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ARTICLE

Integrative genomics identifies a convergent
molecular subtype that links epigenomic with
transcriptomic differences in autism
Gokul Ramaswami1, Hyejung Won 1,8, Michael J. Gandal 1,2,3,4, Jillian Haney1,2, Jerry C. Wang 1,

Chloe C. Y. Wong5, Wenjie Sun6, Shyam Prabhakar 6, Jonathan Mill 7 & Daniel H. Geschwind 1,3,4✉

Autism spectrum disorder (ASD) is a phenotypically and genetically heterogeneous neuro-

developmental disorder. Despite this heterogeneity, previous studies have shown patterns of

molecular convergence in post-mortem brain tissue from autistic subjects. Here, we integrate

genome-wide measures of mRNA expression, miRNA expression, DNA methylation, and

histone acetylation from ASD and control brains to identify a convergent molecular subtype

of ASD with shared dysregulation across both the epigenome and transcriptome. Focusing on

this convergent subtype, we substantially expand the repertoire of differentially expressed

genes in ASD and identify a component of upregulated immune processes that are associated

with hypomethylation. We utilize eQTL and chromosome conformation datasets to link

differentially acetylated regions with their cognate genes and identify an enrichment of ASD

genetic risk variants in hyperacetylated noncoding regulatory regions linked to neuronal

genes. These findings help elucidate how diverse genetic risk factors converge onto specific

molecular processes in ASD.
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Autism spectrum disorder (ASD) is a prevalent neurode-
velopmental disorder characterized by impaired social
interactions with repetitive and restrictive behaviors1.

Although ASD is highly heritable, its genetic etiology is complex,
with ~1000 risk genes implicated2. Assessment of ASD risk is
challenging due to its genetic architecture which encompasses
alleles of varying frequencies (common, rare, very rare) and
inheritance patterns (Mendelian autosomal and X-linked, addi-
tive, de novo)3–5 that likely interact together within individuals
and families6,7.

Surprisingly, despite this genetic complexity, molecular studies
have identified consistent patterns of changes in post-mortem
brain tissue from ASD subjects8–12. At the transcriptomic level,
ASD brains exhibit downregulation of genes involved in neuronal
activity with a concomitant upregulation of genes involved in
microglial and astrocyte-mediated inflammation9,13. Addition-
ally, there is a shared pattern of microRNA (miRNA) dysregu-
lation directly targeting downregulated neuronal genes as well as
upregulated astrocyte genes12. At the epigenomic level, ASD
brains exhibit DNA methylation differences in genomic regions
related to immunity and neuronal regulation11,14. Additionally,
there are differences in histone acetylation (H3K27ac) associated
with genes involved in synaptic transmission and morphogen-
esis10. To date, these molecular datasets have not been compre-
hensively integrated and analyzed together, which could provide a
better understanding of how epigenetic changes directly regulate
the expression of their cognate genes and how these processes are
related. Additionally, despite evidence for shared patterns of
molecular dysregulation, only approximately two-thirds of ASD
brain samples exhibit this major shared molecular pattern, indi-
cating the potential for distinct molecular subtypes. Such het-
erogeneity among ASD cases would also be expected to reduce
power to identify disease-related signals, providing another
rationale for the identification of subtypes.

Systems-level integration of multi-omic datasets has been a
successful strategy to identify molecular subtypes and elucidate
causal mechanisms in cancer15,16. However, it has not yet been
applied to neurodevelopmental disorders, including ASD. In this
study, we utilize similarity network fusion (SNF), an integrative
method that has identified molecular subtypes when integrating
transcriptomic with epigenomic datasets in cancer17, to integrate
mRNA expression, miRNA expression, DNA methylation, and
histone acetylation datasets from ASD brain (Fig. 1a). This
unbiased data-driven analysis identifies two distinct molecular
subtypes of ASD, one, which represents the majority of cases,
showing a cohesive molecular pattern, and the other without
consistent changes in molecular measures. By analyzing ASD
brains according to subtype, which significantly reduces hetero-
geneity, we are able to identify substantially more differentially
expressed mRNA genes compared to previous analyses. We
identify differentially expressed miRNAs, differentially methy-
lated promoters and gene bodies, as well as differentially acety-
lated genomic regions and assess the extent to which these
regulatory mechanisms influence gene expression in ASD. Finally,
we find an enrichment of ASD genetic risk in regulatory regions
linked to neuronal genes that are hyperacetylated in ASD brains,
suggesting a causal role for these elements.

Results
Integration of multi-omic data from ASD and control brains.
We integrated previously published datasets on mRNA expres-
sion9, miRNA expression12, DNA methylation11, and histone
acetylation10 from a cohort of 48 ASD and 45 control brains
(Supplementary Data 1 and Fig. 1a). We only analyzed the
samples originating from the frontal and temporal cortex, because

previous studies found ASD dysregulated features were pre-
dominantly localized to the cerebral cortex and substantially
attenuated in the cerebellum. For mRNA and miRNA expression,
we used normalized gene quantifications and differential
expression summary statistics from the previous studies9,12

(“Methods”).
For DNA methylation, we used the normalized probe

quantifications from the previous study11 and collapsed probe-
level measurements onto 21880 gene promoters and 24458 gene
bodies to facilitate comparisons between methylation and
expression (“Methods”). An initial differential methylation
analysis identified 2578 and 1262 differentially methylated
promoters and gene bodies, respectively, at an FDR < 10%
(“Methods”, Supplementary Fig. 1a, b, and Supplementary
Data 4). The genes with differential promoter methylation were
largely distinct from genes with differential gene body methyla-
tion (Supplementary Fig. 1e, f). However, the loadings for each
sample along the first principal component of differential
promoter and gene body methylation were almost identical
(Supplementary Fig. 1d) and not correlated with any potential
confounders (Supplementary Fig. 1c), suggesting a coherent
regulatory mechanism.

For histone acetylation, we quantified the consensus H3K27ac
peaks identified in the previous study10 in all ASD and control
samples including the samples marked as atypical in the previous
study10 (“Methods”). An initial differential acetylation analysis
identified 2156 differentially acetylated regions at an FDR < 20%
(“Methods”, Supplementary Fig. 2a, and Supplementary Data 5).
Although this was fewer differentially acetylated regions than
previously identified (Supplementary Fig. 2b), we show that this
depletion is an artifact of subtype heterogeneity in the ASD
samples (see below “Subtype-specific histone acetylation differ-
ences in ASD” section).

Identification of two ASD molecular subtypes. In the previous
molecular studies9–12, we noticed that approximately two-thirds
of ASD brain samples clustered together based on the differential
signal for each dataset. To formally assess ASD molecular het-
erogeneity across the four different datasets, we used SNF17 to
integrate differential mRNA expression, miRNA expression,
DNA methylation, and histone acetylation for 30 ASD and 17
control samples that were present in all 4 molecular datasets
(“Methods”). SNF creates an integrative sample-sample similarity
network by quantifying sample-sample relationships within each
individual dataset and then integrating these sample-sample
relationships across all of the datasets17. The clustering of sample
relationships is a major advantage of SNF, as compared to
alternative data integration methods that cluster gene relation-
ships which can be sensitive to differing normalization methods
between data types18.

The sample loadings along the first principal component of
each differential molecular level recapitulated known regulatory
relationships, with differential acetylation (R= 0.73) and differ-
ential miRNA expression (R= 0.51) being highly correlated to
differential mRNA expression, whereas differential methylation
was less correlated with expression (R= 0.13)19,20 (Fig. 1b).
Using this similarity network, samples divided into two distinct
clusters (Fig. 1c), one of which consisted entirely of ASD samples
that loaded strongly onto the differential transcriptomic and
epigenomic signatures (SNF Group 2). Therefore, we grouped
these samples together as the ASD Convergent Subtype. The
other cluster consisted of ASD samples that did not load onto the
initial differential signatures and were indistinguishable from
controls (SNF Group 1). Therefore, we grouped these samples
together as the ASD Disparate Subtype. We built a logistic
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Fig. 1 SNF to identify ASD molecular subtypes. a Overview of data integration and molecular subtyping to characterize the cascade of molecular changes
in ASD. b Relationship between sample loadings on the first principal component of differential mRNA expression, miRNA expression, DNA methylation,
and histone acetylation. c Identification of two sample clusters using SNF: SNF Group 1 and SNF Group 2. ASD samples in SNF Group 1 constitute the
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regression classifier to assign the 61 ASD and 61 control samples
that were not used in at least one of the four classification datasets
into either the Convergent or Disparate subtypes (“Methods”,
Fig. 1d and Supplementary Fig. 4). Interestingly, 11 of the 43 ASD
individuals with samples from both frontal and temporal cortex
were classified into different molecular subtypes in the two
cortical regions (Supplementary Fig. 4d), a significant difference
in comparison to only 1 of the 33 control individuals (p= 0.0096,
Fisher’s Exact Test). This finding is consistent with potential
molecular heterogeneity across different cortical regions in ASD.

SNF subtype assignments were robust to clustering methodol-
ogy and comprehensive leave one out cross validation (Supple-
mentary Fig. 3c, d). We further tested clustering robustness by
leaving out each dataset and performing SNF clustering and
logistic regression classification using the remaining three
datasets. We found the resultant sample subtype assignments
were highly concordant with the subtype assignments identified
using the entire four dataset collection (range= 0.86–0.93; Fig. 1e
and Supplementary Fig. 5). Additionally, the ASD subtype
assignments were not correlated with, or driven by, biological
or technical covariates, including age, sex, RNA quality, cell
fraction, and post mortem interval (Supplementary Fig. 6).
Finally, to compare with the sample classifications above, which
were generated using only differential features in each dataset, we
attempted to cluster the samples with SNF using all features in the
transcriptomic and epigenomic datasets. We find no clear
separation between ASD and control samples (Supplementary
Fig. 3a, b), demonstrating that molecular differences between
ASD and control brains are restricted to specific differentiating
features and are not a general genome-wide phenomenon.

Subtype-specific mRNA expression differences in ASD. To
leverage the increased power of analyzing a more homogenous set
of cases, we performed differential mRNA expression analyses
separately for ASD Convergent and Disparate subtypes against
control samples for each gene (“Methods” and Supplementary
Fig. 7a, b). For the ASD Convergent subtype, we observed 5439
differentially expressed genes at an FDR < 5%, 2283 of which were
upregulated and 3156 downregulated in ASD (Supplementary
Data 2). We reproduce 94.5% of the differentially expressed genes
from the previous study9 and identify an additional 4356 genes at
the same statistical threshold (Fig. 2a, b and Supplementary
Fig. 7f), demonstrating the utility of this subtype-specific
approach. The top gene ontology enrichments are very similar
to those previously identified, showing an upregulation of genes
involved in immune response and a downregulation of genes
involved in synaptic transmission and neuronal ion transport
(Supplementary Fig. 7c, d). In contrast, for the ASD Disparate
subtype, we found no differentially expressed genes.

Next, we identified mRNA co-expression modules that were
differentially associated between ASD and control individuals in
the cortical co-expression network defined previously9. For each
gene module, we tested whether the two ASD subtypes and
control samples had differences in their association with the
module eigengene, a summary measure of module expression
level (Supplementary Fig. 7e). For the ASD Convergent subtype,
we found 13 differentially associated co-expression modules at an
FDR < 5%, including the 6 ASD-associated modules identified
previously9 and 7 ASD-associated modules additionally identified
in this study (Fig. 2c). In contrast, for the ASD Disparate subtype,
we did not find any differentially associated co-expression
modules.

Of the seven additionally identified ASD-associated co-
expression modules in this study, four were downregulated in
ASD: mRNA.M1, a module representing neurogenesis, mRNA.

M3, a module representing mitochondrial function in neurons,
which has been previously implicated in ASD21, mRNA.M7, a
module with no functional enrichments, and mRNA.M17, a
module representing synaptic signaling and vesicle transport in
neurons (Fig. 2d, e). To gain insight into neuronal down-
regulation in ASD at a finer resolution, we compared ASD
downregulated modules to neuronal cell type-specific markers
identified from single-nuclei RNA sequencing of post-mortem
human cortex22. ASD downregulated modules are significantly
enriched with markers of both inhibitory and excitatory neurons
(Fig. 2f). The strongest enrichments are inhibitory neuron
subtypes expressing SST or PVALB, derived from the medial
ganglionic eminence, as well as deep layer excitatory neurons
expressing RORB or FEZF2 (Fig. 2f), suggesting that the number
and/or activity of these cells is decreased in ASD, consistent with
a recent single-cell analysis of post mortem ASD brain23.

Three of the additionally identified ASD-associated modules
were upregulated in ASD: mRNA.M15, a module representing
metabolic processes and transcriptional regulation in glia, mRNA.
M21, a module representing ribosomal translational, and mRNA.
M23, a module enriched with astrocyte markers. Module mRNA.
M15 (Fig. 2g, h) was particularly interesting, because one of its
top hub genes is REST, a transcriptional repressor with critical
roles in repressing neural genes in non-neural cells24. Although
module mRNA.M15 is enriched with microglial markers
(Supplementary Fig. 7g), it exhibits a markedly different
transcriptional profile25 than the previously identified ASD
upregulated microglial module mRNA.M19 (Fig. 2i). Module
mRNA.M19 is specifically enriched with genes marking micro-
glial activation26, suggesting that it is directly related to neural-
immune response. In contrast, module mRNA.M15 is enriched
with markers of juvenile or aging glia, suggesting it may be related
to glial growth and maturation. In general, cellular processes
underlying broad categories of immuno-glial cell types are
upregulated in ASD.

Subtype-specific miRNA expression differences in ASD. We
conducted differential miRNA expression analyses for ASD
Convergent and Disparate subtypes against control samples for
each mature miRNA transcript (Methods and Supplementary
Fig. 8a, b). For the ASD Convergent subtype, we identified 43
differentially expressed miRNAs at an FDR < 5%, 28 upregulated
and 15 downregulated in ASD that highly overlapped with previous
work (Supplementary Fig. 8c, d and Supplementary Data 3)12.
We analyzed differentially associated miRNA co-expression
modules in the miRNA co-expression network defined pre-
viously12. For the ASD Convergent subtype, we found the same
three miRNA co-expression modules differentially associated at
an FDR < 5% as the previous study: miRNA.brown, which is
downregulated in ASD, as well as miRNA.magenta and miRNA.
yellow, which are upregulated (Supplementary Fig. 8e). We
used TargetScan27 to predict mRNA targets for the top hubs of
each differentially associated miRNA co-expression module
(Supplementary Data 3). We found an enrichment of genes in
the upregulated mRNA.M19 module within the predicted tar-
gets of the miRNA.brown module (Supplementary Fig. 8f),
suggesting the downregulation of these miRNAs may contribute
to the upregulation of immune processes in ASD. We also found
an enrichment of genes in the downregulated mRNA.M16 and
mRNA.M3 modules within the predicted targets of miRNA.
magenta and miRNA.yellow (Supplementary Fig. 8f), suggesting
the upregulation of these miRNAs may contribute to the down-
regulation of neuronal processes in ASD. In contrast, for the ASD
Disparate subtype, we did not find any differentially expressed
miRNAs or differentially associated miRNA co-expression
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modules. Overall, subtype-specific analyses of miRNA expression
largely recapitulated findings from the previous work12.

Subtype-specific DNA methylation differences in ASD. We
conducted differential DNA methylation analyses for ASD Con-
vergent and Disparate subtypes against control samples for gene

promoters and gene bodies (“Methods”). For the ASD Con-
vergent subtype, we identified 3013 differentially methylated gene
promoters at an FDR < 5%, 2298 hypermethylated and 715
hypomethylated in ASD (Supplementary Fig. 9b and Supple-
mentary Data 4). ASD hypermethylated gene promoters are
enriched in RNA processing genes, while ASD hypomethylated
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gene promoters are enriched in chemical sensory receptor genes
(Supplementary Fig. 9d, e). We identified 1460 differentially
methylated gene bodies at an FDR < 5%, 678 hypermethylated
and 782 hypomethylated in ASD (Supplementary Fig. 10b and
Supplementary Data 4). ASD hypermethylated gene bodies are
enriched in RNA processing genes, while ASD hypomethylated
gene bodies are enriched in keratinization and bile acid transport
genes (Supplementary Fig. 10d, e). We assigned the previously
identified differentially methylated probes11 to their corre-
sponding promoter or gene body annotation and now identify
fifty and eleven-fold more differentially methylated promoters
(Supplementary Fig. 9h, i) and gene bodies (Supplementary
Fig. 10h, i), respectively. In contrast, for the ASD Disparate
subtype, we did not find any differentially methylated gene pro-
moters or gene bodies (Supplementary Figs. 9c and 10c). Genes
with differentially methylated gene promoters were largely dis-
tinct from those with differentially methylated gene bodies
although there was a greater overlap in hypermethylated genes
due to their shared biological enrichments (Fig. 3a, b). There were
596 and 305 genes that were both differentially expressed as well
as differentially methylated at gene promoters and gene bodies,
respectively. As expected, there was a negative correlation
between differential expression and differential methylation for
gene promoters (Fig. 3c). Surprisingly, there was also a negative
correlation with gene body methylation (Fig. 3d), suggesting that
in the context of ASD, gene body methylation is associated with
negative regulation of gene expression, or reflects a secondary
response.

We generated co-methylation networks for both promoters
and gene bodies (Supplementary Figs. 9a and 10a), which
recapitulated many aspects of the probe-level co-methylation
network that was previously built11 (Supplementary Fig. 11a, b).
We identified eight ASD-associated promoter co-methylation
modules, four hypermethylated and four hypomethylated in ASD
(FDR < 0.05; Supplementary Fig. 9f). The hypermethylated
promotor modules were: Prom.midnightblue, representing coen-
zyme A biosynthesis, Prom.pink, a module with no functional
enrichments, Prom.tan, enriched with oligodendrocyte cell
markers, and Prom.turquoise, enriched with astrocyte cell
markers and representing RNA processing. The hypomethylated
modules were: Prom.brown and Prom.greenyellow, two modules
representing sensory perception, as well as Prom.lightcyan and
Prom.lightgreen, two modules representing immune processes.

At the gene body level, we identified 10 ASD-associated co-
methylation modules, 4 hypermethylated and 6 hypomethylated
in ASD (FDR < 0.05; Supplementary Fig. 10f). The hypermethy-
lated modules were: GB.blue, representing RNA processing, GB.
cyan, enriched in neuron cell markers and representing the
unfolded protein response, GB.darkred, enriched in neuron cell

markers and representing mitochondrial activity, and GB.
royalblue, a module with no functional enrichments. The
hypomethylated modules were: GB.black, GB.darkgreen, GB.
lightcyan, and GB.salmon, 4 modules representing immune
processes, as well as GB.green, a module representing glucur-
onidation, and GB.yellow, representing bile acid ion transport. In
contrast, for the ASD Disparate subtype, we did not find any
ASD-associated promoter or gene body co-methylation modules.

Overall, the ASD-associated co-methylation modules did not
show significant global overlap with the ASD-associated co-
expression modules at the gene level (Supplementary Fig. 11c, d),
suggesting that differential methylation is not a prominent driver
of differential gene expression. The largest overlaps are between
hypomethylated co-methylation modules and upregulated co-
expression modules involved in immune processes. In particular,
Prom.lightgreen overlaps significantly with mRNA.M19 and GB.
darkgreen overlaps significantly with mRNA.M15, suggesting that
the ASD-associated upregulation in immune activation is, in part,
regulated by a decrease in DNA methylation at promoters and
gene bodies (Fig. 3e–j).

Subtype-specific histone acetylation differences in ASD. We
next performed differential histone acetylation analyses for ASD
Convergent and Disparate subtypes against control samples for
H3K27ac peaks in the genome (“Methods”). For the ASD Con-
vergent subtype, we identified 15967 differentially acetylated
peaks at an FDR < 10%, 8707 hyperacetylated and 7260 hypoa-
cetylated in ASD (Supplementary Fig. 12a and Supplementary
Data 5). There was a strong overlap with differentially acetylated
peaks identified in a previous study (Supplementary Fig. 12c, d)10.
In contrast, for the ASD Disparate subtype, we did not find any
differentially acetylated peaks (Supplementary Fig. 12b). Using
GREAT to assess ontology enrichments for genes closest to each
differentially acetylated peak28, we find that genes proximal to
ASD hyperacetylated peaks are enriched in synaptic potential,
while genes proximal to ASD hypoacetylated peaks are enriched in
neurogenesis and organ development (Fig. 4a, b). H3K27ac is
known to mark active promoters29, and as expected, differentially
acetylated peaks in gene promoters were strongly positively cor-
related (R= 0.25) with differential expression (Fig. 4d). Surpris-
ingly, we found that the relationship between differential promoter
acetylation and differential expression was cell type-specific, with
hyperacetylated promoters associated with upregulated microglial
genes and downregulated neuronal genes, whereas hypoacetylated
promoters were associated with upregulated astrocyte genes and
downregulated oligodendrocyte genes (Fig. 4e).

In addition to marking promoters, H3K27ac also marks distal
enhancers up to 1 MB away from gene transcription start sites
(TSS)30. We utilized expression quantitative trait loci (eQTL) and

Fig. 2 mRNA expression differences in ASD. a Overlap in ASD downregulated genes identified in this study with Parikshak et al.9. b Overlap in ASD
upregulated genes identified in this study with Parikshak et al.9. c Signed association of mRNA co-expression module eigengenes with diagnosis
(Bonferroni-corrected p-value from a linear mixed effects model, see Supplementary Fig. 7e). Positive values indicate modules with an increased expression
in ASD samples. Gray and black bars with labels signify ASD-associated modules identified in Parikshak et al., and those additionally identified in this study,
respectively. Cell type enrichment for each module is shown in parenthesis: neuron (N), astrocyte (A), microglia (M), and no enrichment (−) (see
Supplementary Fig. 7g). d Top 30 hub genes and 300 connections for co-expression module mRNA.M17. e Top gene ontology enrichments for co-
expression module mRNA.M17. Ontology enrichments were calculated by g:Profiler with FDR corrected p-values. f Enrichment of ASD downregulated
neuronal co-expression modules with neuronal cell-type markers identified from single-nuclei RNA sequencing22. Enrichments were calculated using a
logistic regression model and p-values were adjusted for multiple testing using FDR correction. Only those enrichments with odds ratio >1 and FDR
corrected p-value < 0.05 are shown. g Top 30 hub genes and 300 connections for co-expression module mRNA.M15. h Top gene ontology enrichments for
co-expression module mRNA.M15. Ontology enrichments were calculated by g:Profiler with FDR corrected p-values. i Enrichment of ASD upregulated glial
co-expression modules with microglial activated genes26 and microglial cell-type markers25. Enrichments were calculated using a logistic regression model
and p-values, which are shown in parentheses, were adjusted for multiple testing using FDR correction. Only those enrichments with odds ratio >1 and FDR
corrected p-value < 0.05 are shown.
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chromatin conformation capture (Hi-C) datasets from bulk adult
brain tissue31, as well as Hi-C data using sorted neuronal and glial
cells from adult brain tissue (“Methods”) to link distal differential
H3K27ac peaks with their cognate genes (Fig. 4c; “Methods”). As a
baseline, we analyzed all differentially acetylated peaks within 1 MB
of a differentially expressed gene TSS and found that the overall
correlation between differential acetylation and differential expres-
sion was minute (R= 0.018, p= 2e-8) (Supplementary Fig. 12e).
The correlations improved when linking differentially acetylated
regions to differentially expressed genes using eQTL (R= 0.084,
p= 2.3e-9) (Supplementary Fig. 12f), bulk Hi-C (R= 0.075, p=

1.4e-5) (Supplementary Fig. 12g), neuronal Hi-C (R= 0.061, p=
7.6e-5) (Supplementary Fig. 12h), and glial Hi-C (R= 0.11, p=
1.4e-11) (Supplementary Fig. 12i) datasets. The correlations were
further improved when H3K27ac peaks were linked to genes using
a combination of eQTL and bulk Hi-C (R= 0.18, p= 9.2e-4)
(Supplementary Fig. 12j) or glial Hi-C (R= 0.23, p= 2.9e-5)
(Supplementary Fig. 12l) datasets. However, the combination of
eQTL and neuronal Hi-C datasets was uncorrelated (R= 0, p=
0.36) (Supplementary Fig. 12k), possibly reflecting the bias of bulk
eQTL linkages to glial cells due to the greater number of glia as
compared with neurons in the cerebral cortex32.
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Fig. 3 DNA methylation differences in ASD. a Overlap in ASD hypermethylated gene promoters and gene bodies. b Overlap in ASD hypomethylated gene
promoters and gene bodies. c Correlation between expression and methylation changes for genes that have differential promoter methylation and are
differentially expressed. A linear model was used to correlate differential expression with differential methylation. P-value is from fit of linear model.
d Correlation between expression and methylation changes for genes that have differential gene body methylation and are differentially expressed. A linear
model was used to correlate differential expression with differential methylation. P-value is from fit of linear model. e Top 30 hub genes and 300
connections for promoter co-methylation module Prom.lightgreen. f Top gene ontology enrichments for promoter co-methylation module Prom.lightgreen.
Ontology enrichments were calculated by g:Profiler with FDR corrected p-values. g Promoter co-methylation module Prom.lightgreen eigengene values for
ASD and control samples. P-value is from fit of a linear mixed effects model (see Supplementary Fig. 9f). h Top 30 hub genes and 300 connections for gene
body co-methylation module GB.darkgreen. i Top gene ontology enrichments for gene body co-methylation module GB.darkgreen. Ontology enrichments
were calculated by g:Profiler with FDR corrected p-values. J Gene body co-methylation module GB.darkgreen eigengene values for ASD and control
samples. P-value is from fit of a linear mixed effects model (see Supplementary Fig. 10f). For boxplots in g, j, the center of the box is the median value, the
bounds of the box are the 75th and 25th percentile values, the whiskers extend out from the box to 1.5 times the interquartile range of the box, and outlier
values are presented as individual points.
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Fig. 4 Histone acetylation differences in ASD. a Top gene ontology enrichments when linking ASD hyperacetylated regions to proximal genes using
GREAT28. P-values were adjusted for multiple testing by FDR correction. b Top gene ontology enrichments when linking ASD hypoacetylated regions to
proximal genes using GREAT28. P-values were adjusted for multiple testing by FDR correction. c Schema to link H3K27ac regions with their cognate genes.
H3K27ac peaks within promoters were directly assigned to the proximal gene. Distal H3K27ac peaks were assigned to genes using eQTL and Hi-C
datasets. d Correlation between expression and acetylation changes for genes that have a differentially acetylated region within their promoter and are
differentially expressed. P-value is from a linear model used to correlate differential expression with differential acetylation. The four separate quadrants are
marked. e Cell type enrichments for the four quadrants in d. Enrichments were calculated using a logistic regression model and p-values, which are shown
in parentheses, were adjusted for multiple testing using FDR correction. Only those enrichments with odds ratio >1 and FDR corrected p-value < 0.05 are
shown. f Enrichment of cognate genes linked to differentially acetylated regions within mRNA co-expression modules. Modules with a significant
relationship to diagnosis are marked along the y axes (red: increased expression in ASD; blue: decreased expression in ASD). Enrichments were calculated
using a logistic regression model and p-values, which are shown in parentheses, were adjusted for multiple testing using FDR correction. Only those
enrichments with odds ratio >1 and FDR corrected p-value < 0.05 are shown. g Relationship between expression and acetylation changes for differentially
acetylated peaks linked to gene co-expression modules. The functional annotation for each module is represented in the top left corner. The association of
each module to ASD diagnosis is represented in the top right corner as well as whether acetylation changes are contributory or compensatory to changes
in expression.
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We provide a listing of potential cognate genes linked to
differentially acetylated peaks using the eQTL, neuronal Hi-C,
glial Hi-C, and bulk Hi-C linkages (Supplementary Data 5). Using
this list of cognate genes, we identified gene co-expression
modules potentially regulated by ASD-associated acetylation
changes (Fig. 4f). We find an enrichment of ASD hypoacetylated
elements in mRNA.M2, an oligodendrocyte module harboring
many ASD downregulated genes, suggesting that hypoacetylation
is contributory to oligodendrocyte downregulation in ASD.
Surprisingly, we find an enrichment of ASD hypoacetylated
elements in mRNA.M9, an astrocyte module that is upregulated
in ASD, and hyperacetylated elements in mRNA.M4, a neuron
module that is downregulated in ASD. In both of these cases,
acetylation changes are negatively correlated with expression
changes. This suggests, for genes in these modules, that ASD-
associated acetylation changes are not causal, but compensatory
to gene expression changes (Fig. 4g).

Enrichments of ASD heritability in dysregulated genomic
features. Differential gene expression or epigenetic changes may
either be contributory to, or a consequence of disease. To provide
a causal anchor, we used stratified LD score regression33 to
partition heritability of ASD risk variants from genome-wide
association studies4,34 into regions of the genome that are dif-
ferentially expressed, methylated, or acetylated. We included
inflammatory bowel disease (IBD) as comparator GWAS data-
set35, because IBD is a disorder of immune dysregulation, but it
does not directly affect the brain. We also included Alzheimer’s
Disease (AD)36, because AD is a neurological disorder, but like
IBD, has a distinct genetic profile to ASD. We found a significant
enrichment of ASD and IBD heritability in genomic regions that
are hyperacetylated in ASD brains (Fig. 5a). Specifically, these
enrichments are found at distal enhancer regions and not at gene
promoters (Fig. 5b), highlighting the importance of noncoding
regulatory elements. The IBD enrichment is likely marking
hyperacetylated elements linked to microglial genes (Fig. 4d, e).
Cognate genes linked to hyperacetylated enhancers are enriched
within module mRNA.M4 (Fig. 4f), an ASD-downregulated
neuronal module representing genes involved in synaptic vesicle
transport (Fig. 5c, d). This finding supports previous observations
that common genetic risk variants for ASD are enriched in reg-
ulatory regions of neuronal genes4,13. Among the genes within
module mRNA.M4, six of its top hub genes are linked to elements
hyperacetylated in ASD, including DMTN and STX1B (Fig. 5e, f).
The enrichment of causal risk variants and subsequent down-
regulation of these hub genes within the module suggests that an
increase in acetylation is likely an attempt to compensate for
downregulation of key driver genes of this module.

Next, we analyzed whether there were ASD heritability
enrichments in the co-expression and co-methylation network
modules (Supplementary Fig. 13a–c). We found a significant
enrichment of heritability within the promoter co-methylation
module Prom.green, which represents genes involved in neuro-
genesis (Supplementary Fig. 13d, e), further strengthening the
observation that ASD risk variants reside within regulatory
regions of genes involved in neuronal function and neurogenesis.

Taken together (Fig. 6), our findings support a model whereby
ASD risk variants perturb regulatory elements controlling the
expression of neuronal genes, leading to the overall down-
regulation of synaptic signaling and neuronal ion transport. This
in turn leads to the transcriptional upregulation of astrocyte and
microglial mediated neural immune processes through a
concomitant decrease in DNA methylation, decrease in expres-
sion of associated miRNAs, and increase of histone acetylation at
regulatory elements of microglial genes. Finally, as a response to

compensate these transcriptional changes, there is a decrease of
histone acetylation at the promoters of upregulated astrocyte
genes, and an increase of histone acetylation linked to down-
regulated neuronal genes at the same regulatory elements initially
impacted by the casual genetic variants.

Discussion
We integrate mRNA expression, miRNA expression, DNA
methylation, and histone acetylation datasets to identify a subtype
of ASD brain samples with convergent dysregulation across the
epigenome and transcriptome. By focusing on this convergent
ASD subtype, we identify a four-fold expansion in differentially
expressed mRNAs and co-expression modules encompassing the
major processes of neuronal downregulation and immune upre-
gulation. We identify thousands of differentially methylated gene
promoters and gene bodies, but only a small proportion of the
methylation changes, specifically hypomethylation of immune
genes, seem to influence gene expression regulation. In contrast,
histone acetylation is a strong positive regulator of mRNA
expression19 and we identify thousands of differentially acetylated
regions across the genome and furthermore assign them to cog-
nate genes using eQTL and chromosome conformation datasets.
We find differentially acetylated regions enriched within dysre-
gulated astrocyte and neuronal co-expression modules. Surpris-
ingly the acetylation changes in these regions are negatively
correlated with expression changes, implying that these changes
are most likely compensatory.

Over 50% of ASD genetic liability is carried by small effect size
common variants that are mostly noncoding3. One of the major
challenges in characterizing these common variants is the ability
to link noncoding regulatory regions with their cognate genes,
which are often dynamically regulated across different cell types
and developmental stages. In this study, we find an enrichment of
ASD genetic risk within hyperacetylated regions of the genome,
specifically those linked to downregulated neuronal genes. This is
consistent with a previous study, which found enrichment of ASD
risk variants in a down-regulated, neuronal-associated module in
ASD post-mortem brain13. Moreover, whereas enrichment of
ASD risk variants in brain regulatory elements, including those
marked by H3K27ac, has been observed previously4,37, we
observe that ASD risk variants are specifically enriched in dif-
ferentially regulated enhancers, providing a potential mechanistic
understanding of how non-coding ASD risk variants likely impact
gene regulation.

A major unanswered question is what molecular processes are
involved in the ASD Disparate subtype samples. We were unable
to find any consensus molecular dysregulation in these samples
across all the datasets (Supplementary Figs. 7b, 8b, 9c, 10c, and
12b). We also assessed whether they were misdiagnosed. The
available clinical records for these individuals are sparse, but we
found no evidence to support misdiagnosis, nor did we find
samples exhibiting differential expression signatures for four
other neuropsychiatric disorders (Supplementary Fig. 14). We
note that in 11 of the ASD subjects, the two different cortical
regions were classified into different molecular subtypes (Sup-
plementary Fig. 4d), suggesting that the extent of molecular
dysregulation may vary across regions of the cortex in these
individuals. As an initial assessment of regional heterogeneity, we
analyzed RNA-seq data derived from four additional cortical
areas in a subset of individuals in this study21, including portions
of the parietal and occipital lobes, and find some evidence of
quantitative differences in gene expression dysregulation across
the cortex (Supplementary Fig. 15). Future studies of ASD post-
mortem brain samples with larger sample sizes, assessing more
brain regions, and single-cell resolution, coupled to the
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availability of comprehensive phenotypic data will be needed to
further characterize the regional and cellular specificity of mole-
cular changes in ASD.

Methods
Initial processing of datasets. All molecular datasets came from a cohort of 48
ASD and 45 control brains from the Harvard Autism Tissue Program [https://
hbtrc.mclean.harvard.edu/] and NIH Neuro Brain Bank [http://www.medschool.
umaryland.edu/btbank/]. Initial analyses from the transcriptomic and epigenomic
datasets have been previously published9–12. We restricted this study to only those
samples originating from the frontal or temporal cortex. In the epigenomic
studies10,11, samples from the Oxford and MRC London Brain Banks were also
present, however, we removed these samples because we did not have tran-
scriptomic data for them.

For mRNA expression, we used the quantification of log2 RPKM values for
16310 genes in 82 ASD samples and 74 control samples from 47 ASD and 44
control brains from Parikshak et al.9. These RPKM values were normalized for
gene length and GC content using CQN38, but not adjusted for technical or
biological covariates. We downloaded the differential mRNA gene expression
summary statistics and mRNA co-expression network module definitions. We
calculated principal components (SeqStatPCs) to summarize the following
sequencing statistics: log10(TotalReads.picard), log10(Aligned.Reads.picard), log10
(HQ.Aligned.Reads.picard), log10(PF.All.Bases.picard), log10(Coding.Bases.
picard), log10(UTR.Bases.picard), log10(Intronic.Bases.picard), log10(Intergenic.
bases.picard), Median.CV.Coverage.picard, Median.5prime.Bias.picard,
Median.3prime.Bias.picard, Median.5to3prime.Bias.picard, AT.Dropout.picard,
GC.Dropout.picard, and PropExonicReads.HTSC.

For miRNA expression, we used the quantification of log2 read counts mapping
to 699 mature miRNAs in 60 ASD samples and 42 control samples from 39 ASD
and 28 control brains from Wu et al.12. To balance the case/control cohorts with
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respect to age, we removed all samples from younger individuals (Age ≤10) leaving
us with 49 ASD samples and 42 control samples from 31 ASD and 28 control
brains. These read counts were normalized for mature miRNA GC content using
CQN38 and batch effects using ComBat39, but not adjusted for technical or
biological covariates. We downloaded the differential miRNA expression summary
statistics and miRNA co-expression network module definitions.

For DNA methylation, we used the quantification of methylation beta values for
417460 CpG probes across the genome in 74 ASD samples and 42 control samples
from 42 ASD and 27 control brains from Wong et al.11. To balance the case/control
cohorts with respect to age, we removed all samples from younger individuals (Age
≤10) leaving us with 56 ASD samples and 41 control samples from 33 ASD and 26
control brains. Probe quantifications were normalized using wateRmelon40. For
each sample, the CET score was calculated41, which is the proportion of neuronal
vs glial cells. For samples where we had expression and/or acetylation data but did
not have methylation data, we assigned their CET score as the average CET score.
We collapsed the probe-level measurements to gene promoters and gene bodies by
taking the average methylation level of all probes mapping onto gene promoters
(2KB upstream of TSS to TSS) and gene bodies (TSS to transcription end site
(TES)) using gencode v19 annotations42. We only kept gene promoters or gene
bodies that contained 2 or more CpG probes. We downloaded the list of
differentially methylated probes and co-methylation network identified from the
cross-cortex analysis of Wong et al.11. These probes were assigned to gene
promoters and gene bodies as described above.

For histone acetylation, we downloaded fastq files for 257 H3K27ac ChIP-seq
samples as well as input samples from frontal cortex, temporal cortex, and
cerebellum from Sun et al.10 (https://www.synapse.org/#!Synapse:syn8104916). We
mapped reads from each sample onto the hg19 reference genome using BWA-
MEM43 with default parameters. We removed duplicate reads using Picard tools
[http://broadinstitute.github.io/picard/]. We utilized 56503 consensus H3K27ac
peaks in the genome from Sun et al.10 and quantified the levels of each consensus
peak in each sample by counting the number of overlapping reads and dividing by
the library size (in millions of reads). The log2 normalized peak quantifications
were used in further analyses. As a Q/C check, we used phantompeakqualtools44 to
calculate ChIP-seq cross-correlation statistics. We removed samples failing Q/C:
those with total reads <10,000,000, read alignment fraction <75%, read duplication
fraction >30%, normalized strand coefficient (NSC) <1.03, relative strand
correlation (RSC) <0.5, or fraction of reads in peaks <11%. We also removed all
cerebellum samples and samples originating from the Oxford or MRC London
Brain Banks. This left us with a dataset of 56 ASD samples and 48 control samples
from 35 ASD and 33 control brains.

Similarity network fusion to identify molecular subtypes. For 30 ASD and 17
control samples present in all four datasets, we used SNF17 to cluster samples
together based on their relationships across the four data types. Before running

SNF, we adjusted the datasets to remove the influence of technical and biological
covariates. For mRNA expression, we fit a linear model for each gene: Expression ~
Diagnosis+Age+ Sex+ Region+ RIN+ Brain bank+ Sequencing batch+ seq-
StatPC1+ seqStatPC2+ seqStatPC3+ seqStatPC4+ seqStatPC5 and regressed out
the effect of all covariates except Diagnosis. For miRNA expression, we fit a linear
model for each miRNA transcript: Expression ~ Diagnosis+Age+ Sex+ Region
+ RIN+ Brain bank+ Proportion of reads mapping to exons+ log10(Sequencing
depth)+ PMI and regressed out the effect of all covariates except Diagnosis. For
DNA methylation, we fit a linear model for each gene promoter and gene body:
Methylation ~ Diagnosis+Age+ Sex+ Region+ Brain bank+ Batch+ CET and
regressed out the effect of all covariates except Diagnosis. For histone acetylation,
we fit a linear model for each H3K27ac peak: Acetylation ~ Diagnosis+Age+ Sex
+ Region+ Brain bank+ CET+ Fraction of reads in peaks+Duplicate read
fraction+Aligned read fraction and regressed out the effect of all covariates except
Diagnosis.

To identify ASD molecular subtypes, we restricted each dataset to its differential
features between ASD and control samples. For mRNA expression, we restricted
the genes to 2591 differentially expressed genes at an FDR < 10% from the
idiopathic ASD vs control analysis of Parikshak et al.9. For miRNA expression, we
restricted the miRNA transcripts to 92 differentially expressed miRNAs at an FDR
< 10% from Wu et al.12. For DNA methylation, we ran an initial differential
methylation analysis looking at all ASD vs control samples (for details, see below
ASD vs control differential molecular analyses) and restricted the genes to 2578
differentially methylated promoters at an FDR < 10%. For histone acetylation, we
ran an initial differential acetylation analysis looking at all ASD vs control samples
(for details, see below ASD vs control differential molecular analyses) and restricted
the peaks to 2156 differentially acetylated peaks at an FDR < 20%.

We ran SNF on the four adjusted and restricted datasets using the SNFtool
package in R [https://cran.r-project.org/web/packages/SNFtool/index.html]. For
each dataset, we normalized the values of each feature using the
standardNormalization function in SNF. For each dataset, we calculated a sample-
sample Euclidean distance using the dist2 function and used this distance to
calculate a sample-sample affinity matrix using the affinityMatrix function with
parameters: K= 20 and alpha= 0.5. We generated a fused affinity matrix
combining all 4 affinity matrices using the SNF function with parameters: K= 20
and T= 15 and then used the spectralClustering function to demarcate the fused
affinity matrix into 2 clusters of samples. Alternatively, we also used the
symnmf_newton function in Matlab from the symNMF package45 to cluster the
fused affinity matrix.

Classification of samples into the two SNF clusters. For 61 ASD and 61 control
samples that were missing from at least one of the four datasets, we built logistic
regression models to classify them into one of the two clusters identified by SNF.
For each of the four datasets, we calculated the sample loadings on the first
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principal component (PC1) of its differential features used as input to SNF. These
PC1 loadings were transformed into Z-scores and used as predictors in the models.

We built a total of twelve different logistic regression models. Three models
were for samples present in three datasets: mRNA/miRNA/DNA methylation,
mRNA/miRNA/histone acetylation, and mRNA/DNA methylation/histone
acetylation. Six models were for samples present in two datasets: mRNA/miRNA,
mRNA/DNA methylation, mRNA/histone acetylation, miRNA/DNA methylation,
miRNA/histone acetylation, and DNA methylation/histone acetylation. Finally,
three models were for samples present in one dataset: mRNA, DNA methylation,
and histone acetylation. There were no samples that were present in miRNA/DNA
methylation/histone acetylation or miRNA only datasets.

For each model, the training set was the 47 sample assignments identified by
SNF. In training the model, the response variable was either 0 (for SNF group 1) or
1 (for SNF group 2) and the predictors were the sample differential Z-scores. We
performed exhaustive leave one out validation on the training set by leaving each
sample out, training the model with the remaining samples and predicting the
response of the held-out sample. For each model, we chose a cutoff to distinguish
between the two groups that maximized the cross-validation accuracy. We
classified the test samples by running them through the model and applying the
chosen cutoff.

Outlier removal. Before running differential analyses and Co-expression/co-
methylation network analysis (WGCNA), we removed outlier samples from each of
the four datasets. For each dataset, we calculated sample-sample correlations and
removed samples with a signed Z-score >346.

ASD vs control differential molecular analyses. For mRNA expression, we ran
differential expression analysis by fitting a linear mixed effect model for each gene:
Expression ~ Diagnosis+Age+ Sex+ Region+ RIN+ Brain bank+ Sequencing
batch+ seqStatPC1+ seqStatPC2+ seqStatPC3+ seqStatPC4+ seqStatPC5 as
fixed effects, and brainID as a random effect. For miRNA expression, we ran
differential expression analysis by fitting a linear mixed effect model for each
miRNA transcript: Expression ~ Diagnosis+Age+ Sex+ Region+ RIN+ Brain
bank+ Proportion of reads mapping to exons+ log10(Sequencing depth)+ PMI
as fixed effects, and brainID as a random effect. For DNA methylation, we ran
differential methylation analysis by fitting a linear mixed effect model for each
promoter and each gene body: Methylation ~ Diagnosis+Age+ Sex+ Region+
Brain bank+ Batch+ CET as fixed effects, and brainID as a random effect. For
histone acetylation, we ran differential acetylation analysis by fitting a linear mixed
effect model for each H3K27ac peak: Acetylation ~ Diagnosis+Age+ Sex+
Region+ Brain bank+ CET+ Fraction of reads in peaks+Duplicate read frac-
tion+Aligned read fraction as fixed effects, and brainID as a random effect. For all
differential analyses, we ran them separately for ASD Convergent subtype vs
control samples and ASD Disparate subtype vs control samples. For DNA
methylation and histone acetylation, we also ran an initial analysis looking at all
ASD vs control samples before running SNF and sample classification. We used the
R package nlme to fit linear mixed models [https://cran.r-project.org/web/
packages/nlme/index.html].

Co-expression/co-methylation network analysis. For mRNA and miRNA
expression, we used the co-expression networks defined in the previous studies9,12.
To identify ASD-associated modules, we fit a linear mixed effect model for each co-
expression module. For mRNA modules: module eigengene ~ Diagnosis+Age+
Sex+ Region+ RIN+ Brain bank+ Sequencing batch+ seqStatPC1+ seq-
StatPC2+ seqStatPC3+ seqStatPC4+ seqStatPC5 as fixed effects, and brainID as
a random effect. For miRNA modules: module eigengene ~ Diagnosis+Age+ Sex
+ Region+ RIN+ Brain bank+ Proportion of reads mapping to exons+ log10
(Sequencing depth)+ PMI as fixed effects, and brainID as a random effect. We ran
these analyses separately for ASD Convergent subtype vs control samples and ASD
Disparate subtype vs control samples.

For DNA methylation, we generated co-methylation networks separately for
both gene promoters and gene bodies. First, we set a linear model for each gene
promoter and gene body as: Methylation ~ Diagnosis+Age+ Sex+ Region+
Brain bank+ Batch+ CET and regressed out the effect of Brain bank. We
generated networks with robust consensus WGCNA (rWGCNA)47 using the
WGCNA package in R48. We used a soft threshold power of 9 for gene promoters
and 8 for gene bodies. We created 100 topological overlap matrices (TOMs) using
100 independent bootstraps of the samples with parameters: type= signed and
corFnc= bicor. The 100 TOMs were combined edge-wise by taking the median of
each edge across all bootstraps. The consensus TOM was clustered hierarchically
using average linkage hierarchical clustering (using 1 – TOM as a dissimilarity
measure). The topological overlap dendrogram was used to define modules using
the cutreeHybrid() function with parameters: mms= 100, ds= 4, merge threshold
of 0.1, and negative pamStage. To identify ASD-associated modules, we fit a linear
mixed effect model for each co-methylation module: module eigengene ~
Diagnosis+Age+ Sex+ Region+ Brain bank+ Batch+ CET as fixed effects, and
brainID as a random effect. We ran these analyses separately for ASD Convergent
subtype vs control samples and ASD Disparate subtype vs control samples.

Prediction of miRNA target genes. We predicted mRNA target genes for each
miRNA using TargetScan v7.227. We downloaded 3′ UTR sequences of human
genes and miRNA family information from the TargetScan database. For miRNAs
that were identified in the previous publication12 and not present in the TargetScan
default predictions, we manually curated their family conservation by visually
inspecting the multiz 46-way vertebrate alignment at their genomic locus in the
hg19 human assembly of the UCSC genome browser49. For each putative miRNA-
UTR target site, TargetScan calculates a context++ score which takes into account
both evolutionary conservation and targeting efficiency. These context++ scores
were weighted based on affected isoform ratios. We took the top weighted context
++ score for each unique miRNA-UTR target pair.

To assess enrichment of targets within miRNA co-expression modules, we first
filtered for the top 25% miRNAs by connectivity (module hubs) within each
module (kME ≥0.84, 0.82, and 0.57 for the brown, magenta, and yellow modules,
respectively) and identified the strongest targets with a context++ score ≤−0.05
for these hub genes.

Assignment of H3K27ac regions to cognate gene. We assigned H3K27ac
regions within promoter regions (2KB upstream of TSS to TSS) to their proximal
gene. For H3K27ac regions that did not lie within a gene promoter, we assigned
them to their cognate gene using adult brain eQTL data and Hi-C data from bulk
adult brain tissue31 as well as Hi-C data from sorted NeuN+ and NeuN- cells from
adult brain tissue (Synapse accession number: syn10248174 for NeuN-,
syn10248215 for NeuN+). For eQTL data, we assigned a H3K27ac region to a gene
if the eSNP resided within the H3K27ac peak. For Hi-C data, we assigned a
H3K27ac region to a gene if the promoter of that gene physically interacted with a
region containing the H3K27ac peak at an FDR < 1%. We assessed all possible
H3K27ac region to gene linkages even if they were not consistent between eQTL
and Hi-C datasets.

Enrichment analyses. We downloaded post-mortem brain single nucleus gene
expression data from Hodge et al.22. The count data were normalized using log2
(CPM+ 1). To identify markers of neuronal cell types, we ran differential
expression analyses for a particular cell cluster against all other clusters when
restricting the dataset to inhibitory neurons or excitatory neurons separately.
Differential expression analyses were run in R using a linear model: expression ~
cluster membership. For each cluster, we identified markers as those genes with an
FDR corrected P-value < 0.05 and a log2(fold change) >0.75.

We downloaded cell type markers for neurons, astrocytes, oligodendrocytes,
endothelial cells, and microglia from Zhang et al.50. We downloaded microglial cell
type-specific markers (fold change ≥1) from Hammond et al.25. We downloaded
markers of microglial activation from Hirbec et al.26. For module cell type
enrichments, enrichments of co-expression vs co-methylation modules, and
enrichment with orthogonal gene lists we used logistic regression to test whether
gene set 1 ~ gene set 2 using a background set of genes shared between study 1 and
study 2.

For expression and methylation gene ontology enrichments, we used the g:
Profiler51 package in R with parameters: correction_method= fdr, max_set_size=
1000, and hier_filtering=moderate. We performed ordered queries with genes
ordered by fold change for differential expression and methylation or by
connectivity to the module eigengene (kME) for co-expression and co-methylation
modules. For acetylation gene ontology enrichments, we used GREAT28 [http://
great.stanford.edu/public/html/index.php] with the default basal plus extension
association rule setting.

Partitioned heritability. We ran stratified LD-score regression33 to test for
enrichment of common variant heritability from GWAS studies of ASD4,34, Alz-
heimer’s disease36, and Inflammatory bowel disease35 in genomic regions of
interest. We downloaded the full baseline model of 53 functional categories
[https://github.com/bulik/ldsc/wiki/Partitioned-Heritability] and included them
with each calculation of partitioned heritability. For differentially expressed, dif-
ferentially methylated, and co-expression/co-methylation modules, we defined
their genomic regions as each gene body ±10 KB. For differentially acetylated
regions, we defined the genomic region as each H3K27ac peak ±1 KB.

Comparison to transcriptomic signatures of other disorders. We corrected
mRNA expression data from ASD Disparate subtype and control samples for
technical and biological covariates by fitting a linear model for each gene:
Expression ~ Diagnosis+Age+ Sex+ Region+ RIN+ Brain bank+ Sequencing
batch+ seqStatPC1+ seqStatPC2+ seqStatPC3+ seqStatPC4+ seqStatPC5 and
regressing out the effect of all covariates except Diagnosis. We downloaded dif-
ferentially expressed genes at an FDR < 5% for ASD, Schizophrenia, Bipolar dis-
order, Major depressive disorder, and Alcoholism from a cross-disorder analysis of
neuropsychiatric disorders21. For each disorder, we calculated the first principal
component on the corrected expression when restricting to genes differentially
expressed in that disorder. We checked for differential loading between ASD
Disparate subtype samples and control samples using a two-sided Mann–Whitney
U test.
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Assessment of transcriptome in other cortical regions. We previously
sequenced 87 samples in 4 additional cortical regions (BA4-6, BA7, BA17, BA38)
from the individuals in this study21 (Synapse accession number syn11242290). We
mapped sequencing reads onto the hg19 genome using STAR52 and calculated
RNA-seq quality control metrics using PicardTools [http://broadinstitute.github.io/
picard/]. We quantified gene expression using RSEM53 with gencode v25 anno-
tations42. We corrected the expression data for technical and biological covariates
by fitting a linear mixed model for each gene: Expression ~ Region+ Batch+Age
+ Sex+Diagnosis+Ancestry_Genotype+ PMI+ RIN+ picard_rnaseq.
PCT_CORRECT_STRAND_READS+ picard_rnaseq.PCT_MRNA_BASES+
picard_gcbias.AT_DROPOUT+ star.multimapped_percent+ picard_alignment.
PCT_CHIMERAS+ star.multimapped_toomany_percent+ picard_insert.MED-
IAN_INSERT_SIZE+ picard_rnaseq.PCT_INTERGENIC_BASES+ picard_rna-
seq.MEDIAN_5PRIME_BIAS+ picard_rnaseq.PCT_UTR_BASES+ star.num_A-
TAC_splices+ star.num_GCAG_splices+ star.num_splices+ star.avg_mappe-
d_read_length+Age_sqd+ picard_alignment.PCT_PF_READS_ALIGNED_sqd
+ picard_rnaseq.PCT_CORRECT_STRAND_READS_sqd+ star.avg_mappe-
d_read_length+ star.num_ATAC_splices_sqd+ star.num_annotated_splices_sqd
+ star.num_GCAG_splices_sqd as fixed effects and subject as a random effect. We
regressed out the effect of all technical covariates, which created an expression
dataset containing the effects of only biological covariates (subject, diagnosis,
region, age, age squared, sex, and ethnicity).

For each region, we calculated the sample loadings across the first principal
component (PC1) of gene expression for 2591 differentially expressed genes at an
FDR < 10% from the idiopathic ASD vs control analysis of Parikshak et al.9. These
PC1 loadings were then transformed into Z-scores.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Full range of values underlying heatmaps in Figs. 2f, i, 4e, f, 5a, b and Supplementary
Figs. 7e, g, 8e, f, 9f, g, 10f, g, 11a–d, 13a–c are provided as a Source Data File. Harvard
Autism Tissue Program [https://hbtrc.mclean.harvard.edu/], NIH Neuro Brain Bank
[http://www.medschool.umaryland.edu/btbank/], Oxford Brain Bank [https://www.hra.
nhs.uk/planning-and-improving-research/application-summaries/research-summaries/
the-oxford-brain-bank/], MRC London Brain Bank [https://brainbanknetwork.cse.bris.
ac.uk/], Raw data for mRNA, miRNA, DNA methylation, and H3K27ac from ASD and
control brains (Synapse.org accession number syn4587609), Gencode [https://www.
gencodegenes.org/], hg19 genome [http://genome.ucsc.edu/], TargetScan DB [http://
www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi], Psychencode eQTL
and Hi-C datasets [http://resource.psychencode.org/] (Synapse.org accession number:
syn10248174 for NeuN-, syn10248215 for NeuN+), LD-score regression model [https://
github.com/bulik/ldsc/wiki/Partitioned-Heritability], Gene expression of ASD and
control brains from other cortical regions (Synapse.org accession number syn11242290).
All other relevant data supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corresponding author upon
reasonable request. A reporting summary for this article is available as a Supplementary
Information file. Source data are provided with this paper.

Code availability
Underlying R code to run SNF clustering and ASD/Control differential analyses is
available at [https://github.com/dhglab/ASD-Integration-Subtypes-Manuscript].
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