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Abstract

This paper shows that the pattern of short term negative serial covariances for
stock returns over different return measurement intervals is consistent with the
implications of inventory-based market microstructure models. The results of the
tests developed in this paper indicate that the short horizon return reversals can to
a large extent be explained by transitory components in prices related to imbalances
in specialists’ inventory positions. The evidence also suggests that the stock market

may not be as liquid or resilient as suggested by some earlier studies.



The evidence that short horizon stock returns exhibit negative serial correlation
has recently attracted a lot of attention. Although this empirical regularity had
been documented more than two decades ago by Cootner (1964) and Fama (1965),
until recently, the short term return reversals were not considered economically
important. Much of the recent interest can be attributed to evidence suggesting
that contrarian trading strategies designed to exploit these return reversals provide
investors with opportunities to achieve significant abnormal returns. For instance,
Jegadeesh (1990) documents that a contrarian trading strategy designed to exploit
the negative serial correlation in monthly stock returns yields abnormal returns of
about 2% per month. Subsequently, Lehmann (1990) examined a similar trading
rule applied to weekly data and found that over twenty-six consecutive six month
periods, the trading rule never lost money.!

One explanation that Jegadeesh and Lehmann consider is that the negative se-
rial correlation in returns is caused by the bid-ask spread. Appealing to Roll’s
(1984) model, where the bid-ask spread induces negative serial correlation only for
returns measured over adjacent intervals, Jegadeesh and Lehmann examine a mod-
ified strategy in which one day is skipped between the dates when the returns used
to form the portfolios are measured and the dates when the contrarian strategies are
initiated. The authors argue that since the profits to these modified strategies are
also significantly positive, the observed return reversals are not due to the bid-ask
spread and are suggestive of an inefficient market where stock prices over-react to
information.

This paper presents evidence that indicates that higher order serial correlations
can in fact be generated by the bid-ask spread. In contrast to Roll’s model, which

considers only the component of the spread that is due to the specialists’ (or market

110 and MacKinlay (1990a) decompose the contrarian strategy profits into components related
to the negative serial correlation in stock returns and to the positive serial correlation in market
returns. They find that both these components are individually significant.
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makers’) order processing and other fixed costs, we focus on the component of the
spread that is due to the specialists’ inventory costs.? This component, analyzed
in papers by Amihud and Mendelson (1980), Ho and Stoll (1981) and Stoll (1989),
will arise when the specialists are risk-averse and thus incur costs when the shares
they buy or sell lead them to hold undiversified portfolios.

Consider for example the case where a number of investors require liquidity and
sell shares; requiring the specialist to take an unusually large inventory. To induce
the specialist to hold these shares, the bid price must be low enough to enable
him to earn a positive excess return on his inventory to compensate for the risk of
holding an undiversified portfolio. Hence, liquidity induced price declines are likely
to be followed by price increases, and similarly, liquidity induced price increases are
likely to be followed by price declines. If the liquidity demands have a very large
effect on inventory positions (or if the factors that led to an excess demand for
liquidity persist for a number of days) then it is likely that these excess inventory
positions will persist beyond a single day. As a result, the specialist’s reservation
price is likely to be relatively low for a number of days, which in turn implies that
stock returns will exhibit serial correlation over non-adjacent days.®

As Grossman and Miller (1988) emphasize, the above described relation between

inventory costs and return reversals does not require a monopolistic specialist. In

2 An additional component of the spread that has received a great deal of attention arises because
of adverse selection. This component was analyzed in models by Glosten and Milgrom (1986) and
Copeland and Galai (1983). The bid-ask spread in these models does not, however, have an effect
on the serial correlation of returns and is not explicitly considered in this paper. In the Glosten and
Milgrom model, market makers buy and sell shares at their expected values conditional on either
buy or sell order arriving. Hence, the bid price equals the expected value of the shares conditioned
on a sell order arriving and the ask price is the expected value conditional on a buy order arriving.
Since transaction prices occur at the expected values of the shares given all public information, price
changes from period to period are serially uncorrelated in their setting.

3The discussion above is in the context of the Ho and Stoll model. The behavior of stock
returns in Amihud and Mendelson is also consistent with the discussion here but in their model the
monopolistic market maker is not risk averse but 1s subject to inventory constraints. They show
that when the market maker sets his prices optimally the quoted prices are mean reverting.



reality, there are a number of investors that provide liquidity to the market. The
empirical question that is of interest is whether or not the inventory positions of
these providers of liquidity will generate the pattern of negative serial correlation
that we observe.

To explore this issue in more detail we develop a simple statistical model that
allows us to decompose the serial covariance of stock returns into four components:
a component that relates to the decay of the temporary component of stock prices
caused by the specialist’s (or other liquidity providers’) inventory imbalances, a
component that accounts for the effect on serial covariances of the bid-ask bounce
considered by Roll, and two additional components that relate to interactions be-
tween the order flow and temporary components of stock prices caused by inventory
imbalances. Using some results of Ho and Stoll, we show that when the specialist’s
inventory levels are relevant for setting the bid and ask prices, the magnitude of the
serial covariances of returns are typically smaller for returns measured over short
intervals than for returns measured over long intervals. This indicates that Roll’s
measure of the implicit spread may underestimate the actual bid-ask spread when
the serial covariance of returns are measured over short (e.g. daily) intervals and
that it overestimates the spread when serial covariances of returns are measured
over sufficiently long (e.g. weekly) intervals. Additionally, we show that the slope
coefficient in a regression of the serial covariance of returns on the squared spread
is larger in magnitude for long measurement intervals than for short intervals.

The results of our empirical tests are consistent with these predictions. Specifi-
cally, the quoted spreads are on average larger than the estimates of Roll’s implicit
measure based on one-day returns and they are smaller than the implicit spread
based on ten-day returns. In addition, the magnitude of the slope coefficient of a

cross-sectional regression of the estimated serial covariance of returns on the squared



spread increases in magnitude monotonically as the return measurement interval is
increased from one to ten days. Our results also indicate that the squared spread
explains a large fraction of the magnitude of observed serial covariances and that
these serial covariances are significantly higher during periods of higher than average
volume.

The rest of the paper is organized as follows: In the next section we relate the
serial covariances at different return measurement intervals to the bid-ask spread.
The empirical tests and the results are presented in section 2. Section 3 briefly
discusses further tests that illustrate the importance of inventory imbalances and

section 4 contains our conclusions.

I The Relation Between Serial Covariance and

the Bid-Ask Spread

Let p, and p; be the natural logarithm of the ‘true’ price (a hypothetical price that
would occur in the absence of transaction costs) and the transaction price at time
t respectively. Let,

p: = Py + 2,

where z;, the temporary component of the transaction price is determined by the
bid-ask spread and is assumed to be independent of the true price.
In the context of the inventory model of Ho and Stoll, 2z can be decomposed

into the sum of two components, %Bt and §; , i.e.,

S
2y — —2"9,5 + 5,:.
In the above expression,
9, = 1 if the last transaction is a buy,

— —1 if the last transaction is a sell,



S, the total spread, is assumed to be constant over time, consistent with the results
of Ho and Stoll and

6, is the adjustment to the quoted prices made by the dealer in response to
inventory imbalances. When the dealer has positive (negative) excess inventory &
is set to be negative (positive) in order to encourage purchases (sales) and discourage
sales (purchases). In Ho and Stoll, the magnitude of 6, depends upon a number of
unobservable parameters such as the wealth, the risk aversion parameters and the
planning horizon of the specialist. However, in their model, these parameters affect
5, in the same way as they affect the size of the spread so that & can be specified

as a simple linear function of the inventory level and the size of the spread,
6t = —a'It_l(S - C),

where o is a positive constant that is related to the average order size, I, is the level
of inventory imbalance at time ¢, and C represents those components of the spread
that are not directly related to inventory costs, (such as monopoly profits and fixed
costs). In what follows, we will use a stylized version of the above expression that

assumes that C is proportional to S cross-sectionally, allowing us to specify 6; as
6t = —aIt_IS. (1)

This specification of & is similar to that in Stoll (1989) where the specialist tem-
porarily increases the bid and ask prices by an amount proportional to the spread
after each transaction.

Under the hypothesis that the ‘true’ prices follow a random walk, the serial
covariance of the changes in observed prices across a measurement interval of k

periods is given by the sum of four terms,



COV(Pt+k — P, P — Pt—k) = COV(Zt+k — 2, 2t — Zt—k)
SZ
= COV(5t+k — 6,6, — 5t—k) + —4‘COV(0t+k — 0,0, — 9t—k)

S S
+ECOV(6H-IC - 51‘, 0t - 0t—k) + E‘COV(gH_k - 01;, 5t - 5t—-k),

(2)

each of which can be considered separately.
The first term is related to the decay of the inventory component of the bid and

ask prices. Using equation (1), this term can be expressed as,
cov(bpek — 6,6 — 6i-x) = —a’S*(0] + vk — 2W),

where o? is the variance of I; and ~; is its ktP-order serial covariance. Unlike the
serial covariance in returns due to the bounce between the bid and ask prices, the
serial covariance due to the decay of § will persist beyond a single transaction. In Ho
and Stoll, 45 — 0 as k becomes large since the inventory imbalance of the specialist

is stationary. Therefore,

khm COV(5t+k - 6t, §t - 5t—k) == —CZZS2O'%.

For small k , however, 45 > 72x and hence cov(6¢4x — 6;,6; — 6i_) > —a’S%?. In
other words, the magnitude of the serial covariance in returns due to the decay of
§ will be larger for large k than for small .
The second term in (2) can be expressed as,
2
—4—cov(0t+k — 0,0, — 0;_x) = -S*1 - )%,
where 7, is the unconditional probability that a buy (sell) order at time ¢ will be
followed by a buy (sell) order at time t+k. The derivation of this expression is similar
to that in the generalization of Roll’s model considered by Choi, Salandro and

Shastri (1988). In Ho and Stoll the specialist changes the & between transactions
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in order to encourage offsetting transactions so that my is less than .5 for low k
making this component of the serial covariance larger in magnitude than —.255?
for small k.* However, this component tends to —.255? for large k as in Roll.

The third component of serial covariance in (2) is related to the average adjust-

ment to § made by the specialist in response to a buy or a sell order. Specifically,
S S?
Ecov(éprk — 64,0, — 0;p) = —a;cov([wk_l — I 1,0, —0:_)

2
= —07{C0V(It+k—1 — I,_1,0;) — cov(Lyyk-1 — Tt—1,0c-k)}.

Note that 6; is positive when the transaction at time t is a buy and that a buy
order leads to a reduction in the specialist’s inventory level. Therefore, the first
term within brackets in the above expression is negative for small k. As k increases
this term becomes smaller since any inventory imbalance is offset in the long run.
The second term in the above expression is also negative since the transaction at
time ¢ — k has a bigger effect on the inventory position at time ¢t — 1 than at time

t+k—1. The above discussion implies that the third component can be written as,
COV(5t+k — 5t7 0t - 0t—k) - Szflka (3)

where fy; is positive and becomes small as k becomes large.’

The last term in (2) is,
S S?
Ecov(ﬂH.k —0;,6, — 5t—k) = —a;—cov(ﬁwk =01y — It—k—l)a

2

S
= _OL?{COV(GHrk,It—l - It—k—l) - COV(Ht,It—l - It—k—l)}-

Since positive changes in inventory leads to a decrease in § which in turn increases

the probability that the transaction at time ¢ is a buy order, both the covariances

4However, if the order flow over short intervals is positively serially correlated over short intervals
for reasons outside the model, as found by Choi, Salandro and Shastri in the options market, then
this component of serial covariance will be smaller in magnitude than —.2582,

5Even for large k this term is not zero due to cov(l_1,0;). This covariance is positive since
positive inventory imbalance leads to negative § which in turn encourages buy orders (negative 6).
However, this effect is likely to be of second order importance in our analysis.
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within the brackets are negative. The effect of the second term within the brackets
dominates that of the first term because the changes in the specialist’s inventory
from time t — k — 1 to ¢t — 1 is likely to have a bigger effect on the order flow at time

¢ than that at time ¢t + k. Therefore, the last component can be expressed as,
S 2
ECOV(9t+k — 04,6, — 5t—k) = Sfu,

where fa is positive but probably small in magnitude.

The preceding analysis indicates that expression (2) can be written as,

cov(pirk — PtsPt — Pi—k) = —a?S?* (0} + Yar — 2mk) — 81 —m)?

+8% i + S fuie (4)

This representation of the serial covariances of stock returns can be compared with
Roll’s (1984) predictions for both large and small k's. In the case considered by
Roll only the second term in the above expression is relevant and 7 is assumed to

equal .5. Thus, in Roll’s model,

cov(Perk — Pe, Pt — Pi-k) = —.255%, (5)

For large k, the sum of the first two terms on the right-hand-side of the expression
(4) is less than —.255% and the last two terms are close to zero. This implies that for
returns measured over sufficiently long intervals the magnitude of the negative serial
covariance should be greater than that predicted by Roll, and that the coefficient
from a cross-sectional regression of serial covariance on 5% should be less than —.25.
For small k, the decay of the temporary component is likely to be small and hence
the first term will be close to zero. In addition, the third component is positive and
likely to be of importance for small k. As a result, for small k the serial covariance

in observed returns is likely to be greater than —.2552.°

6For instance, Stoll (1989) presents a simplified version of Ho and Stoll where the effect of the
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II Empirical Tests

In this section we empirically test the implications of the inventory model discussed
in the last section. Our data set consists of quoted year-end closing spreads for
securities traded on the New York Stock Exchange over the period 1963 to 1979 and
daily stock returns from CRSP. The bid-ask spread data were originally obtained
from the Fitch Quotations for a study by Stoll and Whaley (1983).7 As in Stoll
and Whaley (1983) the averages of the quoted spreads at the end of years t and
¢t —1 are used as the spreads for year t. All securities that had spread data available
and had at least 100 observations to estimate the means and the serial covariances
were included in the sample. On average, there were 1214 securities per year in the

sample.

II.1 Estimates of Serial Covariances

It is well known that the standard estimate of serial covariance is downward biased
in small samples (see Kandell (1954) and Harris (1990)). To circumvent this small
sample bias we estimate the serial covariances each year using an estimate of the
expected returns from the previous year. Specifically, our serial covariance estimate

for year t is,

— t 1 T k - k
Scovy, = = S (Y. Rintm-1 — kRit-1) (D Rin-m), (6)

n=1 m=1 m=1

where T is the number of overlapping sample points in year ¢, R, is the continuously
compounded return on day n and R, is the sample mean daily return estimated
from the data in year t — 1. As we show in the appendix the serial covariance

estimate given by (6) is unbiased.

order flow on the changes in the temporary component are sufficiently important that in the short
run the serial covariance in returns is smaller than —.255% in magnitude.
TWe would like to thank Hans Stoll for providing us this data.



The serial covariance from equation (6) is separately estimated for each security
for each calendar year. These estimates for the individual securities are averaged
across the cross-section every year. The estimates of the average serial covariances
and the standard errors are computed from the time-series of the cross-sectional
estimates. These estimates measured over intervals of 1, 3, 5, 7 and 10 days are
presented in Table 1. Consistent with our analysis, the estimate of average serial
covariance (t-statistic) for the entire sample monotonically decreases from .002 X
10~* (.05) for k = 1 to —2.12 x 10~* (—3.02) for k = 10.5 * °

The serial covariance estimates within the size quintiles are also presented in
Table 1.1° Virtually the same pattern of serial covariances is observed for all size-
based groups. The small firms generally exhibit more negative serial covariance
than the large firms at almost all lags. For instance, the average 10-day return serial
covariance for the quintile of smallest firms is —4.9 X 10~* while the corresponding

estimate for the quintile of largest firms is —1.2 X 107,

I1.2 Quoted Spread Vs. Roll’s Implicit Measure

As we showed in section 1, if inventory considerations affect bid and ask prices, Roll’s
implicit measure of the spread will overstate the quoted spread when the serial
covariance is measured over a sufficiently long interval. This section empirically
examines whether or not this is the case.

Roll’s implicit measure of the spread is derived by solving equation (5) for S, an

8The estimates of average serial covariance using the standard serial covariance estimator ranged
from —.008 X 10~% for k = 1 to —3.74 x 10™* for k = 10. Consistent with the analytic results
in Kandell and Stuart (1976) and Harris (1990), all these estimates are smaller than the unbiased
estimates obtained here and also, the extent of measured bias is increasing in the measurement
interval k.

9However, the evidence of postive serial covariances for the two large-firms quintiles at k = 1
is not consistent with our predictions. This result could possibly be explained by a more general
inventory-based market microstructure model that allows for positively correlated order flows.

10gecyrities are assigned to different size-quintiles at the beginning of each year. The size-quintile
cutoffs are based on the market values of all securities traded on the NYSE at the beginning of each
year.
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substituting an estimate of the serial covariance. For example, if the serial covari-

ance is estimated with k-period returns, Roll’s implicit measure is given by,

sk, = 2/—Scov, if —Scovy >0

— —2\/Scov, if — Scov, <O.

As Harris (1990) shows, in small samples, Roll’s implicit measure is severely
biased downwards when the variance of the serial covariance estimate is large.l!
Harris also reports that the analytic estimates of this bias based on low order Taylor
series expressions are extremely inaccurate. To minimize this bias we estimate Roll’s
implicit spread using serial covariance estimates that are averaged across size-based
groups of securities. Based on (5) the relation between the estimate of average serial
covariance within a given group, denoted by Scov, and the quoted spread is given
by,

E(Scov,) = —.25(S" + 0?),
where S is the average within group spread and o? is the within group variance of
quoted spread.

Based on this expression the modified version of Roll’s implicit measure of the

average spread within a group is given by,

Sk = 2\/chovk + 2502 if (—Scovy + 250%) >0

imp

= —2\/‘S'cov,c — 2502 if (—Scovy + 250%) < 0.

The estimates of average implicit spreads within size-based groups over the

sample period 1963-79 along with the average quoted spreads are given in Table 2.

11By Jensen’s inequality the expected value of the square root of a random variable is less than the
square root of its expected value. Since the estimate of serial covariance is unbiased Roll’s implicit
measure of spread is biased downwards.
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The estimates of the implicit spreads are negative when calculated with a return
measurement interval of one day and they are smaller than the average quoted
spreads for k = 3. However, as our model predicts, these estimates are larger than
the average quoted spreads for longer return measurement intervals. For example,
the average quoted spread for all the securities in our sample is 1.5% of the price. In
comparison, the implicit spread from serial covariances measured over three and ten
day intervals are 1.1% and 2.7% respectively. The results are qualitatively similar

within each of the size-based subsamples.

II.3 Regression Tests

To test the relation between serial covariances and bid-ask spreads predicted from
our analysis in the last section we substitute estimates of the serial covariances for

the actual serial covariances, and fit the following testable version of equation (4):
—t
Scov,, = a}, + b.S2 + €y, (1)

where S/czv:k is the estimated serial covariance of k-period returns on security ¢
in year t. The analysis in the last section suggests that b, should be smaller in
magnitude than —.25 for small k and larger in magnitude than —.25 for large k.
Regression (7) is fitted separately for each of the seventeen years in the sam-
ple period. The average of the yearly coefficient estimates and the corresponding
t-statistics obtained from the time-series of the yearly coefficient estimates are pre-
sented in Table 3. The slope coefficient estimates (t-statistics) reported in this
table decrease monotonically with an increase in the measurement interval from
—.096(—8.3) for k£ = 1 to —.251(—3.04) for k = 10 days and are 2ll significant at
the one percent level. The t-statistics at the bottom of this table indicate that
the slope coefficient in the regression with k = 1 is significantly less negative than

the corresponding estimate for k¥ = 3 which is in turn less negative than the corre-
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sponding estimate for £k = 5. Although the slope coefficients continue to increase in
magnitude for larger k the increases are not statistically significant. These findings
are consistent with our prediction and support the hypothesis that at least part of
the observed higher order negative serial correlation in stock returns is attributable

to inventory costs.

I1.4 Size-Effect?

Although the preceding results are consistent with our analysis we carry out addi-
tional tests to ensure that the observed nature of the cross-sectional relation between
the squared spread and the estimate of serial covariance is not spurious. The regres-
sion results in Roll (1984) indicate that the serial covariances of small firm returns
are generally larger in magnitude than that of the large firms and the results in Stoll
and Whaley (1983) and our results in Table 2 indicate that the quoted spreads are
bigger for small firms. Arguably, squared spread could have served as a proxy for
firm size in regression (7), in which case we need to consider possible ‘data snooping’
biases formally discussed by Lo and MacKinlay (1990b). To address this concern
we estimate the following multivariate regression where the variable LOGSIZE, the
natural logarithm of the market value of equity at the beginning of the year, is

included as an additional explanatory variable:
Scovy, = b, + b, S2 + b, LOGSIZE;; + ul,. (8)

Table 4 presents the average of the yearly coefficient estimates from regression
(8) and the corresponding ¢-statistics. The estimates of the coefficient of S2, by,
remains roughly the same as the corresponding slope coefficients in the univariate
regression (7). These estimates are again significant at the one percent level and they
decrease monotonically as the measurement interval k is increased. The coefficient of

LOGSIZE is insignificant and negative for k equal to 1 and is positive and generally
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significant for k greater than 1. However, as can be seen from the R%s, LOGSIZE
adds very little explanatory power to the regressions. This finding indicates that
our earlier results were not driven by the relation between spread and firm size and
indicates that the squared spread is more important in explaining the cross-sectional

differences in serial covariances than firm size.!?

I1.5 Instrumental Variable Regressions

The next question that is of interest is the extent to which the magnitude of the
serial covariance of returns can be explained by the spread. This can be evaluated
by examining the intercept in regression (7). These intercepts, reported in Table
3, are about half the average serial covariance of returns measured over intervals
longer than a day. For instance, the estimate of average serial covariance with a
five-day measurement interval is —1.182 X 10~* while the intercept in regression (7)
with k = 5 is —.507 x 10~%. These point estimates suggest that at least half the
average serial covariance can be explained by the spread.

However, there are two explanations for why the intercepts in the set of regres-
sions in Table 3 are different from zero that are consistent with the serial covariances
being determined entirely by market microstructure considerations. One possibility
is that the specific inventory model we use is misspecified. In reality, the assump-
tions of the Ho and Stoll model are likely to be violated in ways that imply that
the spread only partly captures the inventory related component of prices. For
example, the order flow process in reality may be different from the Poisson arrival
process assumed by them. Secondly, any error in the measured spread will bias the
estimates of the slope coefficient in (7) towards zero which in turn would bias the

intercept downwards. Measurement errors in the bid-ask spread can arise either

12Ty check whether our results are sensitive to the choice of the size variable we also fitted
regression (8) with size-decile rank in the place of LOGSIZE and obtained similar results.

14



from the restriction that the bid and ask prices are quoted in eighths or because the
spread data are point sampled while the serial covariance is estimated using returns
over the entire year.

To overcome the errors-in-variables problem we estimate an instrumenatal vari-
able regression. The instrumental variables that we use for the squared spread in
this regression are LOGSIZE, the average price during the year (PRC) and the vari-
ance of daily returns (VAR).!® Stoll (1978) has previously documented that these
variables are related to the spread.

The following estimates are obtained from the first stage regression fitted with

the pooled cross-sectional and time-series data:

S: = .00051 — .00000166PRC;, — .000138LOGSIZE;; + .5354VARy, +ust (9)
R}, = 275

In the second stage, the following cross-sectional regression is estimated with the
fitted values of the squared spread, §2, from regression (9) as the explanatory

variable,

Scovy, = of, + L8 + €. (10)

Table 5 presents the mean and the t-statistics of the coefficient estimates from
the above regressions obtained from the yearly time-series of the cross-sectional
regression estimates. Consistent with the presence of errors-in-variables, the es-
timated slope coefficients from these instrumental variable regressions, except for
the case where k = 1, are bigger in magnitude than the estimates obtained in the

corresponding OLS regressions. For £ > 3 these coefficients are less than —.25,

13 The variance for year t is estimated with the data in the year ¢ — 1 in order to avoid picking
up in-sample correlation between the estimated variance and serial covariance. Further, we use the
estimate of 20-day return variance divided by twenty rather than the estimate of one-day return
variance since the latter estimate and serial covariance will be correlated if the ‘true’ serial covariance
of returns is persistant.
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although the difference is not statistically significant. As was the case in the OLS
regressions, the slope coefficients in the instrumental variables regression vary with
the measurement interval, again supporting the inventory model.

The estimates of the intercepts are generally closer to zero in the instrumental
variable regressions than in the corresponding OLS regressions. For example, in the
regression with k = 5 the intercept is —.227 X 10~¢ while the corresponding estimate
of average serial covariance is —1.182 X 10~%. The point estimate of the intercept is,
therefore, less than twenty percent of the estimate of the average serial covariance
suggesting that a large part of the magnitude of observed serial covariances can be
explained by the bid-ask spread.

As discussed earlier, a possible explanation of the negative intercept that is still
observed is that the spread does not fully capture the effect of inventory imbalances
on the bid and ask prices. Although it is difficult to unambiguously test this expla-
nation we conduct some exploratory investigation by using the variance of returns
(VAR) as an additional proxy for inventory risk. The motivation for the choice of
this proxy is that the considerations that lead the risk averse specialist to respond
to inventory imbalances by altering his bid and ask prices are likely to be more
pronounced for high variance stocks than for low variance stocks. This implies that
if the price effects of inventory imbalances are not fully captured by S? then VAR
should be negatively related to the serial covariances cross-sectionally. To test this

hypothesis we estimate the following regression:
— t A
Scovy, = of + 81,55 + B3 VAR + ey (11)

The average of the yearly estimates of the regression coefficients and the correspond-
ing t-statistics are presented in Table 5 (Panel B). Except for the case where k = 1,
the coefficients of VAR in (11) are negative. The positive slope coefficient on VAR

for k = 1 could possibly be explained by the order flow process being different from
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the assumptions of Ho and Stoll (see fn. 9). However, the negative slope coefficients
in the regressions with k > 1 support the hypothesis that the short horizon return

reversals are related to the inventory components of the bid and ask prices.

III Trading Volume and Return Reversals

This section examines how trading volume relates to the serial covariance of returns.
Since it is more likely that inventory imbalances will arise when trading volume is
relatively high, the temporary component of stock prices is likely to be greater
during times of high volume. A number of articles have presented evidence that is
consistent with this relation between volume of transactions and return reversals.
These articles examine price movements following days of unusual trading volume.
The basic idea is that the magnitude of the price pressure is likely to be related to the
volume of trades. An early example of such a study is Kraus and Stoll (1972) which
examined price behavior following large block sells and found significant positive
returns.’ A more recent article by Blume, MacKinlay and Terker (1990) examined
the relation between price changes following the October 1987 stock market crash,
and volume on the day of the crash. They found that the stocks that had the
heaviest volume on the day of the crash, recovered the most on the following day,
suggesting that part of decline on the day of the crash was due to price pressure.
If trading volume is related to inventory imbalances in general, then serial co-
variances over periods of high trading volume should be of higher magnitude than
serial covariances over periods of low trading volume. To classify each 1, 3, 5, 7, and
10 day period as a high volume period or a low volume period we first measure the

volume of each stock in each period relative to the stock’s volume over the previous

14Gee also the more recent paper by Holthausen, Leftwich and Mayers (1990) who argue that
prices recover almost immediately following block trades.
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6 months.!® If the relative volume for a stock is higher than the cross-sectional
median in a given period ¢t then that period is classified as a high volume period.

We estimate the serial covariance separately in the high volume period as
Covhigh volume — E(rit X Tit+1|t = h'lgh) - (E(T))2,

and similarly in the low volume period. The serial covariances are estimated within
two year subperiods from 1971 to 1990.

Table 6 presents the average differences in these serial covariances Coviow volume —
COVhigh volume for the entire sample and for five size-based subsamples. Under the
hypothesis that the observed return reversals are generated by inventory imbalances,
these differences should be positive and of larger magnitude for the returns of the
smaller stocks. In contrast to this prediction, the serial covariances of 1 day returns
are lower in magnitude on the high volume days than on the low volume days. This
is consistent with our earlier finding that 1 day serial covariances for the larger stocks
are positively serially correlated, probably reflecting the fact that the order flow is
positively serially correlated. These results are consistent with the positive serial
correlation of the order flow being of greater magnitude during times of high volume
than during times of low volume. For 3, 5, and 7 day returns the serial covariances
are larger in magnitude for the high volume days supporting the inventory cost
hypothesis. This finding holds for each size-based quintile and, as we hypothesized,
the differences in serial covariances is greater for smaller firms than it is for the
larger firms. For returns measured over 10 day intervals the high and low volume
serial covariances are not significantly different reflecting the low precision of these

estimates.

15The volume data were obtained from the Cornell University Stock Price file for the period 1970-
1985 and from the CRSP file from 1986 onwards.
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IV Conclusion

The evidence presented in this paper suggests that most of the short horizon return
reversals can be explained by the way specialists set bid and ask prices, taking
into account their inventory imbalances. The results support the implications of
market microstructure models by Ho and Stoll (1981) and others that examine the
dynamics of the bid and ask prices quoted by risk averse specialists.

Although these findings are consistent with an efficient market they do indicate
that the stock market is not as liquid or resilient as some previous research has
suggested. For instance, a previous study by Dann, Mayers and Raab (1977) con-
cluded that block trades are absorbed very quickly by the market since they find
that the stock price within 15 minutes after the execution of a large block trade is
an unbiased estimate of the closing price. However, our results suggest that price
pressure effects last well beyond one day and hence one might have to look at price
changes over longer periods in order to assess the price resilience following block
trades. Our results are consistent with Harris and Gurel (1986), who find that it
takes about three weeks for the price pressure effects related to concentrated trading
in stocks that are newly included in the S&P 500 index to dissipate.

Our results have implications relevant to the current debate about transaction
taxes and initial margin requirements. For example, Summers and Summers (1989)
have argued that a transaction tax is likely to reduce speculation and thereby re-
duce volatility. We would suggest that policymakers proceed along this path with
caution. The evidence in this paper indicates that the negative serial correlation
in stock returns, and hence the excess volatility, is related to the lack of liquidity
in the market. Therefore, any impediment to trade that results in reduced market

liquidity is likely to result in an increase in stock price volatility.
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Table 1. Estimates of serial covariances of returns measured over

different observation intervals.

Unbiased estimates of k-day return serial covariance are obtained using the following

estimator:
T

—t 1 K _ k
SCOVik = T Z( Z Rin+m—1 - kRit—l)( Z Rin—m)a
m=1

T n=1 m=1

where T is the number of overlapping in year t, R;y is the continuously compounded
return on day n and Rj;_; is the sample mean daily return estimated from the data
in year t — 1. The estimates are obtained for each security ¢ within the calender
year t and these estimates are averaged across the cross-section. The mean of the
the time-series of the cross-sectional averages and the associated t-statistics are
presented below. S1 through S5 are quintiles of the smallest through the largest
firms in the sample.” The t-statistics are presented in parentheses. The sample

period is 1963-1979.

k= 1 3 5 7 10

S1 -0.563' -1.687 -2.568 -3.746 -4.885
(-2.86) (-5.48) (-4.98) (-4.26) (-3.40)

S2 -0.069 -0.794 -1.472 -2.209 -2.725
(-0.78) (-5.62) (-4.13) (-3.64) (-2.85)

S3 0.081 -0.450 -0.947 -1.445 -1.651
(1.60) (-4.56) (-3.13) (-2.92) (-2.37)

S4 0.170 -0.157 -0.601 -1.024 -1.013
(4.15) (-3.39) (-2.64) (-2.13) (-1.28)

S5 0.197 -0.040 -0.587 -1.154 -1.234
(4.57) (-0.93) (-3.29) (-3.24) (-2.73)

All  0.002 -0.571 -1.182 -1.830 -2.117

( 0.05) (-7.91) (-4.40) (-3.72) (-—3.02)
* _ The cutoffs for the size-quintiles are based on all the firms traded on the NYSE at the beginning
of a given year out of which some are excluded from our sample. Therefore the number of firms in
the groups S1 through S5 are different and hence the estimates of the serial covariance of returns
for the entire sample need not equal the average of the estimates within the five groups.
t - The estimates of average serial covariances are multiplied by 10* and reported in this table.
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Table 2. Roll’s implicit measures of spread and the quoted spreads

The within size-group pooled cross-sectional time-series average estimates of serial
covariances of k-day returns are inverted to obtain Roll’s implicit measure of bid-ask
spread. Specifically the implicit spread is obtained using the expression below,

5k = 2\/chovk + 2502 if (—Scovi + 250%) >0

imp

— —2\/Scovg — 2507 if (—Scovs + 250%) <0,

where —S'_fmp is the implicit estimate of the average spread with a given size-group,
Scou, is the within size-group average of the estimates of serial covariance of k-day
returns and o? is the within size-group variance of quoted spread. S1 through S5
are quintiles of the smallest through the largest firms in the sample. The sample

period is 1963-79.

Implicit Spread Quoted
k= 1 3 5 7 10 Spread
S1 -0.006 0.020 0.027 0.034 0.039 0.025
S2 -0.009 0.015 0.022 0.028 0.032 0.018
S3 -0.009 0.012 0.019 0.024 0.025 0.014
S4 -0.010 0.006 0.015 0.020 0.019 0.011
S5 -0.010 0.001 0.016 0.023 0.022 0.008

Column
Average -0.009 0.011 0.020 0.026 0.027 0.015
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Table 3. Relation between the square of the spread and the serial co-
variance of returns measured over different intervals.

Regression Model S/cgv,-k = a; + kaf + ek,

where Scov,; is the estimate of k-day return serial covariance of security ¢ and S? is
the squared spread. The above cross-sectional regression is fitted each year and the
average estimates of the regression parameters are obtained from the time-series of
these estimates. The t-statistics are presented in parentheses. ﬁidj is the average
of the adjusted R? in the individual cross-sectional regressions. The sample period
is 1963-79.

k= 1 3 5 7 10
ap x 100 311 004  -.507 -1.035 -1.144
(7.36)  (.06) (-2.40) (-2.65) (-2.00)
b _096  -.189  -.225  -243  -251
(-8.30) (-11.52) (-8.95) (-5.40) (-3.04)
R, 2098  .194 103 .073  .052
by — by - _093  -.129  -.147  -.155

- (-6.49) (-5.48) (-3.53) (-1.99)
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Table 4. Relation between the serial covariance of returns measured
across different intervals, squared spread and firm size.

Regression Model S/cgv,'k = a; + blkS,-Z + by LOGSIZE + e,

where Scov;; is the estimate of k-day return serial covarince of security 7, S? is
the squared spread and LOGSIZE is the natural logarithm of the market value of
equity at the beginning of a given year. The cross-sectional regression is fitted each
year and the average estimates of the regression parameters are obtained from the

time-series of these estimates. The t-statistics are presented in parentheses. thzdi
is the average of the adjusted R? in the individual cross-sectional regressions. The

sample period is 1963-79.

k= 1 3 5 7 10
&, x 101 0530 -0.739 -1.604 -2.686  -3.929
(2.85) (-2.06) (-2.08) (-2.66) (-2.47)

byy 0.101 -0.184 -0.212 -0.220  -0.229
(-8.37) (-10.40) (-9.08) (-5.58) (-3.13)

By x 104 -0.018 0.062 0092 0137  0.231
(-1.15) (2.33) (1.80) (2.14) (231)

R, 0.302 0200 0.109  0.079  0.056

by — by — .0.083 -0.111 -0.119  -0.128
—  (-516) (-5.08) (-3.29) (-1.86)
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Table 5. Instrumental variable regression estimates.
The first stage regression is fitted using pooled cross-section time-series data and
the following estimates arae obtained:

S = .00177 — .00000166PRC;, — .000138LOGSIZE;, + .5354 VAR + ust
R, =275

where S? is the squared spread and the instrumental variable PRC is the average
price, LOGSIZE is the natural logarithm of the market value of equity at the be-
ginning of the year and VAR is the daily return variance estimated with returns
data from year t — 1 (see fn. 13). The second stage regression specifications using
the fitted values of the squared spread S? from the above regression are:

Panel A: S/cgv:k = of + ﬁ;tcé,?t + e, and

Panel B: Szgvik = o} + ﬁikSA'ﬁ + B, VAR, + €4,

— t . ..
where Scov,, is the estimate of k-day return serial covariance of security ¢ in year
t. The cross-sectional regression is fitted each year and the average estimates of
the regression parameters are obtained from the time-series of these estimates. The

t-statistics are presented in parentheses. Ridj is the average of the adjusted R% in
the individual cross-sectional regressions. The sample period is 1963-1979.

Panel A:
k= 1 3 5 7 10

& x 108 0.252  0.123  -0.227 -0.548  -0.531
(4.86) (1.63) (-2.45) (-2.21) (-112)

B _0.065 -0.200 -0.260 -0.336  -0.378
(-4.36) (-10.34) (-7.33) (-5.16) (-3.33)
0.067 0108 0076  0.070  0.050

2
adj

R

B — B — 0135 -0.195 -0.271  -0.313
— (-14.36) (-6.99) (-4.69) (-2.99)
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Panel B:

= 1 3 5 7 10
&, x 100 0.2028 0.2034 -0.0499 -0.2397 -0.3064
(4.36)  (3.27) (10.55) (-1.07) (-0.78)

B -0.0928 -0.1703 -0.1757 -0.1844 -0.2872
(-4.85) (-7.00) (-5.20) (-3.80) (-2.65)

Bk 0.0292 -0.0569 -0.1254 -0.2212 -0.1625
(2.34) (-2.76) (-3.56) (-3.39) (-1.43)

R, 00831 0.1145 00848 00862 0.0619
Bie—Pfu —  -0.0775 -0.0829 -0.0916 -0.1944
— (-5.65) (-2.48) (-1.95) (-2.08)
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Table 6. Differences in serial covariances of returns over low volume
and high volume periods.

This table presents the average differences between serial coavariances of k-day
returns in the low volume periods and in the high volume periods. S1 through S5
are quintiles of the smallest through the largest firms in the sample. The t-statistics
are presented in parentheses. The sample period is 1971-1990.

k= 1 3 5 7 10
S1  -0.5192Y 1.3997 2.9577 2.8570 3.1494
(-1.51) (3.28) (2.63) (2.07) (1.00)
§2  -0.1723 0.9240 1.3653 1.4136 0.4436
(-1.93) (3.13) (223) (1.41) (0.27)
S3  -0.1555 0.8334 1.1562 1.1269 0.7310
(-2.84) (2.97) (261) (1.52) (0.68)
S4 -0.1386 0.3819 0.6119 0.3598 0.1900
(-4.30) (2.95) (1.94) (0.69) (0.24)
S5  -0.1440 0.1989 0.1778 0.0083 -0.3333
(-4.47) (2.19) (1.05) (0.05) (-1.43)

All  -0.2259 0.7476 1.2538 1.1531 0.8361
(-2.42) (3.44) (2.77) (1.69) (0.70)

t . The differences in the estimates of serial covariances are multiplied by 10* and reported in this
table.
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Appendix A

The standard estimator of serial covariance of returns using T' observations is

Z R;)? (A1)

Nl =

— 1 KL
SC(Rt,Rt_l) = 'T—__l ZRiR{—l - (
1=2

Taking the expectations of the terms in (A1) we get,
— ot 2 .
E(SC(Rt,Rt_l)) = E(Rth_l) - ,u2 - —T‘— - —ﬁ Z(T — 2)’7,’ (A2)
i=1

where p, 0% and ~; are the mean, the variance and the 1t" order serial covariance of
returns respectively. Under the hypothesis that the returns are serially uncorrelated
the last term in (A2) is zero and the small sample bias in the serial covariance
estimator (A1) is —%. This result is contained in Marriot and Pope (1954) and
Harris (1990).

Note that when returns are serially correlated, as suggested by our results in
Section 1, the last term in (A2) is non-zero and hence the small sample bias contains
terms involving the return serial covariances.

The estimator of serial covariance that we propose can be written as,

1 1 2

— l 1 &
Scov(Ry, Ri—y) = T_1 ZRiRi—l — (= ZRi)(T Z R;) (A3)
=2 T3 i=—T+1
Taking the expectations of the terms in (A3) we get,
. 1 T 2T
E(Scov(Ry, Ri_1)) = E(RiRi_1) — 1* — F(Z1 Vi + ;1(2T —1)%) (A4)
i= i=T+

Note that the term ¢?/T which is the major source of bias in (A2) is not con-
tained in (A4). The last term in (A4) is zero when returns are serially uncorrelated.
Even when the daily returns are serially correlated as observed, the last term on
the right-hand side is trivial for actual values of serial covariance detected in the
data.
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