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EPIGRAPH

J'ai éte nourri aux lettres@s mon enfance, et parce qu’on me persuadait que, par le@wmoy
on pouvait acq@rir une connaissance claire et agsude tout ce qui est utikela vie, j'avais un
extréeme asir de les apprendre. Mais,&itjue j'eus acheytout ce cours @&tudes, au bout
duquel on a coutume é@tre recu au rang des doctes, je changeagmtient d’opinion. Car je
me trouvais embarrasgle tant de doutes et d’erreurs, qu’il me semblait n’avairfiatre profit,
en fichant de m'instruire, sinon que j'avaisabuvert de plus en plus mon ignorance.

—Rere Descartes ibiscours de la Mthode 1637
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ABSTRACT OF THE DISSERTATION

High Frequency Electromagnetic Effects in Micromagnetic Simuations

by

Simon Archambault-Couture
Doctor of Philosophy in Electrical Engineering (AppliedyBlcts)
University of California San Diego, 2018

Professor Vitaliy Lomakin, Chair

This work is concerned with the important connection thastsxbetween micromag-
netism and high frequency electromagnetism. As micromagselvers have become impor-
tant tools in the study and engineering of magnetic devaes as these devices are increasingly
operated at high frequencies, it is important to undershartd how micromagnetic simulations
can be used in the modeling of magnetic materials for hightfency applications and how
micromagnetic models can be impacted by high-frequenatrei@agnetic effects.

After an introduction to the theory behind micromagnetismd anicromagnetic solvers,
the dissertation is divided into two main themes. The firg 3rthe modeling and characteriza-

tion through micromagnetic simulations of ferromagnetatenials for high frequency applica-

Xiv



tions. A particular class of materials, namely ferromagneno-granular materials, are studied
since they have important technological applications &isnsagnetic materials which also ex-
hibit high saturation magnetizations and low electricalstvities. The extraction of properties
such as the hysteresis loop and frequency dependent pelitgeabsor from micromagnetic
simulations is examined. Also, the anisotropy averaginghagism responsible for the soft
magnetic properties of this class of materials is studiebismame theoretical results are obtained
and presented, such as a derivation of the residual exclesngggy between groups of exchange
coupled nano-particles and a generalized Stoner-Wohlfsteresis model which accounts for
exchange interactions between ferromagnetic particldsnandom uniaxial anisotropies.

The second theme is the modeling of eddy currents in microetagsimulations. Eddy
currents, also known as Foucault currents, arise in coiduataterials due to rapid variations
of the magnetic field and magnetization. A method couplirggltandau-Lifshitz-Gilbert equa-
tion of micromagnetics with the magnetoquasistatic Makeguations is presented. Based on
this method, two coupled micromagnetic-electromagneticess are presented, one based on an
integral equation formulation, the other based on the felg#enent method. A test problem with
a known analytical solution is suggested and used to valitiet implemented solvers. Also, re-
sults concerning the bounds of validity for the magnetasggiproximation to the Maxwell equa-
tions, in which case eddy currents are neglected, as wellrdbé magnetoquasistatic Maxwell
equations, where eddy currents are accounted for but eteatynetic wave propagation is ne-
glected, are given. It is found that the magnetoquasisagiicoximation is excellent for the vast

majority of micromagnetic simulations that are executatato
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Chapter 1

Introduction

1.1 Definitions and basic concepts

Magnetic materials are omnipresent in modern technologymRheir use in large scale
devices such as power grid transformers and electric canesgto their dominant role in in-
formation recording technologies, mentioning in passhjrtuse in microelectronics with in-
tegrated inductors, or their use in telecommunicationas/such as RF circulators, it is clear
that many of the technologies that today’s society reliesegpuire the use of magnetic materi-
als. Despite their widespread use and the fact that magmetierials have been known for a
long time — the first electric motors and transformers apgeat the beginning and end of the
19th century respectively [1, 2] while the first magneticegapcorders were developed in the
1920's [3] — they are still the subject of research inter@siis is due to the existence of a vast
array of magnetic alloys and ways to prepare them which camdtically alter their properties
but also to the complexity of the physical laws that govermnsic phenomena. For instance,
the magnetization inside magnetic materials arrangdsiseon-trivial way, often in so-called
magnetic domains of various shapes and sizes, as shown.ih.[Eig

Magnetic domains are the result of competing interactioich sis the Heisenberg or ex-



Figure 1.1 Magnetic domains in a ferromagnet. Arrows indicate the direction of magnetiza
tion in each domain.

change interaction which favors a parallel alignment ottetaic spins of neighboring atoms
in ferromagnetic crystals, as shown in Fig. 1.2, the criis@lanisotropy interaction where a
spin orientation along certain axes of a crystal latticawwfed, the magnetostrictive interaction
where magnetization tends to align based on the directi@train in the material, or the mag-

netostatic interaction in which a magnetic field is produadxch depends on the macroscopic

shape of a magnetic sample and the magnetization’s arrargenithin that sample.

Figure 1.2 The electronic spins at atomic sites in a ferromagnetic crystal tend to alighgbar
to each other due to the Heisenberg interaction.

An important tool in the study of magnetic materials is the 0§ computers to simu-
late their behavior. This subfield of magnetism has come thnogvn as micromagnetism and
the concepts that led to its foundation were summarized araeh@ed in the form of modern
micromagnetic theory in a 1963 monograph by Brown [4]. Micagmetism is based on the

idea that, while the origins of magnetism can be understoddrims of electronic spin at the



atomic level, much understanding of magnetic materialslEgained from considering not
microscopic magnetization, that is magnetization at toenat scale, but rather a macroscopic
magnetization consisting of the spatially averaged mmyp& magnetization. This is analogous
to what is done in electromagnetism, where one customanoiksvwith macroscopic, i.e. spa-
tially averaged versions of the electromagnetic fields, &hdre the microscopic properties of
materials are taken into account by parameters such as teeahpermittivity and permeability

[5, 6]. In fact, in the framework of macroscopic electromeigm, the magnetization quantity
that appears in the equations corresponds to the macrosoaginetization of micromagnetism.

Using the approach of micromagnetism, the detail of whapbkap at the atomic level
is lost, however the averaged magnetization, which is neatéd as a continuous field quantity,
can still resolve features of the magnetization such as stagdomains. In many cases, this is
all that is needed in order to study the properties of a magneiterial. This is especially true
for ferromagnetic materials, where the exchange intevad¢torces magnetization to be uniform
within regions of up to a few nanometers in size.

The rapid increase in the computational power availablesearchers which occured in
the last few decades combined with advances in numericatigighs and methods has enabled
micromagnetic studies of increasingly large and compl@bl@ms. For instance, in a doctoral
dissertation published in 1997, Yang [7] describes the Etimn of an array of 16 ellipsoid parti-
cles, each discretized using about 4400 tetrahedral elefoer total of about 70,000 elements
using a Cray T3D supercomputer with 256 processors. Todaypmagnetic simulations with
10 millions tetrahedral elements are routinely run on dgskiomputers while problems with
hundreds of millions of elements can be solved by more sligeihhardware. As micromag-
netic solvers gained the ability to handle larger probledevices such as hard-disk recording
heads or magnetic tunnel junctions, which are used in emgrgemory technologies [8], were

micromagnetically modeled for the purpose of engineermdy@ptimizing them.



1.2 Problems and research aims

Micromagnetism has emerged as a successful technique stuthg and design of mag-
netic materials and devices. As larger problems can now bsidered, a challenge within
micromagnetism is to identify new ways in which it can be ysev structures that can be stud-
ied, or new phenomena that can be incorporated in the motalhywerhaps were not achievable
previously due to limitations in computing ressources anthe efficiency of solvers. This is
the overarching question that guided the present work.

An interesting avenue of investigation appears when miagmstism is considered from
the point of view of electromagnetism. Magnetism is of ceurgimately related to electromag-
netism since the macroscopic magnetization appears ékpiit the Maxwell equations. De-
spite this, and perhaps not surprisingly, micromagnetidiss usually focus on the physics of
magnetism itself, aiming at better understanding the miateon distribution within magnetic
devices, both in terms of the static distribution at equilitm and magnetizatin dynamics when
the system is excited by some external source, while takitggaccount various magnetic in-
teractions such as the ones previously mentioned but altey, dometimes newly discovered,
interactions such as electronic spin transfer [9], the Mglansky-Moriya interaction [10] or
the different mechanisms which are currently being put &yoito explain all-optical switching
in magnetic materials [11]. By contrast, from the point ofwief electromagnetism, knowledge
of the magnetization arrangement inside a magnetic maiemat an end in itself but rather is
regarded as a response to electromagnetic fields and the ifoplaced on how the magnetiza-
tion and the fields interact together. Electromagneticrhesually relies on the definition of a
material’s permeability to characterize its magnetic oese. While linear permeability models
are adequate in many situations and various more refinedlmbdee been used to deal with
more complicated aspects of magnetic materials such asregs& and non-linearity, very few

electromagnetism practitioners have looked at microm@#gmes a tool to better characterize a



magnetic material in terms of its interaction with electegnetic fields. One of the aims of the
present work was therefore to examine to which extent miegmatic simulations can be used
to characterize a magnetic material from the point of viewnatroscopic electromagnetism.
Whereas micromagnetism has not been fully exploited in theysdf electromagnetism,
the same can be said of electromagnetism from the perspeaftimicromagnetism. Histori-
cally, micromagnetic studies have considered only thecskdaxwell equations. This is done
through the magnetostatic interaction, where the magfietetproduced by the magnetization
distribution is taken into account. In so doing howevergdkctrodynamic effects are effectively
neglected. The rationale for this assumption has beenhbarall size of simulated structures
allows the propagation time of electromagnetic wave thiaihg structure, which is determined
by the propagation speed corresponding to the speed ofdighthe size of the structure, to be
much shorter than the characteristic time of magnetizatijoramics. An aim of the present re-

search was to re-examine this assumption and study elgaotradc effects in micromagnetism.

1.3 Dissertation structure

The dissertation is organized into three main chaptersptehs2, 3 and 4. In chapter
2, the foundations of micromagnetism are presented. Thieojdlis chapter is to provide the
reader with a basic understanding of the physics of magnedisd micromagnetic modeling
SO as to set up the discussions in subsequent chapters. rimgldtion on which the FastMag
micromagnetic solver is based, which was used for the ptegerk, is presented. However,
details of the implementation such as, for example, how tmaputation of certain integrals
is hardware-accelerated using graphic processing unfRdJjGre not given and the reader is
instead referred to the relevant publications.

In chapter 3, a particular class of magnetic material ctingiof ferromagnetic nano-

grains in a dielectric host medium is considered. This otdigaaterial has important practical



applications such as in integrated inductors due to thegin lpermeability, low losses and ca-
pability to operate at high frequencies. As an example of heeromagnetism can be used to

characterize magnetic materials in terms of their elecagmetic properties, the hysteresis loop
and high frequency permeability tensor of these materi@stdied using micromagnetic sim-
ulations. The high permeability of this class of materialgliie to anisotropy averaging among
neighboring, exchange coupled grains. Some resultsngldithis averaging process were ob-
tained and are presented in this chapter. These include¢ihagng of groups of nano-particles

into so-called effective particles as well as a general@euher-Wohlfarth model for exchange

coupled patrticles.

Chapter 4 couples micromagnetism with Maxwell’s equatioreectount for the dynamic
nature of electromagnetic fields. It examines the validityhe static approximation of the
Maxwell equations in micromagnetic simulations. It is fduhat in some cases, the dynamic
Maxwell equations must be considered. Whereas it is fourtg dh&ast for the time being, the
full Maxwell equations are usually not required in micromatic simulations, the quasistatic
Maxwell equations are found to be an adequate middle groundhnallows the modeling of
the eddy currents effect. The limits of validity of thesefeliént approximations are discussed.
The rest of the chapter is devoted to the coupling of the gtatgi Maxwell equations with the
micromagnetic model. Formulations based on both integyaheons and the finite element
method are presented. The effects of eddy currents in magoetic simulations are discussed

as well as the performance of the different solution methods



Chapter 2

Micromagnetism

In this chapter, the foundations of micromagnetic simalaiare presented. In section
2.1, the Landau-Lifshitz-Gilbert equation is introducedi @ justification for it is given based on
the Lagrangian formalism. Section 2.2 introduces the qonakeffective fields and expressions
are given for the effective fields for the exchange intecacind uniaxial crystalline anisotropy.
In section 2.3, the magnetostatic field is seen to be indugeédeomagnetization distribution in
the magnetic material and its computation by solving thecskdaxwell equations is discussed.
The concept of shape anisotropy, closely related to the etagtatic field, is also introduced. In
section 2.4, the space and time discretization schemestogenpute a numerical solution to

the Landau-Lifshitz-Gilbert equation are presented.

2.1 The Landau-Lifshitz-Gilbert equation

The governing equation of micromagnetism is the LandasgHiiz-Gilbert equation. Itis
essentially an equation for the conservation of angular erdom applied to a charged particle,
more specifically the spinning electron. Lets first constberorigin of this equation for a system
without damping using the Lagrangian formalism of cladsiwechanics.

Consider a particle with mass,, chargeq and moving with a velocity subjected to a



magnetic fieldB and an electric fiel. Then the Lorentz force acting on this particle is
ﬁ:q<E+vx|§> . 2.1)
This force can be derived from the generalized or velocégeahdent potential [12]
U=qp—0gA -V (2.2)

where® is the electric scalar potential aAds the magnetic vector potential. To show this, first

consider the Maxwell equations

. 0B
OxE=—— 2.
X o (2.3a)
. D .
OxH =743 (2.3b)
O0-D=p (2.3c)
0-B=0 (2.3d)

Because of Eq. (2.3dj3 can be written as the curl of some vector field. The magnetitove

potential is defined such thBt= 0 x A. Therefore, Eqg. (2.3a) can be written as

. A
DX(E—I—E)—O. (2.4)

Since any irrotational vector field can be written as the igratdof some scalar function, the

electric scalar potentiab is introduced such that

. 0A
Et 5 =00 (2.5)

To show that the Lorentz force can be derived from the paéatiEq. (2.2), consider cartesian



coordinates. Then, according to Lagrange formalismitineeomponent of the force must be

oUu d /ouU
= Tt (ox) o

given by

wherex; is theith cartesian coordinate of the particle age="0x /ot is its time derivative, also

corresponding te;, theith component of its velocity. Using Eqg. (2.2), this becomes
A. .

Using the chain rule, the time derivative &fcan be written in terms of partial derivatives as

dA 6A.
o Z axj (28)
Writing Xj = vj and inserting in Eq. (2.7) gives
3 [oA; oA od A
F— il ] - —— . 2.9
=2 V{am ax,} 9ox ot (2.9)
It can be seen that this is equivalent to
F=q i v i {s € aA”} qaq) qui (2.10)
= ' jk€mnkzo— VI v :
| =1 Jk,m,n:l e aXm axi ot
whereg;j is the Levi-Civita symbol. Eq. (2.10) can be written as
s 3 - od  IA
F= v OxA| — 2.11
! qul ’kzl 1k [ }k qax. ot (2.11)
and usingd = 0 x A, this becomes
H 0P  0A
F,_q[VXBL—qa—Xi—qE. (2.12)



Finally, from Eq. (2.5), the two last terms are seen to cgoes to thdth component of th&
field so that

H::q(ﬁ+[Vx§]) (2.13)

which is the Lorentz force Eq. (2.1).
Assuming that thé field is uniform around the particle, the magnetic vectorepdal
can be taken as
1 -

A:Esz (2.14)

whereX is the position vector of the particle. It is easily verifiédtB = O x A with A given by

Eq. (2.14). With this, the generalized potential of Eq. J2s2jiven by
1. 1 _
U:qtb—q(éBxX)-V:qGJ—(EquV)-B. (2.15)

The quantity%i x gV is by definition the magnetic momeimtassociated with the particle. There-

fore the generalized potential can be written as
U=qd_mB. (2.16)

Now consider as a generalized coordinate in the contextgifdrage formalism the angle
B that the magnetic moment makes with the field. A change in this generalized coordinate
B can be regarded as a rotation of the magnetic momemwbundn; an axis perpendicular to the

plane defined byn andB, as shown in Fig. 2.1a. The Lagrangian for the particle is
L=T-U (2.17)

whereT = %mplwz is the particle’s kinetic energy ard is the potential of Eq. (2.16). The

10



Lagrange equation of motion for the generalized coordifiase

d /oL\ oL
5 <£> - = (2.18)

whered denotes the time derivative 6f

osll

A
O
@ (b)

Figure 2.1: (a) Generalized coordina® corresponding to the angle between #end m
vectors. (b) The rotation afiby an angle\@ also implies a rotation df, the particle’s position
vector.

At this point, the potentidl is written in terms 0B. Also, while a particle with velocity
Vis being considered, what is really the object of the predisgussion is the spinning electron,
which classically can be thought of as a spinning body witmdefisize. In this picture, the
charged particle with velocity that is considered here would be a point of this spinning body
Since we are only concerned with the electron’s spin and tr@ireslation movement, and since
the electric scalar potentig only depends on translation movements and not on the sgn, th
termq® in the potential of Eq. (2.16) can be neglected. Therefoegthtential of Eq. (2.16)
can be written as

U = —|m||B|cosh . (2.19)

Lets evaluate the left-hand side of the Lagrange equatiofZED8). The quantity inside

11



parentheses corresponds to
oL_or_u

- (2.20)
0 090 06

From Eq. (2.19), it is seen that does not depend o, thereforedU /36 = 0. The particle’s

kinetic energyl can be writtenl = %mp?- X so that

oT . 0%

e = MY — 2.21

® 7 a6 (2.21)
If ri,i=1,2,...,n, along with6 are independent generalized coordinates that descrilpathe

cle system, then the position vector of the partici4sX(0,r1,r2,...,r,) and its time derivative

is given by
X = g—§é+k:§—ifk . (2.22)
From this, it is seen that _
g_g _ g_g , (2.23)

The rotation ofm aroundn”by an angleAd implies the same rotation of the position veckor

Such a rotation oK is depicted in Fig. 2.1b from which one can observe that

X . X(0+A46)-X6) .
30— AI(lango A0 =NAxX. (2.24)

Using Egs. (2.23) and (2.24), Eq. (2.21) can be written as

5= MpX- (A X X) . (2.25)

Sincex = v, and permutating the triple product, this becomes

oT

5= MpA- (X x V) (2.26)

12



which is recognized as threcomponent of the angular momentiira= mpX x V, that is,

M _ar. (2.27)
00

The right-hand side of the Lagrange equation, Eq. (2.18ksponds to

oL T au

B-38 20" (2.28)

While a rotation ofmalso implies a rotation of the velocity vectgrthe magnitude of is invari-
ant under the rotation, so thaT /08 = 0. From the expression for the potentiy] Eq. (2.19),

one obtains
ou

5 = || |B| sin® (2.29)

so that the Lagrange equation of movement, Eq. (2.18) reads

%(ﬁ-i) = —|m||B|sind . (2.30)

Sincerf'is the unit vector in the direction & x m, Eq. (2.30) can be written as

dL H
G =mxB (2.31)

which says that the rate of change of a charged particle’slanghomentum ish x B, which

can then be interpreted as a torque applied on the particeeméntioned previously, we are
in reality interested in the spinning electron instead ef dictual motion of a charged particle.
In that case, Eq. (2.31) is still valid bdi has to be interpreted as the magnetic moment of the
spinning electron. Then it is useful to consider the refegiop between the magnetic moment

of a spinning electron and its angular momentam; yL wherey is the electron’s gyromagnetic

13



ratio, given by

_ %9

= (2.32)

Y

wherege < 0 is the electronic chargey is the electron’s mass ampk 2 is the electronic spin
g factor. Therefore, EqQ. (2.31) can be written as

dm _,

~  —vymxB 2.

qr — Ymx (2.33)
which is the equation of motion for the magnetic moment in la fie

A lossless system is assumed in Eq. (2.33) since it predietisa magnetic moment

subjected to a magnetic field would precess forever arouisditid. Landau and Lifshitz in
a 1935 paper [13] and then Gilbert in his 1956 Ph.D. thesss,réhevant parts of which are
summarized in a 2004 paper [14], proposed the addition ofrigoday term in Eg. (2.33) which

would cause the magnetic momentto relax to the lowest energy state which corresponds to

alignment withB. Landau and Lifshitz proposed to add the following term to @33),

dm ~ A -,

whereA is a damping coefficient. Gilbert instead argued that a daghprm could be intro-
duced based on Lagrangian formalism by adding a term to tigeabge equation Eq. (2.18),
representing a damping generalized force, or in the presesata damping torque,

d /oL oL 0 /n: -

— (=) == (Zm-m 2.

dt (am) om o 2™ ) (2.35)
wheren is a damping coefficient and where the generalized coomlihate is the magnetic

momentm instead of the angl8 as in Eq. (2.18}. This is analogous to Rayleigh’s dissipation

1The damping torque cannot be derived using only&yeneralized coordinate and as Gilbert mentions in his
2004 paper [14], it is in fact not straightforward to derivg. E2.33) using the Lagrangian formalism. In fact, the
approach that was taken here necessitates certain assngpibtably in the choice of a complete set of generalized
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function %}\% %, the derivative of which with respect o corresponding tdX, is added to the
Lagrange equation as a friction force for the case of an tij@wing with velocityv = X [12].

The result of this is that Eq. (2.33) becomes

dr am
I = ymx B+|m‘ — (2.36)

wherea is a damping coefficient related tp This is the Landau-Lifshitz-Gilbert equation and
it can be put in a form similar to the Landau-Lifshitz equati&q. (2.34). Indeed, taking the

cross product offi with Eq. (2.36) gives

dm = a om
mxa—yr’r’lx(mxB)—l—ﬁmx (r?lx 6t> (2.37)

Using the vector identit x (b x €) = (&-¢)b— (&-b)&, this becomes

dm .« dm dm
mxa_ymx(mxswﬂ{(m a)m (M- m) dt} . (2.38)

Since it is assumed that the magnituderas invariant, it follows thal%‘ is perpendicular ton

so thatm- %T 0 and Eq. (2.38) reduces to

dm ; dm
M g = Vi (M B) —alm . (2.39)

Substituting this expression fai x dm/dt into Eq. (2.36) yields

—m:ymx B+ — |[ymx (MxB)— O(|rT‘l] (2.40)

coordinates, which are hinted by Goldstein in [12], p.23®] ehich complicates the passage from Eq. (2.30) to
Eqg. (2.31). These complications are not dealt with here hagtocedure employed here should be regarded as a
justification of the Landau-Lifshitz-Gilbert equationnat than a rigorous proof.
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which simplifies to

dm_ y ooy S
e 1+O(er‘1>< B+(1+a2)|m|m><(ﬁ‘1>< B). (2.41)

This equation is almost identical to the Landau-Lifshituaipn, Eq. (2.34), except that the
gyromagnetic ratio is divided by the quantity+lo?. Since experiments have shown that the
value ofa usually ranges from 0.001 to 1, this difference betweenwioesiquations can become
significant when dealing with magnetic systems with high geagp. The question of which one
of Eq. (2.34) or EqQ. (2.41) is the correct one is still subjectebate [9]. Nevertheless, it is
Eq. (2.41) that is solved through micromagnetic simulaionthe present work and it will be
referred to as the Landau-Lifshitz-Gilbert (LLG) equatidine fact that the time derivative of
only appears on the left-hand side allows the equation todre masily time-integrated.

Up until now, only the magnetic momeni of a single electron has been considered.
Following the procedure used in macroscopic electroma&gngb, 6], the macroscopic magne-
tizationM is now introduced and should be regarded as the spatialtpged magnetic moment
of all electronic spins within a region large enough to srhamit variations due to the atomic
configuration in space but small enough to capture the memgwien distribution within the mag-
netic material. In electromagnetism, this small enougk @il typically be some fraction of
the wavelength of electromagnetic fields. In micromagnetibis small enough size is dictated
by the exchange length, which is the length over which maggisan is forced to be mostly uni-
form due to the exchange interaction. With this averagirmg@dure in mind, the LLG equation
EqQ. (2.41) reads

dM Y - = yo L
—_= MxB+ —Mx (MxB). 2.42
dt  1+a? (1+0a2)|M| ( ) (2.42)

Here, B should also be considered in the context of macroscopidrefaagnetism as

the spatially averaged magnetic flux density. To couple th& lequation with the Maxwell
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equations, it is convenient to introduce the macroscopignatc field which is defined as

H=—B-M. (2.43)

1
Ho
ReplacingB = po(H + M) in Eq. (2.42) and noting thall x M = 0 gives

M__ Y yi«H Y& i« (M xH). (2.44)

= MxH+—"——
dt 1+0a? (1+a2)|M|

where the value gfiy is absorbed intg, depending on the units system that is used. For instance,

in cgs unitsyp = 1, while in Sl units g = 41t x 10,

2.2 Effective fields

The magnetic fieldd in the LLG equation, Eq. (2.44) has been introduced using the
electromagnetic potential of a magnetic moment subjeaie magnetic field. Consequently,
interactions such as the magnetostatic interaction orfteetef an externally applied field are
taken into account since they involve magnetic fields. Orother hand, important interactions
such as the exchange interaction and crystalline anispaapnot a priori included in the LLG
equation. It is however possible to include these intevastusing so-called effective magnetic
fields.

The idea is to consider the potential due to the magnetic #unsity from Eqg. (2.16),

U=-M-B. (2.45)

Writing this in terms ofH usingB = po(H + M) and in the cgs unit system wheug = 1, one
obtains

U=-M-H-M-M. (2.46)
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Since the magnitude ¥l is assumed to be constant, the second term can be droppebeand t
potential reads

—

U=_M-H (2.47)

which is of the same form as Eq. (2.45). If the potential asged with another interaction has
the same form as Eq. (2.47), then an effective field can beatkfor this interaction. However

this is generally not the case and an interaction’s potientiBbe some function oM,
U=UM). (2.48)

An effective field can be introduced by linearizing this putal around the magnetization distri-
butionM of the system at a particular instant in time. Indeed, thédFaxpansion of Eq. (2.48)

aroundM = Mg is

U(I\7I)=U(I\7Io)+g—; - (M —Mo) +... (2.49)

M=Mo

Neglecting higher order terms and dropping terms that ansteat with respect t , this

becomes
- ouU -
UM)=— (2.50)
OM [i=Ni,
which is of the same form as Eq. (2.47) with
H=— a_Lﬂ (2.51)
oM |Ni=wi,

This linearization procedure is particularly well adaptednicromagnetic simulations where
the LLG equation is integrated in time to obtdéhas a function of time. At each time step, the
current magnetization solution is used as the valudfgrthe effective fields are computed and
the LLG is integrated using these linearized interactigktseach time step, the changeNhis

usually small which justifies the above linearization pchge.
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2.2.1 Crystalline anisotropy field

Lets take for example uniaxial crystalline anisotropy, vehthe crystalline structure of
the magnetic material causes a preferred direction for thgn@tization. The anisotropy vector
K is defined with its orientation corresponding to the preferdirection and its magnitude K
representing the anisotropy energy density, thus thegttnesf the interaction. This anisotropy

interaction is modeled by the potential

Uan = K si’0 (2.52)

whereb is the angle betweelk andM. Using the identity sifi® = 1 — co£6 and dropping the

constant term, the potential can be written as

K - Ni)2
Uan— —Kcogg — — (KM 2.53
an < (2.53)
Using Eg. (2.51), the effective field for uniaxial anistrapy
an=— —=" — ——(K-Mo)K.. (2.54)
oM |ni=ni, K|Mo|

2.2.2 Exchange interaction field

The crystalline anisotropy is a local interaction in thessethat at a given point, the
effective field does not depend on the magnetization digioh elsewhere in the magnetic ma-
terial. This is not the case for the exchange interactiorcivffiavors spatial uniformity of the

magnetization. The potential associated with the exchargeaction can be defined as

_ & 2 2 2
Uex = N [(OM)2+ (OMy)2 + (OM,)?] dV (2.55)
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whereMy, My andM; are thex, y andz components of the magnetizatith Aey is the exchange
coefficient and is some volume within the magnetic material. This potema be understood
as penalizing variations in the magnetization in tBeorm sense. The functional in Eq. (2.55)
does not depend explicitly dvi so that Eq. (2.51) cannot be used directly to define an effecti
field. Instead, in the fashion of the calculus of variatidhg, Taylor expansion of the integrand
in Eq. (2.55) in terms of the spatial derivatives is used. @iy the integrand of Eq. (2.55) by

lex and neglecting higher order terms, this yields

. - ol
Uex(W) = [ 1ex(Mo) + 75 (M= DM+
=No
alex alex
-(OMy — OMgy) + -(OMz—[OMogz) dV (2.56)
O0My | i _gi, 00Mz | iy,

wheredMgy is thex component oMy and where for instance

0lex _alexA Olex,, , Olex,

— 2.57
a0My _ op . oR,” " ap,” (2.57)

with P, B, andP, denoting the derivatives dfly with respect tox, y andz respectively. Leaving

out terms that are constant with respecfitdy, LMy or [0M;, Eq. (2.56) becomes

Uex(M) = 5 |2$°—; [(EMoyx - OMy) + (OMoy - OMy) + (OMgz - OM)] dV . (2.58)
Since- (OMgxMy) = OMoy - OMy+ 02MoyxM, and similarly for they andz components, assum-
ing that the magnetization functidv is sufficiently smooth and using the divergence theorem,

Eg. (2.58) can be written as

Uex(M) = — A |2$‘|*; [(O*MoxMy) + (*MoyMy) + (0?MoM)] dV-+
ﬁ\%ﬁ [MxOMox + MyOMoy + M,0OMg;] - AdS.  (2.59)
0Q
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wheredQ is the surface of the domafd andriis a outward pointing unit vector perpendicular to
this surface. At this point, a limiting procedure is empldyehereby the regiof is taken to be
arbitrarily small. If the region is taken to be small enoutijie, quantity between square brackets
in the surface integral can be considered to be constanteoautiacedQ. Then this quantity

can be moved outside the integral and the surface integraldeEq. (2.59) becomes

@([ xIMox + MyOMoy + M[O0M| / nds. (2.60)
IM|2 0Q

It is easily shown that the integral over any closed surfdde the outward-pointing unit normal
vector to this surface, is zero so that the surface integral tioes not contribute to the potential

Uex. Meanwhile, the quantity inside square brackets in the meluntegral of Eq. (2.59) is

[02Mg - M. Therefore, Eq. (2.59) becomes

2Aex
Q [M|?

Uex(M) = — O0?Mg-MdV . (2.61)

From Eq. (2.47), the potential of a magnetic field acting anrttagnetization within the
regionQ is

U:—/I\7I-F|dv (2.62)
Q

which is of the same form as Eq. (2.61). The effective fieldtfer exchange interaction is

therefore
~ 2Aex 9
Hey = —=0“Mg . 2.63
ex “V”2 0 ( )

2.3 Magnetostatic field

The magnetostatic field, also known as the demagnetizing dietl denoted b¥ims, is

part of the effective fields, in the sense that it is includediiin the LLG equation. Here it is
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given its own subsection to highlight the fact that unlike #nisotropy and exchange fields, the
magnetostatic field is a proper magnetic field, in the serekittlis a solution of the Maxwell
equations. More will be said on this in chapter 4, but it istloem in micromagnetism to con-
sider the static Maxwell equations for the magnetic fiele, gblution of which is then referred
to as the magnetostatic field. The justification for usingsfagic approximation is that the size
of structures studied in micromagnetism is almost alwagphesubwavelength in terms of the
electromagnetic wavelength and therefore propagaticayddfects can be neglected.

The magnetostatic field is obtained by solving the static Wielkequations for a given

magnetization distributioM. The static Maxwell equations for the magnetic field are [6]

0 x Ams =0 (2.64a)

O-Hms=—0-M (2.64b)

There is a variety of ways in which Egs. (2.64) can be solvetithe topic is treated extensively
in the literature, see for instance [15, 16, 17]. In FastMbg,approach taken is based on the
fact that sincé] x Hms = 0, the magnetostatic field can be written in terms of a magseglar
potential,

Inserting this into Eq. (2.64b) gives

2dy = 0-M, (2.66)

which is the Poisson equation with source téimM. In FastMag, the solution of Eq. (2.66) is

obtained by computing the following volume integral [6],

_i V1Al 1 /
CDM_4T[/M(X) 0 (R_m)di (2.67)
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where the integration is over all &°. The magnetostatic field is then computed frdf using

Eq. (2.65).

2.3.1 Shape anisotropy

Shape anisotropy refers to the fact that, due to a magnetjzesand the magnetostatic
field, the magnetization inside this magnet will have a prefkdirection which minimizes the
energy of the system. The potential energy associated héttagnetostatic fieldys generated

by a magnetization distributiok is

1—» —
U = —5Hms- M (2.68)

This can be compared to the potential energy for a magneg¢glsca constant magnetic field,
given by Eq. (2.47). The additional factérin Eq. (2.68) is due to the fact thilys is itself a
function, or more precisely a functional, bf as seen from Egs. (2.65) and (2.67). In this case,

the Taylor expansion of Eq. (2.50) can be written as

u
M

— — — — aH
‘M Hims(Mo) - M + I\%‘S

NM—Nio 2

‘M| . (2.69)
i

The derivative of the functionafims(M) in the second term on the right hand side should be

considered in a generalized sense and is known gg@a@ derivative. It is defined as

oM Wity £— €
The functionaHms being linear, Eq. (2.70) evaluates to
H L
sl = Fins(Mo 2.71)
M=Mo
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so that Eq. (2.69) simplifies to
— ‘M = —Hms(Mo) - M . (2.72)
M

Comparing this to Eq. (2.51), it is seen that the magnetasfiatil Hns can be treated just as a
magnetic fieldH produced by external sources when solving the LLG equation.

Having established an expression for the potential assabwith the magnetostatic field,
Eqg. (2.68), it can now be shown that for magnet shapes whena#ignetostatic field is uniform
inside the magnetic region such as ellipsoids, shape aojgois formally equivalent to a uni-
axial crystalline anisotropKsp oriented in the preferred direction of magnetization. Raorhs
magnets, the magnetostatic field can be given in terms of éheagnetization factor and
N, [18]. Both the magnetostatic field and the magnetization @addromposed into parallel
and perpendicular components with respect to the prefeliredtion of magnetization such that

Hms = Hmg| + Hms1 andMms = Mg +Mmsi . Then the demagnetization factors are defined by

Hmg = —N/M (2.73)

Hms = =N, M . (2.74)

Introducing the unit vectors"andri, parallel and perpendicular to the preferred direction of

magnetization as shown in Fig. 2.2, Eqgs. (2.73) and (2.7d beanritten as

ﬁmq| — —NH(I\7I A (2.75)

Hmst = —N (M-A A, . (2.76)

Inserting these expressions into Eg. (2.68) for the pakatiergy yields
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Figure 2.2 The shape anisotropy in an ellipsoidal magnetic particle is equivalent t@giain
anisotropy vectoKsg, which points in the preferred magnetization direction.

1 — A A — A A —
U= —z [—NH(M nH)nH — NJ_(M nL)nL} M

1 S o

=3 [—NH(M )2 —NL(M m)z}
1 (2.77)

=—5 [—Nj cos6— N, sir? 6] |M|?
1 -

= _E [—(N” — NJ_)COSZG— NJ_] ’M‘Z

wheref is the angle subtended I, andM. Dropping the constant term gives

U= —%(NL—N”)CO§G|I\7I|2. (2.78)

Comparing this with the potential for crystalline uniaxiaisotropy, Eq. (2.53), it is seen that

shape anisotropy is equivalent to a unixial anisotropy witdgnitude given by

1 .
Ksn= 5 (N1 —Nj)[MJ?. (2.79)

While the fact that this result was derived for ellipsoidalgnats may seem to limit its
applicability, since ellipsoids can take a wide array ofd® from a thin needle for a long,

prolate spheroid to a circular plane-like volume for a flétlate spheroid, the concept of shape
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anisotropy can be used to gain insight into the propertiesafy magnetic structures.

2.4 Space and time discretization

The objective of a micromagnetic solver is to compute a &miui (X,t) to the LLG
equation, Eq. (2.44). The LLG equation is a partial diffei@requation in both space and time
and is non-linear in terms of the unknowh Different approaches can be used to discretize and
solve the LLG equation such as finite differences or the felgenent method. The present work
was done using and building on the FastMag micromagneti@golhich is developed by Pro-
fessor Lomakin’s research group at UCSD. The approach ttedtes to solve the LLG equation
is to discretize the problem in space using the finite elemethod on a tetrahedral mesh. The
magnetizatiorM is spatially represented by linear basis functions whilpmatching is used
for the testing functions. This transforms the LLG equatioa system of non-linear ordinary
differential equations (ODES). This system has the samma &® the continuous LLG equation,
Eq. (2.44), but wherd/ represents the vector of values of the componentd @ft the nodes
of the tetrahedral mesh and where the effective fi¢lts computed at these same nodes. The
computation of the effective fields is based on the contisusguations for these fields which
were discussed in sections 2.2 and 2.3 and on the repreéeantifithe magnetizatioM by linear

basis functions.

2.4.1 Computing effective fields at mesh nodes

For the crystalline anisotropy effective field, the field atlei is given by a discretized
version of Eq. (2.54) foHan,

Ham — W(Ki . Mi)Ki (2.80)

S,i
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whereK; is the volume averaged anisotropy vector of tetrahedromswuding nodé and whose
magnitude iK;, M; is the magnetization at nodeandMs; is the volume averaged saturation
magnetization of tetrahedrons surrounding nodehe saturation magnetization is a property of
a magnetic material and corresponds to the magnetizatioamitude which is assumed to be
constant.

The computation of the effective field for the exchange et&on is complicated by
the fact that the magnetization is assumed to be describéithdsr polynomials whereas the
exchange field, given by Eq. (2.63) is proportional to theosdmrder derivative ofi, which is
zero locally, i.e. inside a given tetrahedron. Following]jlan approximation of the exchange
field at the node can nonetheless be obtained by assuming that the laplatisihi® slowly
varying so that it can be regarded as constant within tetirims surrounding node Denoting
the region corresponding to tetrahedrons around nbg&); and introducing the linear hat basis
function centered on node@, consider the following integral involvinyly;, thex component
of M;,

N @ (X)T?My; (R)dV . (2.81)

Using the divergence theorem, this can be written as

/Q QEREPMGR)AV = — [ DR - DMy (X)dV + / @XMy (0 -AdS.  (2.82)

Q; 0Q;

The surface integral vanishes because the hat basis forgtie zero on the boundary @;.
Now making use of the assumption tl‘ﬂﬁMxJ is constant withirQ;, it can be taken out of the

left-hand side integral in Eg. (2.82) which yields

O0%Myi (X) = —m /Q | 0@ (X) - OMyi (X)dV . (2.83)

The volume integral ofy over a tetrahedron is simply a fourth of the tetrahedronlsme and
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is easily computed. The other integral is computed by makise of the representation bf

in terms of basis functions. With identical expressionstfey andz components oM, the
exchange field is obtained by replaciigMg in Eq. (2.63) by the expression in Eq. (2.83) for
each component.

Before leaving the topic of the exchange field, one will havéced that if nodd is
located at the boundary of the magnetic region, the basigitmg does not vanish 0dQ;. In
that case however, the surface integral in Eq. (2.82) stilishes becauséMy; - = 0. Indeed,
the directional derivative dfl in the direction normal to the surface of a magnetic regid%/an,
is zero. This boundary condition is analogous to the boyndandition at the free end of a
string which is also an homogeneous Neumann boundary comd#0]. In this analogy, the
magnetization’s exchange interaction plays the role ofghsion in the string.

The computation of the magnetostatic field is based on thepatation of the integral
in Eq. (2.67) for the magnetic scalar potential. The integkeer all the magnetic domain is

decomposed into integrals over individual tetrahedrons,

¢M<xf):%TZ/QKM(X’)-D’<R_1W|>(1W (2.84)

whereQy is the region occupied by thh tetrahedron. An approximation is made where the
magnetization is considered to be constant within eachttetiron and equal td,, the average

value ofM at the 4 nodes of tetrahedr&nThen Eq. (2.84) becomes

1 - 1 ,
CDM(X):E[ZMk/QkD (IX’—Y’I)dX (2.85)

and using the divergence theorem, this can be written as

1 — n
dy(X)=—S M dx’ 2.86
M( ) 4.,.[2 k/an R_X/’ ( )
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where the surface integral is over the boundary of tetraivekir The magnetic scalar potential
@y is computed at each node of the mesh after which its gradsecdmputed to obtain the
magnetostatic field at the nodes.

Special attention must be given to the computation of thegra in Eq. (2.85) when
the source poink and the observation poit belong to the same tetrahedron. In that case, a
singularity extraction procedure must be used, the deitildhich can be found in [21]. Also, the
computation of the magnetic scalar potential from Eq. (Rt86 aN? complexity. In FastMag,
a non-uniform FFT technique is employed to do this compomatvith a complexity oNIlogN.

This acceleration technique is described in [22] and [23].

2.4.2 Time integration

At this point, the LLG equation has been cast into a systemRE©of the form

—

oM

5 = [(VLF) (2.87)

whereM andH denote arrays of values of the magnetization and of thetaféemagnetic field

respectively at the mesh nodes and Whﬁ(ﬂﬁ, ﬁ) corresponds to an array containing the right-

hand side of the LLG equation, Eq. (2.44), evaluated at thehmedes. While the dependence

of f on the effective fieldd is explicit in Eq. (2.87), it is clear that the effective figilitself a

function of M. Furthermore, from Eq. (2.44), it is seen tias a non-linear function ofi.
Different methods can be used for the time integration of(E®7), for instance explicit

methods like the Runge-Kutta method and the Adams-Bashfathad or implicit methods like

the Adams-Moulton method. In FastMag, the backward difféa¢gion formula (BDF) method

is used. The BDF method is an implicit, multi-step method \whécA-stable for order = 1 and

r = 2. Lets consider the ODE

ou
i f(u) (2.88)
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where the unknown is(t) and f is a known function ofl. The principle of the BDF method
is to construct an interpolating polynomial of ordem(t), which passes through poins, u;)
fori=n—(r—1), ..., n+1 wherey; is the solution at the discrete tilhe The method then

consists in letting

P (th1) = f(Unsa) (2.89)

and solving for the solution at the latest time stgp;.

For orderr = 1, the interpolating polynomial is

t—t t—t
P(t) = U1 + Uy (2.90)
thi1—1n th—thia
and its derivative evaluated et t, 1 is
Un+1— U
P (tna) = (2.91)
tn+1 —1n

which also corresponds to the forward Euler method. Forrarde?2, the interpolating polyno-

mial is

(t—tn)(t—th1) u (t—tny1)(t —th1) Y (t—thy1)(t—tn)
ter—t) (1 —th1) (tn—tnsn)(th—th1) " (th1—tnsa)(th1 —tn)
(2.92)

P(t) = Unt1 (

and its derivative evaluated et t, 1 is

P'(ths1) =Unt1 [ t 1 1 + Un [ N S
tn+1 —th-1 tn+1 —tn tn+1 —th th—th1
tn+1 - tn ]

Un-1
" { (tn+l - tn—l) (tn - tn—l)

(2.93)
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In general, for order, p/(tn;1) is given by

r

P (thy1) = %aiunﬂfi (2.94)

where theq; are coefficients which depend on the time step history. Frgm(Z89), the BDF

method therefore consists in solving

r

_ZjaiUnJrl—i = f(Uny1) (2.95)

for up1.
Applying the BDF method to the system of ODEs of Eq. (2.87) ftlewing system of

equations must be solved for the array of magnetizationesad the latest time stel,. 1,

r

Z)O(i|\7|n+1—i = f(Mnt1) - (2.96)

This is an implicit system of equations fb, 1, which also happens to be non-linear sirfds
a non-linear function. Therefore, the Newton method is ueduhearize the problem. To apply

the Newton method, Eq. (2.96) is written as
d(Mny1) =0 (2.97)

where
r

G(Mni1) = %Gimn+li — f(Mns1) - (2.98)

At time stept,1, Starting with an initial guesﬁl(o) successive approximatiolﬁﬁgzl are com-

n+1:
() pfltD

ni1 Myl is computed by replacing(My. 1) in Eq. (2.97)

by its Taylor expansion arourﬂr(]ﬂl, evaluated at\7lr(]jjll), where only the first order term has

puted. Given the approximatidvi

31



been kept,

i d (] (]
gy + =20 (Y-l <o, (2.99)
OMn 1 Mn+1:'\7|r(1]+>1

Here,dg/0M,, 1 is the jacobian matrix

o 001
OMinr1 OManyr

= 09 dgp
OMn1 | Minca Manx 7| (2.100)

wheregs, @2, ... are the components of tigdunction andM1 ni1, M2 n41 are the components of

theM,..1 array. The linear system of equations in Eq. (2.99) is sofeedM = I\7I§]L+11) — I\7I§]£21
which then allows the computation of the new approximation
MUY — M) oM (2.101)

What was just described is the basis of the BDF-Newton methqudoged to solve the
discretized LLG equation. However, the algorithm that igyed in FastMag has some refine-
ments which will not be presented in details here. The algoriused is a customized version
of the VODE algorithm [24, 25] which was designed to solvetesys of initial value ODEs of
the form of Eq. (2.87). Both the algorithm used in FastMag a@D¥ allow the time step to
change dynamically during the integration process basdti@error and convergence history:
when the error exceeds a certain threshold after a certanbauof Newton iterations, the time
step size is reduced while if convergence is rapidly achidee a number of consecutive time
steps, the time step size is increased. Both the FastMag abdE\&yorithms also use a BDF-
based predictor to compute the initial gu&#ﬁl at a new time step. For the ODE of Eq. (2.88),
this predictor is based on the construction of an interpajgtolynomialp(t) of degree which

passes through thepoints (t,_r_1), Un—(r—1)); - - -, (tn, Un) and satisfiedp/ot|i—, = f(un).

32



Chapter 3

Characterization of soft nano-granular

ferromagnetic materials

Micromagnetism can be used to characterize magnetic rakt@riterms of their magne-
tization response to an applied magnetic field. Two methiasdre used to characterize magnetic
materials are introduced in section 3.1, namely the hysiteteop and the permeability tensor.
The hysteresis loop describes the non-linear behavior ginet&zation in a magnetic material
and conveys key information like the anisotropy field anddbercive field. It also allows mag-
netic materials to be categorized as either hard or soft etagmaterials. The Stoner-Wohlfarth
hysteresis model is described as well as how hysteresis lcap be obtained from micromag-
netic simulations. The permeability tensor is the primagamby which magnetization in mag-
netic materials is taken into account in electromagnetibl@ms involving the solution of the
Maxwell equations. A method for the extraction of the freggyedependent permeability tensor
from micromagnetic simulations is presented. Section &2udses nano-granular ferromag-
netic materials, which are characterized by a low effeciimesotropy due to anisotropy aver-
aging amongst ferromagnetic grains with randomly orieraeidotropy axes. The mechanism

of anisotropy averaging is described in section 3.3. Theephof effective particles and how
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they can be used in micromagnetic simulations of nano-daamerromagnetic materials is also
discussed. Section 3.4 presents some concepts of diracpoobability theory on the circle
which are useful to describe collections of particles waindomly oriented anisotropy axes.
In section 3.5, these probability concepts are used to cteripesteresis loops of ensemble of
nano-granular ferromagnetic particles by means of a gépedeStoner-Wohlfarth model which

accounts for exchange interactions between particles.

3.1 Characterization of magnetic materials with micromag-
netic simulations

Two important characteristics of magnetic materials feirthse in high frequency appli-
cations are the hysteresis loop and frequency dependanepeéility tensor which both describe

the macroscopic magnetic response of a material to an appkgnetic field.

3.1.1 The hysteresis loop

An example of an hysteresis loop is shown in Fig. 3.1. Thedmgsis loop shows the
magnetization component in the direction of an applied retigriield as a function of the mag-
nitude of this applied field as it is sweeped from its maximuosifive value to its minimum
negative value and back. In the case of Fig. 3.1, the maguietizis shown in terms ah, the
magnetization normalized with respect to the saturatiogmatizationMs.

Among the many properties that can be defined for an hyssdiasp [18], the coercive
field H¢ corresponds to the field that must be applied to achieve@aataero net magnetization
after the ferromagnet has been saturated. The coercivenfietdures how wide the opening
of the loop is, and therefore the amount of hysteresis in yiseem. It is also a way to catego-

rize magnetic materials as being hard or soft, hard magn®iterials being hard to magnetize
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Figure 3.1 Hysteresis loop for a magnetic particle subjected to an applied magnetic field

oriented at 45 degrees from the particle’s uniaxial anisotropy axis.
and demagnetize while soft materials are easy to magnetzelemagnetize. Hard magnetic
materials are used in applications such as permanent nsagnéetwill have coercive fields in
the hundreds or thousands of Oe. While a good hard magneteariaildas characterized by its
non-response to applied magnetic fields, soft magneticrmakgere tailored to have specific
magnetization responses depending on their application.inStance, magnetic materials for
inductor or transformer applications are designed to haleear behavior, meaning as little
hysteresis as possible, or a snddlfield. For those applications, a high permeability, which as
will be discussed shortly is equivalent to a high slope offtysteresis curve, is also desired.

The hysteresis behavior is a combination of the rotatiomefhagnetization and abrupt

reversals at certain values of the applied field which realh the interaction between an
applied field and a particle’s anisotropy. That was the meapg@sition of Stoner and Wohlfarth
in their seminal 1948 paper [26]. They considered a partalgjected to an applied field
and having a uniaxial anisotrop;, as shown in Fig. 3.2. In their model, Stoner and Wohlfarth
neglected inter-particle interactions such as the magtedto field and the exchange interaction.
Therefore, the total energy associated with the systeneisitiisotropy energy and the energy

associated with the applied field. From Eq. (2.52) and rigfgto Fig. 3.2, the anisotropy energy
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Figure 3.2 Stoner-Wohlfarth hysteresis model for a single particle with uniaxial &gy
vectorK subjected to an applied magnetic fiéid

Uan= K sirPy (3.1)

Using the trigonometric identity sfp = %— %cos(ZLp) and ignoring the constant term, this

becomes

From Eq. (2.47), the energy associated with the applied fieis!
Un = —HMscosp (3.3)

whereMgs is the magnetization amplitude, corresponding to the aatur magnetization. The
total energy is therefore

K
U= 5 cos 2P —HMscosgp. (3.4)

The anglep that the magnetization makes with the applied field at dgpilm is found by min-
imizing this energy. The anglé between the applied field and the anisotropy directio
being a constant of the problem, the angles written in terms ofpasy = @— 6. Using this in
Eqg. (3.4), it becomes

U= —%coiZ[q)— 8]) —HMscosp. (3.5)
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The values ofp minimizing the total energy are found by solvidg /0@ = 0 which yields

= K'sin(2[6 — q|) ‘

Mssing (3.6)

Values of¢ that are solutions of Eq. (3.6) and satisfy the condifidd /d¢? > 0 minimize the
energy and correspond to equilibrium states. Given a valuthé applied fieldd and the angle
8, Eg. (3.6) can be solved fapusing a root-finding algorithm. There might be two valuegof
that correspond to states of minimal energy. In the contekiysteresis loop calculations, the
correct solution depends on the magnetization historyekample, foH = 0, two equilibrium
states exist, one with the magnetization pointing in+1€ direction and the other pointing in
the —K direction.

Using the Stoner-Wohlfarth model, hysteresis curves carobguted for individual par-
ticles or even ensemble of particles. For example, Fig. [308vs the hysteresis loops computed
with the Stoner-Wohlfarth model for different values of ttuegle® between the applied field
and the anisotropy axis. For small angles, the hysteresjs i seen to have a square shape
and a highH; value. For this reason, the direction of anisotropy is kn@snhe hard axis.
For larger values 08, Hc decreases until the hysteresis loop takes the shape ofighstiae
for 8 = 90°. The direction perpendicular to the anisotropy axis isdf@e known as the easy
axis. Itis important to note that the Stoner-Wohlfarth maeslan approximate one as it neglects
inter-particle interactions such as the magnetostaticeaotiange interactions. In section 3.5, a
Stoner-Wohlfarth model that takes into account exchantggantion between particles will be
presented.

It is also possible to perform micromagnetic simulationséonpute hysteresis loops.
Hysteresis loops are usually measured at very low freqaendhat is the magnetic field is
sweeped slowly, so that at each field value, the magnetizatiat its equilibrium state. This is

certainly the case in hysteresis loops computed using theegtVohlfarth model, and it can also
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Figure 3.3 Hysteresis loops computed with the Stoner-Wohlfarth model for a particle with

uniaxial anisotropy oriented at different angBewith respect to the applied field.
be achieved in micromagnetic simulations by either varyivegapplied field at a very slow rate,
or by dividing the sweeped values of the field in discretesteqich are applied successively,
with the micromagnetic simulation allowing the system taale equilibrium at each value of the
applied field. For instance, Fig. 3.4a shows the hysteregsfor a system of 1000 spherical par-
ticles with randomly oriented unaxial anisotropies withouer-particle interaction which was
obtained with a micromagnetic computation but could veryl have been computed using the
Stoner-Wohlfarth model. Meanwhile, Fig. 3.4b shows theténgsis loop for the same system

of particles but this time with exchange and magnetostataractions between the particles.
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Figure 3.4 Hysteresis loops computed through a micromagnetic simulation for a system of
1000 particles. (a) No inter-particle interactions are considered. (Ghdfge and magneto-
static interactions between particles are taken into account.

As will be seen in subsequent sections, the dramatic dexredke coercive field (note
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the change of scale between the two figures) can be attriboitbd exchange interaction which
effectively averages out the randomly oriented aniso&®plin cases like this where the exchange
interaction plays a dominant role, the Stoner-Wohlfarttdeias inadequate and either a more
refined model or micromagnetic simulations need to be usednpute the hysteresis loop.

In the above example, the inter-particle exchange intenrastas modeled by the ex-

change interaction energy between two particlesd |,

Uex = —JM - r_ﬁj (3-7)

where J is the exchange coupling energy @nendm,; are the normalized magnetization vectors
of particlesi andj. From Eq. (2.51), the effective field acting on partictiue to this exchange

interaction is
J
I\/ls,iVi

Hex,i =

i (3.8)

whereMgs; is the saturation magnetization of particlendV; is its volume. The volume of
particlei appears in the denominator of the effective field becaus€Z%l) was derived for a
point-like magnetic moment while the exchange energy aatatwith particla is given by the

integral of—M; - Hey ; over the volume of particle

3.1.2 The permeability tensor

When the magnetization response to the applied magnetiddietdstly linear as in the
hysteresis curve of Fig. 3.4b, permeability can be definethimaterial. The permeability of a
material, noteqltis defined by the relation between the magnetic flux detsitgid the magnetic

field H,

oL

I
=
I

(3.9)
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While p is represented as a scalar in Eqg. (3.9), in general it is atemkich is notedl as
different components of thd field can affect the different componentsiifferently. Also, the
definition of Eq. (3.9) assumes tHa@ndH are in the frequency domain, that is, they represent
the Fourier transform of the corresponding time-domaird§eBecause of this, the relation in
the time domain equivalent to Eq. (3.9) involves a convoluthetween the permeability and the
magnetic field [27].

In Eq. (3.9),B is the spatial average of the microscopic magnetic flux demdiile the
magnetic fielcH is defined as [6]

H=—-B-M. (3.10)

L
o

Defining the magnetic susceptibilig, through the magnetization response to a magnetic field,

—

M = XmH (3.11)
and inserting this into Eq. (3.10) gives
B = po(14+xm)H . (3.12)
Comparing this with Eq. (3.9), the permeability can be defiaed
M= po(L+Xm) - (3.13)

In the above discussioM is the spatially averaged or macroscopic magnetization. In
chapter 2 on micromagnetism, the macroscopic magnetizatas introduced as the spatially
averaged magnetization of individual electronic spinshwhe size of the region over which the
spatial average is taken being large enough to smooth oividod! spin variations but small
enough to be able to resolve the magnetization distributibhin the ferromagnet. Since per-

meability is a concept that is used to solve the Maxwell equatin electromagnetic problems,
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hereM corresponds to the magnetization averaged over a regioists@all enough to resolve
electromagnetic fields, that is, it must correspond to a Isfreadtion of the electromagnetic
wavelength. However, the electromagnetic wavelengthuallylsmuch larger than the exchange
length, which means that the size of the averaging regiorbeazthosen to be much larger than
what is possible for micromagnetic simulations. Of cousee could choose to select the size
of the averaging region fdvi to be the same as for micromagnetism. However, this woule giv
rise to a permeability with potentially rapid spatial vaioas, therefore requiring a small spatial
discretization size when solving electromagnetic prolslemamerically and increasing the nu-
merical problem size. For this reason, it is desirable tmskdhe size of the averaging region to
be as large as possible. This means that when computing threeghility using micromagnetic
simulations, a large enough volume of the ferromagnet neetle modeled, and the magneti-
zationM that will be considered for computing the permeability viié the volume-averaged
magnetization over the whole volume. The choice of the sizeevolume will depend on the
electromagnetic problem for which a permeability valuedaght. For example, if an electro-
magnetic problem involves a certain ferromagnetic volunit & certain shape, it will be best
to simulate that exact shape in the micromagnetic simuiatioce the shape of the ferromagnet
will influence the magnetization response through the magtegic field. In other cases, one
might be interested in the bulk permeability value of a gifemomagnetic material, that is its
permeability if it is assumed that the material has no botied@nd effectively extends to infin-
ity. In that case, it will be useful to use periodic boundasypditions where the simulated region,
finite in size, is assumed to interact with periodic reprdduns of itself which extend to infinity.
Such periodic boundary conditions can be realized by exgdaoupling the magnetization at
the edge of the problem with magnetization on the opposige edlso, the magnetostatic field
from the periodic extension of the simulated problem candreputed [23].

From Eq. (3.11), it is seen that by definition, permeabiliha@cterizes the linear re-

sponse of the magnetizatidh to the magnetic fieltH. Therefore, materials that have a mostly
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linear and closed hysteresis loop lend themselves well ilmgbeharacterized by permeability.
On the other hand, it is difficult to define a truly meaningfermeability when the hysteresis
curve is open and wide since in that case the magnetizatgponse simply is not linear. For
linear responses, the permeability at zero frequency canfeged from the slope of the hys-
teresis curve. An example of a linear magnetization respanthe Stoner-Wohlfarth model of
a particle where the angle between the magnetic field andriseteopy axis i = 90°. To
see this, consider the magnetizathrand saturation magnetizatids subjected to a magnetic
field H in thezdirection and a uniaxial anisotrop§ along thex axis, as shown in Fig. 3.5.
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Figure 3.5 Equilibrium magnetization when subjected to a magnetic field atargl a uniax-
ial anisotropy along.

From Eq. (2.54) the effective anisotropy field is given by

(K-M)K . (3.14)

In the presence of the field = H,2, at equilibriumM will point towards the total effective field

H + Han, with the anglep betweerM andH given in terms oH, and the magnitude dfia, as

tang = Han. (3.15)
H;

From Eq. (3.14), the magnitude B, can be written as

2K 2K .
Han= ——co9q1/2— @) = —Sin 3.16
=N 1/2— @) N (9) (3.16)
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so that, replacing foHap, EQ. (3.15) becomes

—

M
cosp= %HZ. (3.17)

Noting that thez component oM is given byM, = cosp|M|, this can be written as

M2
2K

M, = H, (3.18)

which is the desired result. This can also be written as

M
m,— My (3.19)
Hk
where
Hk = 2K/|M| (3.20)

is known in the literature as the anisotropy field [18], ndbéoconfused with the anisotropy field
of EqQ. (3.14), and is the magnitude of the figldrequired to fully align the magnetization along
thezaxis. Comparing Egs. (3.19) and (3.11), the magnetic subdéptis

M|

K

While the magnetic susceptibility is stated here as a scalantity, Eq. (3.21) in fact
corresponds to them ;zcomponent of the susceptibility tenggg. Because the magnetizatitvh
rotates and keeps a constant magnitude, a change in a givgronent oM invariably involves
a change in another component. Also, since the relatior=tipeerH andM was established
based on the equilibrium state, this susceptibility valoieesponds to the zero frequency value.
In reality, as described by the LLG equation, the magnetingtrecesses around the effective

magnetic field before aligning itself with it through reldxa. It can be shown that for small
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perturbations oM around its equilibrium state along the uniaxial anisotrépy: KX due to a
magnetic fieldH = H,2, the xmzzcomponent of the magnetic susceptibility tensor is given by

[28]

L W+ o)
M2 (yF + 0on)? — 07

(3.22)

wherey is the electron gyromagnetic ratio ands the damping coefficient in the LLG equation.

The magnetization response in $hdirection is given by the tensor component

N jov|M|
™ i jom)2- P

(3.23)

where the phase difference betwegny, and Xmz; due to j in the numerator of Eq. (3.23)
indicates precessional motion.

The expressions for the frequency dependent tensor comfsooieEQgs. (3.22) and (3.23)
result from the solution of the LLG equation in the frequexoynain for a small perturbation
around the equilibrium state. The polesxaf,; andxmy, correspond to the ferromagnetic reso-

nance due to precessional motion and the real part of theaesérequency is

1+02°

o (3.24)

The frequency dependent magnetic susceptibility tensorbeaextracted from micro-

magnetic simulations. Consider Eq. (3.11) which in tensonfeeads

M=X.H, (3.25)

or in expanded form
My XmyxxXmxyXmxz| | Hx
My| = [XmyxXmyyXmyz| |Hy (3.26)
M; XmzxXmzyXmzz| |Hz
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where the quantities are understood to be in the frequenmaitoand bottM andH are spa-
tially averaged quantities over the region used to definertheroscopic permeability. If three
sets of linearly independent magnetic field excitatidths, H, andHz and their corresponding
magnetization responséé;, M, andMs are known, then the components of the susceptibility

tensor can be obtained. To see this, consider the unit vector

1
Ei= |0, (3.27)
0

Xm1 = XmE1 - (3.28)

Since theH;, H, andHs vectors are linearly independerti; can be expressed as the linear

combination

El = alﬁl+a2ﬁ2+a3FI3 . (3.29)

Using this to replac&; in Eq. (3.28) and using Eq. (3.25) yields
Xm1 = a1M1 +a;M2 + agMs . (3.30)

The a coefficients can be found from the threevectors. Indeed, introducing thé matrix

whose columns correspondith, H, andHs,

H= Hi H> Hs| , (3.32)
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Eq. (3.29) can be written in the form
Ei=HA (3.32)

whereA is the vector of coefficienta;, a, andas. Since theH vectors are linearly independent,

H is invertible and one can write

-1
E (3.33)

|

A=

which allowsXm1 to be computed from Eq. (3.30). The other components of theeqiibility
tensor can be computed similarly. Once the susceptibéitgor is known, from Eq. (3.13), the
permeability tensor is obtained ps= uO(I:+§m) wherel is the identity tensor.

This approach can be simplified if each of the three magnetidsHi, H, andHs can
be chosen to have only»a y and z component respectively. This is in general not possible
sinceH includes both the applied field and the magnetostatic fievéver, when considering
the bulk permeability where the finite simulated region igquically extended to infinity, the
volume integral of the magnetostatic field over the simalategion is zero. This is so because,
by reciprocity, the contribution of the periodic extensaf the simulated region to the integral
of the magnetostatic field within the simulated region isiegjent to the volume integral of the
magnetostatic field contributed by the simulated region altespace which is zero. Indeed, the

magnetostatic field is given from Eq. (2.65)tgs = — Py and from the divergence theorem

we have

/DCDMdv:/ Oy hds (3.34)
Q 0Q

where the integral is over the regi@which spans all three-dimensional space and whes¢he
unit vector pointing outward on the surface(@f The surface integral is zero in Eq. (3.34) since
the potential®y, is a constant at infinity and the surface integrahajver any closed surface
can be shown to be zero. For examplel,:lifis chosen to be along thedirection, H; = H;X,
then from Eq. (3.26) thgmyx component of the susceptibility tensor can be obtained trey

component of the magnetization respoﬁi;@: My1X+ My1Y+MaZ asyxmyx = My1/Hj.
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In practice, the system to be simulated is first allowed taxeb its equilibrium state
and, if the full permeability tensor is to be extracted, éhmeicromagnetic simulations are ex-
ecuted, each with a spatially uniform magnetic field pie) is applied in either the, y or
z direction. The pulséd (t) is chosen to have the shape of a gaussian pulse, with a freguen
content corresponding to the band of frequencies for whiehstisceptibility is to be extracted.
Since the Fourier transform of a gaussian pulse is also asgaupulse, this allows the time
domain pulse to be designed such that it is band-limitedealt#sired frequency range. This is
important because the broader the frequency range, thecuoorputationally expensive the mi-
cromagnetic computation becomes. Indeed, in order to sitmldwer frequencies, a longer time
must be simulated while a smaller simulation time step mestded to resolve higher frequency
content. The time domain magnetization response is theraipaveraged over the domain of
simulation and Fourier-transformed in the frequency domai

For illustration, the above procedure is applied to the &wian of a single spherical
particle with uniaxial anisotropy along tizelirection. The sphere has a magnetization saturation
Ms = 1400 emuycm®, the anisotropy magnitude is= 1 x 10° erg/cm?, the damping coefficient
in the LLG equation isx = 0.1 and the exchange coefficient is large enough so that theesphe
remains uniformly magnetized. With the magnetization at e the +z direction, a pulsed
magnetic field is applied in thedirection. The applied magnetic field has the shape of a gauss
pulse and is shown in Fig. 3.6a. The magnitude of its Fourarsform, also a gaussian pulse
as shown in Fig. 3.6b shows that it has frequency compongnts about 12 GHz. The pulse
has a peak magnitude of 150 Oe which is seen to be a small Ipatitum when compared to the
anisotropy fieldHk of Eqg. (3.20) which has a magnitude of 1430 Oe. The three compus
of the magnetization response are shown in the time doméhingin3.6¢ and in the frequency
domain in Fig. 3.6d in the form of the magnitude of the Foutiansform of the time domain
response. From Eq. (3.24), the ferromagnetic resonanaédrery is expected to be Bl GHz

which corresponds to the peak in Fig. 3.6d.
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Figure 3.6. Applied magnetic field in the (a) time domain and in the (b) frequency domain for
the permeability extraction for a single spherical particle. Magnetizatioronsgpin the (c)
time domain and in the (d) frequency domain of the spherical ferromagneticlpar

The components of the susceptibility tensor can be obtdigesecuting two similar sim-
ulations with an applied magnetic field alopgndz. The result is shown in Fig. 3.7. The tensor
componentXmxxXmxy:Xmyy:Xmyx are compared to the theoretical expressions of Egs. (3.22)
and (3.23). The submatrix representing these four comgsradrihe tensor is seen to be anti-
symmetric, which is a characteristic of gyrotropic matistiaTheoretical results for thgm, 2«
andxm_zy components are not readily available since the magnedizagéisponse alongis not

linear, so that for those components only the numericaltresshowrt. When the applied field

is applied along the direction, since the magnetization already points towéndz direction

1Because the response for those components is not lineagptesentation of this response by a susceptibility
tensor component is not entirely accurate and can be redjasda linearization of this response.
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corresponding to the equilibrium state, the magnetizatasponse is null which is reflected in

the curves for th@&m xz Xmyz andxmzzcomponents. In section 3.3, it will be seen that permeabil-

ity extraction can be used as a way to characterize ferroategmaterials using micromagnetic

simulations.
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Figure 3.7. Frequency dependent susceptibility tensor components obtained frawnmaig-

netic simulations for a single ferromagnetic sphere.

3.2 Ferromagnetic nano-granular materials

12

In a 1988 paper, Yoshizawa et al. from Hitachi Metals desctibano-crystalline Fe-

CuNDbSIB alloys which had surprisingly good soft magnetic enat properties, that is a low

coercive field and high permeability [29]. This is surprgsinecause crystalline ferromagnetic

materials are normally associated with a significant ctigséaanisotropy. The following quote

from their paper describes their assessment of the reasaihsauld explain this behavior:
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The mechanism whereby FINEMET shows excellent soft magipetiperties is not
fully understood. However, it is suggested that this is duthe decrease of local
magnetic anisotrogyby reducing the grain size and lower magnetostriction than
Fe-based amorphous alloys.

Their reference denoted by a superscripted “4” is to a 19p&iplay Hoffmann [30] which states
that

In a polycrystalline film, the local anisotropy mainly caostsi of the magnetoelastic
and magnetocrystalline anisotropy energy of the crygtslliBecause of the random
orientation of the crystallite axes, this anisotropy isthrdhomogeneous.

As it turns out, Yoshizawa et al. were correct: while indiédicrystalline grains have significant
crystalline anisotropies, the overall anisotropy getgayed out due to the fact that they are
randomly oriented. However what they did not mention is #wathange interaction between
neighboring grains play a key role in this averaging of this@mnopy.

The idea of considering randomly oriented anisotropy tacdies the properties of fer-
romagnetic material had already been described by StomeYamhlfarth [26] in their seminal
1948 paper on the rotation of magnetization due to the iotera between anisotropy and an
applied magnetic field. In that paper, the net magnetizatfoan ensemble of particles with
randomly oriented uniaxial anisotropy was considered. &ttie random orientation of the
anisotropy axes was shown to contribute by itself to makeotlegall response of the particles
more soft, Stoner and Wohlfarth did not consider any int&wadetween particles such as the
exchange interaction.

In 1973, Harris et al. proposed a model for magnetizatiomior@hous ferromagnets
in which both randomly oriented uniaxial anisotropy andhextge interaction are considered
which they used to predict the Curie temperature and maguietizsaturatiomls [31]. In 1978,
Alben et al. used this model to predict the “average aniggtemergy density” within a region
with a sizeL corresponding to a “magnetic correlation length” [32] . ¥lubtained the result

that the averaged anisotropy density should be propoitiord?K*A;2 whered is a “structural
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correlation length”, i.e. the length over which the aniepyr is assumed to be uniform and
oriented along a given directioK is the anistropy energy density ardy is the exchange
coefficient.

Herzer used the model proposed by Alben et al. to explain éiraior that had been
observed by Yoshizawa et al. for nano-crystalline matef®, 34]. Using the exchange length,
defined as

Aex

which gives a measure of the length over which magnetizaéods to be uniform in the pres-

ence of exchange interaction and anisotropy and which sporels to the magnetic correlation

length in the model of Alben et al, and considering a graie §izthe number of grains per

3
N = (%) . (3.36)

volumetric region of siz& is

As will be discussed in section 3.3, from probabilistic ddesations, the expected value for the

averaged or effective anisotropy’s magnitude is

Keft = (3.37)

N
In Eq. (3.35)K is the anisotropy energy density. While the exchange lebgghusually defined
for a spatially uniform and constant anisotroigy in the context of ferromagnetic grains with
randomly oriented anisotropy directioKsin Eq. (3.35) corresponds to the effective anisotropy
magnitude which decreases due to the averaging effect. Hgaatic correlation length is de-

termined by this new effective anisotropy, therefore

Aex
L=/ . 3.38
Ker (3.38)
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Combining Egs. (3.36), (3.37) and (3.38) and solvingKegf yields

DSK4

Keff = ———
A

(3.39)

which is exactly the result obtained by Alben et al. with theictural correlation lengtt
replaced by the grain sizB. This is an important result with practical implicationsyigg
guidelines on how to control a material’s microstructureonder to achieve given magnetic
parameters. It was validated by Herzer with experimentasuements performed on ribbons
of nano-crystalline materials annealed under differemidd@mons, thus yielding different grain

sizes [34].

3.3 Micromagnetic simulations and anisotropy averaging in
exchange-coupled nano-granular materials

Micromagnetic simulations can be used to compute hystelesps and extract the fre-
guency dependent permeability of exchange-coupled nesmatar materials. For example,
Fig. 3.4 clearly showed how anisotropy averaging througtharge interaction can drastically
close the hysteresis loop of a system of ferromagneticgbasti Such simulations can be very
useful to model actual nano-granular materials and to oheter the quantitative effects that a
change in their properties such as grain size, anisotrogniale and direction and exchange
interaction strength can have on their macroscopic mazat&in response.

Micromagnetic simulations can also be used to validate atigbunderstand the theo-
retical averaging model described by Herzer and it is thpsctthat the present section will be
concerned with. While Herzer’'s model predicts trends likefdct that the effective anisotropy
magnitude will vary adD® whereD is the grain size, it is worthwhile to ask if more precise

quantitative results can be obtained from the model. Fomgika, for a material consisting
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of grains with a size of say 12 nm with randomly oriented ui@ba&nisotropies of magnitude
K =2 x 10°erg/cm?, can a region with a siZecorresponding to the magnetic correlation length
of Eq. (3.38) can be assigned an effective uniaxial anipgtkas which would accurately rep-
resent the material properties? In addition to being a wasaldiating the anisotropy averaging
model and gaining a better understanding of it, doing so @valdo allow micromagnetic simula-
tions to be executed with such effective regions of &izégth a uniform magnetization replacing
groups of individual particles, thereby reducing the nuoaiproblem size and resulting in more
efficient simulations. For this purpose, lets first have a@tdook at the process of anisotropy

averaging.

3.3.1 Summing uniaxial anisotropies: a vectorial interpretation

Let N ferromagnetic particles each having voluvhg = 1,...,N and uniaxial anisotropy
Ki randomly oriented in th& — y plane and making an ange with the positivex axis. Since
a uniaxial anisotropy is defined by an orientation rathen thalirection,9; can be restricted to
the [0, 1 range of values. Assume that thd$eparticles are within a region corresponding to
the magnetic correlation lengthand that they are intercoupled through exchange interactio
such that their normalized magnetization vectrall point in the same direction in the—y
plane, making an angle with the x axis. Then theN particles can be replaced by a single,
larger particle with volum& = 5 V; with an averaged anisotrofss. The situation is shown in
Fig. 3.8a for the case i = 2.

To obtain an averaged or effective uniaxial anisotr&gy for the effective region, con-

sider the anisotropy energy associated withitteparticle, which from Eqg. (2.52) reads
Ui = KV sir? (o—6;). (3.40)

Using the trigonometric identity sfih = 3 — cog(2A) and dropping the constant term, this
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Figure 3.8 Vectorial interpretation of uniaxial anisotropy averaging. (a) Twdiplas with
uniaxial anisotropie; andK, are equivalent to a single particle with an effective uniaxial

anisotropyKesr. (b) Relation betweeKs, Ky andKeg.

becomes
1

U = _EKM coq2¢p—26;) . (3.41)

Using the trigononmetric identity c@& — B) = cosAcosB + sinAsinB, Eq. (3.41) can also be

written as
1 . .
Ui = —éKiVi [cos 2pcos B; + sin 2psin 26;] . (3.42)

Introducing the vector! = K; (cos B;%+ sin 20;§) andrf = cos 2pR + sin 2 corresponding to

the transformedk; andm vectors with doubled argument values, Eq. (3.42) can beesspd as
1 7/
Ui :—Eﬁ‘{-KiVi. (3.43)
Using this, the anisotropy energy for the ensemble of N glagican be written

N 1., N
U :i;Ui = —En'(-i;KiVi )

Using this, the effective averaged anisotropy veBigr= K (coBefX + SinBefy) and its trans-

(3.44)
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form Kéﬁ = Keff (COS DefX + Sin WVefry) can be defined by
Kl = i EN K\ (3.45)
eff VT | | '

whereVt = z{\':l\/i is the total volume of the particles over which the averagmbeing per-

formed. The total anisotropy energy in Eg. (3.44) can tlogeebe written as
1
U= —Em( KLV (3.46)

Comparing this with Eq. (3.43), it is seen that the system ofiMigles is equivalent to
a single particle of volum¥r with an effective averaged uniaxial anisotrdfy corresponding
to the average of transforméd vectors weighted by the particles’ volumes. The procedére o
transforming the; vectors by doubling their argument, summing them and taansfg them
back by halving the resulting vector's argument is illusgdain Fig. 3.8b for the case &f =2
particles. It is seen that the resulting anisotropy energysdy Kesr is reduced as compared to
that of the individual particles. This vectorial approaslan intuitive way of understanding why
for example two uniaxial anisotropies of equal magnituderded perpendicularly to each other
cancel each other out.

Up to this point, only uniaxial anisotropies and magneimavectors confined to a plane
were considered. In the general 3-dimensional case wherenire anisotropy vectors and
the magnetization vector do not necessarily lie within tame plane, an equivalent uniaxial
anisotropy cannot be defined. Luckily, for technologicasens, namely the fact that nano-
crystalline ferromagnetic materials are usually used enftrm of thin films, the materials are
subjected to a strong shape anisotropy [18] which forceatgnetization to be mostly parallel
with the thin film’s plane. In that case, it can be shown thafiemy uniaxial anisotropyK
making an angl® with the film plane is equivalent to a uniaxial anisotropytwain axis parallel

to the plane in the direction corresponding to the projectitK into the plane with a magnitude
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K cos’ 8. For this reason, the anisotropy of the individual grainfeimomagnetic nano-granular

materials can be considered to lie within a single planegleith the magnetization.

3.3.2 Effective anisotropy and exchange coupling

If the exchange coefficieey of the material, the sizB of the ferromagnetic grains and
the anisotropy magnitud€ are known, Egs. (3.38) and (3.39) suggest that a precise valhe
magnetic correlation length can be obtained. Howevergthelations are only approximate. In

updates to his theory, Herzer suggests that Eq. (3.38) dlveuleplaced by

L= go4 /%; (3.47)

whereqy is a prefactor given byy = a, /3—% with a being “an effective average angle between
the easiest directions of the exchange coupled unitsBameing “a constant basically related to

the symmetry and distribution of the random anisotropy"g8iS]. As Herzer notes in [35],

It should be noted, that the pre-factarsandf3 via their combination ingy can be
rationalized into the basic exchange lenggh The latter ultimately remains the only
open parameter within the above scaling analysis. It issfoee more appropriate
to write down the results for: K1 > or Ley in a rationalized form involving the ratio
(D/Lo) rather than in the explicit form as given in the original papvolving
all the individual material parameters and, in particuraore or less arbitrary pre-
factors.

Therefore it seems that specifying an exact &ipé the region over which the anisotropy
of particles should be averaged poses a difficulty. While migakvalue of the pre-factors can be
assigned by fitting numerical simulations results [35] goexkmental results [34] to the theory,
this is somewhat unsatisfying. An approach that avoidsgtoblem is to consider that there is
a residual exchange interaction between the regions of_.sixer which anisotropy is averaged.
This approach is illustrated in Fig. 3.9. The individualtpdes of Fig. 3.9a are exchange coupled

with coupling energy and with the exchange interaction energy between two pestgiven by
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Figure 3.9 ﬁnisotropy averaging over regions of size (a) Individual particles with
anisotropie§I<i, volumesV, and exchange coupling enerdy (b) Effective particles with
anisotropyKest corresponding to the averaged anisotropy, volgnw and residual exchange
coupling energyes.
Eqg. (3.7). Within a region of sizé where the exchange coupling is strong enough that all
particles can be assumed to have a magnetization pointitiggisame direction, the individual
particles can be grouped together into a single region thiatbe treated as a single effective
particle, as shown in Fig. 3.9b. This effective particlessigned an anisotropy corresponding
to the average anisotropy of the individual particles argldgolume corresponding to the sum
Y Vi of the particles’ volumes. Whereas individual particles sgparated by a distanee the
effective particles are separated by a distamge= L corresponding to the size of the averaging
regions. The model allows for a residual exchange coupliveygy Jesr between the effective
particles. The strength of this residual exchange coupliiigdepend on the averaging region
sizeL so that, as long as the condition that particles within theraying region have a mostly
homogeneous magnetization due to exchange interactiatiséied,L can be chosen arbitrarily.
The relationship between the exchange endrggtween individual particles, the resid-

ual exchange energ¥s between effective particles, and the averaging region Isizan be
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obtained by requiring that the volumetric exchange eneggysity remains the same between
the original system with individual particles and the efifex particles system. This exchange
energy density is exactly the exchange coeffichntof continuous micromagnetism introduced
in section 2.2.2. The procedure is then exactly the revefrsieeoprocedure used to introduce
a continuous exchange energy dengigy from individual atomic spins, with the atomic spins
replaced by nano-particles [4, 36], and is as follows.
For a system of exchange coupled particles the exchanggyeassociated with particle
iis
1 k

Uexj = —57 j;r‘n m; (3.48)
where the sum is over partidls k nearest neighbors and the fac%ds present because only half
the exchange energy between two particles is associatbgpaiticlei. Sincemy - M; = cosb;;

where;j; is the angle betweemy andm;, and using the first two terms of the Taylor expansion

COS@ij ~1— 192

i valid for small6jj, Eq. (3.48) can be written as

1 k
Uexj 2 73 > 67 (3.49)
=1

where the constant term was dropped. Now, sincaTifseare unit vectors, again for smal;

the approximationg;j| ~ |m; — M| holds, so that the energy can be written
1.k ’
Uexj =~ ZJ Zl|ﬁ'”lj —m|“. (3.50)
J:

Defining the continuous magnetizatiamX) which interpolates the magnetization of the indi-

vidual particles and letting; be the vector from particleto j, Eq. (3.50) can be written

k
DY (7ij - Om )+ () - Omy) 2+ (7 - Omy)? (3.51)

-bll—\

Uex,i ~
J
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wherelJmy, Omy, andm, are the gradients of the continuous magnetization comgsresal-
uated at the center of particle Assuming that for example particles are arranged in a €mpl
cubic lattice with lattice constamt each particle has 6 nearest neighbors, 2 along xacand

zdirections, and sincfij| = a, Eq. (3.51) becomes
1
Uexi = 5823 | (Omy)°+ (0m,)* + (0my)?| . (3.52)

The energy in Eq. (3.52) represents the exchange coupliemggassociated with particle To
define an exchange energy density, this energy must be diigéhe volume of space associ-
ated with particld, which for particles arranged in a simple cubic latticads Doing this and
comparing with the integrand of the expression for the emghanergy in a continuous magne-
tization system, Eq. (2.55), it results that the equivaéemhange energy coefficieAty for the

ensemble of particles is

Aex = — . (3.53)

A relation like Eq. (3.52) can be obtained for particles aged in other configurations than a
simple cubic lattice. For instance, for a body-centeredaiditice with an underlying cubic
lattice of sizea where nearest-neighbor exchange coupling occurs with @cles; it can be
shown that Eqg. (3.53) becomes
J
Aex = . (3.54)
For the case of a face-centered cubic lattice with an uniteylgubic lattice of size, if each

particle is exchange coupled to its 12 nearest neighbargdiresponding result is

Aex == (3.55)

It should be noted that in reality, particles in nano-granahaterials do not organize in a regular

lattice but instead tend to be randomly scattered througtimimaterial. It is also expected
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that the exchange coupling enerdybetween particles will not be constant for every pair of
particles but will instead be some function of the intertjgée distance. Finding a relation such
as Eq. (3.53) for this case would require probabilistic argats and is not a trivial task. In
this work, we will be satisfied with considering regular gsaf particles with nearest-neighbor
coupling.

The relation between the exchange coupling endrggtween individual particles and
the residual exchange coupling enedgy between effective particles is obtained by considering
Eqg. (3.53) for each system and enforcing the equality of tii@valent continuous exchange
coefficientAex. If both the individual particles and the effective paeighre arranged in a simple

cubic lattice, the result is the relation

o = 23, (3.56)
a
whereag = L, the size of the averaging region. Since the number of pestiaver which the

averaging occurs is given By = L3/a, Eq. (3.56) can also be written as
Jotf = N3J. (3.57)

While the exchange coupling energy between the effectivieches Jefr is larger thand,
a better measure is the exchange coupling energy density ginan be compared to the other
energy terms which are expressed in terms of energy deityinstance, the energy density
due to an external magnetic field is proportional to the sditum magnetizatios and is the
same for the original and effective particles systems stheesaturation magnetizatidvis is
unchanged. Meanwhile, due to averaging, the anisotropsggraensityKes of the effective
particles is reduced as compared to the anisotropy enemgitgd of the original particles.
Similarly, the exchange energy densijty= J/V;, whereV, is the volume of particlé, is in fact

reduced for the system of effective particles. Indeed,Herdffective particlesjes = Jefr/V SO
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that usingv = SV, as the volume of an effective particle as well as Eq. (3.5d)assuming that

all particle volume$/; are identical yields

for =7 (3.58)

To illustrate the anisotropy averaging of nano-granulatemals in micromagnetic simu-
lations, Fig. 3.10a shows the hysteresis curves of ad¥4¥x 12 simple cubic array of particles
computed with no exchange coupling between the partictesgsponding tg = 0 and with an
inter-particle exchange coupling with an energy densityj ef 1.8 x 10°erg/cm®. The parti-
cles are assumed to be small enough to be uniformly magdetiaee saturation magnetization
Ms = 1000emycm?® and have a uniaxial anisotropy of magnitude= 2 x 10°erg/cm® with a
direction that is randomly distributed in tlxe- y plane. It is seen that a significant reduction of

the effective anisotropy occurs due to anisotropy averagin

1.0 T T T T T 1.0
—j=0
— j=18x10erg/cm®
0.5 0.5
S
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(a) (b)
Figure 3.10 (a) Hysteresis loops computed for a 14444 x 12 array of particles with and
without inter-particle exchange coupling. (b) Hysteresis loops compotesffective particles
corresponding to anisotropy averaging oeparticles. The corresponding residual exchange
energy densitieges are given in table 3.1.
Shown in Fig. 3.10b are hysteresis loops computed usingsaobhaveraged particles
based on the system of individual particles wjte 1.8 x 10°erg/cm?® of Fig. 3.10a. The case

N = 1 corresponds to the original system with individual pdescwhile the other values of
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N correspond to the number of particles inside each averaggign. The values oN are
seen to correspond to the sequence of integers 1, 2, 3, 4 anthé power three, so that the
averaging regions have the shape of a cube with side lengthssponding to multiples of the
spacing between individual particles and the entirex1444x 12 array of particles can be neatly
subdivided in averaging regions. Based on Eq. (3.58), thdualkexchange energy densities
jeff corresponding to each value Nfare shown in table 3.1. It is seen that the hysteresis loops
for these averaged systems are very similar to each othér.théeindividual particles system
corresponding ttN = 1 has 250K particles while the averaged particles systeim M= 216

has only 1152 particles and can be computed much more quickly

Table 3.1 Residual exchange energy densities corresponding to the effpatitieles for the
different numbers of averaged particd®of Fig. 3.10b.

N [ jert [erg/en?] |
1 1.80x 10°
8 450x% 10*
27 2.00x 10*
64 1.13x 10°
216 5.00x 10°

In the previous example, the micromagnetic simulation didatcount for the magneto-
static field. This is because the averaged anisotropy mamkd dot take into account that the
magnetostatic field generated by an ensemble of particlesendifferent than the magnetostatic
field generated by a single larger effective particle. Thgmetostatic field could accurately be
accounted for with the effective particle model by compgtine magnetostatic field generated
by the particles inside an averaging region while assunhiagtheir magnetization is homoge-
neous. However, this was not done in this work as the primaa} gas to study the anisotropy

averaging due to exchange interaction.
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3.4 Directional probability on the circle

As was discussed in section 3.3.1, the problem of aniso@@pyaging in nano-granular
ferromagnetic materials is a 2-dimensional problem whegeeave interested in the averaged
value, or expected value in probability terminology, of gwen of vectors with randomly dis-
tributed orientations and magnitudes. Interestinglyg thpe of problem gave rise to a branch of
probability theory known as directional probability on ttiecle which, while it shares the same
fundamental concepts as standard probability theory ofirtaghas quite distinct features. For
instance, when defining the mean direction of two unit vectehich are naturally defined by
the angle®; and0, that each vector makes with the positivaxis, the use of the arithmetic
mean as used for numbers on the real line is not adequatex&wipée, for the two unit vectors
shown in Fig. 3.11 wittB; = /4 and6, = 71/4, the arithmetic mean would correspond to a
mean direction oft whereas the mean direction which “makes sense” corresgortie zero

angle.

Figure 3.11 The mean direction of two unit vectors is not adequately determined byithe ar
metic mean of the angles that they make with the poskiagis.

In what follows, some results of directional probabilityetry will be stated without
proof. The interested reader can consult the excellent warkhe topic by Mardia [37]. It
is interesting to consider the same problem of summing twbwattors but this time from a
probabilistic point of view. Indeed, consider two randonstees on the unit circle characterized

by the two random variable® and8, representing the angles that the unit vectors make with
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the positivex axis. Lets consider that bofh and6, are idenpendent and identically distributed

with a uniform distribution, that is, they are charactediby the probability density function
f(0)=— (3.59)

which, unlike random variables defined on the whole real ismdefined on the s¢d, 2] and is

such that

/0 T e)de—1. (3.60)

What is the probability distribution of the resulting sum t@®@ While it can be shown rigor-
ously, intuitively and from the circular symmetry of the ptem it is clear that the direction
@ of the resulting vector is a random variable that is unifgrghistributed, that is, there is no
preferred direction in which the resulting vector is mokely to point. One might wonder what
this implies in terms of the expected value @f If the definition of the expected value from

probability theory on the line is applied, we obtain

21

Elg = A of (p)do. (3.61)

With @ uniformly distributed so that (@) = %[ this givesE @] = 1T, which again shows the inade-
qguacy of simply applying linear probability concepts tolpawbilities on the circle. In directional
probability theory, the mean or expected direction of anutargprobability distribution is the
direction with respect to which the circular dispersion imimized. The circular dispersion is
a measure of the dispersion of points on the unit circle spoeading to random angles with

respect to a point corresponding to a given angénd is defined as
2n
D:/ £(6)[1— cog6—a)]d8 . (3.62)
0

From this expression, it is seen that wieis uniformly distributed with the probability density
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function of Eq. (3.59), the circular dispersiords= 1. Since in this case the expressionibis
independent ofi, no value ofa minimizes it and no expected direction exists. For distrdns
where an expected direction exists correspondiray 106y, the circular dispersion with respect

to Bp is known as the circular variance and is given by
2n
V= / £(6)[1— cos(8 — 80)]d6 . (3.63)
0

It can be shown that for any distribution,<QV < 1, withV = 1 corresponding to no direc-
tional preference, i.e. a uniform distribution, avid= 0 corresponding to a Dirac distribution
probability distribution function concentrated on thenido.

What about the expected magnitude of the sum of two randononrgeeh the unit circle?
Whereas on the real line the sum of two uniformly distributadom variables has an expected
value of zero, it can be shown that the expected value of thétieg vector magnitude is/4t~
1.27. In the general case of the sumMfandom and uniformly distributed vectors each with
a fixed magnitud&y, the direction of the resulting vector is still uniformlystlibuted, and the
probability density function for the resulting vector’s gmitude normalized by the number of

random vector$\, K, can be shown to be to be

F(K) = K/OOOXJO(KX) {Jo (%)} " ix (3.64)

whereJp(x) is the Bessel function of the first kind and order 0. From E¢5R.this is seen
to be the probability distribution for the averaged anigpyrKes when averaging uniformly
distributed anisotropies with fixed magnitude. ForN large, using the central limit theorem, it

can be shown that the probability density functionKotends towards

f(K) = thl—fe—NKZ/Ké . (3.65)
0
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From this expression, the expected valu&afan be obtained for largé and is given by

S

EK] = SNk

(3.66)

It is this result that justifies the expression of Eq. (3.33%) the magnitude of the averaged
anisotropy.

Aside from the uniform distribution, another distributithvat plays an important role in
directional probability is the equivalent of the normaltdizution on the line, known as the von

Mises distribution. Its probability density function is

_ 1 kcoe-6g)
f(6) =3 mo<k)ek (3.67)

wherelp(k) is the modified Bessel function of the first kind and orde®®is the distribution’s
mean direction andt is the concentration parameter. A concentration paranketeO corre-
sponds to the uniform distribution while largevalues correspond to a high probability density
concentration around the mean direction arfigle The circular variance of the distribution is

given in terms of the concentration parameter as
V=1->-7 (3.68)

The probability density function for the von Mises distriion is plotted in Fig. 3.12 for the
mean directior®y = 0 and concentration parameter valles 0, k = 0.4 andk = 1.5.

The von Mises distribution can be useful to model nano-geammaterials in which there
is a preferred direction of the anisotropy axis, like formyde if the material is annealed in the
presence of an applied magnetic field, in which case thegestianisotropy axes will tend to
align with the applied field. When summirg independent random vectors characterized by

a von Mises distribution, the directidh and magnitud&K of the resulting vector normalized
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Figure 3.12 Probability density function of the von Mises distribution for a mean direction
8o = 0 and a concentration parameter value ofk(&)0, (b)k = 0.4 and (c)k = 1.5.

by the number of random vectosare characterized by the following joint probability dewpsi

function,

F(6,K) = me% cog6—6o) /ooo xJp (xK) {Jo (%)] " dx. (3.69)

For largeN, it can be shown that the expected value of the resultingoveatormalized magni-
tudeK is

E[K] = Ko [%+%+O(N‘3/Z)] : (3.70)

While K decreases a2 as per Eq. (3.66) for the case of the uniform distribution,
from Eqg. (3.70) it is seen that in the case of the von Misesiligion, a portion of the uniaxial
anisotropy cannot be averaged out regardless of the nunilsandom vectordN, while the
remaining portion quickly decreaseshs?.

The probability density functions for the sumMfrandom vectors that were presented in
this section can be useful to generate samples of effectistcies with averaged anisotropies,
therefore avoiding the need to generate samples of indivhrticles and individually summing
their anisotropy vectors to obtain an averaged vector. Ash@iseen in the next section, it can
also be used to compute hysteresis loops using a Stoneifaftbhinodel which accounts for

exchange interaction between particles using probaliigiributions.
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To illustrate the effect of random anisotropy vectors wittoa Mises distribution, con-
sider a 500« 500x 80 nm thin film consisting of 21,000 particles, each with aisgton magneti-
zationMs = 1422 emycm?®, intercoupled with an exchange energy dengity 1 x 10° erg/cm®
and with uniaxial anisotropies of magnituldg = 2 x 10°erg/cm® and random orientations dis-
tributed according to a von Mises distribution with mearediron corresponding to theaxis
and concentration parameter The hysteresis loops for a magnetic field applied inXloérec-
tion, that is perpendicular to the preferred direction asatiopy, fork =0,k =1 andk = 2 are

shown in Fig. 3.13.
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Figure 3.13 Hysteresis loops computed for a 58®B00x 80 nm thin film consisting of
21,000 particles with a saturation magnetizatddg= 1422 eml,Acm3, intercoupled with an
exchange energy density= 1x 1(Perg/cm® and with uniaxial anisotropies of magnitude
Ko = 2 x 10°erg/cm® with randomly oriented directions in the— y plane following a von
Mises distribution with mean direction in thedirection and concentration parameket O,
k=1andk=2.

It is seen that the cade= 0, corresponding to a uniform random distribution, recgiire
the least strength of the applied field to completely swikghrhagnetization direction. However,
it also exhibits the most open hysteresis loop and theraf@deast linear behavior, highlight-
ing the advantage of having a certain amount of anisotropggmelicular to the direction of
the applied field, effectively creating a magnetic soft cli@n. The system with concentration

parametek = 2 has more anisotropy in the direction perpendicular to gpied field than the

68



system withk = 1, which is why it requires a stronger magnetic field to cortghjeswitch the
direction of the magnetization. It also results in a smallepe of the hysteresis curve, which

translates to a lower value of the permeability or magnetscsptibility.
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Figure 3.14 Extractedyxmxx component of the magnetic susceptibility tensor for the three
nano-granular materials with random anisotropy distributions correspptdin= 0, k =1
andk = 2.

The Xmxx component of the magnetic susceptibility tensor is exgéehédr the three sys-
tems of particles withkk = 0, k =1 andk = 2. The results are shown in Figs. 3.14a, 3.14b and
3.14c respectively. Having an open hysteresis loop wittgaitant non-linear behavior, the
magnetic susceptibility for thie= 0 case is not a good representation of the material’s magneti
response. Yet, the extracted susceptibility responde/sitls useful information. For instance,
the susceptibility value at low frequencies is quite higiflecting the fact that the effective
anisotropy of the material is small due to anisotropy aviekagr his is also reflected in the high
slope value of the corresponding hysteresis loop. Due twdak effective anisotropy, the reso-
nant frequency occurs at relatively low frequencies, ardstisceptibility at higher frequencies
is very weak. Fok = 1, the higher slope value translates to a higher permeatditie than for
thek = 2 case. This is due to the stronger anisotropy inktke2 case, which also has the effect
of pushing the ferromagnetic resonance to a higher frequeadae, thereby allowing thie= 2
material to maintain its susceptibility value over a braaflequency range. This effect is the

well known trade-off between high permeability value anelability of the material to maintain
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that high permeability value at high frequencies. The loggérency permeability in thie= 1
andk = 2 cases can be obtained from the slope of the hysteresisscafeg. 3.13. In both
cases, the filling ratio of the particles in the simulatiores\v@31, so that the spatially averaged
magnetization amplitude {#1| = 0.31Ms. For thek = 1 case, from Fig. 3.13 the anisotropy field
is seen to bél, = 130 0e. Then, wittMg = 1422 emycm® and with Eq. (3.21) taking the form

_ 4AmM|
Xm= i

(3.71)

in cgs units for a magnetization amplitude expressed in/emg, one obtaingy, = 42.6 which
is close to the value observed in Fig. 3.14b at low frequendiethek = 2 case, the anisotropy
field is Hx = 200 Oe from which Eq. (3.71) yieldgn = 27.7, which again is close to the value

observed at low frequencies in Fig. 3.14.

3.5 Generalized Stoner-Wohlfarth model for exchange-coupled
ferromagnetic grains

In section 3.1.1 about the hysteresis loop, the Stoner-fakthimodel describing the
magnetization rotation in a particle with a uniaxial aniepy subjected to an applied magnetic
field was introduced. The model was used to compute the l®giseloop for a single particle,
and it was mentioned that it can also be used to compute therkgs loops of ensembles of
particles. The 1948 paper of Stoner and Wohlfarth [26] wah susignificant contribution to
our understanding of the mechanism of magnetization gytati ferromagnets that it is perhaps
less well known that in that same paper, Stoner and Wohliastéd their model to compute
the hysteresis loop of an ensemble of particles with aropgtiaxes randomly and uniformly
distributed on the unit sphere.

For a single particle and referring to Fig. 3.2, the Stonehlfarth hysteresis model
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relies on finding the value of the angfebetween the magnetization and the applied magnetic
field which minimizes the total energy. This value@torresponds to the solution of Eq. (3.6)
in which the other quantities, namely the applied magnetid fimagnitudeH, the anisotropy
magnitudeK, the angled between the applied magnetic figitl and the particle’s saturation
magnetizationMs, are assumed to be known. The hysteresis loop is computedégping
the applied magnetic fieltl from its maximum value to its minimum value and then back,
and computing cog for each discretéd value, which corresponds to the component of the
normalized magnetization along the direction of the apidiield.

In the case of an ensemble of randomly oriented particlesarigled betweerH and the
anisotropy vectoK becomes a random variable and the computation of the hgitédoep then

involves the expected value of ags

Elcosy — /0 T cosof (6)d6 . (3.72)

where f(0) is the probability density function of the random variaBleand which is to be
computed for each discrete value of tHesweep. The angle being obtained from the solution
of Eq. (3.6), it can be considered as a function (albeit witren explicit form) ofg, K andH,
so that

¢=@H,0,K). (3.73)

With this, Eq. (3.72) can be written as
21
E[cosq] — / cosp(H,8,K) f(8)d8 (3.74)
0

and the integral can be computed using a numerical integratheme such as Simpson'’s rule.
The probability density functiori (6) will depend on the distribution of the random anisotropy

direction. In the case of randomly orientdvectors with a uniform distribution on the sphere
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of radiusk, it is straightforward to show that the probability dendityction is f(0) = %sine.
Using this, just as Stoner and Wohlfarth did in their 1948qrgR26], the hysteresis loop of
Fig. 3.15 can be obtained where the particles were assunied¢oa fixed anisotropy magnitude
of K = 1x 1Perg/cm® and a saturation magnetizatidhs = 1400emycm?. Also shown for
comparison is the hysteresis computed using a micromagsietiulation for an ensemble of
1000 particles with the same characteristics, which is seegree quite well with the result
obtained with the Stoner-Wohlfarth model, the differeneéaeen the curves being due to the

finite number of particles in the micromagnetic simulation.
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Figure 3.15 Comparison of hysteresis loops for an ensemble of particles with randaimly o
ented anisotropy following a uniform distribution on the unit sphere computedmicromag-
netic simulation with 1000 particles and the probabilistic Stoner-Wohlfarth regemodel.

In the case where the anisotropy magnitédes not fixed but is also a random variable,

Eq. (3.74) takes the form

E[cosp — /Ozn/omcoscp(H,e,K)f(e,K)de (3.75)

where f (0,K) is the joint probability density function of the random \abiesd andK. Given

f(0,K), the corresponding hysteresis loop can then be computedgis the previous example.
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A limitation of the Stoner-Wohlfarth model is that it doestnake into account interac-
tions between particles such as the exchange interactiomte $he exchange interaction and
the anisotropy averaging that results from it can have aidrefect on the magnetic properties
of materials, a generalized Stoner-Wohlfarth model whadtes into account exchange interac-
tion between particles would be a valuable tool. Such a moaelbe obtained by adding the
exchange energy density to the total energy density of E§).(Bince the Stoner-Wohlfarth
model does not rely on a Monte Carlo simulation involving dizesion of a large ensemble of
particles, which can then easily be inter-coupled, bueadtrelies on a probabilistic description
of a particle, how can the exchange coupling be introduceldeémrmodel? Taking the probabilis-
tic approach one step further, the particle whose energgdsiuconsideration can be exchange
coupled to a second probabilistic particle representirgradmdom ensemble of particles, with
the exchange energy corresponding to the expected valle @xichange energy between the
particle under consideration and the probabilistic pkrtidnother way of stating this is that the
particle under consideration is exchange coupled to eadlewary particle in an ensemble with
infinitely many particles, each with its own anisotropy \@ctvith the number of particles hav-
ing a given anisotropy vector proportional to the prob&pitiensity function of the anisotropy
distribution. The exchange energy acting on the particideurconsideration is then taken to
correspond to the expected value or mean of this continuuexafange energies. This idea is
illustrated in Fig. 3.16, where the unprimed particle is plagticle under consideration, the en-
ergy of which we seek to minimize, and the primed particlegspnts the probabilistic ensemble
of particles to which it is exchange coupled.

Based on Eq. (3.7), the exchange energy between the primeahgnidned particles of
Fig. 3.16 is—jm-m’ = —jcoq@— ¢). However, sincey = ¢(H,0',K’) is a random variable,
as discussed above it is the expected value of this energynilst be added to the unprimed

particle’s total energy without exchange interaction, £095), so that with exchange coupling,
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Figure 3.16 Stoner-Wohlfarth model with exchange coupling. The unprimed particleeis th
particle under consideration, for which the energy minimum is sought. Tiheegrparticle
represents the probabilistic ensemble of particles to which the unprimed peartclepled.

the total energy becomes
K 21 poo
u :—ECOS(Z[Q—G])—HMSCOS@—]/ / £(6/,K')cos[p— ¢/(H,8',K')] dK'de' . (3.76)
o Jo

wheref (8/,K’) is the joint probability density function of the anisotrépyandom distribution.
In the same way that in the Stoner-Wohlfarth model withoat@xgeis given by the function
®(H,6,K) where this function represents the solution of the nonalirejuation of Eq. (3.6),
minimizing the energy of Eq. (3.76) by lettirfy /d@= 0 yields a non-linear equation that must

be solved forp given values oH, 6 andK, that is,
K sin(2[o— 6]) + HMsSing+ | /0 2" /0 " £(0,K) sin[o— ¢(H,0,K)]dK'dd =0 (3.77)
with only solutions such tha?U /d¢? > 0 corresponding to minima of the energy, that is
2K cog2[9— 6]) + HMsCcosp-+ j /Ozn/ow £(6/,K')cos[p— ¢/(H,8/,K')| dK'd®/ > 0. (3.78)

However, and here comes the key argument, the probabgistiemble of particle repre-
sented by primed quantities in Fig. 3.16 is in fact the sanserle of particles of which the

unprimed particle is a part of. Therefore, the functifH, 8’ K’) which gives they angle value
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of the primed particle is the same functigfH, 6, K) giving theg angle value of the particle un-
der consideration, i.e. we effectively hagdgH, 0 K') = @(H,0’,K’). Using this and writing

occurences opin Eq. (3.77) in their explicit function form yields

K sin(2[g(H,8,K) —8]) + HMssing(H, 6,K)

21 poo
+j/ / (6/,K') sin[g(H,8,K) — g(H,8,K)] dK'de' =0. (3.79)
0 0

Comparing this with Eg. (3.6) for the case without exchangeapting, it is seen that while
Eq. (3.6) is a scalar non-linear equation whelred andK are assumed to be given, Eq. (3.79)
involves a functional ofp(H, 8,K) and as such is a non-linear integral equation to be solved for
¢(H,0,K). Just as in the Stoner-Wohlfarth hysteresis model, theevafid will be sweeped,
and for each discretd value Eq. (3.79) needs to be solved. To solve this equatiarenaally,

the functiong(H, 6,K) is discretized in the spad® < [0,2r1, K € [0,R]}. While the probabil-

ity density functionf (8,K) is in theory defined foK € [0,], in practice it is very close to
zero above a certain vall® chosen depending on the distribution, so thgi,8,K) can be
discretized over a finite domain. By this discretization gehare, the functiogp(H, 6,K) can be

written as

9(H,8,K) = ch, JWj(8,K) (3.80)

where theyi’s, i = 1,...,N are theN basis functions and thg’s are the unknown coefficients,
here shown as functions bifto highlight the fact that a different set of these coeffitsanust be
determined for eacH value. A total ofN equations are then obtained by multiplying Eq. (3.79)
by N test functions and integrating over the domain of solutitnour implementation of this
method, flat basis functions with unit magnitude on a reatarggrid and point matching, the
equivalent of choosing Dirac distributions as testing tions, were used. However, any other
type of basis function, test function and discretizatioid gould in principle be used.

With Eg. (3.80), Eq. (3.79) can be written as
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@ (H)w;(8, K))

M=

Ksin( [Z% )Y;j(6,K) -6 )-I-HMssin(
j

[T N N
+J/0 /0 f(G’,K’)SIn[glcpj(H)tbj(e,K)—j;cp,-(H)qu(e’,K’)]dK’de’:o, (3.81)

Introducing theN test functions\;(8,K) = 8(6 — 6;)d(K — K;) fori = 1,...,N whered denotes

the Diract distribution and6;,K;) corresponds to the center point of each flat basis function
Wi (6,K), and multiplying Eq. (3.81) by each test functidiib, K) successively and performing

a double integration ovel® € [0, 211, K € [0,R]} yields a non-linear system &f equations for

i=1,....N,

Kisin(2[@(H) — 6i]) + HMssing (H)

AL - N
+J/o /o f(e,’K/)Sm[m(H)_jglcpj(H)wi(e’,K’) dK'de’ =0. (3.82)

Denoting the vector of unknown coefficiengisby ¢, starting from an initial guesg®,
which in the context of hysteresis loop computations wolddte squtiorfp(H) for the pre-
vious discrete value of the applied magnetic field the system of equations corresponding
to Egs. (3.82) is solved iteratively with the constraint af. £3.78) by computing an updated
approximation of the solutiop{™+%) from the previous approximatiop™. A number of meth-
ods to solve non-linear systems of equations could be usedur implementation, we used
a fixed-point method where each compoanl) of the solution vectop™+Y) is computed
sequentially and the most recent approximation of each ool is used in the computation,
therefore making the algorithm used a non-linear fixed4panant of the Gauss-Seidel method

for linear systems.
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Based on Eg. (3.82), the fixed-point method that we used inmoplementation was,

Ki sin(2[cg(m+l) —-6])+H Mssincg(mH)

Ao i) S ) o .
+J/o /o f(O,K)sin|@™ ™ — 5 @) wj(8',K')| dK'd®’ =0. (3.83)
=

where the functional dependence of theomponents ot was omitted from the notation for

clarity. Using the trigonometric identity SiA — B) = sinAcosB — cosAsinB, Eq. (3.83) can be

written as
Kisin(2[@™™" — 6i]) + HMssing ™™ — | [Scosr,q(m“) — Csing™™ (3.84)
where
_Znoo//N(m)_////
C= f(e,K)cosz(pj P;(6',K")dK'de (3.85)
0 0 =1
and
21 poo N (m)
S— / / F(O,K)sin'y @™ w;(6,K')dK'de (3.86)
0 0 =1

which is a non-linear scalar equation qul), not unlike Eq. (3.6) for the original Stoner-
Wohlfarth model, that can be solved using a root finding atlgor.

To validate the proposed approach, the hysteresis loopdgstam of exchange coupled
particles with exchange energy density= 3 x 10°erg/cm®, saturation magnetizatiohls =
1400emycm® and random anisotropy vectols with both the magnitude and the direction
being random with a distribution corresponding to the sunthefanisotropy of 12 particlés
with uniformly oriented anisotropy directions in tle- y plane and fixed anisotropy magnitude
Ko = 1 x 10Perg/cm?. In this case, the resulting anisotropy direction is umiflyr distributed

in the x—y plane while the probability density function fé is given by Eq. (3.64). The re-

2This number of 12 is chosen arbitrarily and simply servesdfing the joint probability density function
f(0,K).
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sult obtained using the generalized Stoner-Wohlfarth rhadte exchange coupling is shown
in Fig. 3.17 and compared with the result obtained using tbae3-Wohlfarth hysteresis model
without exchange coupling and two hysteresis loops obtimen the micromagnetic simulation
of an ensemble of 10,000 particles, with and without exckarmyipling respectively. Exchange
coupling is seen to have an appreciable effect on the hygs$do®wp and the micromagnetic simu-
lation results are seen to be in good agreement with thetsestthined with both the generalized

and original Stoner-Wohlfarth hysteresis models.
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Figure 3.17. Comparison of hysteresis loops for an ensemble of particles with randaimly o
ented anisotropy following a uniform distribution on the unit sphere computedmicromag-
netic simulation with 1000 particles and the probabilistic Stoner-Wohlfarth regsemodel.

It should be noted that the iterative method used to solventhelinear equation in
the generalized Stoner-Wohlfarth method performs beshvitve exchange energy densijtys
not dominant compared to the other terms in Eq. (3.76). lexagere exchange coupling is
dominant, the system of equations becomes ill-conditiorigecause of this, the definition of
effective particles through anisotropy averaging is a tbat can be usefully combined with the

above generalized Stoner-Wohlfarth method with exchamgglog since it lowers the effec-
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tive exchange coupling energy between effective partichdso, it should be noted that when
comparing the result obtained from the generalized Stvarfarth model with the result of
micromagnetic simulationg,in Eq. (3.76) being the exchange energy density associathcaw
given particle, it should correspond to the energy denstywben 2 exchange coupled particles
in the micromagnetic simulation multiplied by the humbemefarest-neighbors with which a
particle is coupled. In the simulation used to produce tkalte of Fig. 3.17, while an exchange
energy density of = 3 x 10°erg/cm® was used for the Stoner-Wohlfarth model, since in the
micromagnetic simulation a simple cubic array of particles considered where each particle
is exchange coupled to its 6 nearest neighbor, the exchareggyebetween two particles is set
to j/6 =5x 10%erg/cnr.

Chapter 3, in part, is currently being prepared for submis&mo publication, Couture,
Simon; Lomakin, Vitaliy. The dissertation author was thienary investigator and author of this

material.
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Chapter 4

Coupling micromagnetism and
electrodynamics: modeling eddy currents

IN micromagnetic simulations

The LLG equation states that the time derivative of the amgmiomentum associated
with a spinning electron is equal to the torque due to theracteon between the electron’s
magnetic moment and a magnetic field. As discussed in ch@ptehile the LLG equation
is derived from electromagnetism and considers the magfietd as obtained from the so-
lution of the Maxwell equations, it is possible through aehlmization procedure to introduce
effective magnetic fields to account for other interactiaisch are not governed by electro-
magnetism. Chapter 3 focused on two of these effects, narelgxchange interaction and
crystalline anisotropy. The present chapter is concern#dthe true or maxwellian magnetic
field, in the sense that it satisfies the Maxwell equationd, fow it is coupled with the LLG
equation of micromagnetism.

Historically, only the static Maxwell equations were calesied, leading to the magneto-

static field, also known as the demagnetizing field or dipoigeraction. On p.17 of his 1963
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bookMicromagneticsBrown writes, “The magnetostatic energy was taken into aetim some
of these early calculations in micromagnetics. In domagotit, meanwhile, it had been almost
completely ignored.” In a 2000 review on the current statéhefart in micromagnetism [38],
the magnetostatic field is considered as one of the effeiglés along with the exchange and
anisotropy fields, without justifying the magnetostatipegximation. This situation is proba-
bly due to a number of factors, one of which being the fact tnafinally, the works that led
to micromagnetism were concerned with the equilibriumestdtmagnetization, with studies
on magnetization dynamics coming somewhat later. Anothetof to explain the prevalence
of the magnetostatic approximation is the small size of tlagmetic regions that were consid-
ered which justifies neglecting any electrodynamic effdcstly, the problem of computing
the magnetostatic field for a given magnetization configomait in itself far from trivial and
computationally costly, and therefore provided a suffic@rallenge for researchers, numerical
algorithms and computers.

As the size of problems that can be handled computationalygnown and as the fre-
guency of operation of magnetic devices has increased amgeqaently researchers have be-
come more interested in modeling the high frequency behafionagnetic devices, some re-
searchers pursued the idea of going beyond the magnetagpatioximation and including elec-
trodynamic effects in micromagnetic simulations. Giveattferromagnetic materials are good
conductors, one such effect is eddy currents, which arecediby time varying magnetic fields
and magnetization, and themselves induce a magnetic fietchwiill interact with the magneti-
zation through the LLG equation. Eddy currents are knowrateelpotentially significant effects
in magnetic materials, introducing losses to the systenma#tedng the magnetization dynamics.

In section 4.1, the phenomenon of eddy currents and how they fiom the Maxwell
equations is discussed. The different approximations eoMlaxwell equations and how they
couple to the LLG equation are also presented. Section #eBsa review of the works that have

been done on modeling eddy currents effects in micromagsgtiulations. In section 4.3, the
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limits of validity of the quasistatic approximation of theaMwell equations, which is sufficient
to account for eddy currents, are examined. The limits aflitglof the static approximation, in
which case eddy current effects can safely be neglected/sogiven. Section 4.4 discusses the
mechanism for coupling the LLG and Maxwell equations so #uaty currents, including the
diffusion effect, are accounted for. In section 4.5, therfolation for an integral equation solver
for the Maxwell equations is presented. A test problem wigahsed to validate the proposed
solver is described in section 4.6. Section 4.7 introdunesdtarnative Maxwell equations solver
based on the finite elements method. Lastly, section 4.&ptesimulation results that illustrate

the effects of eddy currents in micromagnetic simulations.

4.1 Eddy currents and the Maxwell equations

Eddy currents, also known as Foucault currents, occur idettors subjected to a time-

varying magnetic flux densiti. The effect can be understood in terms of Faraday’s law,

. 0B

OxE=—2 (4.1)

where the time-varying magnetic flux densByinduces an electric fiel& whose rotation is
equal todB/adt. In a material with conductivity, this electric field will give rise to a current
field due to Ohm’s law,

J=o0oE (4.2)

with the current lines rotating arour&B’/at, hence their name eddy currents. The eddy currents

phenomenon is illustrated in Fig. 4.1.
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Figure 4.1: A time-varying magnetic flux densit§ in a conductive material with conductivity
o induces a rotating electric field and a corresponding current densifyknown as eddy

currents

Faraday’s law is one of the Maxwell equations, which read

_ oB
OXE=—— 4.3
X o (4.3a)
Dxﬁza—D+T (4.3b)
ot
O0-D=p (4.3c)
0.-B=0 (4.3d)
In these equations, the magnetic field is defined as
. 1. -
H=—B-M (4.4)
Ho
with L the free space permeability while the electric flux denstgtefined as
D=¢gE+P (4.5)

with &g the free space permittivity and where the material’s elegiolarizationP has been in-
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troduced [6]. The electric polarization is a macroscopitdfgpuantity which is defined as the
spatially averaged molecular dipole moment inside a madtand measures the spatial distribu-
tion of bound charges inside molecules or atoms of a matéihen an electric field is applied,
positive and negative charges will tend to separate frorh etiter, and for many materials, the

electric polarization can be expressed as a linear fundtitime electric field,

—

P = goXeE (4.6)

wherexe is the electric susceptibility. Inserting this into Eq. (4.5) gives

D = go(1+Xe)E = ¢E 4.7)

where the material’s permittivity is defined as- €g(1+ Xe). This linear relationship between
D andE greatly eases the solution of the Maxwell equations.

When treating magnetic materials in electromagnetic prob)establishing a linear rela-
tionship betweemi andM is highly desireable. When it is possible, the magnetic sutiibity

Xm IS defined, as was done in chapter 3, such that

M = XmH . (4.8)
Inserting this into Eq. (4.4) gives

B = po(1+ Xm)H = pH (4.9)

where the material's permeability is definedjas: Yo(1+ Xm). In many problems involving

magnetic materials however, this is not possible due tatffeuch as magnetic hysteresis and

INote that the electric susceptibility is usually definedha frequency domain, so that in the time domain the
product ofxe andE would be replaced by their convolution. Also, in generahbgqt andy, are tensors.
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in general to the non-linear nature of the equations gomgrmagnetization dynamics. Indeed,
what is needed to solve the Maxwell equations is a constituélation betweeM andH, i.e. a
function f such thatM = f(H). Clearly, such a constitutive relation consists in the sofubf
the LLG equation with the associated mechanics of microraégm. This leads to the important
idea that, whereas from the point of view of micromagnetigra,Maxwell equations are solved
to determine the magnetic field induced by a given magneatizatistribution, from the point
of view of an electromagnetic problem, the LLG equation seedbe solved to determine the
magnetization for a given magnetic field. The LLG and Maxvegjlations should therefore
be regarded as a coupled set of equations where neither tBeelgluation nor the Maxwell
equations is subordinate to the other but instead shouldh&daered on an equal footing.

To see how the Maxwell equations and the LLG equation areledufq. (4.4) is used

to write the Maxwell equations in the form

B o /.
OxE = —hos <H+M) (4.10a)
Dxﬁ:%—?+j (4.10b)
O0-D=p (4.10c)

0. (H +|\7|) ~0. (4.10d)

When the static approximation is made, the time derivatinasen Egs. (4.10a) and (4.10b) are

neglected and the Maxwell equations become

OxE=0 (4.11a)
OxH=J (4.11b)
O0.-D=p (4.11c)

0 (H +|\7|) ~0 (4.11d)
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where the equations in termsBfandH are seen to be completely decoupled. In the context of
micromagnetics, the electrostatic equations, Eqs. (4.44d (4.11c), can be ignored and only
the magnetostatic equations, Eqgs. (4.11b) and (4.11dsadved. In Eqgs (4.11), the current
densityJ should be regarded as an impressed current, given as a dammbblem. To differ-
entiate the field arising from this impressed current andithé induced by the magnetization,
H is decomposed into

where the impressed field is solution of

OxH=J (4.13a)
O-Hi=0 (4.13b)
and where the magnetostatic field is solution of
OxHmns=0 (4.14a)
0. (Hms+ |\7|) ~0. (4.14b)

Summing Egs. (4.13) and (4.14), it is easily seen thaff Eq. (4.12) satisfies Egs. (4.11b) and
(4.11d). The equations fdf;, Egs. (4.13), are completely independent of the magnéiizii
and can be solved for a given source current distribullofihe equations foHms, Egs. (4.14)
correspond to the equations of section 2.3 on the magngetoitdd and can be solved for a
given magnetization distributioki. From the point of view of electromagnetism, the problem
of Egs. (4.14) is relatively straightforward: given the matizationM everywhere in space,
compute the fielddns also everywhere in space. Since Egs. (4.14) do not deperitherother
than throughM, the magnetostatic field effectively propagates instazdasly and all the system

dynamics lie with the LLG equation. It is not surprising thigrat when the static Maxwell
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equations are used in micromagnetism, the magnetostaticSigeated as just another effective
field with the Maxwell equations being subordinate to the Léquation.

This picture changes when the dynamic Maxwell equationsysf E4.10) are considered.
Through Faraday’s law, Eg. (4.10a), a time-varying magag&tn will induce an electric field
and corresponding eddy currents, which will in turn induageagnetic field through Ampere’s
law, Eq. (4.10b). Unlike in the static case, here the eledteid is coupled with the magnetic
field and needs to be considered. The displacement curmen®/ot in Eq. (4.10b), which
was famously postulated by Maxwell, also gives rise to wapagation of the electric and
magnetic fields. While it is certainly possible to consider slolution of the full Maxwell equa-
tions in the context of micromagnetic simulations, everajothe size of the magnetic devices
that are modeled are deeply subwavelength. For instanceyfamics with a frequency of
10 GHz, which is quite typical of magnetic materials, theefieace wavelength is 3 cm whereas
micromagnetic problems rarely exceed tens of microns i@. dkor this reason and because of
other arguments that will be presented in section 4.3, tisane need to solve the full Maxwell
equations. Instead, the magnetoquasistatic Maxwell emstwhere the displacement current
term is neglected, is a good compromise which accounts éoedaly currents effect.

The magnetoquasistatic Maxwell equations read as follows,

3} 3 /.
X E = —pos <H+M) (4.15a)
OxH=J (4.15b)

O.D=p (4.15c)

D-(ﬁ+|\7| —0 (4.15d)

In addition to the electromagnetic wave propagation etfegtis lost, it is interesting to note that
neglecting the displacement current also breaks the ceatts@n of charges law that is contained

in the full Maxwell equations. Indeed, taking the divergemnd Eq. (4.10b) and making use of
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Eqg. (4.10c), one obtains

- 0p
D.J__E (4.16)

which is the conservation law for the free charge dengitn its differential form. With the

magnetoquasistatic approximation, taking the divergenés. (4.15b) yields
0.J=0 (4.17)

or, using Ohm’s law,

0-(oE)=0. (4.18)

In regions where the conductivity is non-zero and uniform, this givés- E = 0. In ferromag-
nets, electric polarizability is weak so thHat= goE can be assumed. Then from Eq. (4.15c), it
follows that in regions of uniform conductivitg,= 0. In regions where the conductivity is zero,
no such conclusion can be made and there can exist distmisutif charges that are specified
for a problem and which will produce a corresponding elestatic field that is added to the
field induced from Faraday'’s law, Eq. (4.15a). In the litaraton eddy currents, one often sees
Eq. (4.15c) written a8l - D = 0 for conductive regions. However, as pointed out by Browr,[39
the volumetric charge densityin Eq. (4.15c) should be replaced by a surface charge deatsity
surfaces where a discontinuity in the conductivity occtosgxample at the boundary of a con-
ductive region or at the boundary between two conductingpnsgwith different conductivities.
To see this, consider Eq. (4.15b) and lets assume that thentittensityJ has no singularity
such as a surface Dirac distributidn The curl operator would cause any discontinuity in the
component ofl tangential to the surface across which the discontinuipto generate such
a singularity. This can be understood in terms of distrdoutheory, where the generalized curl

operator on some functiothis defined based on the inner product of the curiiefith a test

2Such a singularity would represent a surface current demgiich arises in perfectly conducting materials or
infinitely thin conductors, both of which are not considehede.
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function@. Indeed, referring to Fig. 4.2, it can be shown that

<OxU@>= Dxa.?pdv+/ Dxn.Zpdv+/[ﬁx(uz—ul)]-Zpds (4.19)
Q1 Q> C

wherel, — Uy represents the jump ifiat the surfac€ [40]. SinceJ has no surface singularity,

it follows thatrix H is continuous across any surface withéing a unit vector normal to this

surface. From this, it follows that the normal componenilof H is also continuous across any
surface. From Eq. (4.15b), this means that the normal coemgasfJ, which can be expressed
as

A-J=A-(oE), (4.20)

is continuous across any surface. This includes surfacesend jump discontinuity of the
conductivityo occurs. From Eg. (4.20), it is seen that a discontinuitgimust therefore be

accompanied by a jump discontinuity of the norreatomponentn“E.

Figure 4.2 Two-dimensional representation of a three-dimensional do@alivided into two
domainsQ; andQ, which are separated by a surface C.

As was done for the curl operator, a generalized divergepeeator can be defined by

<D-a,?p>:/ D-U(pdv+/ D-U(pdv+/ﬁ-(ﬂz—ﬂl)cpd8 (4.21)
O Q C

from which it is seen that a jump discontinuity across anyas# of the component of a vector

field G normal to that surface introduces a surface Dirac disiobutApplying this to the electric
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field at a surface with a jump discontinuity of the condudgivirom Eq. (4.15c) witD = &E,
it is seen that the charge dengitynust include a surface charge dengifycorresponding to the
jump inE.

A case which is of particular interest is at the boundary adrduictor region, outside of
which the conductivity is zero. For the normal componentbin Eq. (4.20) to be continuous,

the normal component d& inside the conductor at the boundary must be zero, that is,

A-E=0. (4.22)

Meanwhile, outside the conductor, tRdield can be obtained by solving Egs. (4.15a) and (4.15c)
and will depend od andM. However, because the electric field there will not geneaaecur-
rent, it will have no effect on the solution fét, which would not be the case if the displacement
current term was not neglected. TBeield in non-conductive regions is therefore not needed
when solving the magnetoquasistatic Maxwell equationscaindbe regarded as a by-product of
the solution process, along with the corresponding suifheege density.

From the discussion so far, it is seen that the magnetoqaasibaxwell equations al-
low the modeling of eddy currents at the cost of neglectimgtebmagnetic wave propagation
effects as well as capacitive effects resulting from eiectharge dynamics. While the electro-
magnetic wave propagation effect is lost, propagation@fidds by diffusion is still dictated by
the magnetoquasistatic Maxwell equations. Indeed, cenisigla conductive region which for
simplicity is assumed to have a uniform conductivity, takihe curl of Eq. (4.15b) witd = oE
gives

OxOxH=00OxE (4.23)

Using Eq. (4.15a) to replace farx E and using the identity] x 0 x H = 0(0-H) — 0%H along
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with 0-H = —0-M from Eq. (4.15d), Eq. (4.23) becomes
— = —[°H - —+—00-M (4.24)
OHo

which is a diffusion equation for the magnetic fiéld A diffusion equation can also be obtained
for J from the magnetoquasistatic Maxwell equations. Indeddhggthe curl of Eq. (4.15a) and

using Eq. (4.15b) to replace far x H gives

—

oJ_ 1 OxM . (4.25)

> 0
e I
ot oW ot

In both Egs. (4.24) and (4.25), the diffusion constaribig) ~* and both are a vector version of

the scalar diffusion equation, which in its simplest oneeinsional form reads

ou(x,t) k@

n 52 (4.26)

wherek is the diffusion constant. The solution of Eq. (4.26) hasftimetional form [20]
U(x,t) ~ e X/t (4.27)

A comparison between this and Egs. (4.24) and (4.25) meswite definition of the magnetic
time constant

Tm = OpL? (4.28)

wherelL is a characteristic length over which diffusion occurs @gample, the size of a conduc-
tor region). The magnetic time constant corresponds toltheacteristic time over which diffu-

sion dynamics occur. The same comparison between the sd@liaion equation and Egs. (4.24)
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and (4.25) can be used to characterize the diffusion lerggile sSThe skin depth is defined as

| 1
8=\ - (4.29)

where f is the system’s characteristic frequency. These constifitbe used in section 4.3
when discussing the limits of validity of the magnetoquiasis approximation and also when

analyzing simulation results involving eddy currents.

4.2 State of the art of eddy currents modeling in micromag-
netic simulations

To this author’s knowledge, the first work describing thdus®n of eddy currents ef-
fects in micromagnetic simulations is that of Della Torrel &icke in 1997 who proposed a 2D
finite difference solver [41]. In their approach, the diffus effect is neglected since the term
0H /ot in the right-hand side of Eq. (4.15a) is discarded and oréyM /ot term is considered.
Their approach consists in iteratively solving the LLG dtug and at each iteration computing
dM /ot through finite differences, which is then used to computétfield and the eddy currents.
TheH field induced by eddy currents is then computed and fed baolkfie LLG equation.

Also in 1997, Sandler and Bertram introduced a similar metbodclude eddy currents
in a 1D micromagnetic model of a hard disk recording head.[4Phey also neglected the
diffusion effect. In 2004, Torres et al. proposed a schemmlai to that of Della Torre and
Eicke to include eddy currents in a 3D finite difference mmegnetic solver [43]. They too
neglected diffusion effect. They presented simulatiomltssvhich showed that eddy currents
accelerate the switching of the magnetization in a ferrame#ig cube from a up state to a down
state.

In 2005, Hrkac et al. proposed a hybrid finite element methbdundary elements
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method for a 3D eddy currents micromagnetic solver whichiniitlide diffusion effects, even
though it neglected the time derivatives of externally aggpfields and of the magnetostatic
field® [44, 45]. Including thedH /ot term in the right-hand side of Eq. (4.15a) to account for
diffusion makes the problem of solving the Maxwell equasidor theH field more difficult.
The earlier works described above circumvented this byaotiglg this term, which allowed the
Maxwell equations to be solved given the magnetizaband its time-derivativéM /ot as a
set of partial differential equations involving only theasipl derivatives oH. When the time
derivative ofH is included in the Maxwell equations, these become a setrigpdifferential
equation in terms of both space and time Fbr Then the strategy employed by the works
cited above of time integrating the LLG equation and iteadyi solving the Maxwell equations
based only on the latest solution for the magnetization tntihne derivative does not work. To
address this problem, Hrkac et al. considered a system aitieqs composed of the LLG and
Maxwell equations and integrated it in time as a whole, uiieglDA solver [25] which solves
differential-algebraic systems of equations which aréesys with the fornt (t,u,u) = 0, with

u denoting the time derivative of the unknowit).

In 2007, Takano et al. presented micromagnetic simulagsnlts which included eddy
currents effects for a hard-disk recording head [46]. Thelver was based on a edge elements
finite elements formulation and included the diffusion effédnowever in their paper the details
on the formulation and how time integration is performedsmarce. Lastly, in 2012 Chang et al.
proposed a formulation similar to that of Torres et al. bugdahon a finite element formulation.

Their solver was based on the FastMag micromagnetic sohgenaglected the diffusion effect.

3As will be seen later in this chapter, discarding the timewagive of the magnetostatic field from the eddy
currents formulation is actually justified and does not titute an approximation.
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4.3 Bounds for the validity of the static and quasistatic Maxwell

equations

Before discussing the strategy used to solve the coupled LidsMaxwell equations
and presenting the solver’s formulation, the present@e&ims to give bounds for the validity
of the static and quasistatic approximations to the Maxegllations. The discussion follows
the approach used by Haus and Mercher [47] which consistermparing the fields obtained
using the full Maxwell equations with those obtained usimg approximate Maxwell equations
to evaluate the error associated with the approximation.

The full Maxwell equations, Egs. (4.3), can be written in flegjuency domain in terms

of theE andH fields as

OxE = —jowpH (4.30a)
OxH=joeE+J (4.30b)
0.E :2 (4.30c)
O-H=0. (4.30d)

wherewis the angular frequency and where the linear constituéilagionsD = €E andB = pH

are used. There are two underlying assumptions to thesétotine relations. The first one is
the linearity of the electric polarization and magnetiaatiesponse. In the context of micromag-
netics, the magnetization response evidently cannot irgébe considered as a linear function
of H as in Eq. (4.8). However, an approximate magnitudeifoan be obtained by linearizing
the behavior oM around a given state based on how much the magnetizatiordwary if an
applied field was applied, and since the discussion will cglyorder of magnitude arguments,
such an approximate value as the definitionudé perfectly acceptable. The second one is

that while in general the permittivity and permeability @aeasors, for the order of magnitude
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arguments of this section, they will be assumed to be scalars
Let us begin by deriving the condition for the validity of theagnetoquasistatic approxi-
mation. Assuming that the spatial variationsfobver a characteristic lengthare of the same

order of magnitude a& itself, the curl ofE will have a magnitude on the order of

OxE ~

% (4.31)

whereE denotes the magnitude &f The characteristic length that should be considered for
the purpose of setting a bound for the magnetoquasistagicogimnation is the largest linear
dimension of the problem and will be discussed in more detdibrtly. With this, in terms of

the magnitudes dE andH, Eq. (4.30a) yields
E ~ uLH . (4.32)

The magnetoquasistatic Maxwell equations are obtainecblenting the displacement

current term in Eg. (4.30b) which becomes
OxH=1J. (4.33)
The errorAH introduced by this approximation therefore satisfies
OxAH = jueE (4.34)
or, in terms of magnitudes and characteristic length,

AH ~ GELE . (4.35)
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Using Eq. (4.32), the magnitude of the relative error onHhigeld is on the order of
AH
o~ w’eul? . (4.36)

In terms of the relative permittivity and permeability, amtroducing the characteristic time

T =1/wfor a given frequency componea Eq. (4.36) can be written as

AH 1 L2

H T ey #.37)

Sincec?/g W corresponds to the speed of propagation of electromagneties, Eq. (4.37)
states that the error introduced by the magnetoquasisgapioximation is small when the time
required for an electromagnetic wave to propagate a distemcesponding to the characteristic
lengthL is much smaller than the characteristic time. The validitghe magnetoquasistatic
approximation therefore depends on the highest frequemmponent that characterize the sys-
tem dynamics, corresponding to the shortest charactetiste t. Concerning the characteristic
lengthL, Eqg. (4.37) and the use bfto characterize the spatial derivatives of the fields impét t

it is variations of the fields over large distances that aitecat to determine the error associated
with the magnetoquasistatic approximation. Intuitivéiys can be understood from the fact that
the magnetoquasistatic approximation essentially discsgelectromagnetic wave propagation.
Therefore, variations of the fields over small distancepagate very quickly and the propaga-
tion delay can be neglected. On the other hand, it is propagaver large distances that can
incur a significant time delay. For this reason, as statedrbéf is the largest linear dimension
of the problem that should be considered as the charaatdesgthL?.

The relative error in Eg. (4.36) can also be written in terrnhe electromagnetic wave-

4An equivalent, but perhaps more rigorous approach would lsertsider the Fourier transform in space of the
fields, in which case the curl of a vector figdds equivalent tk x A and involves the spatial frequenkyto which
a characteristic length can be associated by1/k.
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length, given byA = 1/2mw, /}E,
— ~(2m*= . (4.38)

This states that the error introduced by the magnetoqgaé#isisipproximation is small when the

characteristic length is much smaller than the electrormagmwavelength,
L<A. (4.39)

It is interesting to note that the same condition of validittds for the electroquasistatic
approximation, where th@B/ot term is neglected, which corresponds to th@opH term in
Eq. (4.30a). Indeed, assuming that we are in a region remfowedany current sourcé (note

that eddy currents will not be present in the electroquatstshpproximation), Eq. (4.30b) yields
H ~ WeLE . (4.40)

From Eq. (4.30a), the error introduced by the electroqtetgisapproximation will be on the
order of

AE ~ uLH (4.41)

which, when combined with Eq. (4.40) becomes

% ~ wEUL? (4.42)

which is identical to the relation of Eq. (4.36) for the matjndield. One might wonder, if

the condition for the electroquasistatic and magnetogtetg: are in fact the same, which one
should be used? The answer to this question is that it defemtthe problem that is considered.
In both approximations, the wave propagation effect isextgd, but the price paid for that is the

loss of an accurate representation of the dynamics of &exttarges in the magnetoquasistatic
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approximation and the loss of the Faraday and eddy curréfietdsin the electroquasistatic ap-
proximation. If the problem is concerned with magnetic ictilan, as in eddy currents problems,
the magnetoquasistatic approximation must be used. If tblelgm is instead about dynamic

capacitive effects, the electroquasistatic approxinmagahe correct choice. If both effects are
equally important, the full Maxwell equations need to bedusied wave propagation considered.

At this point, it is interesting to look at how good the qué#ais approximation is in the
context of micromagnetic simulations. Micromagnetic disions are seldom done on devices
exceeding a few tens of microns, so thhat 50um can be considered an upper limit. The
frequency content of magnetization dynamics is usuallytéichto a few tens of GHz so that
w=21x 50x 10°s~1 can be considered an upper limit. Then, considering avelagrmittivity
& = 1 and for instance a relative permeability= 10, from Eq. (4.36) the relative error on
the magnetic field idAH /H ~ 0.03. From this rough calculation, it can be concluded that the
magnetoquasistatic approximation is an excellent onehervast majority of micromagnetic
simulations carried out today.

Now that the magnetoquasistatic approximation was shove @ comfortable one for
virtually all micromagnetic simulations, the next task asdetermine when the magnetostatic
approximation is acceptable, that is, when is it accepttblese the long standing assumption
that the static Maxwell equations are sufficient in micrometg simulations and when on the
other hand can eddy currents effects be expected to have maghigible effect. In the magneto-
quasistatic approximation inside conductor regions, tireenit densityd in Eq. (4.33) includes
eddy currentsTeddyWhiIe they are excluded in the magnetostatic approxima@atause of this,
the magnitude of the error da introduced by the magnetostatic approximation is on therrd
of

AH ~ LJegay (4.43)

where the characteristic lengthhere corresponds to the largest linear dimension of thesarg

conducting body in the problem. The eddy current densityviergby Jegay = OE with E be-
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ing given by Faraday’s law, Eq. (4.30a), which leads to thati@n for the magnitude of of
EqQ. (4.32). Combining this with Eqg. (4.43) gives the relatveor as

AH
o~ owuL? . (4.44)

This can be written more simply using the magnetic time comtsdf Eq. (4.28) and the charac-
teristic timet = 1/ w,
AH T

— o~ 4.45
T (4.45)

which states that the error introduced by the magnetostppicoximation is negligible when the

diffusion time constant is much smaller than charactertgtie of the system dynamics,
Im<T. (4.46)

In other words, eddy currents can be neglected if diffusimoughout conductors occurs much
faster than the characteristic time. The relative error @an be written in terms of the skin

depthd, defined in Eq. (4.29), in which case Eq. (4.44) becomes

AH L2
~2— . 4.47
H &2 ( )
This states that the magnetostatic approximation is sefffisvhen the skin depth is much larger
than the size of conductors,

L<3. (4.48)

Again, itis interesting to consider some parameters thghthie used in a typical micro-
magnetic simulation to get an idea of the validity of the netgatatic approximation. Consid-
ering the largest conductor size to be a modest1 um, a conductivityy = 1 x 10’ S/m which

roughly corresponds to the conductivity of iron, a modelsitinee permeability valugy =5 and
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the highest frequency component to be 5 GHz, Eq. (4.44) gives

AWH ~2.0 (4.49)

which indicates that neglecting eddy current effects bysasring the magnetostatic approxi-
mation could introduce a significant error in the magnetildfie this case. It is important to
note that while satisfying the conditions of Egs. (4.46) &hd8) guarantees the validity of the
magnetostatic approximation, depending on the specifioleno, the use of the magnetostatic
approximation in a micromagnetic simulation might stilkeld accurate results even if they are
not satisfied. This might be the case for instance when éféetields other than the magnetic
field induced by eddy currents or the magnetostatic field dateithe dynamics, or when the
dominant field variations occur over a scale smaller thanargest conductor size. Deter-
mining whether or not the eddy currents can be neglected $peaific problem is a complex
guestion, and the bounds given above should serve as a dfuigey are satisfied, the magneto-
static approximation is definitely valid. If they are notethone should proceed with care when
using the magnetostatic approximation and consider thsilpbty that eddy currents effects

could be non-negligible.

4.4 Coupling the Landau-Lifshitz-Gilbert and magnetoqua-
sistatic Maxwell equations

The modeling of eddy currents effects in micromagnetic $atnons requires the solution
of the LLG equation coupled to the magnetoquasistatic M#begeiations. For convenience, the
LLG equation is repeated here from Eq. (2.44),

dM Y o ya .
— = MxH+———°o-Mx(MxH 4.50
dt  1+a? (1+02)|M| ( ) (4.50)
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while from the discussion of section 4.1, the magnetoqtatgidMaxwell equations read

OxE = —u()% (H + |\7|) (4.51a)
OxH=J (4.51b)
0.E= S—S (4.51c)

0
0. (H+|\7|) ~0. (4.51d)

Referring to section 2.4.2 on the time integration of the LLgbiaion, the LLG is an

equation of the form

—

‘2—'1" = f(M,H) (4.52)
where f, corresponding to the right-hand side of (4.50), is a noedr function of the mag-
netizationM and of the effective fieldd which is solved by the Newton method, as described
in section 2.4.2. When the magnetostatic approximation @Mlaxwell equations is used, the
maxwellianH field, along with the exchange and anisotropy field, is sinadiynction ofM, that

is,

—

H=H(M). (4.53)

In this case,f in Eq. (4.52) is really just a function dfi and is readily evaluated &ff =

—

Mr(Ql at thej’th Newton iteration for the time stefp, 1. When the magnetoquasistatic Maxwell

equations are considered, but with the additional appration of neglecting the terdH /ot in

Eq. (4.51a), which corresponds to neglecting the diffusifieact, H is a function of bottM and

its time derivativedM /dt so that
oM

H=H(M,5) . (4.54)

This does not pose additional difficulties for the solutidrEqg. (4.52) by the Newton method,

since the time derivative dfi in the Maxwell equations can be discretized using for insan
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BDF and the nature of Eq. (4.52) is unchanged, it remains ahditpon-linear system of equa-
tions for the unknowm,,1. This is the reason why most works on incorporating eddyecusr
in micromagnetic simulations have neglected the diffusérm in the Maxwell equations.

When the complete magnetoquasistatic Maxwell equationsarsidered, including the
diffusion termaH /ot, they become a set of partial differential equations whidtude the time
derivative ofH, thereby elevatingl to the same level aldl, i.e. a variable that must be time
integrated. This is what motivated Hrkac et al. [44] to saveroblem where the vector of un-
knownsM is appended by the unknowfand where the LLG and Maxwell equations form a
single system of equations. While strictly speaking thisiesrmost rigorously correct approach,
in practice it might not be the best one. Indeed, anotheragmbr, which is the one that will be
used in this work, is to slightly relax the coupling that ésibetweerM andH and allowH to
lag by one iteration in the iterative solution process. Imeotwords, the LLG equation and the
Maxwell equations are kept as two separate sets of equatiahare solved each individually by
two coupled solvers. The solution process with this apgrasdlustrated in Fig. 4.3. The LLG
equation solver integratdé in time, as described in section 2.4.2. When evaluafifid, A ) as
part of the Newton method, say to find thiet+ 1)'th approximation oM at timet,, |\7Ir(]j+l), con-
trol is passed to the Maxwell equations solver which soleesteH, field while assuming that
the value of the magnetization at time stggorresponds to the latest available approximation
M.

In this approach, the computation of thefield is very similar to the case whefé is
simply a function ofM. The only difference is that here, the computatiorHoflepends on its
values at previous time steps. When comparing this approé&bhthat of combining the LLG
and the Maxwell equations in a single system, it has the ddgarof avoiding any possible issue
with the conditioning of a matrix built to solviél andH simultaneously, these two unknowns
potentially having different orders of magnitude. Anothevantage is that, assuming that the

M andH fields are computed at the same number of nodes, the singé&rsgpproach doubles
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Figure 4.3 Schematic illustration of the proposed approach with two coupled solvees, o
for the LLG equation and one for the Maxwell equations. At each time stepnah-linear
LLG equation is solved iteratively using the Newton method. At each Newtaatiiber, say at

timety, in order to compute the next approximatiﬁt{\j“) using Egs. (2.99) and (2.101), the
magnetic fieldH,, is computed using the previous approximaﬂﬁﬁ).

the size of the problem which will be slower to solve than twaaler systems. This advantage
is somewhat negated by the fact that in allowing hdield to lag behindVi by an iteration
in the solution process, a price will be paid in terms of spekedonvergence. However, the
main advantage of the proposed approach lies in the facathapposed to the LLG equation,
the Maxwell equations are linear, and therefore solvingntivolves the solution of a linear
system of equations. Because of this, the larger system sfrigée system approach is not only
split into two smaller systems of equations, it is split i@ systems where only one of them
needs to be solved by the Newton method, which involves thdiso of a linear system for
each Newton iteration, while the other one only requiresstiiation of a single linear system.
In the proposed approach, the magnetic field is in a sensedinbte to the magnetiza-
tion since it is the magnetic field that lags one iterationibethe magnetization. Also, it is the

LLG equation solver that invokes the Maxwell equations eplat each Newton iteration and
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therefore controls the overall solution process. The ne&sothis is not that the magnetization
or the LLG equation is more important, it is simply becausélsaking the overall system of
equations into two separate systems, one of the fléldsM has to be solved iteratively, where
with each iteration a solution for the second field is obtdibased on the value of the first field
from the latest iteration, until convergence is achieveue MagnetizatioM is a natural choice

for the field to be solved iteratively, since it requires &adva non-linear problem and must be
done iteratively anyways. One could in principle choosenstdad solve the Maxwell equations
iteratively, and solve the non-linear LLG equation at eaehation. This would however be less
efficient than the proposed approach since the LLG equdiring non-linear, also would need

to be solved iteratively.

4.5 An integral equation solver for the Maxwell equations

The approach used to model eddy currents in micromagnetiglations uses two sep-
arate solvers, one for the LLG equation, the other for the Widiequations. While these two
solvers communicate with each other as part of the solutioogss as shown in Fig. 4.3, either
the LLG equation or the Maxwell equations solver can be éekat a black box. For instance,
the LLG equation solver is oblivious to how the Maxwell eqoas solver computes its solution,
as long as it returns the correldt field solution. The same can be said about the LLG equa-
tion solver, the Maxwell equations solver is not aware of ltbaM solution that it receives is
computed. Because of this, the Maxwell equations solverdcsalve either the full Maxwell
eguations, the magnetoquasistatic Maxwell equations #Bdrcase, or even the magnetostatic
Maxwell equations without changing the overall approachigf 4.3. Different numerical meth-
ods could also be used for each solver. This gives a lot otdilgyiin the implementation of the
solvers.

In this section and in section 4.7, two different solvergfer magnetoquasistatic Maxwell
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equations will be presented, the first one based on an integuation, the other one based on
the finite element method. As will be seen, each of these twibhads has its advantages and
disadvantages. For instance, the integral equation appra@ly requires the discretization of
magnetic and conductive regions, thereby allowing the nvagl®f eddy currents without in-
creasing the overall size of the problem. However, the nallegguation approach involves the
solution of a linear system of equations where the systemixriatin the form of an integro-
differential operator which can become expensive to evalua the finite element method, the
air region around magnetic and conductive regions needdesbectized, thus increasing the size
of the problem, but in this case the system matrix is a spaedexnthat can be pre-assembled.

For the integral equation formulation, it is useful to degase the electric and magnetic
fields into two parts,

E=Em+E; (4.55)

and

H =Hw-+H;. (4.56)

Here, theM subscript denotes the fields arising due to the magnetiz&tiovhich is provided

by the LLG solver and is acting as a source. These fields gatisf

. 0 /o -
0% En = —Hos: (HM n M) (4.57a)
OxHu=0 (4.57b)

0-Em=0 (4.57¢)

0. (HM+|\7|) ~0. (4.57d)

The J subscript denotes the fields due to currehte/hich include eddy currentﬁddy and any
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source currend; that might be specified in the problem. These fields satisfy

OxHy=J (4.58b)
0-E;j=0 (4.58¢)
O-Hy=0 (4.58d)

Summing Egs. (4.57) and (4.58), it is easy to see that theEaaadH fields satisfy the magne-
toquasistatic Maxwell equations, Egs. (4.51).

Looking at Egs. (4.57), Egs. (4.57b) and (4.57d) are reaeghas the magnetostatic
equations. The fieldHy is therefore none other than the magnetostatic field andriguated
exactly as one would in a micromagnetic solver where eddseats effects are neglected. In
this work, the solution process foty is the one described in section 2.3. The difference here
however is that while in the magnetostatic approximatibe, électric field is disregarded as it
is completely decoupled from the equations, Eag field of Eq. (4.57a) will give rise to eddy
currents and needs to be computed. From Eq. (4.57c), thegdivee ofEy is zero and it can

therefore be written as the curl of some vector field,
Evw=-0OxF (4.59)

whereF is known as the electric vector potential. From section 8 (Eq. (2.65))}Hm can be

written as

Hy = —O®y . (4.60)

Using this along with Eq. (4.59), Eq. (4.57a) can be written a

DxDxlf:uO% <—D¢M+|\7|) (4.61)
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which, upon using the vector identify x 0 x & = 0(0- &) — %4, becomes

—

O <D F + ugaf;%) —0%F = o (4.62)

ot
From Helmholtz’'s theorem [48], a vector field is only fullyespfied by both its curl and its
divergence. Since only the curl Bfis specified, it is not uniquely determined and we are free to

determine its divergence. A convenient choice in the pitesituiation is known as the Lorentz

gauge and is
0.F = 2P (4.63)
ot
With this, Eq. (4.62) simplifies to
. oM
O%F = —po—. 4.64
oo (4.64)
which is the Poisson equation with source tenplbal\7l/0t. Its solution is given by
By Hopy, [ aME) 4.65
MZan N R (4.65)

where the integration is over all space.
The solution for Egs. (4.58) proceeds similarly. Becalisél; = 0, the magnetic field

can be expressed as the curl of the magnetic vector potdatial
Hy=DOxA. (4.66)

With this, Eq. (4.58b) becomes
0 (D-/K) A=, (4.67)

Here again, the divergence Afmust be specified by a choice of gauge. The natural choice here
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is 0-A=0, in which case Eq. (4.67) simplifies to

— =

°A=-J. (4.68)

Again, this is a Poisson equation which has solution

-

N 1 ‘](X/) /
A_E[/V ST (4.69)

Contrarily to Eq. (4.64) where the sourbkis a known quantity, here the currehincludes
both any impressed source currdntvhich would be given as part of a problem and the eddy
current\];ddy which is an unknown of the problem. For this reason, the fi¢)ds split into
two components with corresponding magnetic vector pcalmﬂﬁj,i = O x A and I:I37eddy:

O x ,&eddy, these magnetic vector potentials being given by

N o 1 ‘]—i)<x/> /
A=l (4.70)
and
- B 1 dey(x’) ,
Aeddy—a_[ L R=%] dx’ . (4.71)

To solve for the electric fiel&;, Eq. (4.66) is used to replaé¢ in Eq. (4.58a) yielding

0 x (Eﬁ—po%—?) =0. (4.72)

Since the vector field between parantheses is irrotatidtnzdn be expressed as the gradient of

some scalar function. The electric scalar poterbigls therefore introduced such that

. oA
E;= —UOE — [y . (4.73)
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Inserting Eq. (4.73) in Eq. (4.58c) and noting thiatA = 0 because of the gauge choice results
in

J°d; =0 (4.74)

which states that the electric scalar potential is a satutiche Laplace equation. This equation
can be solved using the finite element method provided thaitalde boundary condition is

prescribed. Such a boundary condition is obtained from £@2] in section 4.1, which states
thatri- E = 0 at the conductor boundaries. Siriee- Ey + E; and with Eq. (4.73), this gives the

following Neumann boundary condition

0P . (= oA

The solution of the Laplace problem with a Neumann boundanglition is not unique and will
give rise to a singular or ill-conditioned matrix when solgiwith the finite element method.
This problem can be avoided by imposing the solution valugnator a few nodes at a certain
location on the boundary. The choice of this value is of noartgnce sinceb; is used to
computeE; and from Eq. (4.73) it is clear that only its gradient is ofirgst. Just as was done

for Hj, it is useful to decomposféJ into different components,

E; = Ejji +Ejeday+ Eim (4.76)
defined as
. oA
EJ’i = _HOE — Dq)J’i 4.77)
_ 0Aedd
Ejeddy= —Ho P Y 0®; eday (4.78)
Ejm = —0®m (4.79)

whereA andAgqqy are given by Egs. (4.70) and (4.71) and where the electrlarspatential has
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been decomposed into three components which each satshafilace equation as well as the

following boundary conditions,

by 6:&5
n - MR (4.80)
L) 0Ae
——i%?gy::——ﬁ-po afdy (4.81)
acD‘LM R =
M _f-Ey (4.82)

It is easily seen thab; = @3 + ®; eqay+ Py m satisfies the Laplace equation with the boundary
condition Eq. (4.75).

At this point, all the elements are in place to setup an irtleggquation that will allow
to solve for the eddy currenﬁéddy and the corresponding magnetic fid;;id,eddy While Hy is
computed directly by computing an integral involviMy the equations for the eddy currents
are implicit. To see this and to make notation more conventée following linear operators
are defined. From Eq. (4.65), ti field is computed by an integro-differential operatas,
consisting of the composition of the curl and integral opmsaapplied on the time derivative of
M,
M. o FMX)

- 0
Em = — ) =-—U a_—dx’. 4.

From Egs. (4.77) and (4.78), boﬁm./i and Eleddy are obtained by first computing the
time derivatve of the corresponding magnetic vector paes and,&eddy from the integrals
of Egs. (4.70) and (4.71) involving and dey respectively, to which a correction is added
corresponding to the gradient @f;; and®; ¢qqy Which are harmonic functions with boundary
conditions that are linear functions of the time derivaiogA; and,&eddy. Both EJJ andl?leddy
are therefore given by a linear integro-differential operag, in terms of the time derivative of
J andJeqay respectively, ) )
0J; 0A;

= —po— — Oy, (4.84)

B = ey () ot
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o 0Jedd 0Aedd
Ejeddy= Lg( (;t )= 1o P Y 0d; eday - (4.85)

Similarly, EJM is obtained as the gradient®f 1, which is a harmonic function with a boundary
condition that is a linear function dy, itself being a function of the time derivative bf as
seen from Eq. (4.83). Therefore, it is given by a linear imedgjfferential operator applied on
the time derivative oM,

o) =00y . (4.86)

The integral equation for the eddy curredigqy is based on Ohm’s law = oE, which

when written in terms of its components becomes
J + Jeday=0 (EM +Ej,j +Ejeddy+ EJ,M> : (4.87)

Using the linear operators defined above, this can be witsen

oM 0 0J; oM
e+ Le() + L5 (G| @9)

J + Jeqdy= 0
i + eddy ot

Using the BDF method to discretize the time derivativeT&fdy as in Eq. (2.94), evalutating
Eqg. (4.88) at timé, 1 and groupingJ;ddWH terms on the left-hand side gives a linear system

of equations that can be solved ﬂéadynﬂ,

—

oM
LEM(E
o Lo 0
e+ a3 @y 1) + Lo ()| (489)

Jeddyn+1 — Lg; (OoJeddynt1) = —Ji +0 )+

—

This linear system can be expressed in the form of a matriatemu

Adeddyni1=Db (4.90)
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where the system matriA corresponds to the operatbr agLg,;, with | being the identity
matrix, and wherd is the right-hand side of Eq. (4.89). Since the system ma&n in the
form of an operator, the matrix (which also happens to be@assot computed explicitly and
matrix-free iterative solvers need to be used. Since indds®e the operator is not symmetric, the
GMRES method [49] is used. A preconditioner could be usedi®GMRES method by using
a sparse version of th& matrix involving only nearest neighbor contributions te tintegrals,
however the non-preconditioned GMRES method has been fauperform relatively well for
this problem and was used in the present work. Once a sol[aiioTaddWH has been found, the
corresponding fieltHedayn+ 1 is computed using Eq. (4.66) with= Aggqy given by Eq. (4.71).
The solution of the integral equation Eq. (4.89) by the GMRE&huod involves computing the
integrals that are part of the different linear operatorl tese integrals are computed using a
Fast-Fourier-Transform-accelerated technique impléateon GPU’s which is described by Li
[22, 23].

In terms of performance, while the integrals are acceldrate fact that several integrals
have to be computed at every time step due to the iterative GBMRE&hod makes the Maxwell
equations solver the most computationally intensive platt@micromagnetic solver. For exam-
ple, using a Intel Xeon E5645 CPU and a NVIDIA GeForce GTX 58WG$mulating 1 ns for a
problem with a mesh of 3.5 million tetrahedral elements$ake 2 hours while it only takes 0.22
hours when the eddy currents are neglected. Clearly, the wiatign of the eddy currents field
is the performance bottleneck when eddy currents are mobdelmicromagnetic simulations
and the significant slowdown that their computation causeis! the size of problems that can
be solved in practice. Because of this, it is worthwhile testigate different methods of solv-
ing the magnetoquasistatic Maxwell equations. An altévaeaolver based on the finite element

method will be presented in section 4.7.
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4.6 Atestproblem for the micromagnetic-eddy currents solver

One of the challenges in numerical micromagnetics is tdhywéhniat solutions obtained
with a given solver are indeed accurate. In general, for dhatisn of numerical partial differ-
ential equations, one way of doing this is to solve a problenwhich the analytical solution is
known. Since the LLG equation is non-linear and magnebmadiynamics are usually fairly com-
plex with domain wall motion, magnetic domain nucleatiomgnetization rotation and chaotic
magnetization reversal, problems for which analyticaliBohs exist are usually not available.
To address this problem in micromagnetics, the Nationditurie of Standards and Technology
has developed a series of standard problems for which thxéstaecepted solutions that have
been validated through different micromagnetic solve€§.[5

The same challenge evidently applies to the validation afromagnetic solvers that
take into account eddy currents. A quick look at the literaton eddy currents modeling in
micromagnetic simulations, which was discussed in seeti@nreveals that lacking a problem
where the analytical solution is known, researchers ha@ted to comparing simulation results
obtained with and without eddy currents effects, lookingdoalitative effects of eddy currents
such as a faster magnetization switching time or addeddassthe system, which would be
equivalent to using a higher damping coefficiant the LLG equation.

In this section, a problem to validate a micromagnetic solth eddy currents effects is
presented. It will be used to validate the approach propwsselction 4.4 both with the integral
equation solver for the Maxwell equations of section 4.5 #afinite element solver which
will be presented in section 4.7. Lacking an analytical Bofufor a problem with non-linear
magnetization dynamics, which would showcase the full xté a micromagnetic solver’s
capabilities, the next best test case is a problem that caedresented by a linear analytical
model for which an analytical solution can be found and wiaah still be solved by the fully

non-linear-capable micromagnetic solver. The geomettii@test problem is shown in Fig. 4.4.
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Figure 4.4 (aLLong ferromagnetic cylinder excited by a current-carrying solexiadil. (b)
Eddy currentsleqayinduced inside the cylinder.

It consists in a long ferromagnetic cylinder of radauand with conductivityo which is
excited by a metallic coil carrying a time-harmonic curtéFtte coil current will tend to generate
an applied fieldd; which is uniform inside the coil region and oriented in #rdbrection along the
coil axis. Because the cylinder is conductive, this fieldnglavith any accompanying changes
in magnetization, will tend to induce eddy currents that faimuthally within the cylinder. In
accordance with Lenz’s law, which states that the curremisced by a time-varying magnetic
field will tend to induce a magnetic field opposing this firsignatic field, the eddy currents will
generate a field?ﬁeddythat tends to oppose the coil field and is also oriented aloagylinder’s
axis.

If the problem is idealized by assuming that the cylindemiiitely long and that its
magnetization response is linear and described by a réaddiacalar and frequency independent
permeabilityy, then it has an analytical solution which is derived in ApgigrA. In that solution,
the total magnetic field consisting of the coill fighy, and the eddy fieI(FI.eddy only has az
component. The objective then is to devise a micromagnetiblem that will replicate this

idealized problem as closely as possible. The first issulaisih the simulation, the cylinder

114



cannot be made infinitely loRgHowever, by making the cylinder sufficiently long, the dwn

for the H field obtained in a cross-section taken at the middle poirthefcylinder along its
length should be close to the infinite cylinder case. A keyeass the magnetization response
to the magnetic field. In the ideal problem, the magnetiratesponse is given in terms of
a real-valued, scalar and frequency independent magnetieptibility xm by M = xmH from
which the permeability = po(1+ Xm) is defined. Since, as discussed in Appendix A Hhield
only has az component, this implies that the magnetization also on/dmcomponent. This

is evidently impossible to replicate in a micromagneticdation of a ferromagnetic material
since the magnitude of the magnetization is constant andleéqus which means that any
variation of thez component of the magnetization must be accompanied bytwarsaof the
other components. In other words, the magnetic suscaptitslin reality a tensor. What can
be done however is to operate in a linear region around anilegumn magnetization state and
consider the variation of thecomponent of thél field as the quantity to be compared with the
analytical solution. While variations in thecomponent of the magnetization will necessarily
be accompanied by variations of tker y components, from the geometry of the problem these
variations are expected to induEl@ddyfieIds with mostlyx andy components. This means that
the relation between thecomponent ofi andM can be considered independently from their
andy components. This is equivalent to considering onlyxhg, component of the magnetic
susceptibility tensor.

The desired linear behavidW, = xm-A; can be obtained by introducing a uniaxial
anisotropy along a direction perpendicular to the cylinabes, for instance along thedirec-
tion. When no coil field is applied, the magnetization restscaiilibrium along thex direction.
As a coll field is applied, giving rise to H; field which includes the coil field and the eddy
current field, the magnetization will tend to rotate towazds such a way that thecomponent

of M will be directly proportional tdH,. From the discussion of section 3.1.2 on the frequency

5One could of course simulate an infinitely long cylinder véttwo-dimensional micromagnetic solver, however
the aim here is to validate three-dimensional solvers.
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dependent permeability tensor, the above rotation beh&vinderstood to be a simplification
and only rigorously valid at zero frequency since it neglehe fact thaM will actually precess
as it rotates towards thedirection.

Referring to the expression for the frequency depenggnt of Eq. (3.22) and the ex-
pression for the resonant frequency in Eq. (3.24), it is seahif the resonant frequency is much
higher thanwa, wherew represents the frequency content of the magnetic figdhenXmzz
reduces to the zero frequency susceptibility expressi@yo{3.21) and is seen to be purely real
and frequency independent. Another way to understandgimsterms of precession in the time
domain. It can be shown that in the time domain, the precessiaplitude is proportional to
e YHkat/(1+0%) " |f the timet here is interpreted as the characteristic time correspgridi the
frequency content dfl; such that = 1/w, then the above condition that the resonant frequency
should be much higher thaoo is seen to be equivalent to requiring that the precessionabm
dies out within the characteristic time so that it can effety be neglected.

The expressions given in section 3.1.2 for the frequenceni@gnt susceptibility tensor
components are valid only for small variationsMfaround the equilibrium state. Therefore,
the coil field should be chosen so that it is sufficiently serathanHk. In the micromagnetic
simulation, another complication arises due to the magtatio field, which in the case of along
cylinder gives rise to shape anisotropy. As discussed iti@e2.3.1, shape anisotropy depends
on the shape of a magnetic region and is due to the magnétdstht being such that a certain
orientation of the magnetization is favored. Shape aroggtcan be modeled as an equivalent
uniaxial anisotropy, which in the case of a long cylinderl@ng the axis of the cylinder with
magnitudeKspape= TM2. Since the equivalent uniaxial anisotropy is perpendictdahe net
anisotropy that is desired along thaxis, from the discussion in chapter 3 on summing uniaxial
anisotropies, the resulting anisotropy will have a magtataorresponding to the difference of
the magnitudes of the two anisotropies and will be orientethe direction of the dominant

anisotropy. Therefore, the magnitude of the crystalline@ropy that is set in thedirection in
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the micromagnetic simulation must correspond to the desiet anisotropy magnitude plus the
shape anisotropy magnitude.

The magnetic parameters of the ferromagnetic cylinder laosen to achieve a specific
value of while satisfying the condition above thawb > wa so that the permeability can be
considered frequency independent and purely real. Letsidenfor example that the time-
harmonic coil current has a frequency of 1 GHz and lets setnetagparameters to obtain a
relative permeabilityy, = 4. A set of parameters that can be used (this choice is notighiq
is a saturation magnetizatids = 360emy/cm?®, a net anisotropiK = 2.71 x 10°erg/cm?® and
a damping coefficientt = 0.1. With these parameters, from Eq. (3.20), the anisotropy ise
Hk = 1508 Oe and the magnetic susceptibilityxis,,= 0.239. The attentive reader will have
noticed that this value gfn does not result ip, = 4 according to Eq. (4.9). This is because the
cgs unit system is used hé&rén which case the relative permeability is defined in terfthe
magnetic susceptibility 3§ = (1+41xm). Since 41Xmzz= 3, we do obtain, = 4 with the above
magnetic parameters. Also, from Eq. (3.24) the resonaquémecy is given by £ GHz, which
is larger tharwa = 0.1 GHz so that the approximation of a purely real, frequendgpendent
permeability should be valid. This can also be seen from bbiegh the magnetic susceptibility
Xmzzas a function of frequency, obtained from Eq. (3.22) and shiowFig. 4.5. From this plot,
it is seen that from zero frequency up to 1 GHz, the magnescequtibility 4rt(mzziS mostly
constant and equal to 3, with an imaginary part very close. tdliis validates the idealized
model where the ferromagnetic cylinder is simply charao¢er by, = 4.

To validate the micromagnetic solver with eddy currentss test problem is solved
numerically. The radius of the cylinder is chosen to be 7 sriength 50 um and its conductivity
1 x 10” S/m, roughly corresponding to the conductivity of iron. To eresa uniform coil field

within the ferromagnetic cylinder, the coil is chosen toteam50 turns uniformly wound around

81n this chapter, most of the equations and results are givéirtiie Sl unit system in mind. However, numerical
solutions are presented in terms of cgs units since the &gsmyis still prevalent in the magnetism literature and
among researchers and practitioners.
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Figure 4.5 Plot of 4rmxmmz as a function of frequency obtained from Eq. (3.22) with the

magnetic parameters chosen to ob{gie- 4.
a length of 100 um. The radius of the coil is set to 14 um. Thélpra is solved for three sets
of magnetic parameters which have equivalent relative pahitities ofy, =1, 2 and 4. The
casep, = 1 corresponds to a non-magnetic cylinder while the 2 setadmeters fop, = 2
and 4 are chosen such thdg ~ 15000e. The coil current is a 1 GHz causal sinusoidal with
a peak amplitude of 10 mA which corresponds to a peak coil mtgfield of 62 Oe. This
field amplitude is much smaller thatk which means that the system is operated in a small
linear region around the equilibrium point. The exchangeffadent is assumed to be zero in
the simulations since the exchange interaction is not ganeoidealized linear model.

The results are shown in Fig. 4.6 in the form of plots of thaltbt; field, comprising the
coll field and the eddy current field, as a function of the raditithe cylinder at three different
time snapshots; = 0.3ns,t; = 0.4ns and3 = 0.8ns, which are indicated in Fig. 4.6a showing
the coil current signal. At each time snapshot, for each pabiility value theH; field obtained
from the simulation in a cross-section of the cylinder takémg its middle point is compared
with the analytical solution. The numerical solutions agersto be in good agreement with the
analytical results. Also shown is the coil field amplitudehett particular time snapshot, which

corresponds to the amplitude of the coil current signal atmmoment and is seen to be uniform
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Figure 4.6: (a) Current flowing in the coil of Fig. 4.4a. Itis a causal, 1 GHz sineaigmd
produces a concurrent time harmonic magnetic field with a peak amplitude of.62d)
Axial component, of the total magnetic field as a function of the radius inside a cross section
perpendicular to the cylinder’s axis and taken at the middle point along itshleagtimes

t1 = 0.3ns,t; = 0.4ns andz = 0.8 ns respectively. Numerically obtained results are shown for
3 sets of magnetic parameters corresponding to1, | = 2 anduy, = 4 and are compared with
the analytical solution. Also shown is the spatially unifazmomponent of the coil magnetic

field.

throughout the cylinder. If eddy currents were neglectied,dil field would correspond to the

total magnetic field so that the eddy currents magnetic ﬁ’@h@,y corresponds to the difference

between the total magnetic field and the coll field on thesespldhe fact that thcﬂeddy field

is seen to be significant compared to the coil field indicdtas ih this case, the magnetostatic

approximation of the Maxwell equations is not a good appration and that the magnetoqua-

sistatic approximation should be used instead. This islatd by the condition of validity for

the magnetostatic approximation, Eq. (4.48) from secti@n khdeed, from Eq. (4.29), the skin
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depth for this problem is.8 um while the relevant size is the cylinder diameter whichdgim.
Since the skin depth is comparable to the cylinder diamé#termagnetostatic approximation
cannot be expected to be a good one.

Att =t;, where the coil current and coll field are at their maximunueafrom Fig. 4.6b
it is seen that at the center of the cylinder, the total fieldnller than the applied coll field.
This is due to eddy currents which produce a field which teadsihcel the applied field. At the
surface of the cylinder at= 7 um, the total field is equal to the coil field since, as disedss
Appendix A, the eddy currents fieﬂeddyare zero outside of the cylinder. These results can also
be understood in terms of the diffusion of the magnetic figlke penetration of the field inside
the cylinder depends on the skin depth. For instance, ipthe4 case which corresponds to a
skin depth at 1 GHz of B um, the fieldH, remains close to zero. In the = 1 case, the skin
depth is 5 um and the magnetic field penetrates the cylindeg.niffusion occurs over a time
scale corresponding to the diffusion time constant definelq. (4.28). Taking the diffusion
length to correspond to the cylinder radilis= 7um, in they, = 4 case, the diffusion time
constant i, = 2.5ns whereas fop, = 1 it is T, = 0.6ns. This means that the magnetic field
diffuses inside the cylinder more rapidly in the= 1 case and the total field will therefore track
the applied coil field more closely than for tiye = 4 case. Diffusion effectively causes the
magnetic field inside the cylinder to lag in time behind thelegal coil field. For instance, in
the i = 2 case, at = t; when the coll field is at its maximum, the totd}, field atr = 1 um
is around 20 Oe. At time=t,, when the coil field has actually decreased in amplitudeHhe
field atr = 1um has increased to 35 Oe.

To further illustrate the effect of diffusion, Fig. 4.7 shewhez component of the magne-
tizationM; as a function of time at different radius values inside tHendgr for the casg, = 4.
Also plotted isM; for the case where eddy currents are neglected, that is eenagnetostatic
approximation is used, in which cablg and correspondingly thiél, response is uniform within

the cylinder. The coil field, which also corresponds$oin the magnetostatic case, is included
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Figure 4.7. Magnetization respondd, to the coil current of Fig. 4.6a at different radius values
inside the cylinder for the cage = 4. Thez oriented magnetic field generated by the coil is
plotted against the right-hand vertical axis. Also shown isNhe&esponse obtained using the
static approximation of the Maxwell equations.
in the plot.
The magnetization response is seen to differ greatly asaifumof the radial distance
r inside the cylinder. Ar = 7um, corresponding to the surface of the cylinder, the nespo
is seen to be very similar to the case where the magnetosigpioximation is used. This is
expected since as in the case of the magnetostatic appriximte totaH; field at the surface
of the cylinder corresponds to the coil field. As points ctasethe center of the cylinder are

considered, the amplitude of the response decreases atithéhdelay with respect to the coil

field increases, both of which are a result of the diffusidacif
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4.7 A finite element solver for the Maxwell equations

The integral equation formulation proposed in section 4i5thie Maxwell equations
solver has the advantage of only requiring the discretmatif magnetic and conductive re-
gions, therefore allowing eddy currents to be modeled witlcreasing the problem size when
compared to micromagnetic simulations without eddy cus.eHowever, while the volume in-
tegrals that need to be computed to solve the linear systarbeaccelerated using GPU’s and
fast algorithms, because the system is solved iteratiseiygral integral computations need to be
performed at every time step which is quite demanding coatpurtally. It is therefore natural
to investigate other types of solvers for the magnetogtagidvaxwell equations, such as the
finite element method.

In the present section, a finite element solver for the magpeisistatic Maxwell equa-
tions is presented which is used in the coupled micromacheekily currents solver. As in sec-
tion 4.5 on the integral equation solver, the problem cassissolving the magnetoquasistatic
Maxwell equations where the magnetizatighis obtained from the LLG equation solver and
is treated as a known source and where the cuifdms two parts, an impressed source cur-
rentJ;, which is assumed known, and the eddy currégugy The magnetoquasistatic Maxwell

equations were given in Egs. (4.51) and are repeated hecergenience,

OxE= —po% (H + |\7|) (4.91a)
OxH=J (4.91b)
0-E= S—S (4.91c)

0. (H+|\7|) —0. (4.91d)

To solve the magnetoquasistatic Maxwell equations, thenetagfield is decomposed
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into three partst = Hy -+ Hi + Heqay. The fieldHy is the magnetostatic field and is solution of
OxHAv=0, 0 (Fw+M)=0. (4.92)

It is computed as in the magnetostatic approximation wighabmputation of a volume integral,
as in section 2.3. The field; is the magnetic field induced by the impressed current salirce
and satisfies

OxH=J,0H=0. (4.93)
It can be computed from the volume integral [6]

B B R S

Since the source curredtis given as a data of the problem, the fieldis pre-computed before
the micromagnetic simulation. Alternativeld; can also be specified directly as an externally

applied magnetic field. The fielﬂ”eddy is the magnetic field induced by eddy currents and is

solution of
L 0 - = _ o
OxE= _HOE(Hi + Hwm + Hedagy+ M) (4.95a)
0 x Heddy= Jeddy (4.95b)
0.E=Ps (4.95¢)
€0
0 Heday= 0. (4.95d)

These equations are solved ﬁagddy using the finite element method for which a variational
formulation will be given. From Egs. (4.92), (4.93) and &).9t is seen thaH = Hy + Hi +
ﬁeddyalong withE satisfy the magnetoquasistatic equations, Eqgs. (4.94hoiltld be noted that

both the fieldsHy andH; could in principle be combined witHeqgy and included in the finite
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element formulation. However, sinég is actually pre-computed, it makes sense to compute it
separately fron1=FIeO|O|y Furthermore, it allows the flexibility of providing; directly as an applied
external field, without having to specify a source currestributionJ;. In the case ofly, it is
obtained by computing a single integral once per iterativthe Newton method. IndeeHy

only depends on the magnetizatidrand does not need to be solved iteratively Iﬁ@dyso that
computing it separately frorﬁeddyis not overly costly. Also, sinceiy has jump discontinuities

at interfaces wher&l has jump discontinuities, such as at the boundary of magnegjions,
computing it separately aIIOV\Eeddy to be everywhere continuous. This avoids complications
such as doubled degrees of freedom which would be neededtiehamp discontinuities in
the finite element formulation.

In order to solve foﬁeddywithin some domaif?, boundary conditions need to be deter-
mined. While several different approaches can be takenjsmitrk an homogeneous Dirichlet
boundary condition is used f(ﬁleddy, i.e. Heddy: 0 is assumed at the boundai2. The do-
main of solutionQ is chosen to enclose the magnetic and conductive regionshargegn large
enough so that the homogeneous boundary condition is a guad)k approximation. Compar-
ing Egs. (4.93) with Egs. (4.95), it is seen that Eq. (4.9416160r Hegdy andJeqay SO thatHeqay
falls off at a rate of square the distance from eddy curreistiloutions which means th&2
need not be overly large.

The variational formulation can be obtained by two equinail@ethods: the Galerkin
method and the least squares method. In the Galerkin mettdcalar product of the curl of

Eq. (4.95b) and a test functidhis integrated over the regid®. This yields
/ (0 % O x Fleggy— 0 x Joqay) -V dv=0. (4.96)
Q

The vector form of Green'’s first identity states that giveo appropriately smooth vector fields
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AandB [51],
/(Dx Dxﬂ).édv:/ D><RD><|§dv+/ (Ox Ax B)-Ads. (4.97)
Q o 20
Applying this to Eq. (4.96) yields
/ 0 % Fleggy- O ><\7dv+/ (0 x Hegayx V) - ﬁds—/ O Jagy Vdv=0.  (4.98)
Q 20 Q
Since from Eq. (4.95b)) x Heddy= Jeddys this can be written as
/ 0 % Feggy- O ><\7dv+/ (Jodayx V) - ﬁds—/ 0 % Joaay Vdv=0. (4.99)
Q 20 Q

While Eqg. (4.99) constitutes a variational formulation thah be used to solve fdﬁleddy with
the finite element method, it does not make use of Eq. (4.95i)hnstates thdﬁeddyshould be
divergence free. Because of this, as is well documented ifirtibe element method literature in
electromagnetism [52, 53, 54], the numerical solution ioleig with this variational formulation
will not necessarily have a zero divergence which can leabtoalled spurious solutions. For
this reason, a penalty term can be added which penalizegerordivergence of thﬁeddyfield,

following which Eq. (4.99) becomes

/Qm x Floday- 0 x\7dv+/(99(\feddyx\7) . ﬁds—/QD x J;ddy.vdv+/Q 0 Aegayd - Vdv=0.
(4.100)
This result can also be obtained using the least square®th]. In this method, we
seek to satisfy the Maxwell equations ﬁgddy, Egs. (4.95b) and (4.95d) in the least squares

sense by minimizing the functional

| (Heday) :/Q|D x Heddy— jeddqzdv%-/QID-ﬁeddyIZdV- (4.101)
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From the calculus of variations, a minimum of this functibcarresponds to

d - _
— 1 (Hedgy+€V)| =0 (4.102)
de £0

whereV is any vector field. From the definition bfin Eq. (4.101), this can be written as

d 7 \ 7 T 3 — -
de [/Q(D X (Heddy—l' V) — Jeddy) (O (Heddy+ eV) — Jeddy)dv+

/Q - (eday+ &) 0 (Heaay+ £V)dv] =0 (4.103)
which when evaluated gives
/ 0 % Feagy- O ><\7dv—/ Joaay- O ><\7dv+/ 0 AegayD-Vdv=0. (4.104)
Q Q Q

Sincel- (Ax B) = B- (O x A) — A (O x B), for sufficiently smooth vector field& andB, the

divergence theorem yields
/ A.(OxB)dv= / B-(0x A)dv—/ (Ax B) -Ads. (4.105)
Q Q
Using this, Eq. (4.104) can be written as

/Q 0% Hegay- 0 x Vvt /a _ (Jeaeyx V) s~ /Q 0 % JogayV dv-+ /Q 0 Ay -Vdv=0
(4.106)
which is exactly Eq. (4.100), the variational formulatidotained with the Galerkin method.
The solution process in the finite element method involvasrdiizing the unknown

function Fleddy with N basis functions whose support is localized on tetrahedeahents. In

the present work, linear basis functions are used such #w@ht rode is assigned a hat basis

function with a support corresponding to neighboring tedidral elements and three degree of
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freedom, one for each vector component. The test fun&tigmthen successively let to be the
N basis functions which gives rise toNx N linear system of equations that can be solved
for the degrees of freedom. This involves an assembly proeeir the system matrix which
involves the elemental variational formulation, whichresponds to the variational formulation
of Egs. (4.100) and (4.106) but with integration over anvidilial tetrahedral elemeit. The

elemental variational formulation reads

/K 0 % Hegay- 0 x Vdvt /a (eaayx V) - Ads-— /K 0 % Jogay Vvt /K - Aeaayd -Vdv=0
(4.107)
wheredK is the surface of the tetrahedral elemkrandriis the outward pointing unit vector nor-
mal to the surface. With the eddy currents in conductiveareggiven byTeddy: oE, assuming
that the electric conductivitg is constant within each elemekt the third term in Eq. (4.107)
can be written as

/Ddedy-Vdv:/oDxE-Vdv. (4.108)
K K

Using Eq. (4.95a) to replace far x E gives
- . 0 - - _ S
/ 0 % Joaay Vdv= —poo/ = (Pl Flegay-+ P+ M) -V lv. (4.109)
K K

Using this in Eq. (4.107) and using Eqg. (4.95b) to replacefggayin the surface integral term
yields the following variational formulation in terms ofethmknownﬁeddy, the test functio’/

and known vector fields,

/Dxﬁeddy-Ddev+/D~ﬁeddym.\7dv:
K K

a — — — — — — —
—uOO/ a(Hi+Hedo.y+HM+|v|)-v@|v—/a (0 x Feaayx V) -Ads. (4.110)
K K

For tetrahedrons with zero conductiv@ddy: 0 and the variational formulation of Eq. (4.107)
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reduces to

/ 0 x Fieddy' 0 x \7dv+/ - Fieddyl] Vdv=0. (4.111)
K K

As was done for the integral equation solver of section & time derivative oﬂeddy is dis-

cretized using the BDF method. Evaluated at timet,, . 1, the time derivative is written as

al:i dd r J
%’: Z)O(iHeddy,an (4.112)

wherer is the BDF order andHegayn1-i is the solutionHeqay at timety;1-i. With this, the

time-discretized version of the variational formulatior&q. (4.110) is

/KD x Heddyn+1- 0 ><\7dV+/K 0 Heddyn10- Vdv+ UOGO(O/KF'eddyn+1~\7dV+

Vdv.
K ot

_ — ~ r — a — — —
/ (0 x Heddyn+1 x V) -fids= —UOG/ [ZldiHeddy,n+l+ —(Hi+Hm +M)

(4.113)

As mentioned before, the assembly process relies on appatixig the eddy currents

magnetic fieldfleddyin terms of basis functions as

N
Hegayni1 = Uj; (4.114)
=

whereN corresponds to the number of degrees of freedom which isl eguhree times the
number of nodes in the mesh, excluding node90n the );’s are the vector basis functions
which correspond to the scalar hat basis functions assalcvwith each node to which either of
the three unit vector componentsyor Zis affixed and the;’s are the degrees of freedom. By
letting the test functioW be successiveli; withi =1,...,N, a linear system is obtained which
is of the form

AU =F (4.115)
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whereA is the system matrix) is a vector containing tha;j’s as its components arfé is a
vector representing the right-hand side of the variatidoghulation. This global system of

equations is assembled from the elemental system whicls read

ARUK = X (4.116)

Here,UX contains the degrees of freedom associated with tetrahédrdheijth element of

the AKX matrix is given by

aﬁ:/KDxE[J'f-DxED{(dij/KDme-EDFdw—

uOGO(o/K O Qv+ /aK(D X P x PX) -Ads (4.117)

for tetrahedron& in conductive regions and

aﬁZ/Dxmﬁ.mmedVJr/Dwﬁ‘D-mde (4.118)
K K
for tetrahedrons in regions with= 0. The elements dfK are given by

LTX
o pldv (4.119)

roo. 0 - -
f = —HOG/K [ZlGiHeddyn+1+ —(Hi +Hm +M)

for tetrahderons in conductive regions and by zero for ketlaons in non-conductive regions.
In practice, time integration involves a variable time ssepeme so that the coefficiemg in
Eq. (4.117) will in general change from one step to the nextavioid having to re-assemble the
system matrix, the global system matAxs divided into two partsA; andA, corresponding to

the following matrix elements

aﬁ,lz/KDXLTJ‘,‘-D><E|‘JinV+/KD-Ep5-<D-q‘J{<dv+/0K(Dxm'fxcpiK)-ﬁds (4.120)
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and

af§ , = Hoo /K O - v (4.121)
This effectively allows the linear system of EqQ. (4.115) &owvritten as

r

— a — — —
ZlaiHeddy,n-f—l‘f‘—(Hi +Hwm +M) (4.122)

(A1 +00A2)U = —A; 3

where the matrice8; andA; are pre-assembled and the global matAx+ apAz) can quickly
be obtained at each time step given the value@f The time derivatives o, Hy and M

in Eq. (4.122) are computed using the BDF method, althoughotimgr finite difference time
discretization scheme could be used, using the values sé thedds at the current and previous
time steps.

The linear system of Eq. (4.122) can be solved using difterechniques. For large
problems, iterative solvers are a good choice, and sincenttex A of the system is not sym-
metric, the GMRES method [49] is employed. Different pregbaders can be used along with
the preconditioned GMRES method. One option is to use a synaragiproximation of the
A matrix, assembled from Eq. (4.117) where the last term inmgla surface integral is ne-
glected, as a preconditioning matrix. A potent way of sajvine preconditioning linear system
with this symmetric matrix is by using the conjugate gratimethod with a weak convergence
criterion which allows the preconditioning step of the GMRESthod to involve only a few
conjugate gradient iterations which are very efficient.sldpproach however requires the use of
the flexible GMRES (FGMRES) variant of the GMRES method [49] wHias higher memory
requirements than the standard GMRES method. Also, whisegiyproach works well in many
cases, for problems with a fine mesh, the convergence rateeatdnjugate gradient method
decreases which makes its use as a preconditioning methcid less efficient.

An alternative preconditiong method which was found to heavery good performance

is to pre-compute incomplete LU factorizations [49] of thetal A matrix, given by(A; + 0pA2)
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for a range ofog values, which correspond to a range of time step values. &t éme step,
the incomplete LU factorization is interpolated for the remt ap value and this interpolated
factorization is used as a preconditioning matrix.

Comparing performance with the integral equation solverfrensame hardware and
for the same 3.5 million tetrahedral elements problem whecjuires 21.2 hours of computation
time per ns of simulation time with the integral equatiorveal the finite element solver with the
interpolated incomplete LU factorization preconditioneguires 1.76 hours of computation time
per ns of simulation time. Comparing this with the 0.22 hoexguired to simulate 1 ns without
eddy currents, it is seen that while modeling eddy curreotses at a significant performance

cost, it is still possible to realistically handle very largroblems.
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Figure 4.8 (a) Current signal flowing in the coil of the test problem. (b) Axial comgutH, of
the total magnetic field as a function of the radius inside a cross section tatkencylinder’s
middle point along its length. The numerical results obtained with the solveroanpared
to the analytical solution for timeg = 0.1ns,t; = 0.2ns and3z = 0.3ns. The ferromagnetic
cylinder has a length of 50 um, a radius of 7 um, a conductivity »fLD’ S/m and magnetic
parameters equivalent [p = 4.

To validate the eddy currents-micromagnetic solver ushgfinite element Maxwell
equations solver, the test problem of section 4.6 is soleedafferromagnetic cylinder with

conductivityo = 1 x 10’ S/m, magnetic parameters correspondingite- 4, a length of 50 um
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and a radius of 7um. The current signal is the same 1 GHz sohalssignal that was used in
section 4.6 and is shown in Fig. 4.8a. The resulting thtdield is shown in Fig. 4.8b at 3 time

snapshots and is seen to be in good agreement with the @ahkaiution.

4.8 Example of eddy currents effect

The ferromagnetic cylinder test problem of 4.6 allows tafyehe validity of numerical
solutions obtained with the coupled eddy currents-micigmetic solver and also illustrates the
physics of eddy currents effects, including the diffusiéthe electromagnetic fields. However,
the dynamics involved in that problem are fairly simple aad be represented by a linear model
while the value of micromagnetics lies in its ability to mbteghly complex, non-linear mag-
netization dynamics. For this reason, in this section tfecebf eddy currents on the switching
behavior of a ferromagnetic nano-disk is investigated.

The problem consists in a ferromagnetic disk with a 2 um dab00 nm thickness, a
perpendicular unixaxial anisotropy, i.e. along the disik axthez direction, with magnitud& =
5 x 10°erg/cm?, a conductivity of 1x 10’ S/m, a saturation magnetizatidis = 200 emycm?®,

a damping factoo = 0.1, and an exchange coefficiefd, = 5x 10 %erg/cm. As shown in
Fig. 4.9b, the initial state has the magnetization mostifoum and pointing in the-z direction.
At t = 0, an external magnetic field oriented in the direction is applied. The applied field is
shown in Fig. 4.9a and has a rise time of 50 ps. The externdikeadeld causes the magnetiza-
tion of the disk to switch to a state with uniform magnetiaatin the+z direction. Plots of the
volume averagedcomponent of the normalized magnetizat{om) as a function of time for the
cases with and without eddy currents are shown in Fig. 4.@(&)seen that eddy currents cause
the switching to occur faster.

The normalized magnetization distributions for the thiteges indicated by circled num-

bers in Fig. 4.9a for the simulation with eddy currents am@aghin Fig. 4.9b. The intermediate
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Figure 4.9 Switching of a ferromagnetic disk with a 500 nm thickness, 2 um radiustasatu
tion magnetizatiotMs = 200emycm? , az oriented uniaxial anisotropy = 5 x 10°erg/cn?,
damping factor = 0.1 and exchange coefficiesty = 5x 10 8erg/cm. (a) Externally ap-
plied H; field and volume averagettomponent of the normalized magnetization as a function
of time for both the magnetoquasistatic approximation case and the magnetogiatixirap-
tion case. (b) Initial, intermediate and final normalized magnetization statesitohsg with
eddy currents, as indicated by circled numbers in (a). The color inditadeslue of than,
component. (c) Eddy current densitytat 0.02ns, with color indicating the magnitude of the
current. (d) Magnetic field due to the eddy currents$ &t0.02ns, with color indicating the
value of thezcomponent.

(b)

state shows that switching occurs by the nucleation of singped domains near the edge of the
disk on the top and bottom surfaces. While not shown in the digilve switching mechanism
in the simulation without eddy currents is nearly identiddie expectation is that eddy currents

would lead to faster switching due to increased overalldsss the system which lead to faster
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relaxation to the new equilibrium state. However, from tdeyecurrent density and the corre-
spondingﬁeddy magnetic field, shown in Figs. 4.9c and 4.9d respectivelftifoe,t = 0.02ns,
another mechanism for the faster switching can be identifiedeed, it is seen that the eddy
currents produce a magnetic field that is oriented infzalirection close to the edges of the
disk, which helps to nucleate the ring-shaped domains sethe iintermediate state of Fig. 4.9b.
Chapter 4, in part, contains material that appears in CouplatefElement Micromag-
netic - Integral Equation Electromagnetic Simulator forddbng Magnetization-Eddy Currents
Dynamics, IEEE Trans. Magn., 2017, Couture, Simon; Chang, &wiiNolvach, lana; Gon-
charov, Alexander; Lomakin, Vitaliy, as well as materiadtthas been submitted for publication,
Modeling Eddy Currents in Micromagnetic Simulations: A CagpMicromagnetic-Maxwell
Equations Solver Based on the Finite Element Method, 2018 iuB®uSimon; Goncharov,
Alexander; Lomakin, Vitaliy. The dissertation/thesis laut was the primary investigator and

author of these papers.
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Appendix A

Analytical solution for the eddy currents

test problem

In this section, the analytical solution for the ideal linéast problem of section 4.6 is
derived. An infinitely long ferromagnetic cylinder with riad a, conductivityo and permeability
pis considered that is excited by solenoidal coil carryingreetharmonic current. The geometry
of the problem is shown in Fig. 4.4.

An infinitely long solenoidal coil withN turns per unit length carrying a curreht)
produces a predominantly uniform,oriented axial magnetic field given Byceil(t) = NI(t)
inside the solenoid and 0 outside the solenoid [6]. Fromytiedrical symmetry of the problem,
the coil field induces azimuthally oriented eddy currentscivhacting as volumetric solenoidal
currents, produce an axially oriented magnetic field insidecylinder and no magnetic field
outside of it. For this reason, in the ideal linear versiorthaf test problem thél field only
has az component and it satisfies the magnetoquasistatic Maxweakht®ns Egs. (4.51) with

H,(t) = Heoil(t) as a boundary condition at the surface of the cylinder.
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With Ohm’s lawJ = oE, taking the curl of Eq. (4.51b) gives
00-H—0°H = o0 xE. (A.1)

SinceB = pH, Eq. (4.51d) is equivalent t@l- H = 0. Using this and Eq. (4.51a) to

replace ford x E, Eq. (A.1) becomes

1 _,. oH

—O%H = —, (A.2)
ol ot

which is the vector diffusion equation. Tk&omponent ofl satisfies the scalar version of this

diffusion equation,

%1 %H, = % (A.3)
and the problem is then to obtain a solution to Eq. (A.3) wite time dependent boundary
condition Hx(t) = Hcoii(t) atr = a. For this problem to be well posed, an initial condition
H.(t = 0) is also required. For this purpose, it is assumed that béfer8, no current flows in
the coil so that the magnetic field is everywhere zero. Whertinent is switched on at= 0,
no field will have diffused inside the cylinder yet so that thi¢ial condition isH,(t =0) =0

everywhere inside the cylinder. In cylindrical coordirggtieom the symmetry of the probleHy

is expected to be a function of only theoordinates and time. Therefore, Eq. (A.3) becomes

1 [0%Hy(r,t)  10H,(r,t)]  OH(rt)

ou| 4 ror o (A4)

Taking the Laplace transform of Eq. (A.4) with respedt &md multiplying byr2op, one obtains

2

9 9
2 2
r? 35 He(1. ) 13- He(1,S) — SOUr°Hy(r,5) = 0 (A-5)

with the boundary conditioil,(r = a,s) = Hc,ii(S) and with the Laplace transform &f(r,t)
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defined as

H,(r,s) = /Oo0 e StH(r,t)dt. (A.6)

Eq. (A.5) is recognized as Bessel's equation and has the @eswdution

H(r,s) = A(S)Jo(i/SOMr) + B(S)Yo(i/SOMr). (A7)

whereJp is the Bessel function of the first kind of order 0 avidis the Bessel function of the
second kind of order 0. Sindg(X) — —o asx — 0 andH; must be bounded at= 0, B(s) = 0.

Applying the boundary condition at= a yields

Als) = —eoilS) (A.8)

Jo(i/sopa)

Lets now consider a sinusoidal current signal and the gooreting sinusoidal coil field given
by Hcoil(t) = Hosin(wt). The Laplace transform of the coil field is then given By (s) =
How/ (s> + w?). Using this, Eq. (A.7) becomes

B w  Jo(i,/SOpr)
Hz(f,S)—Ho(SZ+0)2) To(i/5008) (A.9)

The solution in the time domain is obtained by computing tivetise Laplace transform

Hr = = [ iy setds (A.10)
a0 _2T|] —ioo+Tg 2 .

which can be done using the calculus of residues. By closiegdimtour with a semicircle in
the left half complex plane, Eg. (A.10) can be expressedeasum of the residues &f,(r,s)e™

at its singular points in the left half complex plane, inchgithose on the imaginary axis. Two
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such singular points ae= iw ands= —iw, at which the residues are respectively

ol VIGOIr)

ResHy(1.9)€” = Hooy @ eoorial (A11)
and
Res Hy(r,9)e" = Ho _‘2]?5(') (Vi \_/'?I‘*’%ia) e et (A.12)

In addition,H(r,s) in Eqg. (A.9) has an infinite number of singular points cormesting
to the zeros oflp(i,/SOpa). Denoting then'th zero of the Bessel functiody(x) by ap, the

corresponding singular point &f,(r,s) is

- ;—& (%‘)2 (A.13)

and at each such point the residuggfr, s)e™ is

—®  2y/SJdo(i\/Shopr)
Rest(r s)e 51%-1-002 |\/T1a‘]1(|\/sq_0pa)esn' (A.14)

The solution is then given by

H,(r,t) = ResH,(r,s)e + ResH,(r,s)e™ + Z ResH (r,5)e™ (A.15)

s=iw S——iw

where the residues are given by Egs. (A.11), (A.12) and (A.I4e series in Eq. (A.15) con-

verges rapidly fot > 0 so that in practice, one can retain only the first few terms.
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