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EPIGRAPH

J’ai ét́e nourri aux lettres d̀es mon enfance, et parce qu’on me persuadait que, par leur moyen,

on pouvait acqúerir une connaissance claire et assurée de tout ce qui est utilèa la vie, j’avais un

extr̂eme d́esir de les apprendre. Mais, sitôt que j’eus achev́e tout ce cours d’études, au bout

duquel on a coutume d’être reçu au rang des doctes, je changeai entièrement d’opinion. Car je

me trouvais embarrassé de tant de doutes et d’erreurs, qu’il me semblait n’avoir fait autre profit,

en t̂achant de m’instruire, sinon que j’avais découvert de plus en plus mon ignorance.

—Reńe Descartes inDiscours de la Ḿethode, 1637

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 1
1.1 Definitions and basic concepts . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problems and research aims . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dissertation structure . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Micromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 The Landau-Lifshitz-Gilbert equation . . . . . . . . . . . . . .. . 7
2.2 Effective fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Crystalline anisotropy field . . . . . . . . . . . . . . . . . . 19
2.2.2 Exchange interaction field . . . . . . . . . . . . . . . . . . 19

2.3 Magnetostatic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Shape anisotropy . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Space and time discretization . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Computing effective fields at mesh nodes . . . . . . . . . . 26
2.4.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3 Characterization of soft nano-granular ferromagnetic materials . . . . . . 33
3.1 Characterization of magnetic materials with micromagnetic simulations 34

3.1.1 The hysteresis loop . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 The permeability tensor . . . . . . . . . . . . . . . . . . . 39

3.2 Ferromagnetic nano-granular materials . . . . . . . . . . . . .. . . 49
3.3 Micromagnetic simulations and anisotropy averaging inexchange-

coupled nano-granular materials . . . . . . . . . . . . . . . . . . . 52
3.3.1 Summing uniaxial anisotropies: a vectorial interpretation . . 53

vi



3.3.2 Effective anisotropy and exchange coupling . . . . . . . .. 56
3.4 Directional probability on the circle . . . . . . . . . . . . . . .. . 63
3.5Generalized Stoner-Wohlfarth model for exchange-coupled ferromag-

netic grains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 4 Coupling micromagnetism and electrodynamics: modeling eddy currents
in micromagnetic simulations . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1 Eddy currents and the Maxwell equations . . . . . . . . . . . . . .82
4.2 State of the art of eddy currents modeling in micromagnetic simulations 92
4.3 Bounds for the validity of the static and quasistatic Maxwell equations 94
4.4 Coupling the Landau-Lifshitz-Gilbert and magnetoquasistatic Maxwell

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 An integral equation solver for the Maxwell equations . .. . . . . . 104
4.6 A test problem for the micromagnetic-eddy currents solver . . . . . 113
4.7 A finite element solver for the Maxwell equations . . . . . . .. . . 122
4.8 Example of eddy currents effect . . . . . . . . . . . . . . . . . . . 132

Appendix A Analytical solution for the eddy currents test problem . . . . . . . . . . . 135

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

vii



LIST OF FIGURES

Figure 1.1: Magnetic domains in a ferromagnet. Arrows indicate the direction of mag-
netization in each domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2: The electronic spins at atomic sites in a ferromagnetic crystal tend to align
parallel to each other due to the Heisenberg interaction. . .. . . . . . . . . 2

Figure 2.1: (a) Generalized coordinateθ corresponding to the angle between the~B and
~m vectors. (b) The rotation of~m by an angle∆θ also implies a rotation of~x,
the particle’s position vector. . . . . . . . . . . . . . . . . . . . . . . .. . . 11

Figure 2.2: The shape anisotropy in an ellipsoidal magneticparticle is equivalent to a
uniaxial anisotropy vector~Ksh which points in the preferred magnetization
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.1: Hysteresis loop for a magnetic particle subjected to an applied magnetic
field oriented at 45 degrees from the particle’s uniaxial anisotropy axis. . . 35

Figure 3.2: Stoner-Wohlfarth hysteresis model for a singleparticle with uniaxial anisotropy
vector~K subjected to an applied magnetic field~H. . . . . . . . . . . . . . 36

Figure 3.3: Hysteresis loops computed with the Stoner-Wohlfarth model for a particle
with uniaxial anisotropy oriented at different anglesθ with respect to the
applied field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.4: Hysteresis loops computed through a micromagnetic simulation for a sys-
tem of 1000 particles. (a) No inter-particle interactions are considered. (b)
Exchange and magnetostatic interactions between particles are taken into
account. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.5: Equilibrium magnetization when subjected to a magnetic field alongzand a
uniaxial anisotropy alongx. . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.6: Applied magnetic field and magnetization response for the computation of
the permeability tensor of a single spherical ferromagnetic particle. . . . . 48

Figure 3.7: Frequency dependent susceptibility tensor components obtained from mi-
cromagnetic simulations for a single ferromagnetic sphere. . . . . . . . . . 49

Figure 3.8: Vectorial interpretation of uniaxial anisotropy averaging. . . . . . . . . . . 54
Figure 3.9: Anisotropy averaging for ferromagnetic nano particles and definition of ef-

fective particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 3.10: Hysteresis loops for a system of exchange coupled particles with effective

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 3.11: The mean direction of two unit vectors is not adequately determined by the

arithmetic mean of the angles that they make with the positivex axis. . . . 63
Figure 3.12: Probability density function of the von Mises distribution for a mean direc-

tion θ0 = 0 and a concentration parameter value of (a)k= 0, (b)k= 0.4 and
(c) k= 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



Figure 3.13: Hystersis loops computed for a 500×500×80 nm thin film consisting of
21,000 particles with uniaxial anisotropies characterized by a von Mises
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 3.14: Extractedχm,xx component of the magnetic susceptibility tensor for the three
nano-granular materials with random anisotropy distributions corresponding
to k= 0, k= 1 andk= 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 3.15: Comparison of hysteresis loops for an ensemble of particles with randomly
oriented anisotropy following a uniform distribution on the unit sphere com-
puted by a micromagnetic simulation with 1000 particles andthe probabilis-
tic Stoner-Wohlfarth hysteresis model. . . . . . . . . . . . . . . . .. . . . 72

Figure 3.16: Stoner-Wohlfarth model with exchange coupling. The unprimed particle is
the particle under consideration, for which the energy minimum is sought.
The primed particle represents the probabilistic ensembleof particles to
which the unprimed particle is coupled. . . . . . . . . . . . . . . . . .. . 74

Figure 3.17: Comparison of hysteresis loops for an ensemble of particles with randomly
oriented anisotropy following a uniform distribution on the unit sphere com-
puted by a micromagnetic simulation with 1000 particles andthe probabilis-
tic Stoner-Wohlfarth hysteresis model. . . . . . . . . . . . . . . . .. . . . 78

Figure 4.1: A time-varying magnetic flux density~B in a conductive material with con-
ductivity σ induces a rotating electric field~E and a corresponding current
density~J, known as eddy currents . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.2: Two-dimensional representation of a three-dimensional domainΩ divided
into two domains,Ω1 andΩ2 which are separated by a surface C. . . . . . 89

Figure 4.3: Schematic illustration of the two coupled solvers for the coupled micromag-
netic and eddy currents problem . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 4.4: (a) Long ferromagnetic cylinder excited by a current-carrying solenoidal
coil. (b) Eddy currents~Jeddy induced inside the cylinder. . . . . . . . . . . 114

Figure 4.5: Plot of 4πχmmzas a function of frequency obtained from Eq. (3.22) with the
magnetic parameters chosen to obtainµr = 4. . . . . . . . . . . . . . . . . 118

Figure 4.6: Comparison of numerical and analytical results at three different time snap-
shots for the test problem used to validate the micromagnetic solver with
eddy currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 4.7: Magnetization responseMz vs. time at different radius values inside the
ferromagnetic cylinder for the case whereµr = 4. . . . . . . . . . . . . . . . 121

Figure 4.8: Cylinder test problem results for the finite element eddy currents solver . . . 131
Figure 4.9: Effects of eddy currents in the switching of a ferromagnetic nano-disk . . . 133

ix



LIST OF TABLES

Table 3.1: Residual exchange energy densities corresponding to the effective particles
for the different numbers of averaged particlesN of Fig. 3.10b. . . . . . . . 62

x



ACKNOWLEDGEMENTS

I would like to foremost thank my wife, Attieh, who gave me herlove and support

throughout my doctoral studies, somehow finding the strength to do that after having herself

just completed her own doctoral studies. Special thanks also go out to my parents, who always

encouraged me to pursue my interests and passions. Thank youto my research advisor, Pro-

fessor Vitaliy Lomakin, who believed in me and gave me almostcomplete freedom to pursue

my research interests, but yet was always available to provide guidance and insightful techni-

cal knowledge when problems arose. Thank you to my labmates,Majd Kuteifan, Sidi Fu, Iana

Volvach, Marco Menarini, Ruinan Chang, Marko Lubarda, Marco Escobar and Xueyang Wang

for creating an environment where stimulating technical discussions were complemented by just

great camaraderie. Thank you to the professors, students and staff of CMRR who organized

lectures by specialists in their field from around the world and who participated in the CMRR

research conferences where I had the opportunity to get acquainted with the different fields of

research being pursued at UC San Diego. Thank you to Professor Eric Fullerton and Sergio

Montoya, who gave me the opportunity to participate in theirwork with magnetic materials in

the laboratory and to validate micromagnetic simulation results with actual measurements, and

with whom I had many stimulating discussions.

Chapter 3, in part, is currently being prepared for submission for publication, Couture,

Simon; Lomakin, Vitaliy. The dissertation author was the primary investigator and author of this

material.

Chapter 4, in part, contains material that appears in Coupled Finite-Element Micromag-

netic - Integral Equation Electromagnetic Simulator for Modeling Magnetization-Eddy Currents

Dynamics, IEEE Trans. Magn., 2017, Couture, Simon; Chang, Ruinan; Volvach, Iana; Gon-

charov, Alexander; Lomakin, Vitaliy, as well as material that has been submitted for publication,

Modeling Eddy Currents in Micromagnetic Simulations: A Coupled Micromagnetic-Maxwell

Equations Solver Based on the Finite Element Method, 2018, Couture, Simon; Goncharov,

xi



Alexander; Lomakin, Vitaliy. The dissertation/thesis author was the primary investigator and

author of these papers.

xii



VITA

2009 B. Sc. in Electrical Engineering, University of Montreal, Montreal

2011 M. Sc. A. in Electrical Engineering, University of Montreal, Montreal

2018 Ph. D. in Electrical Engineering (Applied Physics), University of Califor-
nia San Diego

xiii



ABSTRACT OF THE DISSERTATION

High Frequency Electromagnetic Effects in Micromagnetic Simulations

by

Simon Archambault-Couture

Doctor of Philosophy in Electrical Engineering (Applied Physics)

University of California San Diego, 2018

Professor Vitaliy Lomakin, Chair

This work is concerned with the important connection that exists between micromag-

netism and high frequency electromagnetism. As micromagnetic solvers have become impor-

tant tools in the study and engineering of magnetic devices,and as these devices are increasingly

operated at high frequencies, it is important to understandboth how micromagnetic simulations

can be used in the modeling of magnetic materials for high-frequency applications and how

micromagnetic models can be impacted by high-frequency electromagnetic effects.

After an introduction to the theory behind micromagnetism and micromagnetic solvers,

the dissertation is divided into two main themes. The first one is the modeling and characteriza-

tion through micromagnetic simulations of ferromagnetic materials for high frequency applica-
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tions. A particular class of materials, namely ferromagnetic nano-granular materials, are studied

since they have important technological applications as soft magnetic materials which also ex-

hibit high saturation magnetizations and low electrical resistivities. The extraction of properties

such as the hysteresis loop and frequency dependent permeability tensor from micromagnetic

simulations is examined. Also, the anisotropy averaging mechanism responsible for the soft

magnetic properties of this class of materials is studied and some theoretical results are obtained

and presented, such as a derivation of the residual exchangeenergy between groups of exchange

coupled nano-particles and a generalized Stoner-Wohlfarth hysteresis model which accounts for

exchange interactions between ferromagnetic particles with random uniaxial anisotropies.

The second theme is the modeling of eddy currents in micromagnetic simulations. Eddy

currents, also known as Foucault currents, arise in conductive materials due to rapid variations

of the magnetic field and magnetization. A method coupling the Landau-Lifshitz-Gilbert equa-

tion of micromagnetics with the magnetoquasistatic Maxwell equations is presented. Based on

this method, two coupled micromagnetic-electromagnetic solvers are presented, one based on an

integral equation formulation, the other based on the finiteelement method. A test problem with

a known analytical solution is suggested and used to validate the implemented solvers. Also, re-

sults concerning the bounds of validity for the magnetostatic approximation to the Maxwell equa-

tions, in which case eddy currents are neglected, as well as for the magnetoquasistatic Maxwell

equations, where eddy currents are accounted for but electromagnetic wave propagation is ne-

glected, are given. It is found that the magnetoquasistaticapproximation is excellent for the vast

majority of micromagnetic simulations that are executed today.
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Chapter 1

Introduction

1.1 Definitions and basic concepts

Magnetic materials are omnipresent in modern technology. From their use in large scale

devices such as power grid transformers and electric car engines, to their dominant role in in-

formation recording technologies, mentioning in passing their use in microelectronics with in-

tegrated inductors, or their use in telecommunication devices such as RF circulators, it is clear

that many of the technologies that today’s society relies onrequire the use of magnetic materi-

als. Despite their widespread use and the fact that magneticmaterials have been known for a

long time — the first electric motors and transformers appeared at the beginning and end of the

19th century respectively [1, 2] while the first magnetic tape recorders were developed in the

1920’s [3] — they are still the subject of research interest.This is due to the existence of a vast

array of magnetic alloys and ways to prepare them which can dramatically alter their properties

but also to the complexity of the physical laws that govern magnetic phenomena. For instance,

the magnetization inside magnetic materials arranges itself in non-trivial way, often in so-called

magnetic domains of various shapes and sizes, as shown in Fig. 1.1.

Magnetic domains are the result of competing interactions such as the Heisenberg or ex-
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Figure 1.1: Magnetic domains in a ferromagnet. Arrows indicate the direction of magnetiza-
tion in each domain.

change interaction which favors a parallel alignment of electronic spins of neighboring atoms

in ferromagnetic crystals, as shown in Fig. 1.2, the crystalline anisotropy interaction where a

spin orientation along certain axes of a crystal lattice is favored, the magnetostrictive interaction

where magnetization tends to align based on the direction ofstrain in the material, or the mag-

netostatic interaction in which a magnetic field is producedwhich depends on the macroscopic

shape of a magnetic sample and the magnetization’s arrangement within that sample.

Figure 1.2: The electronic spins at atomic sites in a ferromagnetic crystal tend to align parallel
to each other due to the Heisenberg interaction.

An important tool in the study of magnetic materials is the use of computers to simu-

late their behavior. This subfield of magnetism has come to beknown as micromagnetism and

the concepts that led to its foundation were summarized and arranged in the form of modern

micromagnetic theory in a 1963 monograph by Brown [4]. Micromagnetism is based on the

idea that, while the origins of magnetism can be understood in terms of electronic spin at the
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atomic level, much understanding of magnetic materials canbe gained from considering not

microscopic magnetization, that is magnetization at the atomic scale, but rather a macroscopic

magnetization consisting of the spatially averaged microscopic magnetization. This is analogous

to what is done in electromagnetism, where one customarily works with macroscopic, i.e. spa-

tially averaged versions of the electromagnetic fields, andwhere the microscopic properties of

materials are taken into account by parameters such as the material permittivity and permeability

[5, 6]. In fact, in the framework of macroscopic electromagnetism, the magnetization quantity

that appears in the equations corresponds to the macroscopic magnetization of micromagnetism.

Using the approach of micromagnetism, the detail of what happens at the atomic level

is lost, however the averaged magnetization, which is now treated as a continuous field quantity,

can still resolve features of the magnetization such as magnetic domains. In many cases, this is

all that is needed in order to study the properties of a magnetic material. This is especially true

for ferromagnetic materials, where the exchange interaction forces magnetization to be uniform

within regions of up to a few nanometers in size.

The rapid increase in the computational power available to researchers which occured in

the last few decades combined with advances in numerical algorithms and methods has enabled

micromagnetic studies of increasingly large and complex problems. For instance, in a doctoral

dissertation published in 1997, Yang [7] describes the simulation of an array of 16 ellipsoid parti-

cles, each discretized using about 4400 tetrahedral element, for a total of about 70,000 elements

using a Cray T3D supercomputer with 256 processors. Today, micromagnetic simulations with

10 millions tetrahedral elements are routinely run on desktop computers while problems with

hundreds of millions of elements can be solved by more specialized hardware. As micromag-

netic solvers gained the ability to handle larger problems,devices such as hard-disk recording

heads or magnetic tunnel junctions, which are used in emerging memory technologies [8], were

micromagnetically modeled for the purpose of engineering and optimizing them.
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1.2 Problems and research aims

Micromagnetism has emerged as a successful technique in thestudy and design of mag-

netic materials and devices. As larger problems can now be considered, a challenge within

micromagnetism is to identify new ways in which it can be used, new structures that can be stud-

ied, or new phenomena that can be incorporated in the model, which perhaps were not achievable

previously due to limitations in computing ressources and in the efficiency of solvers. This is

the overarching question that guided the present work.

An interesting avenue of investigation appears when micromagnetism is considered from

the point of view of electromagnetism. Magnetism is of course intimately related to electromag-

netism since the macroscopic magnetization appears explicitly in the Maxwell equations. De-

spite this, and perhaps not surprisingly, micromagnetic studies usually focus on the physics of

magnetism itself, aiming at better understanding the magnetization distribution within magnetic

devices, both in terms of the static distribution at equilibrium and magnetizatin dynamics when

the system is excited by some external source, while taking into account various magnetic in-

teractions such as the ones previously mentioned but also other, sometimes newly discovered,

interactions such as electronic spin transfer [9], the Dzyaloshinsky-Moriya interaction [10] or

the different mechanisms which are currently being put forward to explain all-optical switching

in magnetic materials [11]. By contrast, from the point of view of electromagnetism, knowledge

of the magnetization arrangement inside a magnetic material is not an end in itself but rather is

regarded as a response to electromagnetic fields and the focus is placed on how the magnetiza-

tion and the fields interact together. Electromagnetic theory usually relies on the definition of a

material’s permeability to characterize its magnetic response. While linear permeability models

are adequate in many situations and various more refined models have been used to deal with

more complicated aspects of magnetic materials such as hysteresis and non-linearity, very few

electromagnetism practitioners have looked at micromagnetism as a tool to better characterize a
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magnetic material in terms of its interaction with electromagnetic fields. One of the aims of the

present work was therefore to examine to which extent micromagnetic simulations can be used

to characterize a magnetic material from the point of view ofmacroscopic electromagnetism.

Whereas micromagnetism has not been fully exploited in the study of electromagnetism,

the same can be said of electromagnetism from the perspective of micromagnetism. Histori-

cally, micromagnetic studies have considered only the static Maxwell equations. This is done

through the magnetostatic interaction, where the magneticfield produced by the magnetization

distribution is taken into account. In so doing however, allelectrodynamic effects are effectively

neglected. The rationale for this assumption has been that the small size of simulated structures

allows the propagation time of electromagnetic wave through the structure, which is determined

by the propagation speed corresponding to the speed of lightand the size of the structure, to be

much shorter than the characteristic time of magnetizationdynamics. An aim of the present re-

search was to re-examine this assumption and study electrodynamic effects in micromagnetism.

1.3 Dissertation structure

The dissertation is organized into three main chapters: chapters 2, 3 and 4. In chapter

2, the foundations of micromagnetism are presented. The goal of this chapter is to provide the

reader with a basic understanding of the physics of magnetism and micromagnetic modeling

so as to set up the discussions in subsequent chapters. The formulation on which the FastMag

micromagnetic solver is based, which was used for the present work, is presented. However,

details of the implementation such as, for example, how the computation of certain integrals

is hardware-accelerated using graphic processing units (GPU) are not given and the reader is

instead referred to the relevant publications.

In chapter 3, a particular class of magnetic material consisting of ferromagnetic nano-

grains in a dielectric host medium is considered. This classof material has important practical
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applications such as in integrated inductors due to their high permeability, low losses and ca-

pability to operate at high frequencies. As an example of howmicromagnetism can be used to

characterize magnetic materials in terms of their electromagnetic properties, the hysteresis loop

and high frequency permeability tensor of these materials are studied using micromagnetic sim-

ulations. The high permeability of this class of materials is due to anisotropy averaging among

neighboring, exchange coupled grains. Some results relating to this averaging process were ob-

tained and are presented in this chapter. These include the averaging of groups of nano-particles

into so-called effective particles as well as a generalizedStoner-Wohlfarth model for exchange

coupled particles.

Chapter 4 couples micromagnetism with Maxwell’s equations to account for the dynamic

nature of electromagnetic fields. It examines the validity of the static approximation of the

Maxwell equations in micromagnetic simulations. It is found that in some cases, the dynamic

Maxwell equations must be considered. Whereas it is found that, at least for the time being, the

full Maxwell equations are usually not required in micromagnetic simulations, the quasistatic

Maxwell equations are found to be an adequate middle ground which allows the modeling of

the eddy currents effect. The limits of validity of these different approximations are discussed.

The rest of the chapter is devoted to the coupling of the quasistatic Maxwell equations with the

micromagnetic model. Formulations based on both integral equations and the finite element

method are presented. The effects of eddy currents in micromagnetic simulations are discussed

as well as the performance of the different solution methods.
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Chapter 2

Micromagnetism

In this chapter, the foundations of micromagnetic simulations are presented. In section

2.1, the Landau-Lifshitz-Gilbert equation is introduced and a justification for it is given based on

the Lagrangian formalism. Section 2.2 introduces the concept of effective fields and expressions

are given for the effective fields for the exchange interaction and uniaxial crystalline anisotropy.

In section 2.3, the magnetostatic field is seen to be induced by the magnetization distribution in

the magnetic material and its computation by solving the static Maxwell equations is discussed.

The concept of shape anisotropy, closely related to the magnetostatic field, is also introduced. In

section 2.4, the space and time discretization schemes usedto compute a numerical solution to

the Landau-Lifshitz-Gilbert equation are presented.

2.1 The Landau-Lifshitz-Gilbert equation

The governing equation of micromagnetism is the Landau-Lifshitz-Gilbert equation. It is

essentially an equation for the conservation of angular momentum applied to a charged particle,

more specifically the spinning electron. Lets first considerthe origin of this equation for a system

without damping using the Lagrangian formalism of classical mechanics.

Consider a particle with massmp, chargeq and moving with a velocity~v subjected to a
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magnetic field~B and an electric field~E. Then the Lorentz force acting on this particle is

~F = q
(

~E+~v×~B
)

. (2.1)

This force can be derived from the generalized or velocity-dependent potential [12]

U = qφ−q~A ·~v (2.2)

whereΦ is the electric scalar potential and~A is the magnetic vector potential. To show this, first

consider the Maxwell equations

∇×~E =−∂~B
∂t

(2.3a)

∇× ~H =
∂~D
∂t

+ ~J (2.3b)

∇ ·~D = ρ (2.3c)

∇ ·~B= 0 . (2.3d)

Because of Eq. (2.3d),~B can be written as the curl of some vector field. The magnetic vector

potential is defined such that~B= ∇×~A. Therefore, Eq. (2.3a) can be written as

∇×
(

~E+
∂A
∂t

)

= 0 . (2.4)

Since any irrotational vector field can be written as the gradient of some scalar function, the

electric scalar potentialΦ is introduced such that

~E+
∂A
∂t

=−∇Φ . (2.5)

To show that the Lorentz force can be derived from the potential of Eq. (2.2), consider cartesian

8



coordinates. Then, according to Lagrange formalism theith component of the force must be

given by

Fi =−∂U
∂xi

+
d
dt

(

∂U
∂ẋi

)

(2.6)

wherexi is theith cartesian coordinate of the particle and ˙xi ≡ ∂xi/∂t is its time derivative, also

corresponding tovi, theith component of its velocity. Using Eq. (2.2), this becomes

Fi = q
3

∑
j=1

v j
∂A j

∂xi
−q

∂Φ
∂xi

−q
dAi

dt
. (2.7)

Using the chain rule, the time derivative ofAi can be written in terms of partial derivatives as

dAi

dt
=

∂Ai

∂t
+

3

∑
j=1

∂Ai

∂x j
ẋ j (2.8)

Writing ẋ j = v j and inserting in Eq. (2.7) gives

Fi = q
3

∑
j=1

v j

[

∂A j

∂xi
− ∂Ai

∂x j

]

−q
∂Φ
∂xi

−q
∂Ai

∂t
. (2.9)

It can be seen that this is equivalent to

Fi = q
3

∑
j=1

v j

3

∑
k,m,n=1

[

εi jkεmnk
∂An

∂xm

]

−q
∂Φ
∂xi

−q
∂Ai

∂t
(2.10)

whereεi jk is the Levi-Civita symbol. Eq. (2.10) can be written as

Fi = q
3

∑
j=1

v j

3

∑
k=1

εi jk

[

∇×~A
]

k
−q

∂Φ
∂xi

−q
∂Ai

∂t
(2.11)

and using~B= ∇×~A, this becomes

Fi = q
[

~v×~B
]

i
−q

∂Φ
∂xi

−q
∂Ai

∂t
. (2.12)
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Finally, from Eq. (2.5), the two last terms are seen to correspond to theith component of the~E

field so that

Fi = q
(

Ei +
[

~v×~B
]

i

)

(2.13)

which is the Lorentz force Eq. (2.1).

Assuming that the~B field is uniform around the particle, the magnetic vector potential

can be taken as

~A=
1
2
~B×~x (2.14)

where~x is the position vector of the particle. It is easily verified that~B= ∇×~A with ~A given by

Eq. (2.14). With this, the generalized potential of Eq. (2.2) is given by

U = qΦ−q

(

1
2
~B×~x

)

·~v= qΦ−
(

1
2
~x×q~v

)

·~B . (2.15)

The quantity1
2~x×q~v is by definition the magnetic moment~massociated with the particle. There-

fore the generalized potential can be written as

U = qΦ−~m·~B . (2.16)

Now consider as a generalized coordinate in the context of Lagrange formalism the angle

θ that the magnetic moment~m makes with the field~B. A change in this generalized coordinate

θ can be regarded as a rotation of the magnetic moment~maroundn̂, an axis perpendicular to the

plane defined by~m and~B, as shown in Fig. 2.1a. The Lagrangian for the particle is

L = T −U (2.17)

whereT = 1
2mp|~v|2 is the particle’s kinetic energy andU is the potential of Eq. (2.16). The

10



Lagrange equation of motion for the generalized coordinateθ is

d
dt

(

∂L

∂θ̇

)

=
∂L
∂θ

(2.18)

whereθ̇ denotes the time derivative ofθ.

~B

n̂

θ

~m

(a)

n̂

~x(θ)

~x(θ+∆θ)

∆θ

(b)

Figure 2.1: (a) Generalized coordinateθ corresponding to the angle between the~B and~m
vectors. (b) The rotation of~mby an angle∆θ also implies a rotation of~x, the particle’s position
vector.

At this point, the potentialU is written in terms ofθ. Also, while a particle with velocity

~v is being considered, what is really the object of the presentdiscussion is the spinning electron,

which classically can be thought of as a spinning body with a finite size. In this picture, the

charged particle with velocity~v that is considered here would be a point of this spinning body.

Since we are only concerned with the electron’s spin and not atranslation movement, and since

the electric scalar potentialΦ only depends on translation movements and not on the spin, the

termqΦ in the potential of Eq. (2.16) can be neglected. Therefore the potentialU of Eq. (2.16)

can be written as

U =−|~m||~B|cosθ . (2.19)

Lets evaluate the left-hand side of the Lagrange equation Eq. (2.18). The quantity inside
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parentheses corresponds to
∂L

∂θ̇
=

∂T

∂θ̇
− ∂U

∂θ̇
(2.20)

From Eq. (2.19), it is seen thatU does not depend oṅθ, therefore∂U/∂θ̇ = 0. The particle’s

kinetic energyT can be writtenT = 1
2mp~̇x ·~̇x so that

∂T

∂θ̇
= mp~̇x ·

∂~̇x
∂θ̇

(2.21)

If r i, i = 1,2, . . . ,n, along withθ are independent generalized coordinates that describe theparti-

cle system, then the position vector of the particle is~x=~x(θ, r1, r2, . . . , rn) and its time derivative

is given by

~̇x=
∂~x
∂θ

θ̇+
n

∑
k=1

∂~x
∂rk

ṙk . (2.22)

From this, it is seen that
∂~̇x
∂θ̇

=
∂~x
∂θ

. (2.23)

The rotation of~m aroundn̂ by an angle∆θ implies the same rotation of the position vector~x.

Such a rotation of~x is depicted in Fig. 2.1b from which one can observe that

∂~x
∂θ

= lim
∆θ→0

~x(θ+∆θ)−~x(θ)
∆θ

= n̂×~x . (2.24)

Using Eqs. (2.23) and (2.24), Eq. (2.21) can be written as

∂T

∂θ̇
= mp~̇x · (n̂×~x) . (2.25)

Since~̇x=~v, and permutating the triple product, this becomes

∂T

∂θ̇
= mpn̂· (~x×~v) (2.26)
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which is recognized as the ˆn component of the angular momentum~L = mp~x×~v, that is,

∂T

∂θ̇
= n̂·~L . (2.27)

The right-hand side of the Lagrange equation, Eq. (2.18) corresponds to

∂L
∂θ

=
∂T
∂θ

− ∂U
∂θ

. (2.28)

While a rotation of~malso implies a rotation of the velocity vector~v, the magnitude of~v is invari-

ant under the rotation, so that∂T/∂θ = 0. From the expression for the potentialU , Eq. (2.19),

one obtains
∂U
∂θ

= |~m||~B|sinθ (2.29)

so that the Lagrange equation of movement, Eq. (2.18) reads

d
dt
(n̂·~L) =−|~m||~B|sinθ . (2.30)

Sincen̂ is the unit vector in the direction of~B×~m, Eq. (2.30) can be written as

d~L
dt

= ~m×~B (2.31)

which says that the rate of change of a charged particle’s angular momentum is~m×~B, which

can then be interpreted as a torque applied on the particle. As mentioned previously, we are

in reality interested in the spinning electron instead of the actual motion of a charged particle.

In that case, Eq. (2.31) is still valid but~m has to be interpreted as the magnetic moment of the

spinning electron. Then it is useful to consider the relationship between the magnetic moment

of a spinning electron and its angular momentum,~m= γ~L whereγ is the electron’s gyromagnetic
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ratio, given by

γ =
qeg
2me

(2.32)

whereqe < 0 is the electronic charge,me is the electron’s mass andg≈ 2 is the electronic spin

g factor. Therefore, Eq. (2.31) can be written as

d~m
dt

= γ~m×~B (2.33)

which is the equation of motion for the magnetic moment in a field ~B.

A lossless system is assumed in Eq. (2.33) since it predicts that a magnetic moment

subjected to a magnetic field would precess forever around this field. Landau and Lifshitz in

a 1935 paper [13] and then Gilbert in his 1956 Ph.D. thesis, the relevant parts of which are

summarized in a 2004 paper [14], proposed the addition of a damping term in Eq. (2.33) which

would cause the magnetic moment~m to relax to the lowest energy state which corresponds to

alignment with~B. Landau and Lifshitz proposed to add the following term to Eq. (2.33),

d~m
dt

= γ~m×~B− λ
|~m|2~m×~m×~B (2.34)

whereλ is a damping coefficient. Gilbert instead argued that a damping term could be intro-

duced based on Lagrangian formalism by adding a term to the Lagrange equation Eq. (2.18),

representing a damping generalized force, or in the presentcase a damping torque,

d
dt

(

∂L

∂~̇m

)

=
∂L
∂~m

− ∂
∂~̇m

(η
2
~̇m· ~̇m

)

(2.35)

whereη is a damping coefficient and where the generalized coordinate here is the magnetic

moment~m instead of the angleθ as in Eq. (2.18)1. This is analogous to Rayleigh’s dissipation

1The damping torque cannot be derived using only theθ generalized coordinate and as Gilbert mentions in his
2004 paper [14], it is in fact not straightforward to derive Eq. (2.33) using the Lagrangian formalism. In fact, the
approach that was taken here necessitates certain assumptions, notably in the choice of a complete set of generalized
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function 1
2λ~̇x ·~̇x, the derivative of which with respect tȯ~x, corresponding toλ~̇x, is added to the

Lagrange equation as a friction force for the case of an object moving with velocity~v= ~̇x [12].

The result of this is that Eq. (2.33) becomes

d~m
dt

= γ~m×~B+
α
|~m|~m× ∂~m

∂t
(2.36)

whereα is a damping coefficient related toη. This is the Landau-Lifshitz-Gilbert equation and

it can be put in a form similar to the Landau-Lifshitz equation, Eq. (2.34). Indeed, taking the

cross product of~mwith Eq. (2.36) gives

~m× d~m
dt

= γ~m× (~m×~B)+
α
|~m|~m×

(

~m× ∂~m
∂t

)

. (2.37)

Using the vector identity~a× (~b×~c) = (~a·~c)~b− (~a·~b)~c, this becomes

~m× d~m
dt

= γ~m× (~m×~B)+
α
|~m|

[(

~m· d~m
dt

)

~m− (~m·~m)
d~m
dt

]

. (2.38)

Since it is assumed that the magnitude of~m is invariant, it follows thatd~mdt is perpendicular to~m

so that~m· d~m
dt = 0 and Eq. (2.38) reduces to

~m× d~m
dt

= γ~m× (~m×~B)−α|~m|d~m
dt

. (2.39)

Substituting this expression for~m×d~m/dt into Eq. (2.36) yields

d~m
dt

= γ~m×~B+
α
|~m|

[

γ~m× (~m×~B)−α|~m|d~m
dt

]

(2.40)

coordinates, which are hinted by Goldstein in [12], p.232, and which complicates the passage from Eq. (2.30) to
Eq. (2.31). These complications are not dealt with here and the procedure employed here should be regarded as a
justification of the Landau-Lifshitz-Gilbert equation rather than a rigorous proof.
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which simplifies to

d~m
dt

=
γ

1+α2~m×~B+
γα

(1+α2)|~m|~m× (~m×~B) . (2.41)

This equation is almost identical to the Landau-Lifshitz equation, Eq. (2.34), except that the

gyromagnetic ratio is divided by the quantity 1+α2. Since experiments have shown that the

value ofα usually ranges from 0.001 to 1, this difference between the two equations can become

significant when dealing with magnetic systems with high damping. The question of which one

of Eq. (2.34) or Eq. (2.41) is the correct one is still subjectto debate [9]. Nevertheless, it is

Eq. (2.41) that is solved through micromagnetic simulations in the present work and it will be

referred to as the Landau-Lifshitz-Gilbert (LLG) equation. The fact that the time derivative of~m

only appears on the left-hand side allows the equation to be more easily time-integrated.

Up until now, only the magnetic moment~m of a single electron has been considered.

Following the procedure used in macroscopic electromagnetism [5, 6], the macroscopic magne-

tization ~M is now introduced and should be regarded as the spatially averaged magnetic moment

of all electronic spins within a region large enough to smooth out variations due to the atomic

configuration in space but small enough to capture the magnetization distribution within the mag-

netic material. In electromagnetism, this small enough size will typically be some fraction of

the wavelength of electromagnetic fields. In micromagnetism, this small enough size is dictated

by the exchange length, which is the length over which magnetization is forced to be mostly uni-

form due to the exchange interaction. With this averaging procedure in mind, the LLG equation

Eq. (2.41) reads
d~M
dt

=
γ

1+α2
~M×~B+

γα
(1+α2)|~M|

~M× (~M×~B) . (2.42)

Here,~B should also be considered in the context of macroscopic electromagnetism as

the spatially averaged magnetic flux density. To couple the LLG equation with the Maxwell
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equations, it is convenient to introduce the macroscopic magnetic field which is defined as

~H =
1
µ0
~B− ~M . (2.43)

Replacing~B= µ0(~H + ~M) in Eq. (2.42) and noting that~M× ~M = 0 gives

d~M
dt

=
γ

1+α2
~M× ~H +

γα
(1+α2)|~M|

~M× (~M× ~H) . (2.44)

where the value ofµ0 is absorbed intoγ, depending on the units system that is used. For instance,

in cgs units,µ0 = 1, while in SI units,µ0 = 4π×10−7.

2.2 Effective fields

The magnetic field~H in the LLG equation, Eq. (2.44) has been introduced using the

electromagnetic potential of a magnetic moment subjected to a magnetic field. Consequently,

interactions such as the magnetostatic interaction or the effect of an externally applied field are

taken into account since they involve magnetic fields. On theother hand, important interactions

such as the exchange interaction and crystalline anisotropy are not a priori included in the LLG

equation. It is however possible to include these interactions using so-called effective magnetic

fields.

The idea is to consider the potential due to the magnetic flux density from Eq. (2.16),

U =−~M ·~B. (2.45)

Writing this in terms of~H using~B= µ0(~H + ~M) and in the cgs unit system whereµ0 = 1, one

obtains

U =−~M · ~H − ~M · ~M . (2.46)
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Since the magnitude of~M is assumed to be constant, the second term can be dropped and the

potential reads

U =−~M · ~H (2.47)

which is of the same form as Eq. (2.45). If the potential associated with another interaction has

the same form as Eq. (2.47), then an effective field can be defined for this interaction. However

this is generally not the case and an interaction’s potential will be some function of~M,

U =U(~M) . (2.48)

An effective field can be introduced by linearizing this potential around the magnetization distri-

bution ~M of the system at a particular instant in time. Indeed, the Taylor expansion of Eq. (2.48)

around~M = ~M0 is

U(~M) =U(~M0)+
∂U

∂~M

∣

∣

∣

∣

~M=~M0

· (~M− ~M0)+ . . . (2.49)

Neglecting higher order terms and dropping terms that are constant with respect to~M , this

becomes

U(~M) =
∂U

∂~M

∣

∣

∣

∣

~M=~M0

· ~M (2.50)

which is of the same form as Eq. (2.47) with

~H =− ∂U

∂~M

∣

∣

∣

∣

~M=~M0

(2.51)

This linearization procedure is particularly well adaptedto micromagnetic simulations where

the LLG equation is integrated in time to obtain~M as a function of time. At each time step, the

current magnetization solution is used as the value for~M0, the effective fields are computed and

the LLG is integrated using these linearized interactions.At each time step, the change in~M is

usually small which justifies the above linearization procedure.
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2.2.1 Crystalline anisotropy field

Lets take for example uniaxial crystalline anisotropy, where the crystalline structure of

the magnetic material causes a preferred direction for the magnetization. The anisotropy vector

~K is defined with its orientation corresponding to the preferred direction and its magnitude K

representing the anisotropy energy density, thus the strength of the interaction. This anisotropy

interaction is modeled by the potential

Uan= K sin2θ (2.52)

whereθ is the angle between~K and ~M. Using the identity sin2θ = 1−cos2θ and dropping the

constant term, the potential can be written as

Uan=−K cos2θ =−(~K · ~M)2

K|~M|2
. (2.53)

Using Eq. (2.51), the effective field for uniaxial anistropyis

~Han=− ∂Uan

∂~M

∣

∣

∣

∣

~M=~M0

=
2

K|~M0|2
(~K · ~M0)~K . (2.54)

2.2.2 Exchange interaction field

The crystalline anisotropy is a local interaction in the sense that at a given point, the

effective field does not depend on the magnetization distribution elsewhere in the magnetic ma-

terial. This is not the case for the exchange interaction which favors spatial uniformity of the

magnetization. The potential associated with the exchangeinteraction can be defined as

Uex =
∫

Ω

Aex

|~M|2
[

(∇Mx)
2+(∇My)

2+(∇Mz)
2]dV (2.55)
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whereMx, My andMz are thex, y andzcomponents of the magnetization~M, Aex is the exchange

coefficient andΩ is some volume within the magnetic material. This potentialcan be understood

as penalizing variations in the magnetization in theL2 norm sense. The functional in Eq. (2.55)

does not depend explicitly on~M so that Eq. (2.51) cannot be used directly to define an effective

field. Instead, in the fashion of the calculus of variations,the Taylor expansion of the integrand

in Eq. (2.55) in terms of the spatial derivatives is used. Denoting the integrand of Eq. (2.55) by

Iex and neglecting higher order terms, this yields

Uex(~M) =
∫

Ω
Iex(~M0)+

∂Iex

∂∇Mx

∣

∣

∣

∣

~M=~M0

· (∇Mx−∇M0x)+

∂Iex

∂∇My

∣

∣

∣

∣

~M=~M0

· (∇My−∇M0y)+
∂Iex

∂∇Mz

∣

∣

∣

∣

~M=~M0

· (∇Mz−∇M0z) dV (2.56)

where∇M0x is thex component of~M0 and where for instance

∂Iex

∂∇Mx
=

∂Iex

∂Px
x̂+

∂Iex

∂Py
ŷ+

∂Iex

∂Pz
ẑ (2.57)

with Px, Py andPz denoting the derivatives ofMx with respect tox, y andz respectively. Leaving

out terms that are constant with respect to∇Mx, ∇My or ∇Mz, Eq. (2.56) becomes

Uex(~M) =
∫

Ω

2Aex

|~M|2
[(∇M0x ·∇Mx)+(∇M0y ·∇My)+(∇M0z ·∇Mz)]dV . (2.58)

Since∇ · (∇M0xMx) = ∇M0x ·∇Mx+∇2M0xMx and similarly for they andzcomponents, assum-

ing that the magnetization function~M is sufficiently smooth and using the divergence theorem,

Eq. (2.58) can be written as

Uex(~M) =−
∫

Ω

2Aex

|~M|2
[

(∇2M0xMx)+(∇2M0yMy)+(∇2M0zMz)
]

dV+

∫
∂Ω

2Aex

|~M|2
[Mx∇M0x+My∇M0y+Mz∇M0z] · n̂dS. (2.59)
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where∂Ω is the surface of the domainΩ andn̂ is a outward pointing unit vector perpendicular to

this surface. At this point, a limiting procedure is employed whereby the regionΩ is taken to be

arbitrarily small. If the region is taken to be small enough,the quantity between square brackets

in the surface integral can be considered to be constant on the surface∂Ω. Then this quantity

can be moved outside the integral and the surface integral term of Eq. (2.59) becomes

2Aex

|~M|2
[Mx∇M0x+My∇M0y+Mz∇M0z] ·

∫
∂Ω

n̂dS. (2.60)

It is easily shown that the integral over any closed surface of n̂, the outward-pointing unit normal

vector to this surface, is zero so that the surface integral term does not contribute to the potential

Uex. Meanwhile, the quantity inside square brackets in the volume integral of Eq. (2.59) is

∇2~M0 · ~M. Therefore, Eq. (2.59) becomes

Uex(~M) =−
∫

Ω

2Aex

|~M|2
∇2~M0 · ~M dV . (2.61)

From Eq. (2.47), the potential of a magnetic field acting on the magnetization within the

regionΩ is

U =−
∫

Ω
~M · ~H dV (2.62)

which is of the same form as Eq. (2.61). The effective field forthe exchange interaction is

therefore

~Hex =
2Aex

|~M|2
∇2~M0 . (2.63)

2.3 Magnetostatic field

The magnetostatic field, also known as the demagnetizing field and denoted by~Hms, is

part of the effective fields, in the sense that it is included in ~H in the LLG equation. Here it is
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given its own subsection to highlight the fact that unlike the anisotropy and exchange fields, the

magnetostatic field is a proper magnetic field, in the sense that it is a solution of the Maxwell

equations. More will be said on this in chapter 4, but it is thenorm in micromagnetism to con-

sider the static Maxwell equations for the magnetic field, the solution of which is then referred

to as the magnetostatic field. The justification for using thestatic approximation is that the size

of structures studied in micromagnetism is almost always deeply subwavelength in terms of the

electromagnetic wavelength and therefore propagation delay effects can be neglected.

The magnetostatic field is obtained by solving the static Maxwell equations for a given

magnetization distribution~M. The static Maxwell equations for the magnetic field are [6]

∇× ~Hms= 0 (2.64a)

∇ · ~Hms=−∇ · ~M (2.64b)

There is a variety of ways in which Eqs. (2.64) can be solved and the topic is treated extensively

in the literature, see for instance [15, 16, 17]. In FastMag,the approach taken is based on the

fact that since∇× ~Hms= 0, the magnetostatic field can be written in terms of a magnetic scalar

potential,

~Hms=−∇ΦM . (2.65)

Inserting this into Eq. (2.64b) gives

∇2ΦM = ∇ · ~M , (2.66)

which is the Poisson equation with source term∇ · ~M. In FastMag, the solution of Eq. (2.66) is

obtained by computing the following volume integral [6],

ΦM =
1
4π

∫
~M(~x′) ·∇′

(

1
|~x−~x′|

)

d~x′ (2.67)
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where the integration is over all ofR3. The magnetostatic field is then computed fromΦM using

Eq. (2.65).

2.3.1 Shape anisotropy

Shape anisotropy refers to the fact that, due to a magnet’s shape and the magnetostatic

field, the magnetization inside this magnet will have a preferred direction which minimizes the

energy of the system. The potential energy associated with the magnetostatic field~Hms generated

by a magnetization distribution~M is

U =−1
2
~Hms· ~M (2.68)

This can be compared to the potential energy for a magnet placed in a constant magnetic field,

given by Eq. (2.47). The additional factor1
2 in Eq. (2.68) is due to the fact that~Hms is itself a

function, or more precisely a functional, of~M as seen from Eqs. (2.65) and (2.67). In this case,

the Taylor expansion of Eq. (2.50) can be written as

∂U

∂~M

∣

∣

∣

∣

~M=~M0

· ~M =−1
2



~Hms(~M0) · ~M+
∂~Hms

∂~M

∣

∣

∣

∣

∣

~M=~M0

· ~M



 . (2.69)

The derivative of the functional~Hms(~M) in the second term on the right hand side should be

considered in a generalized sense and is known as a Gâteau derivative. It is defined as

∂~Hms

∂~M

∣

∣

∣

∣

∣

~M=~M0

· ~M = lim
ε→0

~Hms(~M0+ ε~M)− ~Hms(~M0)

ε
(2.70)

The functional~Hms being linear, Eq. (2.70) evaluates to

∂~Hms

∂~M

∣

∣

∣

∣

∣

~M=~M0

= ~Hms(~M0) (2.71)
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so that Eq. (2.69) simplifies to

∂U

∂~M

∣

∣

∣

∣

~M=~M0

· ~M =−~Hms(~M0) · ~M . (2.72)

Comparing this to Eq. (2.51), it is seen that the magnetostatic field ~Hms can be treated just as a

magnetic field~H produced by external sources when solving the LLG equation.

Having established an expression for the potential associated with the magnetostatic field,

Eq. (2.68), it can now be shown that for magnet shapes where the magnetostatic field is uniform

inside the magnetic region such as ellipsoids, shape anisotropy is formally equivalent to a uni-

axial crystalline anisotropy~Ksh oriented in the preferred direction of magnetization. For such

magnets, the magnetostatic field can be given in terms of the demagnetization factorsN‖ and

N⊥ [18]. Both the magnetostatic field and the magnetization can be decomposed into parallel

and perpendicular components with respect to the preferreddirection of magnetization such that

~Hms= ~Hms‖+ ~Hms⊥ and~Mms= ~Mms‖+ ~Mms⊥. Then the demagnetization factors are defined by

~Hms‖ =−N‖ ~M‖ , (2.73)

~Hms⊥ =−N⊥ ~M⊥ . (2.74)

Introducing the unit vectors ˆn‖ and n̂⊥ parallel and perpendicular to the preferred direction of

magnetization as shown in Fig. 2.2, Eqs. (2.73) and (2.74) can be written as

~Hms‖ =−N‖(~M · n̂‖)n̂‖ , (2.75)

~Hms⊥ =−N⊥(~M · n̂⊥)n̂⊥ . (2.76)

Inserting these expressions into Eq. (2.68) for the potential energy yields
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n̂⊥

Figure 2.2: The shape anisotropy in an ellipsoidal magnetic particle is equivalent to a uniaxial
anisotropy vector~Ksh which points in the preferred magnetization direction.

U =−1
2

[

−N‖(~M · n̂‖)n̂‖−N⊥(~M · n̂⊥)n̂⊥
]

· ~M

=−1
2

[

−N‖(~M · n̂‖)2−N⊥(~M · n̂⊥)2
]

=−1
2

[

−N‖ cos2θ−N⊥ sin2θ
]

|~M|2

=−1
2

[

−(N‖−N⊥)cos2θ−N⊥
]

|~M|2

(2.77)

whereθ is the angle subtended by~Ksh and~M. Dropping the constant term gives

U =−1
2
(N⊥−N‖)cos2θ|~M|2 . (2.78)

Comparing this with the potential for crystalline uniaxial anisotropy, Eq. (2.53), it is seen that

shape anisotropy is equivalent to a unixial anisotropy withmagnitude given by

Ksh=
1
2
(N⊥−N‖)|~M|2 . (2.79)

While the fact that this result was derived for ellipsoidal magnets may seem to limit its

applicability, since ellipsoids can take a wide array of shapes, from a thin needle for a long,

prolate spheroid to a circular plane-like volume for a flat, oblate spheroid, the concept of shape
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anisotropy can be used to gain insight into the properties ofmany magnetic structures.

2.4 Space and time discretization

The objective of a micromagnetic solver is to compute a solution ~M(~x, t) to the LLG

equation, Eq. (2.44). The LLG equation is a partial differential equation in both space and time

and is non-linear in terms of the unknown~M. Different approaches can be used to discretize and

solve the LLG equation such as finite differences or the finiteelement method. The present work

was done using and building on the FastMag micromagnetic solver, which is developed by Pro-

fessor Lomakin’s research group at UCSD. The approach that istaken to solve the LLG equation

is to discretize the problem in space using the finite elementmethod on a tetrahedral mesh. The

magnetization~M is spatially represented by linear basis functions while point matching is used

for the testing functions. This transforms the LLG equationin a system of non-linear ordinary

differential equations (ODEs). This system has the same form as the continuous LLG equation,

Eq. (2.44), but where~M represents the vector of values of the components of~M at the nodes

of the tetrahedral mesh and where the effective field~H is computed at these same nodes. The

computation of the effective fields is based on the continuous equations for these fields which

were discussed in sections 2.2 and 2.3 and on the representation of the magnetization~M by linear

basis functions.

2.4.1 Computing effective fields at mesh nodes

For the crystalline anisotropy effective field, the field at nodei is given by a discretized

version of Eq. (2.54) for~Han,

~Han,i =
2

KiM2
s,i

(~Ki · ~Mi)~Ki (2.80)
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where~Ki is the volume averaged anisotropy vector of tetrahedrons surrounding nodei and whose

magnitude isKi, ~Mi is the magnetization at nodei andMs,i is the volume averaged saturation

magnetization of tetrahedrons surrounding nodei. The saturation magnetization is a property of

a magnetic material and corresponds to the magnetization’smagnitude which is assumed to be

constant.

The computation of the effective field for the exchange interaction is complicated by

the fact that the magnetization is assumed to be described bylinear polynomials whereas the

exchange field, given by Eq. (2.63) is proportional to the second order derivative of~M, which is

zero locally, i.e. inside a given tetrahedron. Following [19], an approximation of the exchange

field at the nodei can nonetheless be obtained by assuming that the laplacian of ~M is slowly

varying so that it can be regarded as constant within tetrahedrons surrounding nodei. Denoting

the region corresponding to tetrahedrons around nodei by Ωi and introducing the linear hat basis

function centered on nodei, φi , consider the following integral involvingMx,i, thex component

of ~Mi, ∫
Ωi

φi(~x)∇2Mx,i(~x)dV . (2.81)

Using the divergence theorem, this can be written as

∫
Ωi

φi(~x)∇2Mx,i(~x)dV =−
∫

Ωi

∇φi(~x) ·∇Mx,i(~x)dV+
∫

∂Ωi

φi(~x)∇Mx,i(~x) · n̂dS. (2.82)

The surface integral vanishes because the hat basis function φi is zero on the boundary ofΩi.

Now making use of the assumption that∇2Mx,i is constant withinΩi, it can be taken out of the

left-hand side integral in Eq. (2.82) which yields

∇2Mx,i(~x) =− 1∫
Ωi

φi(~x)dV

∫
Ωi

∇φi(~x) ·∇Mx,i(~x)dV . (2.83)

The volume integral ofφi over a tetrahedron is simply a fourth of the tetrahedron’s volume and
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is easily computed. The other integral is computed by makinguse of the representation of~M

in terms of basis functions. With identical expressions forthe y andz components of~M, the

exchange field is obtained by replacing∇2~M0 in Eq. (2.63) by the expression in Eq. (2.83) for

each component.

Before leaving the topic of the exchange field, one will have noticed that if nodei is

located at the boundary of the magnetic region, the basis function φi does not vanish on∂Ωi. In

that case however, the surface integral in Eq. (2.82) still vanishes because∇Mx,i · n̂= 0. Indeed,

the directional derivative of~M in the direction normal to the surface of a magnetic region,∂~M/∂n,

is zero. This boundary condition is analogous to the boundary condition at the free end of a

string which is also an homogeneous Neumann boundary condition [20]. In this analogy, the

magnetization’s exchange interaction plays the role of thetension in the string.

The computation of the magnetostatic field is based on the computation of the integral

in Eq. (2.67) for the magnetic scalar potential. The integral over all the magnetic domain is

decomposed into integrals over individual tetrahedrons,

ΦM(~x) =
1
4π ∑

k

∫
Ωk

~M(~x′) ·∇′
(

1
|~x−~x′|

)

d~x′ (2.84)

whereΩk is the region occupied by thekth tetrahedron. An approximation is made where the

magnetization is considered to be constant within each tetrahedron and equal to~Mk, the average

value of~M at the 4 nodes of tetrahedronk. Then Eq. (2.84) becomes

ΦM(~x) =
1
4π ∑

k

~Mk

∫
Ωk

∇′
(

1
|~x−~x′|

)

d~x′ (2.85)

and using the divergence theorem, this can be written as

ΦM(~x) =
1
4π ∑

k

~Mk

∫
∂Ωk

n̂
|~x−~x′|d~x

′ (2.86)
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where the surface integral is over the boundary of tetrahedron k. The magnetic scalar potential

ΦM is computed at each node of the mesh after which its gradient is computed to obtain the

magnetostatic field at the nodes.

Special attention must be given to the computation of the integral in Eq. (2.85) when

the source point~x and the observation point~x′ belong to the same tetrahedron. In that case, a

singularity extraction procedure must be used, the detailsof which can be found in [21]. Also, the

computation of the magnetic scalar potential from Eq. (2.86) has aN2 complexity. In FastMag,

a non-uniform FFT technique is employed to do this computation with a complexity ofN logN.

This acceleration technique is described in [22] and [23].

2.4.2 Time integration

At this point, the LLG equation has been cast into a system of ODEs of the form

∂~M
∂t

= ~f (~M, ~H) (2.87)

where~M and~H denote arrays of values of the magnetization and of the effective magnetic field

respectively at the mesh nodes and where~f (~M, ~H) corresponds to an array containing the right-

hand side of the LLG equation, Eq. (2.44), evaluated at the mesh nodes. While the dependence

of ~f on the effective field~H is explicit in Eq. (2.87), it is clear that the effective fieldis itself a

function of ~M. Furthermore, from Eq. (2.44), it is seen that~f is a non-linear function of~M.

Different methods can be used for the time integration of Eq.(2.87), for instance explicit

methods like the Runge-Kutta method and the Adams-Bashforth method or implicit methods like

the Adams-Moulton method. In FastMag, the backward differentiation formula (BDF) method

is used. The BDF method is an implicit, multi-step method which is A-stable for orderr = 1 and

r = 2. Lets consider the ODE
∂u
∂t

= f (u) (2.88)
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where the unknown isu(t) and f is a known function ofu. The principle of the BDF method

is to construct an interpolating polynomial of orderr, p(t), which passes through points(ti ,ui)

for i = n− (r −1), . . . , n+1 whereui is the solution at the discrete timeti. The method then

consists in letting

p′(tn+1) = f (un+1) (2.89)

and solving for the solution at the latest time stepun+1.

For orderr = 1, the interpolating polynomial is

p(t) = un+1
t − tn

tn+1− tn
+un

t − tn+1

tn− tn+1
(2.90)

and its derivative evaluated att = tn+1 is

p′(tn+1) =
un+1−un

tn+1− tn
(2.91)

which also corresponds to the forward Euler method. For order r = 2, the interpolating polyno-

mial is

p(t) = un+1
(t − tn)(t − tn−1)

(tn+1− tn)(tn+1− tn−1)
+un

(t − tn+1)(t − tn−1)

(tn− tn+1)(tn− tn−1)
+un−1

(t − tn+1)(t − tn)
(tn−1− tn+1)(tn−1− tn)

(2.92)

and its derivative evaluated att = tn+1 is

p′(tn+1) =un+1

[

1
tn+1− tn−1

+
1

tn+1− tn

]

+un

[

1
tn+1− tn

+
1

tn− tn−1

]

+

un−1

[

tn+1− tn
(tn+1− tn−1)(tn− tn−1)

]

.

(2.93)
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In general, for orderr, p′(tn+1) is given by

p′(tn+1) =
r

∑
i=0

αiun+1−i (2.94)

where theαi are coefficients which depend on the time step history. From Eq. (2.89), the BDF

method therefore consists in solving

r

∑
i=0

αiun+1−i = f (un+1) (2.95)

for un+1.

Applying the BDF method to the system of ODEs of Eq. (2.87), thefollowing system of

equations must be solved for the array of magnetization values at the latest time step,~Mn+1,

r

∑
i=0

αi ~Mn+1−i = ~f (~Mn+1) . (2.96)

This is an implicit system of equations for~Mn+1, which also happens to be non-linear since~f is

a non-linear function. Therefore, the Newton method is usedto linearize the problem. To apply

the Newton method, Eq. (2.96) is written as

~g(~Mn+1) = 0 (2.97)

where

~g(~Mn+1) =
r

∑
i=0

αi ~Mn+1−i −~f (~Mn+1) . (2.98)

At time steptn+1, starting with an initial guess~M(0)
n+1, successive approximations~M( j)

n+1 are com-

puted. Given the approximation~M( j)
n+1, ~M( j+1)

n+1 is computed by replacing~g(~Mn+1) in Eq. (2.97)

by its Taylor expansion around~M( j)
n+1, evaluated at~M( j+1)

n+1 , where only the first order term has
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been kept,

~g(~M( j)
n+1)+

∂~g
∂~Mn+1

∣

∣

∣

∣

~Mn+1=~M( j)
n+1

(~M( j+1)
n+1 − ~M( j)

n+1) = 0 . (2.99)

Here,∂~g/∂~Mn+1 is the jacobian matrix

∂~g
∂~Mn+1

=













∂g1
∂M1,n+1

∂g1
∂M2,n+1

∂g2
∂M1,n+1

∂g2
∂M2,n+1

. . .

...
.. .













. (2.100)

whereg1, g2, . . . are the components of the~g function andM1,n+1, M2,n+1 are the components of

the ~Mn+1 array. The linear system of equations in Eq. (2.99) is solvedfor δ~M = ~M( j+1)
n+1 − ~M( j)

n+1

which then allows the computation of the new approximation

~M( j+1)
n+1 = ~M( j)

n+1+δ~M . (2.101)

What was just described is the basis of the BDF-Newton method employed to solve the

discretized LLG equation. However, the algorithm that is employed in FastMag has some refine-

ments which will not be presented in details here. The algorithm used is a customized version

of the VODE algorithm [24, 25] which was designed to solve systems of initial value ODEs of

the form of Eq. (2.87). Both the algorithm used in FastMag and VODE allow the time step to

change dynamically during the integration process based onthe error and convergence history:

when the error exceeds a certain threshold after a certain number of Newton iterations, the time

step size is reduced while if convergence is rapidly achieved for a number of consecutive time

steps, the time step size is increased. Both the FastMag and VODE algorithms also use a BDF-

based predictor to compute the initial guess~M(0)
n+1 at a new time step. For the ODE of Eq. (2.88),

this predictor is based on the construction of an interpolating polynomialp(t) of degreer which

passes through ther points(tn−(r−1),un−(r−1)), . . . ,(tn,un) and satisfies∂p/∂t|t=tn = f (un).
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Chapter 3

Characterization of soft nano-granular

ferromagnetic materials

Micromagnetism can be used to characterize magnetic materials in terms of their magne-

tization response to an applied magnetic field. Two metrics that are used to characterize magnetic

materials are introduced in section 3.1, namely the hysteresis loop and the permeability tensor.

The hysteresis loop describes the non-linear behavior of magnetization in a magnetic material

and conveys key information like the anisotropy field and thecoercive field. It also allows mag-

netic materials to be categorized as either hard or soft magnetic materials. The Stoner-Wohlfarth

hysteresis model is described as well as how hysteresis loops can be obtained from micromag-

netic simulations. The permeability tensor is the primary mean by which magnetization in mag-

netic materials is taken into account in electromagnetic problems involving the solution of the

Maxwell equations. A method for the extraction of the frequency dependent permeability tensor

from micromagnetic simulations is presented. Section 3.2 discusses nano-granular ferromag-

netic materials, which are characterized by a low effectiveanisotropy due to anisotropy aver-

aging amongst ferromagnetic grains with randomly orientedanisotropy axes. The mechanism

of anisotropy averaging is described in section 3.3. The concept of effective particles and how
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they can be used in micromagnetic simulations of nano-granular ferromagnetic materials is also

discussed. Section 3.4 presents some concepts of directional probability theory on the circle

which are useful to describe collections of particles with randomly oriented anisotropy axes.

In section 3.5, these probability concepts are used to compute hysteresis loops of ensemble of

nano-granular ferromagnetic particles by means of a generalized Stoner-Wohlfarth model which

accounts for exchange interactions between particles.

3.1 Characterization of magnetic materials with micromag-

netic simulations

Two important characteristics of magnetic materials for their use in high frequency appli-

cations are the hysteresis loop and frequency dependent permeability tensor which both describe

the macroscopic magnetic response of a material to an applied magnetic field.

3.1.1 The hysteresis loop

An example of an hysteresis loop is shown in Fig. 3.1. The hysteresis loop shows the

magnetization component in the direction of an applied magnetic field as a function of the mag-

nitude of this applied field as it is sweeped from its maximum positive value to its minimum

negative value and back. In the case of Fig. 3.1, the magnetization is shown in terms ofm, the

magnetization normalized with respect to the saturation magnetizationMs.

Among the many properties that can be defined for an hysteresis loop [18], the coercive

field Hc corresponds to the field that must be applied to achieve a state of zero net magnetization

after the ferromagnet has been saturated. The coercive fieldmeasures how wide the opening

of the loop is, and therefore the amount of hysteresis in the system. It is also a way to catego-

rize magnetic materials as being hard or soft, hard magneticmaterials being hard to magnetize
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Figure 3.1: Hysteresis loop for a magnetic particle subjected to an applied magnetic field
oriented at 45 degrees from the particle’s uniaxial anisotropy axis.

and demagnetize while soft materials are easy to magnetize and demagnetize. Hard magnetic

materials are used in applications such as permanent magnets and will have coercive fields in

the hundreds or thousands of Oe. While a good hard magnetic material is characterized by its

non-response to applied magnetic fields, soft magnetic materials are tailored to have specific

magnetization responses depending on their application. For instance, magnetic materials for

inductor or transformer applications are designed to have alinear behavior, meaning as little

hysteresis as possible, or a smallHc field. For those applications, a high permeability, which as

will be discussed shortly is equivalent to a high slope of thehysteresis curve, is also desired.

The hysteresis behavior is a combination of the rotation of the magnetization and abrupt

reversals at certain values of the applied field which resultfrom the interaction between an

applied field and a particle’s anisotropy. That was the main proposition of Stoner and Wohlfarth

in their seminal 1948 paper [26]. They considered a particlesubjected to an applied field~H

and having a uniaxial anisotropy~K, as shown in Fig. 3.2. In their model, Stoner and Wohlfarth

neglected inter-particle interactions such as the magnetostatic field and the exchange interaction.

Therefore, the total energy associated with the system is the anisotropy energy and the energy

associated with the applied field. From Eq. (2.52) and referring to Fig. 3.2, the anisotropy energy

35



~M ~K

~H
θ

φψ

Figure 3.2: Stoner-Wohlfarth hysteresis model for a single particle with uniaxial anisotropy
vector~K subjected to an applied magnetic field~H.

is

Uan= K sin2ψ (3.1)

Using the trigonometric identity sin2ψ = 1
2 − 1

2 cos(2ψ) and ignoring the constant term, this

becomes

Uan=−K
2

cos2ψ (3.2)

From Eq. (2.47), the energy associated with the applied field~H is

UH =−HMscosφ (3.3)

whereMs is the magnetization amplitude, corresponding to the saturation magnetization. The

total energy is therefore

U =−K
2

cos2ψ−HMscosφ . (3.4)

The angleφ that the magnetization makes with the applied field at equilibrium is found by min-

imizing this energy. The angleθ between the applied field~H and the anisotropy direction~K

being a constant of the problem, the angleψ is written in terms ofφ asψ = φ−θ. Using this in

Eq. (3.4), it becomes

U =−K
2

cos(2[φ−θ])−HMscosφ . (3.5)
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The values ofφ minimizing the total energy are found by solving∂U/∂φ = 0 which yields

H =
K sin(2[θ−φ])

Mssinφ
. (3.6)

Values ofφ that are solutions of Eq. (3.6) and satisfy the condition∂2U/∂φ2 > 0 minimize the

energy and correspond to equilibrium states. Given a value for the applied fieldH and the angle

θ, Eq. (3.6) can be solved forφ using a root-finding algorithm. There might be two values ofφ

that correspond to states of minimal energy. In the context of hysteresis loop calculations, the

correct solution depends on the magnetization history. Forexample, forH = 0, two equilibrium

states exist, one with the magnetization pointing in the+~K direction and the other pointing in

the−~K direction.

Using the Stoner-Wohlfarth model, hysteresis curves can becomputed for individual par-

ticles or even ensemble of particles. For example, Fig. 3.3 shows the hysteresis loops computed

with the Stoner-Wohlfarth model for different values of theangleθ between the applied field

and the anisotropy axis. For small angles, the hysteresis loop is seen to have a square shape

and a highHc value. For this reason, the direction of anisotropy is knownas the hard axis.

For larger values ofθ, Hc decreases until the hysteresis loop takes the shape of a straight line

for θ = 90◦. The direction perpendicular to the anisotropy axis is therefore known as the easy

axis. It is important to note that the Stoner-Wohlfarth model is an approximate one as it neglects

inter-particle interactions such as the magnetostatic andexchange interactions. In section 3.5, a

Stoner-Wohlfarth model that takes into account exchange interaction between particles will be

presented.

It is also possible to perform micromagnetic simulations tocompute hysteresis loops.

Hysteresis loops are usually measured at very low frequencies, that is the magnetic field is

sweeped slowly, so that at each field value, the magnetization is at its equilibrium state. This is

certainly the case in hysteresis loops computed using the Stoner-Wohlfarth model, and it can also
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Figure 3.3: Hysteresis loops computed with the Stoner-Wohlfarth model for a particle with
uniaxial anisotropy oriented at different anglesθ with respect to the applied field.

be achieved in micromagnetic simulations by either varyingthe applied field at a very slow rate,

or by dividing the sweeped values of the field in discrete steps, which are applied successively,

with the micromagnetic simulation allowing the system to reach equilibrium at each value of the

applied field. For instance, Fig. 3.4a shows the hysteresis loop for a system of 1000 spherical par-

ticles with randomly oriented unaxial anisotropies without inter-particle interaction which was

obtained with a micromagnetic computation but could very well have been computed using the

Stoner-Wohlfarth model. Meanwhile, Fig. 3.4b shows the hysteresis loop for the same system

of particles but this time with exchange and magnetostatic interactions between the particles.

0 20001000−2000 −1000
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m

H(Oe)
(b)

Figure 3.4: Hysteresis loops computed through a micromagnetic simulation for a system of
1000 particles. (a) No inter-particle interactions are considered. (b) Exchange and magneto-
static interactions between particles are taken into account.

As will be seen in subsequent sections, the dramatic decrease in the coercive field (note

38



the change of scale between the two figures) can be attributedto the exchange interaction which

effectively averages out the randomly oriented anisotropies. In cases like this where the exchange

interaction plays a dominant role, the Stoner-Wohlfarth model is inadequate and either a more

refined model or micromagnetic simulations need to be used tocompute the hysteresis loop.

In the above example, the inter-particle exchange interaction was modeled by the ex-

change interaction energy between two particlesi and j,

Uex =−J~mi ·~mj (3.7)

where J is the exchange coupling energy and~mi and~mj are the normalized magnetization vectors

of particlesi and j. From Eq. (2.51), the effective field acting on particlei due to this exchange

interaction is

~Hex,i =
J

Ms,iVi
~mj (3.8)

whereMs,i is the saturation magnetization of particlei andVi is its volume. The volume of

particlei appears in the denominator of the effective field because Eq.(2.51) was derived for a

point-like magnetic moment while the exchange energy associated with particlei is given by the

integral of−~Mi · ~Hex,i over the volume of particlei.

3.1.2 The permeability tensor

When the magnetization response to the applied magnetic fieldis mostly linear as in the

hysteresis curve of Fig. 3.4b, permeability can be defined for the material. The permeability of a

material, notedµ is defined by the relation between the magnetic flux density~B and the magnetic

field ~H,

~B= µ~H . (3.9)
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While µ is represented as a scalar in Eq. (3.9), in general it is a tensor which is notedµ as

different components of the~H field can affect the different components of~B differently. Also, the

definition of Eq. (3.9) assumes that~B and~H are in the frequency domain, that is, they represent

the Fourier transform of the corresponding time-domain fields. Because of this, the relation in

the time domain equivalent to Eq. (3.9) involves a convolution between the permeability and the

magnetic field [27].

In Eq. (3.9),~B is the spatial average of the microscopic magnetic flux density while the

magnetic field~H is defined as [6]

~H =
1
µ0
~B− ~M . (3.10)

Defining the magnetic susceptibilityχm through the magnetization response to a magnetic field,

~M = χm~H , (3.11)

and inserting this into Eq. (3.10) gives

~B= µ0(1+χm)~H . (3.12)

Comparing this with Eq. (3.9), the permeability can be definedas

µ= µ0(1+χm) . (3.13)

In the above discussion,~M is the spatially averaged or macroscopic magnetization. In

chapter 2 on micromagnetism, the macroscopic magnetization was introduced as the spatially

averaged magnetization of individual electronic spins, with the size of the region over which the

spatial average is taken being large enough to smooth out individual spin variations but small

enough to be able to resolve the magnetization distributionwithin the ferromagnet. Since per-

meability is a concept that is used to solve the Maxwell equations in electromagnetic problems,
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here~M corresponds to the magnetization averaged over a region that is small enough to resolve

electromagnetic fields, that is, it must correspond to a small fraction of the electromagnetic

wavelength. However, the electromagnetic wavelength is usually much larger than the exchange

length, which means that the size of the averaging region canbe chosen to be much larger than

what is possible for micromagnetic simulations. Of course,one could choose to select the size

of the averaging region for~M to be the same as for micromagnetism. However, this would give

rise to a permeability with potentially rapid spatial variations, therefore requiring a small spatial

discretization size when solving electromagnetic problems numerically and increasing the nu-

merical problem size. For this reason, it is desirable to choose the size of the averaging region to

be as large as possible. This means that when computing the permeability using micromagnetic

simulations, a large enough volume of the ferromagnet needsto be modeled, and the magneti-

zation ~M that will be considered for computing the permeability willbe the volume-averaged

magnetization over the whole volume. The choice of the size of the volume will depend on the

electromagnetic problem for which a permeability value is sought. For example, if an electro-

magnetic problem involves a certain ferromagnetic volume with a certain shape, it will be best

to simulate that exact shape in the micromagnetic simulation since the shape of the ferromagnet

will influence the magnetization response through the magnetostatic field. In other cases, one

might be interested in the bulk permeability value of a givenferromagnetic material, that is its

permeability if it is assumed that the material has no boundaries and effectively extends to infin-

ity. In that case, it will be useful to use periodic boundary conditions where the simulated region,

finite in size, is assumed to interact with periodic reproductions of itself which extend to infinity.

Such periodic boundary conditions can be realized by exchange coupling the magnetization at

the edge of the problem with magnetization on the opposite edge. Also, the magnetostatic field

from the periodic extension of the simulated problem can be computed [23].

From Eq. (3.11), it is seen that by definition, permeability characterizes the linear re-

sponse of the magnetization~M to the magnetic field~H. Therefore, materials that have a mostly
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linear and closed hysteresis loop lend themselves well to being characterized by permeability.

On the other hand, it is difficult to define a truly meaningful permeability when the hysteresis

curve is open and wide since in that case the magnetization response simply is not linear. For

linear responses, the permeability at zero frequency can beinferred from the slope of the hys-

teresis curve. An example of a linear magnetization response is the Stoner-Wohlfarth model of

a particle where the angle between the magnetic field and the anisotropy axis isθ = 90◦. To

see this, consider the magnetization~M and saturation magnetizationMs subjected to a magnetic

field ~H in thez direction and a uniaxial anisotropy~K along thex axis, as shown in Fig. 3.5.

x

z

φ

~K ~M

~H

Figure 3.5: Equilibrium magnetization when subjected to a magnetic field alongzand a uniax-
ial anisotropy alongx.

From Eq. (2.54) the effective anisotropy field is given by

~Han=
2

K|~M|2
(~K · ~M)~K . (3.14)

In the presence of the field~H = Hzẑ, at equilibrium~M will point towards the total effective field

~H + ~Han, with the angleφ between~M and~H given in terms ofHz and the magnitude of~Han as

tanφ =
Han

Hz
. (3.15)

From Eq. (3.14), the magnitude of~Han can be written as

Han=
2K

|~M|
cos(π/2−φ) =

2K

|~M|
sin(φ) (3.16)
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so that, replacing forHan, Eq. (3.15) becomes

cosφ =
|~M|
2K

Hz . (3.17)

Noting that thez component of~M is given byMz = cosφ|~M|, this can be written as

Mz =
|~M|2
2K

Hz (3.18)

which is the desired result. This can also be written as

Mz =
|~M|
HK

Hz (3.19)

where

HK = 2K/|~M| (3.20)

is known in the literature as the anisotropy field [18], not tobe confused with the anisotropy field

of Eq. (3.14), and is the magnitude of the fieldHz required to fully align the magnetization along

thez axis. Comparing Eqs. (3.19) and (3.11), the magnetic susceptibility is

χm =
|~M|
HK

. (3.21)

While the magnetic susceptibility is stated here as a scalar quantity, Eq. (3.21) in fact

corresponds to theχm,zzcomponent of the susceptibility tensorχm. Because the magnetization~M

rotates and keeps a constant magnitude, a change in a given component of~M invariably involves

a change in another component. Also, since the relationshipbetween~H and ~M was established

based on the equilibrium state, this susceptibility value corresponds to the zero frequency value.

In reality, as described by the LLG equation, the magnetization precesses around the effective

magnetic field before aligning itself with it through relaxation. It can be shown that for small
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perturbations of~M around its equilibrium state along the uniaxial anisotropy~K = Kx̂ due to a

magnetic field~H = Hzẑ, the χmzz component of the magnetic susceptibility tensor is given by

[28]

χm,zz=
γ|~M|(γHK + jωα)
(γHK + jωα)2−ω2 (3.22)

whereγ is the electron gyromagnetic ratio andα is the damping coefficient in the LLG equation.

The magnetization response in they direction is given by the tensor component

χm,yz=
jωγ|~M|

(γHK + jωα)2−ω2 (3.23)

where the phase difference betweenχm,yz and χm,zz due to j in the numerator of Eq. (3.23)

indicates precessional motion.

The expressions for the frequency dependent tensor components of Eqs. (3.22) and (3.23)

result from the solution of the LLG equation in the frequencydomain for a small perturbation

around the equilibrium state. The poles ofχm,zz andχm,yz correspond to the ferromagnetic reso-

nance due to precessional motion and the real part of the resonant frequency is

ω0 =
γHK

1+α2 . (3.24)

The frequency dependent magnetic susceptibility tensor can be extracted from micro-

magnetic simulations. Consider Eq. (3.11) which in tensor form reads

~M = χm
~H , (3.25)

or in expanded form

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(3.26)
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where the quantities are understood to be in the frequency domain and both~M and~H are spa-

tially averaged quantities over the region used to define themacroscopic permeability. If three

sets of linearly independent magnetic field excitations,~H1, ~H2 and~H3 and their corresponding

magnetization responses~M1, ~M2 and ~M3 are known, then the components of the susceptibility

tensor can be obtained. To see this, consider the unit vector

~E1 =













1

0

0













, (3.27)

then the first colum ofχm, noted~χm,1 is obtained as

~χm,1 = χm
~E1 . (3.28)

Since the~H1, ~H2 and ~H3 vectors are linearly independent,~E1 can be expressed as the linear

combination

~E1 = a1~H1+a2~H2+a3~H3 . (3.29)

Using this to replace~E1 in Eq. (3.28) and using Eq. (3.25) yields

~χm,1 = a1~M1+a2~M2+a3~M3 . (3.30)

The a coefficients can be found from the three~H vectors. Indeed, introducing theH matrix

whose columns correspond to~H1, ~H2 and~H3,

H =













~H1 ~H2 ~H3













, (3.31)
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Eq. (3.29) can be written in the form

~E1 = H ~A (3.32)

where~A is the vector of coefficientsa1, a2 anda3. Since the~H vectors are linearly independent,

H is invertible and one can write

~A= H
−1

~E1 (3.33)

which allows~χm,1 to be computed from Eq. (3.30). The other components of the susceptibility

tensor can be computed similarly. Once the susceptibility tensor is known, from Eq. (3.13), the

permeability tensor is obtained asµ= µ0(I +χm) whereI is the identity tensor.

This approach can be simplified if each of the three magnetic fields~H1, ~H2 and~H3 can

be chosen to have only ax, y and z component respectively. This is in general not possible

since~H includes both the applied field and the magnetostatic field. However, when considering

the bulk permeability where the finite simulated region is periodically extended to infinity, the

volume integral of the magnetostatic field over the simulation region is zero. This is so because,

by reciprocity, the contribution of the periodic extensions of the simulated region to the integral

of the magnetostatic field within the simulated region is equivalent to the volume integral of the

magnetostatic field contributed by the simulated region over all space which is zero. Indeed, the

magnetostatic field is given from Eq. (2.65) as~Hms=−∇ΦM and from the divergence theorem

we have ∫
Ω

∇ΦMdv=
∫

∂Ω
ΦMn̂ds (3.34)

where the integral is over the regionΩ which spans all three-dimensional space and where ˆn is the

unit vector pointing outward on the surface ofΩ. The surface integral is zero in Eq. (3.34) since

the potentialΦM is a constant at infinity and the surface integral of ˆn over any closed surface

can be shown to be zero. For example, if~H1 is chosen to be along thex direction,~H1 = H1x̂,

then from Eq. (3.26) theχm,yx component of the susceptibility tensor can be obtained fromthey

component of the magnetization response~M1 = Mx1x̂+My1ŷ+Mz1ẑ asχm,yx = My1/H1.
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In practice, the system to be simulated is first allowed to relax to its equilibrium state

and, if the full permeability tensor is to be extracted, three micromagnetic simulations are ex-

ecuted, each with a spatially uniform magnetic field pulse~H(t) is applied in either thex, y or

z direction. The pulse~H(t) is chosen to have the shape of a gaussian pulse, with a frequency

content corresponding to the band of frequencies for which the susceptibility is to be extracted.

Since the Fourier transform of a gaussian pulse is also a gaussian pulse, this allows the time

domain pulse to be designed such that it is band-limited to the desired frequency range. This is

important because the broader the frequency range, the morecomputationally expensive the mi-

cromagnetic computation becomes. Indeed, in order to simulate lower frequencies, a longer time

must be simulated while a smaller simulation time step must be used to resolve higher frequency

content. The time domain magnetization response is then spatially averaged over the domain of

simulation and Fourier-transformed in the frequency domain.

For illustration, the above procedure is applied to the simulation of a single spherical

particle with uniaxial anisotropy along thezdirection. The sphere has a magnetization saturation

Ms= 1400emu/cm3, the anisotropy magnitude isK = 1×106erg/cm3, the damping coefficient

in the LLG equation isα = 0.1 and the exchange coefficient is large enough so that the sphere

remains uniformly magnetized. With the magnetization at rest in the+z direction, a pulsed

magnetic field is applied in thex direction. The applied magnetic field has the shape of a gaussian

pulse and is shown in Fig. 3.6a. The magnitude of its Fourier transform, also a gaussian pulse

as shown in Fig. 3.6b shows that it has frequency components up to about 12 GHz. The pulse

has a peak magnitude of 150 Oe which is seen to be a small perturbation when compared to the

anisotropy fieldHK of Eq. (3.20) which has a magnitude of 1430 Oe. The three components

of the magnetization response are shown in the time domain inFig. 3.6c and in the frequency

domain in Fig. 3.6d in the form of the magnitude of the Fouriertransform of the time domain

response. From Eq. (3.24), the ferromagnetic resonant frequency is expected to be 3.94 GHz

which corresponds to the peak in Fig. 3.6d.
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Figure 3.6: Applied magnetic field in the (a) time domain and in the (b) frequency domain for
the permeability extraction for a single spherical particle. Magnetization response in the (c)
time domain and in the (d) frequency domain of the spherical ferromagnetic particle.

The components of the susceptibility tensor can be obtainedby executing two similar sim-

ulations with an applied magnetic field alongy andz. The result is shown in Fig. 3.7. The tensor

componentsχm,xx,χm,xy,χm,yy,χm,yx are compared to the theoretical expressions of Eqs. (3.22)

and (3.23). The submatrix representing these four components of the tensor is seen to be anti-

symmetric, which is a characteristic of gyrotropic materials. Theoretical results for theχm,zx

andχm,zy components are not readily available since the magnetization response alongz is not

linear, so that for those components only the numerical result is shown1. When the applied field

is applied along thez direction, since the magnetization already points towardsthe z direction

1Because the response for those components is not linear, therepresentation of this response by a susceptibility
tensor component is not entirely accurate and can be regarded as a linearization of this response.

48



corresponding to the equilibrium state, the magnetizationresponse is null which is reflected in

the curves for theχm,xz, χm,yz andχm,zzcomponents. In section 3.3, it will be seen that permeabil-

ity extraction can be used as a way to characterize ferromagnetic materials using micromagnetic

simulations.
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Figure 3.7: Frequency dependent susceptibility tensor components obtained from micromag-
netic simulations for a single ferromagnetic sphere.

3.2 Ferromagnetic nano-granular materials

In a 1988 paper, Yoshizawa et al. from Hitachi Metals described nano-crystalline Fe-

CuNbSiB alloys which had surprisingly good soft magnetic material properties, that is a low

coercive field and high permeability [29]. This is surprising because crystalline ferromagnetic

materials are normally associated with a significant crystalline anisotropy. The following quote

from their paper describes their assessment of the reasons that could explain this behavior:

49



The mechanism whereby FINEMET shows excellent soft magnetic properties is not
fully understood. However, it is suggested that this is due to the decrease of local
magnetic anisotropy4 by reducing the grain size and lower magnetostriction than
Fe-based amorphous alloys.

Their reference denoted by a superscripted “4” is to a 1973 paper by Hoffmann [30] which states

that

In a polycrystalline film, the local anisotropy mainly consists of the magnetoelastic
and magnetocrystalline anisotropy energy of the crystallites. Because of the random
orientation of the crystallite axes, this anisotropy is then inhomogeneous.

As it turns out, Yoshizawa et al. were correct: while individual crystalline grains have significant

crystalline anisotropies, the overall anisotropy gets averaged out due to the fact that they are

randomly oriented. However what they did not mention is thatexchange interaction between

neighboring grains play a key role in this averaging of the anisotropy.

The idea of considering randomly oriented anisotropy to describe the properties of fer-

romagnetic material had already been described by Stoner and Wohlfarth [26] in their seminal

1948 paper on the rotation of magnetization due to the interaction between anisotropy and an

applied magnetic field. In that paper, the net magnetizationof an ensemble of particles with

randomly oriented uniaxial anisotropy was considered. While the random orientation of the

anisotropy axes was shown to contribute by itself to make theoverall response of the particles

more soft, Stoner and Wohlfarth did not consider any interaction between particles such as the

exchange interaction.

In 1973, Harris et al. proposed a model for magnetization in amorphous ferromagnets

in which both randomly oriented uniaxial anisotropy and exchange interaction are considered

which they used to predict the Curie temperature and magnetization saturationMs [31]. In 1978,

Alben et al. used this model to predict the “average anisotropy energy density” within a region

with a sizeL corresponding to a “magnetic correlation length” [32] . They obtained the result

that the averaged anisotropy density should be proportional to d6K4A−3
ex whered is a “structural
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correlation length”, i.e. the length over which the anisotropy is assumed to be uniform and

oriented along a given direction,K is the anistropy energy density andAex is the exchange

coefficient.

Herzer used the model proposed by Alben et al. to explain the behavior that had been

observed by Yoshizawa et al. for nano-crystalline materials [33, 34]. Using the exchange length,

defined as

L =

√

Aex

K
, (3.35)

which gives a measure of the length over which magnetizationtends to be uniform in the pres-

ence of exchange interaction and anisotropy and which corresponds to the magnetic correlation

length in the model of Alben et al, and considering a grain size D, the number of grains per

volumetric region of sizeL is

N =

(

L
D

)3

. (3.36)

As will be discussed in section 3.3, from probabilistic considerations, the expected value for the

averaged or effective anisotropy’s magnitude is

Keff =
K√
N

. (3.37)

In Eq. (3.35)K is the anisotropy energy density. While the exchange lengthL is usually defined

for a spatially uniform and constant anisotropy~K, in the context of ferromagnetic grains with

randomly oriented anisotropy directionsK in Eq. (3.35) corresponds to the effective anisotropy

magnitude which decreases due to the averaging effect. The magnetic correlation length is de-

termined by this new effective anisotropy, therefore

L =

√

Aex

Keff
. (3.38)
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Combining Eqs. (3.36), (3.37) and (3.38) and solving forKeff yields

Keff =
D6K4

A3
ex

(3.39)

which is exactly the result obtained by Alben et al. with the structural correlation lengthd

replaced by the grain sizeD. This is an important result with practical implications, giving

guidelines on how to control a material’s microstructure inorder to achieve given magnetic

parameters. It was validated by Herzer with experimental measurements performed on ribbons

of nano-crystalline materials annealed under different conditions, thus yielding different grain

sizes [34].

3.3 Micromagnetic simulations and anisotropy averaging in

exchange-coupled nano-granular materials

Micromagnetic simulations can be used to compute hysteresis loops and extract the fre-

quency dependent permeability of exchange-coupled nano-granular materials. For example,

Fig. 3.4 clearly showed how anisotropy averaging through exchange interaction can drastically

close the hysteresis loop of a system of ferromagnetic particles. Such simulations can be very

useful to model actual nano-granular materials and to determine the quantitative effects that a

change in their properties such as grain size, anisotropy magnitude and direction and exchange

interaction strength can have on their macroscopic magnetization response.

Micromagnetic simulations can also be used to validate and better understand the theo-

retical averaging model described by Herzer and it is this topic that the present section will be

concerned with. While Herzer’s model predicts trends like the fact that the effective anisotropy

magnitude will vary asD6 whereD is the grain size, it is worthwhile to ask if more precise

quantitative results can be obtained from the model. For example, for a material consisting
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of grains with a size of say 12 nm with randomly oriented uniaxial anisotropies of magnitude

K = 2×105erg/cm3, can a region with a sizeL corresponding to the magnetic correlation length

of Eq. (3.38) can be assigned an effective uniaxial anisotropy ~Keff which would accurately rep-

resent the material properties? In addition to being a way ofvalidating the anisotropy averaging

model and gaining a better understanding of it, doing so would also allow micromagnetic simula-

tions to be executed with such effective regions of sizeL with a uniform magnetization replacing

groups of individual particles, thereby reducing the numerical problem size and resulting in more

efficient simulations. For this purpose, lets first have a closer look at the process of anisotropy

averaging.

3.3.1 Summing uniaxial anisotropies: a vectorial interpretation

Let N ferromagnetic particles each having volumeVi, i = 1, . . . ,N and uniaxial anisotropy

~Ki randomly oriented in thex− y plane and making an angleθi with the positivex axis. Since

a uniaxial anisotropy is defined by an orientation rather than a direction,θi can be restricted to

the [0,π[ range of values. Assume that theseN particles are within a region corresponding to

the magnetic correlation lengthL and that they are intercoupled through exchange interaction

such that their normalized magnetization vectors~m all point in the same direction in thex− y

plane, making an angleφ with the x axis. Then theN particles can be replaced by a single,

larger particle with volumeV = ∑Vi with an averaged anisotropy~Keff. The situation is shown in

Fig. 3.8a for the case ofN = 2.

To obtain an averaged or effective uniaxial anisotropy~Keff for the effective region, con-

sider the anisotropy energy associated with thei’th particle, which from Eq. (2.52) reads

Ui = KiVi sin2(φ−θi) . (3.40)

Using the trigonometric identity sin2A = 1
2 − 1

2 cos(2A) and dropping the constant term, this
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Figure 3.8: Vectorial interpretation of uniaxial anisotropy averaging. (a) Two particles with
uniaxial anisotropies~K1 and~K2 are equivalent to a single particle with an effective uniaxial
anisotropy~Keff. (b) Relation between~K1, ~K2 and~Keff.

becomes

Ui =−1
2

KiVi cos(2φ−2θi) . (3.41)

Using the trigononmetric identity cos(A−B) = cosAcosB+ sinAsinB, Eq. (3.41) can also be

written as

Ui =−1
2

KiVi [cos2φcos2θi +sin2φsin2θi ] . (3.42)

Introducing the vectors~K′
i = Ki (cos2θi x̂+sin2θi ŷ) and~m′ = cos2φx̂+sin2φŷ corresponding to

the transformed~Ki and~mvectors with doubled argument values, Eq. (3.42) can be expressed as

Ui =−1
2
~m′ ·~K′

iVi . (3.43)

Using this, the anisotropy energy for the ensemble of N particles can be written

U =
N

∑
i=1

Ui =−1
2
~m′ ·

N

∑
i=1

~K′
iVi . (3.44)

Using this, the effective averaged anisotropy vector~Keff = Keff (cosθeffx̂+sinθeffŷ) and its trans-
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form ~K′
eff = Keff (cos2θeffx̂+sin2θeffŷ) can be defined by

~K′
eff =

1
VT

N

∑
i=1

~K′
iVi (3.45)

whereVT = ∑N
i=1Vi is the total volume of the particles over which the averagingis being per-

formed. The total anisotropy energy in Eq. (3.44) can therefore be written as

U =−1
2
~m′ ·~K′

effVT . (3.46)

Comparing this with Eq. (3.43), it is seen that the system of N particles is equivalent to

a single particle of volumeVT with an effective averaged uniaxial anisotropy~Keff corresponding

to the average of transformedK′
i vectors weighted by the particles’ volumes. The procedure of

transforming the~Ki vectors by doubling their argument, summing them and transforming them

back by halving the resulting vector’s argument is illustrated in Fig. 3.8b for the case ofN = 2

particles. It is seen that the resulting anisotropy energy densityKeff is reduced as compared to

that of the individual particles. This vectorial approach is an intuitive way of understanding why

for example two uniaxial anisotropies of equal magnitude oriented perpendicularly to each other

cancel each other out.

Up to this point, only uniaxial anisotropies and magnetization vectors confined to a plane

were considered. In the general 3-dimensional case where 2 or more anisotropy vectors and

the magnetization vector do not necessarily lie within the same plane, an equivalent uniaxial

anisotropy cannot be defined. Luckily, for technological reasons, namely the fact that nano-

crystalline ferromagnetic materials are usually used in the form of thin films, the materials are

subjected to a strong shape anisotropy [18] which forces themagnetization to be mostly parallel

with the thin film’s plane. In that case, it can be shown that a given uniaxial anisotropy~K

making an angleθ with the film plane is equivalent to a uniaxial anisotropy with an axis parallel

to the plane in the direction corresponding to the projection of ~K into the plane with a magnitude
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K cos2θ. For this reason, the anisotropy of the individual grains inferromagnetic nano-granular

materials can be considered to lie within a single plane along with the magnetization.

3.3.2 Effective anisotropy and exchange coupling

If the exchange coefficientAex of the material, the sizeD of the ferromagnetic grains and

the anisotropy magnitudeK are known, Eqs. (3.38) and (3.39) suggest that a precise value of the

magnetic correlation length can be obtained. However, these relations are only approximate. In

updates to his theory, Herzer suggests that Eq. (3.38) should be replaced by

L = φ0

√

Aex

Keff
(3.47)

whereφ0 is a prefactor given byφ0 = α
√

8
3β with α being “an effective average angle between

the easiest directions of the exchange coupled units” andβ being “a constant basically related to

the symmetry and distribution of the random anisotropy axis” [35]. As Herzer notes in [35],

It should be noted, that the pre-factorsα andβ via their combination inφ0 can be
rationalized into the basic exchange lengthL0. The latter ultimately remains the only
open parameter within the above scaling analysis. It is therefore more appropriate
to write down the results for< K1> or Lex in a rationalized form involving the ratio
(D/L0) rather than in the explicit form as given in the original papers involving
all the individual material parameters and, in particular,more or less arbitrary pre-
factors.

Therefore it seems that specifying an exact sizeL of the region over which the anisotropy

of particles should be averaged poses a difficulty. While numerical value of the pre-factors can be

assigned by fitting numerical simulations results [35] or experimental results [34] to the theory,

this is somewhat unsatisfying. An approach that avoids thisproblem is to consider that there is

a residual exchange interaction between the regions of sizeL over which anisotropy is averaged.

This approach is illustrated in Fig. 3.9. The individual particles of Fig. 3.9a are exchange coupled

with coupling energyJ and with the exchange interaction energy between two particles given by
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Figure 3.9: Anisotropy averaging over regions of sizeL. (a) Individual particles with
anisotropies~Ki , volumesVi and exchange coupling energyJ. (b) Effective particles with
anisotropy~Keff corresponding to the averaged anisotropy, volume∑Vi and residual exchange
coupling energyJeff.

Eq. (3.7). Within a region of sizeL where the exchange coupling is strong enough that all

particles can be assumed to have a magnetization pointing inthe same direction, the individual

particles can be grouped together into a single region that can be treated as a single effective

particle, as shown in Fig. 3.9b. This effective particle is assigned an anisotropy corresponding

to the average anisotropy of the individual particles and has a volume corresponding to the sum

∑Vi of the particles’ volumes. Whereas individual particles areseparated by a distancea, the

effective particles are separated by a distanceaeff = L corresponding to the size of the averaging

regions. The model allows for a residual exchange coupling energyJeff between the effective

particles. The strength of this residual exchange couplingwill depend on the averaging region

sizeL so that, as long as the condition that particles within the averaging region have a mostly

homogeneous magnetization due to exchange interaction is satisfied,L can be chosen arbitrarily.

The relationship between the exchange energyJ between individual particles, the resid-

ual exchange energyJeff between effective particles, and the averaging region sizeL can be
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obtained by requiring that the volumetric exchange energy density remains the same between

the original system with individual particles and the effective particles system. This exchange

energy density is exactly the exchange coefficientAex of continuous micromagnetism introduced

in section 2.2.2. The procedure is then exactly the reverse of the procedure used to introduce

a continuous exchange energy densityAex from individual atomic spins, with the atomic spins

replaced by nano-particles [4, 36], and is as follows.

For a system of exchange coupled particles the exchange energy associated with particle

i is

Uex,i =−1
2

J
k

∑
j=1

~mi ·~mj (3.48)

where the sum is over particlei’s k nearest neighbors and the factor1
2 is present because only half

the exchange energy between two particles is associated with particlei. Since~mi ·~mj = cosθi j

whereθi j is the angle between~mi and~mj , and using the first two terms of the Taylor expansion

cosθi j ≃ 1− 1
2θ2

i j , valid for smallθi j , Eq. (3.48) can be written as

Uex,i ≃
1
4

J
k

∑
j=1

θ2
i j (3.49)

where the constant term was dropped. Now, since the~mi ’s are unit vectors, again for smallθi j

the approximation|θi j | ≃ |~mj −~mi | holds, so that the energy can be written

Uex,i ≃
1
4

J
k

∑
j=1

|~mj −~mi |2 . (3.50)

Defining the continuous magnetization~m(~x) which interpolates the magnetization of the indi-

vidual particles and letting~r i j be the vector from particlei to j, Eq. (3.50) can be written

Uex,i ≃
1
4

J
k

∑
j=1

(

~r i j ·∇mx
)2

+
(

~r i j ·∇my
)2

+
(

~r i j ·∇mz
)2

(3.51)
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where∇mx, ∇my and∇mz are the gradients of the continuous magnetization components eval-

uated at the center of particlei. Assuming that for example particles are arranged in a simple

cubic lattice with lattice constanta, each particle has 6 nearest neighbors, 2 along eachx, y and

z directions, and since|~r i j |= a, Eq. (3.51) becomes

Uex,i ≃
1
2

a2J
[

(∇mx)
2+(∇my)

2+(∇mz)
2
]

. (3.52)

The energy in Eq. (3.52) represents the exchange coupling energy associated with particlei. To

define an exchange energy density, this energy must be divided by the volume of space associ-

ated with particlei, which for particles arranged in a simple cubic lattice isa3. Doing this and

comparing with the integrand of the expression for the exchange energy in a continuous magne-

tization system, Eq. (2.55), it results that the equivalentexchange energy coefficientAex for the

ensemble of particles is

Aex =
J
2a

. (3.53)

A relation like Eq. (3.52) can be obtained for particles arranged in other configurations than a

simple cubic lattice. For instance, for a body-centered cubic lattice with an underlying cubic

lattice of sizea where nearest-neighbor exchange coupling occurs with 8 particles, it can be

shown that Eq. (3.53) becomes

Aex =
J
a
. (3.54)

For the case of a face-centered cubic lattice with an underlying cubic lattice of sizea, if each

particle is exchange coupled to its 12 nearest neighbors, the corresponding result is

Aex =
2J
a

. (3.55)

It should be noted that in reality, particles in nano-granular materials do not organize in a regular

lattice but instead tend to be randomly scattered throughout the material. It is also expected
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that the exchange coupling energyJ between particles will not be constant for every pair of

particles but will instead be some function of the inter-particle distance. Finding a relation such

as Eq. (3.53) for this case would require probabilistic arguments and is not a trivial task. In

this work, we will be satisfied with considering regular arrays of particles with nearest-neighbor

coupling.

The relation between the exchange coupling energyJ between individual particles and

the residual exchange coupling energyJeff between effective particles is obtained by considering

Eq. (3.53) for each system and enforcing the equality of the equivalent continuous exchange

coefficientAex. If both the individual particles and the effective particles are arranged in a simple

cubic lattice, the result is the relation

Jeff =
aeff

a
J. (3.56)

whereaeff = L, the size of the averaging region. Since the number of particles over which the

averaging occurs is given byN = L3/a3, Eq. (3.56) can also be written as

Jeff = N
1
3J. (3.57)

While the exchange coupling energy between the effective particlesJeff is larger thanJ,

a better measure is the exchange coupling energy density since it can be compared to the other

energy terms which are expressed in terms of energy density.For instance, the energy density

due to an external magnetic field is proportional to the saturation magnetizationMs and is the

same for the original and effective particles systems sincethe saturation magnetizationMs is

unchanged. Meanwhile, due to averaging, the anisotropy energy densityKeff of the effective

particles is reduced as compared to the anisotropy energy density K of the original particles.

Similarly, the exchange energy densityj = J/Vi, whereVi is the volume of particlei, is in fact

reduced for the system of effective particles. Indeed, for the effective particles,jeff = Jeff/V so
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that usingV = ∑Vi as the volume of an effective particle as well as Eq. (3.57) and assuming that

all particle volumesVi are identical yields

jeff =
j

N
2
3

. (3.58)

To illustrate the anisotropy averaging of nano-granular materials in micromagnetic simu-

lations, Fig. 3.10a shows the hysteresis curves of a 144×144×12 simple cubic array of particles

computed with no exchange coupling between the particles, corresponding toj = 0 and with an

inter-particle exchange coupling with an energy density ofj = 1.8×105erg/cm3. The parti-

cles are assumed to be small enough to be uniformly magnetized, have saturation magnetization

Ms = 1000emu/cm3 and have a uniaxial anisotropy of magnitudeK = 2×105erg/cm3 with a

direction that is randomly distributed in thex−y plane. It is seen that a significant reduction of

the effective anisotropy occurs due to anisotropy averaging.
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Figure 3.10: (a) Hysteresis loops computed for a 144×144×12 array of particles with and
without inter-particle exchange coupling. (b) Hysteresis loops computed for effective particles
corresponding to anisotropy averaging overN particles. The corresponding residual exchange
energy densitiesjeff are given in table 3.1.

Shown in Fig. 3.10b are hysteresis loops computed using arrays of averaged particles

based on the system of individual particles withj = 1.8×105erg/cm3 of Fig. 3.10a. The case

N = 1 corresponds to the original system with individual particles while the other values of
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N correspond to the number of particles inside each averagingregion. The values ofN are

seen to correspond to the sequence of integers 1, 2, 3, 4 and 6 to the power three, so that the

averaging regions have the shape of a cube with side lengths corresponding to multiples of the

spacing between individual particles and the entire 144×144×12 array of particles can be neatly

subdivided in averaging regions. Based on Eq. (3.58), the residual exchange energy densities

jeff corresponding to each value ofN are shown in table 3.1. It is seen that the hysteresis loops

for these averaged systems are very similar to each other. Yet, the individual particles system

corresponding toN = 1 has 250 K particles while the averaged particles system with N = 216

has only 1152 particles and can be computed much more quickly.

Table 3.1: Residual exchange energy densities corresponding to the effectiveparticles for the
different numbers of averaged particlesN of Fig. 3.10b.

N jeff [erg/cm3]

1 1.80×105

8 4.50×104

27 2.00×104

64 1.13×104

216 5.00×103

In the previous example, the micromagnetic simulation did not account for the magneto-

static field. This is because the averaged anisotropy model does not take into account that the

magnetostatic field generated by an ensemble of particles will be different than the magnetostatic

field generated by a single larger effective particle. The magnetostatic field could accurately be

accounted for with the effective particle model by computing the magnetostatic field generated

by the particles inside an averaging region while assuming that their magnetization is homoge-

neous. However, this was not done in this work as the primary goal was to study the anisotropy

averaging due to exchange interaction.
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3.4 Directional probability on the circle

As was discussed in section 3.3.1, the problem of anisotropyaveraging in nano-granular

ferromagnetic materials is a 2-dimensional problem where we are interested in the averaged

value, or expected value in probability terminology, of thesum of vectors with randomly dis-

tributed orientations and magnitudes. Interestingly, this type of problem gave rise to a branch of

probability theory known as directional probability on thecircle which, while it shares the same

fundamental concepts as standard probability theory on theline, has quite distinct features. For

instance, when defining the mean direction of two unit vectors which are naturally defined by

the anglesθ1 andθ2 that each vector makes with the positivex axis, the use of the arithmetic

mean as used for numbers on the real line is not adequate. For example, for the two unit vectors

shown in Fig. 3.11 withθ1 = π/4 andθ2 = 7π/4, the arithmetic mean would correspond to a

mean direction ofπ whereas the mean direction which “makes sense” correspondsto the zero

angle.

θ1θ2

x

y

Figure 3.11: The mean direction of two unit vectors is not adequately determined by the arith-
metic mean of the angles that they make with the positivex axis.

In what follows, some results of directional probability theory will be stated without

proof. The interested reader can consult the excellent workon the topic by Mardia [37]. It

is interesting to consider the same problem of summing two unit vectors but this time from a

probabilistic point of view. Indeed, consider two random vectors on the unit circle characterized

by the two random variablesθ1 andθ2 representing the angles that the unit vectors make with
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the positivex axis. Lets consider that bothθ1 andθ2 are idenpendent and identically distributed

with a uniform distribution, that is, they are characterized by the probability density function

f (θ) =
1
2π

(3.59)

which, unlike random variables defined on the whole real line, is defined on the set[0,2π[ and is

such that ∫ 2π

0
f (θ)dθ = 1 . (3.60)

What is the probability distribution of the resulting sum vector? While it can be shown rigor-

ously, intuitively and from the circular symmetry of the problem it is clear that the direction

φ of the resulting vector is a random variable that is uniformly distributed, that is, there is no

preferred direction in which the resulting vector is more likely to point. One might wonder what

this implies in terms of the expected value ofφ. If the definition of the expected value from

probability theory on the line is applied, we obtain

E[φ] =
∫ 2π

0
φ f (φ)dφ . (3.61)

With φ uniformly distributed so thatf (φ) = 1
2π , this givesE[φ] = π, which again shows the inade-

quacy of simply applying linear probability concepts to probabilities on the circle. In directional

probability theory, the mean or expected direction of an angular probability distribution is the

direction with respect to which the circular dispersion is minimized. The circular dispersion is

a measure of the dispersion of points on the unit circle corresponding to random angles with

respect to a point corresponding to a given angleα and is defined as

D =
∫ 2π

0
f (θ)[1−cos(θ−α)]dθ . (3.62)

From this expression, it is seen that whenθ is uniformly distributed with the probability density
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function of Eq. (3.59), the circular dispersion isD = 1. Since in this case the expression forD is

independent ofα, no value ofα minimizes it and no expected direction exists. For distributions

where an expected direction exists corresponding toα = θ0, the circular dispersion with respect

to θ0 is known as the circular variance and is given by

V =
∫ 2π

0
f (θ)[1−cos(θ−θ0)]dθ . (3.63)

It can be shown that for any distribution, 0≤ V ≤ 1, with V = 1 corresponding to no direc-

tional preference, i.e. a uniform distribution, andV = 0 corresponding to a Dirac distribution

probability distribution function concentrated on the point θ0.

What about the expected magnitude of the sum of two random vectors on the unit circle?

Whereas on the real line the sum of two uniformly distributed random variables has an expected

value of zero, it can be shown that the expected value of the resulting vector magnitude is 4/π ≈

1.27. In the general case of the sum ofN random and uniformly distributed vectors each with

a fixed magnitudeK0, the direction of the resulting vector is still uniformly distributed, and the

probability density function for the resulting vector’s magnitude normalized by the number of

random vectorsN, K, can be shown to be to be

f (K) = K
∫ ∞

0
xJ0(Kx)

[

J0

(

xK0

N

)]N

dx (3.64)

whereJ0(x) is the Bessel function of the first kind and order 0. From Eq. (3.45), this is seen

to be the probability distribution for the averaged anisotropy Keff when averaging uniformly

distributed anisotropies with fixed magnitudeK0. ForN large, using the central limit theorem, it

can be shown that the probability density function forK tends towards

f (K) =
2NK

K2
0

e−NK2/K2
0 . (3.65)
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From this expression, the expected value ofK can be obtained for largeN and is given by

E[K] =

√
π

2
√

N
K0 . (3.66)

It is this result that justifies the expression of Eq. (3.37) for the magnitude of the averaged

anisotropy.

Aside from the uniform distribution, another distributionthat plays an important role in

directional probability is the equivalent of the normal distribution on the line, known as the von

Mises distribution. Its probability density function is

f (θ) =
1

2πI0(k)
ekcos(θ−θ0) (3.67)

whereI0(k) is the modified Bessel function of the first kind and order 0,θ0 is the distribution’s

mean direction andk is the concentration parameter. A concentration parameterk = 0 corre-

sponds to the uniform distribution while largek values correspond to a high probability density

concentration around the mean direction angleθ0. The circular variance of the distribution is

given in terms of the concentration parameter as

V = 1− I1(k)
I0(k)

(3.68)

The probability density function for the von Mises distribution is plotted in Fig. 3.12 for the

mean directionθ0 = 0 and concentration parameter valuesk= 0, k= 0.4 andk= 1.5.

The von Mises distribution can be useful to model nano-granular materials in which there

is a preferred direction of the anisotropy axis, like for example if the material is annealed in the

presence of an applied magnetic field, in which case the particles’ anisotropy axes will tend to

align with the applied field. When summingN independent random vectors characterized by

a von Mises distribution, the directionθ and magnitudeK of the resulting vector normalized
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Figure 3.12: Probability density function of the von Mises distribution for a mean direction
θ0 = 0 and a concentration parameter value of (a)k= 0, (b)k= 0.4 and (c)k= 1.5.

by the number of random vectorsN are characterized by the following joint probability density

function,

f (θ,K) =
K

2π [I0(k)]N
e

kNK
K0

cos(θ−θ0)
∫ ∞

0
xJ0(xK)

[

J0

(

xK0

N

)]N

dx . (3.69)

For largeN, it can be shown that the expected value of the resulting vector’s normalized magni-

tudeK is

E[K] = K0

[

I1(k)
I0(k)

+
1

2N
+O(N−3/2)

]

. (3.70)

While K decreases asN− 1
2 as per Eq. (3.66) for the case of the uniform distribution,

from Eq. (3.70) it is seen that in the case of the von Mises distribution, a portion of the uniaxial

anisotropy cannot be averaged out regardless of the number of random vectorsN, while the

remaining portion quickly decreases asN−1.

The probability density functions for the sum ofN random vectors that were presented in

this section can be useful to generate samples of effective particles with averaged anisotropies,

therefore avoiding the need to generate samples of individual particles and individually summing

their anisotropy vectors to obtain an averaged vector. As will be seen in the next section, it can

also be used to compute hysteresis loops using a Stoner-Wohlfarth model which accounts for

exchange interaction between particles using probabilitydistributions.
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To illustrate the effect of random anisotropy vectors with avon Mises distribution, con-

sider a 500×500×80 nm thin film consisting of 21,000 particles, each with a saturation magneti-

zationMs= 1422emu/cm3, intercoupled with an exchange energy densityj = 1×106erg/cm3

and with uniaxial anisotropies of magnitudeK0 = 2×105erg/cm3 and random orientations dis-

tributed according to a von Mises distribution with mean direction corresponding to they axis

and concentration parameterk. The hysteresis loops for a magnetic field applied in thex direc-

tion, that is perpendicular to the preferred direction of anisotropy, fork= 0, k= 1 andk= 2 are

shown in Fig. 3.13.
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Figure 3.13: Hysteresis loops computed for a 500× 500× 80 nm thin film consisting of
21,000 particles with a saturation magnetizationMs = 1422emu/cm3, intercoupled with an
exchange energy densityj = 1×106erg/cm3 and with uniaxial anisotropies of magnitude
K0 = 2×105erg/cm3 with randomly oriented directions in thex− y plane following a von
Mises distribution with mean direction in they direction and concentration parameterk = 0,
k= 1 andk= 2.

It is seen that the casek = 0, corresponding to a uniform random distribution, requires

the least strength of the applied field to completely switch the magnetization direction. However,

it also exhibits the most open hysteresis loop and thereforethe least linear behavior, highlight-

ing the advantage of having a certain amount of anisotropy perpendicular to the direction of

the applied field, effectively creating a magnetic soft direction. The system with concentration

parameterk= 2 has more anisotropy in the direction perpendicular to the applied field than the
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system withk = 1, which is why it requires a stronger magnetic field to completely switch the

direction of the magnetization. It also results in a smallerslope of the hysteresis curve, which

translates to a lower value of the permeability or magnetic susceptibility.
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Figure 3.14: Extractedχm,xx component of the magnetic susceptibility tensor for the three
nano-granular materials with random anisotropy distributions corresponding to k = 0, k = 1
andk= 2.

Theχm,xx component of the magnetic susceptibility tensor is extracted for the three sys-

tems of particles withk = 0, k = 1 andk = 2. The results are shown in Figs. 3.14a, 3.14b and

3.14c respectively. Having an open hysteresis loop with a significant non-linear behavior, the

magnetic susceptibility for thek= 0 case is not a good representation of the material’s magnetic

response. Yet, the extracted susceptibility response still yields useful information. For instance,

the susceptibility value at low frequencies is quite high, reflecting the fact that the effective

anisotropy of the material is small due to anisotropy averaging. This is also reflected in the high

slope value of the corresponding hysteresis loop. Due to theweak effective anisotropy, the reso-

nant frequency occurs at relatively low frequencies, and the susceptibility at higher frequencies

is very weak. Fork= 1, the higher slope value translates to a higher permeability value than for

thek= 2 case. This is due to the stronger anisotropy in thek= 2 case, which also has the effect

of pushing the ferromagnetic resonance to a higher frequency value, thereby allowing thek= 2

material to maintain its susceptibility value over a broader frequency range. This effect is the

well known trade-off between high permeability value and the ability of the material to maintain
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that high permeability value at high frequencies. The low frequency permeability in thek = 1

andk = 2 cases can be obtained from the slope of the hysteresis curves of Fig. 3.13. In both

cases, the filling ratio of the particles in the simulations was 0.31, so that the spatially averaged

magnetization amplitude is|~M|= 0.31Ms. For thek= 1 case, from Fig. 3.13 the anisotropy field

is seen to beHk = 130Oe. Then, withMs = 1422emu/cm3 and with Eq. (3.21) taking the form

χm =
4π|~M|

HK
(3.71)

in cgs units for a magnetization amplitude expressed in emu/cm3, one obtainsχm= 42.6 which

is close to the value observed in Fig. 3.14b at low frequencies. In thek= 2 case, the anisotropy

field is Hk = 200Oe from which Eq. (3.71) yieldsχm = 27.7, which again is close to the value

observed at low frequencies in Fig. 3.14.

3.5 Generalized Stoner-Wohlfarth model for exchange-coupled

ferromagnetic grains

In section 3.1.1 about the hysteresis loop, the Stoner-Wohlfarth model describing the

magnetization rotation in a particle with a uniaxial anisotropy subjected to an applied magnetic

field was introduced. The model was used to compute the hysteresis loop for a single particle,

and it was mentioned that it can also be used to compute the hysteresis loops of ensembles of

particles. The 1948 paper of Stoner and Wohlfarth [26] was such a significant contribution to

our understanding of the mechanism of magnetization rotation in ferromagnets that it is perhaps

less well known that in that same paper, Stoner and Wohlfarthused their model to compute

the hysteresis loop of an ensemble of particles with anisotropy axes randomly and uniformly

distributed on the unit sphere.

For a single particle and referring to Fig. 3.2, the Stoner-Wohlfarth hysteresis model
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relies on finding the value of the angleφ between the magnetization and the applied magnetic

field which minimizes the total energy. This value ofφ corresponds to the solution of Eq. (3.6)

in which the other quantities, namely the applied magnetic field magnitudeH, the anisotropy

magnitudeK, the angleθ between the applied magnetic field~H and the particle’s saturation

magnetizationMs, are assumed to be known. The hysteresis loop is computed by sweeping

the applied magnetic fieldH from its maximum value to its minimum value and then back,

and computing cosφ for each discreteH value, which corresponds to the component of the

normalized magnetization along the direction of the applied field.

In the case of an ensemble of randomly oriented particles, the angleθ between~H and the

anisotropy vector~K becomes a random variable and the computation of the hysteresis loop then

involves the expected value of cosφ,

E[cosφ] =
∫ 2π

0
cosφ f (θ)dθ , (3.72)

where f (θ) is the probability density function of the random variableθ and which is to be

computed for each discrete value of theH sweep. The angleφ being obtained from the solution

of Eq. (3.6), it can be considered as a function (albeit without an explicit form) ofθ, K andH,

so that

φ = φ(H,θ,K) . (3.73)

With this, Eq. (3.72) can be written as

E[cosφ] =
∫ 2π

0
cosφ(H,θ,K) f (θ)dθ (3.74)

and the integral can be computed using a numerical integration scheme such as Simpson’s rule.

The probability density functionf (θ) will depend on the distribution of the random anisotropy

direction. In the case of randomly oriented~K vectors with a uniform distribution on the sphere
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of radiusK, it is straightforward to show that the probability densityfunction is f (θ) = 1
2 sinθ.

Using this, just as Stoner and Wohlfarth did in their 1948 paper [26], the hysteresis loop of

Fig. 3.15 can be obtained where the particles were assumed tohave a fixed anisotropy magnitude

of K = 1×106erg/cm3 and a saturation magnetizationMs = 1400emu/cm3. Also shown for

comparison is the hysteresis computed using a micromagnetic simulation for an ensemble of

1000 particles with the same characteristics, which is seento agree quite well with the result

obtained with the Stoner-Wohlfarth model, the difference between the curves being due to the

finite number of particles in the micromagnetic simulation.
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Figure 3.15: Comparison of hysteresis loops for an ensemble of particles with randomly ori-
ented anisotropy following a uniform distribution on the unit sphere computedby a micromag-
netic simulation with 1000 particles and the probabilistic Stoner-Wohlfarth hysteresis model.

In the case where the anisotropy magnitudeK is not fixed but is also a random variable,

Eq. (3.74) takes the form

E[cosφ] =
∫ 2π

0

∫ ∞

0
cosφ(H,θ,K) f (θ,K)dθ (3.75)

where f (θ,K) is the joint probability density function of the random variablesθ andK. Given

f (θ,K), the corresponding hysteresis loop can then be computed just as in the previous example.
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A limitation of the Stoner-Wohlfarth model is that it does not take into account interac-

tions between particles such as the exchange interaction. Since the exchange interaction and

the anisotropy averaging that results from it can have a drastic effect on the magnetic properties

of materials, a generalized Stoner-Wohlfarth model which takes into account exchange interac-

tion between particles would be a valuable tool. Such a modelcan be obtained by adding the

exchange energy density to the total energy density of Eq. (3.5). Since the Stoner-Wohlfarth

model does not rely on a Monte Carlo simulation involving a realization of a large ensemble of

particles, which can then easily be inter-coupled, but instead relies on a probabilistic description

of a particle, how can the exchange coupling be introduced inthe model? Taking the probabilis-

tic approach one step further, the particle whose energy is under consideration can be exchange

coupled to a second probabilistic particle representing the random ensemble of particles, with

the exchange energy corresponding to the expected value of the exchange energy between the

particle under consideration and the probabilistic particle. Another way of stating this is that the

particle under consideration is exchange coupled to each and every particle in an ensemble with

infinitely many particles, each with its own anisotropy vector, with the number of particles hav-

ing a given anisotropy vector proportional to the probability density function of the anisotropy

distribution. The exchange energy acting on the particle under consideration is then taken to

correspond to the expected value or mean of this continuum ofexchange energies. This idea is

illustrated in Fig. 3.16, where the unprimed particle is theparticle under consideration, the en-

ergy of which we seek to minimize, and the primed particle represents the probabilistic ensemble

of particles to which it is exchange coupled.

Based on Eq. (3.7), the exchange energy between the primed andunprimed particles of

Fig. 3.16 is− j~m·~m′ = − j cos(φ−φ′). However, sinceφ′ = φ′(H,θ′,K′) is a random variable,

as discussed above it is the expected value of this energy that must be added to the unprimed

particle’s total energy without exchange interaction, Eq.(3.5), so that with exchange coupling,
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Figure 3.16: Stoner-Wohlfarth model with exchange coupling. The unprimed particle is the
particle under consideration, for which the energy minimum is sought. The primed particle
represents the probabilistic ensemble of particles to which the unprimed particleis coupled.

the total energy becomes

U =−K
2

cos(2[φ−θ])−HMscosφ− j
∫ 2π

0

∫ ∞

0
f (θ′,K′)cos

[

φ−φ′(H,θ′,K′)
]

dK′dθ′ . (3.76)

where f (θ′,K′) is the joint probability density function of the anisotropy’s random distribution.

In the same way that in the Stoner-Wohlfarth model without exchange,φ is given by the function

φ(H,θ,K) where this function represents the solution of the non-linear equation of Eq. (3.6),

minimizing the energy of Eq. (3.76) by letting∂U/∂φ = 0 yields a non-linear equation that must

be solved forφ given values ofH, θ andK, that is,

K sin(2[φ−θ])+HMssinφ+ j
∫ 2π

0

∫ ∞

0
f (θ′,K′)sin

[

φ−φ′(H,θ′,K′)
]

dK′dθ′ = 0 (3.77)

with only solutions such that∂2U/∂φ2 > 0 corresponding to minima of the energy, that is

2K cos(2[φ−θ])+HMscosφ+ j
∫ 2π

0

∫ ∞

0
f (θ′,K′)cos

[

φ−φ′(H,θ′,K′)
]

dK′dθ′ > 0 . (3.78)

However, and here comes the key argument, the probabilisticensemble of particle repre-

sented by primed quantities in Fig. 3.16 is in fact the same ensemble of particles of which the

unprimed particle is a part of. Therefore, the functionφ′(H,θ′,K′) which gives theφ′ angle value
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of the primed particle is the same functionφ(H,θ,K) giving theφ angle value of the particle un-

der consideration, i.e. we effectively haveφ′(H,θ′,K′) = φ(H,θ′,K′). Using this and writing

occurences ofφ in Eq. (3.77) in their explicit function form yields

K sin(2[φ(H,θ,K)−θ])+HMssinφ(H,θ,K)

+ j
∫ 2π

0

∫ ∞

0
f (θ′,K′)sin

[

φ(H,θ,K)−φ(H,θ′,K′)
]

dK′dθ′ = 0 . (3.79)

Comparing this with Eq. (3.6) for the case without exchange coupling, it is seen that while

Eq. (3.6) is a scalar non-linear equation whereH, θ andK are assumed to be given, Eq. (3.79)

involves a functional ofφ(H,θ,K) and as such is a non-linear integral equation to be solved for

φ(H,θ,K). Just as in the Stoner-Wohlfarth hysteresis model, the value of H will be sweeped,

and for each discreteH value Eq. (3.79) needs to be solved. To solve this equation numerically,

the functionφ(H,θ,K) is discretized in the space{θ ∈ [0,2π[, K ∈ [0,R]}. While the probabil-

ity density function f (θ,K) is in theory defined forK ∈ [0,∞[, in practice it is very close to

zero above a certain valueR, chosen depending on the distribution, so thatφ(H,θ,K) can be

discretized over a finite domain. By this discretization procedure, the functionφ(H,θ,K) can be

written as

φ(H,θ,K) =
N

∑
j=1

φ j(H)ψ j(θ,K) (3.80)

where theψi ’s, i = 1, . . . ,N are theN basis functions and theφi ’s are the unknown coefficients,

here shown as functions ofH to highlight the fact that a different set of these coefficients must be

determined for eachH value. A total ofN equations are then obtained by multiplying Eq. (3.79)

by N test functions and integrating over the domain of solution.In our implementation of this

method, flat basis functions with unit magnitude on a rectangular grid and point matching, the

equivalent of choosing Dirac distributions as testing functions, were used. However, any other

type of basis function, test function and discretization grid could in principle be used.

With Eq. (3.80), Eq. (3.79) can be written as
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K sin

(

2

[

N

∑
j=1

φ j(H)ψ j(θ,K)−θ

])

+HMssin

(

N

∑
j=1

φ j(H)ψ j(θ,K)

)

+ j
∫ 2π

0

∫ ∞

0
f (θ′,K′)sin

[

N

∑
j=1

φ j(H)ψ j(θ,K)−
N

∑
j=1

φ j(H)ψ j(θ′,K′)

]

dK′dθ′ = 0 . (3.81)

Introducing theN test functionsλi(θ,K) = δ(θ−θi)δ(K −Ki) for i = 1, . . . ,N whereδ denotes

the Diract distribution and(θi ,Ki) corresponds to the center point of each flat basis function

ψi(θ,K), and multiplying Eq. (3.81) by each test functionλi(θ,K) successively and performing

a double integration over{θ ∈ [0,2π[, K ∈ [0,R]} yields a non-linear system ofN equations for

i = 1, . . . ,N,

Ki sin(2[φi(H)−θi ])+HMssinφi(H)

+ j
∫ 2π

0

∫ ∞

0
f (θ′,K′)sin

[

φi(H)−
N

∑
j=1

φ j(H)ψ j(θ′,K′)

]

dK′dθ′ = 0 . (3.82)

Denoting the vector of unknown coefficientsφi by~φ, starting from an initial guess~φ(0),

which in the context of hysteresis loop computations would be the solution~φ(H) for the pre-

vious discrete value of the applied magnetic fieldH, the system of equations corresponding

to Eqs. (3.82) is solved iteratively with the constraint of Eq. (3.78) by computing an updated

approximation of the solution~φ(m+1) from the previous approximation~φ(m). A number of meth-

ods to solve non-linear systems of equations could be used. In our implementation, we used

a fixed-point method where each componentφ(m+1)
i of the solution vector~φ(m+1) is computed

sequentially and the most recent approximation of each component is used in the computation,

therefore making the algorithm used a non-linear fixed-point variant of the Gauss-Seidel method

for linear systems.
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Based on Eq. (3.82), the fixed-point method that we used in our implementation was,

Ki sin(2[φ(m+1)
i −θi ])+HMssinφ(m+1)

i

+ j
∫ 2π

0

∫ ∞

0
f (θ′,K′)sin

[

φ(m+1)
i −

N

∑
j=1

φ(m)
j ψ j(θ′,K′)

]

dK′dθ′ = 0 . (3.83)

where the functional dependence of the~φ components onH was omitted from the notation for

clarity. Using the trigonometric identity sin(A−B) = sinAcosB−cosAsinB, Eq. (3.83) can be

written as

Ki sin(2[φ(m+1)
i −θi ])+HMssinφ(m+1)

i − j
[

Scosφ(m+1)
i −Csinφ(m+1)

i

]

(3.84)

where

C=
∫ 2π

0

∫ ∞

0
f (θ′,K′)cos

N

∑
j=1

φ(m)
j ψ j(θ′,K′)dK′dθ′ (3.85)

and

S=
∫ 2π

0

∫ ∞

0
f (θ′,K′)sin

N

∑
j=1

φ(m)
j ψ j(θ′,K′)dK′dθ′ (3.86)

which is a non-linear scalar equation forφ(m+1)
i , not unlike Eq. (3.6) for the original Stoner-

Wohlfarth model, that can be solved using a root finding algorithm.

To validate the proposed approach, the hysteresis loop for asystem of exchange coupled

particles with exchange energy densityj = 3×105erg/cm3, saturation magnetizationMs =

1400emu/cm3 and random anisotropy vectors~K with both the magnitude and the direction

being random with a distribution corresponding to the sum ofthe anisotropy of 12 particles2

with uniformly oriented anisotropy directions in thex−y plane and fixed anisotropy magnitude

K0 = 1×106erg/cm3. In this case, the resulting anisotropy direction is uniformly distributed

in the x− y plane while the probability density function forK is given by Eq. (3.64). The re-

2This number of 12 is chosen arbitrarily and simply serves to define the joint probability density function
f (θ,K).
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sult obtained using the generalized Stoner-Wohlfarth model with exchange coupling is shown

in Fig. 3.17 and compared with the result obtained using the Stoner-Wohlfarth hysteresis model

without exchange coupling and two hysteresis loops obtained from the micromagnetic simulation

of an ensemble of 10,000 particles, with and without exchange coupling respectively. Exchange

coupling is seen to have an appreciable effect on the hysteresis loop and the micromagnetic simu-

lation results are seen to be in good agreement with the results obtained with both the generalized

and original Stoner-Wohlfarth hysteresis models.
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Figure 3.17: Comparison of hysteresis loops for an ensemble of particles with randomly ori-
ented anisotropy following a uniform distribution on the unit sphere computedby a micromag-
netic simulation with 1000 particles and the probabilistic Stoner-Wohlfarth hysteresis model.

It should be noted that the iterative method used to solve thenon-linear equation in

the generalized Stoner-Wohlfarth method performs best when the exchange energy densityj is

not dominant compared to the other terms in Eq. (3.76). In cases where exchange coupling is

dominant, the system of equations becomes ill-conditioned. Because of this, the definition of

effective particles through anisotropy averaging is a toolthat can be usefully combined with the

above generalized Stoner-Wohlfarth method with exchange coupling since it lowers the effec-
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tive exchange coupling energy between effective particles. Also, it should be noted that when

comparing the result obtained from the generalized Stoner-Wohlfarth model with the result of

micromagnetic simulations,j in Eq. (3.76) being the exchange energy density associated with a

given particle, it should correspond to the energy density between 2 exchange coupled particles

in the micromagnetic simulation multiplied by the number ofnearest-neighbors with which a

particle is coupled. In the simulation used to produce the results of Fig. 3.17, while an exchange

energy density ofj = 3×105erg/cm3 was used for the Stoner-Wohlfarth model, since in the

micromagnetic simulation a simple cubic array of particleswas considered where each particle

is exchange coupled to its 6 nearest neighbor, the exchange energy between two particles is set

to j/6= 5×104erg/cm3.

Chapter 3, in part, is currently being prepared for submission for publication, Couture,

Simon; Lomakin, Vitaliy. The dissertation author was the primary investigator and author of this

material.
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Chapter 4

Coupling micromagnetism and

electrodynamics: modeling eddy currents

in micromagnetic simulations

The LLG equation states that the time derivative of the angular momentum associated

with a spinning electron is equal to the torque due to the interaction between the electron’s

magnetic moment and a magnetic field. As discussed in chapter2, while the LLG equation

is derived from electromagnetism and considers the magnetic field as obtained from the so-

lution of the Maxwell equations, it is possible through a linearization procedure to introduce

effective magnetic fields to account for other interactionswhich are not governed by electro-

magnetism. Chapter 3 focused on two of these effects, namely the exchange interaction and

crystalline anisotropy. The present chapter is concerned with the true or maxwellian magnetic

field, in the sense that it satisfies the Maxwell equations, and how it is coupled with the LLG

equation of micromagnetism.

Historically, only the static Maxwell equations were considered, leading to the magneto-

static field, also known as the demagnetizing field or dipolarinteraction. On p.17 of his 1963
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bookMicromagnetics, Brown writes, “The magnetostatic energy was taken into account in some

of these early calculations in micromagnetics. In domain theory, meanwhile, it had been almost

completely ignored.” In a 2000 review on the current state ofthe art in micromagnetism [38],

the magnetostatic field is considered as one of the effectivefields along with the exchange and

anisotropy fields, without justifying the magnetostatic approximation. This situation is proba-

bly due to a number of factors, one of which being the fact thatoriginally, the works that led

to micromagnetism were concerned with the equilibrium state of magnetization, with studies

on magnetization dynamics coming somewhat later. Another factor to explain the prevalence

of the magnetostatic approximation is the small size of the magnetic regions that were consid-

ered which justifies neglecting any electrodynamic effect.Lastly, the problem of computing

the magnetostatic field for a given magnetization configuration is in itself far from trivial and

computationally costly, and therefore provided a sufficient challenge for researchers, numerical

algorithms and computers.

As the size of problems that can be handled computationally has grown and as the fre-

quency of operation of magnetic devices has increased and consequently researchers have be-

come more interested in modeling the high frequency behavior of magnetic devices, some re-

searchers pursued the idea of going beyond the magnetostatic approximation and including elec-

trodynamic effects in micromagnetic simulations. Given that ferromagnetic materials are good

conductors, one such effect is eddy currents, which are induced by time varying magnetic fields

and magnetization, and themselves induce a magnetic field which will interact with the magneti-

zation through the LLG equation. Eddy currents are known to have potentially significant effects

in magnetic materials, introducing losses to the system andaltering the magnetization dynamics.

In section 4.1, the phenomenon of eddy currents and how they arise from the Maxwell

equations is discussed. The different approximations to the Maxwell equations and how they

couple to the LLG equation are also presented. Section 4.2 offers a review of the works that have

been done on modeling eddy currents effects in micromagnetic simulations. In section 4.3, the
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limits of validity of the quasistatic approximation of the Maxwell equations, which is sufficient

to account for eddy currents, are examined. The limits of validity of the static approximation, in

which case eddy current effects can safely be neglected, arealso given. Section 4.4 discusses the

mechanism for coupling the LLG and Maxwell equations so thateddy currents, including the

diffusion effect, are accounted for. In section 4.5, the formulation for an integral equation solver

for the Maxwell equations is presented. A test problem whichis used to validate the proposed

solver is described in section 4.6. Section 4.7 introduces an alternative Maxwell equations solver

based on the finite elements method. Lastly, section 4.8 presents simulation results that illustrate

the effects of eddy currents in micromagnetic simulations.

4.1 Eddy currents and the Maxwell equations

Eddy currents, also known as Foucault currents, occur in conductors subjected to a time-

varying magnetic flux density~B. The effect can be understood in terms of Faraday’s law,

∇×~E =−∂~B
∂t

(4.1)

where the time-varying magnetic flux density~B induces an electric field~E whose rotation is

equal to∂~B/∂t. In a material with conductivityσ, this electric field will give rise to a current

field due to Ohm’s law,

~J = σ~E (4.2)

with the current lines rotating around∂~B/∂t, hence their name eddy currents. The eddy currents

phenomenon is illustrated in Fig. 4.1.
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~B

~J = σ~E

Figure 4.1: A time-varying magnetic flux density~B in a conductive material with conductivity
σ induces a rotating electric field~E and a corresponding current density~J, known as eddy
currents

Faraday’s law is one of the Maxwell equations, which read

∇×~E =−∂~B
∂t

(4.3a)

∇× ~H =
∂~D
∂t

+ ~J (4.3b)

∇ ·~D = ρ (4.3c)

∇ ·~B= 0 . (4.3d)

In these equations, the magnetic field is defined as

~H =
1
µ0
~B− ~M (4.4)

with µ0 the free space permeability while the electric flux density is defined as

~D = ε0~E+~P (4.5)

with ε0 the free space permittivity and where the material’s electric polarization~P has been in-
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troduced [6]. The electric polarization is a macroscopic field quantity which is defined as the

spatially averaged molecular dipole moment inside a material and measures the spatial distribu-

tion of bound charges inside molecules or atoms of a material. When an electric field is applied,

positive and negative charges will tend to separate from each other, and for many materials, the

electric polarization can be expressed as a linear functionof the electric field,

~P= ε0χe~E (4.6)

whereχe is the electric susceptibility1. Inserting this into Eq. (4.5) gives

~D = ε0(1+χe)~E = ε~E (4.7)

where the material’s permittivity is defined asε = ε0(1+χe). This linear relationship between

~D and~E greatly eases the solution of the Maxwell equations.

When treating magnetic materials in electromagnetic problems, establishing a linear rela-

tionship between~H and~M is highly desireable. When it is possible, the magnetic susceptibility

χm is defined, as was done in chapter 3, such that

~M = χm~H . (4.8)

Inserting this into Eq. (4.4) gives

~B= µ0(1+χm)~H = µ~H (4.9)

where the material’s permeability is defined asµ = µ0(1+ χM). In many problems involving

magnetic materials however, this is not possible due to effects such as magnetic hysteresis and

1Note that the electric susceptibility is usually defined in the frequency domain, so that in the time domain the
product ofχe and~E would be replaced by their convolution. Also, in general both χe andχm are tensors.
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in general to the non-linear nature of the equations governing magnetization dynamics. Indeed,

what is needed to solve the Maxwell equations is a constitutive relation between~M and~H, i.e. a

function f such that~M = f (~H). Clearly, such a constitutive relation consists in the solution of

the LLG equation with the associated mechanics of micromagnetism. This leads to the important

idea that, whereas from the point of view of micromagnetism,the Maxwell equations are solved

to determine the magnetic field induced by a given magnetization distribution, from the point

of view of an electromagnetic problem, the LLG equation needs to be solved to determine the

magnetization for a given magnetic field. The LLG and Maxwellequations should therefore

be regarded as a coupled set of equations where neither the LLG equation nor the Maxwell

equations is subordinate to the other but instead should be considered on an equal footing.

To see how the Maxwell equations and the LLG equation are coupled, Eq. (4.4) is used

to write the Maxwell equations in the form

∇×~E =−µ0
∂
∂t

(

~H + ~M
)

(4.10a)

∇× ~H =
∂~D
∂t

+ ~J (4.10b)

∇ ·~D = ρ (4.10c)

∇ ·
(

~H + ~M
)

= 0 . (4.10d)

When the static approximation is made, the time derivative terms in Eqs. (4.10a) and (4.10b) are

neglected and the Maxwell equations become

∇×~E = 0 (4.11a)

∇× ~H = ~J (4.11b)

∇ ·~D = ρ (4.11c)

∇ ·
(

~H + ~M
)

= 0 . (4.11d)
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where the equations in terms of~E and~H are seen to be completely decoupled. In the context of

micromagnetics, the electrostatic equations, Eqs. (4.11a) and (4.11c), can be ignored and only

the magnetostatic equations, Eqs. (4.11b) and (4.11d), aresolved. In Eqs (4.11), the current

density~J should be regarded as an impressed current, given as a data ofthe problem. To differ-

entiate the field arising from this impressed current and thefield induced by the magnetization,

~H is decomposed into

~H = ~Hi + ~Hms (4.12)

where the impressed field~Hi is solution of

∇× ~Hi = ~J (4.13a)

∇ · ~Hi = 0 (4.13b)

and where the magnetostatic field is solution of

∇× ~Hms= 0 (4.14a)

∇ ·
(

~Hms+ ~M
)

= 0 . (4.14b)

Summing Eqs. (4.13) and (4.14), it is easily seen that~H of Eq. (4.12) satisfies Eqs. (4.11b) and

(4.11d). The equations for~Hi, Eqs. (4.13), are completely independent of the magnetization ~M

and can be solved for a given source current distribution~J. The equations for~Hms, Eqs. (4.14)

correspond to the equations of section 2.3 on the magnetostatic field and can be solved for a

given magnetization distribution~M. From the point of view of electromagnetism, the problem

of Eqs. (4.14) is relatively straightforward: given the magnetization ~M everywhere in space,

compute the field~Hms also everywhere in space. Since Eqs. (4.14) do not depend on time other

than through~M, the magnetostatic field effectively propagates instantaneously and all the system

dynamics lie with the LLG equation. It is not surprising thenthat when the static Maxwell
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equations are used in micromagnetism, the magnetostatic field is treated as just another effective

field with the Maxwell equations being subordinate to the LLGequation.

This picture changes when the dynamic Maxwell equations of Eqs. (4.10) are considered.

Through Faraday’s law, Eq. (4.10a), a time-varying magnetization will induce an electric field

and corresponding eddy currents, which will in turn induce amagnetic field through Ampere’s

law, Eq. (4.10b). Unlike in the static case, here the electric field is coupled with the magnetic

field and needs to be considered. The displacement current term ∂~D/∂t in Eq. (4.10b), which

was famously postulated by Maxwell, also gives rise to wave propagation of the electric and

magnetic fields. While it is certainly possible to consider the solution of the full Maxwell equa-

tions in the context of micromagnetic simulations, even today the size of the magnetic devices

that are modeled are deeply subwavelength. For instance, for dynamics with a frequency of

10 GHz, which is quite typical of magnetic materials, the freespace wavelength is 3 cm whereas

micromagnetic problems rarely exceed tens of microns in size. For this reason and because of

other arguments that will be presented in section 4.3, thereis no need to solve the full Maxwell

equations. Instead, the magnetoquasistatic Maxwell equations, where the displacement current

term is neglected, is a good compromise which accounts for the eddy currents effect.

The magnetoquasistatic Maxwell equations read as follows,

∇×~E =−µ0
∂
∂t

(

~H + ~M
)

(4.15a)

∇× ~H = ~J (4.15b)

∇ ·~D = ρ (4.15c)

∇ ·
(

~H + ~M
)

= 0 . (4.15d)

In addition to the electromagnetic wave propagation effectthat is lost, it is interesting to note that

neglecting the displacement current also breaks the conservation of charges law that is contained

in the full Maxwell equations. Indeed, taking the divergence of Eq. (4.10b) and making use of
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Eq. (4.10c), one obtains

∇ · ~J =−∂ρ
∂t

(4.16)

which is the conservation law for the free charge densityρ in its differential form. With the

magnetoquasistatic approximation, taking the divergenceof Eq. (4.15b) yields

∇ · ~J = 0 (4.17)

or, using Ohm’s law,

∇ · (σ~E) = 0 . (4.18)

In regions where the conductivityσ is non-zero and uniform, this gives∇ ·~E = 0. In ferromag-

nets, electric polarizability is weak so that~D = ε0~E can be assumed. Then from Eq. (4.15c), it

follows that in regions of uniform conductivity,ρ = 0. In regions where the conductivity is zero,

no such conclusion can be made and there can exist distributions of charges that are specified

for a problem and which will produce a corresponding electrostatic field that is added to the

field induced from Faraday’s law, Eq. (4.15a). In the literature on eddy currents, one often sees

Eq. (4.15c) written as∇ ·~D = 0 for conductive regions. However, as pointed out by Brown [39],

the volumetric charge densityρ in Eq. (4.15c) should be replaced by a surface charge densityat

surfaces where a discontinuity in the conductivity occurs,for example at the boundary of a con-

ductive region or at the boundary between two conducting regions with different conductivities.

To see this, consider Eq. (4.15b) and lets assume that the current density~J has no singularity

such as a surface Dirac distribution2 . The curl operator would cause any discontinuity in the

component of~H tangential to the surface across which the discontinuity occurs to generate such

a singularity. This can be understood in terms of distribution theory, where the generalized curl

operator on some function~u is defined based on the inner product of the curl of~u with a test

2Such a singularity would represent a surface current density which arises in perfectly conducting materials or
infinitely thin conductors, both of which are not consideredhere.
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function~φ. Indeed, referring to Fig. 4.2, it can be shown that

< ∇×~u,~φ >=
∫

Ω1

∇×~u·~φdV+
∫

Ω2

∇×~u·~φdV+
∫

C
[n̂× (~u2−~u1)] ·~φdS (4.19)

where~u2−~u1 represents the jump in~u at the surfaceC [40]. Since~J has no surface singularity,

it follows that n̂× ~H is continuous across any surface with ˆn being a unit vector normal to this

surface. From this, it follows that the normal component of∇× ~H is also continuous across any

surface. From Eq. (4.15b), this means that the normal component of~J, which can be expressed

as

n̂· ~J = n̂· (σ~E) , (4.20)

is continuous across any surface. This includes surfaces where a jump discontinuity of the

conductivityσ occurs. From Eq. (4.20), it is seen that a discontinuity inσ must therefore be

accompanied by a jump discontinuity of the normal~E component, ˆn·~E.

Ω1

Ω2
n̂

C

Figure 4.2: Two-dimensional representation of a three-dimensional domainΩ divided into two
domains,Ω1 andΩ2 which are separated by a surface C.

As was done for the curl operator, a generalized divergence operator can be defined by

< ∇ ·~u,~φ >=
∫

Ω1

∇ ·~uφdV+
∫

Ω2

∇ ·~uφdV+
∫

C
n̂· (~u2−~u1)φdS (4.21)

from which it is seen that a jump discontinuity across any surface of the component of a vector

field~u normal to that surface introduces a surface Dirac distribution. Applying this to the electric
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field at a surface with a jump discontinuity of the conductivity, from Eq. (4.15c) with~D = ε0~E,

it is seen that the charge densityρ must include a surface charge densityρs corresponding to the

jump in~E.

A case which is of particular interest is at the boundary of a conductor region, outside of

which the conductivityσ is zero. For the normal component of~J in Eq. (4.20) to be continuous,

the normal component of~E inside the conductor at the boundary must be zero, that is,

n̂·~E = 0 . (4.22)

Meanwhile, outside the conductor, the~E field can be obtained by solving Eqs. (4.15a) and (4.15c)

and will depend on~H and~M. However, because the electric field there will not generateany cur-

rent, it will have no effect on the solution for~H, which would not be the case if the displacement

current term was not neglected. The~E field in non-conductive regions is therefore not needed

when solving the magnetoquasistatic Maxwell equations andcan be regarded as a by-product of

the solution process, along with the corresponding surfacecharge density.

From the discussion so far, it is seen that the magnetoquasistatic Maxwell equations al-

low the modeling of eddy currents at the cost of neglecting electromagnetic wave propagation

effects as well as capacitive effects resulting from electric charge dynamics. While the electro-

magnetic wave propagation effect is lost, propagation of the fields by diffusion is still dictated by

the magnetoquasistatic Maxwell equations. Indeed, considering a conductive region which for

simplicity is assumed to have a uniform conductivity, taking the curl of Eq. (4.15b) with~J = σ~E

gives

∇×∇× ~H = σ∇×~E (4.23)

Using Eq. (4.15a) to replace for∇×~E and using the identity∇×∇×~H = ∇(∇ ·~H)−∇2~H along
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with ∇ · ~H =−∇ · ~M from Eq. (4.15d), Eq. (4.23) becomes

∂~H
∂t

=
1

σµ0
∇2~H − ∂~M

∂t
+

1
σµ0

∇∇ · ~M (4.24)

which is a diffusion equation for the magnetic field~H. A diffusion equation can also be obtained

for ~J from the magnetoquasistatic Maxwell equations. Indeed, taking the curl of Eq. (4.15a) and

using Eq. (4.15b) to replace for∇× ~H gives

∂~J
∂t

=
1

σµ0
∇2~J− ∂

∂t
∇× ~M . (4.25)

In both Eqs. (4.24) and (4.25), the diffusion constant is(σµ0)
−1 and both are a vector version of

the scalar diffusion equation, which in its simplest one-dimensional form reads

∂u(x, t)
∂t

= k
∂2u
∂x2 (4.26)

wherek is the diffusion constant. The solution of Eq. (4.26) has thefunctional form [20]

u(x, t)∼ e−x2/4kt . (4.27)

A comparison between this and Eqs. (4.24) and (4.25) motivates the definition of the magnetic

time constant

τm = σµL2 (4.28)

whereL is a characteristic length over which diffusion occurs (forexample, the size of a conduc-

tor region). The magnetic time constant corresponds to the characteristic time over which diffu-

sion dynamics occur. The same comparison between the scalardiffusion equation and Eqs. (4.24)
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and (4.25) can be used to characterize the diffusion length scale. The skin depth is defined as

δ =

√

1
π f µσ

(4.29)

where f is the system’s characteristic frequency. These constantswill be used in section 4.3

when discussing the limits of validity of the magnetoquasistatic approximation and also when

analyzing simulation results involving eddy currents.

4.2 State of the art of eddy currents modeling in micromag-

netic simulations

To this author’s knowledge, the first work describing the inclusion of eddy currents ef-

fects in micromagnetic simulations is that of Della Torre and Eicke in 1997 who proposed a 2D

finite difference solver [41]. In their approach, the diffusion effect is neglected since the term

∂~H/∂t in the right-hand side of Eq. (4.15a) is discarded and only the ∂~M/∂t term is considered.

Their approach consists in iteratively solving the LLG equation, and at each iteration computing

∂~M/∂t through finite differences, which is then used to compute the~E field and the eddy currents.

The~H field induced by eddy currents is then computed and fed back into the LLG equation.

Also in 1997, Sandler and Bertram introduced a similar methodto include eddy currents

in a 1D micromagnetic model of a hard disk recording head [42]. They also neglected the

diffusion effect. In 2004, Torres et al. proposed a scheme similar to that of Della Torre and

Eicke to include eddy currents in a 3D finite difference micromagnetic solver [43]. They too

neglected diffusion effect. They presented simulation results which showed that eddy currents

accelerate the switching of the magnetization in a ferromagnetic cube from a up state to a down

state.

In 2005, Hrkac et al. proposed a hybrid finite element method /boundary elements
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method for a 3D eddy currents micromagnetic solver which didinclude diffusion effects, even

though it neglected the time derivatives of externally applied fields and of the magnetostatic

field3 [44, 45]. Including the∂~H/∂t term in the right-hand side of Eq. (4.15a) to account for

diffusion makes the problem of solving the Maxwell equations for the~H field more difficult.

The earlier works described above circumvented this by neglecting this term, which allowed the

Maxwell equations to be solved given the magnetization~M and its time-derivative∂~M/∂t as a

set of partial differential equations involving only the spatial derivatives of~H. When the time

derivative of~H is included in the Maxwell equations, these become a set of partial differential

equation in terms of both space and time for~H. Then the strategy employed by the works

cited above of time integrating the LLG equation and iteratively solving the Maxwell equations

based only on the latest solution for the magnetization and its time derivative does not work. To

address this problem, Hrkac et al. considered a system of equations composed of the LLG and

Maxwell equations and integrated it in time as a whole, usingthe IDA solver [25] which solves

differential-algebraic systems of equations which are systems with the formF(t,u, u̇) = 0, with

u̇ denoting the time derivative of the unknownu(t).

In 2007, Takano et al. presented micromagnetic simulation results which included eddy

currents effects for a hard-disk recording head [46]. Theirsolver was based on a edge elements

finite elements formulation and included the diffusion effect, however in their paper the details

on the formulation and how time integration is performed arescarce. Lastly, in 2012 Chang et al.

proposed a formulation similar to that of Torres et al. but based on a finite element formulation.

Their solver was based on the FastMag micromagnetic solver and neglected the diffusion effect.

3As will be seen later in this chapter, discarding the time derivative of the magnetostatic field from the eddy
currents formulation is actually justified and does not constitute an approximation.
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4.3 Bounds for the validity of the static and quasistatic Maxwell

equations

Before discussing the strategy used to solve the coupled LLG and Maxwell equations

and presenting the solver’s formulation, the present section aims to give bounds for the validity

of the static and quasistatic approximations to the Maxwellequations. The discussion follows

the approach used by Haus and Mercher [47] which consists in comparing the fields obtained

using the full Maxwell equations with those obtained using the approximate Maxwell equations

to evaluate the error associated with the approximation.

The full Maxwell equations, Eqs. (4.3), can be written in thefrequency domain in terms

of the~E and~H fields as

∇×~E =− jωµ~H (4.30a)

∇× ~H = jωε~E+ ~J (4.30b)

∇ ·~E =
ρ
ε

(4.30c)

∇ · ~H = 0. (4.30d)

whereω is the angular frequency and where the linear constitutive relations~D = ε~E and~B= µ~H

are used. There are two underlying assumptions to these constitutive relations. The first one is

the linearity of the electric polarization and magnetization response. In the context of micromag-

netics, the magnetization response evidently cannot in general be considered as a linear function

of ~H as in Eq. (4.8). However, an approximate magnitude forµ can be obtained by linearizing

the behavior of~M around a given state based on how much the magnetization would vary if an

applied field was applied, and since the discussion will relyon order of magnitude arguments,

such an approximate value as the definition ofµ is perfectly acceptable. The second one is

that while in general the permittivity and permeability aretensors, for the order of magnitude
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arguments of this section, they will be assumed to be scalars.

Let us begin by deriving the condition for the validity of themagnetoquasistatic approxi-

mation. Assuming that the spatial variations of~E over a characteristic lengthL are of the same

order of magnitude as~E itself, the curl of~E will have a magnitude on the order of

∇×~E ∼ E
L

(4.31)

whereE denotes the magnitude of~E. The characteristic lengthL that should be considered for

the purpose of setting a bound for the magnetoquasistatic approximation is the largest linear

dimension of the problem and will be discussed in more details shortly. With this, in terms of

the magnitudes of~E and~H, Eq. (4.30a) yields

E ∼ ωµLH . (4.32)

The magnetoquasistatic Maxwell equations are obtained by neglecting the displacement

current term in Eq. (4.30b) which becomes

∇× ~H = ~J . (4.33)

The error∆~H introduced by this approximation therefore satisfies

∇×∆~H = jωε~E (4.34)

or, in terms of magnitudes and characteristic length,

∆H ∼ ωεLE . (4.35)
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Using Eq. (4.32), the magnitude of the relative error on the~H field is on the order of

∆H
H

∼ ω2εµL2 . (4.36)

In terms of the relative permittivity and permeability, andintroducing the characteristic time

τ = 1/ω for a given frequency componentω, Eq. (4.36) can be written as

∆H
H

∼ 1
τ2

L2

c2/εrµr
. (4.37)

Sincec2/εrµr corresponds to the speed of propagation of electromagneticwaves, Eq. (4.37)

states that the error introduced by the magnetoquasistaticapproximation is small when the time

required for an electromagnetic wave to propagate a distance corresponding to the characteristic

lengthL is much smaller than the characteristic time. The validity of the magnetoquasistatic

approximation therefore depends on the highest frequency component that characterize the sys-

tem dynamics, corresponding to the shortest characteristic timeτ. Concerning the characteristic

lengthL, Eq. (4.37) and the use ofL to characterize the spatial derivatives of the fields imply that

it is variations of the fields over large distances that are critical to determine the error associated

with the magnetoquasistatic approximation. Intuitively,this can be understood from the fact that

the magnetoquasistatic approximation essentially disregards electromagnetic wave propagation.

Therefore, variations of the fields over small distances propagate very quickly and the propaga-

tion delay can be neglected. On the other hand, it is propagation over large distances that can

incur a significant time delay. For this reason, as stated before it is the largest linear dimension

of the problem that should be considered as the characteristic lengthL4.

The relative error in Eq. (4.36) can also be written in terms of the electromagnetic wave-

4An equivalent, but perhaps more rigorous approach would be to consider the Fourier transform in space of the
fields, in which case the curl of a vector field~A is equivalent to~k×~A and involves the spatial frequency~k, to which
a characteristic length can be associated byL ∼ 1/k.
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length, given byλ = 1/2πω
√

µε,
∆H
H

∼ (2π)2L2

λ2 . (4.38)

This states that the error introduced by the magnetoquasistatic approximation is small when the

characteristic length is much smaller than the electromagnetic wavelength,

L ≪ λ . (4.39)

It is interesting to note that the same condition of validityholds for the electroquasistatic

approximation, where the∂~B/∂t term is neglected, which corresponds to the− jωµ~H term in

Eq. (4.30a). Indeed, assuming that we are in a region removedfrom any current source~J (note

that eddy currents will not be present in the electroquasistatic approximation), Eq. (4.30b) yields

H ∼ ωεLE . (4.40)

From Eq. (4.30a), the error introduced by the electroquasistatic approximation will be on the

order of

∆E ∼ ωµLH (4.41)

which, when combined with Eq. (4.40) becomes

∆E
E

∼ ω2εµL2 (4.42)

which is identical to the relation of Eq. (4.36) for the magnetic field. One might wonder, if

the condition for the electroquasistatic and magnetoquasistatic are in fact the same, which one

should be used? The answer to this question is that it dependson the problem that is considered.

In both approximations, the wave propagation effect is neglected, but the price paid for that is the

loss of an accurate representation of the dynamics of electric charges in the magnetoquasistatic

97



approximation and the loss of the Faraday and eddy currents effects in the electroquasistatic ap-

proximation. If the problem is concerned with magnetic induction, as in eddy currents problems,

the magnetoquasistatic approximation must be used. If the problem is instead about dynamic

capacitive effects, the electroquasistatic approximation is the correct choice. If both effects are

equally important, the full Maxwell equations need to be used and wave propagation considered.

At this point, it is interesting to look at how good the quasistatic approximation is in the

context of micromagnetic simulations. Micromagnetic simulations are seldom done on devices

exceeding a few tens of microns, so thatL = 50µm can be considered an upper limit. The

frequency content of magnetization dynamics is usually limited to a few tens of GHz so that

ω= 2π×50×109s−1 can be considered an upper limit. Then, considering a relative permittivity

εr = 1 and for instance a relative permeabilityµr = 10, from Eq. (4.36) the relative error on

the magnetic field is∆H/H ∼ 0.03. From this rough calculation, it can be concluded that the

magnetoquasistatic approximation is an excellent one for the vast majority of micromagnetic

simulations carried out today.

Now that the magnetoquasistatic approximation was shown tobe a comfortable one for

virtually all micromagnetic simulations, the next task is to determine when the magnetostatic

approximation is acceptable, that is, when is it acceptableto use the long standing assumption

that the static Maxwell equations are sufficient in micromagnetic simulations and when on the

other hand can eddy currents effects be expected to have a non-negligible effect. In the magneto-

quasistatic approximation inside conductor regions, the current density~J in Eq. (4.33) includes

eddy currents~Jeddywhile they are excluded in the magnetostatic approximation. Because of this,

the magnitude of the error on~H introduced by the magnetostatic approximation is on the order

of

∆H ∼ LJeddy (4.43)

where the characteristic lengthL here corresponds to the largest linear dimension of the largest

conducting body in the problem. The eddy current density is given by ~Jeddy= σ~E with ~E be-
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ing given by Faraday’s law, Eq. (4.30a), which leads to the relation for the magnitude of~E of

Eq. (4.32). Combining this with Eq. (4.43) gives the relativeerror as

∆H
H

∼ σωµL2 . (4.44)

This can be written more simply using the magnetic time constant of Eq. (4.28) and the charac-

teristic timeτ = 1/ω,
∆H
H

∼ τm

τ
(4.45)

which states that the error introduced by the magnetostaticapproximation is negligible when the

diffusion time constant is much smaller than characteristic time of the system dynamics,

τm ≪ τ . (4.46)

In other words, eddy currents can be neglected if diffusion throughout conductors occurs much

faster than the characteristic time. The relative error canalso be written in terms of the skin

depthδ, defined in Eq. (4.29), in which case Eq. (4.44) becomes

∆H
H

∼ 2
L2

δ2 . (4.47)

This states that the magnetostatic approximation is sufficient when the skin depth is much larger

than the size of conductors,

L ≪ δ . (4.48)

Again, it is interesting to consider some parameters that might be used in a typical micro-

magnetic simulation to get an idea of the validity of the magnetostatic approximation. Consid-

ering the largest conductor size to be a modestL = 1µm, a conductivityσ = 1×107S/m which

roughly corresponds to the conductivity of iron, a modest relative permeability valueµr = 5 and
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the highest frequency component to be 5 GHz, Eq. (4.44) gives

∆H
H

∼ 2.0 (4.49)

which indicates that neglecting eddy current effects by considering the magnetostatic approxi-

mation could introduce a significant error in the magnetic field in this case. It is important to

note that while satisfying the conditions of Eqs. (4.46) and(4.48) guarantees the validity of the

magnetostatic approximation, depending on the specific problem, the use of the magnetostatic

approximation in a micromagnetic simulation might still yield accurate results even if they are

not satisfied. This might be the case for instance when effective fields other than the magnetic

field induced by eddy currents or the magnetostatic field dominate the dynamics, or when the

dominant field variations occur over a scale smaller than thelargest conductor sizeL. Deter-

mining whether or not the eddy currents can be neglected for aspecific problem is a complex

question, and the bounds given above should serve as a guide.If they are satisfied, the magneto-

static approximation is definitely valid. If they are not, then one should proceed with care when

using the magnetostatic approximation and consider the possibility that eddy currents effects

could be non-negligible.

4.4 Coupling the Landau-Lifshitz-Gilbert and magnetoqua-

sistatic Maxwell equations

The modeling of eddy currents effects in micromagnetic simulations requires the solution

of the LLG equation coupled to the magnetoquasistatic Maxwell equations. For convenience, the

LLG equation is repeated here from Eq. (2.44),

d~M
dt

=
γ

1+α2
~M× ~H +

γα
(1+α2)|~M|

~M× (~M× ~H) (4.50)
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while from the discussion of section 4.1, the magnetoquasistatic Maxwell equations read

∇×~E =−µ0
∂
∂t

(

~H + ~M
)

(4.51a)

∇× ~H = ~J (4.51b)

∇ ·~E =
ρs

ε0
(4.51c)

∇ ·
(

~H + ~M
)

= 0 . (4.51d)

Referring to section 2.4.2 on the time integration of the LLG equation, the LLG is an

equation of the form
∂~M
∂t

= ~f (~M, ~H) (4.52)

where~f , corresponding to the right-hand side of (4.50), is a non-linear function of the mag-

netization~M and of the effective field~H which is solved by the Newton method, as described

in section 2.4.2. When the magnetostatic approximation of the Maxwell equations is used, the

maxwellian~H field, along with the exchange and anisotropy field, is simplya function of~M, that

is,

~H = ~H(~M) . (4.53)

In this case,~f in Eq. (4.52) is really just a function of~M and is readily evaluated at~M =

~M( j)
n+1 at the j ’th Newton iteration for the time steptn+1. When the magnetoquasistatic Maxwell

equations are considered, but with the additional approximation of neglecting the term∂~H/∂t in

Eq. (4.51a), which corresponds to neglecting the diffusioneffect,~H is a function of both~M and

its time derivative∂~M/∂t so that

~H = ~H(~M,
∂~M
∂t

) . (4.54)

This does not pose additional difficulties for the solution of Eq. (4.52) by the Newton method,

since the time derivative of~M in the Maxwell equations can be discretized using for instance
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BDF and the nature of Eq. (4.52) is unchanged, it remains an implicit non-linear system of equa-

tions for the unknown~Mn+1. This is the reason why most works on incorporating eddy currents

in micromagnetic simulations have neglected the diffusionterm in the Maxwell equations.

When the complete magnetoquasistatic Maxwell equations areconsidered, including the

diffusion term∂~H/∂t, they become a set of partial differential equations which include the time

derivative of~H, thereby elevating~H to the same level as~M, i.e. a variable that must be time

integrated. This is what motivated Hrkac et al. [44] to solvea problem where the vector of un-

knowns~M is appended by the unknowns~H and where the LLG and Maxwell equations form a

single system of equations. While strictly speaking this is the most rigorously correct approach,

in practice it might not be the best one. Indeed, another approach, which is the one that will be

used in this work, is to slightly relax the coupling that exists between~M and~H and allow~H to

lag by one iteration in the iterative solution process. In other words, the LLG equation and the

Maxwell equations are kept as two separate sets of equationsand are solved each individually by

two coupled solvers. The solution process with this approach is illustrated in Fig. 4.3. The LLG

equation solver integrates~M in time, as described in section 2.4.2. When evaluating~f (~M, ~H) as

part of the Newton method, say to find the( j +1)’th approximation of~M at timetn, ~M( j+1)
n , con-

trol is passed to the Maxwell equations solver which solves for the~Hn field while assuming that

the value of the magnetization at time steptn corresponds to the latest available approximation

~M( j)
n .

In this approach, the computation of the~H field is very similar to the case where~H is

simply a function of~M. The only difference is that here, the computation of~H depends on its

values at previous time steps. When comparing this approach with that of combining the LLG

and the Maxwell equations in a single system, it has the advantage of avoiding any possible issue

with the conditioning of a matrix built to solve~M and~H simultaneously, these two unknowns

potentially having different orders of magnitude. Anotheradvantage is that, assuming that the

~M and~H fields are computed at the same number of nodes, the single system approach doubles
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LLG Solver Maxwell Solver

Figure 4.3: Schematic illustration of the proposed approach with two coupled solvers, one
for the LLG equation and one for the Maxwell equations. At each time step, the non-linear
LLG equation is solved iteratively using the Newton method. At each Newton iteration, say at
time tn, in order to compute the next approximation~M( j+1)

n using Eqs. (2.99) and (2.101), the
magnetic field~Hn is computed using the previous approximation~M( j)

n .

the size of the problem which will be slower to solve than two smaller systems. This advantage

is somewhat negated by the fact that in allowing the~H field to lag behind~M by an iteration

in the solution process, a price will be paid in terms of speedof convergence. However, the

main advantage of the proposed approach lies in the fact thatas opposed to the LLG equation,

the Maxwell equations are linear, and therefore solving them involves the solution of a linear

system of equations. Because of this, the larger system of thesingle system approach is not only

split into two smaller systems of equations, it is split intotwo systems where only one of them

needs to be solved by the Newton method, which involves the solution of a linear system for

each Newton iteration, while the other one only requires thesolution of a single linear system.

In the proposed approach, the magnetic field is in a sense subordinate to the magnetiza-

tion since it is the magnetic field that lags one iteration behind the magnetization. Also, it is the

LLG equation solver that invokes the Maxwell equations solver at each Newton iteration and
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therefore controls the overall solution process. The reason for this is not that the magnetization

or the LLG equation is more important, it is simply because bybreaking the overall system of

equations into two separate systems, one of the fields~H or ~M has to be solved iteratively, where

with each iteration a solution for the second field is obtained based on the value of the first field

from the latest iteration, until convergence is achieved. The magnetization~M is a natural choice

for the field to be solved iteratively, since it requires solving a non-linear problem and must be

done iteratively anyways. One could in principle choose to instead solve the Maxwell equations

iteratively, and solve the non-linear LLG equation at each iteration. This would however be less

efficient than the proposed approach since the LLG equation,being non-linear, also would need

to be solved iteratively.

4.5 An integral equation solver for the Maxwell equations

The approach used to model eddy currents in micromagnetic simulations uses two sep-

arate solvers, one for the LLG equation, the other for the Maxwell equations. While these two

solvers communicate with each other as part of the solution process as shown in Fig. 4.3, either

the LLG equation or the Maxwell equations solver can be treated as a black box. For instance,

the LLG equation solver is oblivious to how the Maxwell equations solver computes its solution,

as long as it returns the correct~H field solution. The same can be said about the LLG equa-

tion solver, the Maxwell equations solver is not aware of howthe ~M solution that it receives is

computed. Because of this, the Maxwell equations solver could solve either the full Maxwell

equations, the magnetoquasistatic Maxwell equations as inthis case, or even the magnetostatic

Maxwell equations without changing the overall approach ofFig. 4.3. Different numerical meth-

ods could also be used for each solver. This gives a lot of flexibility in the implementation of the

solvers.

In this section and in section 4.7, two different solvers forthe magnetoquasistatic Maxwell

104



equations will be presented, the first one based on an integral equation, the other one based on

the finite element method. As will be seen, each of these two methods has its advantages and

disadvantages. For instance, the integral equation approach only requires the discretization of

magnetic and conductive regions, thereby allowing the modeling of eddy currents without in-

creasing the overall size of the problem. However, the integral equation approach involves the

solution of a linear system of equations where the system matrix is in the form of an integro-

differential operator which can become expensive to evaluate. In the finite element method, the

air region around magnetic and conductive regions need to bediscretized, thus increasing the size

of the problem, but in this case the system matrix is a sparse matrix that can be pre-assembled.

For the integral equation formulation, it is useful to decompose the electric and magnetic

fields into two parts,

~E = ~EM +~EJ (4.55)

and

~H = ~HM + ~HJ . (4.56)

Here, theM subscript denotes the fields arising due to the magnetization ~M, which is provided

by the LLG solver and is acting as a source. These fields satisfy

∇×~EM =−µ0
∂
∂t

(

~HM + ~M
)

(4.57a)

∇× ~HM = 0 (4.57b)

∇ ·~EM = 0 (4.57c)

∇ ·
(

~HM + ~M
)

= 0 . (4.57d)

TheJ subscript denotes the fields due to currents~J, which include eddy currents~Jeddy and any
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source current~Ji that might be specified in the problem. These fields satisfy

∇×~EJ =−µ0
∂~HJ

∂t
(4.58a)

∇× ~HJ = ~J (4.58b)

∇ ·~EJ = 0 (4.58c)

∇ · ~HJ = 0 . (4.58d)

Summing Eqs. (4.57) and (4.58), it is easy to see that the total ~E and~H fields satisfy the magne-

toquasistatic Maxwell equations, Eqs. (4.51).

Looking at Eqs. (4.57), Eqs. (4.57b) and (4.57d) are recognized as the magnetostatic

equations. The field~HM is therefore none other than the magnetostatic field and is computed

exactly as one would in a micromagnetic solver where eddy currents effects are neglected. In

this work, the solution process for~HM is the one described in section 2.3. The difference here

however is that while in the magnetostatic approximation, the electric field is disregarded as it

is completely decoupled from the equations, the~EM field of Eq. (4.57a) will give rise to eddy

currents and needs to be computed. From Eq. (4.57c), the divergence of~EM is zero and it can

therefore be written as the curl of some vector field,

~EM =−∇×~F (4.59)

where~F is known as the electric vector potential. From section 2.3 (see Eq. (2.65)),~HM can be

written as

~HM =−∇ΦM . (4.60)

Using this along with Eq. (4.59), Eq. (4.57a) can be written as

∇×∇×~F = µ0
∂
∂t

(

−∇ΦM + ~M
)

(4.61)
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which, upon using the vector identity∇×∇×~a= ∇(∇ ·~a)−∇2~a, becomes

∇
(

∇ ·~F +µ0
∂ΦM

∂t

)

−∇2~F = µ0
∂~M
∂t

. (4.62)

From Helmholtz’s theorem [48], a vector field is only fully specified by both its curl and its

divergence. Since only the curl of~F is specified, it is not uniquely determined and we are free to

determine its divergence. A convenient choice in the present situation is known as the Lorentz

gauge and is

∇ ·~F =−µ0
∂ΦM

∂t
. (4.63)

With this, Eq. (4.62) simplifies to

∇2~F =−µ0
∂~M
∂t

. (4.64)

which is the Poisson equation with source term−µ0∂~M/∂t. Its solution is given by

~EM =
µ0

4π
∇×

∫
V

∂
∂t
~M(~x′)

|~x−~x′| d~x′ (4.65)

where the integration is over all space.

The solution for Eqs. (4.58) proceeds similarly. Because∇ · ~HJ = 0, the magnetic field

can be expressed as the curl of the magnetic vector potential~A,

~HJ = ∇×~A . (4.66)

With this, Eq. (4.58b) becomes

∇
(

∇ ·~A
)

−∇2~A= ~J . (4.67)

Here again, the divergence of~A must be specified by a choice of gauge. The natural choice here
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is ∇ ·~A= 0, in which case Eq. (4.67) simplifies to

∇2~A=−~J . (4.68)

Again, this is a Poisson equation which has solution

~A=
1
4π

∫
V

~J(~x′)
|~x−~x′|d~x

′ . (4.69)

Contrarily to Eq. (4.64) where the source~M is a known quantity, here the current~J includes

both any impressed source current~Ji which would be given as part of a problem and the eddy

current~Jeddy which is an unknown of the problem. For this reason, the field~HJ is split into

two components with corresponding magnetic vector potentials, ~HJ, i = ∇×~Ai and~HJ,eddy=

∇×~Aeddy, these magnetic vector potentials being given by

~Ai =
1
4π

∫
V

~Ji(~x′)
|~x−~x′|d~x

′ (4.70)

and

~Aeddy=
1
4π

∫
V

~Jeddy(~x′)
|~x−~x′| d~x′ . (4.71)

To solve for the electric field~EJ, Eq. (4.66) is used to replace~HJ in Eq. (4.58a) yielding

∇×
(

~EJ+µ0
∂~A
∂t

)

= 0. (4.72)

Since the vector field between parantheses is irrotational,it can be expressed as the gradient of

some scalar function. The electric scalar potentialΦJ is therefore introduced such that

~EJ =−µ0
∂~A
∂t

−∇ΦJ . (4.73)
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Inserting Eq. (4.73) in Eq. (4.58c) and noting that∇ ·~A= 0 because of the gauge choice results

in

∇2ΦJ = 0 (4.74)

which states that the electric scalar potential is a solution of the Laplace equation. This equation

can be solved using the finite element method provided that a suitable boundary condition is

prescribed. Such a boundary condition is obtained from Eq. (4.22) in section 4.1, which states

thatn̂·~E = 0 at the conductor boundaries. Since~E = ~EM +~EJ and with Eq. (4.73), this gives the

following Neumann boundary condition

∂ΦJ

∂n
= n̂·

(

~EM −µ0
∂~A
∂t

)

. (4.75)

The solution of the Laplace problem with a Neumann boundary condition is not unique and will

give rise to a singular or ill-conditioned matrix when solving with the finite element method.

This problem can be avoided by imposing the solution value atone or a few nodes at a certain

location on the boundary. The choice of this value is of no importance sinceΦJ is used to

compute~EJ and from Eq. (4.73) it is clear that only its gradient is of interest. Just as was done

for ~HJ, it is useful to decompose~EJ into different components,

~EJ = ~EJ,i +~EJ,eddy+~EJ,M (4.76)

defined as

~EJ,i =−µ0
∂~Ai

∂t
−∇ΦJ,i (4.77)

~EJ,eddy=−µ0
∂~Aeddy

∂t
−∇ΦJ,eddy (4.78)

~EJ,M =−∇ΦJ,M (4.79)

where~Ai and~Aeddyare given by Eqs. (4.70) and (4.71) and where the electric scalar potential has
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been decomposed into three components which each satisfy the Laplace equation as well as the

following boundary conditions,
∂ΦJ,i

∂n
=−n̂·µ0

∂~Ai

∂t
(4.80)

∂ΦJ,eddy

∂n
=−n̂·µ0

∂~Aeddy

∂t
(4.81)

∂ΦJ,M

∂n
= n̂·~EM . (4.82)

It is easily seen thatΦJ = ΦJ,i +ΦJ,eddy+ΦJ,M satisfies the Laplace equation with the boundary

condition Eq. (4.75).

At this point, all the elements are in place to setup an integral equation that will allow

to solve for the eddy currents~Jeddy and the corresponding magnetic field~HJ,eddy. While ~HM is

computed directly by computing an integral involving~M, the equations for the eddy currents

are implicit. To see this and to make notation more convenient, the following linear operators

are defined. From Eq. (4.65), the~EM field is computed by an integro-differential operatorLEM

consisting of the composition of the curl and integral operators applied on the time derivative of

~M,

~EM = LEM(
∂~M
∂t

) =
µ0

4π
∇×

∫
V

∂
∂t
~M(~x′)

|~x−~x′| d~x′ . (4.83)

From Eqs. (4.77) and (4.78), both~EJ,i and~EJ,eddy are obtained by first computing the

time derivatve of the corresponding magnetic vector potential ~Ai and~Aeddy from the integrals

of Eqs. (4.70) and (4.71) involving~Ji and ~Jeddy respectively, to which a correction is added

corresponding to the gradient ofΦJ,i andΦJ,eddy which are harmonic functions with boundary

conditions that are linear functions of the time derivatives of~Ai and~Aeddy. Both~EJ,i and~EJ,eddy

are therefore given by a linear integro-differential operator LEJ in terms of the time derivative of

~Ji and~Jeddy respectively,

~EJ,i = LEJ(
∂~Ji

∂t
) =−µ0

∂~Ai

∂t
−∇ΦJ,i (4.84)
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~EJ,eddy= LEJ(
∂~Jeddy

∂t
) =−µ0

∂~Aeddy

∂t
−∇ΦJ,eddy . (4.85)

Similarly,~EJ,M is obtained as the gradient ofΦJ,M, which is a harmonic function with a boundary

condition that is a linear function of~EM, itself being a function of the time derivative of~M as

seen from Eq. (4.83). Therefore, it is given by a linear integro-differential operator applied on

the time derivative of~M,

~EJ,M = LEJ,M(
∂~M
∂t

) =−∇ΦJ,M . (4.86)

The integral equation for the eddy currents~Jeddy is based on Ohm’s law~J = σ~E, which

when written in terms of its components becomes

~Ji + ~Jeddy= σ
(

~EM +~EJ,i +~EJ,eddy+~EJ,M

)

. (4.87)

Using the linear operators defined above, this can be writtenas

~Ji + ~Jeddy= σ
[

LEM(
∂~M
∂t

)+LEJ(
∂~Ji

∂t
)+LEJ(

∂~Jeddy

∂t
)+LEJ,M(

∂~M
∂t

)

]

. (4.88)

Using the BDF method to discretize the time derivative of~Jeddy as in Eq. (2.94), evalutating

Eq. (4.88) at timetn+1 and grouping~Jeddy,n+1 terms on the left-hand side gives a linear system

of equations that can be solved for~Jeddy,n+1,

~Jeddy,n+1−LEJ(α0Jeddy,n+1) =−~Ji +σ
[

LEM(
∂~M
∂t

)+

LEJ(
∂~Ji

∂t
)+LEJ(

r

∑
i=1

αi~Jeddy,n+1−i)+LEJ,M(
∂~M
∂t

)

]

(4.89)

This linear system can be expressed in the form of a matrix equation

A~Jeddy,n+1 =~b (4.90)
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where the system matrixA corresponds to the operatorI − α0LEJ, with I being the identity

matrix, and where~b is the right-hand side of Eq. (4.89). Since the system matrixA is in the

form of an operator, the matrix (which also happens to be dense) is not computed explicitly and

matrix-free iterative solvers need to be used. Since in thiscase the operator is not symmetric, the

GMRES method [49] is used. A preconditioner could be used for the GMRES method by using

a sparse version of theA matrix involving only nearest neighbor contributions to the integrals,

however the non-preconditioned GMRES method has been found to perform relatively well for

this problem and was used in the present work. Once a solutionfor ~Jeddy,n+1 has been found, the

corresponding field~Heddy,n+1 is computed using Eq. (4.66) with~A= ~Aeddy given by Eq. (4.71).

The solution of the integral equation Eq. (4.89) by the GMRES method involves computing the

integrals that are part of the different linear operators. All these integrals are computed using a

Fast-Fourier-Transform-accelerated technique implemented on GPU’s which is described by Li

[22, 23].

In terms of performance, while the integrals are accelerated, the fact that several integrals

have to be computed at every time step due to the iterative GMRES method makes the Maxwell

equations solver the most computationally intensive part of the micromagnetic solver. For exam-

ple, using a Intel Xeon E5645 CPU and a NVIDIA GeForce GTX 580 GPU, simulating 1 ns for a

problem with a mesh of 3.5 million tetrahedral elements takes 21.2 hours while it only takes 0.22

hours when the eddy currents are neglected. Clearly, the computation of the eddy currents field

is the performance bottleneck when eddy currents are modeled in micromagnetic simulations

and the significant slowdown that their computation causes limits the size of problems that can

be solved in practice. Because of this, it is worthwhile to investigate different methods of solv-

ing the magnetoquasistatic Maxwell equations. An alternative solver based on the finite element

method will be presented in section 4.7.
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4.6 A test problem for the micromagnetic-eddy currents solver

One of the challenges in numerical micromagnetics is to verify that solutions obtained

with a given solver are indeed accurate. In general, for the solution of numerical partial differ-

ential equations, one way of doing this is to solve a problem for which the analytical solution is

known. Since the LLG equation is non-linear and magnetization dynamics are usually fairly com-

plex with domain wall motion, magnetic domain nucleation, magnetization rotation and chaotic

magnetization reversal, problems for which analytical solutions exist are usually not available.

To address this problem in micromagnetics, the National Institute of Standards and Technology

has developed a series of standard problems for which there exist accepted solutions that have

been validated through different micromagnetic solvers [50].

The same challenge evidently applies to the validation of micromagnetic solvers that

take into account eddy currents. A quick look at the literature on eddy currents modeling in

micromagnetic simulations, which was discussed in section4.2, reveals that lacking a problem

where the analytical solution is known, researchers have resorted to comparing simulation results

obtained with and without eddy currents effects, looking for qualitative effects of eddy currents

such as a faster magnetization switching time or added losses in the system, which would be

equivalent to using a higher damping coefficientα in the LLG equation.

In this section, a problem to validate a micromagnetic solver with eddy currents effects is

presented. It will be used to validate the approach proposedin section 4.4 both with the integral

equation solver for the Maxwell equations of section 4.5 andthe finite element solver which

will be presented in section 4.7. Lacking an analytical solution for a problem with non-linear

magnetization dynamics, which would showcase the full extent of a micromagnetic solver’s

capabilities, the next best test case is a problem that can berepresented by a linear analytical

model for which an analytical solution can be found and whichcan still be solved by the fully

non-linear-capable micromagnetic solver. The geometry ofthe test problem is shown in Fig. 4.4.
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Figure 4.4: (a) Long ferromagnetic cylinder excited by a current-carrying solenoidal coil. (b)
Eddy currents~Jeddy induced inside the cylinder.

It consists in a long ferromagnetic cylinder of radiusa and with conductivityσ which is

excited by a metallic coil carrying a time-harmonic current. The coil current will tend to generate

an applied field~Hi which is uniform inside the coil region and oriented in thezdirection along the

coil axis. Because the cylinder is conductive, this field, along with any accompanying changes

in magnetization, will tend to induce eddy currents that flowazimuthally within the cylinder. In

accordance with Lenz’s law, which states that the currents induced by a time-varying magnetic

field will tend to induce a magnetic field opposing this first magnetic field, the eddy currents will

generate a field~Heddy that tends to oppose the coil field and is also oriented along the cylinder’s

axis.

If the problem is idealized by assuming that the cylinder is infinitely long and that its

magnetization response is linear and described by a real-valued scalar and frequency independent

permeabilityµ, then it has an analytical solution which is derived in Appendix A. In that solution,

the total magnetic field consisting of the coil field~Hcoil and the eddy field~Heddy only has az

component. The objective then is to devise a micromagnetic problem that will replicate this

idealized problem as closely as possible. The first issue is that in the simulation, the cylinder
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cannot be made infinitely long5. However, by making the cylinder sufficiently long, the solution

for the ~H field obtained in a cross-section taken at the middle point ofthe cylinder along its

length should be close to the infinite cylinder case. A key issue is the magnetization response

to the magnetic field. In the ideal problem, the magnetization response is given in terms of

a real-valued, scalar and frequency independent magnetic susceptibilityχm by ~M = χm~H from

which the permeabilityµ= µ0(1+χm) is defined. Since, as discussed in Appendix A, the~H field

only has az component, this implies that the magnetization also only has az component. This

is evidently impossible to replicate in a micromagnetic simulation of a ferromagnetic material

since the magnitude of the magnetization is constant and equal to Ms which means that any

variation of thez component of the magnetization must be accompanied by variations of the

other components. In other words, the magnetic susceptibility is in reality a tensor. What can

be done however is to operate in a linear region around an equilibrium magnetization state and

consider the variation of thez component of the~H field as the quantity to be compared with the

analytical solution. While variations in thez component of the magnetization will necessarily

be accompanied by variations of thex or y components, from the geometry of the problem these

variations are expected to induce~Heddy fields with mostlyx andy components. This means that

the relation between thez component of~H and~M can be considered independently from theirx

andy components. This is equivalent to considering only theχm,zz component of the magnetic

susceptibility tensor.

The desired linear behaviorMz = χm,zzHz can be obtained by introducing a uniaxial

anisotropy along a direction perpendicular to the cylinderaxis, for instance along thex direc-

tion. When no coil field is applied, the magnetization rests atequilibrium along thex direction.

As a coil field is applied, giving rise to aHz field which includes the coil field and the eddy

current field, the magnetization will tend to rotate towardsz in such a way that thez component

of ~M will be directly proportional toHz. From the discussion of section 3.1.2 on the frequency

5One could of course simulate an infinitely long cylinder witha two-dimensional micromagnetic solver, however
the aim here is to validate three-dimensional solvers.
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dependent permeability tensor, the above rotation behavior is understood to be a simplification

and only rigorously valid at zero frequency since it neglects the fact that~M will actually precess

as it rotates towards thez direction.

Referring to the expression for the frequency dependentχm,zz of Eq. (3.22) and the ex-

pression for the resonant frequency in Eq. (3.24), it is seenthat if the resonant frequency is much

higher thanωα, whereω represents the frequency content of the magnetic field~Hz, thenχmzz

reduces to the zero frequency susceptibility expression ofEq. (3.21) and is seen to be purely real

and frequency independent. Another way to understand this is in terms of precession in the time

domain. It can be shown that in the time domain, the precession amplitude is proportional to

e−γHKα t/(1+α2). If the time t here is interpreted as the characteristic time corresponding to the

frequency content ofHz such thatt = 1/ω, then the above condition that the resonant frequency

should be much higher thanωα is seen to be equivalent to requiring that the precessional motion

dies out within the characteristic time so that it can effectively be neglected.

The expressions given in section 3.1.2 for the frequency dependent susceptibility tensor

components are valid only for small variations of~M around the equilibrium state. Therefore,

the coil field should be chosen so that it is sufficiently smaller thanHK. In the micromagnetic

simulation, another complication arises due to the magnetostatic field, which in the case of a long

cylinder gives rise to shape anisotropy. As discussed in Section 2.3.1, shape anisotropy depends

on the shape of a magnetic region and is due to the magnetostatic field being such that a certain

orientation of the magnetization is favored. Shape anisotropy can be modeled as an equivalent

uniaxial anisotropy, which in the case of a long cylinder is along the axis of the cylinder with

magnitudeKshape= πM2
s. Since the equivalent uniaxial anisotropy is perpendicular to the net

anisotropy that is desired along thex axis, from the discussion in chapter 3 on summing uniaxial

anisotropies, the resulting anisotropy will have a magnitude corresponding to the difference of

the magnitudes of the two anisotropies and will be oriented in the direction of the dominant

anisotropy. Therefore, the magnitude of the crystalline anisotropy that is set in thex direction in
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the micromagnetic simulation must correspond to the desired net anisotropy magnitude plus the

shape anisotropy magnitude.

The magnetic parameters of the ferromagnetic cylinder are chosen to achieve a specific

value ofµ while satisfying the condition above thatω0 ≫ ωα so that the permeability can be

considered frequency independent and purely real. Lets consider for example that the time-

harmonic coil current has a frequency of 1 GHz and lets set magnetic parameters to obtain a

relative permeabilityµr = 4. A set of parameters that can be used (this choice is not unique)

is a saturation magnetizationMs = 360emu/cm3, a net anisotropyK = 2.71×105erg/cm3 and

a damping coefficientα = 0.1. With these parameters, from Eq. (3.20), the anisotropy field is

HK = 1508Oe and the magnetic susceptibility isχmzz= 0.239. The attentive reader will have

noticed that this value ofχm does not result inµr = 4 according to Eq. (4.9). This is because the

cgs unit system is used here6, in which case the relative permeability is defined in terms of the

magnetic susceptibility asµr =(1+4πχm). Since 4πχmzz= 3, we do obtainµr = 4 with the above

magnetic parameters. Also, from Eq. (3.24) the resonant frequency is given by 4.2 GHz, which

is larger thanωα = 0.1GHz so that the approximation of a purely real, frequency independent

permeability should be valid. This can also be seen from the plot of the magnetic susceptibility

χmzzas a function of frequency, obtained from Eq. (3.22) and shown in Fig. 4.5. From this plot,

it is seen that from zero frequency up to 1 GHz, the magnetic susceptibility 4πχmzz is mostly

constant and equal to 3, with an imaginary part very close to 0. This validates the idealized

model where the ferromagnetic cylinder is simply characterized byµr = 4.

To validate the micromagnetic solver with eddy currents, this test problem is solved

numerically. The radius of the cylinder is chosen to be 7 µm, its length 50 µm and its conductivity

1×107 S/m, roughly corresponding to the conductivity of iron. To ensure a uniform coil field

within the ferromagnetic cylinder, the coil is chosen to contain 50 turns uniformly wound around

6In this chapter, most of the equations and results are given with the SI unit system in mind. However, numerical
solutions are presented in terms of cgs units since the cgs system is still prevalent in the magnetism literature and
among researchers and practitioners.
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Figure 4.5: Plot of 4πχmmz as a function of frequency obtained from Eq. (3.22) with the
magnetic parameters chosen to obtainµr = 4.

a length of 100 µm. The radius of the coil is set to 14 µm. The problem is solved for three sets

of magnetic parameters which have equivalent relative permeabilities ofµr = 1, 2 and 4. The

caseµr = 1 corresponds to a non-magnetic cylinder while the 2 sets of parameters forµr = 2

and 4 are chosen such thatHK ≈ 1500Oe. The coil current is a 1 GHz causal sinusoidal with

a peak amplitude of 10 mA which corresponds to a peak coil magnetic field of 62 Oe. This

field amplitude is much smaller thanHK which means that the system is operated in a small

linear region around the equilibrium point. The exchange coefficient is assumed to be zero in

the simulations since the exchange interaction is not part of the idealized linear model.

The results are shown in Fig. 4.6 in the form of plots of the total Hz field, comprising the

coil field and the eddy current field, as a function of the radius of the cylinder at three different

time snapshots,t1 = 0.3ns,t2 = 0.4ns andt3 = 0.8ns, which are indicated in Fig. 4.6a showing

the coil current signal. At each time snapshot, for each permeability value theHz field obtained

from the simulation in a cross-section of the cylinder takenalong its middle point is compared

with the analytical solution. The numerical solutions are seen to be in good agreement with the

analytical results. Also shown is the coil field amplitude atthat particular time snapshot, which

corresponds to the amplitude of the coil current signal at that moment and is seen to be uniform
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Figure 4.6: (a) Current flowing in the coil of Fig. 4.4a. It is a causal, 1 GHz sine signal and
produces a concurrent time harmonic magnetic field with a peak amplitude of 62 Oe. (b–d)
Axial componentHz of the total magnetic field as a function of the radius inside a cross section
perpendicular to the cylinder’s axis and taken at the middle point along its length, at times
t1 = 0.3ns,t2 = 0.4ns andt3 = 0.8ns respectively. Numerically obtained results are shown for
3 sets of magnetic parameters corresponding toµr = 1,µr = 2 andµr = 4 and are compared with
the analytical solution. Also shown is the spatially uniformz component of the coil magnetic
field.

throughout the cylinder. If eddy currents were neglected, the coil field would correspond to the

total magnetic field so that the eddy currents magnetic field~Heddy corresponds to the difference

between the total magnetic field and the coil field on these plots. The fact that the~Heddy field

is seen to be significant compared to the coil field indicates that in this case, the magnetostatic

approximation of the Maxwell equations is not a good approximation and that the magnetoqua-

sistatic approximation should be used instead. This is validated by the condition of validity for

the magnetostatic approximation, Eq. (4.48) from section 4.3. Indeed, from Eq. (4.29), the skin
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depth for this problem is 2.5 µm while the relevant size is the cylinder diameter which is14 µm.

Since the skin depth is comparable to the cylinder diameter,the magnetostatic approximation

cannot be expected to be a good one.

At t = t1, where the coil current and coil field are at their maximum value, from Fig. 4.6b

it is seen that at the center of the cylinder, the total field issmaller than the applied coil field.

This is due to eddy currents which produce a field which tends to cancel the applied field. At the

surface of the cylinder atr = 7µm, the total field is equal to the coil field since, as discussed in

Appendix A, the eddy currents field~Heddyare zero outside of the cylinder. These results can also

be understood in terms of the diffusion of the magnetic field.The penetration of the field inside

the cylinder depends on the skin depth. For instance, in theµr = 4 case which corresponds to a

skin depth at 1 GHz of 2.5 µm, the fieldHz remains close to zero. In theµr = 1 case, the skin

depth is 5 µm and the magnetic field penetrates the cylinder more. Diffusion occurs over a time

scale corresponding to the diffusion time constant defined in Eq. (4.28). Taking the diffusion

length to correspond to the cylinder radius,L = 7µm, in theµr = 4 case, the diffusion time

constant isτm = 2.5ns whereas forµr = 1 it is τm = 0.6ns. This means that the magnetic field

diffuses inside the cylinder more rapidly in theµr = 1 case and the total field will therefore track

the applied coil field more closely than for theµr = 4 case. Diffusion effectively causes the

magnetic field inside the cylinder to lag in time behind the applied coil field. For instance, in

the µr = 2 case, att = t1 when the coil field is at its maximum, the totalHz field at r = 1µm

is around 20 Oe. At timet = t2, when the coil field has actually decreased in amplitude, theHz

field atr = 1µm has increased to 35 Oe.

To further illustrate the effect of diffusion, Fig. 4.7 shows thezcomponent of the magne-

tizationMz as a function of time at different radius values inside the cylinder for the caseµr = 4.

Also plotted isMz for the case where eddy currents are neglected, that is when the magnetostatic

approximation is used, in which caseHz and correspondingly theMz response is uniform within

the cylinder. The coil field, which also corresponds toHz in the magnetostatic case, is included
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Figure 4.7: Magnetization responseMz to the coil current of Fig. 4.6a at different radius values
inside the cylinder for the caseµr = 4. Thez oriented magnetic field generated by the coil is
plotted against the right-hand vertical axis. Also shown is theMz response obtained using the
static approximation of the Maxwell equations.

in the plot.

The magnetization response is seen to differ greatly as a function of the radial distance

r inside the cylinder. Atr = 7µm, corresponding to the surface of the cylinder, the response

is seen to be very similar to the case where the magnetostaticapproximation is used. This is

expected since as in the case of the magnetostatic approximation, the totalHz field at the surface

of the cylinder corresponds to the coil field. As points closer to the center of the cylinder are

considered, the amplitude of the response decreases and thetime delay with respect to the coil

field increases, both of which are a result of the diffusion effect.
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4.7 A finite element solver for the Maxwell equations

The integral equation formulation proposed in section 4.5 for the Maxwell equations

solver has the advantage of only requiring the discretization of magnetic and conductive re-

gions, therefore allowing eddy currents to be modeled without increasing the problem size when

compared to micromagnetic simulations without eddy currents. However, while the volume in-

tegrals that need to be computed to solve the linear system can be accelerated using GPU’s and

fast algorithms, because the system is solved iteratively,several integral computations need to be

performed at every time step which is quite demanding computationally. It is therefore natural

to investigate other types of solvers for the magnetoquasistatic Maxwell equations, such as the

finite element method.

In the present section, a finite element solver for the magnetoquasistatic Maxwell equa-

tions is presented which is used in the coupled micromagnetic-eddy currents solver. As in sec-

tion 4.5 on the integral equation solver, the problem consists in solving the magnetoquasistatic

Maxwell equations where the magnetization~M is obtained from the LLG equation solver and

is treated as a known source and where the current~J has two parts, an impressed source cur-

rent~Ji, which is assumed known, and the eddy currents~Jeddy. The magnetoquasistatic Maxwell

equations were given in Eqs. (4.51) and are repeated here forconvenience,

∇×~E =−µ0
∂
∂t

(

~H + ~M
)

(4.91a)

∇× ~H = ~J (4.91b)

∇ ·~E =
ρs

ε0
(4.91c)

∇ ·
(

~H + ~M
)

= 0 . (4.91d)

To solve the magnetoquasistatic Maxwell equations, the magnetic field is decomposed
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into three parts,~H = ~HM + ~Hi + ~Heddy. The field~HM is the magnetostatic field and is solution of

∇× ~HM = 0 , ∇ · (~HM + ~M) = 0 . (4.92)

It is computed as in the magnetostatic approximation with the computation of a volume integral,

as in section 2.3. The field~Hi is the magnetic field induced by the impressed current source~Ji

and satisfies

∇× ~Hi = ~Ji , ∇ · ~Hi = 0 . (4.93)

It can be computed from the volume integral [6]

~Hi(~x) =
1
4π

∫
~Ji(~x

′)× ~x−~x′

|~x−~x′|3dv′ . (4.94)

Since the source current~Ji is given as a data of the problem, the field~Hi is pre-computed before

the micromagnetic simulation. Alternatively,~Hi can also be specified directly as an externally

applied magnetic field. The field~Heddy is the magnetic field induced by eddy currents and is

solution of

∇×~E =−µ0
∂
∂t
(~Hi + ~HM + ~Heddy+ ~M) (4.95a)

∇× ~Heddy= ~Jeddy (4.95b)

∇ ·~E =
ρs

ε0
(4.95c)

∇ · ~Heddy= 0. (4.95d)

These equations are solved for~Heddy using the finite element method for which a variational

formulation will be given. From Eqs. (4.92), (4.93) and (4.95), it is seen that~H = ~HM + ~Hi +

~Heddyalong with~E satisfy the magnetoquasistatic equations, Eqs. (4.91). Itshould be noted that

both the fields~HM and~Hi could in principle be combined with~Heddy and included in the finite
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element formulation. However, since~Hi is actually pre-computed, it makes sense to compute it

separately from~Heddy. Furthermore, it allows the flexibility of providing~Hi directly as an applied

external field, without having to specify a source current distribution~Ji. In the case of~HM, it is

obtained by computing a single integral once per iteration in the Newton method. Indeed,~HM

only depends on the magnetization~M and does not need to be solved iteratively like~Heddyso that

computing it separately from~Heddy is not overly costly. Also, since~HM has jump discontinuities

at interfaces where~M has jump discontinuities, such as at the boundary of magnetic regions,

computing it separately allows~Heddy to be everywhere continuous. This avoids complications

such as doubled degrees of freedom which would be needed to handle jump discontinuities in

the finite element formulation.

In order to solve for~Heddywithin some domainΩ, boundary conditions need to be deter-

mined. While several different approaches can be taken, in this work an homogeneous Dirichlet

boundary condition is used for~Heddy, i.e. ~Heddy= 0 is assumed at the boundary∂Ω. The do-

main of solutionΩ is chosen to enclose the magnetic and conductive regions andchosen large

enough so that the homogeneous boundary condition is a good enough approximation. Compar-

ing Eqs. (4.93) with Eqs. (4.95), it is seen that Eq. (4.94) holds for ~Heddy and~Jeddy so that~Heddy

falls off at a rate of square the distance from eddy currents distributions which means thatΩ

need not be overly large.

The variational formulation can be obtained by two equivalent methods: the Galerkin

method and the least squares method. In the Galerkin method,the scalar product of the curl of

Eq. (4.95b) and a test function~V is integrated over the regionΩ. This yields

∫
Ω
(∇×∇× ~Heddy−∇× ~Jeddy) ·~Vdv= 0 . (4.96)

The vector form of Green’s first identity states that given two appropriately smooth vector fields
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~A and~B [51],

∫
Ω
(∇×∇×~A) ·~Bdv=

∫
Ω

∇×~A·∇×~Bdv+
∫

∂Ω
(∇×~A×~B) · n̂ds. (4.97)

Applying this to Eq. (4.96) yields

∫
Ω

∇× ~Heddy·∇×~Vdv+
∫

∂Ω
(∇× ~Heddy×~V) · n̂ds−

∫
Ω

∇× ~Jeddy·~Vdv= 0 . (4.98)

Since from Eq. (4.95b)∇× ~Heddy= ~Jeddy, this can be written as

∫
Ω

∇× ~Heddy·∇×~Vdv+
∫

∂Ω
(~Jeddy×~V) · n̂ds−

∫
Ω

∇× ~Jeddy·~Vdv= 0 . (4.99)

While Eq. (4.99) constitutes a variational formulation thatcan be used to solve for~Heddy with

the finite element method, it does not make use of Eq. (4.95d) which states that~Heddy should be

divergence free. Because of this, as is well documented in thefinite element method literature in

electromagnetism [52, 53, 54], the numerical solution obtained with this variational formulation

will not necessarily have a zero divergence which can lead toso-called spurious solutions. For

this reason, a penalty term can be added which penalizes non-zero divergence of the~Heddy field,

following which Eq. (4.99) becomes

∫
Ω

∇× ~Heddy·∇×~Vdv+
∫

∂Ω
(~Jeddy×~V) · n̂ds−

∫
Ω

∇× ~Jeddy·~Vdv+
∫

Ω
∇ · ~Heddy∇ ·~Vdv= 0 .

(4.100)

This result can also be obtained using the least squares method [55]. In this method, we

seek to satisfy the Maxwell equations for~Heddy, Eqs. (4.95b) and (4.95d) in the least squares

sense by minimizing the functional

I(~Heddy) =
∫

Ω
|∇× ~Heddy− ~Jeddy|2dv+

∫
Ω
|∇ · ~Heddy|2dv . (4.101)
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From the calculus of variations, a minimum of this functional corresponds to

d
dε

I(~Heddy+ ε~V)

∣

∣

∣

∣

ε=0
= 0 (4.102)

where~V is any vector field. From the definition ofI in Eq. (4.101), this can be written as

d
dε

[

∫
Ω
(∇× (~Heddy+ ε~V)− ~Jeddy) · (∇× (~Heddy+ ε~V)− ~Jeddy)dv+

∫
Ω

∇ · (~Heddy+ ε~V)∇ · (~Heddy+ ε~V)dv
]

ε=0
= 0 (4.103)

which when evaluated gives

∫
Ω

∇× ~Heddy·∇×~Vdv−
∫

Ω
~Jeddy·∇×~Vdv+

∫
Ω

∇ · ~Heddy∇ ·~Vdv= 0 . (4.104)

Since∇ · (~A×~B) = ~B · (∇×~A)−~A · (∇×~B), for sufficiently smooth vector fields~A and~B, the

divergence theorem yields

∫
Ω
~A· (∇×~B)dv=

∫
Ω
~B· (∇×~A)dv−

∫
∂Ω
(~A×~B) · n̂ds. (4.105)

Using this, Eq. (4.104) can be written as

∫
Ω

∇× ~Heddy·∇×~Vdv+
∫

∂Ω
(~Jeddy×~V) · n̂ds−

∫
Ω

∇× ~Jeddy·~Vdv+
∫

Ω
∇ · ~Heddy∇ ·~Vdv= 0

(4.106)

which is exactly Eq. (4.100), the variational formulation obtained with the Galerkin method.

The solution process in the finite element method involves discretizing the unknown

function ~Heddy with N basis functions whose support is localized on tetrahedral elements. In

the present work, linear basis functions are used such that each node is assigned a hat basis

function with a support corresponding to neighboring tetrahedral elements and three degree of

126



freedom, one for each vector component. The test function~V is then successively let to be the

N basis functions which gives rise to aN×N linear system of equations that can be solved

for the degrees of freedom. This involves an assembly procedure for the system matrix which

involves the elemental variational formulation, which corresponds to the variational formulation

of Eqs. (4.100) and (4.106) but with integration over an individual tetrahedral elementK. The

elemental variational formulation reads

∫
K

∇× ~Heddy·∇×~Vdv+
∫

∂K
(~Jeddy×~V) · n̂ds−

∫
K

∇× ~Jeddy·~Vdv+
∫

K
∇ · ~Heddy∇ ·~Vdv= 0

(4.107)

where∂K is the surface of the tetrahedral elementK andn̂ is the outward pointing unit vector nor-

mal to the surface. With the eddy currents in conductive regions given by~Jeddy= σ~E, assuming

that the electric conductivityσ is constant within each elementK, the third term in Eq. (4.107)

can be written as ∫
K

∇× ~Jeddy·~Vdv=
∫

K
σ∇×~E ·~Vdv. (4.108)

Using Eq. (4.95a) to replace for∇×~E gives

∫
K

∇× ~Jeddy·~Vdv=−µ0σ
∫

K

∂
∂t
(~Hi + ~Heddy+ ~HM + ~M) ·~Vdv. (4.109)

Using this in Eq. (4.107) and using Eq. (4.95b) to replace for~Jeddy in the surface integral term

yields the following variational formulation in terms of the unknown~Heddy, the test function~V

and known vector fields,

∫
K

∇× ~Heddy·∇×~Vdv+
∫

K
∇ · ~Heddy∇ ·~Vdv=

−µ0σ
∫

K

∂
∂t
(~Hi + ~Heddy+ ~HM + ~M) ·~Vdv−

∫
∂K
(∇× ~Heddy×~V) · n̂ds. (4.110)

For tetrahedrons with zero conductivity,~Jeddy= 0 and the variational formulation of Eq. (4.107)
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reduces to ∫
K

∇× ~Heddy·∇×~Vdv+
∫

K
∇ · ~Heddy∇ ·~Vdv= 0 . (4.111)

As was done for the integral equation solver of section 4.5, the time derivative of~Heddy is dis-

cretized using the BDF method. Evaluated at timet = tn+1, the time derivative is written as

∂~Heddy

∂t
=

r

∑
i=0

αi~Heddy,n+1−i (4.112)

wherer is the BDF order and~Heddy,n+1−i is the solution~Heddy at time tn+1−i. With this, the

time-discretized version of the variational formulation in Eq. (4.110) is

∫
K

∇× ~Heddy,n+1 ·∇×~Vdv+
∫

K
∇ · ~Heddy,n+1∇ ·~Vdv+µ0σα0

∫
K
~Heddy,n+1 ·~Vdv+

∫
∂K
(∇× ~Heddy,n+1×~V) · n̂ds=−µ0σ

∫
K

[

r

∑
i=1

αi~Heddy,n+1+
∂
∂t
(~Hi + ~HM + ~M)

]

·~Vdv.

(4.113)

As mentioned before, the assembly process relies on approximating the eddy currents

magnetic field~Heddy in terms of basis functions as

~Heddy,n+1 =
N

∑
j=1

u j~ψ j (4.114)

whereN corresponds to the number of degrees of freedom which is equal to three times the

number of nodes in the mesh, excluding nodes on∂Ω, the~ψ j ’s are the vector basis functions

which correspond to the scalar hat basis functions associated with each node to which either of

the three unit vector components ˆx, ŷ or ẑ is affixed and theu j ’s are the degrees of freedom. By

letting the test function~V be successively~ψi with i = 1, . . . ,N, a linear system is obtained which

is of the form

AU = F (4.115)
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whereA is the system matrix,U is a vector containing theu j ’s as its components andF is a

vector representing the right-hand side of the variationalformulation. This global system of

equations is assembled from the elemental system which reads

AKUK = FK . (4.116)

Here,UK contains the degrees of freedom associated with tetrahedron K. The i j th element of

theAK matrix is given by

aK
i j =

∫
K

∇×~ψK
j ·∇×~ψK

i dv+
∫

K
∇ ·~ψK

j ∇ ·~ψK
i dv+

µ0σα0

∫
K
~ψK

j ·~ψK
i dv+

∫
∂K
(∇×~ψK

j ×~ψK
i ) · n̂ds (4.117)

for tetrahedronsK in conductive regions and

aK
i j =

∫
K

∇×~ψK
j ·∇×~ψK

i dv+
∫

K
∇ ·~ψK

j ∇ ·~ψK
i dv (4.118)

for tetrahedrons in regions withσ = 0. The elements ofFK are given by

f K
i =−µ0σ

∫
K

[

r

∑
i=1

αi~Heddy,n+1+
∂
∂t
(~Hi + ~HM + ~M)

]

·~ψK
i dv (4.119)

for tetrahderons in conductive regions and by zero for tetrahedrons in non-conductive regions.

In practice, time integration involves a variable time stepscheme so that the coefficientα0 in

Eq. (4.117) will in general change from one step to the next. To avoid having to re-assemble the

system matrix, the global system matrixA is divided into two parts,A1 andA2 corresponding to

the following matrix elements

aK
i j ,1 =

∫
K

∇×~ψK
j ·∇×~ψK

i dv+
∫

K
∇ ·~ψK

j ∇ ·~ψK
i dv+

∫
∂K
(∇×~ψK

j ×~ψK
i ) · n̂ds (4.120)
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and

aK
i j ,2 = µ0σ

∫
K
~ψK

j ·~ψK
i dv (4.121)

This effectively allows the linear system of Eq. (4.115) to be written as

(A1+α0A2)U =−A2

[

r

∑
i=1

αi~Heddy,n+1+
∂
∂t
(~Hi + ~HM + ~M)

]

(4.122)

where the matricesA1 andA2 are pre-assembled and the global matrix(A1+α0A2) can quickly

be obtained at each time step given the value ofα0. The time derivatives of~Hi , ~HM and ~M

in Eq. (4.122) are computed using the BDF method, although anyother finite difference time

discretization scheme could be used, using the values of these fields at the current and previous

time steps.

The linear system of Eq. (4.122) can be solved using different techniques. For large

problems, iterative solvers are a good choice, and since thematrix A of the system is not sym-

metric, the GMRES method [49] is employed. Different preconditioners can be used along with

the preconditioned GMRES method. One option is to use a symmetric approximation of the

A matrix, assembled from Eq. (4.117) where the last term involving a surface integral is ne-

glected, as a preconditioning matrix. A potent way of solving the preconditioning linear system

with this symmetric matrix is by using the conjugate gradient method with a weak convergence

criterion which allows the preconditioning step of the GMRESmethod to involve only a few

conjugate gradient iterations which are very efficient. This approach however requires the use of

the flexible GMRES (FGMRES) variant of the GMRES method [49] which has higher memory

requirements than the standard GMRES method. Also, while this approach works well in many

cases, for problems with a fine mesh, the convergence rate of the conjugate gradient method

decreases which makes its use as a preconditioning method much less efficient.

An alternative preconditiong method which was found to havea very good performance

is to pre-compute incomplete LU factorizations [49] of the globalA matrix, given by(A1+α0A2)
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for a range ofα0 values, which correspond to a range of time step values. At each time step,

the incomplete LU factorization is interpolated for the current α0 value and this interpolated

factorization is used as a preconditioning matrix.

Comparing performance with the integral equation solver, onthe same hardware and

for the same 3.5 million tetrahedral elements problem whichrequires 21.2 hours of computation

time per ns of simulation time with the integral equation solver, the finite element solver with the

interpolated incomplete LU factorization preconditionerrequires 1.76 hours of computation time

per ns of simulation time. Comparing this with the 0.22 hours required to simulate 1 ns without

eddy currents, it is seen that while modeling eddy currents comes at a significant performance

cost, it is still possible to realistically handle very large problems.
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Figure 4.8: (a) Current signal flowing in the coil of the test problem. (b) Axial componentHz of
the total magnetic field as a function of the radius inside a cross section taken at the cylinder’s
middle point along its length. The numerical results obtained with the solver are compared
to the analytical solution for timest1 = 0.1ns,t2 = 0.2ns andt3 = 0.3ns. The ferromagnetic
cylinder has a length of 50 µm, a radius of 7 µm, a conductivity of 1×107 S/m and magnetic
parameters equivalent toµr = 4.

To validate the eddy currents-micromagnetic solver using the finite element Maxwell

equations solver, the test problem of section 4.6 is solved for a ferromagnetic cylinder with

conductivityσ = 1×107S/m, magnetic parameters corresponding toµr = 4, a length of 50 µm
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and a radius of 7 µm. The current signal is the same 1 GHz sinusoidal signal that was used in

section 4.6 and is shown in Fig. 4.8a. The resulting totalHz field is shown in Fig. 4.8b at 3 time

snapshots and is seen to be in good agreement with the analytical solution.

4.8 Example of eddy currents effect

The ferromagnetic cylinder test problem of 4.6 allows to verify the validity of numerical

solutions obtained with the coupled eddy currents-micromagnetic solver and also illustrates the

physics of eddy currents effects, including the diffusion of the electromagnetic fields. However,

the dynamics involved in that problem are fairly simple and can be represented by a linear model

while the value of micromagnetics lies in its ability to model highly complex, non-linear mag-

netization dynamics. For this reason, in this section the effect of eddy currents on the switching

behavior of a ferromagnetic nano-disk is investigated.

The problem consists in a ferromagnetic disk with a 2 µm radius, a 500 nm thickness, a

perpendicular unixaxial anisotropy, i.e. along the disk axis in thezdirection, with magnitudeK =

5×105erg/cm3, a conductivity of 1×107 S/m, a saturation magnetizationMs = 200emu/cm3,

a damping factorα = 0.1, and an exchange coefficientAex = 5×10−6erg/cm. As shown in

Fig. 4.9b, the initial state has the magnetization mostly uniform and pointing in the−zdirection.

At t = 0, an external magnetic field oriented in the+z direction is applied. The applied field is

shown in Fig. 4.9a and has a rise time of 50 ps. The external applied field causes the magnetiza-

tion of the disk to switch to a state with uniform magnetization in the+z direction. Plots of the

volume averagedzcomponent of the normalized magnetization〈mz〉 as a function of time for the

cases with and without eddy currents are shown in Fig. 4.9(a). It is seen that eddy currents cause

the switching to occur faster.

The normalized magnetization distributions for the three states indicated by circled num-

bers in Fig. 4.9a for the simulation with eddy currents are shown in Fig. 4.9b. The intermediate
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Figure 4.9: Switching of a ferromagnetic disk with a 500 nm thickness, 2 µm radius, satura-
tion magnetizationMs = 200emu/cm3 , az oriented uniaxial anisotropyK = 5×105erg/cm3,
damping factorα = 0.1 and exchange coefficientAex = 5×10−6erg/cm. (a) Externally ap-
pliedHz field and volume averagedzcomponent of the normalized magnetization as a function
of time for both the magnetoquasistatic approximation case and the magnetostatic approxima-
tion case. (b) Initial, intermediate and final normalized magnetization states for switching with
eddy currents, as indicated by circled numbers in (a). The color indicatesthe value of themz

component. (c) Eddy current density att = 0.02ns, with color indicating the magnitude of the
current. (d) Magnetic field due to the eddy currents att = 0.02ns, with color indicating the
value of thezcomponent.

state shows that switching occurs by the nucleation of ring-shaped domains near the edge of the

disk on the top and bottom surfaces. While not shown in the figure, the switching mechanism

in the simulation without eddy currents is nearly identical. The expectation is that eddy currents

would lead to faster switching due to increased overall losses in the system which lead to faster
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relaxation to the new equilibrium state. However, from the eddy current density and the corre-

sponding~Heddy magnetic field, shown in Figs. 4.9c and 4.9d respectively fortime, t = 0.02ns,

another mechanism for the faster switching can be identified. Indeed, it is seen that the eddy

currents produce a magnetic field that is oriented in the+z direction close to the edges of the

disk, which helps to nucleate the ring-shaped domains seen in the intermediate state of Fig. 4.9b.

Chapter 4, in part, contains material that appears in Coupled Finite-Element Micromag-

netic - Integral Equation Electromagnetic Simulator for Modeling Magnetization-Eddy Currents

Dynamics, IEEE Trans. Magn., 2017, Couture, Simon; Chang, Ruinan; Volvach, Iana; Gon-

charov, Alexander; Lomakin, Vitaliy, as well as material that has been submitted for publication,

Modeling Eddy Currents in Micromagnetic Simulations: A Coupled Micromagnetic-Maxwell

Equations Solver Based on the Finite Element Method, 2018, Couture, Simon; Goncharov,

Alexander; Lomakin, Vitaliy. The dissertation/thesis author was the primary investigator and

author of these papers.
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Appendix A

Analytical solution for the eddy currents

test problem

In this section, the analytical solution for the ideal linear test problem of section 4.6 is

derived. An infinitely long ferromagnetic cylinder with radiusa, conductivityσ and permeability

µ is considered that is excited by solenoidal coil carrying a time-harmonic current. The geometry

of the problem is shown in Fig. 4.4.

An infinitely long solenoidal coil withN turns per unit length carrying a currentI(t)

produces a predominantly uniform,z oriented axial magnetic field given byHcoil(t) = NI(t)

inside the solenoid and 0 outside the solenoid [6]. From the cylindrical symmetry of the problem,

the coil field induces azimuthally oriented eddy currents which, acting as volumetric solenoidal

currents, produce an axially oriented magnetic field insidethe cylinder and no magnetic field

outside of it. For this reason, in the ideal linear version ofthe test problem the~H field only

has az component and it satisfies the magnetoquasistatic Maxwell equations Eqs. (4.51) with

Hz(t) = Hcoil(t) as a boundary condition at the surface of the cylinder.
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With Ohm’s law~J = σ~E, taking the curl of Eq. (4.51b) gives

∇∇ · ~H −∇2~H = σ∇×~E. (A.1)

Since~B = µ~H, Eq. (4.51d) is equivalent to∇ · ~H = 0. Using this and Eq. (4.51a) to

replace for∇×~E, Eq. (A.1) becomes

1
σµ

∇2~H =
∂~H
∂t

, (A.2)

which is the vector diffusion equation. Thez component of~H satisfies the scalar version of this

diffusion equation,
1

σµ
∇2Hz =

∂Hz

∂t
(A.3)

and the problem is then to obtain a solution to Eq. (A.3) with the time dependent boundary

condition Hz(t) = Hcoil(t) at r = a. For this problem to be well posed, an initial condition

Hz(t = 0) is also required. For this purpose, it is assumed that beforet = 0, no current flows in

the coil so that the magnetic field is everywhere zero. When thecurrent is switched on att = 0,

no field will have diffused inside the cylinder yet so that theinitial condition isHz(t = 0) = 0

everywhere inside the cylinder. In cylindrical coordinates, from the symmetry of the problemHz

is expected to be a function of only ther coordinates and time. Therefore, Eq. (A.3) becomes

1
σµ

[

∂2Hz(r, t)
∂2r

+
1
r

∂Hz(r, t)
∂r

]

=
∂Hz(r, t)

∂t
. (A.4)

Taking the Laplace transform of Eq. (A.4) with respect tot and multiplying byr2σµ, one obtains

r2 ∂2

∂2r
Hz(r,s)+ r

∂
∂r

Hz(r,s)−sσµr2Hz(r,s) = 0 (A.5)

with the boundary conditionHz(r = a,s) = Hcoil(s) and with the Laplace transform ofHz(r, t)
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defined as

Hz(r,s) =
∫ ∞

0
e−stHz(r, t)dt. (A.6)

Eq. (A.5) is recognized as Bessel’s equation and has the general solution

Hz(r,s) = A(s)J0(i
√

sσµr)+B(s)Y0(i
√

sσµr). (A.7)

whereJ0 is the Bessel function of the first kind of order 0 andY0 is the Bessel function of the

second kind of order 0. SinceY0(x)→−∞ asx→ 0 andHz must be bounded atr = 0, B(s) = 0.

Applying the boundary condition atr = a yields

A(s) =
Hcoil(s)

J0(i
√

sσµa)
. (A.8)

Lets now consider a sinusoidal current signal and the corresponding sinusoidal coil field given

by Hcoil(t) = H0sin(ωt). The Laplace transform of the coil field is then given byHcoil(s) =

H0ω/(s2+ω2). Using this, Eq. (A.7) becomes

Hz(r,s) = H0
ω

(s2+ω2)

J0(i
√

sσµr)

J0(i
√

sσµa)
. (A.9)

The solution in the time domain is obtained by computing the inverse Laplace transform

Hz(r, t) =
1

2πi

∫ i∞+τ0

−i∞+τ0

Hz(r,s)e
stds. (A.10)

which can be done using the calculus of residues. By closing the contour with a semicircle in

the left half complex plane, Eq. (A.10) can be expressed as the sum of the residues ofHz(r,s)est

at its singular points in the left half complex plane, including those on the imaginary axis. Two
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such singular points ares= iω ands=−iω, at which the residues are respectively

Res
s=iω

Hz(r,s)e
st = H0

J0(i
√

iωσµr)
2iJ0(i

√
iωσµa)

eiωt (A.11)

and

Res
s=−iω

Hz(r,s)e
st = H0

J0(i
√−iωσµr)

−2iJ0(i
√−iωσµa)

e−iωt . (A.12)

In addition,Hz(r,s) in Eq. (A.9) has an infinite number of singular points corresponding

to the zeros ofJ0(i
√

sσµa). Denoting then’th zero of the Bessel functionJ0(x) by αn, the

corresponding singular point ofHz(r,s) is

sn =
−1
σµ

(αn

a

)2
(A.13)

and at each such point the residue ofHz(r,s)est is

Res
s=sn

Hz(r,s)e
st = H0

−ω
(s2

n+ω2)

2
√

snJ0(i
√

snσµr)

i
√σµaJ1(i

√
snσµa)

esnt . (A.14)

The solution is then given by

Hz(r, t) = Res
s=iω

Hz(r,s)e
st+ Res

s=−iω
Hz(r,s)e

st+
∞

∑
n=1

Res
s=sn

Hz(r,s)e
st (A.15)

where the residues are given by Eqs. (A.11), (A.12) and (A.14). The series in Eq. (A.15) con-

verges rapidly fort > 0 so that in practice, one can retain only the first few terms.
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