
UC Davis
IDAV Publications

Title
A Quantitative Performance Analysis Model for GPU Architectures

Permalink
https://escholarship.org/uc/item/8gp0x7tc

Authors
Zhang, Yao
Owens, John D.

Publication Date
2011

DOI
10.1109/HPCA.2011.5749745

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gp0x7tc
https://escholarship.org
http://www.cdlib.org/

A Quantitative Performance Analysis Model for GPU Architectures

Yao Zhang and John D. Owens
Department of Electrical and Computer Engineering

University of California, Davis
{yaozhang, jowens}@ece.ucdavis.edu

Abstract

We develop a microbenchmark-based performance
model for NVIDIA GeForce 200-series GPUs. Our model
identifies GPU program bottlenecks and quantitatively ana-
lyzes performance, and thus allows programmers and archi-
tects to predict the benefits of potential program optimiza-
tions and architectural improvements. In particular, we use
a microbenchmark-based approach to develop a through-
put model for three major components of GPU execution
time: the instruction pipeline, shared memory access, and
global memory access. Because our model is based on the
GPU’s native instruction set, we can predict performance
with a 5–15% error. To demonstrate the usefulness of the
model, we analyze three representative real-world and al-
ready highly-optimized programs: dense matrix multiply,
tridiagonal systems solver, and sparse matrix vector mul-
tiply. The model provides us detailed quantitative analysis
on performance, allowing us to understand the configura-
tion of the fastest dense matrix multiply implementation and
to optimize the tridiagonal solver and sparse matrix vec-
tor multiply by 60% and 18% respectively. Furthermore,
our model applied to analysis on these codes allows us to
suggest architectural improvements on hardware resource
allocation, avoiding bank conflicts, block scheduling, and
memory transaction granularity.

1 Introduction

Since 2002, the massively parallel GPU has evolved
from a graphics-specific accelerator to a general-purpose
computing device. With the advent of C-based program-
ming environments like CUDA [1] and OpenCL [2], an ac-
tive research and development community has formed to
develop high-performance general-purpose applications for
GPUs [3]. However, compared to an enormous amount of
efforts devoted to application development, little has been
done on supporting tools for performance profiling and
analysis. Commercial program profiling tools such as ATI

Stream Profiler [4] and NVIDIA Parallel Nsight [5], along
with academic GPU functional simulators [6, 7], are lim-
ited to providing program statistics only, but do not relate
these statistics to program performance. Therefore, the hard
work of identifying program bottlenecks and estimating the
benefits of potential optimizations is done by programmers’
paper-and-pencil analysis. As well, GPU architects need to
evaluate their architecture designs against real-world appli-
cations to help guide architectural improvements.

In this paper, we describe a workflow that analyzes GPU
program performance in a quantitative way, and thus allows
programmers and architects to identify the performance bot-
tlenecks and their causes, and predict the benefits of poten-
tial program optimizations and architectural improvements.
In particular, we make the following contributions in this
paper. First, we develop a microbenchmark-based perfor-
mance model for three major components of GPU applica-
tion runtime: the instruction pipeline, shared memory ac-
cess, and global memory access. Second, we demonstrate
how the model could guide programmers to optimize three
representative real-world applications respectively limited
by these three components. Third, by analyzing the perfor-
mance of these applications, our model suggests architec-
tural improvements on hardware resource allocation, avoid-
ing bank conflicts, block scheduling, and memory transac-
tion granularity. Fourth, to the best of our knowledge, this is
the first modeling work based on a native GPU instruction
set, which is critical for the accuracy of our model.

Baghsorkhi et al. [8] and Hong and Kim [9] recently
authored excellent studies on GPU performance modeling.
We see several major differences between these studies and
our work. First, instead of trying to build an analytical
model based on an abstraction of GPU architecture and then
verifying the model by microbenchmarks, we adopt the re-
verse strategy. We first design microbenchmarks, observe
the benchmark results, and then derive a simple throughput
model respectively for instruction pipeline, shared memory,
and global memory costs. This microbenchmark-based ap-
proach allows us to observe and consider only the archi-
tecture and programming factors that are most relevant to

performance, and make sure our model complies with the
real program behavior. Second, the focus of these previ-
ous two studies is the prediction of program execution time,
while our focus is on identifying performance bottlenecks in
a quantitative way and guiding programmers and architects
for optimizations. Third, our model is based on a native
GPU instruction set instead of the intermediate PTX [10] as-
sembly language or a high-level language. Simulating only
the PTX instruction set leads to poor accuracy, because PTX
code is not run directly on GPU hardware but instead is fur-
ther compiled to native machine instructions where signif-
icant compiler optimizations are applied [6]. Fourth, these
two studies are mainly based on static program statistics,
while ours is based on dynamic program statistics collected
from the Barra simulator, which enables us to handle data-
dependent applications.

Compared to a set of recent studies on performance auto-
tuning by empirical search [11, 12, 13, 14, 15], we provide
an alternative optimization solution. Certainly search-based
approaches are a powerful tool for optimization, but we note
two disadvantages of such an approach. First, they provide
little insight into real program behavior and architectural
evaluation. Second, they require programmers to write pro-
grams in a parameterized way to accommodate various tun-
ing parameters such as the granularity of parallelism, flex-
ible memory access patterns, the level of loop unrolling,
and application-specific parameters. In contrast, our goal
is to build a performance model that guides programmers to
write the right program directly, rather than write all possi-
bilities of a program and then search for the best.

The rest of the paper is organized as follows. Section 2
reviews the GPU architecture and programming model.
Section 3 describes our modeling methodology. Section 4
conducts micro-benchmarks for GPU performance mod-
eling. Section 5 demonstrates the usefulness our model
against three case studies. Section 6 concludes and de-
scribes future work.

2 GPU Architecture and Programming
Model

Modern GPUs are throughput-oriented devices made up
of hundreds of processing cores. They maintain a high
throughput and hide memory latency by multi-threading be-
tween thousands of threads. The GPU is a two-level hi-
erarchical architecture. It is made of vector processors at
the top level, termed streaming multiprocessors (SMs) for
NVIDIA GPUs and SIMD cores for AMD GPUs. Each vec-
tor processor contains an array of processing cores, termed
scalar processors (SPs) for NVIDIA GPUs and stream pro-
cessing units for AMD GPUs. All processing cores inside
one vector processor can communicate through an on-chip
user-managed memory, termed shared memory for NVIDIA

GPUs and local memory for AMD GPUs.
The CUDA [1] and OpenCL [2] APIs share the

same SPMD (Single Program Multiple Data) programming
model. CUDA virtualizes SMs as blocks (equivalent to
work-groups in OpenCL) and SPs as threads (equivalent
to work-items in OpenCL), which enable programmers to
run thousands of threads and blocks across different gener-
ations of GPUs regardless of the number of physical pro-
cessors. A key concept of the CUDA programming model
is the warp, equivalent to the wavefront in AMD GPUs. A
warp is a group of 32 threads that execute in lockstep in a
SIMD fashion. Because the GPU architecture shares a sin-
gle instruction unit for all threads in a warp, a warp is the
smallest unit of work a GPU issues. As a result, problems
with less than 32-way parallelism will still have 32 threads
running, some of which will not do useful work.

In this paper, although we focus on the CUDA-enabled
NVIDIA GTX 285 GPU, we believe our performance mod-
eling methodology is also applicable to any GPU architec-
ture and GPU programming API. However, certain adapta-
tions may be required. For example, AMD GPUs use VLIW
(not scalar) cores in each vector processor. In this case, we
need to add the ability to handle packed VLIW instructions.

3 Performance Modeling and Analysis
Methodology

The traditional GPU performance model widely used for
program optimization is at the algorithmic level. In this
work, we redefine this model at the instruction execution
and GPU architecture level for more accurate performance
analysis. In the traditional model, programmers calculate
the sustained computational rate and memory bandwidth
based on the measured program’s execution time and al-
gorithmic complexity. From this, they infer if the program
is compute-bound or memory-bound by comparing the sus-
tained compute/memory performance with the peak GPU
performance. If the program is memory-bound, possible
optimizations are to reduce the number of memory transac-
tions, or to trade computations for memory bandwidth, and
vice versa for compute-bound program.

However, this high-level model can only give a rough
idea of performance and in many cases fails to identify per-
formance bottlenecks. We note several reasons for this.
First, instructions used for actual computations are only a
part of the entire executed instruction sequence; others in-
clude instructions for control, address calculation, mem-
ory operation, and so on. Therefore, a program can be
instruction-throughput-bound instead of compute-bound if
it has a low computational density. Second, a set of mem-
ory transactions at an algorithmic or program level may
split into multiple transactions at the hardware level if they
are not in a continuous memory segment. Third, the tradi-

General program Barra Dynamic instructions
(GPU native code) Info extractor

Number of instructions of
each type, shared memory

transactions, and global
memory transactions

Performance
model

Runtime prediction for each component
Bottleneck component

Instruction/memory throughput
Instruction time breakdown

Computational density
Coalescing efficiency
Bank conflicts penalty

Number of warps per SM

NVCC

Number of warps per SMRegister, shared
memory usage

Instruction pipeline and shared
memory micro-benchmarks

Hardware resources

Synthetic global memory benchmarkCUBIN
Generator

Start

Figure 1: Our performance modeling workflow. Tools in italics are developed by us. The CUBIN generator generates synthetic benchmarks based on GPU
native code. The info extractor takes the dynamic instruction count from Barra and generates inputs for the three components of our performance model:
the instruction pipeline, shared memory, and global memory.

tional model does not take into account the effects of on-
chip shared memory and bank conflicts.

To address these issues, we develop a performance
model at an instruction and architecture level. Our model
simulates the performance of three major components of
GPU performance: the instruction pipeline, shared memory
access time, and global memory access time. By estimat-
ing the time spent on each component, our model identifies
the program bottleneck as the component spending most
of the time. We assume the time spent by non-bottleneck
components is covered by the bottleneck component, based
on two reasons, (1) the GPU allows simultaneous instruc-
tion, shared-memory, and global-memory operations, and
(2) the design philosophy of GPU is to hide memory la-
tency by context switching between independent warps, and
thus able to achieve near-perfect overlapping, instead of be-
ing held by intra-warp dependencies. This assumption will
under-estimate the total execution time when there are in-
sufficient warps and scarce independent instructions inside
a warp. We divide a program into multiple stages by syn-
chronization barriers. If there is only one block on a stream-
ing multiprocessor (SM), we serialize all stages divided by
synchronization barriers, and identify a performance bottle-
neck for each stage. Because GPU synchronization is local
to a block, if there are multiple blocks, we assume different
stages could still be overlapped, and we estimate a single
performance bottleneck for the whole program. This treat-
ment of synchronization’s effect on multiple blocks will
give better-than-reality performance as we will show later
in the case studies, because synchronization decreases the
number of independent warps in a block and thus drops the
instruction and shared memory throughput.

We base each component’s model on micro-benchmarks.
For instruction pipeline modeling, we classify instructions
into different types based on how expensive they are. Then
we run micro-benchmarks to estimate the pipeline through-
put of each instruction type at a different amount of warp-
level parallelism. For a given general program, we calculate
its execution time as a linear combination of the time spent
on each instruction type. For shared memory modeling, we
measure the sustained bandwidth at different amounts of

warp-level parallelism. For a given general program, we
first use bank conflict information to correct the number
of memory transactions derived by program statistics, and
then we estimate the time by using the bandwidth at a cor-
responding amount of warp-level parallelism. To estimate
the global memory bandwidth of a given general program,
we run a synthetic benchmark of the same configuration.
We develop a memory transaction simulator to compute
the number of transactions at the hardware level. We use
the functional simulator Barra [6] to generate the dynamic
program execution information on how many times each
instruction is executed. Then we use this information to
generate the number of dynamic instructions of each type,
the number of shared memory transactions, the number of
global memory transactions, and the number of stages di-
vided by synchronization barriers. Figure 1 shows our per-
formance modeling workflow.

Our model guides programmers and architects by pro-
viding them detailed quantitative performance informa-
tion on each of the architecture components: instruction
pipeline, shared memory, and global memory. By compar-
ing the time spent on each component, we identify which
component is the performance bottleneck. We can further
infer if this bottleneck is removed, what will be the next
component that becomes the new bottleneck. After a bot-
tleneck is identified, we provide information to track down
the causes of the bottleneck. For instruction-pipeline-bound
programs, we can identify the following possible causes:
(1) low computational density, (2) expensive instructions
such as rcp, cos, log, and (3) insufficient parallel warps.
For shared-memory-bound programs, the possible causes
are: (1) bank conflicts, (2) shared memory traffic generated
by bookkeeping instructions, and (3) insufficient parallel
warps. For global-memory-bound programs, the causes can
be: (1) insufficient parallelism to cover the memory latency,
and (2) uncoalesced memory accesses and large memory
transaction granularity. By identifying these causes of the
bottleneck, our model motivates programming or architec-
tural solutions.

Table 1: Instruction types

Instruction type Number of functional units Example instructions

Type I 10 mul
Type II 8 mov, add, mad
Type III 4 sin, cos, log, rcp
Type IV 1 double precision floating point

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Type I Type II Type III Type IV

Instruction throughput (Giga instructions / sec)

Number of warps per SM

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Bandwidth (GB/sec)

Number of warps per SM

Figure 2: Instruction throughput for various instruction types (left) and shared memory bandwidth (right) as a function of warps per SM.

4 Performance Modeling

In this section, we describe the micro-benchmarks we
designed to understand and model the performance of the
instruction pipeline, shared memory, and global memory.
Since the instruction set of native machine code is not pub-
licly documented, we use the disassembler Decuda devel-
oped by van der Laan [16], on which Barra [6] is based as
well. With the assistance of Decuda, we build a tool to mod-
ify the original binary instructions, assemble the modified
instructions back to the binary code sequence, and finally
embed the modified code into the execution file. This tool
enables us to avoid compiler interference such as dead code
elimination, and thus to develop binary code that exercises
the GPU exactly the way we intend.

4.1 Instruction Pipeline

GPUs hide pipeline and memory latency by executing
many parallel threads in an interleaved fashion. If the in-
struction pipeline is fully saturated, we know it runs at
around the peak performance. The difficulty of modeling
the instruction pipeline performance lies in the non-ideal
situations, when the pipeline is under-utilized. The goal of
this section is to explain how we model these under-utilized
situations.

As discussed in Section 2, the smallest unit of work a
GPU issues is a warp of 32 threads. The GPU primarily re-
lies on inter-warp, rather than intra-warp, instruction-level
parallelism, and the instruction window inside a warp is
very small. Therefore, the major source of insufficient in-
structions to feed the pipeline is from insufficient warps.
The GPU architecture we study here has several hardware
ceilings per SM (streaming multiprocessor) that may limit
the number of available warps to run: 16,384 registers;
16 kB of memory; 512 threads; 8 resident blocks; and 32
warps. Programs that reach these limits, either within one
or across many blocks on a single SM, cannot launch more
work.

We classify all instructions by the number of functional
units that can run that instruction in an SM as shown in Ta-
ble 1. Note that there are 10 multipliers in a SM (8 from
the floating point units and 2 from the special functional
units). The theoretical peak throughput of an instruction
is calculated by numberFunctionalUnits·frequency·numberSM

warpSize . For ex-
ample, the peak throughput of MAD (fused multiply-add)
is 8·1.48 GHz·30

32 = 11.1 Giga instructions/s. Since one MAD
is 2 floating point operations, the theoretical peak floating-
point performance is 11.1 · warpSize · 2 = 355.2 · 2 =
710.4 GFLOPS. Each type of instruction has a different
cost depending on how many functional units there are for

this instruction. We write micro-benchmarks that repeat-
edly run an instruction of each type. By choosing the size
of blocks and the number of blocks, we can control the num-
ber of warps resident in a SM. We measure the instruction
throughput for various amounts of parallel warps as shown
in Figure 2, left. Note that the more functional units there
are, the more parallel warps we need to cover the pipeline
latency. The saturation point of type II instructions is 6
warps, which suggests the number of instruction pipeline
stages is around 6.

4.2 Shared Memory

Each SM has 16 KB of shared memory organized in 16
banks. The theoretical peak throughput is calculated as
numberSP ·numberSM · frequency ·4 B = 1.48 GHz ·8 ·30 ·
4 B = 1420 GB/s. The shared memory micro-benchmarks
repeatedly move data from one shared memory region to
another. We measure the shared memory throughput for
various numbers of warps (Figure 2, right), as we did for
modeling the instruction throughput. Comparing the two
graphs in Figure 2, we notice that shared memory has a
longer memory pipeline than the instruction pipeline, and
thus needs more parallel warps to cover its latency.

In shared memory, adjacent 4-byte words are stored in
adjacent banks. If multiple threads access different loca-
tions in the same bank, all memory accesses will be serial-
ized. For example, if 3 threads read from different locations
in the same bank, there would be 3 memory transactions, in-
stead of 1 in the case they read from different banks. Since
the functional simulator Barra [6] does not collect bank con-
flicts information, we wrote an automated program to de-
rive the effective number of shared memory transactions by
specifying the degree of bank conflicts of each shared mem-
ory access.

4.3 Global Memory

Since global memory is shared across SMs, we do not
model it against the number of parallel warps as we did
for the instruction pipeline and shared memory. We found
that the global memory bandwidth is sensitive to three ma-
jor factors: the number of blocks, the number of threads
per block, and the number of memory transactions per
thread, as shown in Figure 3. To saturate the bandwidth,
we need a sufficient number of total memory transactions,
which we can increase by using either more blocks, or
more threads per block, or more memory requests per
thread. The theoretical peak bandwidth is calculated as
memoryFrequency·busWidth

8 bits/byte = 2.484 GHz·512 bits
8 bits/byte = 160 GB/s. The

30 SMs on the GTX 285 are grouped into 10 clusters, where
the 3 SMs in a cluster share a single memory pipeline. This
is why we see sawtooth patterns with a period of 10 when

0

20

40

60

80

100

120

140

1 6 11 16 21 26 31 36 41 46 51 56

512T, 256M
256T, 256M
256T, 128M
128T, 256M
128T, 128M
64T, 256M
512T, 2M
256T, 2M

Bandwidth (GB/sec)

Number of blocks

Figure 3: Global memory throughput at various block sizes, numbers of
blocks, numbers of memory transactions per thread. In the legend, T stands
for threads, and M stands for memory transactions per thread.

the bandwidth is near the peak, and for the best through-
put, the number of blocks should be a multiple of 10. The
figure also suggests that blocks are scheduled uniformly to
the clusters. When the number of blocks is getting larger,
this leftover effect becomes weaker (note the figure shows
that the fluctuation becomes smaller as the number of blocks
grows). When there are insufficient memory transactions to
cover the latency of the memory pipeline, it is almost free
to have more memory transactions. This is why the plot is
almost linear with the number of blocks when it is far below
the peak bandwidth.

Since the global memory behavior is fairly complex, it is
hard to accurately simulate it with a simple model at a high
level as we did for the instruction pipeline and shared mem-
ory. To accurately estimate the global memory bandwidth
of a general program, we instead run a synthetic benchmark
of the same number of blocks, block size, and the number
of memory transactions per thread. However, this approach
does not tell the whole story, because a memory transac-
tion at instruction level may split into multiple transactions
at hardware level based on the memory coalescing rule. To
address this issue, we developed a memory transaction sim-
ulator to simulate the number of hardware transactions.

CUDA issues memory transactions at a granularity of
a half-warp. For CUDA architectures of version 1.2 and
1.3, the following coalescing protocol is used: (1) for each
memory transaction, find the memory segment that con-
tains the address requested by the lowest numbered thread;
(2) find all other threads whose requested address is in this
segment; (3) reduce the segment size if possible; (4) re-
peat the above process until all threads in a half-warp are
served. Currently the minimum segment size CUDA sup-
ports for floating point numbers is 32 bytes. We implement
this protocol in our transaction simulator whose input is the
requested memory addresses of all threads.

Table 2: Register and shared memory (smem) usage per thread for various sub-matrix sizes in dense matrix multiply, and the number of blocks that can fit
into one multiprocessor given the particular per-thread constraint. The maximum number of blocks per multiprocessor is 8. A block consists of 64 threads
or 2 warps for all three cases.

sub-matrix size register smem # blocks (register) # blocks (smem) # blocks # active warps

8×8 16 348 16 47 min(16, 348, 8) = 8 8 · 2 = 16
16×16 30 1088 8 15 min(8, 15, 8) = 8 8 · 2 = 16
32×32 58 4284 3 3 min(3, 3, 8) = 3 3 · 2 = 6

5 Case Studies

In this section, we use our performance model to study
and optimize three applications: dense matrix multiply,
tridiagonal systems solver, and sparse matrix vector mul-
tiply. These three applications represent classes of appli-
cations that are respectively bound in performance by the
instruction pipeline, shared memory, and global memory.

5.1 Dense Matrix Multiply

We show in this section that our model identifies the
performance bottlenecks for various sub-matrix sizes, and
demonstrates the additional costs of shared memory ac-
cesses for larger sub-matrices. The model further suggests
hardware optimizations to improve performance.

We study a computational procedure developed by
Volkov and Demmel [17]. The procedure divides the re-
sult matrix into sub-matrices, with each sub-matrix mapped
to a block. The major improvement introduced by Volkov
and Demmel is reordering the computational loops so that
the sub-matrix of only one input matrix needs to be stored
in shared memory, instead of sub-matrices from both input
matrices. However, their implementation uses a sub-matrix
of fixed size 16x16. It is not obvious why this size out-
performs other sizes. Furthermore, this computational pro-
cedure only achieves 56% of GPU peak performance, and
lacks a performance analysis on why this is the case. The
goal of this section is to answer these questions.

We first measure and simulate the performance of 8×8,
16×16, and 32×32 sub-matrix sizes. Ideally a larger sub-
matrix would increase the performance for two reasons: (1)
it decreases the redundant memory loads; Figure 4(a) shows
that the number of global memory transactions are reduced
by 45% and 40% respectively from 8×8 to 16×16 and from
16×16 to 32×32, and (2) it increases the computation den-
sity; Figure 4(a) also shows that the total dynamic instruc-
tion count decreases as we use larger sub-matrices, while
the MAD instruction count remains constant (matrixSize3

warpSize).
However, in reality, a size of 16×16 actually achieves the
best performance (Figure 4(b)).

Figure 4(b) also shows the simulated performance for
the three sub-matrix sizes. We note that for the sub-matrix
sizes 8×8 and 16×16, the performance is bottlenecked by
the instruction pipeline, but for the sub-matrix size 32×32,
the performance bottleneck shifts to shared-memory access.
Although the 32×32 case has a similar shared memory
count as the 16×16 case (Figure 4(a)), its total time spent on
shared memory access is significantly larger (Figure 4(b)).
The reason for this lies in the hardware resource usage for
the three cases shown in Table 2. The register and shared
memory demands for the 32×32 case are so high that the
number of resident blocks in a multiprocessor is reduced
from 8 to 3, which is equivalent to 6 warps. This leads to
insufficient parallelism to hide the latency of the instruc-
tion pipeline and the shared memory pipeline, with a corre-
sponding decrease in performance.

Now that we know how many warps can run per
SM (streaming multiprocessor), how does this translate to
overall performance? For this, we return to the micro-
benchmarks we calculated earlier (Figure 2). For {6, 16,
32 (max)} active warps per block, we expect an instruc-
tion throughput of {8.39, 9.05, 9.33} gigainstructions/s and
a shared memory bandwidth of {870, 1112, 1165} GB/s.
Note the sustained memory bandwidth with 6 warps for the
32×32 case is considerably lower than that with 16 warps
for the 8×8 or 16×16 cases. We also note that shared mem-
ory is more vulnerable to insufficient parallelism than the
instruction pipeline, since the instruction throughput does
not drop much from 16 warps to 6 warps. It is also worth
mentioning that our simulated time is about 14% less than
the measured time, as shown in Figure 4(b), because we did
not consider the synchronizations’ effects on performance.
Synchronization barriers in a block hold the matrix compu-
tation until all necessary data is loaded to shared memory,
so the actual amount of parallel warps is fewer than the to-
tal number of warps, which results in even lower instruction
and shared memory throughput in reality.

Finally, we can also address the reasons why matrix mul-
tiply only achieves 56% of its theoretical peak performance:
(1) the sustained instruction throughput is only 81% of the
peak throughput, because the instruction pipeline is not per-

47.02

41.71
38.81

33.55 33.55 33.55
34.43 34.28 34.17

4.75
2.65

1.61
0

5

10

15

20

25

30

35

40

45

50

8x8 16x16 32x32

Instruction MAD Shared Global

Number of instructions (x1,000,000)

(a) Numbers of total instructions, MAD, shared memory and global
memory transactions (measured per warp).

5.2
4.6 4.64.4

2.5
1.5

4.0 3.9
5.0

6.0
5.4 5.6

0

1

2

3

4

5

6

7

8x8 16x16 32x32

Instruction

Global

Shared

Measured

Time (milliseconds)

356 GFLOPS

399 GFLOPS 397 GFLOPS

(b) Measured performance and simulated performance breakdown in
terms of instruction execution, shared memory access, and global
memory access.

Figure 4: Performance and program statistics comparison for various sub-
matrix sizes: 8×8, 16×16, and 32×32. The two input matrices have the
same dimensions of 1024×1024.

fectly saturated, and (2) although 80% of the total instruc-
tions are MAD instructions that are used for actual compu-
tations, the rest are bookkeeping instructions used for pro-
gram control, address calculation, and memory operations.

With these results, we can draw two conclusions for pos-
sible architectural improvements. First, although the max-
imum number of resident warps in a multiprocessor is 32,
the maximum number of resident blocks is only 8, which
limits the number of blocks to 8, or the number of warps to
16, for the 8×8 and 16×16 cases. If the maximum number
of blocks was increased to 16 (without changing any other
resources), there would be more resident parallel warps to
achieve better instruction and shared memory throughput.
Second, if we increase the register and shared memory re-
sources per multiprocessor, we can fit more warps onto a
multiprocessor to keep the same shared memory throughput
for the 32×32 case, but achieve better performance because

1 2 3 4 5 6 7 8

2' 4' 6' 8'

4'' 8''

8'''

4 threads
2-way bank conflicts

2 threads
4-way bank conflicts

1 threads
8-way bank conflicts

8 equations

Figure 5: Communication pattern of cyclic reduction (forward reduction
phase only) for solving an 8-equation system. A dot stands for an equation
and n′ stands for an updated equation n.

of its higher computational density.

5.2 Tridiagonal Solver

In this section, we demonstrate our model’s usefulness
on simulating shared memory throughput, quantifying the
effects of bank conflicts on performance, and estimating
the potential benefit of an optimization technique to remove
bank conflicts. We further verify that this technique does
improve performance by 1.6× as expected. Our perfor-
mance analysis also indicates a need for hardware improve-
ments on avoiding bank conflicts and block scheduling.

Tridiagonal linear systems are of importance to many
problems in numerical analysis and computational fluid dy-
namics, and cyclic reduction is one of the most popular par-
allel algorithms to solve such a system. A traditional either-
compute-or-memory bound performance analysis approach
is not applicable to this application, because the application
is neither computation-bound nor memory-bound, and can
only achieve a computational rate of 6 GFLOPS and a band-
width of 7 GB/s.

In previous work in this area, Zhang et al. [18] note that
GPU-based cyclic reduction suffers from shared memory
bank conflicts and propose a more complex hybrid solver
that combines cyclic reduction and its variant to alleviate
this problem. Goeddeke et al. [19] instead propose an inter-
leaving addressing scheme to completely eliminate the bank
conflicts. Alternatively, we propose and evaluate a simple
but effective padding technique to remove bank conflicts.

Cyclic reduction has two phases: forward reduction and
backward substitution. Because the two phases have a sim-
ilar communication pattern, we only show the forward re-
duction phase in Figure 5. For a system of size n, forward
reduction requires log2(n) steps to consecutively reduce the
original system to a 1-equation system. All systems are first
loaded into shared memory, then solved on chip. As the
memory access stride doubles every step, the number of
bank conflicts are doubled as well, from 2-way bank con-
flicts in step one, to 4-way in step two, to 8-way in step
three, and so on.

Figure 6(a) shows the simulated performance breakdown
for pure cyclic reduction (CR). In this example, we solve
512 512-equation systems in parallel with systems mapped
to blocks and equations mapped to threads. There are

0

0.01

0.02

0.03

0.04

0.05

0.06

step 0 step 1 step 2 step 3 step
4/5/6/7/8/9

Global Shared Instruction

Time (milliseconds)

8 warps 8 warps 4 warps 2 warps 1 warp

(a) Cyclic reduction

0

0.01

0.02

0.03

0.04

0.05

0.06

step 0 step 1 step 2 step 3 step
4/5/6/7/8/9

Global Shared Instruction

Time (milliseconds)

8 warps 8 warps 4 warps 2 warps 1 warp

(b) Cyclic reduction with no bank conflicts

Figure 6: Simulated performance breakdown for CR and CR-NBC for
solving 512 512-equation systems (forward reduction phase only). Step
0 loads the system into shared memory. The system solving begins at Step
1.

log2(512) = 9 steps to reduce the system to a 1-equation
system. In the first step, 256 parallel threads work on 256
even-indexed equations and their two neighbors. In the sec-
ond step, the number of parallel threads is reduced to 128.
The algorithm reduces the amount of parallel threads each
step until it reaches a single thread. However, since the min-
imum unit of work on the GPU is a warp of 32 threads, steps
4–9 have identical performance characteristics, so we show
them together in Figure 6. Note that Figure 6(a) shows that
a pure cyclic reduction implementation has a large cost from
shared-memory access.

Due to the limited amount of shared memory, we can
only fit one block per multiprocessor. Since there is only
one resident block on a multiprocessor, and we must place a
synchronization barrier between loading a system to shared
memory and solving the system, the global memory loads
and subsequent computations are serialized. This is in con-
trast to the previous matrix multiply example, in which
global memory access and computation are overlapped,

1,029

723

470

330
397

0

200

400

600

800

1000

1200

step 1 step 2 step 3 step
4/5/6/7/8/9

average

Shared memory bandwidth (GB/s)

(a) Sustained shared memory bandwidth under various numbers of
parallel warps.

139,264 139,264 139,264 139,264

69,632

34,816

17,408
8,704

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

step 1 step 2 step 3 step
4/5/6/7/8/9

With bank conflicts No bank conflicts

Number of shared memory transactions

(b) Number of shared memory transactions for the algorithmic steps
in forward reduction.

Figure 7: Sustained shared memory bandwidth and the number of shared
memory transactions.

because of multiple resident blocks (although there are
synchronization barriers as well). Because of additional
synchronization barriers between neighboring algorithmic
steps, all steps are serialized. As shown in Figure 6(a), the
performance of CR is bound by global memory access in
step 0, by instruction throughput in step 1, and by shared
memory access in all subsequent steps.

As the algorithmic step keeps reducing the amount of
work by half each step, the number of shared memory trans-
actions should have been reduced by half as well. However,
because the number of bank conflicts doubles each step, the
number of shared memory transactions remains constant, as
illustrated in Figure 7(b). Making this bad situation worse,
the sustained shared memory bandwidth drops, as there are
fewer and fewer active warps after each step (Figure 7(a)).
The average sustained bandwidth is only 397 GB/s; steps 4–
9 suffer from the lowest sustained bandwidth. Figure 6(a)
shows that if we could remove the bank conflicts, the new
bottleneck for steps 2–9 would be the instruction pipeline,

0.757

0.468

0.796

0.434

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Measured Simulated Measured Simulated

Measured total time Shared Global Instruction

Time (milliseconds)

CR CR-NBC

Figure 8: Measured and simulated performance of CR and CR-NBC.

and the performance could be significantly improved.

We implemented a new CR with no bank conflicts (CR-
NBC) by a padding technique. Since there are 16 shared
memory banks, we pad 1 element per 16 elements, which
redirects all conflicted accesses to available banks. Fig-
ure 6(b) shows that for CR-NBC, the first step is bound
by instruction throughput because of its more complex
addressing calculation, and now all subsequent steps are
bound by instruction throughput as well because bank con-
flicts are removed. CR-NBC effectively removed all bank
conflicts and at the same time introduced minimal extra in-
struction overhead: CR-NBC has a similar instruction count
to CR. The padding technique has shifted the bottleneck
from shared memory to the instruction pipeline, which im-
proves the performance of CR by 1.6×. However, the ef-
fective computational rate is still low because of two rea-
sons: (1) the insufficient warp-level parallelism during the
later stages of CR’s forward reduction phase, and (2) the
low computational density of CR/CR-NBC (there are only
about one tenth of total instructions are doing actual com-
putations).

Figure 8 shows the measured and simulated perfor-
mance, which agree closely within a 7% error. The time of
CR is mainly dominated by shared memory access and the
time of CR-NBC is mainly dominated by instruction exe-
cution. There is a small amount of time for global memory
access that cannot be overlapped by instruction execution,
and a small amount of instruction execution time from step
1 in CR when bank conflicts have not yet become a bottle-
neck.

It is fair to say that the current shared memory organi-
zation is well-suited for simple, structured problems, but
as GPUs increasingly target more irregular, complex prob-
lems, our performance model can help identify the impact
of changing this organization. Two architectural improve-
ments could deliver better performance: (1) change the
number of shared memory banks from 16 to a prime num-

(a) A 12x12 sparse matrix.

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

(b) Matrix stored in the ELL for-
mat. Padded entries are repre-
sented as squares.

Thread 1

Thread 1

Thread 1

Thread 2

Thread 2

Thread 2

Thread 3

Thread 3

Thread 3

Thread 4

Thread 4

Thread 4

(c) Straightforward ELL storage
with block processing. Rows
are divided into three interleaved
groups, each specified by a gray
level.

Thread 1

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

Thread 3

Thread 4

(d) Interleaved ELL storage with
block processing. Rows of the
same group are placed together.

Figure 9: ELLPACK (ELL) storage formats.

ber to avoid bank conflicts; (2) introduce a mechanism to re-
lease unused hardware resources early as a block uses fewer
and fewer threads. With this, we could schedule subsequent
blocks onto SMs to increase warp-level parallelism and de-
liver better instruction and shared memory throughput.

5.3 Sparse Matrix Vector Multiply

In this section, we use a memory-bound application to
show our model’s ability to simulate the number of hard-
ware transactions. This ability enables us to make an opti-
mization that otherwise would not be noticed. Our model
also suggests that a smaller transaction granularity would
improve performance further.

Sparse matrix vector multiply (SpMV) lies in the heart
of iterative methods for numerous scientific computing ap-
plications. Bell and Garland [20] experimented with a vari-
ety of matrix formats to increase SpMV performance on the
GPU. They found that the ELLPACK (ELL) format [21]
enjoys coalesced memory access, and generally achieves
superior performance for matrices with more uniform num-
bers of row entries. The state-of-the-art work by Choi et
al. [14] improved the performance of ELL format by using
a blocked ELLPACK format (BELL). In this section, we
will show how our performance analysis tool guides us to
further improve the performance of BELL by 18%.

Figure 9(a) and Figure 9(b) respectively show a sparse

 Index 1 2 3 4 5 6 7 8 9 10 11 12
Thread 1

Thread 2

Thread 3

Thread 4

(a) Memory access order for straightforward vector storage

 Index 1 2 3 4 5 6 7 8 9 10 11 12
Thread 1

Thread 2

Thread 3

Thread 4

(b) Memory access order for interleaved vector storage

Figure 10: Memory access order for straightforward vector storage and
interleaved vector storage. The vector entries grouped in a square share the
same memory transaction. In this example, we use a memory transaction
granularity of 8 bytes and a transaction issue granularity of 2 threads.

matrix and the same matrix stored in the ELL format. In
the ELL format, we first compress the matrix entries to the
left side and then pad all rows so that we have a rectangular
ELL matrix. We store this ELL matrix column by column,
and pad at the end of each column to meet the alignment re-
quirement. We also store the corresponding column index
for each matrix entry. The GPU program maps each row
to a thread. The column-by-column matrix storage allows
coalesced memory access, because each continuous thread
accesses a continuous memory region (Figure 9(b)). To pro-
cess each matrix entry in the ELL format, we load three
values from global memory: a matrix entry, a column in-
dex, and a vector entry. The goal of the BELL format is to
reduce the amount of memory loads if a matrix has a block
structure. In the BELL format, we only store the column
index of the top-left entry for each block, and each GPU
thread processes a row of blocks. For the matrix shown in
Figure 9(a), to process each 3x3 block, we load 9 matrix en-
tries, 1 column index, and 3 vector entries. Thus the BELL
format reduces the column index loads to 1/9 and vector
entry loads to 1/3 of the ELL format.

Since each thread processes three continuous rows and
continuous threads access different memory regions, mem-
ory access becomes uncoalesced (Figure 9(c)). For coa-
lesced memory access, we must reorder the rows in an inter-
leaved fashion, so that continuous threads access contiguous
memory regions (Figure 9(d)). This interleaving technique
is natural for the matrix storage and is the same as what
Choi et al. suggest in their work [14].

Our tools indicated that global memory access was the
key to SpMV performance and specifically, that a signif-
icant impediment to peak throughput was the number of
uncoalesced memory accesses to vector entries. Thus we

4.00 4.00 4.00

4.00

0.44 0.44

6.69

5.01

2.33

4.00 4.00 4.00

4.00

0.44 0.44

4.55

3.63
2.01

4.00 4.00 4.00

4.00

0.44 0.44

4.00

1.33 1.33

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

32 16 4 32 16 4 32 16 4

Matrix entry Column index Vector entry

Number of bytes

ELL BELL+IM BELL+IMIV

(a) Simulated average number of bytes per matrix entry processing.

0

0.05

0.1

0.15

0.2

0.25

ELL BELL+IM BELL+IMIV

Measured Global 32 Global 16 Global 4 Instruction Shared memory MAD

Time (milliseconds)

(b) Measured performance and simulated performance breakdown for
three storage formats.

Figure 11: Simulated number of memory transactions, performance break-
down, and performance comparison. 32, 16, 4 respectively denote a mem-
ory transaction size of 32 bytes, 16 bytes, and 4 bytes. IM stands for
interleaved matrix. IV stands for interleaved vector. The analysis is for the
single precision case, in which we use 4 bytes per matrix/vector entry.

concentrated on optimizing these accesses. The key insight
from this focus was that it is better to store not only the
matrix but also the vector in an interleaved way. Memory
access to vector entries is uncoalesced anyway and depends
on the sparsity of the matrix. However, the intuition here is
that neighboring rows have similar entry positions, and the
more apart two rows are, the less chance they will share a
single memory transaction for vector entries. Interleaving
scatters the vector entries around so that they have a better
chance to be grouped in a single memory transaction.

Figure 10 shows the effects of interleaving. In this ex-
ample, for simplicity, we use a memory-transaction-issue
granularity of 2 threads, instead of 16 threads in the CUDA
case. We also use a memory transaction size granularity
of 8 bytes (2 4-byte vector entries), instead of 32 bytes in
the CUDA case. Figure 10(a) shows which vector entries
are accessed by each thread, which is decided by the sparse

15.9

23.4 23.4

32.0
33.7

37.7

0

5

10

15

20

25

30

35

40

ELL BELL+IM ELL+Cache BELL+IM+Cache BELL+IMIV BELL+IMIV+Cache

Performance (GFLOPS)

Figure 12: Performance comparison for different combinations of opti-
mization techniques in single precision.

matrix in Figure 9(a). In this case, there are no memory
transactions shared by the first group of two threads or the
second group of two threads. For example, the first element
accessed by thread 1 (entry 1) is too far from the first ele-
ment accessed by thread 2 (entry 7) to be grouped in a single
contiguous 8-byte memory transaction. However, the inter-
leaved vector storage shows 6 memory transactions shared
by thread 3 and thread 4 (Figure 10(b)). The distance be-
tween the first element accessed by thread 1 and the first
element accessed by thread 2 is decreased as well.

Figure 11(a) shows the average number of bytes required
to process a matrix entry generated by our memory transac-
tion simulator. We use a naturally 3x3 blocked sparse ma-
trix named QCD, from the benchmark suite of 14 sparse ma-
trices used in prior work by others [14, 20, 22]. In an ideal
situation, where all memory accesses are coalesced (equiv-
alent to a memory transaction size granularity of 4 bytes),
the ELL format requires 4 + 4 + 4 = 12 bytes to process
a single matrix entry. However, in reality the CUDA mem-
ory transaction size is 32 bytes, and the memory access to
vector entries is uncoalesced. This results in a memory ac-
cess requirement of 6.69 bytes per vector entry. We also
simulated a smaller transaction size, 16 bytes, which is not
supported by the current GPU. The smaller size reduces
the average number of bytes per vector entry to 4.55 bytes.
For the BELL format, because 3 × 3 = 9 entries share a
single column index, the bytes per column index is reduced
to 1/9. The interleaved vector storage significantly reduces
the bytes per vector entry. Figure 11(b) shows the measured
performance and simulated performance breakdown. The
error between the measured and the simulated performance
of bottleneck factor is within 5%. In all three cases, the
performance is bottlenecked by global memory access. We
also show that with a smaller transaction size of 16 bytes,
the performance would be improved. If the time of global
memory could be reduced even further, the new bottleneck
would be the instruction pipeline. However, we will be still
far from the peak GFLOPS rate of the GPU, because the
computational density of the program is so low that only
about 1/10 of total instructions (all of them are MAD in-

structions) are devoted to actual computations.
Although we have not built a texture cache simulator

into our model, we tried using texture cache for vector en-
tries, as what the two previous studies [14, 20] did. Fig-
ure 12 compares the performance of ELL, BELL+IM, and
BELL+IMIV in two cases, using texture cache or without
using texture cache. ELL+Cache and BELL+IM+Cache re-
spectively represents the best performance achieved by Bell
and Garland [20] and Choi et al. [14]. Our vector interleav-
ing optimization BELL+IMIV is very effective and it out-
performs the previous method even without using the tex-
ture cache. Our BELL+IMIV+Cache is 18% faster than the
the previous best BELL+IM+Cache.

6 Conclusion

Our quantitative performance model for the GPU allows
programmers and architects to identify optimization possi-
bilities in modern GPU programs and architectures. Today,
programmers do not know how effective an potential opti-
mization will be until they try it out. In contrast, our per-
formance analysis tool enables programmers to identify the
performance bottlenecks, foresee the benefit of removing a
certain bottleneck in a quantitative way, and decide if a po-
tential optimization is worth the programming efforts. From
an architecture design point of view, our performance analy-
sis tool is able to identify architectural shortcomings against
real-world applications, and suggest architectural improve-
ments on hardware resources allocation, block scheduling,
memory transaction granularity, and so on.

We believe our model has captured the GPU’s primary
performance factors, and we have showed a simulation ac-
curacy within 5–15% on three representative case stud-
ies. Our work has several limitations that we hope to ad-
dress with future research: (1) incorporate a cache model in
memory system simulation (for texture memory and Fermi
hardware caches), (2) develop a bank-conflict simulator
for more general cases, (3) model the synchronization bar-
rier’s effects on warp-level parallelism, and (4) identify and
model situations of non-perfect overlap of instruction exe-
cution, shared memory, and global memory access.

Acknowledgments

Thanks to Sylvain Collange for his support on the Barra
simulator, without which this work is impossible. Thanks
to Anjul Patney, Shubho Sengupta, Jonathan Cohen, Peng
Wang, Nathan Bell, Paulius Micikevicius, Everett Phillips,
and the anonymous reviewers for their helpful discussions
and suggestions. Thanks also to our funding agencies, the
HP Labs Innovation Research Program, the National Sci-
ence Foundation (Award 0541448), and the SciDAC Insti-

tute for Ultrascale Visualization, and to NVIDIA for equip-
ment donations.

References

[1] “NVIDIA CUDA compute unified device architecture,
programming guide,” http://developer.nvidia.com/.

[2] “The OpenCL specification,” http://www.khronos.org/
registry/cl/.

[3] “General-purpose computation using graphics hard-
ware,” http://www.gpgpu.org/.

[4] “ATI Stream Profiler,” http://developer.amd.com.

[5] “NVIDIA Parallel Nsight,” http://developer.nvidia.
com.

[6] S. Collange, D. Defour, and D. Parello, “Barra, a par-
allel functional GPGPU simulator,” Université de Per-
pignan, Tech. Rep. hal-00359342, Jun. 2009.

[7] G. Diamos, A. Kerr, and M. Kesavan, “Translat-
ing GPU binaries to tiered SIMD architectures with
Ocelot,” Georgia Institute of Technology, Tech. Rep.
GIT-CERCS-09-01, 2009.

[8] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D.
Gropp, and W. W. Hwu, “An adaptive performance
modeling tool for GPU architectures,” in Proceedings
of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2010).
ACM, Jan. 2010, pp. 105–114.

[9] S. Hong and H. Kim, “An analytical model for a GPU
architecture with memory-level and thread-level par-
allelism awareness,” in Proceedings of the 36th Inter-
national Symposium on Computer Architecture (ISCA
2009), Jun. 2009, pp. 152–163.

[10] A. Kerr, G. Diamos, and S. Yalamanchili, “A charac-
terization and analysis of PTX kernels,” in Proceed-
ings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC 2009), Oct. 2009,
pp. 3–12.

[11] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton,
S. Z. Ueng, S. S. Baghsorkhi, and W. W. Hwu, “Pro-
gram optimization carving for GPU computing,” Jour-
nal of Parallel and Distributed Computing, vol. 68,
no. 10, pp. 1389–1401, Oct. 2008.

[12] Y. Liu, E. Z. Zhang, and X. Shen, “A cross-input adap-
tive framework for GPU program optimizations,” in
Proceedings of the 2009 IEEE International Sympo-
sium on Parallel Distributed Processing (IPDPS ’09),
May 2009.

[13] J. Meng and K. Skadron, “Performance modeling and
automatic ghost zone optimization for iterative sten-
cil loops on GPUs,” in ICS ’09: Proceedings of the
23rd International Conference on Supercomputing,
Jun. 2009, pp. 256–265.

[14] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-
driven autotuning of sparse matrix-vector multiply on
GPUs,” in Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP 2010). ACM, Jan. 2010, pp.
115–126.

[15] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan, “A
compiler framework for optimization of affine loop
nests for GPGPUs,” in ICS ’08: Proceedings of the
22nd Annual International Conference on Supercom-
puting, Jun. 2008, pp. 225–234.

[16] W. J. van der Laan, “Decuda and Cudasm, the cu-
bin utilities package,” 2009, http://github.com/laanwj/
decuda.

[17] V. Volkov and J. W. Demmel, “Benchmarking GPUs
to tune dense linear algebra,” in Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing,
Nov. 2008, pp. 31:1–31:11.

[18] Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal
solvers on the GPU,” in Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2010), Jan. 2010, pp.
127–136.

[19] D. Göddeke and R. Strzodka, “Cyclic reduction tridi-
agonal solvers on GPUs applied to mixed precision
multigrid,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 22, pp. 22–32, Jan. 2011.

[20] N. Bell and M. Garland, “Implementing sparse matrix-
vector multiplication on throughput-oriented proces-
sors,” in SC ’09: Proceedings of the 2009 ACM/IEEE
Conference on Supercomputing, Nov. 2009, pp. 18:1–
18:11.

[21] J. R. Rice and R. F. Boisvert, Solving elliptic problems
using ELLPACK. New York, NY, USA: Springer-
Verlag New York, Inc., 1984.

[22] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel, “Optimization of sparse matrix-vector
multiplication on emerging multicore platforms,” in
SC ’07: Proceedings of the 2007 ACM/IEEE Confer-
ence on Supercomputing, 2007, pp. 38:1–38:12.

