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ABSTRACT

The elastoplastic dynamic problem is first formulated in a functional form
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1. Introduction

A number of numerical techniques have been proposed for the approximation of the solu-
tion of the infinitesimal elasto-perfectly plastic dynamic problem. For instance, a method that
has been widely used in the past [16] consists of solving a viscoplastic problem having the same
elastic domain and a small viscosity. The viscoplastic solution is then observed to approach the
elastoplastic one as the viscosity is made to tend to zero. More recently, a number of step-by-
step algorithms have been proposed [6,14] that consist of solving, for every time step, an incre-
mental elastic problem and subsequently projecting the solution so obtained onto the elastic
domain by means of a suitable "return mapping". These algorithms are computationally very
efficient as they bypass the need to repeatedly form and factorize the tangent stiffness matrix.
These methods have been successfully applied in a number of applications, but a formal
mathematical treatment as yet is unavailable in the literature. This paper attempts to provide

some advance in this direction.

The nonlinear theory of semigroups, on the other hand, has experienced a great deal of
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progress in recent years, and has been successfully applied to a variety of problems in
mathematical physics. It is the purpose of this paper to apply these techniques, is conjunction
with convex analysis, to the study of the elastoplastic dynamic problem. This task is greatly
facilitated by a functional formulation of the elastoplastic equations of motion. A preeminent
role is played in this respect by the concept of subdifferential, introduced by Moreau in his
pioneering work [8], and subsequently applied to the study of plastic and viscoplastic materials
[9,10,11,12]. In Moreau’s formalism, the plastic constitutive mapping is defined to be the
subdifferential of the indicator function of a functional elastic domain, thus rendering applicable
all the available results on semigroups generated by subdifferential operators [2]. The equations
of motion resulting from this approach are set-valued, due to the set-valuedness of the plastic
constitutive mapping. It is shown in Section 2, however, that the classical consistency condition
of plasticity has the effect of restricting these equations of motion to their canonical restriction,
thus rendering them single-valued. Existence and uniqueness of the solution are then proved
by showing that the elastoplastic equations of motion define a contraction semigroup in a suit-

able Hilbert space.

In subsequent Sections, a number of approximation techniques are discussed within the
framework of nonlinear semigroup theory, that provide a formal background for the aforemen-
tioned numerical methods. In Section 4, for instance, some results of convex analysis in Hil-
bert space are used to show that the return mapping algorithms can be identified with the classi-
cal product formulas of semigroup theory. In Section 5, the approximation of the elastoplastic
solution by means of viscoplastic models is discussed. A suitable relaxation property for non-
linear viscoplasticity is formulated that insures convergence to the elastoplastic solution in the

limit of small viscosities.

2. The Elastoplastic Equations of Motion

In this Section we formulate the elastoplastic dynamic problem in a functional form which
is suitable for the application of the techniques of the theory of nonlinear semigroups. For

instance, the distribution of plastic strain rates over the body is expressed as the subdifferential
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of the indicator function of a functional elastic domain. This leads to equations of motion that
involve a set-valued operator, A. The consistency condition is then shown to restrict this

operator to its canonical restriction A°, rendering the equations of motion single-valued.

Consider an elastoplastic body occupying a bounded open region Q in R". Denote by v
and o the velocity and stress field over Q, respectively. Then, the unforced equations of

motion can be expressed as:

v _ 1y

dt p

do (n
— = D(Vv—¢"

dt

For simplicity, the boundary conditions will be taken to be homogeneous and of the Dirichlet
type. Here, €’ denotes the plastic deformation rate, p and D the mass density and elastic com-
pliance tensor of the material, respectively. The evolution of the system is assumed to take
place in a Hilbert space // = H,X H,, where H, denotes some closed linear subspace of L2(Q)
consisting of those velocity fields that satisfy the displacement boundary conditions, with the
inner product

<V],V2> H, = <pV1,V2> 12 (2)

and H.,, signifies the set of stress fields in L2(Q) with the inner product

<o,,0,> H = < D_l-o'l,0'2> 12 (3)

This endows H with the following inner product

Vil | V2
<[0_ l],[02}> = <V,Vp> H, + <o,0,> H, = <pvVvy,Vy> 12 + <D_1‘0'1,0'2> 12 €))]
or energy inner product, which proves convenient for the application at hand. Since p>0 and

D7'is symmetric and positive definite, this inner product is equivalent to the usual L2 product.

The symbol -C% denotes the Frechet derivative of a function of time. In other words, we view

eqs. (1) as ordinary differential eqgs. in the (infinite-dimensional) vector space H.

In order to have a complete set of equations, one has to supplement egs. (1) with some

constitutive relations for €”. For an elastic-perfectly plastic material, the existence of a ciosed
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convex set C in stress space S, or elastic region, is usually assumed such that, at every point

we ()

€’(w) =rn if c(w)edC
e’(w) =0 if o(welnt(C)
where n is the normal to 9C at o(w), N >0 but otherwise indeterminate, and

(5)

Int(C) = C — §C denotes the interior of C. Let us formally express this relation as

D€’ (w)e To(w) (6)

Thus, T: S — § is a nonlinear, set-valued mapping in stress space.

Note that the definition (5) of the plastic constitutive relations presupposes the existence
of the normal n to 9 C, i.e., applies only to the case in which the elastic region has a smooth
boundary. A more general definition of 7T that applies equally well to any closed convex elastic
region can be obtained by introducing the concept of subdifferential.” To this end, let <, >¢
denote the following inner product in stress space

<a,8>g=a'D7B a,BeS (7N
Let o€ C and Be S. Then, we shall say that B¢ To if and only if <B,0 — v>g 2 0, for all y
in the elastic domain C. Note that if o€ Int(C) then To = (0}, and that if the boundary of
the elastic region happens to be smooth and o €dC then the set To consists of elements that
are normal to 8 C and that point outside the elastic region. Also note that T is not defined for
values of o outside C. For a general closed convex elastic region, the set To, o €dC, defined
above is a closed convex cone which is commonly termed the vertex of C at o [15]. Any ele-
ment of 7o is then said to be a normal to C at o. Furthermore, it can be shown [1,2] that T

is the subdifferential of the indicator function /. of C:

Ic(a) =0 ifo belongs to C

Ic(a) = ifo does not belong to C ®)

By comparison with the simple result that the gradient of a smooth function is normal to its

level contours, the fact that T = /¢ can be again interpreted as a generalized statement of the

* The subdifferential @ f of a convex, lower semicontinuous function S:H—R is the set [8]
o0f = {(x, e HXH s.t. f(u)>=f(X)+<y,u—x>, for all ue H)
If f is Frechet-differentiable it turns out that 0f = Df = Frechet-derivalive of f.



normality rule (5).

The mapping 7, when applied pointwise to a stress field o € H, (modulo sets of measure
zero), defines a mapping from H, into itself that we shall denote T,. Let us also define the set
C.= {oeH, st alw)eC ae in Q). This is clearly a closed convex subset of H, Then, it is
clear that for stress fields such that o e Int(C) the body behaves elastically as a whole. On the
other hand, T,o gives the distribution of plastic strain rates over the body. It therefore makes
sense to interpret C, and T, as some "functional" elastic domain and platic constitutive map-
ping, respectively. The following proposition shows that the normality rule carries over to the

functional level.

Proposition For every oeC,, BeT,s, iff <B,oc—y> w20 for all yeC, ie.,
TT = aICr'

Proof: Let o€ C; and assume Be T,o. Then, by the definition of T,, B(w) e To (0) a.e.
in Q, ie., <B(w),0(w) — y(@)>s > 0, a.e. in Q and for all y e C,. Hence, by the properties
of the Lebesgue integral, <g8,a — y> H, = 0.

Assume Be H is such that <8,0 — y> H, 2 0, for all yeC, and that there exists a sub-

set £ of Q of non-zero measure such that <g(w),o(w) — y(w)>g < 0 for all we E. Denote
by vr and o g the restrictions of y and o to E and Q — E, respectively. Then, by the

definition of C,, it is clear that y = y; + o ¢ze C, But now <B,o — v> 1, < 0, which con-

tradicts the assumption. Hence, <B(w),0(w) — y(w)>g5 > 0 ae. and for all yeC,, and

BeT,o./ll/

Let us introduce the notation x = [;] € H. The mapping T, can be trivially extended to
a mapping T from H into H by setting

Tx = [T(T)cr]’ Sforallx = [J_]e H 9)

If we now define C= H,(Q)xC.,, it is then apparent that C is a closed convex subset of A and

T =08/c With this notation, the equations of motion (1) can be rephrased in the more



compact fashion

%x(r)eAx(t) in H (10)

where A is a nonlinear, set-valued operator on H defined as A = W — T, with

0 ;V'
W=|pv o (1)

being the linear elasticity wave operator.
It is easily checked that, with the choice (4) of inner product for H, W is a skewadjoint
operator, i.e., W' = — W, and therefore, by Stone’s theorem [13], it generates a unitary group

in H which we shall denote by Sw(7).

It is also a well-known fact [13], that the domain of W, say D(W), is H(Q)x H!(Q),
where H,(Q) (H!(Q))= (fe H, (H,) st VfeH, (H,)). Thus, W is densely defined in H,
i.e., DOW) = H. On the other hand, the domain of T, say D(T), is C. Therefore it follows that
the domain of A is D(A)= D(W) M D(T)= D(W) N C, which is a convex subset of H whose

closure D(A) = C.

Set-valued operators, as in (10), are common place in the theory of nonlinear semigroups.
Here, the set-valuedness of A arises from the indeterminacy of the plastic strain rates. This
indeterminacy is resolved, in practice, by imposing the so called "consistency condition" on the

stress rates. In stress space, this can be stated as

olw)n=0 if oc(w)edC
o(w) unconstrained if o(w) e Int(C)
for every we Q, where n denotes the normal to 6C at o(w). This condition insures that the

(12)

stress path does not wander out of the elastic region. Substituting (1b) into (12) and making

use of (5) the following value of A is obtained

n'D-€(w)

_ 1
n-D-n (13)

which substituted into (1b) yields

A:

F i) = [D _ M]'é(w) (14)
n-D-n
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This formulation of the consistency condition is often too restrictive since it assumes smooth-
ness of the elastic region. For the present discussion, the following alternative approach proves
more convenient. It is easily checked that the plastic strain rate resulting from imposing the
consistency condition is the element of To (w) that minimizes the norm of ¢ (w)

16 @) 12 = <6(@),6-@)> s = €w) — An)-D-C(w) — An) = FO 15)

In fact,

SN =0 ff 0=—2nD-(é(w) — An) =— 2no(w) (16)
which is the consistency condition. Thus, the consistency condition can be alternatively formu-
lated as follows: of all the elements of To (w) in stress space pick the one that renders

<DVviw) — To(w),DVv(w) — Tolw)>g minimum amn
This minimal element always exists and is unique due to the fact that To (w) is a closed convex
cone. Note also the validity of this definition regardless of the smoothness of 9 C. In the con-
text of H,, the consistency condition (17) can be generalized to

Hd‘“f,r = <D:(Vv-T,0),D(Vv—T,o)>y minimum (18)
This uniquely determines an element of the closed convex cone T,o, which we denote by T .
Clearly, T ‘% is the projection of D-V v onto the vertex (:)ICT(O') =T,s [15]land 0 = D-Vv —
T/fo is its orthogonal complement and it therefore belongs to the dual cone of 3[(:,(0'), i.e., to
the support cone of C, at o. Thus, (18) is in effect an abstract generalization of the consistency
condition that constrains the stress rate field over the body o to have zero component onto the
"normal” §/c_to the functional elastic region. On the other hand, recalling the result [15] that
Be H, is an element of the support cone of C, at o if and only if there is a curve o (f) con-

tained in C, such that

o(d=c+ 1B+ 0(t) as t—0* (19)

it becomes apparent that the abstract consistency condition also serves the purpose of insuring

that the trajectory of the stresses do not come out of the functional elastic region.

The mapping T, can be extended to a map T” on H as in (9). Then, it is readily checked

that the element A°x = (W — T x is the element of minimum norm of Ax. The (single-
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valued) mapping A° that assigns to xe D(A) = D(A°) the element of least norm in Ax is often
referred to as the minimal section or the canonical restriction of A (see [3] for further proper-
ties). From our previous discussion it also follows that the operator A° can be expressed as

A’x =Tc(x)Wx for all xeD(A) (20)

where I1c(x) denotes the projection onto the support cone of C at xeC.

We see, therefore, that the consistency condition has the effect of restricting the (set-

valued) operator A in (10) to its canonical restriction A°. The equations of motion now read

-c%x(t) —A%() in H @1
Note that the inclusion sign in (10) can now be replaced by the equality sign, due to the

single-valuedness of A°.

Equation (21) may be regarded as an abstract expression of the equations of motion of an
elastoplastic body. The rest of the paper is devoted to studying the properties of (21) within the

framework or the nonlinear theory of semigroups.

3. Existence and Uniqueness of the Solution of the Elastoplastic Equations of Motion.

The question we next ask ourselves is whether the equations of motion (10) define a con-
traction semigroup S(¢), i.e., if there exists a one parametric family S(#) of (nonlinear) map-

pings from some subset E of H into itself, with ¢ taking values in R*, such that

a) S(t+ s) = S(1)S(s)
b) S(0) =1= identity mapping
¢) S(8)x continuous in t (22)
d) 1I1S(ox—Syll < llx—yll
e) lim SWx=x € Ax
—0 + t

for all r,s€ R* and x,ye E. A trajectory x(#) = S()x in H is then termed a (strong) solution
of (10) (in the sense of (22)) with initial value x.
Let us first recall some concepts from the theory of semigroups in Hilbert space. A set A

in HXx H is said to be monotone if <y; — yj, x; — x> > 0 for every (x;,¥1), (x5,¥,) in A. A

monotone set which is not properly contained in any other monotone set is called maximal
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monotone. A monotone set A is maximal monotone if and only if the range condition
R(I + MA) =H is satisfied for every A>0, [3]. Let A be a maximal monotone set. A subset
A’ of A is a principal section of of A if A’ is single-valued, D(A") = D(A) and A has the fol-
lowing property: If xe D(A) and <y— A'z,x — z> > 0 for every ze D(A), then (x,y)€A.
For instance, the canonical restriction A° of a maximal monotone set A is a principal section of
A, [3].

Monotone sets play an important role in the theory of nonlinear semigroups in Hilbert
space. For instance, a classical result by &mura, [5], states that if — A is maximal monotone
then A generates a semigroup of contractions S(¢) on D(A). In fact, this semigroup satisfies
the stronger equation in which the operator A is replaced by its canonical restriction A°, [3,4].
In terms of the problem at hand, this implies that the solutions of the multi-valued elastoplastic
equations of motion (10) of necessity satisfy the consistency condition and are, therefore, solu-

tions of the restricted equations of motion (21).

We next show that the negative of the elastoplastic operator A in (10) is in fact maximal
monotone. For this, we first note that /¢ is a proper, convex lower semicontinuous function on
H. Thercfore, its subdifferential T is maximal monotone [7]. The fact that —A =T — W is
maximal monotone then follows immediately from a result by Crandall and Pazy [4] that states
that given two maximal monotone operators A and B such that the intersection
(Int D(A)) M D(B) is not empty, the operator A + B is maximal monotone. Thus, — A is the
unique maximal extension of the restriction of the negative linear elastic wave operator — W to
C [1]. This illustrates the fact that perfect plasticity is the only way of restricting the linear
elasticity wave operator to a closed convex set of admissible stresses retaining the maximal
monotonicity property. Finally, the existence and uniqueness of the solutions of (10) and (21)
(in the semigroup sense), for any initial conditions in C, follows from the aforementioned

result by Komura.
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4. The Approximation of the Solutions of the Elastoplastic Equations of Motion by Means
of Step-by-Step Algorithms

An important aspect of the theory of semigroups is that of the approximation of the solu-
tions of equations of evolution such as (10). This problem can be approached in a variety of
different ways. For instance, one can attempt to replace the operator A under consideration by
a one parametric family of operators A,, with A>0, say, that lead to equations that are more
easily solvable, and whose solutions x,(¢) tend to the solution x(¢) corresponding to the opera-
tor A as A—0. We shall return to this question in the next Section. Here, a different approach
will be pursued. The idea is to approximate the solution by means of a step-by-step integration
scheme, in a manner which is reminiscent of the numerical techniques which are commonly

used to solve ordinary differential equations.

An important result in this direction that illustrates also the nature of this approach is one
due to Brézis and Pazy, [1], that states that given a maximal monotone set A in Hx H generat-

ing a semigroup S(s), and a family of contractions F(#) in D(A), for every >0, if

lim = A'x for every xeD(A) _ (25)

F()x— x
—0 t

where A'is a principal section of A, then

lim [F(t/n)]”x =S()x for every xeD(A) and t > 0 (26)
n—oo

where the limit is uniform in ¢ on every bounded interval. Note that (25) implies that F(0) be
equal to I. One such family of contractions F(¢) is commonly referred to as an "algorithm" (for

A). The exponential formula in (26), can be viewed as an abstract representation of the step-

by-step integration procedure, in which the algorithm F(¢) is repeatedly applied n times to the
initial value x, with a time step 4 = ;t, in order to approximate the value of the solution at

time ¢ With this terminology, the theorem states that the approximate solution tends to the

exact one uniformly as the time step in made to tend to 0.

We next turn our attention to the elastoplastic equations of motion and discuss some use-

ful algorithms that can be used to approximate the solution. Let us denote by P H—C the



-11 -

"closest point" mapping onto C. The existence and uniqueness of Pcx for all xe H is a well-
known fact in the geometry of Hilbert space. Moreover, C is the set of fixed points of P¢, and

so C and P¢determine each other. Thus, P2 = Pg i.e., P is a nonlinear projection.

A deeper fact about projections onto closed convex sets in Hilbert space is due to Zaran-
tonello [15] and states that for every xe C the directional derivative of Pc(x) along ye H is

given by

DP(x;y) = ?de— [Pc(x +e y)L:O =Mc(x)y for every ye H 7

In other words, given a differentiable curve x(#) in H, with x(0) = xe C and %(0) = x, it fol-
lows that

[ %ch(t)] = (0 (28)

Consider now the algorithm
F(r) = Pcsw(l‘) (29)
Clearly, F(¢) maps C into itself. Furthermore, it is easy to check that this algorithm is a con-
traction. For this, we first note [15] that Pc is a non-expansive retraction, i.c., ||Pcx — Peyl|<

l|x — yll, for every x,ye HH. Therefore, recalling that the group Sw(7) is unitary, we obtain
HF(Dx — F()yll = |IPSw(Dx — PSw(Dyl| <
lISw(Dx — Sw(Dyll = [ISw() (x =PIl = |Ix— yl|

for all x,ye H, i.e., F(¢) defines a contraction from C into itself. On the other hand, recalling

(30)

[13] that the curve Sw(/)x is differentiable for every xeD(W), and making use of (20) and

(28), it follows that

— PSw(f)x — PcSw(0)
lim Fx—x _ lim —W2X L =IM(x)Wx = A°x (31
—0+ t —0 + t

for every xe C(\) D(W)= D(A). Therefore, by the aforementioned result by Br*’ezis and Pazy

[1] it follows that

lm[PCSw(t/n)] "x=S()x for every xeD(A) = C (32)

where the convergence is uniform in t on bounded intervals.
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This result, spelled out in more detail, asserts that the solution of the elastoplastic equa-
tions of motion can be uniformly approximated by means of a step-by-step integration scheme,
in which at every time step one solves an incremental linear elastic problem the result of which
is then projected onto the closest point in the elastic domain. Naturally, if the result of the

linear elastic problem is within the elastic domain, the projection does not alter it.

The result expressed in (32) can be uéeful in cases in which a close form linear elastic
solution is available. However, in most applications this is not the case, and the linear elastic
problem also requires a numerical treatment. Thus, it would be of practical interest to know
whether the same result holds true upon replacing Sw(#) in (32) by an algorithm Fw(¢) for the
linear elastic wave operator. To this effect, let us define now the algorithm F(¢) as

F(1) = PFw(s) (33)
where Fy(?) is a contraction such that the curve x(1) = Fy(1)x is differentiable, for every
xe D(W), and such that consistency with W is satisfied in the sense expressed in (25). Then,

the fact that F(1) is a contraction follows as in (30). Moreover, by (20) and (28)
. F(x—x . PFwldx—PFw0)x
lim——— =lim

—0 t —0 t
for every xe C (M) D(W). Hence, the following exponential formula

=Mc(x)Wx = A% (34)

Li_r.r:O[Pch(t/n)]”x= S()x for every xe C (35)
also holds in this case.

It is interesting to note that, from a numerical point of view, the practicality or this
method lies in the fact that it bypasses completely the need to compute the tangent stiffness at
every time step. In fact, only the linear elastic stiffness matrix needs to be formed, and all the
necessary matrix manipulations can be carried out, once and for all, at the beginning of the
integration process.

As a specific example, let us consider the case where Fy(7) is chosen to be the resolvent
of W, i.e., the mapping J ’w = (I+ tW)~L In finite dimensions, this would correspond to the

use of a fully implicit algorithm for W. It is a well-known fact [3] that the resolvent of a mono-
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tone operator A is a contraction with domain D(JA)= R(I + rA). Therefore, if A is maximal
monotone it follows that D(J2) = H i.e., the resolvent is everywhere defined. The divided

difference operator

I-JA
T
is, in this case, the so called "Yoshida approximation" to the operator A. It is also a well-known

A, >0 (36)

fact [3] that the Yoshida approximation satisfies lim A,x = A°x, and, therefore, the resolvent
—0t

mapping J A is consistent with A in the sense (25). Thus, the product formula (35) does hold
in this case. In fact, this particular case can be proven directly by using a result by Brézis and
Pazy [1] stating that given two maximal monotone sets, A and B, such that A + B is also maxi-
mal monotone, and if Sy=5(¢) is the semigroup generated by A + B, then

Smx = lim

n—oo

-1 —11n
1+i4 1+i4 ]x=mmmgmx (37)

for every xe m, and the limit is uniform in t on every bounded interval. Now, eq.
(35) follows directly from (36) by substituting W for B, T for A and noting [2] that the resol-
vent of T = 9§/ is precisely P.

The closest point projection P¢ arises naturally as a return mapping in a product formula
like (35) as a result of the fact that it is the resolvent of the plastic constitutive mapping T.
Nevertheless, this is by no means the only possible choice of a return mapping. Consider a
contraction f’c with a closed convex domain D(f’() properly containing the elastic region C,
such that its range and set of fixed points is C, and satisfying the directional derivative condi-
tion (28). In this setting, this condition can be interpreted as the requirement that f’c behave
asymptotically as the closest point projection onto C, as one approaches the elastic domain. By

exactly the same arguments leading to product formula (35), it can be now readily checked that

lim [f’CSw(t/n)] x=S()x for every xe C (38)
n—oo
where the convergence is uniform in 7 on bounded intervals. Eq. (38) shows that a broad class

of return mappings f’c can in fact be used to approximate the elastoplastic solution, as has been
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S. The Viscoplastic Equations of Motion and the Viscoplastic Approximation to the Elasto-
plastic Equations of Motion

In this Section, we turn our attention to an alternative method of approximation. The
idea is to replace the elastoplastic operator A by a family of related and more tractable opera-

tors, say A, that yield solutions that approximate the elastoplastic one as A is made to tend to 0.

A commonly used approximation that has been thoroughly studied in the past, (for a col-
lection of basic results, see [3]) is the Yoshida approximation, defined in (36). In the case of

the plastic constitutive mapping it follows that J )\T, Pc= and the Yoshida approximation reads

1-J37  1-Pc
h=—"="3

Thus, in this case, the Yoshida approximation T, coincides with the linear viscoplastic constitu-

A>0 39)

tive mapping, with elastic region C and viscosity A.

The equations of motion of a linear viscoplastic material can therefore be expressed as

L (i) = Ax(d) (40)
where A, = W — T,. This equation, apart from presenting some interest of its own, has been
frequently used in practice to approximate the solutions of the corresponding elastoplastic prob-
lem, due to its computational advantage that it only requires the elastic stiffness matrix and
bypasses the need of computing the tangent stiffness matrix [16]. In this context, eq. (40) is
sometimes referred to as the linear viscoplastic approximation to (10), and, the method of solu-

tion, the penalty method.

From the properties of the Yoshida approximation [3], it follows that T, is a Lipschitz
mapping with constant A, it is monotone and D(A,)= D(JJD= D(PQ = H. Recalling [2]

that the mapping I — P satisfies

(I—P(-)x=6[;~||(I—Pc)x||2’ Jor every xe H (41)

it then follows from (39) that
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T,= 8[~l—||(1 — POxI|Y = 0y () for every xe H 42)

2\

i.e., the linear viscoplastic constitutive mapping T, is the subdifferential of the function ¥,. By
exactly the same arguments stated for the alasto-perfectly plastic case, Section 3, it follows here
that the operator — A, = T, — W is maximal monotone. Therefore, it generates a semigroup
of contractions in H, by Komura’s theorem, that we shall denote S,(¢). This proves the
existence and uniqueness of the solution of the linear viscoplastic equations of motion. The
same result follows directly from a theorem by Crandall and Pazy [3] that states that if A is
maximal monotone and B is monotone and Lipschitz continuous, then A + B is maximal

monotone.

We next turn our attention to the problem of whether, in fact, the solution of the linear
viscoplastic problem approximates the solution of the elastoplastic one, as the viscosity tends to
zero. From the fact that the operator T) is the subdifferential of the proper convex, lower sem-
icontinuous function , defined in (42), we conclude that it is maximal monotone. Therefore,

—T), generates a contraction semigroup in H, say STA(t), by Komura’s theorem. In fact, it is a
simple matter to write down explicitly an expression for STA(t). To this effect, let us recall the

fact that projections onto closed convex sets in Hilbert space are "sunny projections", ie., if

Pex =z and x,y and z are collinear, then Pcy = z. Using this fact, it can be readily checked

that

STA(t)x = expl — Tt x+ |1 - exp[ - ft] Pcx  for every xe H (44)
Note that

STA(t) x—Pcx  asA—0, t>0 (45)

where the convergence is actually uniform in ¢ on every bounded interval.

On the other hand, by a nonlinear version of the Trotter-Neveu-Kato theorem proved by

Brézis and Pazy [1], the following exponential formula holds

S\(Dx = lim [STA(t/n)Sw(t/ n)] "x  for every xe H (46)

where the limit is uniform in ¢ on every bounded interval. Taking the limit as A—0, we obtain
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limS, (1) x = lim lim [sT (t/n)Sw(r/n)] "x (47)
A—0 A—0n—co A

But since the limits are uniform, their order can be interchanged, which leads to

1imS, () x = limlim|Sy (¢/n)S y(¢/ n)] "x =
A—0 n—roo)\—0 A

n (48)
,lli_r.rl)[PCSw(t/n)] x=S()x for every xe C

by (32) and (45), where the convergence is uniform in t on every bounded interval.

The exponential formula (46) indicates that the viscoplastic solution can be approximated
by means of a step-by-step integration in which one solves an incremental linear elastic problem
over some time step, the solution so obtained being then allowed to relax according to the
viscoplastic constitutive law during the same amount of time. Physically, eq. (48) then shows
that the convergence of the linear viscoplastic solution to the elastoplastic one is due to the fact
that the effect of the viscoplastic relaxation on the incremental elastic solutions becomes closer
and closer to a projection onto the elastic domain, as in (32), as the viscosity tends to zero

(relaxation property).

Although so far the results in this Section have been obtained for the linear viscoplastic
approximation, it is a straightforward matter to state conditions under which the same results
carry over to a general nonlinear viscoplastic approximation. Consider a return mapping i"c as
defined in Section 4. We then define a viscoplastic approximation to T as a one parameter fam-
ily of single-valued, monotone, Lipschitz continuous mappings TA, A >0, with domains D('.I")\)

containing D(f’(~), and generating a family of contraction semigroups, Si\(t)a and such that

l}\i_q})STA(t) x—Pcx, 1>0 jor every xe D(Po) (49)
uniformly in t for every bounded interval (relaxation property). By repeating the same argu-
ments as in the linear viscoplastic approximation case, it is readily shown that the operator A)‘=
W-— "I"k generates a contraction semigroup that uniformly approximates the solutions of the

elastoplastic problem, as in (48).



-17-

Acknowledgements

We are indebted to Prof. J. Lubliner for helpful discussions. The results reported here
were prepared with financial assistance from the National Science Foundation, Grant PFR-
7908984 and by grants from the Lawrence Livermore National Laboratory and General Motors

Research Laboratories.



- 18 -

References

[1] H. Brézis and A. Pazy. Semigroups of nonlinear contractions on convex sets. J. Func.
Anal., 6 (1970). pp. 237-281.

[2] H. Brézis. Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les
Espaces de Hilbert. North-Holland, 1973.

[3] M. Crandall and A. Pazy. Semi-groups of nonlinear contractions and dissipative sets. J.
Func. Anal., 6 (1969), pp. 376-418.

[4] M. Crandall and A. Pazy. On accretive sets in Banach spaces. J. Func. Anal., Vol. 5,
pp. 204-217, 1970.

[5] Y. Kémura. Nonlinear semigroups in Hilbert space. J. Math. Soc. Japan, 19 (1967), pp.
493-507.

[6] R. D. Krieg and D. B. Krieg. Accuracies of numerical solution methods for the elastic-
perfectly plastic model. ASME Journal of Pressure Vessel Technology, 99 (1977). pp. 510-515.

[71 G. Minty. On the monotonicity of the gradient of a convex function. Pacific J. Math., 14
(1964). pp. 243-247.

[8] J. J. Moreau. Fontionnelles sous-differentiables C. R. Acad. Sci. Paris, Sér. A, 257
(1963). pp. 4117-4119.

[91 J. J. Moreau. Sur les lois de fiottement, de plasticite et de viscosite. C. R. Acad. Sci.
Paris, Sér. A, 271 (1970). pp. 608-611.

[10] J. J. Moreau. Sur I'evolution d’un systeme elasto-visco-plastique, C. R. Acad. Sci. Paris,
Sér. A, 273 (1971). pp. 118-121.

[11] J. J. Moreau. On unilateral constrains, JSriction and plasticity. New Variational Tech-
niques in Mathematical Physics, G. Capriz and G. Stampacchia, eds., Edizioni Cremonese,

Roma, 1974, pp. 175-322.

[12] J. J. Moreau. Application of convex analysis to the treatment of elastoplastic systems.



-19 -

Applications of Methods of Functional Analysis to Problems in Mechanics, P. Germain and B.

Nayroles, eds., Springer-Verlag, 1976, pp. 56-89.

[13] A. Pazy. Semi-groups of Linear Operators and Applications to Partial Differential Equa-

tions. Lecture Note #10, University of Maryland, 1974.

[14] H. L. Schreyer, R. F. Kulak and J. M. Kramer. Accurate numerical solutions for

elastic-plastic models. ASME Journal of Pressure Vessel Technology, 101 (1979), pp. 226-234.

[15] E. H. Zarantonello. Projections on convex sets in Hilbert space and spectral theory.
Symposium on Nonlinear Functional Analysis, E. H. Zarantonello, ed., Academic Press, 1971,

pp. 237-424.

[16] O. C. Zienkiewicz and I. C. Cormeau. Visco-plasticity, plasticity and creep in elastic

solids - a unified numerical solution approach. Int. J. Num. Meth. Eng., 8 (1974), pp. 821-845.





