∗i || p̂i) for i = 1, . . . ,n:

n

∑
i=1

ci

√
D(p∗i || p̂i) = |~cn ·~vn| (C.7)

≤ ||~c||2 ||~v||2 (C.8)

= ||~c||2

(
n

∑
i=1

D(p∗i || p̂i)

) 1
2

≤ ||~c||2
√

M(n) (C.9)

where (C.7) follows from the fact that ci ≥ 0 and vi ≥ 0 for all i, (C.8) uses the Cauchy–Schwarz

inequality and (C.9) uses Lemma 2 and the assumption that M(n)≥ 1.
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C.4 Proof of Propositions

C.4.1 Proof of Proposition 1

Using the definition of the causal measure, we get that the left hand side of (4.16) is:

∑
H (c)

i

p(H (c)
i )D(p(c)Xi

|| p(r)Xi
) = ∑

H (c)
i

p(H (c)
i )∑

xi

p(c)Xi
(xi) log

p(c)Xi
(xi)

p(r)Xi
(xi)

= ∑
H (c)

i

p(H (c)
i )∑

xi

p(xi |H
(c)

i ) log
p(xi |H

(c)
i )

p(xi |H
(r)

i )

= ∑
H (c)

i ,xi

p(H (c)
i ,xi) log

p(xi |H
(c)

i )

p(xi |H
(r)

i )

= EX i,Y i−1,Zi−1

[
log

p(Xi | X i−1,Y i−1,Zi−1)

p(Xi | X i−1,Zi−1)

]
= I(Y n−1→ Xn || Zn−1)

C.4.2 Proof of Proposition 2

As in the statement of the proposition, let L be the number of leaves in the CTW and N be

the total number of nodes in the tree. Define pe(xn) to be the Dirichlet estimator introduced in

[66], otherwise known as the KT-estimator. Then it is known that the worst case regret is given

by [119]:

sup
xn

log
p(xn)

pe(xn)
≤ |X |−1

2
logn+ |X |−1 (C.10)

We next define the KT-tree estimator with side information pc(xn || yn) as the estimator where, for

each possible “context” (xi−1
i−d,y

i−1
i−d), a separate instance of a KT-estimator is maintained. Letting

L , {(xi−1
i−d,y

i−1
i−d) : (xi−1

i−d,y
i−1
i−d) ∈ X d×Y d} be the set of contexts (i.e. leaf nodes), we have that
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|L |= L. Defining p(l)e (xn || yn), p(l)e (x(l)) to be the KT-estimator that assigns probabilities to

x(l) , {xi : (xi−1
i−d,y

i−1
i−d) = l} for l ∈ L with |x(l)i |, nl , we can derive the worst case regret of the

KT-tree estimator with side information as follows:

sup
xn,yn

log
p(xn)

pc(xn)
= sup

xn,yn
log

p(xn || yn)

∏l∈L p(l)e (xn || yn)

= sup
xn,yn

log ∏
l∈L

p(x(l))

p(l)e (x(l))

= sup
xn,yn

∑
l∈L

log
p(x(l))

p(l)e (x(l))

≤ ∑
l∈L

(
|X −1|

2
lognl + |X |−1

)
(C.11)

=
L(|X |−1)

2 ∑
l∈L

1
L

lognl +L(|X |−1)

≤ L(|X |−1)
2

log ∑
l∈L

nl

L
+L(|X |−1) (C.12)

=
L(|X |−1)

2
log

n
L
+L(|X |−1) (C.13)

where (C.11) follows from the bound in (C.10), (C.12) follows from Jensen’s inequality, and

(C.13) follows from the fact that ∑l nl = n. We now define the set of all nodes to be S ,

{(xi−1
i−k ,y

i−1
i−k) : (xi−1

i−k ,y
i−1
i−k) ∈ X k×Y k,k = 1, . . . ,d}, with |S |= S. Then, we can define a context

tree by letting defining a probability p(s)w (xn || yn) for each node s ∈ S as follows:

p(s)w (xn || yn) =


1
2 p(s)e (xn || yn)+ 1

2 ∏s′∈X×Y p(s
′s)

w (xn || yn) s /∈ L

p(s)e (xn || yn) s ∈ L
(C.14)

where s′s = (xi−1
i−k−1,y

i−1
i−k−1) ∈ X k+1×Y k+1 represents a child node of s = (xi−1

i−k ,y
i−1
i−k) with

s′ = (xi−k−1,yi−k−1). Letting λ be the root node of the tree (i.e. sλ = s), the CTW probability as-

signment is given by pw(xn || yn), f (λ)w (xn || yn). This probability assignment may be recursively
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lower-bounded as:

pw(xn || yn) =
1
2

p(λ)e (xn || yn)+
1
2 ∏

s∈X×Y
p(s)w (xn || yn)

≥ 1
2 ∏

s∈X×Y
p(s)w (xn || yn)

≥ 1
2 ∏

s∈X×Y

1
2 ∏

s′∈X×Y
p(s
′s)

w (xn || yn)

≥ . . .

≥ 1
2S ∏

l∈L
p(l)w (xn || yn)

=
1
2S ∏

l∈L
p(l)e (xn || yn)

=
1
2S p(l)c (xn || yn).

Finally, we can consider the log-likelihood ratio of true probability and the CTW probability in

order to obtain a bound on the worst case regret of the CTW:

sup
xn,yn

log
p(xn || yn)

pw(xn || yn)
≤ S+ log

p(xn || yn)

pc(xn || yn)

≤ S+
L(|X |−1)

2
log

n
L
+L(|X |−1)

as was to be shown.
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C.5 Proof of Theorems

C.5.1 Proof of Theorem 5

We begin by defining the functions:

ĝi(X), log
p̂(c)Xi

(X)

p̂(r)Xi
(X)

g∗i (X), log
p(c)∗Xi

(X)

p(r)∗Xi
(X)

.

Using the definition of the causal measure and KL-divergence:

n

∑
i=1

∣∣ĈY→X(i)−C∗Y→X(i)
∣∣− ∣∣∣∣Ep(c)∗Xi

[ĝi(X)]−E
p̂(c)Xi

[ĝi(X)]

∣∣∣∣ (C.15)

=
n

∑
i=1

∣∣∣∣Ep(c)∗Xi

[g∗i (X)]−E
p̂(c)Xi

[ĝi(X)]

∣∣∣∣− ∣∣∣∣Ep(c)∗Xi

[ĝi(X)]−E
p̂(c)Xi

[ĝi(X)]

∣∣∣∣
≤

n

∑
i=1

∣∣∣∣ ∣∣∣∣Ep(c)∗Xi

[g∗i (X)]−E
p̂(c)Xi

[ĝi(X)]

∣∣∣∣− ∣∣∣∣Ep(c)∗Xi

[ĝi(X)]−E
p̂(c)Xi

[ĝi(X)]

∣∣∣∣ ∣∣∣∣
(C.16)

≤
n

∑
i=1

∣∣∣∣Ep(c)∗Xi

[g∗i (X)]−E
p̂(c)Xi

[ĝi(X)]−E
p(c)∗Xi

[ĝi(X)]+E
p̂(c)Xi

[ĝi(X)]

∣∣∣∣
(C.17)

=
n

∑
i=1

∣∣∣∣Ep(c)∗Xi

[g∗i (X)− ĝi(X)]

∣∣∣∣
=

n

∑
i=1

∣∣∣∣∣Ep(c)∗Xi

[
log

p(c)∗Xi
(X)

p̂(c)Xi
(X)
− log

p(r)∗Xi
(X)

p̂(r)Xi
(X)

]∣∣∣∣∣
≤

n

∑
i=1

∣∣∣D(p(c)∗Xi
|| p̂(c)Xi

)
∣∣∣+ ∣∣∣∣∣Ep(c)∗Xi

[
log

p(r)∗Xi
(X)

p̂(r)Xi
(X)

]∣∣∣∣∣ (C.18)

≤M(c)(n)+M(r)(n) (C.19)

where (C.16) follows from the properties of absolute value, (C.17) follows from the reverse

triangle inequality, (C.18) follows from the triangle inequality, and (C.19) follows from non-
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negativity of the KL-divergence, Lemma 2, and Assumption 2. Moving the second term of (C.15)

to the other side of the inequality yields:

n

∑
i=1

∣∣ĈY→X(i)−C∗Y→X(i)
∣∣≤M(c)(n)+M(r)(n)+

n

∑
i=1

∣∣∣∣Ep(c)∗Xi

[ĝi(X)]−E
p̂(c)Xi

[ĝi(X)]

∣∣∣∣
≤M(c)(n)+M(r)(n)+

||~cn||2√
2

√
M(c)(n) (C.20)

where (C.20) follows from Lemma 3. This concludes the proof.

C.5.2 Proof of Theorem 6

We will first show that X̃ is (d + k)-Markov, i.e. X̃i ⊥ X̃ i−k−d−1 | X̃ i−1
i−k−d . Note that the

distribution of X̃i given X̃ i−1 may be written as:

p(Xi,Yi−k+1 | X i−1,Y i−k) = ∑
yi−1

i−k+2

p(Xi,Yi−k+1,yi−1
i−k+2 | X

i−1,Y i−k)

, ∑
yi−1

i−k+2

p(Xi,Ỹ i−1
i−k+1 | X

i−1,Y i−k)

= ∑
yi−1

i−k+2

p(Xi | X i−1,Ỹ i−1)p(Ỹ i−1
i−k+1 | X

i−1,Y i−k)

= ∑
yi−1

i−k+2

p(Xi | X i−1
i−k−d,Ỹ

i−1
i−k−d)p(Ỹ i−1

i−k+1 | X
i−1
i−k−d,Y

i−k
i−k−d) (C.21)

= ∑
yi−1

i−k+2

p(Xi,Ỹ i−1
i−k+1 | X

i−1
i−k−d,Y

i−k
i−k−d)

= p(Xi,Yi−k+1 | X i−1
i−k−d,Y

i−k
i−k−d)

where, for ease of notation, we have defined Ỹj = y j if i−k+2≤ j ≤ i−1 and Ỹj =Yj otherwise,
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and (C.21) follows from the joint Markovicity of X and Y and:

p(Ỹ i−1
i−k+1 | X

i−1,Y i−k) =
i−1

∏
j=i−k+1

p(Ỹj | X i−1,Ỹ j−1)

=
i−1

∏
j=i−k+1

p(Ỹj | X i−1
i−k−d,Ỹ

j−1
i−k−d)

= p(Ỹ i−1
i−k+1 | X

i−1
i−k−d,Y

i−k
i−k−d)

where we define Ỹ b
a = /0 when b < a. This proves the Markovicity of X̃ . To get the equality given

by (4.40), we simply take the sum over Yi−k+1 in the above equations.

Next, we will show that X̃ is irreducible. We note that the possible states of X̃ may be

a subset of the possible states of (X ,Y ), i.e. X̃ ⊂ X ×Y . Each state x̃ ∈ X̃ occurs as a result

of visiting a state (xi−k+1,yi−k+1) followed by (xi,yi) after k− 1 steps. Given that (X ,Y ) is

irreducible, every state (xi−k+1,yi−k+1) ∈ X ×Y can be visited from any state (xi,yi) ∈ X ×Y .

As a result, every state in x̃ ∈ X̃ can be visited from any other state x̃′ ∈ X̃ . Therefore, X̃ is

irreducible.

Lastly, we will show that if (X ,Y ) is aperiodic then X̃ is also aperiodic. Note that

for any state x̃i = (Xi = a,Yi−k+1 = b) ∈ X̃ , we know there exists c ∈ X and d ∈ Y such that

p(Xi−k+1 = c,Yi−k+1 = b,Xi = a,Yi = d) > 0. By the aperiodicity we know that the greatest

common divisor of the set of τ such that:

p(Xi−k+1 = c,Yi−k+1 = b,Xi−k+1+τ = c,Yi−k+1+τ = b)> 0
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is one. As a result, the same is true of τ such that:

0 <p(Xi−k+1 = c,Yi−k+1 = b,Xi = a,Yi = d,Xi−k+1+τ = c,Yi−k+1+τ = b,Xi+τ = a,Yi+τ = d)

≤p(Yi−k+1 = b,Yi−k+1+τ = b,Xi = a,Xi+τ = a)

=p(x̃i, x̃i+τ)

implying that X̃ is aperiodic.

C.5.3 Proof of Theorem 7

Let the estimate of the partial DI rate be given by:

Î(k)P,n(Y → X),
1
n

n

∑
i=1

D(p̂(c)Xi
|| p̂(k)Xi

). (C.22)

Then the theorem states that Î(k)P,n converges to Ī(k)P almost surely. Following the proof of Theorem

3 in [55], decompose the estimate as:

Î(k)P,n(Y → X) =
1
n

n

∑
i=1

∑
xi

p̂(c)Xi
(xi) log

1

p̂(k)Xi
(xi)
− 1

n

n

∑
i=1

∑
xi

p̂(c)Xi
(xi) log

1

p̂(c)Xi
(xi)

.

It was shown in [55] that the second term on the right hand side of the above equation converges

to H̄(1)(X || Y ) almost surely. Next, define the quantity:

F(k)
n ,

1
n

n

∑
i=1

∑
xi

p̂(c)Xi
(xi) log

1

p̂(k)Xi
(xi)

. (C.23)

Then it remains to be shown that F(k)
n converges to H̄(k)(X || Y ) almost surely. Next, define R(k)

n

152



and S(k)n as:

R(k)
n ,

1
n

n

∑
i=1

[
∑
xi

p(c)Xi
(xi) log p(k)Xi

(xi)− p̂(c)Xi
(xi) log p̂(k)Xi

(xi)

]

S(k)n ,−
1
n

n

∑
i=1

∑
xi

p(c)Xi
(xi) log p(k)Xi

(xi)− H̄(k)(X || Y )

and note that F(k)
n − H̄(k)(X || Y ) = R(k)

n +S(k)n . As such, all that remains to be shown is that R(k)
n

and S(k)n converge to zero almost surely. It is shown in Lemma 2 of [55] that the CTW probability

assignment p̂(c)Xi
(xi) converges to p(c)Xi

(xi) almost surely if (X ,Y ) is a stationary irreducible aperi-

odic finite-alphabet Markov process. We showed in Theorem 6 that this condition implies that the

process X̃ with X̃i , (Xi,Yi−k+1) is also a stationary aperiodic finite-alphabet Markov process and

thus p̂(k)Xi
(xi) converges to p(k)Xi

(xi) almost surely as well. As a result, we see that the bracketed

term in R(k)
n converges to zero almost surely as i tends to infinity. Furthermore, since R(k)

n is the

Cesáro mean of the bracketed term, it too converges to zero almost surely.

To show that S(k)n converges to zero, first define the first term as:

G(k)
i ,−∑

xi

p(c)Xi
(xi) log p(k)Xi

(xi)

=−∑
xi

p(xi | xi−1,yi−1) log p(xi | xi−1,yi−k)

=−∑
xi

p(xi | xi−1
i−k−d,y

i−1
i−k−d) log p(xi | xi−1

i−k−d,y
i−k
i−k−d)

, g(xi−1
i−k−d,y

i−1
i−k−d)

Then, from Breiman’s generalized ergodic theorem [17], it follows that the following equality

holds almost surely:

lim
n→∞

1
n

n

∑
i=1

g(xi−1
i−k−d,y

i−1
i−k−d) = E

[
g(X−1
−k−d,Y

−1
−k−d)

]
.
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Finally, using the law of iterated expectation, we note that:

E[g(X−1
−k−d,Y

−1
−k−d)]

=E

[
−∑

x0

p(x0 | X−1
−k−d,Y

−1
−k−d) log p(x0 | X−1

−k−d,Y
−k
−k−d)

]

=E

[
E

[
−∑

x0

p(x0 | X−1
−k−d,Y

−1
−k−d) log p(x0 | X−1

−k−d,Y
−k
−k−d)

∣∣∣∣X−1
−k−d,Y

−k
−k−d

]]

=E

[
−∑

x0

p(x0 | X−1
−k−d,Y

−k
−k−d) log p(x0 | X−1

−k−d,Y
−k
−k−d)

]

=H̄(k)(X || Y )

Thus, we conclude that:

lim
n→∞

S(k)n = lim
n→∞

1
n

n

∑
i=1

G(k)
i − H̄(k)(X || Y ) = 0 p−a.s.

as was to be shown.
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Appendix D

Appendix to Chapter 5

D.1 Exchanging Interventions and Observations

The do-calculus provides a set of rules to aid using the do-operator in practice and to

enable identifying if and how interventional probabilities can be computed. Of particular interest

is computing interventional probabilities (i.e. those using the do-operator) from the standard

conditional probabilities that represent observing variables. This is particularly important in

scenarios such as the one considered in Section 5.5, wherein it is infeasible to actually perform

interventions. The do-calculus consists of three rules, each of which involves an equivalence

statement between probabilities that is implied by a d-separation criterion. We here focus on Rule

2, which provides a condition for which observations can be exchanged for actions. Specifically,

this rule says that for a DAG G and any disjoint sets of variables X ,Y ,Z, and W :

(Y⊥⊥dZ | X ,W )GXZ
=⇒ p(y | x̂, ẑ,w) = p(y | x̂,z,w) (D.1)

where (·⊥⊥d· | ·)G represents d-separation with respect to the DAG G and GXZ represents an

augmented DAG with all incoming arrows to X and outgoing arrows from Z removed. The rule

is framed in a general form in that it allows other variables to be observed or intervened upon
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(i.e. W and X) on both sides of the equality. Roughly speaking, this rule says that if the only

way Z relates to Y is via descendants of Z, than knowing whether or not a particular value z was

observed or forced will not change the distribution of Y . To see this, first let X = /0, and note

that the d-separation condition becomes (Y⊥⊥dZ |W )GZ , i.e. Y is d-separated from Z by W if

we ignore all paths coming out of Z. If that condition is not satisfied, then observing a value of

Z informs us about the values of Z’s parents, which then may provide further information on

the distribution of Y . By contrast, if we intervene on Z, then no information is conveyed about

Z’s parents, and the distribution of Y will not be the same. Next, letting X 6= /0, we see that the

condition now requires removing all incoming arrows to X . This is because if X is intervened

upon, it will contain no information about the values of its parents.

This rule is applied in a straightforward manner in two ways in Section 5.5. First, when

measuring the effect of ENSO on temperature, we need to exchange an intervention on the ENSO

phase for an observation of an ENSO phase. Focusing on the graph on the right side of Figure 5.4,

the augmented graph GE is given by E being an isolated node. Thus, in this augmented graph E

is d-separated from T by either /0 or S, and we have p(t | ê) = p(t | e) and p(t | s, ê) = p(t | s,e).

Similarly, for measuring the effect of S on T , we need to consider the augmented graph GS given

by S← E→ T . Using the d-separation algorithm described in Algorithm 1, it is straightforward

to see that (S⊥⊥dT | E)GS and thus p(t | e, ŝ) = p(t | e,s).

D.2 Conditional Specific Causal Measures

Definition 8. The partially observed conditional SCDE of x on Y with mediator z in setting ũ is

defined as:

SCDE(x→ Y ;z | ũ), D(p(Y | x̂, ẑ, ũ) ||∑x′ p(x
′ | ũ)p(Y | x̂′, ẑ, ũ))
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In the fully observable setting Ũ =U we have:

SCDE(x→ Y ;z | u), D(p(Y | x̂, ẑ,uY ) ||∑x′ p(x
′ | uX)p(Y | x̂′, ẑ,uY ))

Definition 9. The partially observed conditional SNDE of x on Y in setting ũ is defined as:

SNDE(x→ Y | ũ), D(p(Y | x̂, ũ) ||∑x′,z′ p(x
′ | ũ)p(z′ | x̂, ũ)p(Y | x̂′,z′, ũ))

In the fully observable setting Ũ =U we have:

SNDE(x→ Y | u), D(p(Y | x̂,uY ,uZ) ||∑x′,z′ p(x
′ | uX)p(z′ | x̂,uZ)p(Y | x̂′,z′,uY ))

Definition 10. The partially observed conditional SNIE of x on Y in setting ũ is defined as:

SNIE(x→ Y | ũ), D(p(Y | x̂, ũ) ||∑x′,z′ p(x
′ | ũ)p(z′ | x̂′, ũ)p(Y | x̂,z′, ũ))

In the fully observable setting Ũ =U we have:

SNIE(x→ Y | u), D(p(Y | x̂,uY ,uZ) ||∑x′,z′ p(x
′ | uX)p(z′ | x̂′,uZ)p(Y | x̂,z′,uY ))
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D.3 Proof of Theorems

D.3.1 Proof of Theorem 8

The proposition follows directly from the definitions in (5.1) and (5.7):

Ep(X)[ST E(X → Y )] = ∑
x

p(x)D(p(Y | x̂) ||∑
x′

p(x′)p(Y | x̂′)) (D.2)

= ∑
x

p(x)∑
y

p(y | x̂) log
p(y | x̂)

∑x′ p(x′)p(y | x̂′)
(D.3)

= I(X → Y ) (D.4)

D.3.2 Proof of Theorem 9

Starting with the conditional IF, see that:

I(X → Y | Ẑ) = ∑
z

p(z)∑
x

p(x | ẑ)∑
y

p(y | x̂, ẑ) log
p(y | x̂, ẑ)

∑x′ p(x′ | ẑ)p(y | x̂′, ẑ)

= ∑
x,z

p(z)p(x | ẑ)D(p(y | x̂, ẑ) ||∑x′ p(x
′ | ẑ)p(y | x̂′, ẑ))

= ∑
x,z

p(z)p(x)D(p(y | x̂, ẑ) ||∑x′ p(x
′)p(y | x̂′, ẑ)) (D.5)

= Ep(X)p(Z)[SCDE(X → Y ;Z)]
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where (D.5) follows from the fact that interventions on Z can be ignored in the distribution of X .

Moving onto the CS, we have:

CX→Y = D(p(X ,Y,Z) || pX→Y (X ,Y,Z)) (D.6)

= ∑
x,y,z

p(x,y,z) log
p(x)p(z | x)p(y | x,z)

p(x)p(z | x)(∑x′ p(x′)p(y | x′,z))
(D.7)

= ∑
x,y,z

p(x,y,z) log
p(y | x,z)

∑x′ p(x′)p(y | x′,z)
(D.8)

= ∑
x,z

p(x,z)∑
y

p(y | x,z) log
p(y | x,z)

∑x′ p(x′)p(y | x′,z)
(D.9)

= ∑
x,z

p(x,z)∑
y

p(y | x̂, ẑ) log
p(y | x̂, ẑ)

∑x̂′ p(x̂′)p(y | x̂′, ẑ)
(D.10)

= ∑
x,z

p(x,z)D(p(Y | x̂, ẑ) ||∑x′ p(x
′)p(Y | x̂′, ẑ)) (D.11)

= Ep(X ,Z)[SCDE(X → Y ;Z)] (D.12)

D.3.3 Proof of Theorem 10

Note that the conditional STE, SNDE, and SNIE only utilize three distributions involving

interventions, namely p(y | x̂, ũ), p(z | x̂, ũ), and p(y | x̂,z, ũ). We wish to show that we can

estimate these distributions can be estimated from observational data, i.e. that the hats can

be removed. Assume that the conditions of the theorem hold. We first claim that (X ⊥⊥ Y |

Ũ1)GX =⇒ (X ⊥⊥ Y | Ũ)GX and (X ⊥⊥ Z | Ũ2)GX =⇒ (X ⊥⊥ Z | Ũ)GX . To see this, note that

in the DAG GX , X has no children, and thus will not be connected to any other nodes in step

two of the d-separation algorithm given by Algorithm 1. Since every edge connected to a node

in Ũ is removed in step three in the algorithm, the only way for one of the implications to

be violated is if there is an undirected path in GX connecting X and Z or X and Y that does
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not pass through Ũ ; however, such a path would necessarily not pass through Ũ1 or Ũ2, which

would violate (X ⊥⊥ Y | Ũ1)GX or (X ⊥⊥ Z | Ũ2)GX . Thus, the claimed implications hold. Next

we can directly apply rule two of the do-calculus [92, Theorem 3.4.1] to (X ⊥⊥ Y | Ũ)GX and

(X ⊥⊥ Z | Ũ)GX to see that p(y | x̂, ũ) = p(y | x, ũ) and p(z | x̂, ũ) = p(z | x, ũ). Finally, we claim that

(X ⊥⊥ Y | Ũ)GX =⇒ (X ⊥⊥ Y | Z,Ũ)GX using the same argument showing the implications above.

Applying rule 2 of the do-calculus to (X ⊥⊥ Y | Z,Ũ)GX yields that p(y | x̂,z, ũ) = p(y | x,z, ũ).

As such, all three of the interventional distributions needed by the STE, SNDE, and SNIE can

be equated to their observational counterparts under the stated assumptions and the proof is

completed.
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