
UC Merced
UC Merced Previously Published Works

Title
Large-scale numerical simulations on high-end computational platforms

Permalink
https://escholarship.org/uc/item/8gq69106

ISBN
9781439815694

Authors
Oliker, L
Carter, J
Beckner, V
et al.

Publication Date
2010

DOI
10.1201/b10509

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gq69106
https://escholarship.org/uc/item/8gq69106#author
https://escholarship.org
http://www.cdlib.org/

Chapter 13

Auto-Tuning Memory-Intensive
Kernels for Multicore

Samuel W. Williams

Lawrence Berkeley National Laboratory

Kaushik Datta

University of California at Berkeley

Leonid Oliker

Lawrence Berkeley National Laboratory

Jonathan Carter

Lawrence Berkeley National Laboratory

John Shalf

Lawrence Berkeley National Laboratory

Katherine Yelick

Lawrence Berkeley National Laboratory

13.1 Introduction . 274
13.2 Experimental Setup . 275

13.2.1 AMD Opteron 2356 (Barcelona) . 275
13.2.2 Xeon E5345 (Clovertown) . 276
13.2.3 IBM Blue Gene/P (Compute Node) . 276

13.3 Computational Kernels . 276
13.3.1 Laplacian Di↵erential Operator (Stencil) 277
13.3.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD) . 278
13.3.3 Sparse Matrix-Vector Multiplication (SpMV) 280

13.4 Optimizing Performance . 282
13.4.1 Parallelism . 282
13.4.2 Minimizing Memory Tra�c . 283
13.4.3 Maximizing Memory Bandwidth . 286
13.4.4 Maximizing In-Core Performance . 287
13.4.5 Interplay between Benefit and Implementation 287

13.5 Automatic Performance Tuning . 287
13.5.1 Code Generation . 289

273

274 Performance Tuning of Scientific Applications

13.5.2 Auto-Tuning Benchmark . 290
13.5.3 Search Strategies . 291

13.6 Results . 291
13.6.1 Laplacian Stencil . 291
13.6.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD) . 292
13.6.3 Sparse Matrix-Vector Multiplication (SpMV) 294

13.7 Summary . 295
13.8 Acknowledgments . 296

In this, chapter, we discuss the optimization of three memory-intensive com-
putational kernels — sparse matrix-vector multiplication, the Laplacian dif-
ferential operator applied to structured grids, and the collision() operator
with the lattice Boltzmann magnetohydrodynamics (LBMHD) application.
They are all implemented using a single-process, (POSIX) threaded, SPMD
model. Unlike their computationally-intense dense linear algebra cousins, per-
formance is ultimately limited by DRAM bandwidth and the volume of data
that must be transfered. To provide performance portability across current
and future multicore architectures, we utilize automatic performance tuning,
or auto-tuning.

The chapter is organized as follows. First, we define the memory-intensive
regime and detail the machines used throughout this chapter. Next, we discuss
the three memory-intensive kernels that we auto-tuned. We then proceed with
a discussion of performance optimization and automatic performance tuning.
Finally, we show and discuss the benefits of applying the auto-tuning technique
to three memory-intensive kernels.

13.1 Introduction

Arithmetic Intensity is a particularly valuable metric in predicting the per-
formance of many single program multiple data (SPMD) kernels. It is defined
as the ratio of requisite floating-point operations to total DRAM memory traf-
fic. Often, on cache-based architectures, one simplifies total DRAM memory
tra�c to include only compulsory reads, write allocations, and compulsory
writes.

Memory-intensive computational kernels are characterized by those kernels
with arithmetic intensities that are constant or scale slowly with data size. For
example, BLAS-1 operations like the dot product of two N-element vectors
perform 2 · N floating-point operations, but must transfer 2 · 8N bytes. This
results in an arithmetic intensity (1/8) that does not depend on the size of the
vectors. As this arithmetic intensity is substantially lower than most machines’
Flop:Byte ratio, one generally expects such kernels to be memory-bound for

Auto-Tuning Memory-Intensive Kernels for Multicore 275

any moderately-large vector size. Performance, measured in floating-point op-
erations per second (GFlop/s), is bound by the product of memory bandwidth
and arithmetic intensity. Even computational kernels whose arithmetic inten-
sity scales slowly with problem size, such as out-of-place complex-complex
FFT’s, roughly 0.16 log(n), may be memory-bound for any practical size of n
for which capacity misses are not an issue.

Unfortunately, arithmetic intensity (and thus performance) can be de-
graded if superfluous memory tra�c exists (e.g., conflict misses, capacity
misses, speculative tra�c, or write allocations). The foremost goal in opti-
mizing memory-intensive kernels is to eliminate as much of this superfluous
memory tra�c as possible. To that end, we may exploit a number of strategies
that either passively or actively elicit better memory subsystem performance.
Ultimately, when performance is limited by compulsory memory tra�c, reor-
ganization of data structures or algorithms is necessary to achieve superior
performance.

13.2 Experimental Setup

In this section, we discuss the three multicore SMP computers used in this
chapter — AMD’s Opteron 2356 (Barcelona), Intel’s Xeon E5345 Clovertown,
and IBM’s Blue Gene/P (used exclusively in SMP mode). As of 2009, these
architecture’s dominate the top500 list of supercomputers [13]. The key fea-
tures of these computers are shown in Table 13.1 and detailed in the following
subsections.

13.2.1 AMD Opteron 2356 (Barcelona)

Although superseded by the more recent Shanghai and Istanbul incarna-
tions, the Opteron 2356 (Barcelona) e↵ectively represents the future x86 core
and system architecture. The machine used in this work is a 2.3 GHz dual-
socket ⇥ quad-core SMP. As each superscalar out-of-order core may complete
both a single instruction-multiple data (SIMD) floating-point add and a SIMD
floating-point multiply per cycle, the peak double-precision floating-point per-
formance (assuming balance between adds and multiplies) is 73.6 GFlop/s.
Each core has both a private 64 Kbyte L1 data cache and a 512 Kbyte L2
victim cache. The four cores on a socket share a 2 Mbyte L3 cache.

Unlike Intel’s older Xeon, the Opteron integrates the memory controllers
on chip and provides an inter-socket network (via HyperTransport) to provide
cache coherency as well as direct access to remote memory. This machine uses
DDR2-667 DIMMs providing a DRAM pin bandwidth of 10.66 Gbyte/s per
socket.

276 Performance Tuning of Scientific Applications

13.2.2 Xeon E5345 (Clovertown)

Providing an interesting comparison to Barcelona, the Xeon E5345
(Clovertown) uses a modern superscalar out-of-order core architecture coupled
with an older frontside bus (FSB) architecture in which two multichip modules
(MCM) are connected with an external memory controller hub (MCH) via two
frontside buses. Although two FSBs allows a higher bus frequency, as these
chips are regimented into a cache coherent SMP, each memory transaction on
one bus requires the MCH to produce a coherency transaction on the other.
In e↵ect this eliminates the parallelism advantage in having two FSBs. To rec-
tify this, a snoop filter was instantiated within the MCH to safely eliminate
as much coherency tra�c as possible. Nevertheless, the limited FSB band-
width (10.66 Gbyte/s) bottlenecks the substantial DRAM read bandwidth of
21.33 Gbyte/s.

Each core runs at 2.4 GHz, has a private 32 KB L1 data cache, and, like the
Opteron, may complete one SIMD floating-point add and one SIMD floating-
point multiply per cycle. Unlike the Opteron, the two cores on a chip share
a 4 Mbyte L2 and may only communicate with the other two cores of this
nominal quad-core MCM via the shared frontside bus.

13.2.3 IBM Blue Gene/P (Compute Node)

IBM’s Blue Gene/P (BGP) takes a radically di↵erent approach to ultra-
scale system performance compared to traditional superscalar processors, as
it relies more heavily on power e�ciency to deliver strength in numbers in-
stead of maximizing performance per node. To that end, the compute node
instantiates four PowerPC 450 embedded cores in its one chip. These cores
are dual-issue, in-order, SIMD enabled cores that run at a mere 850 MHz. As
such, each node’s peak performance is only 13.6 GFlop/s — a far cry from
the x86 superscalar performance. However, the order of magnitude reduction
in node power results in superior power e�ciency.

Each of the four cores on a BGP compute chip has a highly associative
32 Kbyte L1 data cache, and they collectively share an 8 Mbyte L3. As it is
a single chip solution, cache-coherency is substantially simpler, as all snoops
and probes are on chip. The chip has two 128-bit DDR2-425 DRAM channels
providing 13.6 Gbyte/s of bandwidth to 4 Gbyte of DRAM capacity. Like
Opterons and Xeons, Blue Gene/P has hardware prefetch capabilities.

13.3 Computational Kernels

In this section, we introduce the three memory-intensive kernels used
as exemplars throughout the rest of the chapter: the Laplacian stencil,

Auto-Tuning Memory-Intensive Kernels for Multicore 277

TABLE 13.1: Architectural summary of evaluated platforms.

Core AMD Intel IBM
Architecture Barcelona Core2 PowerPC 450

superscalar superscalar dual issueType
out-of-order out-of-order in-order

Clock (GHz) 2.3 2.40 0.85
DP Peak (GFlop/s) 9.2 9.60 3.4
Private L1 Data Cache 64 Kbyte 32 Kbyte 32 Kbyte
Private L2 Data Cache 512 Kbyte — —

Opteron 2356 Xeon E5345 Blue Gene/P
Socket Architecture Barcelona Clovertown Chip
Cores per Socket 4 4 (MCM) 4
Shared Cache 2 Mbyte L3 2⇥4 Mbyte L2 8 Mbyte L2
Memory Parallelism
Paradigm

HW prefetch HW prefetch HW prefetch

Opteron 2356 Xeon E5345 Blue Gene/P
Node Architecture Barcelona Clovertown Node
Sockets per SMP 2 2 1
DP Peak (GFlop/s) 73.69 76.80 13.60

21.33 (read)DRAM Bandwidth (GB/s) 21.33
10.66 (write)

13.60

DP Flop:Byte Ratio 3.45 2.40 1.00

the collision()–stream() operators extracted from Lattice Boltzmann
Magnetohydrodynamics (LBMHD), and sparse matrix-vector multiplication
(SpMV).

13.3.1 Laplacian Di↵erential Operator (Stencil)

Partial di↵erential equation (PDE) solvers constitute a large fraction of
scientific applications in such diverse areas as heat di↵usion, electromagnet-
ics, and fluid dynamics. Solutions to these problems are often implemented
using an explicit method via iterative finite-di↵erence techniques. Computa-
tionally, these approaches sweep over a spatial grid performing stencils —
a linear combinations of each a point’s nearest neighbor. Our first kernel is
the quintessential finite di↵erence operator found in many partial di↵erence
equations — the 7-point Laplacian stencil.

This kernel is implemented as an out-of-place Laplacian stencil and is
visualized in Figure 13.1. Since it uses Jacobi’s method, we maintain a copy
of the grid for both the current and next time steps and thereby avoid any data
hazards. Conceptually, the stencil operator in Figure 13.1(b) is simultaneously

278 Performance Tuning of Scientific Applications

FIGURE 13.1: Visualization of the data structures associated with the heat
equation stencil. (a) The 3D temperature grid. (b) The stencil operator per-
formed at each point in the grid. (c) Pseudocode for stencil operator.

applied to every point in the 2563 scalar grid shown in Figure 13.1(a). This
allows an implementation to select any traversal of the points.

This kernel is exemplified by an interesting memory access pattern with
seven reads and one write presented to the cache hierarchy. However, there is
possibility of 6-fold reuse of the read data. Unfortunately this requires sub-
stantial per-thread cache capacity. Much of the auto-tuning e↵ort for this
kernel is aimed at eliciting this ideal cache utilization through the elimination
of cache capacity misses. Secondary e↵orts are geared toward the elimination
of conflict misses and write allocation tra�c. Thus, with appropriate optimiza-
tion, memory bandwidth and compulsory memory tra�c provide the ultimate
performance impediment. To that end, in-core performance must be improved
trough various techniques only to the point where it is not the bottleneck. For
further details on the heat equation and auto-tuning approaches, we direct
the reader to [108].

13.3.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD)

The second kernel examined in this chapter is the inner loop from the Lat-
tice Boltzmann Magnetohydrodynamics (LBMHD) application [223]. LBMHD
was developed to study homogeneous isotropic turbulence in dissipative mag-
netohydrodynamics (MHD) — the theory pertaining to the macroscopic be-
havior of electrically conducting fluids interacting with a magnetic field. The
study of MHD turbulence is important in the physics of stellar phenomena,
accretion discs, interstellar and intergalactic media, and plasma instabilities
in magnetic fusion devices [56].

In Lattice methods, the macroscopic quantities (like density or momentum)
at each point in space are reconstructed through operations on a momentum
lattice — a discretization of momentum along 27 vectors. As LBMHD cou-
ples computational fluid dynamics with Maxwell’s equations, the momentum
lattice is augmented with a 15-velocity (cartesian vectors) magnetic lattice as
shown in Figure 13.2. Clearly, this creates very high memory capacity require-
ments — over 1 Kbyte per point in space.

Auto-Tuning Memory-Intensive Kernels for Multicore 279

FIGURE 13.2: Visualization of the data structures associated with LBMHD.
(a) The 3D macroscopic grid. (b) The D3Q27 momentum scalar velocities. (c)
D3Q15 magnetic vector velocities. (d) C structure of arrays datastructure.
Note: each pointer refers to a N3 grid, and X is the unit stride dimension.

Lattice Boltzmann Methods (LBM) iterate through time calling two func-
tions per time step: a collision() operator, where the grid is evolved one
timestep, and a stream() operator that exchanges data with neighboring pro-
cessors. In a shared memory, threaded implementation, stream() degenerates
into a function designed to maintain periodic boundary conditions.

In serial implementations, collision() typically dominates the run time.
To ensure that an auto-tuned collision() continues to dominate runtime
in a threaded environment, we also thread-parallelize stream(). We restrict
our exploration to a 1283 problem on the x86 architectures, but only 643 on
Blue Gene as it lacks su�cient main memory. For further details on LBMHD
and previous auto-tuning approaches, we direct the reader to the following
papers [363,364].

The collision() code is far too large to duplicate here. Superficially,
the collision() operator must read the lattice velocities from the current
time step, reconstruct the macroscopic quantities of momentum, magnetic
field, and density, and create the lattice velocities for the next time step.
When distilled, this involves reading 73 doubles, performing 1300 floating
point operations, and writing 79 doubles per lattice update. This results in a
compulsory-limited arithmetic intensity of about 0.7 Flops per byte on write-
allocate architectures, but may be improved to about 1.07 through the use of
cache bypass instructions.

Conceptually, the collision() operator within LBMHD comprises both a
15 and a 27 point stencil similar to the previously discussed Laplacian Stencil.
However, as lattice methods utilize an auxiliary grid that stores a distribution
of velocities at each point, these stencil operators are di↵erent in that they ref-
erence a di↵erent velocity from each neighbor. As such, there is no inter-lattice
update reuse. Proper selection of data layout (structure-of-arrays) transformes
the principal optimization challenge from cache blocking to translation looka-
side bu↵er (TLB) blocking. When coupled with a code transformation, one
may reap the benefits of good cache and TLB locality simultaneously with
e↵ective SIMDization.

280 Performance Tuning of Scientific Applications

FIGURE 13.3: Sparse matrix-vector multiplication (SpMV). (a) Visual-
ization of the algebra: y Ax, where A is a sparse matrix. (b) Standard
compressed sparse row (CSR) representation of the matrix. This structure of
arrays implementation is favored on most architectures. (c) The standard im-
plementation of SpMV for a matrix stored in CSR. The outer loop is trivially
parallelized without any data dependencies.

As this application was designed for a weak-scaled message passing (MPI),
single program, multiple data (SPMD) environment, we may simply tune to
optimize single node performance, then integrate the resultant optimized im-
plementation back into the MPI version.

13.3.3 Sparse Matrix-Vector Multiplication (SpMV)

Sparse matrix-vector multiplication (SpMV) dominates the performance
of diverse applications in scientific and engineering computing, economic
modeling and information retrieval; yet, conventional implementations have
historically performed poorly on single-core cache-based microprocessor sys-
tems [346]. Compared to dense linear algebra kernels, sparse kernels like SpMV
su↵er from high instruction and storage overhead per floating-point opera-
tions, and a lack of instruction- and data-level parallelism in the reference
implementations. Even worse, unlike the implicit (arithmetic) addressing pos-
sible in dense linear algebra and structured grid calculations (stencils and
lattice methods), indexing neighboring points in a sparse matrix requires an
indirect access. This can result in potentially irregular memory access pat-
terns (jumps and discontinuities). As such, achieving good performance on
these kernels often requires selection of a compact data structure, reorder-
ing of the computations to favor regular memory access patterns, and code
transformations based on runtime knowledge of the sparse matrix. This need
for run-time optimization and tuning is a major distinction from most other
computational methods.

In this chapter, we consider the SpMV operation y Ax, where A is a
sparse matrix, and x, y are dense vectors. A sparse matrix is a special case of
the matrices found in linear algebra in which most of the matrix entries are
zero. In a matrix-vector multiplication, computation on zeros does not change
the result. As such, they may be elliminated from both the representation

Auto-Tuning Memory-Intensive Kernels for Multicore 281

FIGURE 13.4: Benchmark matrices used as inputs to our auto-tuned SpMV
library framework.

and the computation, leaving only the nonzeros. Although the most common
data structure used to store a sparse matrix for SpMV-heavy computations
is compressed sparse row (CSR) format, illustrated with the corresponding
kernel in Figure 13.3, we will explore alternate representations of the compute
kernel. CSR requires a minimum overhead of 4 bytes (column index) per 8 byte
nonzero. As microprocessors only have su�cient cache capacity to cache the
vectors in their entirety, we may define the compulsory memory tra�c as 12
bytes per nonzero. SpMV will perform 2 Flops per nonzero. As such, the ideal
CSR arithmetic is only 0.166 Flops per byte; making SpMV heavily memory-
bound. Capacity misses and sub-optimial bandwidth will substantially impair
performance.

Unlike most of dense linear algebra, stencils on structured grids, and
Fourier transforms, matrices used in sparse linear algebra are not only charac-
terized by their dimensions but also by their sparsity pattern — a scatter plot
of nonzeros. Figure 13.4 presents the spyplot and the key characteristics asso-
ciated with each matrix used in this chapter. Observe that for the most part,
the vectors are small, but the matrices (in terms of nonzeros) are large. Re-
member, 12 bytes are required per nonzero. As such, a matrix with four million
nonzeros requires at least 48 Mbyte of storage — far larger than most caches.
We selected a set of matrices that would exhibit several classes of sparsity:
dense, low bandwidth (principally finite element method), unstructured, and
extreme aspect ratio. Such matrices will see di↵ering cache capacity issues on
multicore SMPs. In addition, we ensured the matrices would run the gambit of
nonzeros per row — a key component in CSR performance. Finally, although

282 Performance Tuning of Scientific Applications

some matrices are symmetric, we convert all of them to non-symmetric format
and do not exploit this characteristic.

For further details on the sparse matrix-vector multiplication and previous
auto-tuning e↵orts, we direct the reader to [362,365,366].

13.4 Optimizing Performance

Broadly speaking, we may either classify optimizations by their impact on
implementation and usage, or by the performance bottleneck they attempt to
eliminate. For example, an implementation-based categorization may delineate
optimizations into four groups based on what changes are required: only code
structure, data structures, the style of parallelism, or algorithms. On the other
hand, if we categorize optimizations by bottleneck, we may create groups
that more e�ciently exploit parallelism, minimize memory tra�c, maximize
memory bandwidth, or maximize in-core performance. That being said, in
this section, we describe the optimizations employed by our three auto-tuners
grouped using the bottleneck-oriented taxonomy. Moreover, as we’re focused
on memory-intensive kernels, we will prioritize the optimizations accordingly.

13.4.1 Parallelism

Broadly speaking parallelism encompasses approaches to synchronization,
communication, use of threads or processes, and problem decomposition.

Synchronization and Communication: Although a number of al-
ternate strategies are possible (including DAG-based schedulers [278]), we
adopted a POSIX thread-based, SPMD, bulk-synchronous approach to exploit
multicore parallelism. Unlike process-based, shared memory-optimized mes-
sage passing approaches, we exploit the ever-present cache coherency mech-
anisms for both e�cient communication as well as to eliminate system calls.
We enforce bulk synchronous semantics via a shared memory spin barrier.

Problem Decomposition: We utilize two di↵erent approaches to prob-
lem decomposition. First, the structured grid codes spatially decompose the
stencil sweep into subdomains by partitioning the problem in two dimensions
(not the unit stride). We ensure there are at least as many subdomains as
there are threads. Subdomains may then be assigned to threads in chunks in
a round-robin ordering. For LBMHD, the subdomains are not perfect rectahe-
dral volumes. Rather, within each plane the boundaries are aligned to cache
lines. In e↵ect this performs only loop parallelization through blocking. No
part of the data structure is changed.

Conversely, we apply a very di↵erent technique when parallelizing sparse
matrix-vector multiplication. To ensure there are no data dependencies, we
only parallelize by rows, creating a number of submatrices that contain roughly

Auto-Tuning Memory-Intensive Kernels for Multicore 283

FIGURE 13.5: Conceptualization of array padding in both the physical
(linear) and cache (periodic) address spaces. (See color insert.)

the same number of nonzeros, but may span wildly di↵erent numbers of rows.
Each of these submatrices is as if it were its own matrix (hierarchical storage).
We may now optimize each submatrix with a unique register blocking (see be-
low). That is, some submatrices may be encoded using 1⇥1 COO while others
are encoded with 8⇥4 CSR. Clearly, SpMV optimization went well beyond
simple loop parallelization and subsumes data structure transformations as
well.

13.4.2 Minimizing Memory Tra�c

When a kernel is memory-bound, there are two principal optimizations:
reduce the volume of memory tra�c or increase the attained memory band-
width. For simple memory access patterns, modern superscalar processors of-
ten achieve a high fraction of memory bandwidth. As such, our primary focus
should be on techniques that minimize the volume of memory tra�c. Broadly
speaking, we may classify memory tra�c using the Three C cache model’s
compulsory, conflict, and capacity misses [165] augmented with speculative
(prefetch) and write-allocate tra�c. We implemented a set of optimizations
that attempt to minimize each class of tra�c. Not all optimizations are ap-
plicable to all kernels.

Array Padding: Caches have limited associativity. When too many mem-
ory references map to the same set in the cache, a conflict miss will occur and
useful data will be evicted. These conflicts may arise from intra-thread con-
flicts or, when shared caches are in play, from inter-thread conflicts.

An example of this complex behavior may be illustrative. In physical mem-
ory, subsets of an array assigned to di↵erent threads (red, orange, green, blue)

284 Performance Tuning of Scientific Applications

are disjoint: Figure 13.5(1). Unfortunately, a given set in a cache may map
many di↵erent addresses in physical memory (there is a 1 to many relation-
ship). As such, in order to properly visualize caches, we must abandon the
linear memory concept in favor of the periodic coordinate system shown in
Figure 13.5(2). In this case, every 64th physical address maps to the same
cache set. Figure 13.5(3) shows that when those disjoint physical addresses
are mapped to the cache set address space, the segments overlap. This can
put substantial pressure on cache associativity (number of elements mapped
to the same set address). Execution on any cache less than 4-way associative
will generate conflict misses and limit the working set size to 2 elements. Ar-
ray padding is the simplest and most common remediation strategy. Simply
put, dummy elements (placeholders) are inserted between each thread’s subset
of the array (4). As a result, when mapped to the cache coordinate system,
Figure 13.5(5), we see there is no longer any overlap of data at a given set ad-
dress, and the demands on cache associativity have been reduced from 4-way
to 1-way (direct mapped).

Due to the limited number of memory streams and reuse, inter-thread
conflict misses predominate on SpMV and the Laplacian stencil. On LBMHD,
where the collision() operator attempts to keep elements from 150 di↵erent
arrays in the cache, eliminating intra-thread conflict misses is key. As such, we
implemented two di↵erent array padding strategies to mitigate cache conflict
misses. For SpMV and stencils, we pad each array so that the address of the
first element maps to a unique set in the cache. Moreover, the padding is
selected to ensure that the set addresses of the threads’ first elements are
equally spaced (by set address) in the last level cache. The ideal padding may
be either calculated arithmetically or obtained experimentally. For SpMV, we
simply malloc each thread block independently with enough space to pad by
the cache size. We then align to a 4 MB boundary and pad by the thread’s
fraction of the cache. Array padding for LBMHD is somewhat more complex.
We pad each velocity’s array so that when referenced with the corresponding
stencil o↵set (and corresponding address o↵set) the resultant physical address
maps to a unique, equally-spaced cache set. Although this sounds complicated
in practice, its relatively easy to implement. For further details on how these
kernels exploit array padding, we direct the reader to [108,362–364].

Cache Blocking: The reference implementations of many kernels demand
substantial cache working sets. In practice, as processor architects cannot im-
plement caches that are large enough to avoid capacity misses. The volume of
memory tra�c is increased. LBMHD does not exhibit any inter-stencil reuse.
That is, there is no two stencils reuse the same values. As such, cache capac-
ity misses are nonexistent. However, the Laplacian stencil shows substantial
reuse. Like dense matrix-vector multiplication, SpMV will also show reuse on
vector accesses. In either case, we must restructure code, and possibly data, to
eliminate capacity miss tra�c. Like cache blocking in dense linear algebra, we
may apply a simple loop blocking technique to the Laplacian stencil to ensure
an implementation generates relatively few capacity misses. In practice, this is

Auto-Tuning Memory-Intensive Kernels for Multicore 285

implemented the same as problem decomposition for parallelization. However,
defining dense blocks (of source vectors) for SpMV often yields a dramatically
suboptimal solution. As such, we employ a novel sparse blocking technique
that ensures that each cache block touches the same number of cache lines
regardless of how many rows or columns the block spans. In practice, for a
given thread’s block of the matrix, we cache block it by simply adding columns
of the sparse matrix until the number of unique cache lines touched reaches a
preset number. Clearly, this requires substantial data structure changes.

Cache Bypass: Based on consumer applications, most cache architectures
implement a write-allocate protocol. That is, if a store (write) misses in the
cache, an existing line will be selected for eviction, the target line will be loaded
into the cache, and the target word will be written to the line in the cache.
Such an approach is based on the implicit assumption that if data is written, it
will be promptly read and modified many times. Note, usage of such a policy
is orthogonal to the write-back or write-through choice. Unfortunately, many
computational kernels found in HPC read and write to separate arrays or
data structures. As such, most writes allocate a line in the cache, completely
obliterate its previous contents, and eventually write it back to DRAM. This
makes write-allocate not only superfluous, but expensive as it will generate
twice the memory tra�c as a read — an obvious target for optimization when
memory-bound.

Modern write-allocate cache architectures provide a means of eliminating
this superfluous memory tra�c via a special store instruction that bypasses
the cache hierarchy. In the x86 ISA, this is implemented with the movntpd in-
struction. Unfortunately, most compilers cannot resolve the complex decision
as to when to use this instruction; improper usage can reduce performance by
an order of magnitude, where correct usage can improve performance by 50%.
As such, in practice, we may only exploit this functionality through the use
of SIMD intrinsics — a language construct with the interface of a function
that the compiler will map directly to one instruction.

Often, the vectors used in SpMV are small enough to fit in cache. As
such, the totality of DRAM memory tra�c is reads and there is no need
to use cache bypass. However, Jacobi stencils and lattice methods read and
write to separate arrays. For other finite-di↵erence operators like gradient
or divergence, cache bypass may only improve performance by 75% or 25%
respectively. Given this variability in benefit and the human e↵ort required to
implement this optimization, one should analyze the code before proceeding
with this optimization. Nevertheless, usage of cache bypass on the Laplacian
stencil or LBMHD can reduce the total memory tra�c by 33% and improve
performance by 50%.

Register blocking for SpMV: For most matrices, SpMV is dominated
by compulsory misses. As such, neither cache blocking nor cache bypass will
provide substantial benefits. That is not to say nothing can be done. Rather, a
radical solution has emerged that eliminates compulsory miss tra�c. Broadly
speaking, sparse matrices require substantial meta data per nonzero — per-

286 Performance Tuning of Scientific Applications

haps a 50% overhead. However, we observe that many nonzeros are clustered
in relatively small regions. As such, the optimization known as register block-
ing reorganizes the sparse matrix of nonzeros into a sparse matrix of small
R⇥C dense matrices. Meta data is now needed only for each register block
rather than each nonzero. If the zero fill required to make those R⇥C register
blocks dense is less than the reduction in meta data, then the total memory
tra�c has been reduced — a clear win for a memory-bound kernel. Similarly,
we may note that a range of column or row indices can be represented by
a 16-bit integer instead of a 32-bit integer. This can save 2 bytes (or 17%)
per nonzero. In this chapter we explore the product of 16 di↵erent register
blockings, two matrix formats: compressed sparse row (CSR) and coordinate
(COO), and the two index sizes. Register blocked CSR and COO are noted
as BCSR and BCOO, respectively.

Please note, the term register blocking, when applied to sparse linear al-
gebra refers to a hierarchical restructuring of the data, but when applied to
dense linear algebra refers to a unroll and jam technique. In this chapter, our
SpMV code heuristically explores these matrix compression techniques to find
the combination that minimizes the matrix footprint.

13.4.3 Maximizing Memory Bandwidth

Now that we’ve discussed optimizations designed to minimize the volume
of memory tra�c, we may examine optimizations that maximize the rate at
which said volume of data can be streamed into the processor. Basically, these
optimizations aim to either avoiding memory latency or hide memory latency.

Blocking for the Translation Lookaside Bu↵er: All modern micro-
processors use virtual memory. To translate the virtual address produced by
the program’s execution into the physical address required to access the cache
or DRAM, the processor must inspect the page table to determine the map-
ping. As this is a slow process and page table entries rarely change, page table
entries may be placed in a very fast, specialized (page) cache on chip — the
translation lookaside bu↵er or TLB. Unfortunately, TLBs are small and thus
may not be able to cache all the pages referenced by an application (regardless
of page size). As such, it is possible to generate TLB capacity misses. These
typically don’t generate superfluous DRAM tra�c like normal cache capacity
misses because evicted page table entries may land in the L2 or L3 cache.
The performance di↵erence (resulting from an increase in average memory la-
tency) between translations that hit in the TLB and those that hit in the L3
is substantial. We may recast the cache blocking technique (which eliminated
cache capacity misses) to eliminate TLB capacity misses and avoid memory
latency. In LBMHD, we used a loop interchange technique coupled with an
auxiliary data structure. This allowed us to trade cache capacity for increased
page locality (and reduced TLB capacity misses). This technique is detailed
in [362–364].

Prefetching: Memory latency is high. To satisfy Little’s Law [41]

Auto-Tuning Memory-Intensive Kernels for Multicore 287

and maximize memory bandwidth, the processor must express substantial
memory-level parallelism. Unfortunately, superscalar execution may be insuf-
ficient. As such, hardware designers have incorporated both hardware and
software prefetching techniques into their processors. The goal for either is to
hide memory latency.

A software prefetch is an instruction like a load without a target address.
As such, the processor will not stall waiting for it to complete. The user simply
prefetches one element from each cache line to initiate the entire line’s load.
Unfortunately, such a practice requires the programmer to tune for the optimal
“prefetch distance” — how far ahead prefetch addresses should be from load
addresses. If he aims too low, latency will not be completely hidden. If he
aims too high, cache capacity will be exhausted. More recently, a hardware
prefetchers have begun to supplant software prefetching. Typically, they detect
a series of cache misses, speculate as to future addresses, and prefetch them
into the cache without requiring any user interaction.

In this chapter, we structure our auto-tuned codes to synergize with hard-
ware prefetchers (long unit-stride accesses) but supplement this with software
prefetching. This general approach provides performance portability as we
make no assumptions as to whether a processor implements software prefetch-
ing, hardware prefetching, or both.

13.4.4 Maximizing In-Core Performance

For memory-intensive computations our primary focus should be on min-
imizing memory tra�c and maximizing memory bandwidth. However, it is
important not to overlook in-core(cache) performance. Code written without
thought to the forms of parallelism required to attain good in-core performance
may actually be compute-bound rather than memory-bound. The most com-
mon techniques are unroll and jam, permuting or reordering the computation
given an unrolling, and SIMDization. We explored all of these via auto-tuning
on all three kernels.

13.4.5 Interplay between Benefit and Implementation

The bottleneck that an optimization attempts to alleviate is orthogonal
to the scope of the software implementation e↵ort that is required to achieve
it. For example, Table 13.2 lists the optimizations used when auto-tuning our
three memory-intensive kernels. Loop or code structure transformations have
perennially been the only changes allowed by an auto-tuner as they preserve
the input and output semantics. Nevertheless, we see many optimizations
require an abrogation of this convention as changes to data structures are
required for ideal performance.

288 Performance Tuning of Scientific Applications

TABLE 13.2: Interplay between the bottleneck each optimization addresses
(parallelism, memory tra�c, memory bandwidth, in-core performance) and
the primary impact on implementation (code-only, data structures, styles of
parallelism). Obviously, changing data or parallelism structure will mandate
some code changes. †E�cient SIMD requires data structures be aligned to
128-byte boundaries.

Loop/Code Data Style of
Optimization Structure Structure Parallelism

BS SPMD (pthreads) X
Decomposition (loop-based) X

(hierarchical) X
Array Padding X
Cache Blocking (loop-based) X

(sparse) X
Cache Bypass (movntpd) X
Reg. Blocking (sparse) X
TLB Blocking (loop-based) X

(sparse) X
Prefetching (software) X

Unroll and Jam X
Reordering X

SIMDization X †

13.5 Automatic Performance Tuning

Given this diversity of computer architectures, performance optimization
has become a challenge as optimizing an application for one microarchitecture
may result in a substantial performance loss on another. When coupled with
the demands to optimize performance in a shorter timeframe than architec-
tural evolution (several new variants of the x86 processor lines appear every
year), hand optimizing for each is not practical. To that end, automatic per-
formance tuning, or auto-tuning has emerged as an productive approach to
tune key computational kernels and even full applications in minutes instead
of months [140, 314, 346, 361]. In essence, auto-tuning is built on the premise
that if one can enumerate all possible implementations of a kernel, the per-
formance of modern computers allows for the exploration of these variants in
less time than a human would require to optimize for one. Moreover, once this
auto-tuner has been constructed it can be reused on any evolution of these
architectures. The best choice or parameterization for the optimizations in
question may be either architecture-dependent, input-dependent, or both. If
it is neither, simple optimization will su�ce, and auto-tuning is not needed.

Typically, auto-tuning a kernel is divided into three phases: enumeration

Auto-Tuning Memory-Intensive Kernels for Multicore 289

FIGURE 13.6: Generic visualization of the auto-tuning flow.

of potentially valuable optimizations, implementation of a code generator to
produce functionally equivalent implementations of said kernel using di↵erent
combinations of the enumerated optimization space, and implementation of
a search component that will benchmark these variants (perhaps using real
problem data) in an attempt to find the fastest possible implementation. We
may visualize the auto-tuning flow in Figure 13.6, and will discuss the principal
components in the following sections.

13.5.1 Code Generation

For purposes of this chapter, we use a simple auto-tuning methodology
in which we use a Perl script to generate a few hundred potentially viable
parameterizable implementations of a particular kernel. An implementation
is a unique code representation that may be parameterized with a run time
configuration. For example, cache blocking transforms a naive three nested
loop implementation of matrix-matrix multiplication into a six nested loop
implementation that is parameterized at runtime with the sizes of the cache
blocks (the range of the inner loops). This is still just one variant. However,
when one register blocks matrix multiplication, the inner three nested loops
are so small (less than 16) it is common to simply fully unroll all loops and
create perhaps a few thousand di↵erent code variants. When combined with
cache blocking, we may have hundreds of individually parameterizable code
variants.

Code variants are also needed when dealing with di↵erent data structures
(i.e., hierarchical instead of flat), styles of parallelism (dataflow instead of bulk
synchronous), or even algorithms. Each of these may in turn be parameterized.

As the di↵erences between clusters of code variants may easily be expressed
algorithmically, the Perl scripting language provides a pragmatic and produc-
tive means of tackling the intellectually-uninspiring task of producing the tens
of thousands of lines of code. In essence, the simplest Perl code generation
techniques are nothing more than a for loop over a series of printf’s. Every
line in the resultant C code (function declarations, variables, statements, etc.)
maps to a corresponding printf in the Perl script.

290 Performance Tuning of Scientific Applications

FIGURE 13.7: Using a pointer-to-function table to accelerate auto-tuning
search.

13.5.2 Auto-Tuning Benchmark

A Perl script may generate thousands of code variants. Rather than trying
to compile an auto-tuning benchmark for each, we integrate and compile all of
them into one auto-tuning benchmark. This creates the challenge of selecting
the appropriate variant without substantial overhead. To that end, we create
an N-dimensional pointer-to-function table indexed by the code variants and
possible parameters.

For example, in SpMV we use a 3-dimensional table indexed by kernel
type (BCSR, BCOO, etc.) and the register block sizes as measured in rows
and columns. As shown in Figure 13.7, the Perl script first generates the code
for each kernel variant. It then creates a pointer-to-function table that provides
a very fast means of executing any kernel. During execution, one simply calls
kernel[BCSR][4-1][3-1](...) to execute the 4⇥3 BCSR kernel. The auto-
tuning benchmark can be constructed to sweep through all possible formats
and register blockings (nested for loops). For each combination, the matrix
is reformatted and blocked, and the SpMV is benchmarked through a simple
function call via the table lookup. This provides a substantial tuning time
advantage over the näıveapproach of compiling and executing one benchmark
for every possible combination. Moreover, it provides a fast runtime solution
as well as easy library integration. We’ve demonstrated this technique when
auto-tuning dense linear algebra, sparse linear algebra, stencils, and lattice
methods.

Auto-Tuning Memory-Intensive Kernels for Multicore 291

13.5.3 Search Strategies

Given an auto-tuning benchmark, we must select a traversal of the
optimization–parameter space that finds good performance quickly. Over the
years, a number of strategies have emerged. In this chapter, we employ three
di↵erent auto-tuning strategies: exhaustive, greedy, and heuristic. When the
optimization–parameter space is small, an exhaustive search implemented as
a series of nested loops is often acceptably fast. However, in recent years we’ve
observed a combinatoric explosion in the size of the space. As a result, exhaus-
tive search is no longer time- and resource-e�cient. As a result, a number of
new strategies have emerged designed to e�ciently search the space. Greedy
algorithms assume the locally optimal choice is also globally optimal. As such,
it assumes the best parameterization for each optimizations may be explored
independently. As such, they may transform a ND optimization–parameter
space of D optimizations each of N possible parameters into a sequential
search through D optimizations each of N parameters (N ⇥ D points). Of-
ten, with substantial architectural intuition, we may express the best (or very
close to best) combination in O(1) time through an arithmetic approach that
combines machine parameters and kernel characteristics.

Due to the size of the search space for the Laplacian stencil, we were forced
to perform a greedy search algorithm after ordering the optimizations with
some architectural intuition. This reduced the predicted tuning time from
three months to 10 minutes. Conversely, LBMHD almost essentially uses an
exhaustive strategy across seven code variants, each of which could accept
over one hundred di↵erent parameter combinations. Typical tuning time was
less than 30 minutes. SpMV used a combination of heuristics and exhaus-
tive search. The none/cache/TLB blocking variant space was search exhaus-
tively. That is, we benchmarked performance not blocking for either the cache
or TLB, blocking for just the cache, and blocking for both the cache and
TLB. Unlike the typical dense approach, the parameterization for cache and
TLB blocking was obtained heuristically. Similarly, unlike the approach used
by Berkeley’s Optimized Sparse Kernel Interface (OSKI) [346], the register
blocking was obtained heuristically by examining the resultant memory foot-
print size for each power-of-two register blocking. However, like LBMHD, the
prefetch distance was obtained through an exhaustive search.

13.6 Results

In this section, we present and discuss the results from the application
of three di↵erent custom auto-tuners to the three benchmarks used in this
chapter. Previous papers have performed a detailed performance analysis for
these three kernels [108,363–366].

292 Performance Tuning of Scientific Applications

13.6.1 Laplacian Stencil

Figure 13.8 shows the benefits of auto-tuning the 7-point Laplacian stencil
on a 2563 grid on our three computers as a function of thread concurrency
and increasing optimization. Threads are ordered to fully exploit all the cores
within a socket before utilizing the second socket. We have condensed all
optimizations into two categories: those that may be expressed in a portable
C manner, and those that are ISA-specific. The former is a common code
base that may be used on any cache-based architecture, not just these three.
The latter includes optimizations like explicit SIMDization, and cache bypass.
Thus Barcelona and Clovertown use the same x86 ISA-specific auto-tuner,
and Blue Gene/P uses a di↵erent one. If an architecture with a third ISA
were introduced (e.g., SPARC or Cell) it too would need its own ISA-specific
auto-tuner. The auto-tuning search strategy uses a problem size-aware, greedy
search algorithm in which the optimizations are searched one a time for the
best parameterizations.

Clearly, the reference implementation delivers substantially suboptimal
performance. As expected on the bandwidth-starved x86 processors, we see
the reference implementation shows no scalability as one core may come close
to fully saturating the available memory bandwidth.

When the portable C auto-tuner is applied to this kernel, we see that opti-
mizations like cache blocking dramatically reduce superfluous memory tra�c
allowing substantially better performance. In general, on the x86 processors,
we see a saturation of performance at around four cores (one socket), but a
jump in performance at eight cores as using the second socket doubles the use-
able memory bandwidth. However, on NUMA architectures, like Barcelona,
this boost is only possible if data is allocated in a NUMA-aware manner.

Rather than hoping the compiler, the non-portable, ISA-specific auto-tuner
explicitly SIMDizes the kernel via intrinsics. Unfortunately, this is only useful
on compute-bound platforms like Blue Gene. Unfortunately, despite the sim-
plicity of this kernel, the lack of unaligned SIMD loads in the ISA results in less
than perfect (2⇥) benefit. Although explicit SIMDization was not beneficial
on the x86 architectures, a di↵erent ISA-specific optimization, cache bypass,
was useful as it reduces the memory-tra�c on a memory-bound kernel. Do-
ing so can substantially improve performance. Unfortunately, compilers will
likely never be able to determine when this instruction is useful as it requires
run-time knowledge.

In the end, auto-tuning improved the performance at full concurrency by
6.1⇥, 1.9⇥, and 4.5⇥, for Barcelona, Clovertown, and Blue Gene/P respec-
tively. Moreover, thread-parallelizing and auto-tuning the 7-point stencil im-
proved performance by 6.8⇥, 2.3⇥, and 17.8⇥, for Barcelona, Clovertown,
and Blue Gene/P respectively. Although substantial e↵ort was required in
implementing a x86-specific auto-tuner, it may be reused on all subsequent
x86 architectures like Nehalem or Magny-Cours thus amortizing the up front
productivity cost.

Auto-Tuning Memory-Intensive Kernels for Multicore 293

FIGURE 13.8: Benefits of auto-tuning the 7-point Laplacian stencil. Note:
this Clovertown is actually the 2.66 GHz E5355 incarnation. As it has the same
memory subsystem as the E5345, we expect nearly identical performance on
this memory-bound kernel.

13.6.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD)

Figure 13.9 shows the benefits of auto-tuning LBMHD on our three com-
puters as a function of thread concurrency and increasing optimization. Unfor-
tunately, Blue Gene/P does not have enough DRAM to simulate the desired
1283 problem. As such, it only simulates a 643 problem. Once again, we have
condensed all optimizations into two categories: those that may be expressed
in a portable C manner, and those that are ISA-specific. The auto-tuning
search strategy is exhaustive although vectorization is quantized into cache
lines.

Although the reference implementation delivers good scalability, simple
performance modeling using the Roofline Model (see Chapter 9) suggests it
was delivering substantially suboptimal performance. Such a model also ex-
plains why even after auto-tuning the bandwidth-starved Clovertown shows
poor scalability despite the performance boosts.

The biggest boosts derived from the portable C auto-tuner are NUMA-
aware allocation, lattice-aware array padding, and vectorization (to eliminate
TLB capacity misses). The Opteron and Blue Gene/P, with moderate machine
balance (Flops:bandwidth), see good scaling on this kernel. Conversely, Clover-
town, with a high machine balance, sees poor multicore scalability. Whether
compute-bound or memory-bound, the non-portable, ISA-specific auto-tuner
provided tremendous performance boosts either through explicit SIMDization
or cache bypass.

In the end, auto-tuning improved the full concurrency performance by
3.9⇥, 1.6⇥, and 2.4⇥, for Barcelona, Clovertown, and Blue Gene/P re-
spectively. Moreover, the coupling of thread-parallelization and auto-tuning
improved LBMHD performance by an impressive 28.3⇥, 8.9⇥, and 9.2⇥,

294 Performance Tuning of Scientific Applications

FIGURE 13.9: Benefits of auto-tuning the lattice Boltzmann Magnetohy-
drodynamics (LBMHD) application.

for Barcelona, Clovertown, and Blue Gene/P respectively. Clearly, the ISA-
specific auto-tuners were critical in achieving these speedups.

13.6.3 Sparse Matrix-Vector Multiplication (SpMV)

Figure 13.10 shows the benefits of auto-tuning SpMV on our three comput-
ers. Unlike the previous two figures, where optimization and benefit is basically
independent of problem size, the horizontal axis in Figure 13.10 represents dif-
ferent problems (matrices). The ordering preserves that in Figure 13.4. The
lowest bar is the untuned serial performance, while the middle bar represents
untuned performance using the maximum number of cores. The top bar is the
tuned (portable C) performance using the maximum number of cores. Unlike
the other kernels, a non-portable ISA-specific auto-tuner was not implemented
for SpMV.

The auto-tuning search strategy is somewhat more complex. Register,
cache and TLB blocking use a footprint minimization heuristic based on cache
and TLB topology, where prefetching is based on an exhaustive search quan-
tized into cache lines.

We observe a trimodal performance classification: problems where both
the vectors and matrix fit in cache, problems where only the vectors can be
kept in cache, and problems where neither the matrix nor the vectors can
be kept in cache. Clearly, on Barcelona, no matrix ever fits in the relatively
small cache, but the performance di↵erences between the problems where the
vectors fit can be clearly seen. On Clovertown, where the cache grows from
4 Mbyte to 16 Mbyte using all eight cores, we can see the three matrices
that get a substantial performance boost through utilization of all the cache
and compression of the matrices. Blue Gene/P, like Barcelona can never fit
any matrix in cache, but we can see the matrices (Economics through Linear
Programming) where the vectors don’t fit.

Auto-Tuning Memory-Intensive Kernels for Multicore 295

FIGURE 13.10: Auto-tuning Sparse Matrix-Vector Multiplication. Note:
horizontal axis is the matrix (problem) and multicore scalability is not shown.

As it turns out, on Barcelona, NUMA-aware allocation was an essential
optimization across all matrices. Across all architectures, matrix compression
delivered substantial performance boosts on certain matrices. Interestingly, on
Blue Gene/P, matrix compression improved performance by a degree greater
than the reduction in memory tra�c — an e↵ect attributable to an initially
compute-bound reference implementation. Interestingly, TLB blocking deliv-
ered substantial performance boosts on only one matrix, the extreme aspect
ratio linear programming problem.

We observe that threading alone provided median speedups of 1.9⇥,
2.5⇥, and 4.2⇥ on Barcelona, Clovertown, and Blue Gene/P. Clearly, only
Blue Gene/P showed reasonable scalability. However, when coupled with auto-
tuning, we observe median speedups of 3.1⇥, 6.3⇥, and 5.1⇥ and maximum
speedups of 9.5⇥, 11.9⇥, and 14.6⇥. Ultimately, performance is hampered by
memory bandwidth on both Barcelona and Clovertown, leading to sublinear
scaling. As a result, auto-tuning strategies targeted at reducing memory tra�c
are critical.

13.7 Summary

Näıvely, one might expect that nothing can be done to improve the perfor-
mance of memory-intensive or memory-bound kernels like stencils, LBMHD,
or SpMV. However, in this chapter, we discussed a breadth of useful optimiza-
tions applicable not only to our three example kernels but to many others
domains. Unfortunately, no human could explore all the parameterizations of
these optimizations by hand. To that end, we showed how automatic perfor-
mance tuning, or auto-tuning, can productively tune code and thereby dramat-

296 Performance Tuning of Scientific Applications

ically improve performance across the breadth of architectures that currently
dominate the top500 list. Unfortunately, to achieve the best performance, non-
portable ISA-specifc auto-tuners that generate explicitly SIMDized code are
required.

13.8 Acknowledgments

We would like to express our gratitude to Forschungszentrum Jülich for ac-
cess to their Blue Gene machine. This work was supported by the ASCR O�ce
in the DOE O�ce of Science under contract number DE-AC02-05CH11231,
by NSF contract CNS-0325873, and by Microsoft and Intel Funding under
award #20080469.

