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Maximum Likelihood Estimation of the Negative
Binomial Dispersion Parameter for Highly Overdispersed
Data, with Applications to Infectious Diseases
James O. Lloyd-Smith*

Center for Infectious Disease Dynamics, Mueller Lab, Pennsylvania State University, University Park, Pennsylvania, United States of America

Background. The negative binomial distribution is used commonly throughout biology as a model for overdispersed count
data, with attention focused on the negative binomial dispersion parameter, k. A substantial literature exists on the estimation
of k, but most attention has focused on datasets that are not highly overdispersed (i.e., those with k$1), and the accuracy of
confidence intervals estimated for k is typically not explored. Methodology. This article presents a simulation study exploring
the bias, precision, and confidence interval coverage of maximum-likelihood estimates of k from highly overdispersed
distributions. In addition to exploring small-sample bias on negative binomial estimates, the study addresses estimation from
datasets influenced by two types of event under-counting, and from disease transmission data subject to selection bias for
successful outbreaks. Conclusions. Results show that maximum likelihood estimates of k can be biased upward by small
sample size or under-reporting of zero-class events, but are not biased downward by any of the factors considered. Confidence
intervals estimated from the asymptotic sampling variance tend to exhibit coverage below the nominal level, with
overestimates of k comprising the great majority of coverage errors. Estimation from outbreak datasets does not increase the
bias of k estimates, but can add significant upward bias to estimates of the mean. Because k varies inversely with the degree of
overdispersion, these findings show that overestimation of the degree of overdispersion is very rare for these datasets.

Citation: Lloyd-Smith JO (2007) Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with
Applications to Infectious Diseases. PLoS ONE 2(2): e180. doi:10.1371/journal.pone.0000180

INTRODUCTION
The negative binomial (NB) distribution has broad applications as

a model for count data, particularly for data exhibiting over-

dispersion (i.e. with sample variance exceeding the mean). In the

biological literature, classical uses of the NB distribution include

analysis of parasite loads, species occurrence, parasitoid attacks,

abundance samples and spatial clustering of populations [1–7].

The range of applications of the NB distribution was extended

recently to include the epidemiology of directly-transmitted

infections, as the NB distribution was shown to be a suitable

model for the ‘offspring distribution’ for a number of disease

transmission datasets [8]. The offspring distribution, a concept

arising in the theory of branching processes [9], is the probability

distribution for the number of individuals (termed ‘secondary

cases’) infected directly by each infectious individual in a disease

outbreak. Estimation of NB parameters for empirical offspring

distributions revealed a high degree of overdispersion—particu-

larly for severe acute respiratory syndrome (SARS), measles, and

smallpox—signalling an unexpectedly large influence of individual

variation and ‘superspreading’ on the dynamics of disease

emergence [8]. However, the authors emphasized the challenges

inherent in estimating NB parameters and the confidence intervals

(CIs) associated with those estimates, and noted that previous work

on NB parameter estimation had not explored the parameter

ranges of interest for epidemiological studies. A particular concern

is whether the results were influenced by small sample size in the

datasets analyzed, or biases peculiar to disease transmission data.

This study uses simulated data to assess the bias and precision of

NB parameter estimates and the coverage accuracy of CIs for

highly overdispersed datasets, addressing the challenges of small

datasets as well as potential biases arising in the data collection

process.

The popularity of the NB distribution is due largely to its ability

to model count data with varying degrees of overdispersion. The

distribution is commonly expressed in terms of the mean m and

dispersion parameter k such that the probability of observing

a non-negative integer x is

Pr (X~x)~
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The variance of the NB distribution is m (1+m/k), and hence

decreasing values of k correspond to increasing levels of dispersion.

The Poisson distribution is obtained as kR‘, and the logarithmic

series distribution is obtained as kR0 [1,10]. When k = 1, the NB

distribution reduces to the geometric distribution. Note that recent

work in the statistical literature uses the quantity a = 1/k due to its

preferable properties for inference (discussed below), but studies

applying the NB distribution in ecology and epidemiology are

overwhelmingly posed in terms of k. Accordingly, all calculations

in this study were conducted using a, but all results and discussion

are posed in terms of k. (Confusingly, the term ‘dispersion para-

meter’ can refer to either k or a; other terms for k include ‘shape

parameter’ and ‘clustering coefficient’.)

Academic Editor: Mark Rees, University of Sheffield, United Kingdom

Received December 21, 2006; Accepted January 3, 2007; Published February 14,
2007

Copyright: � 2007 James Lloyd-Smith. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: This research was performed as a postdoctoral researcher supported by
NIH-NIDA (R01-DA10135) and a Center for Infectious Disease Dynamics Post-
doctoral Fellowship. None of the sponsors played any role in the research.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: jlloydsmith@psu.edu

PLoS ONE | www.plosone.org 1 February 2007 | Issue 2 | e180



The dispersion parameter k is commonly used as an inverse

measure of aggregation in biological count data [1–5,8,11,12], yet

its estimation from finite datasets is a recognized challenge. Many

simulation studies have examined the efficacy of different esti-

mators of NB parameters for finite datasets [11,13–16,17; also see

review in 14], but owing to precedent most of these have focused

on k$1 and hence do not apply to highly overdispersed data. One

biologically motivated study did explore values of k,1 [16], but it

did not test the maximum-likelihood (ML) methods of estimation

that have become standard owing to their asymptotic efficiency

and low bias [12,13,17]. The small-sample accuracy of ML esti-

mates of k has not been tested for NB distributions with moderate

to high degrees of overdispersion. Moreover, little attention has

been paid to the accuracy of CIs of such NB parameter estimates.

The first aim of this study, therefore, is to investigate the bias,

precision and CI coverage accuracy of ML estimates of k for

small samples. The investigation focuses on datasets with k,1, to

address the gap in existing studies, but results for k$1 are included

to establish continuity with earlier work.

The second aim is to investigate how estimates of k are affected

by potential biases of the data collection process, in particular

systematic under-counting of events and the selection bias inherent

in disease outbreak data. The disease transmission datasets

analyzed by Lloyd-Smith et al. [8] fell into two broad categories,

surveillance and outbreak datasets, each of which presents chal-

lenges due to the processes by which data are generated and

collected.

Surveillance datasets combine information about many separate

introductions of a disease into a population of hosts. Empirical

offspring distributions can be constructed by counting the number

of secondary cases infected by the first infectious individual in each

outbreak, but ignoring all subsequent generations of transmission

(which often are not reported in detail, or may be influenced by

outbreak control measures). The resulting datasets are analogous

to many other datasets in biology, compiling many independent

records of unrelated events. Datasets of this type can be affected by

two broad classes of under-counting error. First, data points may

be underestimated, due to the possibility that some of the second-

ary cases will be overlooked, misdiagnosed, or not traced to the

individual that infected them. Second, individuals who do not

transmit the disease may be more likely to be missed by surveil-

lance programs, because they do not initiate a cluster of cases and

thus are less likely to attract the attention of health authorities.

Therefore instances of a particular value (i.e. x = 0, for no second-

ary cases) may be systematically under-counted in the surveillance

samples. These two classes of under-counting error are common to

many types of biological data [e.g. 18,19,20].

Outbreak datasets, comprising the second category of disease

transmission data, are more unique to epidemiology and disease

ecology. Offspring distributions drawn from outbreak data include

the number of secondary cases caused by many individuals within

a single disease outbreak. These datasets arise when several gener-

ations of epidemic spread (typically early in an outbreak, before

control measures are imposed) are fully reconstructed by contact

tracing, so the number of secondary cases caused by each infectious

case can be determined. Lloyd-Smith et al. [8] showed that when

the degree of infectiousness is highly overdispersed (e.g. when the

offspring distribution is NB with k,1), many outbreaks will die out

stochastically in their first few generations of spread. In such

situations, the outbreaks that survive tend to be those where a

highly infectious individual (i.e. an individual whose number of

secondary cases is drawn from the right-hand tail of the offspring

distribution) appears in the early generations [8]. Because out-

break datasets necessarily are drawn from successful outbreaks,

there is the possibility of selection bias for an increased proportion

of exceptionally infectious individuals, or ‘superspreaders’ [21].

Intuitively, this risk appears to be particularly acute for offspring

distributions with lower mean values, for which the epidemic’s

growth is more dependent on chance. (Note that the mean of the

offspring distribution corresponds to the basic reproduction

number R0 of the disease [8,22]).

METHODS

2.1 Generating simulated data sets
Four types of simulated datasets were examined. In all cases, the

datasets comprised n values, xi (i = 1, 2, …, n), generated as

described below. In the epidemiological context that motivated

this study, these values xi correspond to the numbers of secondary

cases that were infected by n different infectious individuals, but

similar data could arise from many other processes. All simulations

were conducted using Matlab v6.1 (MathWorks, Cambridge MA).

2.1.1 Negative binomial data Because the NB random

number generator in Matlab v6.1 (nbinrnd) does not allow non-

integer values of k, NB random variates were simulated using the

fact that the NB distribution can be derived as a Poisson distribu-

tion with gamma-distributed intensity, i.e. a Poisson-gamma

mixture [23,24]. First, n values gi were drawn from a gamma

distribution with mean m and dispersion parameter k. Second,

each of these values was used as the intensity parameter for

a Poisson random variate to yield a NB-distributed value xi, i.e.

xi = Poisson(gi). Random variates were generated using the Matlab

functions gamrnd and poissrnd.

2.1.2 Negative binomial data with uniform under-

counting To simulate surveillance datasets with uniform

under-counting of data, it was assumed that each secondary case

can be missed by surveillance with a fixed probability pu. Raw data

were drawn from a NB distribution with parameters m and k, as

described in section 2.1.1 above. Each value xi was then decreased

by an amount di,binomial(xi, pu), generated using the Matlab

function binornd, to represent under-counting.

2.1.3 Negative binomial data with under-reporting of

zeroes To simulate the possible under-reporting of individuals

who cause no secondary infections, it was assumed that all individ-

uals who caused xi = 0 cases can be overlooked with some fixed

probability pz, while all other individuals have their full case-count

recorded. NB samples were generated as in section 2.1.1, then any

value xi = 0 was deleted with probability pz and replaced by

another NB random variate. If the new value was also 0, then it

was again replaced with probability pz. This process was repeated

until a sample of n values was generated, in which each remaining

value xi = 0 had avoided replacement exactly once.

2.1.4 Outbreak data To generate outbreak datasets, stochas-

tic disease outbreaks were simulated as discrete-time branching

processes with NB offspring distributions, using the method

described by Lloyd-Smith et al. [8]. Each outbreak was assumed

to begin with a single infected individual, who transmits the disease

to x1 other individuals, where x1 is drawn from a NB distribution

with parameters m and k. Each of these second-generation cases

infects xi other individuals, where the xi are independent and

identically distributed draws from the same NB offspring distribu-

tion; the number of cases in the third generation is then
Xx1z1

i~2

xi.

This process was repeated until the cumulative number of cases

exceeded n, and the xi values corresponding to the first n infectious

cases were used as the simulated outbreak dataset. To mirror the

selection bias in using real outbreak datasets of a given size,

outbreaks were simulated repeatedly until the cumulative number

Analysis of Overdispersed Data
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of cases was n or higher. Outbreaks that died out with fewer than n

total cases were not used. Large outbreaks were less likely when

m,1, particularly for k.1 where extremely infectious individuals

(who cause large superspreading events) were very rare. No results

were reported for parameter sets for which fewer than 1 in 105

simulated outbreaks had n cases or more. Otherwise, simulations

were repeated until the desired number of datasets was obtained.

2.2 Estimation of dispersion parameter and

confidence interval
For each of the above classes of simulated data, 10,000 simulated

datasets were generated for each combination of the mean

m = {0.5, 1.0, 3.0}, the dispersion parameter k = {0.1, 0.3, 0.7, 1.0,

3.0, 10.0}, and the sample size n = {10, 30, 100, 300}, in a full

factorial design. Datasets with no non-zero values of xi were

rejected, as k cannot be estimated from all-zero data. For each

simulated dataset, the ML estimate k̂ was determined as described

below. The 90% CI was calculated, and it was recorded whether

the true value k fell within the CI, above its upper bound (termed

a CI underestimate), or below its lower bound (a CI overestimate).

The 90% CI was studied instead of the 95% interval because the

more extreme values of k are most difficult to estimate accurately,

and to match results presented in Lloyd-Smith et al. [8].

An extensive statistical literature exists on ML estimation of NB

parameters [1,10,11,13,15,17]. This work shows that it is better to

make inferences about k indirectly via its reciprocal a = 1/k, for

two reasons. First, use of the reciprocal avoids discontinuities

for homogeneous datasets, because increasing homogeneity yields

aR0 instead of kR‘. Indeed, there is a continuous transition to

values a,0 corresponding to underdispersion (when sample

variance is less than the mean), for which direct estimation of k

is problematic [14,25]. Second, the sampling distribution for

a tends to be more symmetric than that for k [13] (an example

using outbreak data is shown in Fig. SI-1 of Lloyd-Smith et al. [8]).

In this study ML estimation was conducted for the parameter a,

but results are reported in terms of k̂ = 1/â because k is more

familiar to epidemiologists and ecologists. Estimates of â were

restricted to positive values, because the allowed range for k was

(0,‘). Underdispersed datasets were assigned the minimum value

of â, corresponding to kR‘. This approximation is reasonable

because the study focuses on highly overdispersed NB distributions

(with k,1); estimation of â for underdispersed data is discussed in-

depth elsewhere [14,15,17,25]. The ML estimate of m is the

sample mean, x̄ [10]. The ML estimate of a was determined by

unidimensional numerical maximization of the log-likelihood

function [15], conducted using the fminbnd function of Matlab

6.1 over the interval (0.001,1000). The termination tolerance was

set sufficiently small that negligible accuracy was lost in inverting

the estimates, and direct ML estimates of k (obtained by maximiz-

ing the log-likelihood function derived from equation (1)) matched

k̂ = 1/â to beyond the fourth decimal place. Reported estimates of

k̂ thus are drawn from the range (0.001,1000), which is much

broader than the range of k commonly estimated from epidemiol-

ogical data (e.g. the range of k̂ was [0.032,5.1] in 11 uncontrolled

outbreak datasets [8], or [0.038,6.014] in 49 macroparasite

burden datasets [4]). NB distributions with k = 1000 and kR‘

(the Poisson distribution) are indistinguishable in practice.

Confidence intervals for k̂ were estimated from the asymptotic

variance of the sampling distribution, given by the inverse of the

information matrix [24]. For 11 outbreak datasets, intervals

estimated in this way were very similar to those estimated using

bias-corrected bootstrap methods (both parametric and non-

parametric) and asymptotic variance for the zero-class estimator of

k [8]. For ML estimates of k̂ or â, the asymptotic sampling

variances (s2

k̂
or s2

â ) cannot be expressed in closed form but are

easily calculated numerically [10,17]. These variances are related

by s2
â ~s2

k̂

.
k̂4 [13]. In this study s2

âa was calculated for each

simulated dataset, and the 90% CI for â was estimated as

[â2z0.95sâ, â+z0.95sâ], where z0.95 is the 95th percentile of the

standard normal distribution [24]. The CI for k̂ was generated by

inverting and reversing the endpoints of the interval for â. When

â2z0.95sâ,0, the upper bound of the interval for k̂ was assumed

to be kR‘.

RESULTS

3.1 Negative binomial data
The results for unaltered NB datasets are shown in Figure 1.

Boxplots show the median, interquartile range (IQR) and [5th,

95th] percentile interval of 10,000 ML estimates k̂ for each para-

meter set, while vertical lines show the true value of k. In general,

the estimates are biased upward (i.e. favoring values k̂.k) but

converge on the true value k as sample size n increases. For a given

n, estimation tends to be less biased (the median value of k̂ is closer

to k) and more precise (the IQRs of k̂ are smaller) for larger values

of m and smaller values of k.

Numbers to the right of each subplot in Figure 1 show the

coverage accuracy of the CIs estimated for k̂. The two numbers y/

z show, respectively, the percentage of simulations for which the

true value of k fell below and above the estimated CI. For the 90%

intervals estimated here, perfect coverage would yield values

5.0/5.0. For almost all parameter sets the proportion of CI

overestimates (when the lower bound of the CI exceeds the true k)

is greater than 5%, sometimes substantially so. This pattern is

broken only for small n and large k. For all parameter sets the

proportion of CI underestimates (when the upper bound of the CI

is below the true k) is less than 5%. When the proportion of CI

overestimates is very high (.10%, say), CI underestimates tend to

be almost non-existent. The true coverage of the estimated 90%

CIs (calculated as (1002y2z)%) is generally less than 90%,

although it often approaches this value for n = 300. Again, there is

an exception for small n and large k, when realized coverage

exceeds 90% and reaches 100% in some instances (when the CI is

extremely broad).

3.2 Negative binomial data with uniform under-

counting
The results for NB surveillance datasets subject to uniform under-

counting are shown in Figure 2. Results are shown for two values

of the probability pu that any given secondary case is missed by

surveillance. When pu = 0.2 (Fig. 2a), estimates of k̂ from these

datasets differed only slightly from estimates from raw NB data

(Fig. 1), exhibiting all the same qualitative patterns and slightly

worse bias and precision. When pu = 0.5 (Fig. 2b), results exhibited

similar, but more extreme, differences from the raw NB results.

3.3 Negative binomial data with under-reporting of

zeroes
Results of estimation from NB surveillance datasets with under-

reporting of the zero class, in which individuals who caused xi = 0

cases were omitted from simulated datasets with probability pz, are

shown in Figure 3. For both pz = 0.2 (Fig. 3a) and pz = 0.5 (Fig. 3b),

estimates of k̂ are biased upward significantly. Notably, this effect

does not diminish as sample size increases. Indeed, for most para-

meter sets the proportion of CI overestimates increases with higher

n, as the sampling distribution narrows around the biased value.

Analysis of Overdispersed Data
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3.4 Outbreak data
Estimates from simulated outbreak datasets are shown in Figure 4.

For m = 0.5 and k.0.1, no results are presented for n$100 because

fewer than 1 in 105 simulated outbreaks reached 100 cases. For

other values of m and k, estimates of k̂ are quite robust (Fig. 4a).

Comparing these results to estimates from Figure 1, it is evident

that estimates from outbreak datasets have similar biases (slightly

positive for small n, but diminishing as n increases) and precisions

that are as good and sometimes better than those from unaltered

NB data. The outbreak datasets yield slightly more CI over-

estimates for m = 3, even though the IQR and [5th, 95th] percentile

interval of the sampling distribution is often smaller. Outbreak

datasets yield fewer CI overestimates for k = 0.1, m = 0.5 or 1.0,

and n = 10 or 30.

ML estimates of the mean are shown for these datasets as well

(Fig. 4b). There is a striking positive bias evident in the estimates of

m̂ for m = 0.5; in all cases shown, the distribution of m̂ estimates has

median value .1 and 5th percentile value $1. For m = 1, there is

an upward bias in the m̂ estimates that decreases as sample size

rises. For m = 3, the upward bias persists but is very slight for

k$0.3 or n$30.

DISCUSSION
This study makes three novel contributions to the established

literature on estimation of the NB dispersion parameter k. It

provides the first comprehensive evaluation of ML estimation of k

for highly overdispersed datasets (i.e. those with k,1); it reports the

coverage accuracy of CIs derived from those estimates; and it

examines potential biases in estimation due to methods and errors

of data collection, with application to epidemiological datasets in

particular and biological datasets in general. The major qualitative

results are summarized in Table 1.

The results for unaltered NB datasets confirm and extend the

findings of earlier studies. Small-sample estimates of k̂ were biased

toward overestimating k—and hence underestimating the degree

of overdispersion in the data—as reported in previous studies using

ML and related methods of estimation for k$1 [14,15,17]. The

positive bias in k arises because smaller samples are less likely to

include values from the right-hand tail of the NB distribution,

without which the dataset appears more homogeneous. Estimates

of k̂ were less biased and more precise for larger values of m,

possibly because such datasets had higher total numbers of non-

zero events. Estimates were more biased and less precise for higher

values of k (particularly in the previously-studied range of k$1),

corresponding to the known instability of ML estimates when data

are closer to being fitted by a Poisson distribution [13]. Intuitively,

this effect arises because a NB distribution with k = 10 is qualita-

tively similar to one with k = 50 or kR‘, and quite dissimilar to

one with k = 1, so the range of k̂ estimates for small samples tends

to be large and skewed upwards.

One previous simulation study [16] presented in-depth results

for estimation of k,1 (specifically, for k = 0.4), employing method-

of-moments estimates k̂mom rather than the ML estimates assessed

here. That study reported that smaller sample sizes from NB

datasets led to systematic underestimation of the mean and

variance and overestimation of k; the variance/mean ratio was

also biased downward by small n. There is one interesting differ-

ence between the method-of-moments estimates results of Gregory

and Woolhouse [16] and the present results for ML estimation: the

positive bias of k̂mom was fairly constant as m increased (though the

range of k̂mom values was greatest for lower m), while the bias of

ML estimates k̂ decreased for higher m (Fig. 1). It is notable that

their values of m ranged from 1.25 to 160 (for k = 0.4), while the

values used here ranged from 0.5 to 3 (for k between 0.1 and 10).

Several salient patterns emerged regarding the realized coverage

of 90% CIs, as estimated using the asymptotic variance of ML

estimates. The true coverage of the nominal 90% intervals was

typically less than 90%, and CI overestimates were much more

numerous than CI underestimates. For all parameter sets con-

sidered, ,5% of CIs had upper bounds below the true value of k.

The realized coverage of the CIs is driven by the interplay of

two factors: the value of the estimates, k̂, and the breadth of the

intervals (determined by the sampling variance, s2
k̂k
). The upward

bias of k̂ increases for lower values of n and m and higher values of

Figure 1. Estimated values of k̂ and confidence interval coverage for NB datasets. 10,000 datasets were simulated as described in Section 2.1.1 of the
text, using mean m, dispersion parameter k, and sample size n as shown. Boxes show the median and interquartile range (IQR) of 10,000 resulting ML
estimates of k̂, and whiskers show the 5th and 95th percentile values. Numbers to the right of each subplot show the percentage of simulations for
which the true value of k was outside (below (CI overestimate)/above (CI underestimate) for the numbers y/z, respectively) the 90% confidence
interval estimated for k̂ The vertical line in each subplot shows the true value of k. To facilitate comparison among parameter sets, the horizontal axis
of all subplots is scaled from 0 to 10 times the true value of k.
doi:10.1371/journal.pone.0000180.g001
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k; lower values of n, m, or k lead to increases in s2

k̂
and hence

broader intervals. Overestimates of k̂ favor CI overestimates by

setting a high mid-point for the estimated intervals, and by

reducing the estimated sampling variance (because s2

k̂
is calculated

with an inflated value of k) and thus leading to narrower intervals.

The gross patterns in the frequency of CI overestimates thus are

driven primarily by patterns of bias in k̂.

To understand the finer patterns in CI coverage accuracy,

particularly for CI underestimates and for CI overestimates for

higher values of k, it is necessary to consider how the CIs are

calculated. Recall that intervals were estimated for a = 1/k as

[â2z0.95sâ, â+z0.95sâ], then converted into intervals for k. CI

underestimates for k occur when a,â2z0.95sâ. The complete

absence of CI underestimates in many small-n parameter sets

arises because â,z0.95sâ such that the lower bound of the CI for â
is ,0. In these instances, the upper bound of the CI for k̂ is set to

the maximum value for k̂ and cannot be exceeded. As n, m, or k

increases, sâ decreases and the CIs narrow such that some CI

underestimates occur. Similarly, CI overestimates occur when

a.â+z0.95sâ. As k increases, CI overestimates become less

frequent (despite the high frequency of k̂ overestimates) because

a = 1/k is often smaller than z0.95sâ. Because â is constrained to

positive values in these simulations, CI overestimates are

impossible when a,z0.95sâ. Accordingly, for given values of

k.1, CI overestimates are more frequent for higher values of n and

m (corresponding to lower values of sâ). This study’s focus on

overdispersed datasets, and hence on the positive values of k

familiar to biologists, has thus influenced the determination of CI

coverage in some regions of parameter space. Estimation

procedures allowing for underdispersed data (â,0) may show

different results. Investigators requiring CIs guaranteed to reach

nominal levels of coverage should consult the literature on exact

CIs for discrete distributions [e.g. 26].

The simulation results from surveillance and outbreak datasets

(Figs. 2–4) can be interpreted readily in light of the raw NB results

discussed above. For datasets where individual values correspond

to completely unconnected events (e.g. epidemiological surveil-

lance of multiple independent introductions of a disease, or many

Figure 2. Estimated values of k̂ and confidence interval coverage for NB datasets with uniform under-counting of secondary cases. The probability
with which any secondary case was missed by surveillance was (a) pu = 0.2 and (b) pu = 0.5. 10,000 datasets were simulated as described in Section
2.1.2 of the text, for parameters m, k, and n as shown. Plotting details are described in Figure 1.
doi:10.1371/journal.pone.0000180.g002
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other biological observations), the effects of two forms of under-

reporting were assessed. In uniform under-counting, each instance

of the quantity being counted (e.g. secondary cases, in the

epidemiological context) can be overlooked with equal probability

pu. The expected value of each datum xi in the raw dataset (drawn

from an NB distribution with parameters m and k) is reduced to

(12pu) xi, and the resulting distribution is NB with parameters

(12pu) m and k (as argued under the topic of ‘population-wide

control measures’ by Lloyd-Smith et al. [8]). Thus uniform under-

counting does not introduce systematic bias to ML estimates of k,

but does cause a slight increase in the small-sample bias and

decrease in precision (Fig. 2) corresponding to the effect of a lower

mean, as characterized for raw NB data (Fig. 1).

In contrast, the second class of under-reporting bias, in which

xi = 0 events are omitted from datasets with probability pz, leads to

systematic overestimation of k that does not vanish as n increases

(Fig. 3). NB distributions with low k are characterized by large zero

classes and long tails (giving rise to the large variance-to-mean

ratios that define overdispersion). Decreasing the proportion of

zeroes (hence replacing xi = 0 events by xi.0 events) leads to

higher sample mean m̂ and lower sample variance ŝ2. As is readily

seen from the method-of moments estimator k̂mom = m̂2/(ŝ22m̂)

[10], this will bias estimates of k to higher values. Investigators

should be vigilant for this class of under-reporting bias, and

conduct estimation using a zero-modified NB distribution [27] if

zero under-counting is suspected.

Outbreak datasets involve a mechanism of data generation that

is particular to epidemiological (or demographic) processes. Earlier

analyses have shown that when offspring distributions are highly

overdispersed (e.g. NB with k,1), the outbreaks that succeed tend

to be those with early superspreading events [8]. The present

results show that this does not cause underestimation of k as had

been feared; estimates of k̂ from outbreak data (Fig. 4a) exhibited

similar properties to those from raw NB data (Fig. 1). Indeed,

outbreak estimates had slightly smaller bias and greater precision

for smaller n, probably because the use of outbreak data (biased

toward including high-xi events) counteracts the usual small-

sample bias (which arises because small datasets often lack high-xi

events). Therefore the selection bias inherent in outbreak datasets

acts to offset somewhat the usual upward bias in estimates of k̂.

Figure 3. Estimated values of k̂ and confidence interval coverage for NB datasets with under-reporting of zeroes. Individuals that caused no
secondary infections were missed by surveillance with probability (a) pz = 0.2 and (b) pz = 0.5. 10,000 datasets were simulated as described in Section
2.1.3 of the text. Plotting details are described in Figure 1.
doi:10.1371/journal.pone.0000180.g003
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In sharp contrast, estimation of m̂ from outbreak datasets

(assessed by simulation because, unlike the surveillance cases, the

potential bias cannot be computed directly) is strongly biased

upward when m is below or near 1 (Fig. 4b). This is unsurprising

because the minimum value of m̂ for an outbreak with n cases is

(n21)/n (for an outbreak that dies out immediately following the

nth case), while higher values are quite feasible. (Recall that m̂ is

estimated as the mean number of secondary cases generated by the

first n cases in an outbreak, regardless of whether the outbreak

continues beyond n cases. If the cumulative number of cases after

the rth generation of transmission is j, then the mean value of xi for

i = 1 to j is (j21)/j. If the nth case then occurs in the (r+1)th

generation of transmission, then all infections caused by the final

n2j individuals in the dataset (i.e. xi for i = j+1 to n) serve to inflate

m̂ above its minimum value of (n21)/n.) The greatest bias in m̂

occurs for low k and n, when large superspreading events in the

final generation can have disproportionate effect on the sample

mean. For m = 1.0, the bias decreases as n increases, probably

because higher-n datasets involve more generations of disease

transmission, so the ‘left-over’ cases of the final generation (i.e. the

final n2j individuals in the example above) make a smaller

proportional contribution. For m = 3.0, there is no substantial bias

for any parameters (with a minor exception for k = 0.1 and n = 10).

The results presented here suggest several avenues for future

work. This study has focused on ML estimation only, and it would

Figure 4. Estimated values of (a) k̂ and (b) m̂ for outbreak datasets generated by branching process simulations with NB offspring distributions.
10,000 datasets were simulated as described in Section 2.1.4 of the text. Circles indicate parameter sets for which fewer than 1 in 105 simulated
outbreaks had n cases or more. Other plotting details are described in Figure 1.
doi:10.1371/journal.pone.0000180.g004

Table 1. Influence of NB parameters and data types on bias
and precision of k̂.
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For increasing values of these
parameters:

For outbreak
data

n k m pu pz

Lower bias + + 2 + 2 2 2* +

Higher precision + + 2 + 2 2 +

+indicates lower bias or higher precision
2indicates larger upward bias or lower precision
*indicates systematic bias that does not vanish as nR‘

doi:10.1371/journal.pone.0000180.t001..
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be fruitful to extend the conclusions to other methods of estimating

k, such as maximum quasi-likelihood [14], method-of-moments

with small-sample correction [16], or bias-corrected ML [17].

Further studies on estimation of m̂ will be interesting, particularly

in the epidemiological context where the mean of the offspring

distribution is equivalent to the crucial quantity R0 [8,22]. In

particular, it will be important to learn how the overdispersion

observed in disease transmission data [8] influences estimation of

R0 from continuous-time outbreak data such as daily case reports

[28,29], as opposed to estimation directly from known chains of

transmission as assessed here. Overdispersed offspring distribu-

tions cause outbreaks to either die out stochastically or grow

explosively [8], so estimation of R0 from daily case reports (of

successful outbreaks only, necessarily) may exhibit bias beyond

that shown in Figure 4b.

In summary, this study showed that there is minimal risk of

underestimating k—and hence of overestimating the degree of

overdispersion in the data—due to small sample size or any of the

three process biases considered here. There is substantial risk of

overestimating k, particularly when sample sizes are small or the

zero-class is systematically under-counted. All of the systematic

biases identified in this study favored higher values of k̂, and

instances when confidence intervals excluded the true value k were

predominantly overestimates. Note that an independent risk of

underestimating k can arise from pooling data from heterogeneous

groups: the dispersion parameter estimated from pooled data is

nearly always less than the average of values estimated for the

individual groups [11,16]. Regarding sample sizes for NB datasets

with k#1, n = 100 or more allows accurate and precise ML

estimation of k̂, while for n = 30 the median estimates showed

minimal bias but the sampling distribution skewed to high values.

A sample size of 10 yields unreliable estimates, particularly for

m#1. These findings will help guide prospective design of

sampling regimens, or, when sample size cannot be increased,

will aid investigators in understanding the limitations of ML

estimates of k̂ and associated CIs.
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