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RESEARCH Open Access

Pan-cancer identification of clinically
relevant genomic subtypes using outcome-
weighted integrative clustering
Arshi Arora1*, Adam B. Olshen2,3, Venkatraman E. Seshan1 and Ronglai Shen1*

Abstract

Background: Comprehensive molecular profiling has revealed somatic variations in cancer at genomic,
epigenomic, transcriptomic, and proteomic levels. The accumulating data has shown clearly that molecular
phenotypes of cancer are complex and influenced by a multitude of factors. Conventional unsupervised clustering
applied to a large patient population is inevitably driven by the dominant variation from major factors such as cell-
of-origin or histology. Translation of these data into clinical relevance requires more effective extraction of
information directly associated with patient outcome.

Methods: Drawing from ideas in supervised text classification, we developed survClust, an outcome-weighted
clustering algorithm for integrative molecular stratification focusing on patient survival. survClust was performed on 18
cancer types across multiple data modalities including somatic mutation, DNA copy number, DNA methylation, and
mRNA, miRNA, and protein expression from the Cancer Genome Atlas study to identify novel prognostic subtypes.

Results: Our analysis identified the prognostic role of high tumor mutation burden with concurrently high CD8 T cell immune
marker expression and the aggressive clinical behavior associated with CDKN2A deletion across cancer types. Visualization of
somatic alterations, at a genome-wide scale (total mutation burden, mutational signature, fraction genome altered) and at the
individual gene level, using circomap further revealed indolent versus aggressive subgroups in a pan-cancer setting.

Conclusions: Our analysis has revealed prognostic molecular subtypes not previously identified by unsupervised clustering.
The algorithm and tools we developed have direct utility toward patient stratification based on tumor genomics to inform
clinical decision-making. The survClust software tool is available at https://github.com/arorarshi/survClust.

Keywords: Integrative clustering, Supervised learning, Patient survival, Prognostic molecular stratification

Background
Cancer is a complex disease with heterogeneous clinical out-
comes. Understanding how patients respond to treatment
and what drives disease progression and metastasis is critical
for managing and curing the disease. Linking comprehensive
molecular profiling data with patient outcome carries great
promise in addressing such important clinical questions.

This requires innovative statistical and computational
methods designed for integrative analysis of multidimen-
sional data sets to model intra-tumor and inter-patient het-
erogeneity at genomic, epigenetic, and transcriptomic levels.
Each of these molecular dimensions is correlated yet charac-
terizes the disease in its own unique way. In order to arrive
at a comprehensive molecular portrait of the tumor, multiple
groups have proposed statistical and computational algo-
rithms to synthesize various channels of information includ-
ing methods developed by us (iCluster [1, 2]) and others
(PARADIGM [3], CoCA [4], SNF [5], CIMLR [6]) to stratify
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disease populations. However, the majority of the work has
focused on unsupervised clustering that utilizes the molecu-
lar data alone.
A complexity of applying unsupervised learning to molecu-

lar phenotypes lies in that it does not necessarily lead to
unique answers. This limitation is well understood in the field
of text learning. Consider the problem of clustering a collec-
tion of documents where multiple data substructures can be
present including authorship, topic, and style. The outcome
of the clustering is likely driven by a mixture of these under-
lying structures. As a result, there is often no single “right”
answer in unsupervised clustering problems. In most com-
plex data applications, many local optima exist that poses
special challenges in optimization. Xing et al. [7] proposed a
weighted distance metric allowing users to specify what they
consider “meaningful” in defining similarity toward a more
efficient and local optima-free clustering performance.
Drawing analogy with the text learning problem de-

scribed above, the molecular profile of a tumor is influ-
enced by a multitude of factors including cell-of-origin [8],
histology (e.g., squamous vs. adenocarcinoma), tumor
microenvironment (e.g., immune cell infiltration [9]), dedif-
ferentiation states [10], and specific pathway activation [11].
Conventional unsupervised clustering applied to the most
variable features is inevitably driven by the dominant vari-
ation from major factors, for example, cell-of-origin [8] or
ancestry [12] (germline variation) in the study cohort.
When patient outcome-related stratification is of interest, a
more directed clustering approach is needed.
To overcome the current limitation of molecular cluster-

ing analysis, we developed the survClust algorithm as a su-
pervised learning approach that aims to identify cancer
subtypes that are not just molecularly distinct but also prog-
nostically significant. It is an outcome-weighted integrative
clustering algorithm for survival stratification based on
multidimensional omics-profiling data. The algorithm learns
a weighted distance matrix that downweights molecular fea-
tures with no relevance to the outcome of interest. This
method can be used on individual platforms alone, or by in-
tegrating various molecular platforms, to mine biological in-
formation leading to distinct survival subgroups. In this
study, we analyzed over 6000 tumors across 18 cancer types.
Each disease type was classified by survClust based on six
molecular assays—somatic point mutations, DNA copy
number, DNA methylation, mRNA expression, miRNA ex-
pression, protein expression, and the integration of the six
assays. The results have revealed novel survival subtypes not
previously identified by unsupervised clustering.

Methods
Data source
The analysis in this study was conducted on the Cancer Gen-
ome Atlas dataset. This included six molecular data types:
somatic point mutations, DNA copy number, DNA

methylation, mRNA expression, miRNA expression, and
protein expression across 6209 tumor samples covering 18
cancer types. Data pre-processing and normalization proce-
dures are described in Additional file 1: Supplementary Note.

survClust workflow
Let Xm be the mth (m= 1,…,M) data type of dimension Nm

(number of samples in the mth data type) by pm (number of
features in the corresponding data type). Rows are samples
and columns are molecular features. Data types may consist
of continuous (gene expression, copy number log-ratio, DNA
methylation, miRNA, protein expression) or binary (mutation
status) data. Overall survival is defined as the time from diag-
nosis to death or last follow-up. The number of samples in
each tumor type and the number of molecular features in
each data type are summarized in Additional file 1: Table S1.
For a pair of two samples a and b, the weighted dis-

tance [7] is calculated as follows:

dw a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − bð ÞT W a − bð Þ

q
; ð1Þ

where a and b are feature vectors of length p for sam-
ples a and b, respectively, and W is a p × p diagonal
weight matrix with W = diag {w1,…,wp}. Samples are
close to each other when the value of dw is small and
dissimilar when dw is large.
The weights wj (j = 1,…, p) are obtained by fitting a

univariable Cox proportional hazards model fitted for
each feature:

h tjxp
� � ¼ ho � exp xTj �β

� �
; ð2Þ

where t represents the survival time, xj is the jth col-
umn of matrix X of length N, h0 is the baseline hazard
function, β is the regression coefficient, and exp(β) is the
hazard ratio (HR).
We consider the absolute value of HR on the logarith-

mic scale as the weight w. An HR = 1 corresponds to the
null that the feature is not associated with survival. This is
reflected in a log (1) = 0 weighting in the distance matrix.
SinceW is a diagonal matrix with diagonal elements wj (j =
1,…, p), we can simply use Euclidean distance for com-
puting distances if we transform the data as follows:

X
0 ¼ X�W 1

2: ð3Þ
Euclidean distances are sensitive to scale of the obser-

vations so after incorporating weights, we standardize
the data by its grand total:

X
0X

i

X
j

x0ij
;
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where
X
i

X
j

x0ij is the grand total of the weighted

matrix X′, with i rows (N samples) and j columns (p fea-
tures). Then, one can compute the pairwise distance be-
tween samples a (i = 1) and b(i = 2) as:

dw a0; b0ð Þ¼dw b0;a0ð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
j¼1

aj
0 − bj

0� �2
:

vuut

Conversely, a weighted distance matrix D is calculated for
all pairwise samples across M data types. All samples having
full survival information are kept, and the union of all samples
(Nunion) across M data types is utilized when analyzing a wide
number of samples. Non-overlapping samples in data types
are added as NA to have a uniform set of Nunion samples.
The integrated weighted distance matrix is calculated

by averaging over the weighted distance matrices:

Iw ¼
XM
m¼1

γmDm; ð4Þ

where γm¼ 1
M∀m: The integrated weighted matrix Iw

averages the inter- and intra-sample similarity profiles over
the M data types. Iw is then processed by survClust via clas-
sical multidimensional scaling (MDS) [13] and clustered
using k-means [14]. Classical MDS assumes Euclidean
distances; however, in cases of non-Euclidean distances,
Mardia et al. [15] provided a method to obtain the resulting
positive semidefinite scalar product matrix. Note that Iw fol-
lows the Euclidean norm and hence can be represented in
n − 1 dimensions. The strong assumption of the Euclidean
norm is also important for k-means, as it is essentially try-
ing to assign samples to the closest centroid or calculating
the sum of squared deviations from centroids.

Weighted distance metric for mutation data
Somatic mutation data is represented as a binary data
matrix where each entry is coded as 1 if the jth gene is mu-
tated in the ith sample, and 0 otherwise. A challenge with
the mutation data matrix is the sparsity. It is known that
somatic mutation data exhibit a long-tailed distribution in
which a relatively small number of variants appear in tu-
mors frequently while the vast majority of variants occur ex-
tremely infrequently. We consider genes that are mutated in
> 1% of the samples. After incorporating weights, this data is
no longer binary, but it still remains sparse. Due to such
data sparsity, computing the Euclidean distance is not ap-
propriate and may lead to inflated distance measures [16].
To combat this problem, we propose a weighted binary dis-
tance metric for such a scenario.
Let X

0
mut be the weighted mutation data matrix (see

Eq. 3) of dimension N (samples) by p (genes). Then, the

pairwise distance between sample vectors a and b is cal-
culated as follows:

dw a; bð Þ¼dw b;að Þ ¼ w01 þ w10

w01 þ w10 þ w11
;

where
w01 = sum of weights of p features that are zero in

sample vector a but non-zero in sample vector b;
w10 = sum of weights of p features that are non-zero

in sample vector a but zero in sample vector b;
w11 = sum of weights of p features that are non-zero

in sample vector a and non-zero in sample vector b.
Note that dw(a, b) is a proportion of the sum of effect

sizes in which only one is non-zero among those in
which at least one is non-zero [17].

Cross-validation
survClust classifies sample populations by incorporating
outcome information. Cross-validation was used to prevent
overfitting and arrive at more generalizable solutions. The
cv.survclust function performs cross-validation for the de-
sired number of folds and outputs cross-validated solution
labels. In the data analysis, we performed 5-fold cross-
validation in the following steps: (1) Split the data into 5
random partitions, label 4 of them as the training sets and
the remaining one as the test set. (2) The weighted distance
matrix was calculated from the training data set alone
(Eq. 1). survClust clustering was performed to arrive at
outcome-weighted labels in the training set. (3) Each test
set sample was assigned a class label based on its molecular
feature vector and weights derived from the training set.
We note the survival information for the test sample was
not used in assigning its class label, ensuring an unbiased
assessment of survival association for the class assignment
on the test set. (4) Step 2 was repeated until predictions
were made on all 5 test data sets across all 5 folds. (6) Clus-
ters were tracked by centroid relabeling (Additional file 1:
Supplementary Note) across folds, and we obtained
outcome-weighted class labels for our entire dataset. This
concluded one round of cross-validation. All results shown
here are results from cross-validated labels across 50
rounds of cross-validation. Cluster labeling consistency was
preserved across rounds of cross-validation via a similar ap-
proach to centroid relabeling. The final class label for a
sample was assigned based on a consensus voting, i.e., the
class that the sample was assigned the highest number of
times in the 50 rounds of cross-validation. This is achieved
by another function called consensus.summary.

Choice of the number of clusters k
We use both the logrank test statistic and a standardized
pooled within-cluster sum of squares calculated from
cross-validation to choose an appropriate k.

Arora et al. Genome Medicine          (2020) 12:110 Page 3 of 13



The logrank statistic
The logrank test statistic is based on a non-parametric ap-
proach that quantifies survival difference between resulting
subtypes and makes no assumption about the survival dis-
tributions. It tests the null hypothesis that there is no differ-
ence in survival between the groups.
For a particular k cluster solution, we have k cross-

validated labels. Each class is distinct in survival, and we
can compare the difference between classes using the log-
rank test statistic as follows [18]:

χ2 ¼

X
k

Ok − Ekð Þ
ffiffiffiffi
V

p ;

where Ok = observed number of events in the kth
group over time, Ek = expected number of events in the
kth group over time and V = ∑ Var (Ok − Ek) = ∑ Vk.
For a two-group comparison, the logrank statistic fol-

lows a chi-square distribution with 1 degree of freedom.
A value greater than 3.84 is considered statistically sig-
nificant at an alpha of 0.05. The optimal k is the one
with the maximum logrank statistic.

Standardized pooled within-cluster sum of squares
Here we calculate the pooled within-cluster sum of
squares and standardize it by the total sum of squares
similar to methodology used in the gap statistic [19] to
select the appropriate number of clusters.
Suppose that the final labels have clustered the data

into k clusters C1, C2, …. Ck, with Cr denoting the indi-
ces of observations in cluster r, and nr = |Cr|. Let

wr ¼
X
i; j∈Cr

i > j

Iwij;

where wr is the sum of all pairwise distances in cluster
r, {ij} represents a pair of samples belonging to a cluster
Cr, and Iw is calculated from Eq. 4. Then, the standard-
ized pooled within-cluster sum of squares is:

Ws ¼
Xk
r¼1

wr

X
i

i> j

X
j

Iwi j:

,

Here Ws decreases monotonically as the number of
clusters k increases. The optimal number of clusters is
where Ws is minimized and creates an “elbow” or a point
of inflection, where addition of more clusters does not
improve cluster separation. Another property of Ws is
that it can be used to compare among different datasets

as it lies between 0 and 1 after standardization. This is
useful for comparing survClust runs between individual
data types and when we integrate them.

Adjusted Rand index
The Rand index is used to measure agreement between
two classification labels. When this Rand index is adjusted
for chance, it is called the adjusted Rand index. The Rand
index and adjusted Rand index have a maximum of 1 and a
minimum of 0. Here 0 means the two data labels have no
shared information and 1 means they are the same labels.

Simulation
Continuing from the simulation study presented in Fig. 1,
we go into detail about cross-validation and how to
choose k for a survClust run. In Fig. 1, the input matrix
was subjected to 50 rounds of 3-fold cross-validation (2/
3 training and 1/3 test). The survClust fit for a cluster k
based on training data from each fold was used to pre-
dict cluster membership for the test data. Final sample
labels were aggregated over all folds and cluster meaning
was preserved across folds via centroid relabeling (see
Additional file 1: Supplementary Note).
The logrank test statistic and standardized pooled

within-cluster sum of squares was calculated for the
consolidated test labels over 3-folds for each round.
Additional file 1: Fig. S1c summarizes these metrics for
50 rounds of cross-validation for k = 2–7. The figure
shows that logrank is maximized for k = 3, and the stan-
dardized pooled within-cluster sum of squares has an
elbow at k = 3, pointing to the optimal k of 3. The final
class labels are assigned by consolidating solutions
across all folds in all rounds of cross-validations.
It is interesting that the choice of k is strongly echoed

across these two different metrics. Another simulation sce-
nario is presented in Additional file 1: Fig. S2. Here surv-
Clust was able to identify the 4-class simulated truth when
there is conflicting information present in individual
platforms.

Results
The survClust model: an overview
The molecular profile of a tumor often harbors informa-
tion on a multitude of factors including cell lineage,
tumor microenvironment, cell differentiation, and other
clinical and histopathological features. Some of these
factors are associated with treatment response and/or
survival outcome, while others are not. If a particular pa-
tient outcome (e.g., patient survival) is of interest, a
more supervised approach is needed. We demonstrate
this using a simulated data example (Fig. 1a, Additional
file 1: Fig. S1). In this scenario, we simulated three risk
subgroups in a cohort of 300 hypothetical patient samples
with distinct survival hazard rates in each subgroup (a
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median survival of 4, 3, and 2 years, respectively). A set of
15 features was then simulated from a mixture Gaussian
distribution with different means in the three risk sub-
groups. Another set of 15 features was simulated in the
same way but permutated to disrupt the feature-risk
group association. A third group of 270 features was simu-
lated from Gaussian noise. Figure 1b shows that an un-
supervised clustering using the K-means algorithm failed
to identify the survival subtypes in the context of complex
feature variations. To identify outcome-associated cluster-
ing solution, survClust utilizes a weighted distance metric:

d a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − bð ÞT W a − bð Þ

q
;

where (a, b) denote a pair of sample vectors measured
for p features and W is a diagonal weight matrix over p
features with W = diag {w1,…,wp}. The weights wp ′ s
are obtained by fitting a univariable Cox proportional
hazards model for each feature in the training data with
repeated training-test sample splits for cross-validation
(see more details in the “Methods” section). Figure 1c
shows that survClust was able to identify the true risk
groups with 97.15% accuracy [95% CI = 94–100%],

whereas the accuracy from an unsupervised clustering
was 67.50% without reducing the effect of noise features
and features unrelated to survival.
Our algorithm allows the integration of multiple data

modalities. Given m data types measured over the respect-
ive feature space (Fig. 1d), the algorithm learns a weighted
distance matrix from each molecular data type by incorp-
orating a vector of Cox regression hazard ratio as weights.
Each feature is weighed and a pairwise distance matrix is
calculated (we refer to this step as getDist). This step re-
duces the computation considerably by transforming the
problem from sample by feature to sample by sample.
Note that different sample sizes across data types are
allowed, i.e., a sample can be measured for some but not
all platforms. Next, the weighted pairwise distance matri-
ces are integrated by summing overweighted m data types
(combineDist), which retains all samples with at least one
data type available, with complete pairwise information.
survClust then projects the integrated and weighted dis-
tance matrix into a lower dimensional space via multidi-
mensional scaling (MDS) and then clusters sample points
into subgroups via the K-means algorithm. More details
can be found in the “Methods” section.

Fig. 1 Overview of survClust. a A simulated data example, consisting of features that define 3 patient subtypes without direct association with
survival (shaded in red), features that define 3 patient subtypes with distinct survival outcome (shaded in blue), and random features generated
from Gaussian noise (gray). b Euclidean distance matrix demonstrating patient-level pairwise similarity, with darker blue shade representative of
higher similarity. Color panels above the distance matrix show the three-class solution obtained by unsupervised algorithm via k-means and the
concordance between the simulated 3 survival subtypes (the truth). Kaplan-Meier curves for the 3 unsupervised subtypes show no distinction in
survival outcome. c survClust employs a patient outcome-weighted distance matrix to identify the desired subtypes with distinct Kaplan-Meier
curves. d survClust allows integrative analysis of multiple data modalities to identify survival-associated molecular subtypes
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survClust is more powerful than unsupervised clustering
in identifying clinically relevant molecular subtypes
We applied survClust to the TCGA data set including
6209 tumor samples in 18 cancer types to identify survival
outcome-associated subtypes defined by somatic mutation,
DNA copy number, DNA methylation, mRNA expression,
and protein expression, individually and integratively. A
summary of the sample sizes and feature space is included
in Additional file 1: Table S1. Additional file 1: Table S2
compares the survival association (logrank statistic) for the
survClust integrated subtypes versus those derived from
unsupervised clustering methods commonly used in
TCGA studies including COCA and iCluster. The logrank
statistic compares estimates of the hazard functions of each
subgroup to the expected values under the null hypothesis
(all subgroups have identical hazard functions). Larger log-
rank statistic suggests stronger evidence of survival associ-
ation. For example, although unsupervised classification of
the liver cancer samples elaborates on molecularly distinct
subtypes, they do not exhibit significant survival separation
(P = 0.42, logrank statistic = 1.71) [20]. The survClust inte-
grative classification, on the other hand, identified subtypes
that are molecularly distinct and also show significant sur-
vival difference (P < 0.001, logrank statistic = 21.56) (Add-
itional file 1: Table S2, Fig. S8). In addition to the multi-
platform integrative analysis, we also present a comprehen-
sive comparison of the survClust classification vs TCGA
unsupervised clustering analysis for each individual mo-
lecular platform as summarized in Additional file 1: Table
S3–7. By differentially weighting the molecular features by
the corresponding survival association in constructing the
distance matrix, we show that survClust is more power-
ful for identifying subtypes that are directly relevant to
stratify the outcome of interest, leading to substantially
more distinct survival subgroups than those existing
molecular subclasses obtained by unsupervised cluster-
ing. To further demonstrate, we highlight the survClust
analysis of low-grade glioma and kidney papillary renal
cell carcinoma below.

survClust identifies a poor prognostic IDH-mutant low-
grade glioma subgroup
Low-grade gliomas (LGG) have a unique molecular foot-
print, characterized by IDH1/2 mutation status and code-
letion in chromosome 1p and19q regions of the genome
[21]. As shown previously, mutations in IDH1 and IDH2
genes are present in a majority of the low-grade gliomas
and define a subtype associated with favorable prognosis
[22]. IDH-mutant tumors with chromosome 1p and 19q
codeletion (IDH-mutant-codel) exhibit the most prolonged
survival times followed by IDH-mutant tumors without
the codeletion (IDH-mutant-non-codel), with IDH-WT tu-
mors demonstrating more aggressive clinical behavior. We
performed survClust on 6 available molecular platforms

(somatic mutation, DNA copy number, DNA methylation,
mRNA expression, and protein expression) in 512 LGG
samples as profiled by the TCGA. The optimal number of
clusters k was chosen by assessing survClust fits over log-
rank test statistics and standardized pooled within-cluster
sum of squares in cross-validation (see the “Methods” sec-
tion). Cross-validation was performed to ensure unbiased
estimation of survival association and to avoid overfitting.
The integrated survClust solution for LGG was opti-

mized at k = 5, with the IDH-mutant-codel (c3) and
IDH-mutant-non-codel (c1) subtypes associated with
good prognosis as expected (Fig. 2a). By contrast, the
IDH-WT subclass (c5) showed association with poor
survival, enriched for mutations in EGFR and PTEN
gene and concurrent chromosome 7 gain and 10 loss, re-
sembling glioblastomas. Interestingly, survClust identi-
fied a small IDH-mutant subtype characterized by
CDKN2A deletion (c4) that showed markedly worse sur-
vival among the IDH-mutant tumors, similar to the
IDH-WT group (c5) that tends to behave far more ag-
gressively with prognosis similar to glioblastomas. In
addition, a copy number quiet subgroup (c2) was identi-
fied that showed high expression of mir-1307 and mir-
29c (Additional file 1: Fig. S3). These results highlight
the strength of survClust in identifying clinically relevant
molecular stratifications and the potential to refine the
existing paradigm in glioma subtyping to inform clinical
decision-making.

survClust identifies prognostic subtypes of kidney
papillary renal cell carcinoma (KIRP)
Three survival distinct subtypes were identified using
survClust integrating DNA copy number, mRNA expres-
sion, DNA methylation, and miRNA and protein expres-
sion profiles of 289 tumor samples. The c3 subtype was
associated with poor survival (median survival time =
1.63 years) (Fig. 2b), younger age (median age 57 years),
and the female gender (55%). The defining genomic
characteristics include CDKN2A loss and arm-level gains
in multiple chromosomes including 7, 12, 15, and 17 as
described previously [23].

survClust identifies clinically relevant mutational
subgroups across cancer types
survClust is a flexible framework and can be applied to
individual data types for patient stratification. For ex-
ample, somatic mutation-based stratification is often of
interest in a clinical sequencing setting. To illustrate this,
we applied survClust to mutation data alone using a haz-
ard ratio weighted binary distance-based clustering. A
circomap plot was created to facilitate annotation and
visualization of the results across cancer types (Fig. 3a).
survClust identified high TMB subgroups in nearly all
cancer types included in this analysis. Correlating
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mutational signatures [24] with these subtypes in circo-
map further revealed etiology underlying these hyper-
mutated tumors. The smoking signature tracks lung
cancer (LUSC and LUAD) and the subset of head and
neck cancer (HNSC) with elevated TMB. The DNA mis-
match repair (MMR) signature tracks high TMB sub-
groups in stomach cancer (STAD), endometrial cancer
(UCEC), and colon cancer (COAD). The APOBEC
signature is prevalent in the bladder (BLCA) and cer-
vical cancers (CESC). Finally, the aristolochic acid sig-
nature (signature 22) is enriched in a liver cancer
subgroup identified by survClust (Additional file 1:
Fig. S4e), which is consistent with aristolochic acid
and their derivatives being implicated in liver cancers
in Asian populations [25].
In endometrial cancer, survClust confirmed a previ-

ously known ultra-high mutated subtype associated with
the POLE mutation signature (c2) and a hypermutated
microsatellite instability (MSI) (c4) subtype [26] (Fig. 3b).
The panelmap in Fig. 3b (middle panel) shows that c4
correlated well with clinical MSI status (P < 0.001) and

predominantly carried mutants in ARID1A, PIK3CA, and
PTEN genes. The c1 subtype, consisting of primarily high-
grade serious tumors, was associated with the worse out-
come with a 5-year survival of 58% compared to 95%,
84%, and 83% for c2 (POLE), c3, and c4 (MMR), respect-
ively, and characterized by higher frequency of mutations
in TP53, PPP2R1A genes, low TMB, and older patients
with serous endometrial tumors (60%). The c3 subtype
was characterized by a higher frequency of CTNNB1 mu-
tants. Immune cell decomposition data derived using the
CIBERSORT [27] algorithm was also correlated with the
subgroups. Interestingly, high expression of CD8 T cell
immune marker was observed in the POLE (c2) and MSI
(c4) subtype (P < 0.001) (Fig. 3b).
survClust stratified the bladder cancer cohort into 3

TMB subgroups—with high (c1), intermediate (c3), and
low (c2) mutation burden. The c1 subtype was associated
with good outcome, high TMB, high neo-antigen load, high
APOBEC load, and high expression of the CD8 T cell im-
mune marker (P = 0.002) (Fig. 3c). The c3 subtype showed
intermediate TMB and APOBEC load with a median

Fig. 2 Outcome-weighted integrative clustering of low-grade glioma (LGG) and kidney papillary cell carcinoma using survClust. a survClust identifies an
IDH-mutant CDKN2A-loss subtype similar to IDH-wt tumors in terms of the aggressive clinical behavior. Top: Kaplan-Meier curves of the integrated
survClust subtypes of LGG. Middle: Panelmap summarizing major association of mutational and clinical features of the integrated LGG subtypes.
Bottom: Copy number profile for each of the integrated subtypes. b survClust identifies prognostic kidney papillary renal cell carcinoma (KIRP) subtypes
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survival time of 3.48 years. Patients with a low TMB and
low APOBEC load performed the worst in terms of survival
with a median survival time of 1.91 years.
A similar pattern emerged when survClust was run on

colorectal cancer mutation data classifying the disease
population into three clusters—two low TMB groups and
a MMR-associated high TMB group (c1) (Additional file 1:
Fig. S4b). c1 was also associated with CD8 T cell infiltra-
tion (P = 0.004) and showed concordance with MLH1 si-
lencing status. A similar subdivision of the low TMB
group by TP53 mutation status was seen where c3 carried
TP53mutant samples unlike c2. Correlation with histology
revealed significant enrichment of the mucinous adenocar-
cinoma subtype in c1 and c2 (c1, n = 20, 29%; c2, n = 24,
20%) compared to c3 (n = 9, 5%). In addition to the hyper-
mutated subtypes of endometrial, bladder, and colorectal
cancers, we also observed high TMB subgroups with con-
currently high expression of CD8 T cell markers in the
cervical cancer c1 subtype (Additional file 1: Fig. S4a and
S5a), head and neck cancer c4 subtype (Additional file 1:
Fig. S4c, S5c), lung adenocarcinoma c3 subtype

(Additional file 1: Fig. S4f and S5f), lung squamous cell
carcinoma c4 subtype (Additional file 1: Fig. S4g and S5g),
and stomach cancer c1 subtype (Additional file 1: Fig. S4h
and S5h). There are prior observations that high muta-
tional burden is associated with increased neo-antigen load
and activated T cell infiltration in lung cancer [28]. Our
analysis revealed that such associations may be more
widely present in multiple cancer types.

survClust identifies distinct copy number subtypes
associated with clinical features across cancer types
To identify copy number alterations that define clinically
relevant subtypes, segmented data of 18 cancer types
was processed via the CBS algorithm [29] and analyzed
with survClust. Subtypes characterized by different de-
grees in the Fraction of Genome Altered (FGA) emerged
in various cancer types (Fig. 4). Interestingly, low FGA
was associated with better survival in several cancer
types including colon, head and neck, lung adenocarcin-
oma, soft tissue sarcoma, and endometrial cancer (Add-
itional file 1: Fig. S6 and S7).

Fig. 3 survClust identifies mutational subtypes associated with survival across cancer types. a Circomap showing total mutation burden (TMB) in
brown color and mutational signatures (smoking, MMR, APOBEC, POLE, and aging) in tumors across bladder (BLCA), cervical (CESC), colon (COAD),
head and neck (HNSC), liver (LIHC), lung adenocarcinoma (LUAD), lung squamous cell (LUSC), stomach (STAD), and endometrial (UCEC) cancers.
Outer circle indicates mutation-based survClust membership. b survClust mutation subtypes in endometrial cancer. From top to bottom: Kaplan-
Meier curves for the 4 mutation subtypes; panelmap depicting significantly mutated genes, MSI status, histology, and TMB associated with the
subtypes; and beeswarm plot showing CD8 T cell marker expression (y-axis) across the 4 subtypes (x-axis). Red line depicts the median, and top
and bottom black bars represent the 25th and 75th percentile, respectively. c survClust mutation subtypes in bladder cancer. From top to bottom:
Kaplan-Meier curves for the 3 mutation subtypes; panelmap depicting significantly mutated genes, APOBEC load, and TMB associated with the 3
subtypes; and beeswarm plot showing CD8 T cell expression (y-axis) across the 3 subtypes (x-axis)
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The circomap plot in Fig. 4a also revealed associations
of subtypes with high-level amplification of major cancer
genes including CCND1 amplification in head and neck
cancer (c3), CCNE1 (c5) and AKT2(c6) amplification in
ovarian cancer, and MDM2 amplification (c4) in sar-
coma (S Additional file 1: Fig. S6). Notably, amplification
of the 19q13.2 region in the ovarian cancer c6 subtype
harboring the AKT2 gene is associated with poor sur-
vival (Additional file 1: Fig. S7f, Table S8) which was
consistent with previous findings that AKT2 amplifica-
tion is associated with ovarian cancer aggressiveness
[30]. The CCND1 amplified subtype of head and neck
cancer (c3) was also associated with poor survival (Add-
itional file 1: Fig. S7b). Amplification in the MYC gene is
broadly present in multiple cancer types (Fig. 3a circo-
map). Among cancer gene deletions, CDKN2A loss de-
fined multiple subgroups associated with poor survival
including papillary kidney cancer (c1), low-grade glioma
(c4), lung adenocarcinoma (c4), and soft tissue sarcoma
(c1) (Additional file 1: Fig. S6 and S7).
Colorectal cancer was classified into three varying

FGA subtypes with prognostic implications. c1 had low
FGA, while c2 and c3 carried heavy genome alterations
(Additional file 1: Fig. S6a). Even though c1 and c2 had
dissimilar FGA, they performed similarly in terms of
survival as compared to c3, which had poor outcome

with median survival time of 4.5 years (Additional file 1:
Fig. S7a). Gain in the MYC gene was seen throughout
the cancer type, and c2 was uniquely characterized by
loss of the chromosome 20 p-arm, which harbors the
hsa-mir-103–2 previously reported to be downregulated
in colorectal tumors [31, 32].
survClust is designed to capture the contribution of

survival-associated molecular features and reduce the
influence from those that are not related to the out-
come of interest. Figure 4b provides another example
that this approach is better at identifying prognostic-
ally relevant subtypes compared to the unsupervised
clustering approach applied in the original study [20].
survClust identified 6 unique CN groups in liver can-
cer with significant survival differences among sub-
groups. The c5 subtype was characterized by high
FGA and associated with poor outcome with a me-
dian survival time of 0.77 years. This cluster was dis-
tinguished by a loss of chromosome 15. The c2
subtype was associated with the lowest FGA and a
median survival time of 6.81 years. The c4 subtype
was enriched for CDKN2A deletion with a median
survival time of 2.15 years. In contrast, unsupervised
clustering generated subgroups with distinct molecu-
lar differences but did not show any separation in
terms of survival.

Fig. 4 survClust identifies copy number patterns associated with patient survival outcome across various cancer types. a Circomap showing
fraction genome altered (FGA) and gene-level copy number alterations in each tumor across colorectal (COAD), head and neck (HNSC), kidney
renal papillary cell carcinoma (KIRP), low-grade glioma (LGG), liver (LIHC), lung adenocarcinoma (LUAD), ovarian (OV), soft tissue sarcoma (SARC),
and endometiral (UCEC) cancers. The outer circle indicates the survClust membership. b survClust is more powerful than unsupervised clustering
in identifying survival-associated copy number subtypes in liver cancer
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Integration of multiple data types enhances the
identification of survival distinct subgroups
Figure 5 shows that the integrated survClust solution
outperformed individual platforms based on the cross-
validated logrank statistics for multiple cancer types in-
cluding cervical cancer, head and neck cancer, papillary
kidney cancer, lower grade glioma, and liver and endo-
metrial cancers. In general, the integrated solutions al-
ways emerge at or near the top in performance as
compared to the individual platform-specific solutions.
Next, we used the adjusted Rand index (RI) to evaluate

the concordance between different solutions. RI is calcu-
lated as the proportion of sample pairs that are assigned

together in the same cluster in one solution versus an-
other, adjusted for what is expected by random chance.
It provides an indirect measure of how much a particu-
lar data type contributes to the integrated solution. A
non-zero adjusted RI across solutions would suggest
shared biology across assay types in some tumors. For
example, the mutation subtypes of endometrial cancer
(Fig. 5h) have the highest adjusted RI (0.56) as compared
to the integrated solution, which is consistent with the
fact that POLE and MSI are the two major prognostic
subtypes that are predominantly defined through muta-
tion burden (Fig. 3b). Nevertheless, the integrated solu-
tion also shows clearly that there is additional

Fig. 5 Integration of multiple data types enhances the identification of survival distinct subgroups. a–h Each panel has two plots: the plot on the
left summarizes median cross-validated logrank statistic across k = 2 to 8 (number of clusters). Each line is a data type (see legend), and the black
line represents the survClust run on integrating all 6 platforms. Plot on the right summarizes the adjusted Rand index between cross-validated
survClust solutions of individual data types and the integration of all. In this comparison, the survClust solution was chosen for an appropriate k
which maximized logrank statistic and minimized the standardized pooled within sum of squares
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information in DNA methylation, DNA copy number,
and mRNA expression being effectively incorporated by
survClust that improves the survival stratification. In
bladder cancer, the integrated solution is most concord-
ant with the mRNA cluster solution (adjusted RI = 0.39),
which indicates influence by mRNA features toward in-
tegration (Fig. 5a). Classification by mutation data type
seemed to have little or no overlap between other assays
(adjusted RI close to 0), although the integrated solution
retained some information. (adjusted RI = 0.03).
The integrated solution classified cervical cancer sam-

ples better than the rest of the platforms and pointed to-
ward a 5-cluster solution (Fig. 5b). Interestingly, a high
degree of heterogeneity among different platforms was
observed as represented by a small adjusted RI across
the board. The head and neck cancer integrated solution
showed great improvement over individual platforms for
k > 2 solutions. The k = 4 integrated solution clearly re-
sulted from effective integration of multiple data types
including DNA methylation, DNA copy number, and
mRNA expression with adjusted RIs of 0.33, 0.26, and
0.25, respectively (Fig. 5c). In this case, RPPA provided
very little information toward the integrated solution.
The integrated survClust analysis stratified papillary

kidney cancer type into 3 groups, with CN sharing max-
imum information with the integrated solution (adjusted
RI = 0.32), followed by mRNA (0.31), miRNA (0.24),
RPPA (0.23), and methylation (0.19). Lower grade glioma
displayed a wide range of variability among platform
type in terms of the logrank statistic (logrank statistic, x-
axis from 0 to 250). The k = 5 integrated solution per-
formed the best among the 6 platforms with larger con-
tributions from mRNA (RI = 0.63), copy number (RI =
0.62), and mutation (RI = 0.57) (Fig. 5e). The integrated
solution of liver cancer did not show much improve-
ment over individual assay types. Note that we did not
use protein data while integrating as more than half was
missing (RPPA, n = 182; integrated n = 371). miRNA,
mRNA, and copy number showed high median logrank
statistics over rounds of cross-validation demonstrating
their role as potential prognostic classifiers.

Discussion
Cancer is a complex disease. Integrative analysis of
multi-omic molecular profiling has the potential to un-
pack the complexity of the disease to reveal insights into
disease etiology and to identify subtypes with distinct
outcome for clinical utility. Unsupervised clustering
methods have been developed to define cancer subtypes
across multiple data modalities [1–4] and to stratify can-
cer patients into molecularly distinct subtypes. In some
cases, these molecular subtypes were shown to be associ-
ated with survival such as the integrated subtypes of
breast cancer [33]. In other cases, unsupervised

molecular stratification led to subtypes related to other
factors such as the etiologically distinct molecular sub-
types in gastric adenocarcinoma cancer [34], the
histology-associated molecular subtypes of esophageal
cancer [35], and the cell-of-origin-driven pan-cancer
subtypes [8].
When unsupervised clustering does not lead to

survival-associated subtypes, a supervised approach is
needed in order to identify clinically relevant patient
stratifications. Nevertheless, there is a lack of supervised
clustering methods specifically designed for cancer gen-
omics application, which emphasizes the potential utility
of survClust. A strong use-case scenario for such an ap-
proach is explained in the simulation example presented
in Fig. 1, where unsupervised clustering alone was not
enough to distinguish survival-associated clusters unless
survival unrelated features are downweighed, by an ap-
proach like survClust. Similar limitation of such a ca-
nonical clustering approach can also be seen in Fig. 4,
where classic unsupervised clustering identified copy
number distinct classes not associated with any prognos-
tic significance in liver cancer samples.
Our approach is innovative in several aspects. First, it

directly incorporates survival information in the cluster-
ing approach by utilizing weighted distance matrices.
Specifically, molecular features are weighted by their
corresponding log-hazard ratio (logHR) estimated from
univariable Cox regression from training data. As a re-
sult, informative features will have large weights in clus-
tering whereas noninformative features will have weights
close to zero and thus minimal influence on the cluster-
ing. When unsupervised clustering fails to identify
survival-associated subtypes, we show that our super-
vised analysis allows effective extraction of survival in-
formation and leads to clinically relevant molecular
stratification. Secondly, survClust facilitates multi-
modal clustering by integrating the weighted distance
matrices. It then projects the integrated and weighted
distance matrix into a lower dimensional space via
multidimensional scaling (MDS) in which sample
points are organized into subgroups via the K-means
algorithm. Our analysis showed that the integrated
analysis outperformed the individual data types in
multiple cancer types, highlighting the importance of
the multi-omic approach. Finally, we developed vari-
ous visualization tools including panelmap and circo-
map that greatly facilitate the interpretation of the
results.
As more clinically annotated genomic data becomes avail-

able as a result of clinical sequencing programs [36, 37], our
method will provide a useful tool to facilitate patient stratifi-
cation for clinical decision-making. In this study, we ana-
lyzed 18 cancer types in ~ 6200 tumors. Each disease type
was classified by survClust based on six molecular assays—
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somatic point mutation, DNA copy number, DNA methyla-
tion, mRNA expression, miRNA expression, protein expres-
sion, and integration of the aforementioned six assays.
The supervised clustering approach provides a more direct

way to identify survival-associated molecular subclasses, lead-
ing to substantially more distinct survival subgroups than
those existing molecular subclasses obtained by unsupervised
clustering. In this study, survClust analysis of copy number
data alone identified aggressive clinical behavior of tumors
with CDKN2A deletion in multiple cancer types, and poor
survival for a subtype of ovarian cancer carrying aberration
on Chromosome 19. Furthermore, the integrated clustering
analysis via survClust shed light on clinical subtypes that
were not identified by individual platform alone. For in-
stance, the integrative analysis of the glioma using survClust
revealed a small novel subtype characterized by CDKN2A
deletion and IDH1/2 mutation (Fig. 2a), whereas the individ-
ual platform analysis mostly agreed with previously
known subtypes (Additional file 1: Fig. S4d, S6d). This
again underlines the power of the proposed approach
in identifying novel clinically relevant subtypes by inte-
grating across ‘omics data types and their underlying
association with outcome.
There are several limitations to our current approach.

First, the current method focuses on time to event out-
come (patient survival) as the clinical endpoint of interest.
A future extension of the algorithm will be needed for
molecular stratification associated with other types of out-
come such as treatment response which requires a modifi-
cation of the weighting scheme appropriate for binary and
categorical types of outcome. Secondly, the current inte-
gration across multiple data types does not allow different
weights for the distance matrices computed from each in-
dividual data modality. A weighted matrix integration may
further allow more flexible integration of the different data
types. Also, the integrated results presented in the paper
were run on a large feature space (Additional file 1: Table
S1) that retains as many samples as possible across indi-
vidual data types. Although such an approach is more
comprehensive, the computational cost is high. Feature se-
lection approach may be considered to further improve
computational efficiency in future work.

Conclusions
In molecular stratification analysis, it is common to apply an
existing unsupervised clustering method followed by a post
hoc clinical association analysis. Such a “two-step” approach
does not always guarantee the molecular subtypes are prog-
nostically distinct as we demonstrated in our study. To ad-
dress this challenge, we developed the survClust algorithm as
a more powerful supervised learning approach, aiming at the
identification of cancer subtypes that are not just molecularly
distinct, but also prognostically significant. We analyzed over
6000 tumors across 18 cancer types from the Cancer

Genome Atlas study, across six molecular data types includ-
ing somatic point mutations, DNA copy number, DNA
methylation, mRNA expression, miRNA expression, protein
expression, and the integration of the six data modalities.
The results have revealed prognostic molecular subtypes not
previously identified by unsupervised clustering.
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