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Abstract

Ovarian carcinoma is the leading cause of gynecological malignancy, with the

serous subtype being the most commonly presented subtype. Recent studies

have demonstrated that grade does not yield significant prognostic information,

independent of TNM staging. As such, several different grading systems have

been proposed to reveal morphological characteristics of these tumors, however

each yield different results. To help address this issue, we performed a rigorous

computational analysis to better understand the molecular differences that fun-

damentally explain the different grades and grading systems. mRNA abundance

levels were analyzed across 334 total patients and their association with each

grade and grading system were assessed. Few molecular differences were

observed between grade 2 and 3 tumors when using the International Federa-

tion of Gynecology and Obstetrics (FIGO) grading system, suggesting their

molecular similarity. In contrast, grading by the Silverberg system reveals that

grades 1–3 are molecularly equidistant from one another across a spectrum.

Additionally, we have identified a few candidate genes with good prognostic

information that could potentially be used for classifying cases with similar

morphological appearances.

Introduction

Ovarian cancer is one of the most lethal gynecological

cancers and is the fifth most common cause of cancer

death in North America [1]. Many subtypes of epithelial

ovarian carcinoma exist including the serous, clear cell,

endometrioid, and mucinous subtypes [2]. There are sub-

stantial differences in genetic risk factors and somatic

mutation profiles between each of these subtypes. The

majority of ovarian carcinomas that are presented at the

clinic correspond to cancer of the serous subtype [3].

Accurate diagnosis and prognosis are critical for disease

management and therapeutics. To aid this, histopatholog-

ical grade is intended to provide additional information

to a nominal diagnostic category; information which

should have prognostic or therapeutic implications. How-

ever, if designation of a tumor to a specific diagnostic

category conveys sufficient information, grading is not

necessary [4, 5]. Histologic reporting of ovarian carcino-

mas has traditionally required assessment of both cell type

and grade. A number of grading systems exist, including

the Silverberg [6], the International Federation of Gyne-

cology and Obstetrics (FIGO) [7], the World Health

Organization (WHO) [8], and the Gynecologic Oncology

Group (GOG) systems [9]. Each grading systems employs

a different scheme, but most are ternary systems stratify-

ing ovarian serous carcinomas into well, moderately, and

poorly differentiated categories. These ternary grading sys-

tems imply a progressive deterioration in differentiation,

and the Silverberg, FIGO, and WHO systems are

56 ª 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of

the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

Cancer Medicine
Open Access



“universal” in the sense that they can be applied regard-

less of cell type [6]. The GOG system, by contrast, is cell-

type–specific, requiring initial assessment of cell type with

subsequent application of a histotype–specific grading sys-

tem [9].

A two-tier system has been recently proposed, and is

suggested to be superior to the above three-tier systems

[10]. Tumors classified into low- or high-grade ovarian

carcinoma have distinct histological, molecular, and clini-

cal profiles. Molecularly, low-grade serous carcinomas

generally have low levels of chromosomal instability and

carry frequent mutations in KRAS, BRAF, and ERBB2,

while high-grade serous carcinomas tend to have high lev-

els of chromosomal instability and frequently show muta-

tions in TP53 [10]. Histologically, low-grade ovarian

serous carcinoma generally has a micropapillary-rich

growth pattern, while high-grade ovarian serous carci-

noma adapts a large papillae and glandular pattern with

infrequent micropapillary growth. Tumors classified by

this binary grading system demonstrate diverse survival

profiles, with median survival of 4.2 years in patients with

low-grade tumors and 1.7 years in those with high-grade

tumors [10, 11].

Classification of some grade 2 tumors (characterized as

having larger nuclei and nucleoli, coarser chromatin, and

more mitotic activity) has been challenging [10, 11]. One

of the significant aspects of accurate pathological grading

is its association with treatment options. Since low- and

high-grade tumors exhibit differences in proliferation rate,

it is possible that they respond to chemotherapy differ-

ently [10]; hence the accurate pathological grading of a

tumor is exceptionally important. Previous clinical studies

demonstrated that low-grade serous carcinoma were not

as responsive to traditional chemotherapeutic agent, such

as taxane and platinum, in comparison to high-grade car-

cinomas [12].

Although such grading lacks prognostic significance

and clinical reproducibility, it remains possible that

tumor grade can accurately capture some underlying

molecular characteristics of the tumor that are not

reflected through other measures [11]. In fact, previous

work using principal component analysis (PCA) on

mRNA abundance profiles to dichotomize tumors into

low- and high-grade groups [13]. This strongly suggests

the presence of clear molecular differences between

tumors of different grades. To test this hypothesis, we

surveyed the serous ovarian cancer transcriptome and

identified genes associated with well, moderately, and

poorly differentiated tumors as established by the FIGO

and Silverberg systems. We assessed the association of

these genes with patient survival and considered their

involvement with known biomolecular pathways.

Materials and Methods

Patient cohort

Raw microarray data and patient-level annotation from

multiple datasets were used [14–17]. Raw data were

assessed for distributional homogeneity. Redundant sam-

ples were identified by comparing raw array data (CEL

files) across datasets and were excluded from the study.

In addition, the large The Cancer Genome Atlas (TCGA)

dataset [18] was not included in this study as it did not

annotate which grading system was used, and the project

spanned several years of reporting, hence it was likely that

both grading systems were used at some centers. The

remaining raw data were then loaded into R statistical

environment (v2.15.3) using the affy package (v1.36.1).

Probes were remapped to Entrez Gene IDs using the fol-

lowing packages: hgu95av2hsentrezgcdf v16.0.0, hgu133-

plus2hsentrezgcdf v16.0.0, hgu133ahsentrezgcdf v16.0.0.

Data were preprocessed using the RMA algorithm [19]

and associated with published patient annotation, includ-

ing grade, primary tumor site, stage, survival status, and

survival time. Patients that underwent neoadjuvant treat-

ment prior to surgery were excluded from this analysis. A

total of four datasets were employed: for each, the num-

ber of patients included, number of genes evaluated, and

other clinical covariates are provided in Table 1. To

increase statistical power, we combined datasets based on

their grading systems (i.e., datasets using the FIGO grad-

ing system were pooled, as were datasets using the Silver-

berg grading system). We first applied a Y-chromosome-

based filtering method to remove probes which displayed

intensity levels similar to or below a threshold. Intensity

levels detected for chromosome Y-specific probes in

female samples are deemed to be background noise [20].

To further minimize or remove nonbiological technical

variations, such as batch effects caused by combining

multiple datasets together, we applied ComBat using R

package (sva_v3.4.0) to the pooled mRNA abundance lev-

els [21]; the sources of data were treated as batch effects

and tumor grade was used as a covariate in ComBat.

Differential expression analysis

To identify which genes were differentially expressed between

different tumor grades, we analyzed the gene expression val-

ues across patient groups using a per-gene multivariate linear

model. The expression levels were modeled as a function of

tumor grades and the dataset of origin as:

Yi¼Ai;0þAi;1�IðGrade¼2Þ
þAi;2�IðGrade¼3ÞþAi;3� IðDataset¼2Þþei

(1)
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where Yi is the normalized mRNA abundance levels for

the ith gene, Ai,0 represents the baseline expression of

the ith gene, Ai,1 and Ai,2 are the coefficients of tumor

grade for the ith gene, Grade is an indicator where

0/1 represents the different grades, Ai,3 is the coeffi-

cient of dataset for the ith gene, Dataset is an indica-

tor where 1/2 indicates the different datasets, ei is an

error term.

To test whether the difference in mRNA abundance

levels between different tumor grade groups was statisti-

cally significant from zero, a model-based t-test was used

(mRNA abundance levels from patients with grade 1

tumors were compared to those with grade 2 tumors and

so forth). P-values were adjusted for multiple testing

using false-discovery rate (FDR) correction [22]. Coeffi-

cients representing the change in mRNA abundance levels

between each comparison were adjusted with an empirical

Bayes moderation of the standard error [23]. Genes below

a FDR threshold of 10% (i.e., Padjusted < 0.1) were

deemed significant; this threshold was chosen as the num-

ber of differentially expressed genes started to plateau

across all group comparisons at thresholds lower than this

value.

Data visualization

Unsupervised machine learning was performed using divi-

sive hierarchical clustering with the Divisive Analysis

Clustering (DIANA) algorithm and Pearson’s correlation

as a similarity metric. We performed variance filtering on

mRNA abundance levels with a threshold of 1. This filter-

ing removed genes that were not differentially expressed.

This analysis used the cluster (v1.14.4), lattice (v0.20-15),

and latticeExtra (v0.6-24) packages from R statistical envi-

ronment (v2.15.3). Venn diagrams were created using the

VennDiagram package (v1.6.0) [24]. An FDR-adjusted

P-value (Padjusted) sensitivity plot was generated by plot-

ting the number of genes altered at every Padjusted value

cut-off, with P-value thresholds spanning the range from

Padjusted = 1 9 10�6 to Padjusted = 0.5.

Pathway analysis

To identify pathways or biological functions associated

with differentially expressed genes, we conducted pathway

analysis using GoMiner [25] and Gene Ontology (GO)

annotation [26]. A relaxed Padjusted cut-off of 0.25 was

selected to obtain a list of genes that showed differential

mRNA abundances between tumors of different grades.

GoMiner analysis was run on the 2011-01 database built

with the following settings: 10% FDR threshold, 1000

randomizations, all human databases and look-up

options, the smallest category size for category statistics of

5 and all GO evidence codes, and ontologies.

Survival analysis

To characterize the clinical utility of genes showing differ-

ential expression across tumors from different grades, we

explored the prognostic ability of these genes to accu-

rately predict patient survival. Patients were median-

dichotomized based on mRNA abundance levels of those

genes determined to be differentially expressed between

tumor grades. Median dichotomization was performed

separately for each dataset and a Cox proportional haz-

ards model adjusted for tumor stage was then fit on the

resulting data [27]. Patient survival was modeled as a

function of this group assignment. Survival analysis was

conducted using the survival package (v2.37-4) in the R

statistical environment.

Results

Global patterns of mRNA abundance

Four separate datasets of serous ovarian cancer were com-

piled, providing abundance measurements for 12,080

genes across 334 patients. Each dataset was normalized

independently and then merged into a single dataset. Sur-

rogate-Variable Analysis using the ComBat algorithm was

performed to reduce batch effects (Fig. S1A and B show

Table 1. A list of datasets used in this analysis as well as their summary clinical information.

Datasets

Number

of patients

Number

of genes

Median survival

(years)

Median

age

Median

stage

Median

grade PMID Sources

Berchuck 11 12080 NA 52 I 2 15897565 http://data.cgt.duke.edu/clinicalcancerresearch

Bild 112 12080 2.83 59 III 2 16273092 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE3149

Denkert 68 12080 2.88 NA III 3 19294737 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE14764

Tothill 143 18989 2.42 59 III 3 18698038 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE9899
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strong dataset-specific effects prior to batch-effect

removal).

Hierarchical clustering of mRNA abundance levels

using DIANA revealed minimal molecular differences

based on clinical and technical covariates (grade, using

the FIGO (Fig. 1A) or Silverberg (Fig. 1B) grading

systems, stage, and dataset). This clustering effect was

quantified using the adjusted rand index (ARI; no vari-

able was deemed significant [all variables produced an

ARI close to 0]). This confirms that mRNA abundances

varied substantially even among tumors of the same his-

tologic stage and grade [28].

Genes associated with tumor grade

We then sought to determine the number of genes differ-

entially expressed between tumors of different grades.

Since two different grading systems were used, we

analyzed the FIGO and Silverberg grading systems sepa-

rately using general linear modeling with multiple-testing

correction. Surprisingly, very few genes were differentially

expressed between FIGO grade 2 and 3 tumors, suggest-

ing that these two groups are essentially indistinguishable.

By contrast, FIGO grade 3 and 2 tumors both differed

substantially from grade 1 tumors (Fig. 2A). A slightly

larger number of genes were differentially expressed

between grade 3 and 1 tumors than between grade 2 and

1 tumors (75 vs. 69, respectively, at a 10% FDR cut-off);

these findings were threshold independent. By contrast,

Silverberg grade 1, 2 and 3 tumors differed from one

another in all pair-wise combinations (Fig. 2B). These

results suggest that Silverberg grade 2 tumors (but not

FIGO grade 2 tumors) comprise a molecularly distinct

entity. Table S1 gives the gene-level results of our statisti-

cal modeling for all comparisons.

To determine whether this difference between grading

systems held true at the level of individual genes, we

chose a 10% FDR cut-off to identify differentially

(A) (B)

Figure 1. mRNA abundance levels of high-variance genes. Hierarchical clustering of mRNA abundance levels from ovarian cancer tumors shows

that mRNA abundances are neither associated with clinical covariates (grade, stage) nor dataset of origin. (A) Datasets graded using the FIGO

system (adjusted rand index [ARI] for grade, �0.006 [Grade]; dataset, �0.036; stage, 0.013). (B) Datasets graded using the Silverberg system (ARI

for grade, �0.006; dataset, 0.024; stage, �0.015).

(A) (B)

Figure 2. Adjusted P-value sensitivity analysis. The number of genes that showed differential abundance levels between each grade group

comparison was calculated for different adjusted P-value cut-offs (Padjusted) for both the (A) International Federation of Gynecology and Obstetrics

(FIGO) and (B) Silverberg grading systems.
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expressed genes. For FIGO graded tumors (Fig. 3A), there

were no differentially expressed genes between grades 2

and 3, even at this relaxed significance threshold. By con-

trast, both grade 2 and 3 tumors showed similar differ-

ences relative to grade 1 tumors (57 genes in common).

Alternatively, tumors graded using the Silverberg system

(Fig. 3B) showed a more progressive pattern, where all

genes differing between grades 1 and 2 also differed

between grades 1 and 3. These data are consistent with

the idea that FIGO grades 2 and 3 are molecularly indis-

tinguishable, whereas Silverberg grading represents a spec-

trum of states, and that the two systems are characterized

by distinct molecular features (Fig. 3C). Furthermore, we

found that grade was not associated with molecular sub-

type (Tothill dataset; P = 0.368; Pearson’s Chi-square

test).

Pathway-level differences associated with
tumor grade

To identify the biological pathways altered by or govern-

ing the morphological differences between tumors of

different grades, we performed GoMiner analysis on dif-

ferentially abundant genes at a relaxed FDR cut-off of

25%. At a 1% FDR cut-off, 53 and 137 GO terms were

significantly enriched across the FIGO and Silverberg

datasets, respectively (Fig. 4A). As nine GO terms were

significantly enriched across all comparisons, they were

further explored (Fig. 4B). These terms include key can-

cer-related processes associated with rapid cell division,

including cell cycle regulation and cytoskeletal and spin-

dle organization.

Differentially expressed genes predict
survival

Previously, it was shown that grade did not provide addi-

tional prognostic ability independent of cell type or stage.

To examine whether this was true of our data, we per-

formed survival analysis for each dataset, using grade as

the grouping variable (Fig. S2A, S2B, and S2C for Bild,

Denkert, and Tothill datasets, respectively). We found

that grade did not provide sufficient prognostic ability. As

such, we chose to examine whether genes differentially

(A)

(C)

(B)

Figure 3. Overlap of genes with differential abundance between different grades of tumors. Differentially abundant genes between each pair of

grades were compared for each of the (A) International Federation of Gynecology and Obstetrics (FIGO) and (B) Silverberg grading systems, and

(C) across the entire dataset. (A) For FIGO graded tumors, no genes were differentially expressed between grade 2 and 3 tumors at a threshold of

10% false-discovery rate (FDR) while substantial overlap was observed between grade 3 versus 1 tumors and grade 2 versus 1 tumors. (B) A

progressive pattern was observed for the Silverberg grading system. (C) Distinct groups of differentially abundant genes (at a FDR threshold of

25%) were observed, dependent on grading system used.
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expressed between tumors of different grades carry signifi-

cant prognostic information. To test this effect, we mod-

eled overall survival (OS) as a function of mRNA

abundance levels. As described in the Materials and Meth-

ods section, patients were median-dichotomized to low

and high expression based on the mRNA abundance lev-

els of differentially expressed genes. A list of genes and

their stage-adjusted hazard ratios and Cox proportional

hazards model P-values and q-values (adjusted for multi-

ple testing using FDR) are listed in Table S1. Although

we did not observe enrichment for prognostic informa-

tion in these differentially expressed genes (Table S2), we

did identify six genes (APOBEC3C, C11orf16, C21orf2,

MUC5AC, SRD5A2, and TUBA4B) that showed consistent

prognostic abilities (Fig. S3).

Discussion

Low-grade serous tumors are uncommon, accounting for

less than 10% of ovarian serous carcinomas, and show

morphologic progression from cystadenoma/adenofibro-

ma to borderline serous tumor to micropapillary border-

line tumor and finally to invasive low-grade serous

carcinoma [29]. This histological sequence is mirrored by

progressive allelic imbalances: KRAS, BRAF, and ERBB2

mutations are identified in 2/3 of cases and p53 muta-

tions are rare. In contrast, high-grade serous carcinomas

frequently harbor p53 and BRCA mutations and lack the

characteristic mutations of their low-grade counterparts.

These tumors demonstrate a high level of chromosomal

instability even in early stage cases and the majority likely

arises from tubal intraepithelial carcinoma [30].

From a clinical perspective, patients with low-grade ser-

ous carcinoma are younger (median age at diagnosis 43

vs. 63 years) [31], but are more likely to manifest resis-

tance to standard chemotherapy regimens [32]. The bin-

ary low-/high-grade categories of the Malpica system are

effectively nominal categories reflecting these distinct bio-

logical entities rather than grades of the same tumor [11].

It has recently been questioned whether it is relevant to

subclassify high-grade serous carcinoma into moderately

and poorly differentiated categories.

In a study by Malpica, all Silverberg grade 1 and grade

3 tumors corresponded to low- and high grade, respec-

tively [11] while 82% of Silverberg grade 2 tumors were

high grade. The FIGO grading system was more heteroge-

neous: 97% of FIGO grade 1 was determined to be low

grade, while the remaining 3% (1 case) was high grade.

All FIGO grade 3 cases and 72% of FIGO grade 2 cases

were high grade. Thus, the moderate category in these

two systems seems to constitute a mix of high- and low-

grade cases.

Stratification according to grade should reflect thera-

peutic, prognostic, or biological differences within a nom-

inal diagnostic category. Previous study did not

demonstrate prognostic differences between Silverberg

grade 2 and grade 3 serous carcinomas [33]. It has also

been suggested that further stratification of high-grade

serous carcinomas into FIGO moderately and poorly dif-

ferentiated subsets is not clinically relevant based on simi-

lar TP53 mutation results and drug sensitivities [33].

Vang and colleagues recommended additional molecular

studies comparing morphologic subdivision within the

high-grade category of serous carcinoma [10].

(A)

(B)

Figure 4. Overlap of enriched GO terms between different grading

systems and different tumor grade comparisons. (A) Genes that

showed differential expression at a relaxed P-value threshold of 25%

false-discovery rate (FDR) were used for GoMiner analyses. GO terms

were then filtered based on their FDR values (1% FDR threshold) and

these terms were compared across different grade comparisons. (B) A

total of nine GO terms were commonly enriched across all

comparisons. Gray shaded boxes represent FDR values (darker shade

for increased statistical significance); circle size represents log2
enrichment.
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Our current work indicates that there is no significant

difference in mRNA profiles of FIGO grade 2 and grade 3

ovarian serous carcinomas. In addition we have demon-

strated distinct molecular characteristics between tumors

graded with FIGO and Silverberg systems. Tumors graded

with the FIGO system showed consistent results with

what we would expect from a two-tier system, demon-

strating greater molecular similarity between grade 2 and

3 tumors and more differences with grade 1 tumors.

Results were different for Silverberg graded tumors, where

similar numbers of molecular changes were observed

between each pair of tumor grades. This discrepancy

could in part be explained by the difference in the criteria

used for grading. The FIGO grading system is based pri-

marily on the percentage of solid cell architecture,

whereas Silverberg system is based on the scores of three

components: architecture, degree of nuclear atypia, and

mitotic index [10]. It remains possible that the more

stringent scoring metric employed by the Silverberg sys-

tem produced more biologically relevant results.

A similar analysis has previously been performed by

Meingold-Heerlien and colleagues; 12,500 genes were pro-

filed across tumors from 52 patients, including 44 with

serous carcinomas (G1, n = 7; G2, n = 17; G3, n = 20),

although they did not specify which system was used for

grading [34]. They identified a conspicuous distinction

between low malignant potential (LMP)/G1 tumors and

G2/G3 tumors. Statistical analysis found few differences

between LMP and G1 tumors, but many more between

G2 and G3, and large differences between LMP/G1 and

G2/G3.

The Tothill dataset analyzed in this study was initially

used to identify novel molecular subtypes of high-grade

ovarian serous carcinoma [16]. Tothill and colleagues

identified unique molecular subtypes of high-grade serous

carcinoma—C1 (high stromal response), C2 (high

immune signature), C3 (high protein kinase expression),

C4 (low stromal response), C5 (mesenchymal, low

immune signature) subtypes, and C6 (low grade endo-

metrioid). These molecular subtypes were randomly dis-

tributed between grade 2 and 3 tumors and univariate

analysis showed significant differences in both progres-

sion-free survival (PFS) and OS. Multivariate analysis

showed that the C1 group had a significantly worse out-

come even when considering other known prognostic

indicators such as stage, grade, age, and residual disease

(PFS, P = 0.012; OS, P = 0.034) compared to the other

subsets.

In the current study, no central pathologic review across

the datasets was performed, hence some differences that we

observed might potentially be due to misclassification of

tumor grades; additional studies in consistent cohorts are

needed to further validate the results. Furthermore, work

on the identification of molecular signatures of ovarian

cancer as well as characterization of single nucleotide

variants (SNVs) and copy number aberrations (CNAs)

will also be a valuable follow-up to the current study. As

well, it will add great value if multiple grading systems

are used within a single dataset and molecular differences

assessed between the different systems. Nevertheless, we

have shown in this study that FIGO-graded tumors exhib-

ited great molecular similarities between grade 2 and 3

tumors, whereas Silverberg graded tumors demonstrate

more diverse profiles between differentially graded

tumors. Histologic grade carries clinical utility but more

studies are needed to understand the biological processes

in tumors; nevertheless, these data suggest that a two-tier

grading system may be a preferred scheme for grading

ovarian carcinoma of the serous subtype. This issue

certainly merits additional exploration.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. mRNA abundance levels prior to ComBat

adjustment. mRNA abundance profiles were examined

using DIANA clustering for each of the (A) FIGO and

(B) Silverberg grading systems. Before ComBat, mRNA

abundance levels in FIGO-graded tumors did not demon-

strate strong dataset-specific bias (adjusted Rand

index = �0.03), but expression levels in Silverberg graded

tumors showed distinct patterns between the two datasets

(ARI = 1).

Figure S2. Overall survival outcome. Difference in overall

survival between low-grade (grade 1) and high-grade

(grade 2 and 3) ovarian carcinoma patients was margin-

ally significant for the (A) Bild dataset but was insignifi-

cant for both the (B) Denkert and (C) Tothill datasets,

suggesting that histologic grade as a clinical covariate has

minimal prognostic ability.

Figure S3. Gene-specific survival outcome over time.

Genes that showed consistent differential expression

between grade 2 and 1 tumors and grade 3 and 1 tumors

were assessed for their prognostic ability. Patients were

median-dichotomized into low- and high-expression

groups based on the mRNA abundance levels of these

genes. Hazard ratio (HR) indicates the ratio of hazard

rates between patients with high expression level of a

given gene and those with a low expression level. The

numbers in the bracket following HR denote the 95%

confidence interval for the hazard ratio, which are derived

from the standard deviation of the regression model.

Genes with P ≤ 0.05 (Wald test) demonstrate strong

prognostic ability.

Figure S4. Power calculation in current cohort. Power

calculation for effect sizes ranging from 0 to 3.2 for both

FIGO (left) and Silverberg (right) graded tumors. Dashed

horizontal line represents a threshold of 80% power.

Table S1. A list of differentially expressed genes between

different tumor grades and their prognostic abilities.

Table S2. Proportion of significantly prognostic genes

across different comparison groups.

Table S3. Sample summary broken down by grading sys-

tem and different tumor grades and the statistical power

for each comparison. In datasets graded using the FIGO

system, we have 80% power to detect an effect size of

2.34 for grade 3 versus grade 1 comparison, 2.35 for

grade 2 versus grade 1 comparison, and 0.90 for grade 3

versus grade 2 comparison. Similarly, in datasets graded

using the Silverberg system, we have 80% power to detect

an effect size of 2.22 for grade 3 versus grade 1 compari-

son, 2.31 for grade 2 versus grade 1 comparison, and 0.71

for grade 3 versus grade 2 comparison.
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